Range-Efficient Consistent Sampling and
Locality-Sensitive Hashing for Polygons*'

1 and Rasmus Pagh?

Joachim Gudmundsson

1 University of Sydney, Australia
joachim.gudmundsson@sydney.edu.au

2 IT University of Copenhagen, Denmark
pagh@itu.dk

—— Abstract

Locality-sensitive hashing (LSH) is a fundamental technique for similarity search and similarity
estimation in high-dimensional spaces. The basic idea is that similar objects should produce hash
collisions with probability significantly larger than objects with low similarity. We consider LSH
for objects that can be represented as point sets in either one or two dimensions. To make the
point sets finite size we consider the subset of points on a grid. Directly applying LSH (e.g. min-
wise hashing) to these point sets would require time proportional to the number of points. We
seek to achieve time that is much lower than direct approaches.

Technically, we introduce new primitives for range-efficient consistent sampling (of indepen-
dent interest), and show how to turn such samples into LSH values. Another application of our
technique is a data structure for quickly estimating the size of the intersection or union of a set
of preprocessed polygons. Curiously, our consistent sampling method uses transformation to a
geometric problem.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems, Geometrical problems and computations

Keywords and phrases Locality-sensitive hashing, probability distribution, polygon, min-wise
hashing, consistent sampling

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.42

1 Introduction

Suppose that you would like to search a collection of polygons for a shape resembling a
particular query polygon. Or that you have a collection of discrete probability distributions,
and would like to search for a distribution that resembles a given query distribution. A
framework for addressing this kind of question is locality-sensitive hashing (LSH), which seeks
to achieve hash collisions between similar objects, while keeping the collision probability low
for objects that are not very similar. Arguably the most practically important LSH method
is min-wise hashing, which works on any type of data where similarity can be expressed in
terms of Jaccard similarity of sets, i.e., the ratio between the size of the intersection and
the size of the union of the sets. Indeed, the seminal papers of Broder et al. introducing
min-wise hashing [5, 6] have more than 1000 citations. Independently, Cohen [10] developed

* This work was supported under Australian Research Council’s Discovery Projects funding scheme
(project number DP150101134, Gudmundsson) and the European Research Council under the European
Union’s 7th Framework Programme (FP7/2007-2013 / ERC grant agreement no. 614331, Pagh).

t A full version is available at arXiv [13], https://arxiv.org/abs/1701.05290.

© Joachim Gudmundsson and Rasmus Pagh;

oY licensed under Creative Commons License CC-BY
28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 42; pp.42:1-42:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.42
https://arxiv.org/abs/1701.05290
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42:2

Range-Efficient Consistent Sampling and Locality-Sensitive Hashing for Polygons

il

Figure 1 Left: Two probability distributions represented as histogram point sets. Right: The
statistical distance can be computed from the Jaccard similarity.

estimation algorithms based on similar ideas (see also [11]). The basic idea behind min-wise
hashing is to map a set S to argmin,cg h(x), which for a strong enough hash function h
gives collision probability equal (or close) to the Jaccard similarity.

If we represent discrete probability distributions by histograms there is a one-to-one
relationship between the Jaccard similarity of two histograms and the statistical distance
between the corresponding distributions. So a search for close distributions in terms of
Jaccard similarity will translate into a search for distributions that are close in statistical
distance, see Figure 1.

To make min-wise hashing well-defined on infinite point sets in the plane we may shift
to an approximation by considering only those points contained in a finite grid of points.
However, for a good approximation these sets must be very large, which means that computing
a hash value h(z) for each point « € S, in order to do min-wise hashing, is not attractive.

1.1 Our results

We consider efficient locality-sensitive hashing for objects that can be represented as point sets
in either one or two dimensions, and whose similarity is measured as the Jaccard similarity
of these point sets. The model of computation considered is a Word RAM with word size at
least log p, where p is a prime number. We use integers in U = {0,...,p — 1} (or equivalently
elements in the field F, of size p) to represent coordinates of points on the grid. Our first
result concerns histograms with n values in U.

» Theorem 1. For every constant € > 0 and every integer N it is possible to choose an
explicit hash function H : U™ — N that has constant description size, can be evaluated in

time O(nlogp), and for which Pr[H(x) = H(y)] € [J — ¢;J + €], where J = %

is the weighted Jaccard similarity of vectors x = (x1,...,x,) andy = (y1,...,yn) of weight

Zizizzyi:N

Our construction gives an explicit alternative to existing results on weighted min-wise hashing
(see [14, 17]) whose analysis relies on hash functions that are fully random and cannot be
described in small space. It was previously shown that a form of priority sampling based on
2-independence can be used to estimate Jaccard similarity of histograms [21], but similarity
estimation is less general than locality-sensitive hashing methods such as weighted min-wise
hashing.

We proceed to show the generality of our technique by presenting an LSH method for
geometric objects. We will use approximation to achieve high performance even for “hard”
shapes, and adopt the so-called fuzzy model [1]. In a fuzzy polygon, points that are “close”
to the boundary (relative to the polygon’s diameter) may or may not be included in the
polygon. That is, given a polygon P and real value 0 < ¢ < 1, define the outer range
Pt = P (w) to be the locus of points whose distance from a point interior to P is at most
w = ¢ - d(P), where d(P) is the diameter of P. The inner range P~ = P~ (w) of P is defined
symmetrically.

