
Improved Bounds for Online Dominating Sets of
Trees∗†

Koji M. Kobayashi

National Institute of Informatics, Tokyo, Japan
kobaya@nii.ac.jp

Abstract
The online dominating set problem is an online variant of the minimum dominating set problem,
which is one of the most important NP-hard problems on graphs. This problem is defined as
follows: Given an undirected graph G = (V,E), in which V is a set of vertices and E is a set of
edges. We say that a set D ⊆ V of vertices is a dominating set of G if for each v ∈ V \D, there
exists a vertex u ∈ D such that {u, v} ∈ E. The vertices are revealed to an online algorithm one
by one over time. When a vertex is revealed, edges between the vertex and vertices revealed in
the past are also revealed. A revealed subtree is connected at any time. Immediately after the
revelation of each vertex, an online algorithm can irrevocably choose vertices which were already
revealed and must maintain a dominating set of a graph revealed so far. The cost of an algorithm
on a given tree is the number of vertices chosen by it, and its objective is to minimize the cost.
Eidenbenz (Technical report, Institute of Theoretical Computer Science, ETH Zürich, 2002) and
Boyar et al. (SWAT 2016) studied the case in which given graphs are trees. They designed a
deterministic online algorithm whose competitive ratio is at most three, and proved that a lower
bound on the competitive ratio of any deterministic algorithm is two.

In this paper, we also focus on trees. We establish a matching lower bound for any determin-
istic algorithm. Moreover, we design a randomized online algorithm whose competitive ratio is
exactly 5/2 = 2.5, and show that the competitive ratio of any randomized algorithm is at least
4/3 ≈ 1.333.

1998 ACM Subject Classification F.1.2 Modes of Computation, Online Computation, G.2.2
Graph Theory, Graph Algorithms, I.1.2 Algorithms, Analysis of Algorithms

Keywords and phrases online algorithm, dominating set, competitive analysis, tree graph, ran-
domized algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.52

1 Introduction

The dominating set problem is one of the most important NP-hard problems on graphs. This
problem is defined as follows: Given an undirected graph G = (V,E), in which V is a set of
vertices and E is a set of edges. We say that a set D ⊆ V of vertices is a dominating set
of G if for each vertex v ∈ V \D, there exists a vertex u ∈ D such that {u, v} ∈ E. The
objective of the problem is to construct a minimum dominating set. This problem has been
extensively studied for many applications, such as communication in ad-hoc networks (see
e.g., [16]) and facility location on networks (e.g., [12]).

The dominating set problem has also been studied in online settings [11, 4, 2]. In one
of the settings [4, 2], vertices are revealed to an online algorithm one by one, and edges

∗ This work was supported by JSPS KAKENHI Grant Number 26730008.
† A full version of the paper is available at https://arxiv.org/abs/1710.11414.

© Koji M. Kobayashi;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 52; pp. 52:1–52:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.52
https://arxiv.org/abs/1710.11414
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

52:2 Improved Bounds for Online Dominating Sets of Trees

between a revealed vertex and vertices revealed in the past are also revealed. The input
of this setting is an undirected graph and a sequence consisting of all the vertices of the
graph. (This sequence represents an order of the vertices revealed to an online algorithm.)
An online algorithm holds the empty set U at the beginning. When a new vertex is revealed,
the algorithm can add vertices revealed so far to U , which means that an added vertex is
not necessarily the newly revealed one. The algorithm must not remove a vertex from U .
The total number of vertices is not known to an online algorithm before the final vertex is
revealed. Thus, U must be a dominating set immediately after the revelation of each vertex.
The performance of online algorithms is evaluated using competitive analysis [1, 14]. The
cost of an algorithm ALG for an input σ is the size of a dominating set constructed by ALG
for σ, which is denoted as CALG(σ). We say that the (strict) competitive ratio of an online
algorithm ON is at most c or ON is c-competitive if for any input σ, CON (σ) ≤ cCOPT (σ),
in which OPT is an optimal offline algorithm for σ. If ON uses randomization, the expected
cost of ON is used.

Previous Results and Our Results
For trees, Eidenbenz [4] and Boyar et al. [2] designed a 3-competitive deterministic algorithm,
and proved that the competitive ratio of any deterministic online algorithm is at least two
(Boyar et al. showed their results in terms of asymptotic competitive ratios, but the results
can hold for strict competitive ratios as well).

In this paper, we show the following three results for trees: (i) We prove that a lower
bound on the competitive ratio of any deterministic algorithm is three. This bound matches
the above upper bound. (ii) We establish a randomized online algorithm whose competitive
ratio is exactly 5/2 = 2.5. This algorithm is the first non-trivial randomized algorithm for
the online dominating set problem for any graph class. (iii) We show that the competitive
ratio of any randomized algorithm is at least 4/3 ≈ 1.333. The above results are shown with
respect to the strict competitive ratio. However, it is easy to see that the same results for
the asymptotic competitive ratios as (i) and (iii) can be shown in a quite similar way to their
proofs. (Note that any upper bound on the strict competitive ratio is an upper bound on
that on the asymptotic competitive ratio. That is, (ii) holds for the asymptotic competitive
ratio.)

