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Abstract
In this paper, we study covering and domination problems on directed graphs. Although undir-
ected Vertex Cover and Edge Dominating Set are well-studied classical graph problems,
the directed versions have not been studied much due to the lack of clear definitions.

We give natural definitions for Directed r-In (Out) Vertex Cover and Directed (p, q)-
Edge Dominating Set as directed generations of Vertex Cover and Edge Dominating
Set. For these problems, we show that (1) Directed r-In (Out) Vertex Cover and Dir-
ected (p, q)-Edge Dominating Set are NP-complete on planar directed acyclic graphs except
when r = 1 or (p, q) = (0, 0), (2) if r ≥ 2, Directed r-In (Out) Vertex Cover is W [2]-
hard and c ln k-inapproximable on directed acyclic graphs, (3) if either p or q is greater than 1,
Directed (p, q)-Edge Dominating Set is W [2]-hard and c ln k-inapproximable on directed
acyclic graphs, (4) all problems can be solved in polynomial time on trees, and (5) Directed
(0, 1), (1, 0), (1, 1)-Edge Dominating Set are fixed-parameter tractable in general graphs.

The first result implies that (directed) r-Dominating Set on directed line graphs is NP-
complete even if r = 1.
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1 Introduction

Covering and domination problems are well-studied problems in theory and in applications
of graph algorithms, for example, Vertex Cover [16], Dominating Set [16] and Edge
Dominating Set [24]. However, almost all of these problems are studied on undirected
graphs. In particular, Vertex Cover and Edge Dominating Set on directed graphs have
not been studied although there are some results on directed Dominating Set [11, 7, 21, 15].
This seems surprising, but maybe one reason might be that it is difficult to expand the
definition naturally to directed graphs due to the unclear relationship between “direction”
and “domination”.

In this paper, we study directed versions of Vertex Cover and Edge Dominating
Set. First, we give formal definitions of directed Vertex Cover and directed Edge
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Dominating Set. In the definitions, we consider several scenarios that reflect how the
selected set influences edges via directed edges. It should be noted that the definition follows
from r-Dominating Set [8, 12, 21]. These definitions are also motivated by economic
network analysis. We mention applications of these problems in Section 1.2.

In a directed graph, vertex v is said to in-cover every incoming edge (u, v) and out-cover
every outgoing edge (v, u) for some u. A vertex v is also said to r-in-cover all edges in the
directed path to v of length at most r. Similarly, v is said to r-out-cover all edges in the
directed path from v. Here, for a path v1, v2, . . . , v`, the length of the path is defined as the
number of edges, that is, ` − 1. In particular, if r = 0, a vertex is not considered to cover
any edge. Then Directed r-In (Out) Vertex Cover is the following problem.

I Definition 1. Directed r-In (Out) Vertex Cover (r-In (Out) VC) is the problem
that given a directed graph G = (V, E) and two positive integers k and r, determines
whether there exists a vertex subset S ⊆ V of size at most k such that every edge in E is
r-in (out)-covered by S. Such S is called an r-in (out)-vertex cover.

Furthermore, we define Directed (p, q)-Edge Dominating Set. An edge e = (u, v)
is said to (p, q)-dominate itself and all edges that vertex u p-in-covers and vertex v q-out-
covers. In particular, edge (u, v) is said to (p, 0)-dominate (resp., (0, q)-dominate) itself and
all edges p-in-covered by u (resp., q-out-covered by v).

Then Directed (p, q)-Edge Dominating Set is defined as follows.

I Definition 2. Directed (p, q)-Edge Dominating Set ((p, q)-EDS) is the problem that
given a directed graph G = (V, E), one positive integer k, and two non-negative integers
p, q, determines whether there exists an edge subset K ⊆ E of size at most k such that every
edge is (p, q)-dominated by K. Such K is called a (p, q)-edge dominating set.

The undirected Edge Dominating Set problem is Dominating Set on (undirected)
line graphs. We can see the same relationship between Directed (0, 1)-Edge Dominating
Set and Dominating Set on directed line graphs. For a directed graph, a directed line
graph is defined as follows:

I Definition 3 ([18]). A directed line graph of G = (V, E) is L(G) = (E, E2) such that

E2 = {((x, y), (z, w))|(x, y), (z, w) ∈ E ∧ y = z}.