J. Gudmundsson and R. Pagh

Using the fuzzy model a valid answer to the Jaccard similarity of two polygons P; and
Py w.r.t. ¢ is any value %D such that A(P; NPy) < X < A(P{FNPy) and A(P; UPy) <
Xy < A(P;F U Py), where A(-) denotes the area of the region. To simplify the statement
of the theorem we say that a polygon is a-dense in a rectangle I if for some value o > 0
its area is at least a fraction a of the area of I. We use this to bound the time it takes to
generate the sample points.

» Theorem 2. For every choice of constants € >0, ¢ > 0 and square I C R? it is possible
to choose an explicit random hash function H whose description size is constant, that can
be evaluated in time O((tlogp)/c), where t is the time to test if a given point lies inside a
polygon, and with the following guarantee on collision probability: Let Py, P, C I be polygons
such that P;" and Py~ are a-dense in I. Then Pr[H(Py) = H(P)] € [J —¢;J + €], where J
1s some valid Jaccard similarity of Py and Py in the fuzzy model with parameter ¢.

It is an interesting problem whether the additive error in Theorems 1 and 2 can be
improved to a multiplicative 1 + ¢ error.

In Section 5 we present further applications of our technique and show how a small
summary can be constructed for a set P of polygons such that for any subset Q of P, an
estimate of the area of NQ and UQ can be computed efficiently in the fuzzy model with
respect to ¢@.

Techniques. Our main technical contribution lies in methods for range-efficient min-wise
hashing in one and two dimensions, efficiently implementing min-wise hashing for intervals
and rectangles. More specifically, we consider intervals in U and rectangles in U x U. The new
technique can be related to earlier methods for sampling items with small hash values in one
or more dimensions [20, 22]. (In fact, en route we obtain new hash-based sampling algorithms
with improved speed, which may be of independent interest.) However, using [20, 22] to
sample a single item is not likely to yield a good locality-sensitive hash function. The reason
is that the hash functions used in these methods are taken from simple, 2-independent
families and, as explained by Thorup [21], min-wise hashing using 2-independence does not
in general yield collision probability that is close to (or even a function of) the Jaccard
similarity. Instead we use a 2-phase approach: First produce a sample of k elements having
the smallest hash values, and then perform standard min-wise hashing on a carefully selected
subset of the sample using a different hash function.

We can combine and filter the samples to handle a variety of point sets that are not
intervals or rectangles. To create a sample for a subset of a rectangle we can generate a

sample of the rectangle, and then filter away those sample points that are not in the subset.

This is efficient if the subset is suitably dense in the rectangle (which we ensure by working
in the fuzzy model). To create a sample from the union of two sets, simply take the union
of the samples. Theorems 1 and 2 are obtained in this way, and it would be possible to
instantiate many other applications.

At the heart of our range-efficient sampling algorithms for one and two dimensions lies a
reduction to the problem of finding an integer point (or integer points) in a given interval
with small vertical distance to a given line. Such a point can effectively be found by traversing
the integer convex hull of the line. Using a result of Charrier and Buzer [9] this can be done
in logarithmic time. Thus, geometry shows up in an unexpected way in the solution.

42:3

ISAAC 2017

42:4

Range-Efficient Consistent Sampling and Locality-Sensitive Hashing for Polygons

1.2 Comparison with related work

We are not aware of previous work dealing with range-efficient locality-sensitive hashing. The
most closely related work is on range-efficient consistent (or coordinated) sampling, which is
a technique for constructing summaries and sketches of large data sets. The technique comes
in two flavors: bottom-k (or min-wise) sampling, which fixes the sample size, and consistent
sampling (or sub-sampling), which fixes the sampling probability. In both cases the idea is
to choose as a sample those elements from a set S C U that have small hash values under
a random hash function h : U — [0;1]. If the sample size is fixed and some hash values
are identical then an arbitrary tie-breaking rule can be used, e.g., selecting the minimum
element. To make argmin uniquely defined, which is convenient, we take argmin,; h(z)
to be the smallest value y € I for which h(y) = minges h(z). To denote the set of the k
elements having the smallest hash values (with ties broken in the same way) we use the
notation argmin,. We focus on settings in which U is large and it is infeasible to store a
table of all hash values.

In one dimension. Pavan and Tirthapura [20] consider the 2-independent family of linear
hash functions in the field of size p, i.e., functions of the form h(z) = (ax + b) mod p. They
show how to find hash values h(x) below a given threshold A, where x is restricted to an
interval I. (See also [2] for another application of this primitive.) The algorithm of Pavan and
Tirthapura uses time O(logp + k), where k is the number of elements x € I with h(z) < A.
Using this in connection with doubling search leads to an algorithm finding the minimum
hash value in time O(log® p). In this paper we show how to improve the time complexity:

» Lemma 3. Let h(x) = (ax+b) mod p, where p is prime and 0 < a,b < p. Givenis > i3 >0
consider the interval I = {i1,...,i2}. It is possible to compute argmin,c; h(x) (the min-hash
of I) in time O(log |I|).