Related Results
For several graph classes, Eidenbenz [4] and Boyar et al. [2] studied online algorithms of a
few variants of dominating sets, namely, connected dominating sets, total dominating sets
and independent dominating sets. Their results are summarized in the table in Sec. 6 of
[4] and Table 2 in Sec. 1 of [2]. For example, they proved that the optimal competitive
ratios on a bipartite graph and a planar graph are n − 1, in which n is the number of
given vertices. Boyar et al. [2] defined an incremental algorithm as an algorithm which
maintains a dominating set immediately after a new vertex is revealed. An online algorithm
is incremental, but an optimal incremental algorithm knows the whole input and can perform
better than any online algorithm. They measured the performance of online algorithms
compared with an optimal incremental algorithm in addition to an optimal offline algorithm.
Moreover, they compared the performance of an optimal incremental algorithm with that of
an optimal offline algorithm for several graph classes, which is also summarized in Table 1 in
Sec. 1 of [2].

K.M. Kobayashi 52:3

King and Tzeng [11] studied two different variants of online dominating sets on general
graphs. One variant is the same as the one studied in this paper, except that immediately
after a new vertex is revealed, an online algorithm can choose the new one but cannot choose
vertices revealed previously. In this setting, they designed a deterministic algorithm whose
competitive ratio is at most n− 1, and proved that the algorithm is the best possible. In
the other variant, an online algorithm knows all vertices in advance, and at a time i, all the
edges between the i-th vertex vi and the other vertices are revealed. They showed an upper
bound of 3

√
n/2 and a lower bound of of

√
n for this variant.

For the offline setting, the minimum dominating set problem is one of the most significant
NP -hard problems on graphs and has been widely studied. One of the most important
open problems is to develop exact (exponential) algorithms (see, e.g. [5, 6, 8, 13, 15,
10]). The current fastest algorithm solves this problem in O(1.4864n) time and polynomial
space [10]. Moreover, many variants have been proposed by putting additional constraints
on the original dominating set problem and have been extensively studied: for example,
connected domination, independent domination and total domination (see, .e.g. [3],[7] and
[9], respectively).

2 Preliminaries

2.1 Model Description
We are given an undirected tree and its vertices are revealed to an online algorithm one by
one over time. The total number of the vertices is not known to the online algorithm up
to the end of the input. When the i-th vertex vi is revealed to the online algorithm, all
the edges between vi and vj such that j < i are also revealed. Except for the first revealed
vertex, a newly revealed vertex has exactly one edge to a vertex revealed previously. That
is, a revealed subtree is connected at any time. An input of the problem is a three-tuple
of the form (V,E, S), in which V is the set of all the vertices of a given tree, E is the set
of all the undirected edges of the tree, and S is a sequence consisting of all the vertices in
V . S represents an order of the vertices revealed to an online algorithm. An algorithm has
the empty set U before the first vertex is revealed. The algorithm can add vertices into U
immediately after the revelation of each vertex, and it is necessary for U to be a dominating
set of the given tree at the end of the input. If the algorithm is online, it does not know
when the input has ended, and thus U must be a dominating set immediately after each
vertex is revealed. Once a vertex is added into U , it must not be removed from U later. The
cost of the algorithm for an input σ is the number of vertices in U at the end of σ, and the
objective of the problem is to minimize the cost. We evaluate the performance of an online
algorithm using competitive analysis. We say that the competitive ratio of a deterministic
online algorithm ON is at most c if for any input σ, CON (σ) ≤ cCOPT (σ). If ON is a
randomized online algorithm, then the expected cost of ON is used, which is denoted by
E[CON (σ)]. If for any input σ, E[CON (σ)] ≤ cCOPT (σ), then we say that the competitive
ratio of a randomized online algorithm ON is at most c against any oblivious adversary.

If the number of vertices in a given tree is one, the cost ratio of any algorithm is clearly
one. Thus, we assume that this number is at least two.

2.2 Notation and Definitions
In this section, we give some definitions and notation used throughout this paper. For
any i(= 1, 2, . . .), we use vi to denote the i-th revealed vertex to an online algorithm (the
first revealed vertex v1 appears frequently in this paper). We say that vertices v and u are

ISAAC 2017

52:4 Improved Bounds for Online Dominating Sets of Trees

adjacent if {v, u} ∈ E, in which E is the set of all the edges of a given graph. When a vertex
v is revealed such that v is adjacent to a vertex u which was revealed before v, then we
say that v arrives at u. For any vertex v and any online algorithm ON , DON (v) denotes a
dominating set constructed by ON of a revealed graph up to the time of the revelation of
v. We will omit ON from the notation when it is clear from the context. For an algorithm
ALG including an offline algorithm, DALG(σ) denotes a dominating set constructed by ALG
after the end of the input σ. We will omit σ from the notation when it is clear from the
context. For a vertex v, we say that ALG selects v if v ∈ DALG. For vertices u and v such
that u is revealed after v, degu(v) denotes the degree of v immediately after u is revealed.
deg(v) denotes the degree of v after the end of the input. For a vertex v and a vertex u
revealed after v, we say that u is a descendant of v if any vertex on the simple path from v

to u is revealed after v. The cost of a deterministic algorithm ALG for a vertex set U is the
number of vertices selected by ALG in U . That is, it is the number of vertices in U ∩DALG.
Moreover, if U contains only one vertex, then we simply say the cost for the vertex. In the
same way, we use the term “the expected cost of ALG for U (or a vertex)” if ALG is a
randomized algorithm.

