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Abstract
In (k, r)-Center we are given a (possibly edge-weighted) graph and are asked to select at most
k vertices (centers), so that all other vertices are at distance at most r from a center. In this
paper we provide a number of tight fine-grained bounds on the complexity of this problem with
respect to various standard graph parameters. Specifically:

For any r ≥ 1, we show an algorithm that solves the problem in O∗((3r + 1)cw) time, where
cw is the clique-width of the input graph, as well as a tight SETH lower bound matching this
algorithm’s performance. As a corollary, for r = 1, this closes the gap that previously existed
on the complexity of Dominating Set parameterized by cw.
We strengthen previously known FPT lower bounds, by showing that (k, r)-Center is W[1]-
hard parameterized by the input graph’s vertex cover (if edge weights are allowed), or feedback
vertex set, even if k is an additional parameter. Our reductions imply tight ETH-based lower
bounds. Finally, we devise an algorithm parameterized by vertex cover for unweighted graphs.
We show that the complexity of the problem parameterized by tree-depth is 2Θ(td2) by showing
an algorithm of this complexity and a tight ETH-based lower bound.

We complement these mostly negative results by providing FPT approximation schemes pa-
rameterized by clique-width or treewidth which work efficiently independently of the values
of k, r. In particular, we give algorithms which, for any ε > 0, run in time O∗((tw/ε)O(tw)),
O∗((cw/ε)O(cw)) and return a (k, (1 + ε)r)-center, if a (k, r)-center exists, thus circumventing the
problem’s W-hardness.
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1 Introduction

In this paper we study the (k, r)-Center problem: given a graph G = (V,E) and a weight
function w : E → N+ which satisfies the triangle inequality and defines the length of each
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50:2 Parameterized (k, r)-Center

edge, we are asked if there exists a set K (the center-set) of at most k vertices of V , so that
∀u ∈ V \K we have minv∈K d(v, u) ≤ r, where d(v, u) denotes the shortest-path distance
from v to u under weight function w. If w assigns weight 1 to all edges we say that we have
an instance of un-weighted (k, r)-Center. (k, r)-Center is an extremely well-investigated
optimization problem with numerous applications. It has a long history, especially from the
point of view of approximation algorithms, where the objective is typically to minimize r for
a given k [24, 46, 29, 19, 42, 31, 28, 1, 18]. The converse objective (minimizing k for a given
r) has also been well-studied, with the problem being typically called r-Dominating Set in
this case [11, 43, 36, 12].

Because (k, r)-Center generalizes Dominating Set (which corresponds to the case
r = 1), the problem can already be seen to be hard, even to approximate (under standard
complexity assumptions). In particular, the optimal r cannot be approximated in polynomial
time by a factor better than 2 (even on planar graphs [19]), while k cannot be approximated
by a factor better than lnn [39]. Because of this hardness, we are strongly motivated to
investigate the problem’s complexity when the input graph has some restricted structure.

In this paper our goal is to perform a complete analysis of the complexity of (k, r)-
Center that takes into account this input structure by using the framework of parameterized
complexity. In particular, we provide fine-grained upper and lower bound results on the
complexity of (k, r)-Center with respect to the most widely studied parameters that measure
a graph’s structure: treewidth tw, clique-width cw, tree-depth td, vertex cover vc, and
feedback vertex set fvs. In addition to the intrinsic value of determining the precise complexity
of (k, r)-Center, this approach is further motivated by the fact that FPT algorithms for
this problem have often been used as building blocks for more elaborate approximation
algorithms [16, 18]. Indeed, (some of) these questions have already been considered, but
we provide a number of new results that build on and improve the current state of the art.
Along the way, we also close a gap on the complexity of the flagship Dominating Set
problem parameterized by clique-width. Specifically, we prove the following:

(k, r)-Center can be solved (on unweighted graphs) in time O∗((3r + 1)cw) (if a clique-
width expression is supplied with the input), but it cannot be solved in time O∗((3r+1−ε)cw)
for any (fixed) r ≥ 1, unless the Strong Exponential Time Hypothesis (SETH) [26, 27]
fails. The algorithmic result relies on standard techniques (dynamic programming on
clique-width, fast subset convolution), as well as several problem-specific observations
which are required to obtain the desired table size. The SETH lower bound follows from
a direct reduction from SAT. A noteworthy consequence of our lower bound result is that,
for the case of Dominating Set, it closes the gap between the complexity of the best
known algorithm (O∗(4cw) [9]) and the best previously known lower bound (O∗((3− ε)cw)
[35]).
(k, r)-Center cannot be solved in time no(vc+k) on edge-weighted graphs, or time no(fvs+k)

on unweighted graphs, unless the Exponential Time Hypothesis (ETH) is false. It was
already known that an FPT algorithm parameterized just by tw (for unbounded r) is
unlikely to be possible [10]. These results show that the same holds for the two more
restrictive parameters fvs and vc, even if k is also added as a parameter. They are
(asymptotically) tight, since it is easy to obtain O∗(nfvs), O∗(nvc), and O∗(nk) algorithms.
We remark that (k, r)-Center is a rare example of a problem that turns out to be hard
parameterized by vc. We complement these lower bounds by an FPT algorithm for the
unweighted case, running in time O∗(5vc).
(k, r)-Center can be solved in time O∗(2O(td2)) for unweighted graphs, but if it can be
solved in time O∗(2o(td2)), then the ETH is false. Here the upper bound follows from
known connections between a graph’s tree-depth and its diameter, while the lower bound
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cw, Clique-width

tw, Treewidth

fvs, Feedback Vertex Set

pw, Pathwidth

td, Tree-depth

vc, Vertex Cover

Figure 1 Relationships of parameters. Algorithmic results are inherited downwards, hardness
results upwards.

Table 1 A summary of our results (theorem numbers) for all considered parameters. Initials u/w
denote the unweighted/weighted variants of the problem.

cw tw fvs td vc
FPT exact 3 (w/u) 10 (w/u) 7 (u) 6 (u)
FPT-AS 16 (w/u) 13 (w/u)
SETH LB 1 (u)
ETH LB 5 (w/u) 8 (u) 4 (w)
W[1]-hard 5 (w/u) 4 (w)

follows from a reduction from 3-SAT. We remark that this is a somewhat uncommon
example of a parameterized problem whose parameter dependence turns out to be
exponential in the square of the parameter.

These results, together with the recent work of [10] showing tight bounds of O∗((2r+1)tw)
on the problem’s complexity parameterized by tw, give a complete and often fine-grained,
picture on (k, r)-Center for the most important graph parameters. One of the conclusions
that can be drawn is that, as a consequence of the problem’s hardness for vc (in the weighted
case) and fvs, there are few cases where we can hope to obtain an FPT algorithm without
bounding r: as r increases the complexity of exactly solving the problem quickly degenerates
away from the case of Dominating Set, which is FPT for all considered parameters.

A further contribution of this paper is to complement this negative view by pointing
out that it only applies if one insists on solving the problem exactly. If we allow algorithms
that return a (1 + ε)-approximation to the optimal r, for arbitrarily small ε > 0 and while
respecting the given value of k, we obtain the following:

There exist algorithms which, for any ε > 0, when given a graph that admits a (k, r)-center,
return a (k, (1 + ε)r)-center in time O∗((tw/ε)O(tw)), or O∗((cw/ε)O(cw)), assuming a
tree decomposition or clique-width expression is given in the input.

The tw approximation algorithm is based on a technique introduced in [32], while the
cw algorithm relies on a new extension of an idea from [23], which may be of independent
interest. Thanks to these approximation algorithms, we arrive at an improved understanding
of the complexity of (k, r)-Center by including the question of approximation, and obtain
algorithms which continue to work efficiently even for large values of r. Figure 1 illustrates
the relationships between parameters and Table 1 summarizes our results. We refer the
reader to the full version [25] for all omitted definitions, constructions and proofs.