We will argue in Section 2 that Lemma 3 can be applied repeatedly to subintervals to output
the k smallest hash values (and corresponding inputs) in time O(klog |I|). The possibility of
choosing a = 0 is included for mathematical convenience (to ensure 2-independence), though
in most applications it will be better to choose a > 0 (which in addition makes argmin
uniquely defined without a tie-breaking rule).

In more than one dimension. Tirthapura and Woodruff [22] consider another class of
2-independent functions, namely linear transformations on vectors over the field 5. Integers
naturally correspond to such vectors, and for a dyadic interval I containing all integers that
share a certain prefix, the problem of finding elements in I that map to zero is equivalent to
solving a linear system of equations. Since an arbitrary interval can be split into a logarithmic
number of dyadic intervals they are able to compute all the integers that map to zero in
polylogarithmic time. The sampling probability can be chosen as an arbitrary integer power
of two. This method generalizes to rectangles in dimension d > 2.

In this paper we instead consider linear, 2-independent hash functions of the form
(z,y) = (az + by + ¢) mod p . We do not know of a method for efficiently computing
a min-hash over a rectangle for such functions, but we are able to efficiently implement
consistent sampling with sampling probability 1/p.

» Lemma 4. Let h(z,y) = (ax + by + ¢) mod p, where p is prime and 0 < a,b,c < p.
Given iy < iy and j1 < jo consider I = {iy,...,i2} X {J1,...,42}. It is possible to compute
I'={(z,y) € I [h(z,y) = 0} in time O((|I'| + 1) log(min(iz — i1, j2 — j1)))-

J. Gudmundsson and R. Pagh

For random a, b, ¢ the expected size of the sample I’ is |I|/p, and because of 2-independence
the distribution of |I’| is concentrated around this value. Compared to the method of [22]
ours is faster, but has the disadvantage that the sampling probability cannot be chosen freely.
However, as we will see this restriction is not a real limitation to our applications to locality
sensitive hashing and size estimation.

From consistent sampling to LSH. Our technique for transforming a consistent sample
to an LSH value is of independent interest. Thorup [21] shows that min-wise hashing using
2-independence does not in general yield collision probability that is close to (or even a
function of) the Jaccard similarity. On the positive side he shows that bottom-k samples
of two sets made using a 2-independent hash function can be used to estimate the Jaccard
similarity J of the sets with arbitrarily good precision. However, this does not yield a
locality-sensitive hash function with collision probability (close to) J, and obvious approaches
such as min-wise hashing applied to the samples fails to have the right collision probability.
Instead, we use consistent sampling (using a 2-independent family) followed by a stronger
hash function for which min-wise hashing has the desired collision probability up to an
additive error £. This transformation yields the first LSH family for Jaccard similarity (with
proven guarantees on collision probability) where the function can be:

evaluated in O(n + poly(1/¢)) time on a set of size n, and

described and computed in a constant number of machine words (independent of n).
Previous such functions have used either time per element that grows as e approaches
zero [16], or required description space that is a root of n (see [12]).

1.3 Preliminaries
We will make extensive use of 2-independence:

» Definition 5. A family of hash functions H mapping U to U is called 2-independent if
V1, T9,a1,as € U with z1 # x2 and h € ‘H chosen uniformly we have

Pr[h(z1) = a1 A h(zz) = az] = 1/|U|? .

It will be convenient to use the notation x + A for a number in the interval [z — A; x + Al.

Carter and Wegman [7] showed that the family H; = {z — (ax +b) mod p | a,b € U}
is 2-independent on the set U = {0,...,p — 1} when p is a prime. Finally, we make use of
e-minwise independent families:

» Definition 6. A family of hash functions H mapping U to N is called e-minwise independent
if for every set S C U, every y € S, and random h € H: Pr[h(y) = min h(S)] = (1 £ ¢)/|S|.

Indyk [16] showed that an efficient e-minwise independent family mapping to a range of
size O(p/e) can be constructed by using an O(log(1/e))-independent family of functions
(e.g. polynomial hash functions). Dahlgaard and Thorup [12] showed that the evaluation
time can be made constant, independent of ¢, by using space |U |Q(1). If we only care about

sets of size up to some number 7, this space usage can be improved to (72/e)*().

2 Range-efficient bottom-k sampling in one dimension

The aim of this section is to show Lemma 3 and how it can be used to efficiently compute
consistent as well as bottom-k samples. Together with the general transformation presented
in Section 4 this will lead to Theorem 1.

42:5

ISAAC 2017

42:6

Range-Efficient Consistent Sampling and Locality-Sensitive Hashing for Polygons

Figure 2 Illustration of reduction to integer convex hull.