3 Deterministic Lower Bound

Due to page limitations, we omit most of the proofs of the following lemmas and theorems.
The full version of this paper is available at https://arxiv.org/abs/1710.11414.

3.1 Overview of Proof
We first outline an input to obtain our lower bound. The tree of the input is constructed
according to two routines. The tree can be divided into several subtrees satisfying some
properties and we evaluate the competitive ratio for each set of subtrees. One of the routines
appoints a vertex as the root to construct a subtree, which is called a base vertex. The
other routine constructs several subtrees with at most two leaves, each of which arises from
the base vertex. The set of all the vertices excluding the root in each of the subtrees is
called a T -set. It depends on the behavior of an online algorithm ON how many T -sets are
constructed and how many leaves and inner vertices composing T -sets are. If a T -set contains
two leaves, the leaves share the adjacent vertex. For each T -set, OPT selects one vertex
for every consecutive three vertices starting with the parent of a leaf in it. If the degree
of a vertex selected by OPT is two, ON selects the vertex and the two adjacent vertices.
Otherwise, that is its degree is at least three, ON selects at least three vertices from the
vertex and all the adjacent vertices.

Let us explain the proof more in detail. If a T -set contains sufficiently many inner vertices,
it is called a T3-set. Otherwise, a T -set such that ` modulo 3 = i is called a Ti-set, in which
` is the length from the base vertex to a leaf in the T -set. One of the routines tries to force
ON to construct one of the following four sets of T -sets from a base vertex (Fig. 1): (1) a
set of two T1-sets and at least zero T0-set, (2) a set of one T2-set and at least zero T0-set, (3)
a set of one T3-set, at most one T1-set and at least zero T0-set, and (4) a set of sufficiently
many T0-sets and at most one T1-set. The cost ratios of these T -sets are three for (1) or
(2) and approximately three for (3) or (4), respectively. ON can construct none of these
sets. Namely, (5) ON constructs one T1-set and then does one T2-set (Further, ON may also
construct T0-sets). In this case, the routine partitions the T2-set into a vertex u, a T1-set
and a T0-set. This T0-set and all the T -sets in (5) except for the partitioned T2-set compose
a set of T -sets of (1). Then, the routine finishes constructing a subtree from the current

K.M. Kobayashi 52:5

Figure 1 An example of the five sets of T -sets from (1) to (5). Highlighted vertices denote base
vertices. Black vertices denote vertices selected by ON . Vertices with a gray triangle denote vertices
selected by OP T . One of the five sets of T -sets is constructed for a base vertex. If (5) is constructed,
the T2-set in the set is partitioned into a new base vertex u, a T1-set and a T0-set. After that, the
routines force ON to construct one of the five sets of T -sets for u recursively. u is not dominated by
OP T yet, but is dominated later.

base vertex, whose cost ratio is three, and appoints u as a new base vertex. One T0-set,
which is constructed from the above partition of the T2-set, belongs to the new base vertex u.
Since the set of T -sets of u is not classified into any of the above four categories, the routine
continues to construct subtrees for u. This is how the routine tries to construct one of the
four sets of T -sets for all base vertices and to achieve a lower bound of (approximately) three.
Therefore, we have the following theorem:

I Theorem 1. For any ε > 0, the competitive ratio of any deterministic online algorithm is
at least 3− ε.

4 Randomized Upper Bound

4.1 Algorithm
First, we define our algorithm RA. Before the first vertex is revealed, RA chooses to start
running one of two deterministic online algorithms A and B, which are defined later, with
the probability of 1/2 and thereafter keeps running it up to the end of the input. For a

ISAAC 2017

52:6 Improved Bounds for Online Dominating Sets of Trees

vertex v, p(v) denotes the length of the simple path from v1 to v. Roughly speaking, the
difference between A and B is that for a vertex v, A selects v if p(v) is odd, and B selects v
if p(v) is even. Then, A and B try to establish the property that for any vertex u of degree
at most two, u /∈ DA ∩DB .

A (B) can select a vertex which A (B) selected previously in the following definition. It
means that A (B) does nothing at that time. First, we give the definition of A as follows.

Algorithm 1: Algorithm A

Suppose that the i-th vertex vi is revealed.
Case 1 (i = 1): Select v1.
Case 2 (i ≥ 2): Suppose that vi arrives at a vertex u.

Case 2.1 (degvi
(u) ≥ 3): Select u.