It is obvious that a directed (0, 1)-edge dominating set on a directed graph G corresponds
to a (directed) dominating set on the line graph of G. Furthermore, Directed (1, 1)-Edge
Dominating Set corresponds to undirected Dominating Set on an underlying undirected
graph of a directed line graph. These relations imply that our definition of Directed (p, q)-
Edge Dominating Set is quite natural from the viewpoint of the line graph operation.

One interesting aspect of directed versions, but not undirected versions, is the asymmetry
of the problem structures. For Directed r-In Vertex Cover, a vertex v in-covers only
(u, v) when r = 1. Thus, a 1-in vertex cover is the set of all vertices whose in-degree is at
least one. Therefore, it is trivial that Directed 1-In (Out) Vertex Cover is solvable
in linear time, while undirected Vertex Cover is NP-complete. On the other hand,
Directed (1, 1)-Edge Dominating Set, in a sense, corresponds to (undirected) Edge
Dominating Set. For the optimization version, Edge Dominating Set is equivalent to
Minimum Maximal Matching [24]. However, Directed (1, 1)-Edge Dominating Set
does not necessarily correspond to matching on the undirected graphs underlying directed
graphs due to the asymmetry of domination.
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Table 1 Our results for graph classes. NP-c and W [2]-h stand for NP-complete and W [2]-hard,
respectively.

Graph class Tree Planar DAG of bounded degree DAG General

1-In (Out) VC - - - O(n)
r-In (Out) VC (r ≥ 2) O(n4) NP-c W [2]-h W [2]-h
(0, 1), (1, 0)-EDS O(n4) NP-c NP-c 2O(k)n

(1, 1)-EDS O(n4) NP-c NP-c 2O(k)n

(p, q)-EDS (p or q ≥ 2) O(n4) NP-c W [2]-h W [2]-h

For Directed (p, q)-Edge Dominating Set, there exists another source of asymmetry.
That is, we can consider the case in which p and q are different. In the case in which
(p, q) = (0, 1), edge (u, v) dominates itself and edges out-covered by v. Although Directed
(0, 1)-Edge Dominating Set is similar to Directed 1-Out Vertex Cover, surprisingly,
it is NP-complete on directed acyclic graphs.

1.1 Our Contributions

Table 1 shows our results. In this paper, we first give hardness results for Directed r-In
(Out) Vertex Cover and Directed (p, q)-Edge Dominating Set on restricted graphs,
even on directed acyclic planar graphs of bounded degree. The hardness on directed acyc-
lic graphs implies that we cannot design parameterized algorithms with respect to directed
treewidth [19] and DAG-width [2] unless P=NP. The fact that Directed (0, q)-Edge Dom-
inating Set is NP-complete even if q = 1 implies that r-Dominating Set on directed line
graphs is NP-complete even if r = 1. Moreover, we prove that Directed r-In (Out) Ver-
tex Cover is W [2]-hard and c ln k-inapproximable on directed acyclic graphs when r ≥ 2,
and Directed (p, q)-Edge Dominating Set is W [2]-hard and c ln k-inapproximable on
directed acyclic graphs when either p or q is greater than 1. These results hold even if there
are no multiple edges or loops.

On the other hand, we obtain algorithms for certain cases, including algorithms for all
problems when restricted to trees, for any values of p, q, and r. The interplay among
distance, direction, and domination results in a complex dynamic programming solution,
running in O(n4) time. Because an edge can either dominate or be dominated by edges
outside of a subtree depending on how it is directed, at each step of the algorithm we need
to maintain extensive information not only about the subtree itself but also potential outside
influence.