Related Work: Our work follows upon recent work by [10], which showed that (k, r)-
Center can be solved in O∗((2r + 1)tw), but not faster (under SETH), while its connected
variant can be solved in O∗((2r + 2)tw), but not faster. This paper in turn generalized
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50:4 Parameterized (k, r)-Center

previous results on Dominating Set for which a series of papers had culminated into an
O∗(3tw) algorithm [44, 2, 45], while on the other hand, [35] showed that an O∗((3− ε)pw)
algorithm would violate the SETH, where pw denotes the input graph’s pathwidth. The
complexity of (k, r)-Center by the related parameter branchwidth had previously been
considered in [16] where an O∗((2r + 1) 3

2bw) algorithm is given. Moreover, [37] showed the
problem parameterized by the number k of centers to be W[1]-hard in the L∞ metric, in fact
analysing Covering Points with Squares, a geometric variant. It remains W[2]-hard for
2-degenerate graphs [22]. On clique-width, a O∗(4cw)-time algorithm for Dominating Set
was given in [9], while [41] notes that the lower bound of [35] for pathwidth/treewidth would
also imply no (3− ε)cw · nO(1)-time algorithm exists for clique-width under SETH as well,
since clique-width is at most 1 larger than pathwidth. For the edge-weighted variant, [20]
shows that a (2− ε)-approximation is W[2]-hard for parameter k and NP-hard for graphs
of highway dimension h = O(log2 n), while also offering a 3/2-approximation algorithm
of running time 2O(kh log(h)) · nO(1), exploiting the similarity of this problem with that of
solving Dominating Set on graphs of bounded vc. Finally, for unweighted graphs, [34]
provides efficient (linear/polynomial) algorithms computing (r +O(µ))-dominating sets and
+O(µ)-approximations for (k, r)-Center, where µ is the tree-breadth or cluster diameter
in a layering partition of the input graph, while [18] gives a polynomial-time bicriteria
approximation scheme for graphs of bounded genus.

2 Definitions and Preliminaries

We use standard graph-theoretic notation. For a graph G = (V,E), n = |V | denotes
the number of vertices, m = |E| the number of edges and for a subset X ⊆ V , G[X]
denotes the graph induced by X. Further, we assume the reader has some familiarity with
standard definitions from parameterized complexity theory, such as the classes FPT, W[1]
(see [15, 21, 17]). For a parameterized problem with parameter k, an FPT-AS is an algorithm
which for any ε > 0 runs in time O∗(f(k, 1

ε )) (i.e. FPT time when parameterized by k + 1
ε )

and produces a solution at most a multiplicative factor (1 + ε) from the optimal (see [38]).
We use O∗(·) to imply omission of factors polynomial in n.

In this paper we present approximation schemes with running times of the form
(logn/ε)O(k). These can be seen to imply an FPT running time by a well-known win-
win argument (see Lemma 1 in [25]): If a parameterized problem with parameter k admits, for
some ε > 0, an algorithm running in time O∗((logn/ε)O(k)), then it also admits an algorithm
running in time O∗((k/ε)O(k)).

Treewidth and pathwidth are standard notions in parameterized complexity which measure
how close a graph is to being a tree or path (see [8, 5, 30]). We will also use the standard
graph parameter of clique-width, which was introduced as a generalization of treewidth to
dense graphs (see [13, 14]). Additionally, we will use the parameters vertex cover number
and feedback vertex set number of a graph G, which are the sizes of the minimum vertex set
whose deletion leaves the graph edgeless, or acyclic, respectively. Finally, we will consider
the related notion of tree-depth [40], which is defined as the minimum height of a rooted
forest whose completion (the graph obtained by connecting each node to all its ancestors)
contains the input graph as a subgraph. We will denote these parameters for a graph G as
tw(G), pw(G), cw(G), vc(G), fvs(G), and td(G), and will omit G if it is clear from the context.
We recall the following well-known relations between these parameters [6, 14] which justify
the hierarchy given in Figure 1: For any graph G we have tw(G) ≤ pw(G) ≤ td(G) ≤ vc(G),
tw(G) ≤ fvs(G) ≤ vc(G), cw(G) ≤ pw(G) + 1, and cw(G) ≤ 2tw(G)+1 + 1.
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We also recall here the two main complexity assumptions used in this paper [26, 27]. The
Exponential Time Hypothesis (ETH) states that 3-SAT cannot be solved in time 2o(n+m) on
instances with n variables and m clauses. The Strong Exponential Time Hypothesis (SETH)
states that for all ε > 0, there exists an integer k such that k-SAT cannot be solved in time
(2− ε)n on instances of k-SAT with n variables.

3 Clique-width

3.1 Lower bound based on SETH
The result of this section is that for any fixed constant r ≥ 1, the existence of any algorithm
for (k, r)-Center of running time O∗((3r + 1 − ε)cw), for some ε > 0, would imply the
existence of some algorithm for SAT of running time O∗((2− δ)n), for some δ > 0.