Case 2.2 (degvi
(u) ≤ 2):

Case 2.2.1 (p(vi) modulo 2 = 0): Select u.
Case 2.2.2 (p(vi) modulo 2 = 1): Select vi.

Since A selects either a revealed vertex vi or the vertex adjacent to vi, the set of vertices
selected by A is a dominating set of a revealed graph immediately after each of A’s selections.

The definition of B is quite the same as that of A except for Case 2.2. The process of
B in Case 2.2.1 (2.2.2) is the same as that of A in Case 2.2.2 (2.2.1). That is, B selects vi
and u in Cases 2.2.1 and 2.2.2, respectively. Thus, the set of vertices selected by B is also a
dominating set at any time. We omit its formal definition due to page limitation.

4.2 Basic Properties of RA

In this section, we show several basic properties of dominating sets by A and B.

I Lemma 2. The following properties hold for a vertex v:
(1) If v = v1, v ∈ DA and v ∈ DB.
Suppose that v 6= v1.
(2) If deg(v) ≥ 3, v ∈ DA and v ∈ DB.
(3) Suppose that deg(v) = 2.
(3-e) If p(v) modulo 2 = 0, v /∈ DA and v ∈ DB.
(3-o) If p(v) modulo 2 = 1, v ∈ DA and v /∈ DB.
(4) Suppose that deg(v) = 1 and let ũ be the vertex adjacent to v.
(4-1) Suppose that deg(ũ) ≥ 3 and degv(ũ) ≤ 2.
(4-1-e) If p(v) modulo 2 = 0, v /∈ DA and v ∈ DB.
(4-1-o) If p(v) modulo 2 = 1, v ∈ DA and v /∈ DB.
(4-2) If deg(ũ) ≥ 3 and degv(ũ) ≥ 3, then v /∈ DA and v /∈ DB.
(4-3) Suppose that deg(ũ) ≤ 2.
(4-3-e) If p(v) modulo 2 = 0, v /∈ DA and v ∈ DB.
(4-3-o) If p(v) modulo 2 = 1, v ∈ DA and v /∈ DB.

I Lemma 3. The expected cost of RA for v is as follows:
(1) If v = v1, it is one.
Suppose that v 6= v1.
(2) If deg(v) ≥ 3, it is one.
(3) If deg(v) = 2, it is 1/2.
(4) Suppose that deg(v) = 1 and v is adjacent to a vertex u.

K.M. Kobayashi 52:7

(4-1) If deg(u) ≥ 3 and degv(u) ≤ 2, it is 1/2.
(4-2) If deg(u) ≥ 3 and degv(u) ≥ 3, it is zero.
(4-3) If deg(u) ≤ 2, it is 1/2.

We say that a vertex v dominates vertices adjacent to v if OPT selects v. We also say
that v dominates v itself. If a vertex u arrives at a vertex v, (v, u) denotes the edge between
v and u. Suppose that a vertex u arrives at a vertex v. Also, suppose that u is dominated
by a vertex in U and v is dominated by a vertex not in U , in which U is the set of u and
all the descendants of u. Then, we say that the edge (v, u) is free. We say that a free edge
(v, u) is fixed if this edge satisfies the following three conditions: (i) v 6= v1, (ii) deg(u) ≥ 3,
and (iii) either deg(v) = 3 or deg(v) = 2, deg(v′) ≥ 3 and degv(v′) ≥ 3, in which v′(6= u) is
the vertex at which v arrives. We say that a vertex triplet (u1, u2, u3) is good if the vertices
u1, u2 and u3 satisfy the following three conditions: (i) both u1 and u3 are adjacent to u2,
(ii) deg(u1) = deg(u2) = deg(u3) = 3, and (iii) OPT selects u1 and u3.

In the rest of this section, we will show the following lemma.

I Lemma 4. There exists an input σ which maximizes E[CRA(σ)]
COP T (σ) and satisfies the following

seven properties.
(P1) Any free edge is fixed (Lemmas 7 and 9).
(P2) The degree of any vertex is at most three (Lemma 8).
(P3) The degree of any vertex selected by OPT is three (Lemma 10).
(P4) For any free edge (v, u), OPT does not select v (Lemma 11).
(P5) Good vertex triplets are not contained (Lemma 12).
(P6) For any free edge (v, u), the degree of v is not two (Lemma 14).
(P7) The degree of any vertex is either one or three (Lemma 13).

This lemma shows that we only have to consider an input satisfying the properties from (P1)
to (P7) to evaluate the competitive ratio of RA. It is easy to see that if (P7) holds, both
(P2) and (P6) clearly hold. However, we must prove some lemmas including ones about the
both properties before showing (P7).

To prove the above lemma and the following lemmas, we give a few definitions about
transformations of an input. First, we “divide” an input into two inputs. For an input
σ = (V,E, S) and a vertex v ∈ V , we define the input f1(σ, v) = (V1, E1, S1) such that V1 =
V \U , in which U is the set of v and all the descendants of v, E1 = {{u, u′} ∈ E | u, u′ ∈ V1}.
That is, (V1, E1) is the subgraph of (V,E) induced by V1, and S1 is the subsequence of S
consisting of all the vertices of V1 . Also, we define the input f2(σ, v) = (U,E2, S2) such that
E2 = {{u, u′} ∈ E | u, u′ ∈ U}, that is, (U,E2) is the subgraph of (V,E) induced by U , and
S2 is the subsequence of S consisting of all the vertices of U .