We show that Directed (0, 1), (1, 0), (1, 1)-Edge Dominating Set is fixed-parameter
tractable with respect to k. In particular, we give 2O(k)n-time algorithms. We emphasize
that the running time of these algorithms is single exponential in k and linear in n. Moreover,
our fixed-parameter algorithms are based on dynamic programming on a tree decomposition.
Thus, we also show that Directed (0, 1), (1, 0), (1, 1)-Edge Dominating Set can be solved
in linear time on graphs whose underlying undirected graphs have bounded treewidth. Note
that given a directed graph G and its underlying undirected graph G∗, the directed treewidth
of G is no greater than its DAG-width which, in turn, is no greater than the treewidth of
G∗[2].

ISAAC 2017
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1.2 Motivation and Application
As practical motivation, a number of network models employ directed graphs. For example,
directed graphs are used to represent economic networks in which vertices correspond to
industries and edges correspond to transactions of money or materials between industries [22,
17].

Recently, economists have used graph algorithms to analyze these economic networks
in terms of graph structures in order to find critical industries and transactions [20, 23].
Based on the analyses, they discuss which kinds of economic policies should be adopted,
and so on. However, there are some problems. Such analyses in economics are based
on undirected graph algorithms instead of directed graph algorithms; they first transform
directed graphs to undirected graphs, and then apply undirected graph algorithms to the
graphs thus obtained. This is because there are many more results on graph optimization
on undirected graphs than on directed graphs. Of course, such substitute algorithms might
extract some information from the processed graph, but some important information is
definitely lost. For example, when we would like to find a critical transaction in an economic
network, the edge direction is clearly essential.

The theoretical motivation is a relationship between directed Dominating Set and
Directed (p, q)-Edge Dominating Set. As we mentioned above, Directed (0, 1)-Edge
Dominating Set is directed Dominating Set on directed line graphs and Directed
(1, 1)-Edge Dominating Set is undirected Dominating Set on an underlying undirected
graph of a directed line graph. Directed line graphs are well-studied for DNA sequencing
and have some useful properties and characterizations [18, 3]. As for combinatorial problems
on graphs, (directed) Hamiltonian Path on directed line graphs can be solved in time
O(n2 + m2) [4] while Hamiltonian Path on undirected line graphs is NP-complete [1].
Therefore, some directed problems could be easier than the undirected versions on line
graphs. Unfortunately, however, our results show that directed Dominating Set and the
distance version, that is, directed r-Dominating Set, remain NP-complete even on directed
line graphs.

1.3 Related problems
One of the most famous covering problems is Vertex Cover. This is a classical NP-
complete problem on undirected graphs, but known to be fixed-parameter tractable [6]. In
terms of graph parameters, the size of the minimum vertex cover of G is called the vertex
cover number of G. For any graph, it is easily seen that vertex cover number is greater than
or equal to the treewidth [14].

Edge Dominating Set is the problem that given an undirected graph G = (V, E)
and an integer k, determines whether there exists a set of edges X of size at most k such
that any edge in E \X has at least one incident edge in X. This problem is NP-complete
even on bipartite, planar, and bounded degree graphs [24], but fixed-parameter tractable
in general [13]. As we have seen, the Edge Dominating Set problem is equivalent to
Dominating Set on line graphs. Moreover, the (optimization) Edge Dominating Set
problem is equivalent to Minimum Maximal Matching [24].

Dominating Set is a classical domination problem. This problem is known to be
Ω(log n)-inapproximable, but O(log n)-approximable by a simple greedy algorithm on gen-
eral graphs [9]. With respect to parameterized complexity, Dominating Set is W [2]-
complete, unlike Vertex Cover and Edge Dominating Set [10]. Therefore, this prob-
lem is well-studied on restricted graphs. Recently, Dawar et al. [8] and Drange et al. [12]
considered fixed-parameter tractability and the existence of problem kernels for some sparse
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graph classes. Their results include the distance version, that is, r-Dominating Set. This
approach was generalized to directed graphs because the directed Dominating Set problem
is also W [2]-complete [21].

The remainder of this paper is organized as follows. In Section 2, we first give basic
terminology, notions, and definitions. In Section 3, we show the hardness results of the
problems. In Section 4, we give polynomial-time algorithms on trees and fixed-parameter
algorithms on general graphs. We prove many theorems (including lemmas) in this paper,
but several of the proofs are omitted due to space limitations.