Before we proceed, let us recall the high-level idea behind the SETH lower bound for
Dominating Set given in [35], as well its generalization to (k, r)-Center given in [10]. In
both cases the key to the reduction is the construction of long paths, which are conceptually
divided into blocks of 2r + 1 vertices. The intended solution consists of selecting, say, the
i-th vertex of a block of a path, and repeating this selection in all blocks of this path. This
allows us to encode (2r + 1)t choices, where t is the number of paths we make, which ends
up being roughly equal to the treewidth of the construction. The reason this construction
works in the converse direction is that, even though the optimal (k, r)-Center solution may
“cheat” by selecting the i-th vertex of a block, and then the j-th vertex of the next, one can
see that we must have j ≤ i. Hence, by making the paths that carry the solution’s encoding
long enough we can ensure that the solution eventually settles into a pattern that encodes
an assignment to the original formula (which can be “read” with appropriate gadgets).

In our lower bound construction for clique-width we need to be able to “pack” more
information per unit of width: instead of encoding (2r+ 1) choices for each unit of treewidth,
we need to encode (3r + 1) choices for each label. Our high-level plan to achieve this is to
use a pair of long paths for each label. Because we only want to invest one label for each
pair of paths we are forced to periodically (every 2r + 1 vertices) add cross edges between
them, so that the connection between blocks can be performed with a single join operation
(see the paths A1, B1 in Figure 2 for an illustation). Our plan now is to encode a solution
by selecting a pair of vertices that will be repeated in each block, for example every i-th
vertex of A1 and every j-th vertex of B1. One may naively expect that this would allow us to
encode (2r+ 1)2 choices for each label (which would lead to a SETH lower bound that would
contradict the algorithm of Section 3.2). However, because of the cross edges, the optimal
(k, r)-Center solution is not as well-behaved on a pair of cross-connected paths as it was on
a path, and this makes it much harder to execute the converse direction of the reduction:
a solution that takes every i-th vertex of A1 could alternate repeatedly between various
choices for B1, because the selected vertices of A1 also cover parts of B1. Our strategy is
therefore to identify (3r + 1) ordered selection pairs and show that any valid solution must
be well-behaved with respect to these pairs. An overview of our construction, omitting most
technical details of the reduction’s inner mechanism follows.

Construction overview: We construct a graph G, given some ε < 1 and an instance φ of
SAT with n variables and m clauses. We first choose an integer p, depending on ε and r (for
technical reasons that become apparent in the proof of Theorem 1). Note that for the results
of this section, both r and p are considered constants. We then group the variables of φ into
t = dnγ e groups F1, . . . , Ft, for γ = blog2(3r + 1)pc, being also the maximum size of any such
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50:6 Parameterized (k, r)-Center

group. Our graph G will consist of t rows of m(3rpt+ 1) gadgets Ĝ, each row corresponding
to one such group of variables. Each gadget Ĝ will contain p pairs of paths Ai, Bi and any
selection of one vertex from each path will be associated with a specific partial assignment to
the variables of the group. Gadgets of the same row will be connected in a path-like manner:
for each i ∈ [1, p] both final vertices of each pair Ai, Bi within each gadget will be connected
to both first vertices of the corresponding pair Ai, Bi of the following gadget, with a global
vertex h adjacent to all the first/last vertices of all such long paths, with an additional
path of length r attached to h to ensure its selection in any minimum-sized center-set (and
allowing for any selection in these first/last gadgets to be valid).

Furthermore, we will show that the possible selections of only one vertex from each path
can be divided into 3r + 1 equivalence classes: we define 3r + 1 canonical pairs of numbers
(αy, βy), indexed (and ordered) by y ∈ [1, 3r+ 1], that give the indices of vertices from a pair
of paths Ai, Bi (i.e. the αy-th vertex of Ai and the βy-th vertex of Bi) that would form the
characteristic selection for each class, and show that any other selection within each class
would be interchangeable (in terms of domination/coverage) with the characteristic selection,
while if some pair with index y is used for selection of vertices from paths Ai, Bi in some
gadget Ĝjτ , then any pair used for the paths of the following gadget Ĝj+1

τ (on the same row)
must be of index y′ ≤ y. Observe that, as the path selections from each column must be well
behaved with respect to our canonical pairs, there is an upper bound of 3r on the number
of times the selection pattern can change on some pair of paths, giving 3rp for each row of
gadgets and 3rpt times overall. In each gadget Ĝ, we also make 3r + 1 vertices uyi for each
pair Ai, Bi that signify these canonical selections from each path and further, a group of
(3r + 1)p vertices xS for each set S that only contains one such uyi for each i ∈ [1, p].