Moreover, we “connect” two inputs. For an input σ′ = (V ′, E′, S′), a vertex v′ ∈ V ′ and
an input σ′′ = (V ′′, E′′, S′′), we define f3(σ′, v′, σ′′) = (V3, E3, S3) such that V3 = V ′ ∪ V ′′,
E3 = E′ ∪ E′′ ∪ {{v′, u′′1}}, in which u′′i is the i(∈ [1, n′′])-th vertex in S′′ and n′′ is the
number of vertices in S′′, and S3 = (u′1, . . . , u′n′ , u′′1 , . . . , u

′′
n′′), in which n′ is the number of

vertices in S′ and u′i is the i(∈ [1, n′])-th vertex in S′.

I Lemma 5. Suppose that the vertex set of an input σ contains two vertices v and u such that
the edge (v, u) is free. Then, there exists OPT such that DOPT (f1(σ, u))∪DOPT (f2(σ, u)) =
DOPT (σ).

I Lemma 6. Suppose that the graph in an input σ contains a vertex v and OPT selects v.
Then, there exists OPT such that DOPT (f3(σ, v, σ̂)) = DOPT (σ), in which σ̂ = ({u},∅, u)
and u is a vertex not in the vertex set of the graph in σ.

ISAAC 2017

52:8 Improved Bounds for Online Dominating Sets of Trees

I Lemma 7. Suppose that the graph of an input σ contains at least one free edge which is
not fixed. Then, there exits an input σ′ such that (a) any free edge in the graph of σ′ is fixed,
that is (P1) holds, and (b) E[CRA(σ)]

COP T (σ) ≤
E[CRA(σ′)]
COP T (σ′) .

I Lemma 8. Suppose that an input σ satisfies the following conditions: (i) the graph in σ
contains at least one vertex of degree at least four, and (ii) (P1) holds.

Then, there exists an input σ′ such that (a) the degree of any vertex of the graph in σ′ is
at most three, that is, (P2) holds, and (b) E[CRA(σ)]

COP T (σ) ≤
E[CRA(σ′)]
COP T (σ′) .

I Lemma 9. Suppose that an input σ satisfies the following conditions: (i) the graph in σ
contains at least one free edge which is not fixed, and (ii) (P2) holds.

Then, there exists an input σ′ such that (a) (P1) and (P2) hold, and (b) E[CRA(σ)]
COP T (σ) ≤

E[CRA(σ′)]
COP T (σ′) .

I Lemma 10. Suppose that an input σ satisfies the following conditions: (i) OPT selects at
least one vertex of degree at most two, and (ii) (P1) and (P2) hold.

Then, there exists an input σ′ such that (a) the degree of any vertex selected by OPT is
three, that is, (P3) holds, (b) (P1) and (P2) hold, and (c) E[CRA(σ)]

COP T (σ) ≤
E[CRA(σ′)]
COP T (σ′) .

I Lemma 11. Suppose that an input σ satisfies the following conditions: (i) there exists at
least one free edge (v, u) such that OPT selects v, and (ii) (P1), (P2) and (P3) hold.

Then, there exists an input σ′ such that (a) for any free edge (v, u), OPT does not select
v, that is, (P4) holds, (b) (P1), (P2) and (P3) hold, and (c) E[CRA(σ)]

COP T (σ) ≤
E[CRA(σ′)]
COP T (σ′) .

I Lemma 12. Suppose that an input σ satisfies the following conditions: (i) the graph in σ
contains at least one good vertex triplet, and (ii) the properties from (P1) to (P4) inclusive
hold.

Then, there exists an input σ′ such that (a) the graph in σ′ contains no good vertex
triplets, that is, (P5) holds, (b) the properties from (P1) to (P4) inclusive hold, and (c)
E[CRA(σ)]
COP T (σ) ≤

E[CRA(σ′)]
COP T (σ′) .

I Lemma 13. Consider the graph in an input satisfying the properties from (P1) to (P6)
inclusive. Then, the degree of any vertex is one or three.

I Lemma 14. Suppose that an input σ satisfies the following conditions: (i) there exists
at least one free edge (v, u) such that deg(v) = 2, and (ii) the properties from (P1) to (P5)
inclusive hold.

Then, there exists an input σ′ such that (a) for any free edge (v, u), deg(v) = 3, (b) the
properties from (P1) to (P5) inclusive hold, and (c) E[CRA(σ)]

COP T (σ) ≤
E[CRA(σ′)]
COP T (σ′) .

Now we can show Lemma 4 using Lemmas 13 and 14. In the next section, we analyze
only inputs satisfying the properties from (P1) through (P7).