Without loss of generality suppose 0 < i1 < ia < p, consider I = {i1,...,i2} C U, and
let h € Hy = {x — (ax +b) mod p | a,b € U}. To show Lemma 3 we must prove that
argmin,; h(x) can be computed in time O(log|I|). In case a = 0 this is trivial (just output
i1), so we focus on the case a > 0. We will show how the problem can be reduced to the
problem of finding the integer point at the smallest (vertical) distance below the line segment

0= {(w, (ax +b)/p) | v € [ir;s]}. (1)

To see this observe that for € N we have vertical distance (axz +b)/p — |(az +b)/p]
between the line and the nearest integer point. Using the equality

(az +b)/p — |(az +b)/p] = ((az + b) mod p)/p

we see that minimizing (az 4+ b mod p) is equivalent to minimizing (ax +b)/p — [(az + b)/p],
as claimed. Therefore it suffices to search for the point (z,y) € D = I x N below ¢ that is
closest to ¢. Since / is a line, the point (z,y) must lie on the convex hull CH (¢) of the set of
points in D that lie below ¢, referred to as the “integer convex hull”, see Figure 2. Clearly,
the closest point will always be on the upper part of the hull, denoted CHp,(¢). Zolotykh [24]
showed that CH (¢) consists of O(log(iz — i1)) line segments. To find a point on the integer
convex hull with the smallest vertical distance to ¢ we will use a result by Charrier and
Buzer [9].

» Theorem 7. (Charrier and Buzer [9]) Given a line segment ¢, the upper integer convex
hull CHL(£) can be computed in O(log(is — i1)) time, where i1 and is are the x-coordinates
of the end points of €.

Charrier and Buzer initially assume that ¢ passes through the origin. However, they note
(Section 7 in [9]) that this requirement is not needed. Thus, using their result on the line £
defined in (1) we obtain Lemma 3.

We now discuss how to use Lemma 3 to output the k smallest hash values (and corre-
sponding inputs, i.e., the bottom-k sample) in time O(klogp). First compute CH (¢) and
find the point (z1,y1) € CHL(¢) with the smallest vertical distance to ¢. Next, split the
problem into two subintervals; one for the part of £ in the z-interval [i1,x; — 1] and one for
the part of ¢ in the a-interval [z1 + 1,43]. Using a heap to find the integer point with smallest
vertical distance in the intervals considered, we can repeat this process until k£ points have
been found. To compute a consistent sample rather than the bottom-k sample we simply
stop the procedure whenever we see an element with a hash value larger than the threshold.

» Corollary 8. Let h(z) = (ax + b) mod p, where p is prime and 0 < a,b < p. Given
0 <iy <iy <p consider I = {iy,...,i2}. It is possible to compute the bottom-k sample (or
the consistent sample of expected size k) from the interval I with respect to h in (expected)
time O(klog|1|).

It is an interesting problem whether it is possible to improve this bound to O(k + log|I]).

J. Gudmundsson and R. Pagh

3 Rectangle-efficient consistent sampling

The aim and structure of this section are similar to those of Section 2, but now addressing the

case where we want to do hashing-based sampling in a rectangle I = {iy...,i2} X {j1...,J2}.
Specifically, we prove Lemma 4 and show how one can use it to perform consistent sampling.

This will be used in Section 4 to prove Theorem 2 and in Section 5 to construct an efficient
data structure for estimating the size of intersections and unions of polygons. Assume without
loss of generality that 0 < iy < iy <p, 0 < j; < jJo <pand iy — i1 < jo — j;. Consider the

2-independent family Hs = {(z,y) — (az + by + ¢) mod p | a,b,c € U} and choose h € Hs.

To prove Lemma 4 we have to argue that

I' ={(z,y) € I | h(z,y) =0} (2)

can be computed in time O((]I'| + 1)log(iz — 41)). Similar to the previous section we will
show how the problem can be reduced to the problem of finding all integer points below a
line segment ¢ with a small vertical distance to /.

To find all (z,y) € I for which h(z,y) = (ax + by + ¢) mod p = 0, as a first step
we translate the function h such that we can consider input y € [0,y5]. Specifically, we
replace h with b’ : (z,y) — (az + by + ¢’) mod p, where ¢’ = ¢+ bj;, and consider inputs
with (z,y) € [i1,42] X [0,75], 75 = j2 — j1. This is equivalent to the original task since
h(z,y) = W' (z,y — j1). Next note that for = € [i1,42] and y € [0, j5]:

(ax+by+c)modp=0 <& y=(=btar—>b'c) mod p,

To simplify the expression set ¢ = —b~'a and s = —b~'¢/. Then we have a zero hash
value when y = (gz + s) mod p = (gx + s) — kp for some positive integer k. Dividing by
p and substituting & = ¢/p and 8 = s/p we get % = ax + B — k, where = € [i1,i2] and
y/p € [0, 55/p]. Now we can express the original problem as finding all (z, k) € [i1,42] X N

such that ax + 8 — k € [0, j5/p]. Consider the line segment ¢ = {(z,ax + 3) | x € [i1;42]}.

An integer point (z/,y") below ¢ with 2’ € [i1,i2] and vertical distance at most j5/p to ¢
corresponds to a point (2/,y’) such that h'(z’,y") = 0.

To find all the points (2’,y’) that fulfill the restrictions we can apply the same technique
as in Section 2. That is, compute the integer convex hull CHp, (¢') using the algorithm by
Charrier and Buzer [9]. One difference from the setting of Section 2 is that we are interested
in all integer points close to ¢, but CH (¢') is guaranteed only to include one such point if
it exists. This is handled by recursing on subintervals in which no points have been reported
until we find an interval where the integer convex hull does not contain a point close to
¢'. Recall that the time to output the integer convex hull is O(log(iz —41)) by the result
of Zolotykh [24], so the cost per point reported is logarithmic. This concludes the proof of
Lemma 4.