2 Preliminaries

In this section, we give notation and definitions. Let G = (V, E) be a directed graph where
|V | = n and |E| = m. A vertex u is called an in-neighbor of v if there exists an edge (u, v)
and a vertex w is called an out-neighbor of v if there exists an edge (v, w). Moreover, the
sets of in (out)-neighbors of v are denoted by N in(v) (resp., Nout(v)). The number of in
(out)-neighbor vertices of v is called the in (out)-degree and denoted by indeg(v) := |N in(v)|
(resp., outdeg(v) := |Nout(v)|).

For two vertices u, v, the distance from u to v is defined as the number of edges in the
shortest path from u to v, denoted by dist(u, v). A vertex u such that dist(u, v) is at most
r is called an r-in-neighbor of v and a vertex w such that dist(v, w) is at most r is called
an r-out-neighbor of v. The sets of r-in (out)-neighbors of v are denoted by N in

r (v) (resp.,
Nout

r (v)). Note that N in
r (v) = N in(v) and Nout

r (v) = Nout(v) when r = 1.
In an undirected graph G∗, a set of edges such that no edges share an endpoint is called a

matching. Furthermore, a matching is maximal if no proper superset is a matching. An edge
dominating set is the edge set E′ such that every edge in E \ E′ is adjacent to at least one
edge in E′. Therefore, a maximal matching is an edge dominating set. As a typical design
tool of parameterized algorithms, we make use of the tree decomposition and treewidth in
this paper. We denote the treewidth of G∗ by tw(G∗). For formal definitions of treewidth
and tree decomposition, see [5], for example.

A directed graph G is called a directed acyclic graph (DAG) if G has no directed cycle
and a planar graph if it can be embedded in the plane without any edges crossing. We
mention results on such restricted graphs.

3 Hardness results

In this section, we discuss the hardness of Directed r-In (Out) Vertex Cover and
Directed (p, q)-Edge Dominating Set.

3.1 Directed (0, 1), (1, 0)-Edge Dominating Set
We first show that Directed (0, 1), (1, 0)-Edge Dominating Set is NP-complete. Al-
though Directed (0, 1)-Edge Dominating Set is very similar to 1-Out Vertex Cover,
there is a large gap in terms of time complexity.

To show this, we introduce a variant of the SAT problem. Let (X, C) be an instance I

of SAT, where X = {x1, x2, . . . , n} is the set of variables and C = {C1, C2, . . . , Cm} is the
set of clauses. We consider a bipartite graph GI = (X ∪ C, E), where E = {{x, C} | x ∈
X, C ∈ C such that x ∈ C or x̄ ∈ C}. An instance I of SAT is called planar if GI is planar.
Much is known concerning the planar version of SAT. For example, 3SAT is known to be
NP-complete even if the instance is restricted to being planar. The restricted version of
3SAT is called Planar 3SAT.

ISAAC 2017
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Figure 1 Constructed graph of the reduc-
tion from 3SAT to (0, 1)-EDS

Figure 2 Replacing a cycle by a directed
path for a variable’s gadget

Here, we consider another restriction of Planar 3SAT. In the restricted instances, each
literal appears at most twice, that is, ∀y ∈ X ∪ X̄ : |{C ∈ C | y ∈ C}| ≤ 2. Instead, the
size of each clause is relaxed to be not exactly three but at most three. We call this version
Planar At-Most3SAT(L2).

I Lemma 4. Planar At-Most3SAT(L2) is NP-complete.

By using Lemma 4, we can obtain Theorem 5.

I Theorem 5. Directed (0, 1), (1, 0)-Edge Dominating Set is NP-complete on directed
planar graphs such that indeg(v) + outdeg(v) ≤ 3 holds for any vertex.

Proof. We only consider Directed (0, 1)-Edge Dominating Set as the other proof is
similar. This problem is clearly in NP. Thus, we show the hardness. The reduction is from
Planar At-Most3SAT(L2).