4.3 Analysis of RA

We assign a positive integer to each vertex of a given tree according to the below routine.
We call the set of all the vertices with the same assigned value a block. All the vertices in
a block are on a path of at most length three. We obtain the competitive ratio of RA by
evaluating the costs of RA and OPT for each block. For a vertex v, N(v) denotes the set
of vertices adjacent to v. That is, N(v) = {u | {v, u} ∈ E}, in which E is the set of all the
edges of a given graph.

K.M. Kobayashi 52:9

Algorithm 2: BlockRoutine
Step 1: ` := 0 and U := {vi | i = 1, . . . , n}, in which n is the number of all the
vertices of a given graph.
Step 2: ` := `+ 1. If U = ∅, then finish. Otherwise, i1 := min{i | vi ∈ U},
U := U \ {vi1} and assign ` to the vertex vi1 .
Step 3: If U ∩N(vi1) = ∅, then go to Step 2. Otherwise,
i2 := min{i | vi ∈ U ∩N(vi1)}, U := U \ {vi2} and assign ` to the vertex vi2 .
Step 4: U ′ := U ∩ {N(vi1) ∪N(vi2)}. If U ′ = ∅, then go to Step 2. Otherwise,
i3 := min{i | vi ∈ U ′}, U := U \ {vi3}, assign ` to the vertex vi3 and go to Step 2.

I Lemma 15. The number of all the vertices of a given tree is at least four.

By the definition of BlockRoutine, this lemma leads to the fact that at least one vertex
in a block is adjacent to a vertex in another block. Also, by (P7) in the previous section,
the degree of a vertex is one or three, and hence blocks which a given graph can contain
are classified into the following four categories: A B1-block is a set consisting of one vertex
u1 such that deg(u1) = 1. The following three blocks are sets consisting of three vertices
u1, u2 and u3. Suppose that both u1 and u3 are adjacent to u2. A B2-block is a set such
that deg(u1) = 3, deg(u2) = 3 and deg(u3) = 1, a B3-block is a set such that deg(u1) = 1,
deg(u2) = 3 and deg(u3) = 1, and a B4-block is a set such that deg(u1) = 3, deg(u2) = 3
and deg(u3) = 3.

For each block, we discuss vertices selected by OPT and classify B1, B2, B3 and B4 into
the following eleven categories. Then the next lemma shows that we only have to consider
six categories. u1, u2 and u3 to classify Bi are used in the same definitions as those of u1, u2
and u3 to define Bi.

B1-blocks are classified into two categories: A B0
1-block in which OPT does not select

any vertex, and a B1
1-block in which OPT selects only u1.

B2-blocks are classified into two categories: A B010
2 -block in which OPT selects only u2,

and a B110
2 -block in which OPT selects only u1 and u2.

B3-blocks are not classified. OPT selects only u2 in a B3-block.
B4-blocks are classified into six categories: A B000

4 -block in which OPT selects no vertices,
a B100

4 -block in which OPT selects only u1, a B010
4 -block in which OPT selects only u2, a

B110
4 -block in which OPT selects only u1 and u2, a B101

4 -block in which OPT selects only
u1 and u3, and a B111

4 -block in which OPT selects all the vertices.

I Lemma 16. An input can contain at most six kinds of blocks: B0
1 , B2, B3, B

000
4 , B100

4 and
B010

4 .

A B1-block consists of one vertex v of degree one, and (4) in Lemma 3 shows that the
expected cost of RA for v depends on the adjacent vertex u. Then, we classify B1-blocks
into the following two categories in terms of RA: A B1,0-block of v such that degv(u) = 3
and a B1,1-block of v such that degv(u) ≤ 2.

I Lemma 17. Consider a block without v1 and then the expected costs of RA are as follows:
(i) zero for a B1,0-block, (ii) 1/2 for a B1,1-block, (iii) at most 5/2 for a B2-block, (iv) at
most 3/2 for a B3-block and (v) at most three for a B4-block.

Next, we evaluate the expected cost of RA for each block with v1. Since the number of
all the vertices of a given graph is at least four, no B1-block contains v1 by the definition of
BlockRoutine.

ISAAC 2017

52:10 Improved Bounds for Online Dominating Sets of Trees

I Lemma 18. Consider a block with v1 and then the expected costs of RA are as follows:
(i) at most three for a B2-block, (ii) at most 5/2 for a B3-block and (iii) at most three for a
B4-block.

Let b1,0, b1,1, b2, b3, b
000
4 , b100

4 and b010
4 denote the numbers of B1,0-blocks, B1,1-blocks,

B2-blocks, B3-blocks, B000
4 -blocks, B100

4 -blocks and B010
4 -blocks, respectively. We define

b4 = b000
4 + b100

4 + b010
4 .

I Lemma 19. If the number of all the vertices of a given graph is at least five,

b1,0 ≤ b2 + b100
4 + b010

4 (1)

and

b1,1 ≤ b100
4 . (2)

I Lemma 20. b1,0 + b1,1 + b3 = b2 + 3b4 + 2.

I Theorem 21. The competitive ratio of RA is at most 5/2.