3.1 Concentration bound

» Definition 9. An (e, §)-estimator for a quantity p is a randomized procedure that, given
parameters 0 < ¢ < 1 and 0 < § < 1, computes an estimate X of p such that Pr[|X — p| >
ep] < 4.

For some a > 0 consider an arbitrary set S C I, and the sample S’ = SN I’ where I’ is
defined in (2). Let 1/p be the sampling probability. We now show that p|S’| is concentrated
around its expectation |S| when p is not too large.

42:7

ISAAC 2017

42:8

Range-Efficient Consistent Sampling and Locality-Sensitive Hashing for Polygons

» Lemma 10. Fore >0, p|S'| is an (¢,p/(2p))-estimator for p = |S].

Proof. The proof is a standard application of the second moment bound for 2-independent
indicator variables. For each point ¢ € S let X, be the indicator variable that equals 1
if ¢ € I' and 0 otherwise. Clearly we have |S'| = X where X = > 5 X;, so E[pX] =
P qes E[Xi] = p. By definition of I’ the variables are 2-independent, and so Var(pX) =
p?Var[X] < p’E[X] = pu. Now Chebyshev’s inequality implies Pr[[pX — u| > eu] <
Var(pX)/(ep)* < p/(€2p). <

To get an (g, §)-estimator we thus need p < de?u. The expected time for computing I’ in
Lemma 4 is upper bounded by O(E[|I’| + 1]logp) which is O((|I|/p + 1) logp). If we choose
p = Q(6¢2%|S]), to get an (g, d)-estimator, and let o = |S|/|I| be the fraction of points of I
that are also in S, then the expected time simplifies to O(log(p)/(ade?)). That is, the bound
independent of the size of S, has logarithmic dependence on p, and linear dependence on
1/a, 1/6, and 1/e.

4 From consistent sampling to locality-sensitive hashing

We now present a general transformation of methods for 2-independent consistent sampling
to locality-sensitive hashing for Jaccard similarity. Together with the consistent sampling
methods in Sections 2 and 3 this will yield Theorems 1 and 2.

Thorup [21] observed that min-wise hashing based on a 2-independent family does not
give collision probability that is close to (or a function of) Jaccard similarity. He observes
a bias for a 2-independent family of hash functions based on multiplication, similar to the
ones used in this paper. Thus we take a different route: First produce a consistent sample
using 2-independence, and then apply min-wise hashing to the sample using a stronger hash
function. The expected time per element is constant if we make sure that the sample has
expected constant size.

Let constants € > 0 and o > 0 be given. For a point set S C I with |S| > «|I| we produce
a 2-independent sample I’ N S with sampling probability 1/p*, where p* = ©(e3a|I]) is a
prime number. This is possible assuming |I| > 1/(e3a) because there exists a prime p; in
every interval {2¢, ... 2¢%1 —1} i =1,23,.... Now select f at random from an &/4-minwise
independent family and define the hash value

H*(S) = argmin f(x) . (3)

zel’'ns
» Lemma 11. For S,T C I with |S|,|T| > a|I| and |I| > 12p/(e3a) we have Pr[H*(S) =

H*(T)] = igaﬂ + &, where the probability is over the choice of I' and f.

Proof. Consider the Jaccard similarity of samples S’ = SNI' and 7" =T NI

STl S+ T - ST U T

|lsuT |S"UT| ’

Conditioned on a fixed I, the collision probability of H*(S) is J' 4+ ¢/4 by the choice of f.

Thus it suffices to show that J’ differs from J by at most €/2 with probability at least 1 —e/4
By Lemma 10, p - |S’ UT’| is an (¢/8,e/12)-estimator for |S U T| since |SUT| > «|I|.

Similarly, p - |S’| is an (g/8,¢/12)-estimator for |S| and p- |T’| is an (¢/8,¢/12)-estimator for

|T|. The probability that all estimators are good is at least 1 — /4, and in that case

[SNT| - (3¢/8)|SUT]| , _1SNT|+ (3¢/8)|SUT]

< <
SUTI+ /RS0t =7 = S0UT|=(/8)SUT]

as desired. <

J/

J—e/2< <J+e/2

J. Gudmundsson and R. Pagh

We have not specified f. The most obvious choice is to use an O(log(1/¢))-independent
hash function [16]. Another appealing choice is twisted tabulation hashing [12] that yields
constant evaluation time, independent of . The expected size of S N I’ is bounded by a
function of € and «. This means that we can combine twisted tabulation with an injective
universe reduction step to reduce the domain of twisted tabulation to a (large) constant
depending on € and a.

Proof of Theorem 1. Consider a vector x = (z1,...,2,) € U™. We follow the folklore
approach [14] of conceptually mapping each vector x to a set Py, such that the Jaccard
similarity of Px and P, exactly equals the weighted Jaccard similarity of x and y. In particular,
it is easy to verify that this is the case if we let P = {(¢,5) |i=1,...,n; 5 =1,...,2;}.
Note that Py and P, both have size V. We will use the following class of hash functions
from U x U to U:

Hy = {(z,y) = (ax + by +¢) mod p | a,b,ce U} . (4)

The 2-independence of Hy follows from the arguments of Carter and Wegman [7]. A
proof can be found in the full version of this paper [13]. When restricted to points of the
form (i, -) for a fixed ¢, each function h € Hs has a form suitable for Corollary 8 in Section 2.
This means we can find the minimum for Py restricted to a given column i in time O(log ;).
Using a heap to keep track of the smallest hash value from each column of Py not (yet)
reported in the sample, we can output all elements of Py with a hash value smaller than
any given threshold 7 in time O(log p) per element. The threshold 7 is chosen to match the
desired sampling probability p*.