In this way, a selection of one vertex from each path Ai, Bi will correspond to a selection
uyi , while all p such selections will correspond to one selection xS that will in turn be
associated with a partial assignment to the group of variables assigned to this row of gadgets
(there are 2γ partial assignments for each group and (3r + 1)p ≥ 2γ sets S). Further, each
column of gadgets will correspond to one clause, with the first m columns assigned to one
clause each and 3rpt + 1 repetitions of this pattern giving the complete association. Our
graph G will have one vertex ĉ for each such column of gadgets (representing the associated
clause) at distance r from vertices xS in the gadgets Ĝ of its column that represent the
partial assignments to the variables of the group associated with the gadget’s row (and group
Fτ ) that would satisfy the clause (Figure 2 provides an illustration).

Thus, a satisfying assignment for φ will give a (k, r)-center for G by selecting in each
gadget Ĝ all vertices corresponding to the partial assignment for its associated group of
variables from each pair of paths, as well as the matching uyi and xS vertices (and h). For
the converse direction, as the number of changes of selection pattern is ≤ 3rpt and the
number of columns is m(3rpt + 1), by the pigeonhole principle, there will always exist m
consecutive columns for which the pattern does not change and thus we will be able to
extract a consistent assignment for all clauses.

I Theorem 1. For any fixed r ≥ 1, if (k, r)-Center can be solved in O∗((3r + 1− ε)cw(G))
time for some ε > 0, then SAT can be solved in O∗((2− δ)n) time for some δ > 0.

I Corollary 2. If Dominating Set can be solved in O∗((4− ε)cw(G)) time for some ε > 0,
then SAT can be solved in O∗((2− δ)n) time for some δ > 0.
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Figure 2 A simplified picture of the complete construction. Note boxes indicate block gadgets Ĝ,
while there is no vertex anywhere between h and the first/last vertices of the long paths.

3.2 Dynamic programming algorithm
We next present an O∗((3r+1)cw)-time dynamic programming (DP) algorithm for unweighted
(k, r)-Center, using a given clique-width expression TG for G with at most cw labels. Even
though the algorithm relies on standard techniques, there are several non-trivial, problem-
specific observations that we need to make to reach a DP table size of (3r + 1)cw.

Our first step is to re-cast the problem as a distance-labeling problem (not be confused
with ‘label’/‘label-set’ for a clique-width expression), that is, to formulate the problem as
that of deciding for each vertex what is its precise distance to the optimal solution K. This
is helpful because it allows us to make the constraints of the problem local, and hence easier
to verify: roughly speaking, we say that a vertex is satisfied if it has a neighbor with a
smaller distance to K. It is now not hard to design a clique-width based DP algorithm for
this version of the problem: for each label l we need to remember two numbers, namely the
smallest distance value given to some vertex with label l, and the smallest distance value
given to a currently unsatisfied vertex with label l, if it exists.

The above scheme directly leads to an algorithm running in time (roughly) ((r + 1)2)cw.
In order to decrease the size of this table, we now make the following observation: if a
label-set contains a vertex at distance i from K, performing a join operation will satisfy all
vertices that expect to be at distance ≥ i+ 2 from K, since all vertices of the label-set will
now be at distance at most 2. This implies that, in a label-set where the minimum assigned
value is i, states where the minimum unsatisfied value is between i+ 2 and r are effectively
equivalent. With this observation we can bring down the size of the table to (4r)cw, because
(intuitively) there are four cases for the smallest unsatisfied value: i, i+ 1,≥ i+ 2, and the
case where all values are satisfied.