Proof. First, we consider an input σ of which the number of vertices of a given tree is
four. A combination of blocks composing a tree with four vertices consists of one B1-block
C1 and one B3-block C3 by Lemma 16. Since C1 does not contain v1 by the definition
of BlockRoutine, C3 contains v1. Thus, the expected of RA for C3 is at most 5/2 by
Lemma 18. Let v denote the vertex in C1, and let u denote the vertex adjacent to v in C3.
degv(u) = 3 by the definition of B3-blocks, which means that C1 is a B1,0-block. Thus, the
expected cost for C1 is zero by Lemma 17. By the above argument, E[CRA(σ)] = 5/2. On
the other hand, OPT clearly selects at least one vertex, that is, COPT (σ) ≥ 1. Therefore,
we have shown the statement of the theorem in the case of a tree with four vertices.

Next, we consider the case in which of a graph with at least five vertices. The expected
costs of RA for a B2-block and a B3-block with v1 are greater than those for a B2-block and
a B3-block without v1 by 1/2 and one, respectively, by Lemmas 17 and 18. Also, v1 does not
affect the expected cost for B4-blocks. Thus, let b′2 and b′3 denote the numbers of B2-blocks
and B3-blocks with v1, respectively. By definition, b′2, b′3 ∈ {0, 1} and b′2 + b′3 ≤ 1. Then,
using Lemma 17, we have

E[CRA(σ)] ≤ b1,1/2 + 5b2/2 + 3b3/2 + 3b4 + b′2/2 + b′3 ≤ b1,1/2 + 5b2/2 + 3b3/2 + 3b4 + 1.

By the definitions of blocks, we have

COPT (σ) = b2 + b3 + b100
4 + b010

4 .

By the inequality and the equality, we have
E[CRA(σ)]
COPT (σ) ≤

b1,1/2 + 5b2/2 + 3b3/2 + 3b4 + 1
b2 + b3 + b100

4 + b010
4

= −3b1,0/2− b1,1 + 4b2 + 15b4/2 + 4
−b1,0 − b1,1 + 2b2 + 3b4 + b100

4 + b010
4 + 2 (by the substitution for b3 by Lemma 20)

≤ −3b1,0/2 + 4b2 + 15b4/2− b100
4 + 4

−b1,0 + 2b2 + 3b4 + b010
4 + 2 (by the substitution for b1,1 by Eq. (2))

≤ −5b1,0/2 + 5b2 + 15b4/2 + b010
4 + 4

−b1,0 + 2b2 + 3b4 + b010
4 + 2 (by the substitution for b100

4 by Eq. (1))

= 5
2 ·
−b1,0 + 2b2 + 3b4 + 2b010

4 /5 + 8/5
−b1,0 + 2b2 + 3b4 + b010

4 + 2 <
5
2 .

J

K.M. Kobayashi 52:11

Our analysis of RA is exact by the following theorem.

I Theorem 22. The competitive ratio of RA is at least 5/2.

5 Randomized Lower Bound

I Lemma 23. Consider a randomized online algorithm RON . Suppose that a vertex v
arrives at a vertex u. Let pu(pv) denote the probability that u ∈ DRON (v)(v ∈ DRON (v)).
Then, pu + pv ≥ 1.

Proof. Let p′u be the probability that u ∈ DRON (u). Since RON ’s selection is irrevocable,
the probability that u ∈ DRON (u) and u ∈ DRON (v) is greater than or equal to p′u (Fact (a)).
Next, we consider the case in which u /∈ DRON (u). RON must select u or v to construct a
dominating set immediately after v is revealed. Thus, the probability that either u ∈ DRON (v)
or v ∈ DRON (v) is one. By the definition of p′u, the probability that u /∈ DRON (u) is 1− p′u.
Hence, the probability that both u /∈ DRON (u) and either u ∈ DRON (v) or v ∈ DRON (v) is at
least 1−p′u. This probability together with Fact (a) shows that pu+pv ≥ p′u+1−p′u = 1. J

I Theorem 24. The competitive ratio of any randomized online algorithm is at least 4/3.

Proof. Consider a randomized online algorithm RON for the following input σ. Let m be
any positive integer. We sketch an adversary constructing σ. First, the adversary gives a line
of 2m vertices to ON . Then, for every two consecutive vertices on the line, the adversary
determines whether an additional vertex will arrive at one of the two vertices. Specifically, if
the probability that RON selects at least one of the two vertices is low, the adversary makes
a new vertex arrive at the vertex.