Lemma 11 then says that we get the desired collision probability up to an additive error
of €. The expected time to hash is O(nlogp) (to populate the priority queue) plus O(log p)
times the expected number of samples. The expected number of samples |S|/p is constant
for every constant € > 0, which gives the desired time bound in expectation.

It is possible to turn the expected bound into a worst case bound by stopping the
computation if the running time exceeds 1/§ times the expectation, which happens with
probability at most §. If we simply output a constant in this case the collision probability
changes by at most ¢ (which we can compensate for by decreasing). |

Proof of Theorem 2. The proof is similar to the proof of Theorem 1 but with some added
geometric observations. Let P; and P» be two polygons contained in I. As mentioned in the
introduction, a valid answer to the Jaccard similarity of polygons P; and P, with respect
to ¢ is any value % such that A(P; (wy) N Py (we)) < X < A(P] (wy) N Py (wg)) and
A(P; (w1) N Py (w2)) < Xy < A(P (wy) N Py (ws)), where w; = ¢ - d(P;) for i € {1,2}.

We now switch to considering the restrictions of Pjf(w;/2) and Py (w;/2) to a p-by-p
grid of points whose enclosing rectangle contains I. See [15] for a survey on snapping points
to a grid.

The grid points are identified in the natural way with integer coordinates in [p] x [p].
We choose p such that the number of points inside I is ©(p/a) times the desired number of
samples required for Lemma 11 to hold.

Let LT = [iy,42] X [j1, j2] be the minimum bounding box of INP;" (w1 /2) and INPy (w2/2).
The consistent sampling will be made on P;"(w;/2), i € {1,2}. The reason for this is that

| Py (w1/2) 0 Py (w2/2)|/| Py (w1/2) U Py (w2/2)]

42:9

ISAAC 2017

42:10

Range-Efficient Consistent Sampling and Locality-Sensitive Hashing for Polygons

is a valid answer to the Jaccard similarity of P; and P, in the fuzzy model with respect to
¢, which follows immediately from the below two inequalities that are proven in Lemma 13
(Section 5):

Lemma 11 gives us the desired collision probability up to an additive error of . The
expected time to hash is O(log p) plus O(tlog p) times the expected number of samples, where
t is the time to test if a given grid point lies inside a polygon. If we assume that P; and P
are a-dense in I, that is, there exists an o > 0 such that | P (w1 /2)|, | Py (w2/2)| > a - |LF|,
then the expected number of samples is |L1|/(ap) for any constants € and ¢, which gives the
desired time bound in expectation. In many natural settings « is a constant, which implies
that the expected number of samples is also constant.

5 Estimating union and intersection of polygons

In this section we consider the question: Given a set P = {P,..., P,} of n preprocessed
polygons in the plane, how efficiently can we compute the area of the union or the intersection
of a given subset Q@ C P? In contrast to elementary approaches based on global, fully random
sampling, our solution allows polygons to be independently preprocessed based on a small
amount of shared randomness that specifies a pseudorandom sample.

Computing the area of the union of a set of geometric objects is a well-studied problem
in computational geometry. One example is the Klee’s Measure Problem (KMP). Given n
axis-parallel boxes in the d-dimensional space, the problem asks for the measure of their union.
In 1977, Victor Klee [18] showed that it can be solved in O(nlogn) time for d = 1. This was
generalized to d > 1 dimensions by Bentley [3] in the same year, and later improved by van
Leeuwen and Wood [23], Overmars and Yap [19] and, Chan [8]. In 2010, Bringmann and
Friedrich [4] gave an O(f—?) Monte Carlo (1 + €)-approximation algorithm for the problem.

A related question is the computation of the area of the intersection of n polygons in d-
dimensional space. Bringmann and Friedrich [4] showed that there cannot be a (deterministic
or randomized) multiplicative (2d17£)—approximation algorithm in general, unless NP=BPP.
They therefore gave an additive e-approximation for a large class of geometric bodies, with
a running time of O(Z—Qd) assuming that the following three queries can be approximately
answered efficiently: point inside body, volume of body and sample point within a body.

In this section we will approach the problem slightly differently. The approach we suggest
is to produce a small summary of the set P, such that given any subset Q of P the union and
intersection of @ can be estimated efficiently. Unfortunately, the lower bound arguments by
Bringmann and Friedrich [4] defeat any reasonable hope of achieving polynomial running time
for arbitrary polygons. To get around the lower bounds we again adopt the approximation
model proposed by Arya and Mount [1] (stated in Section 1.1).

Similar to the approach by Bringmann and Friedrich [4] we will also use sampling of the
polygons to estimate the size of the union and intersection. However, compared to earlier
attempts, the main advantage of our approach is that we generate the sample points (a
summary of the input) in a preprocessing step and after that we may discard the polygons.
Union and intersection queries are answered using only the summary. Also, we do not impose
any restrictions on the input polygons. The drawbacks are that we only consider the case
when d = 2 and the approximation model [1] we use is somewhat more “forgiving” than
previously used models.