The last trick that we need to achieve the promised running time departs slightly from
the standard DP approach. We will say that a label-set is live in a node of the clique-width
expression if there are still edges to be added to the graph that will be incident to its vertices.
During the execution of the dynamic program, we perform a “fore-tracking” step, by checking
the part of the graph that comes higher in the expression to determine if a label-set is live. If
it is, we merge the case where the smallest unsatisfied value is i+ 2, with the case where all
values are satisfied (since a join operation will eventually be performed). Otherwise, a partial
solution that contains unsatisfied vertices in a non-live label-set can safely be discarded. This
brings down the size of the DP table to (3r + 1)cw, and then we need to use some further
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50:8 Parameterized (k, r)-Center

techniques to make the total running time quasi-linear in the size of the table. This involves
counting the number of solutions instead of directly computing a solution of minimum size,
as well as a non-trivial extension of fast subset convolution from [4] for a 3× (r + 1)-sized
table (or state-changes, see [45, 9] and Chapter 11 of [15]).

I Theorem 3. Given graph G, along with k, r ∈ N+ and clique-width expression TG of clique-
width cw for G, there exists an algorithm to solve the counting version of the (k, r)-Center
problem in O∗((3r + 1)cw) time.

4 Vertex Cover, Feedback Vertex Set and Tree-depth

In this section we first show that the edge-weighted variant of the (k, r)-Center problem
parameterized by vc + k is W[1]-hard, and more precisely, that the problem does not
admit a no(vc+k) algorithm under the ETH. We give a reduction from k-Multicolored
Independent Set.

This is a well-known W[1]-hard problem that cannot be solved in no(k) under the ETH
[15]. Using essentially the same reduction with that of Theorem 4, we obtain a similar
hardness result for unweighted (k, r)-Center parameterized by fvs.

I Theorem 4. The weighted (k, r)-Center problem is W[1]-hard parameterized by vc + k.
Furthermore, if there is an algorithm for weighted (k, r)-Center running in time no(vc+k)

then the ETH is false.

I Corollary 5. The (k, r)-Center problem is W[1]-hard when parameterized by fvs + k.
Furthermore, if there is an algorithm for weighted (k, r)-Center running in time no(fvs+k),
then the ETH is false.

We next show that unweighted (k, r)-Center admits an algorithm running in time
O∗(5vc), in contrast to its weighted version (Theorem 4). We devise an algorithm that
operates in two stages: first, it guesses the intersection of the optimal solution with the
optimal vertex cover, and then it uses a reduction to Set Cover to complete the solution
optimally.

I Theorem 6. Given graph G, along with k, r ∈ N+ and a vertex cover of size vc of G, there
exists an algorithm solving unweighted (k, r)-Center in O∗(5vc) time.

We next consider the un-weighted version of (k, r)-Center parameterized by td. Theo-
rem 4 has estabilshed that weighted (k, r)-Center is W[1]-hard parameterized by vc (and
hence also by td), but the complexity of unweighted (k, r)-Center parameterized by td
does not follow from this theorem, since td is incomparable to fvs. Indeed, we show that
(k, r)-Center is FPT parameterized by td and precisely determine its parameter dependence
based on the ETH.

I Theorem 7. Unweighted (k, r)-Center can be solved in time O∗(2O(td2)).

I Theorem 8. If (k, r)-Center can be solved in 2o(td2) · nO(1) time, then 3-SAT can be
solved in 2o(n) time.

5 Treewidth: FPT approximation scheme

In this section we present an FPT approximation scheme (FPT-AS) for (k, r)-Center
parameterized by tw. Given as input a weighted graph G = (V,E), k, r ∈ N+ and an
arbitrarily small error parameter ε > 0, our algorithm is able to return a solution that uses
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a set of k centers K, such that all other vertices are at distance at most (1 + ε)r from K,
or to correctly conclude that no (k, r)-center exists. The running time of the algorithm is
O∗((tw/ε)O(tw)), which (for large r) significantly out-performs any exact algorithm for the
problem (even for the unweighted case and more restricted parameters, as in Theorems 4
and 5), while only sacrificing a small ε error in the quality of the solution.

Our algorithm will rely heavily on a technique introduced in [32] (see also [3]) to approx-
imate problems which are W-hard by treewidth. The idea is that, if the hardness of the
problem is due to the fact that the DP table needs to store tw large numbers (in our case,
the distances of the vertices in the bag from the closest center), we can significantly speed
up the algorithm if we replace all entries by the closest integer power of (1 + δ), for some
appropriately chosen δ. This will reduce the table size from (roughly) rtw to (log(1+δ) r)tw.