For each i = 1, 2, . . . , 2m, the i-th vertex vi arrives at vi−1. For each j = 1, 2, . . . , 2m,
let pj be the probability that vj ∈ DRON (v2m). Next, for each ` = 1, 2, . . . ,m, vertices are
revealed after the revelation of v2m in the following two cases.
Case 1 (min{p2`−1, p2`} ≥ 2/3): A new vertex does not arrive at either v2`−1 or v2`.
Since RON ’s selection is irrevocable, the expected cost of RON for v2`−1 and v2` is at least
2 · 2/3 = 4/3.
Case 2 (min{p2`−1, p2`} < 2/3): If p2`−1 ≤ p2`, then define `1 = 2` − 1 and `2 = 2`.
Otherwise, define `2 = 2`−1 and `1 = 2`. Then, a vertex u`1 arrives at v`1 . By Lemma 23, the
probability that v`1 ∈ DRON (u`1) or u`1 ∈ DRON (u`1) is at least one (Fact (a)). Moreover,
p2`−1 + p2` = p`1 + p`2 ≥ 1 also holds. Since p`1 < 2/3 by the condition of Case 2, p`2 ≥ 1/3.
Hence, the expected cost for v`1 , v`2 and u`1 is at least 1 + 1/3 = 4/3.

Let x be the number of such ` with applying Case 1. Thus, the number of such ` with
applying Case 2 is m−x. E[CRON (σ)] ≥ 4x/3 + 4(m−x)/3 = 4m/3 by the above argument.

Next, we consider an offline algorithm OFF to give an upper bound on the cost of
OPT . For such ` with applying Case 1, OFF selects v2`−1 and for such ` with applying
Case 2, selects v`1 . Thus, OFF selects m vertices, and the set of the m selected vertices is
clearly a dominating set. By the optimality of OPT , COPT (σ) ≤ COFF (σ) = m. Therefore,
E[CRON (σ)]/COPT (σ) ≥ 4/3. J

6 Conclusions

In this paper, we have conducted research on algorithms for an online variant of the minimum
dominating set problem on trees and obtained the following results: First, we have shown
that the competitive ratio of any deterministic algorithm is at least 3, which matches the

ISAAC 2017

52:12 Improved Bounds for Online Dominating Sets of Trees

upper bound shown in [4, 2]. Then, we have designed an algorithm whose competitive ratio
is exactly 5/2 using randomization. Furthermore, we have shown that the competitive ratio
of any randomized algorithm is at least 4/3.

We conclude this paper by providing open questions: (i) Online algorithms for dominating
sets on several graph classes have been discussed in [4, 2] and optimal online algorithms have
not yet known on some classes. Then, it is interesting to consider online algorithms on other
classes in addition to them. (ii) Our algorithm RA is the first randomized algorithm for the
online dominating set problem on trees and can achieve a competitive ratio smaller than
that of any deterministic algorithm. Can we also obtain a better ratio on other classes using
randomization? (iii) The gap between the randomized bounds shown in this paper is still
large and thus, it is an obvious open problem to close the gap.

References
1 A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge

University Press, 1998.
2 J. Boyar, S. J. Eidenbenz, L. M. Favrholdt, M. Kotrbčik, and K. S. Larsen. Online dom-

inating set. In Proc. of the 15th Scandinavian Symposium and Workshops on Algorithm
Theory, pages 21:1–21:15, 2016.

3 D.-Z. Du and P.-J. Wan. Connected Dominating Set: Theory and Applications. Springer,
2013.

4 S. J. Eidenbenz. Online dominating set and variations on restricted graph classes. Technical
report, Institute of Theoretical Computer Science, ETH Zürich, 2002.

5 F. V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (exponential) algorithms for the
dominating set problem. In Proc. of the 30th international conference on Graph-Theoretic
Concepts in Computer Science, pages 245–256, 2004.

6 F.V. Fomin, F. Grandoni, and D. Kratsch. Some new techniques in design and analysis of
exact (exponential) algorithms. In Bulletin of the EATCS, pages 47–77, 2005.

7 W. Goddard and M. A. Henning. Independent domination in graphs: A survey and recent
results. Discrete Mathematics, 313(7):839–854, 2013.

8 F. Grandoni. Independent domination in graphs: A survey and recent results. Journal of
Discrete Algorithms, 4(2):209–214, 2006.

9 M. Henning and A. Yao. Total Domination in Graphs. Springer, 2013.
10 Y. Iwata. A faster algorithm for dominating set analyzed by the potential method. In Proc.

of the 6th international conference on Parameterized and Exact Computation, pages 41–54,
2011.

11 G. H. King and W. G. Tzeng. On-line algorithms for the dominating set problem. Inform-
ation Processing Letters, 61:11–14, 1997.

12 F. Plastria. Static competitive facility location: An overview of optimisation approaches.
European Journal of Operational Research, 129(3):461–470, 2001.

13 I. Schiermeyer. Exact algorithms for dominating set. Discrete Applied Mathematics,
156(17):3291–3297, 2008.

14 D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

15 J. M. M. van Rooij and H. L. Bodlaender. Exact algorithms for dominating set. Discrete
Applied Mathematics, 159(17):2147–2164, 2011.

16 J. Y. Yu and P. H. J. Chong. A survey of clustering schemes for mobile ad hoc networks.
IEEE Communications Surveys and Tutorials, 7(1):32–48, 2005.

	Introduction
	Preliminaries
	Model Description
	Notation and Definitions

	Deterministic Lower Bound
	Overview of Proof

	Randomized Upper Bound
	Algorithm
	Basic Properties of RA
	Analysis of RA

	Randomized Lower Bound
	Conclusions