J. Gudmundsson and R. Pagh

For each polygon P; in P, 1 < i <mn, let w; = ¢-d(P;), where d(P;) is the diameter of P;
and 0 < ¢ <1 is a given constant. Let Q be the input to a union or intersection query, that
is, Q is a subset of P. To simplify the notations we will write UQ™ (w) = Up,co P;(w;) and
UQ™ (w) = Up,eoPi(w;). Define NQT (w) and NQ~ (w) symmetrically.

Following the above discussion, given a legal answer to a set intersection query X = NQ
is any X’ such that NQ~(w) € X’ C NQ*(w) and for a union query X = UQ a legal answer
is any X’ such that UQ™ (w) C X’ C UQ™ (w). It is immediate from the above definitions
that for any polygon P and any w > v/2 we have: P~ (w) C P C P*(w). We will use the
number of integer coordinates, denoted | P|, within a polygon P to estimate the area of the
polygon, denoted A(P). Proofs of Lemmas 12, 13 and 15 can be found in the full version of
this paper [13].

» Lemma 12. For a polygon P having integer coordinates we have A(P) < |P)|.

To make the queries more efficient we will not estimate the number of integer coordinates in
the intersection/union X of a query, instead we will estimate an approximation of | X|. We
show:

» Lemma 13. For any polygon P and w > /8: A(P) < A(P*(w/2)) < |PT(w/2)] <
A(PT(w)).

As an immediate consequence of Lemma 13 we can use the consistent samples in P;" (w;/2),
1 <i < n, for our estimates of the intersection and union, provided that w; > /8. Tt remains

to show how a summary of P can be computed and how the summary can be used to answer
union and intersection queries.

Constructing a summary. For a given query Q containing & < n polygons, let Py, =

argminp ¢ o | P (w;/2)], Pnax = argmaxp o |P; (w;/2)| and let dyin = argminp o d(P;).

If P; = Ppax and Pj = Py, then we will write Py,

max

(w) = P (w;) and P,

(w) = B} (ws),

respectively. Before giving the construction of summary and query algorithms we state two
lemmas:

> Lemma 14. [P, (w/2)] < |U Q" (w/2)| < k- [P, (w/2)].

> Lemma 15. If NQ~ (w) # 0 and ¢ - duin > v/8 then & - [Pl (w/2)] < | N Q*(w/2)| <
| P (w/2)].

We will use the rectangle-efficient consistent sampling technique described in Section 3 to

generate a summary of P to estimate the area of NQ or UQ, where Q is a given subset of P.

The idea of the construction algorithm for the summary is simple. Let X = NQ*(w/2) or
X = UQ%(w/2) depending on the query and, assume that ¢ - dmin > /8. In a preprocessing
step construct a summary of P, denoted S. The summary S will contain consistent samples
for a number of different sampling rates. To answer a query, pick a minimum sampling
rate 1/p that guarantees that the expected number of consistent samples in X is small but
sufficient to guarantee an (g,d)-estimate of |X|. If X contains enough unique consistent
samples then the algorithm reports an estimate of X, otherwise it iteratively increases the
sampling rate with a constant factor until X contains sufficiently many unique consistent
samples. From Section 3.1 we know that an (g, §)-estimator of X requires the sampling rate
to be approximately 1/(d - €2 - | X|).

From Lemmas 14 and 15 we have that the smallest area that will ever be considered in
a query Q has size at least fuyi, = %2|P;;n(w /2)| and the largest area is at most fiax =
n - |Ph . (w/2)]. To get an (g, §)-estimate of | X| at least 1/§%¢ unique consistent samples are
required to lie within X. As output from the above algorithm we get two data structures:

42:11

ISAAC 2017

42:12

Range-Efficient Consistent Sampling and Locality-Sensitive Hashing for Polygons

p[f]: Returns a prime number between [2¢71, 2¢].
S[P;, {]: Returns the set of consistent samples within P;"(w;/2), i.e., points satisfying
the equation (az + by + ¢) mod p[j] = 0. If the set is empty it returns FALSE.

Complexity. Consider the total number of consistent samples generated for a polygon
P;. The number of consistent samples is expected to increase with a factor of two in each
iteration of the algorithm, that is, the expected total number of consistent samples form an

P;
T
the polygons, the total number of consistent samples is bounded by O(ﬁ : ‘IIIZ:?:I‘), which
is also the expected size of the summary.