The problem now is that a DP performing calculations on its entries will, in the course of
its execution, create values which are not integer powers of (1 + δ), and will therefore have
to be “rounded” to retain the table size. This runs the risk of accumulating rounding errors,
but we manage to show that the error on any entry of the rounded table can be bounded by
a function of the height of its corresponding bag, then using a theorem of [7] stating that
any tree decomposition can be balanced so that its width remains almost unchanged, yet its
total height becomes O(logn). Beyond these ideas, which are for the most part present in
[32], we will also need a number of problem-specific observations, such as the fact that we
can pre-process the input by taking the metric closure of each bag, and in this way avoid
some error-prone arithmetic operations.

To obtain the promised algorithm we thus do the following: first we re-cast the problem
as a distance-labeling problem (as in the proof of Theorem 3) and formulate an exact
treewidth-based DP algorithm running in time O∗(rO(tw)). We remark that the algorithm
essentially reproduces the ideas of [10], and can be made to run in O∗((2r + 1)tw) if one
uses fast subset convolution for the Join nodes (the naive implementation would need time
O∗((2r + 1)2tw))) but we give it here to ensure that we have a solid foundation upon which
to build the approximation algorithm. We then apply the rounding procedure sketched
above, and prove its approximation ratio by using the balancing theorem of [7] and indirectly
comparing the value produced by the approximation algorithm with the value that would
have been produced by the exact algorithm.

Distance-labeling: We give an equivalent formulation of (k, r)-Center that will be more
convenient to work with in the remainder, similarly to Section 3.2. For an edge-weighted graph
G = (V,E), a distance-labeling function is a function dl : V → {0, . . . , r}. We say that u ∈ V
is satisfied by dl, if dl(u) = 0, or if there exists v ∈ N(u) such that dl(u) ≥ dl(v) + w((v, u)).
We say that dl is valid if all vertices of V are satisfied by dl, and we define the cost of dl as
|dl−1(0)|. The following lemma shows the equivalence between the two formulations:

I Lemma 9. An edge-weighted graph G = (V,E) admits a (k, r)-center if and only if it
admits a valid distance-labeling function dl : V → {0, . . . , r} with cost k.

I Theorem 10. There is an algorithm which, given an edge-weighted graph G = (V,E) and
r ∈ N+, computes the minimum cost of any valid distance labeling of G in time O∗(rO(tw)).

We now describe an approximation algorithm based on the exact DP algorithm of
Theorem 10. We make use of a result of [7] stating that: There is an algorithm which, given
a tree decomposition of width w of a graph on n nodes, produces a decomposition of the same
graph with width at most 3w + 2 and height O(logn) in polynomial time and of the following
lemma:
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I Lemma 11. Let G = (V,E) be an edge-weighted graph, T a tree decomposition of G, and
u, v ∈ V two vertices that appear together in a bag of T . Let G′ be the graph obtained from G

by adding (u, v) to E (if it does not already exist) and setting w((u, v)) = dG(u, v). Then T
is a valid decomposition of G′, and ∀k, r, G′ admits a (k, r)-center if and only if G does.

Let us also give an approximate version of the distance labeling problem we defined
above, for a given error parameter ε > 0. Let δ > 0 be some appropriately chosen secondary
parameter (we will eventually set δ ≈ ε

logn ). We define a δ-labeling function dlδ as a function
from V to {0} ∪ {(1 + δ)i | i ∈ N, (1 + δ)i ≤ (1 + ε)r}. In words, such a function assigns (as
previously) a distance label to each vertex, with the difference that now all values assigned
are integer powers of (1 + δ), and the maximum value is at most (1 + ε)r. We now say that a
vertex u is ε-satisfied if dlδ(u) = 0 or, for some v ∈ N(u) we have dlδ(u) ≥ dlδ(v) + w((v,u))

1+ε .
As previously, we say that dlδ is valid if all vertices are ε-satisfied, and define its cost as
|dl−1

δ (0)|. The following Lemma 12 shows the equivalence of a valid δ-labeling function of
cost k and a (k, (1 + ε)2r)-center for G and using it we conclude the proof of Theorem 13,
stating the main result of this section.

I Lemma 12. If for a weighted graph G = (V,E) and any k, r, δ, ε > 0, there exists a valid
δ-labeling function with cost k, then there exists a (k, (1 + ε)2r)-center for G.