For the time complexity we first note that the above procedure can be implemented
such that iterations where no consistent samples are expected to be generated are omitted
without consideration. Since at least a fraction of ¢/2 of all consistent samples in the minimal
bounding box of P;"(w;/2) is expected to lie within P;"(w;/2) (can be shown using a similar
argument as in the proof of Lemma 15) the total number of generated consistent samples is
expected to be at most a factor of 2/¢ greater than the number of consistent samples in the
summary. Each consistent sample requires at most O(log |P;|) time to generate, according to
Theorem 4. If we assume that testing if a consistent sample lies inside a polygon can be done
in time ¢ then the expected time to build a summary of P is O(5 - ‘ﬁ;‘::‘l - (t+10g | Pmax]))-
A description of union and intersection queries can be found in the full version of this

exponentially growing geometric series which sums to O(ﬁ). Summing up over all

paper [13]. We can now summarize the results in this section:

» Theorem 16. . Given a set P = {P1,...,P,} of polygons and three constants €,5 > 0
and 0 < ¢ < 1. If ¢ - d(P;) > /8 for all P; € P then, in the fuzzy model with respect to ¢,
there exists a summary of size O(gz - IIIIZ:?:I‘ - (t +1og | Pmax|)) such that for any subset Q of
P containing k < n polygons an (g, 8)-estimate of UQ can be computed in O(k/5c?) expected

time and an (e, d)-estimate of NQ can be computed in O(ﬁ) expected time.

Acknowledgement. We thank the anonymous reviewers for their useful comments.

—— References

1 S. Arya and D. M. Mount. Approximate range searching. Computational Geometry —
Theory and Applications, 17:135-152, 2000.

2 Y. Bachrach and E. Porat. Sketching for big data recommender systems using fast pseudo-
random fingerprints. In Proceedings of 40th International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pages 459-471. Springer, 2013.

3 J. L. Bentley. Algorithms for Klee’s rectangle problems. Unpublished note, Computer
Science Department, Carnegie Mellon University, 1977.

4 K. Bringmann and T. Friedrich. Approximating the volume of unions and intersections of
high-dimensional geometric objects. Computational Geometry — Theory and Applications,
43(6-7):601-610, 2010.

5 A. 7Z. Broder. On the resemblance and containment of documents. In Proceedings of
International Conference on Compression and Complexity of Sequences (SEQUENCES),
pages 21-29. IEEE, 1997.

6 A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering of the
web. Computer Networks and ISDN Systems, 29(8):1157-1166, 1997.

7 J. L. Carter and M. N. Wegman. Universal classes of hash functions. In Proceedings of 9th
ACM Symposium on Theory of Computing (STOC), pages 106-112. ACM, 1977.

J. Gudmundsson and R. Pagh

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

T. M. Chan. Klee’s measure problem made easy. In Proceedings of 54th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 410-419, 2013.

E. Charrier and L. Buzer. Approximating a real number by a rational number with a limited
denominator: A geometric approach. Discrete Applied Mathematics, 157:3473-3484, 2009.
E. Cohen. Size-estimation framework with applications to transitive closure and reachability.
J. Comp. Syst. Sci., 55(3):441-453, 1997.

E. Cohen and H. Kaplan. Summarizing data using bottom-k sketches. In Proceedings
of 26th annual ACM Symposium on Principles of Distributed Computing (PODC), pages
225-234. ACM, 2007.

S. Dahlgaard and M. Thorup. Approximately minwise independence with twisted tabula-
tion. In Proceedings of 14th Scandinavian Symposium and Workshops on Algorithm Theory
(SWAT), pages 134-145. Springer International Publishing, 2014.

J. Gudmundsson and R. Pagh. Range-efficient consistent sampling and locality-sensitive
hashing for polygons. CoRR, abs/1701.05290, 2017.

B. Haeupler, M. Manasse, and K. Talwar. Consistent weighted sampling made fast, small,
and easy. arXiv:1410.4266, 2014.

J. Hershberger. Stable snap rounding. Computational Geometry, 46(4):403—416, 2013.

P. Indyk. A small approximately min-wise independent family of hash functions. Journal
of Algorithms, 38(1):84-90, 2001.

Sergey loffe. Improved consistent sampling, weighted minhash and L1 sketching. In Pro-
ceedings of 10th IEEE International Conference on Data Mining (ICDM), pages 246255,
2010.

V. Klee. Can the measure of Ula;, b;] be computed in less than o(nlogn) steps? American
Mathematical Monthly, 84:284-285, 1977.

M. H. Overmars and C.-K. Yap. New upper bounds in Klee’s measure problem. SIAM
Journal on Computing, 20(6):1034-1045, 1991.

A. Pavan and S. Tirthapura. Range-efficient counting of distinct elements in a massive
data stream. SIAM Journal on Computing, 37(2):359-379, 2007.

M. Thorup. Bottom-k and priority sampling, set similarity and subset sums with minimal
independence. In Proceedings of 45th ACM Symposium on Theory of Computing (STOC),
pages 371-380. ACM, 2013.

S. Tirthapura and D. Woodruff. Rectangle-efficient aggregation in spatial data streams. In
Proceedings of 31st Symposium on Principles of Database Systems (PODS), pages 283-294.
ACM, 2012.

J. van Leeuwen and D. Wood. The measure problem for rectangular ranges in d-space.
Journal of Algorithms, 2(3):282-300, 1981.

N. Y. Zolotykh. On the number of vertices in integer linear programming problems. Tech-
nical report, University of Nizhni Novograd, 2000.

42:13

ISAAC 2017

	Introduction
	Our results
	Comparison with related work
	Preliminaries

	Range-efficient bottom-k sampling in one dimension
	Rectangle-efficient consistent sampling
	Concentration bound

	From consistent sampling to locality-sensitive hashing
	Estimating union and intersection of polygons