I Theorem 13. There is an algorithm which, given a weighted instance of (k, r)-Center,
[G, k, r], a tree decomposition of G of width tw and a parameter ε > 0, runs in time
O∗((tw/ε)O(tw)) and either returns a (k, (1 + ε))-center of G, or correctly concludes that G
has no (k, r)-center.

6 Clique-width revisited: FPT approximation scheme

We give here an FPT-AS for (k, r)-Center parameterized by cw, both for un-weighted
and for weighted instances (for a weighted definition of cw which we explain below). Our
algorithm builds on the algorithm of Section 5, and despite the added generality of the
parameterization by cw, we are able to obtain an algorithm with similar performance: for
any ε > 0, our algorithm runs in time O∗((cw/ε)O(cw)) and produces a (k, (1 + ε)r)-center if
the input instance admits a (k, r)-center.

Our main strategy, which may be of independent interest, is to pre-process the input
graph G = (V,E) in such a way that the answer does not change, yet producing a graph
whose tw is bounded by O(cw(G)). The main insight that we rely on, which was first observed
by [23], is that a graph of low cw can be transformed into a graph of low tw if one removes
all large bi-cliques. Unlike previous applications of this idea (e.g. [33]), we do not use the
main theorem of [23] as a “black box”, but rather give an explicit construction of a tree
decomposition, exploiting the fact that (k, r)-Center allows us to relatively easily eliminate
complete bi-cliques. As a result, we obtain a tree decomposition of width not just bounded
by some function of cw(G), but actually O(cw(G)).

In the remainder we deal with the weighted version of (k, r)-Center. To allow clique-
width expressions to handle weighted edges, we interpret the clique-width join operation η
as taking three arguments. The interpretation is that η(a, b, w) is an operation that adds
(directed) edges from all vertices with label a to all vertices with label b and gives weight w to
all these edges. It is not hard to see that if a graph has a (standard) clique-width expression
with cw labels, it can also be constructed with cw labels in our context, if we replace every
standard join operation η(a, b) with η(a, b, 1) followed by η(b, a, 1). Hence, the algorithm we
give also applies to un-weighted instances parameterized by (standard) clique-width. We will
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also deal with a generalization of (k, r)-Center, where we are also supplied, along with the
input graph G = (V,E), a subset I ⊆ V of irrelevant vertices. In this version, a (k, r)-center
is a set K ⊆ V \ I, with |K| = k, such that all vertices of V \ I are at distance at most r
from K. Clearly, the standard version of (k, r)-Center corresponds to I = ∅. As we explain
in the proof of Theorem 16, this generalization does not make the problem significantly
harder. In addition to the above, in this section we allow edge weights to be equal to 0. This
does not significantly alter the problem, however, if we are interested in approximation and
allow r to be unbounded, as the following lemma shows:

I Lemma 14. There exists a polynomial algorithm which, for any ε > 0, given an instance
I = [G,w, k, r] of (k, r)-Center, with weight function w : V → N, produces an instance
I ′ = [G,w′, k, r′] on the same graph with weight function w′ : V → N+, such that we have the
following: for any ρ ≥ 1, any (k, ρr′)-center of I ′ is a (k, ρr)-center of I; any (k, ρr)-center
of I is a (k, (1 + ε)ρr′)-center of I ′.

Our main tool is the following lemma, whose strategy is to replace every large label-set by
two “representative” vertices, in a way that retains the same distances among all vertices of
the graph. Applying this transformation repeatedly results in a graph with small treewidth.
The main theorem of this section then follows from the above.

I Lemma 15. Given a (k, r)-Center instance G = (V,E) along with a clique-width ex-
pression T for G on cw labels, we can in polynomial time obtain a (k, r)-Center instance
G′ = (V ′, E′) with V ⊆ V ′, and a tree decomposition of G′ of width tw = O(cw), with the
following property: for all k, r, G has a (k, r)-center if and only if G′ has a (k, r)-center.

I Theorem 16. Given G = (V,E), k, r ∈ N+, clique-width expression T for G on cw labels
and ε > 0, there exists an algorithm that runs in time O∗((cw/ε)O(cw)) and either produces a
(k, (1 + ε)r)-center, or correctly concludes that no (k, r)-center exists.
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