Let n be the number of variables, m be the number of clauses, and l be the number of
literals in an input Φ for Planar At-Most3SAT(L2). Then, we construct a graph as in
Figure 1. First, we create n cycles of length four corresponding to the variables in Φ and
m paths of length five corresponding to the clauses in Φ. For a variable’s gadget, if we
include the two horizontal edges in the (0, 1)-edge dominating set, it corresponds to setting
the variable to true in Φ. Otherwise, we include the two vertical edges, which corresponds
to setting the variable to false. Note that the size of a minimum (0, 1)-edge dominating set
for a cycle of length four is two. In Figure 1, thick lines represent that they are included in
the solution (we use the same convention in the other figures).

We connect each clause gadget to the variable gadgets corresponding to the literals in the
clause, as follows. For v1, v2, . . . , v6 the vertices in the clause gadget, each of v1, v3, and v5
is connected by a path of length two, called a linking path, to one of the vertices in a variable
gadget. We can observe that there are l linking paths in the constructed graph. For each
variable, there are at most two occurrences of true literals and at most two of false literals.
Because the variable gadget has four vertices corresponding to literals, by connecting each
vertex in the variable gadget to a clause gadget, for any vertex v in the constructed graph,
indeg(v) + outdeg(v) ≤ 3.

Finally, we conclude this proof by obtaining the following lemma.

I Lemma 6. An input Φ for Planar At-Most3SAT(L2) has a satisfying truth assignment
if and only if there exists a (0, 1)-edge dominating set of size 2n + l + 2m in a constructed
graph. J



T. Hanaka, N. Nishimura, and H. Ono 45:7

Figure 3 Vertex gadgets for source and
sink in the reduction to (1, 1)-EDS

Figure 4 Vertex gadgets for other vertices
in the reduction to (1, 1)-EDS

By replacing each variable gadget by a path v1, v2, v3, v4 of length three and connecting
vertex v3 and true literals in a clause, and vertex v4 and false literals (see Figure 2), we
can also show that Directed (0, 1)-Edge Dominating Set is NP-complete on directed
acyclic planar graphs of bounded degree. Note that edge (v1, v2) is contained in any (0, 1)-
edge dominating set. Moreover, including edge (v2, v3) in the (0, 1)-edge dominating set
corresponds to setting the variable to true and including edge (v3, v4) corresponds to setting
the variable to false.

I Corollary 7. Directed (0, 1), (1, 0)-Edge Dominating Set is NP-complete on directed
acyclic planar graphs such that indeg(v) + outdeg(v) ≤ 4 holds for any vertex.

3.2 Directed (1, 1)-Edge Dominating Set
As for Directed (1, 1)-Edge Dominating Set, we obtain a stronger result in terms of
a degree constraint. To show this, we first introduce a variant of planar graphs. A graph
is planar almost cubic if it is planar, there are exactly two vertices of degree two, and the
degree of all other vertices is three. We show that Vertex Cover remains NP-complete
on planar almost cubic graphs.

I Lemma 8. Vertex Cover on planar almost cubic graphs is NP-complete.

By using Lemma 8, we show the following theorem.

I Theorem 9. Directed (1, 1)-Edge Dominating Set is NP-complete on directed acyclic
planar graphs such that indeg(v) + outdeg(v) ≤ 3 holds for any vertex.

Proof. Since Directed (1, 1)-Edge Dominating Set clearly belongs to NP, we prove
the hardness. We show a reduction from Vertex Cover on planar almost cubic graphs.
Suppose that we are given an instance (G, k) of Vertex Cover. For an undirected planar
almost cubic graph G, we choose two vertices with degree two in G as source and sink
vertices. We then arrange each vertex in a horizontal line such that the two vertices of
degree two become ends of the line and orient every edge from left to right. Note that there
exist exactly one source vertex such that the in-degree is zero and out-degree is two and
exactly one sink vertex such that the in-degree is two and out-degree is zero. For other
vertices v, it holds that indeg(v) = 1 and outdeg(v) = 2 or indeg(v) = 2 and outdeg(v) = 1.
Each oriented edge corresponding to an edge in G is called an original edge.

ISAAC 2017
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Next, we attach paths of length three to the source vertex and the sink vertex as a
vertex gadget as in Figure 3. Moreover, we replace any other vertex by a path of length
three consisting of ev, e1, e2 as in Figure 4. An edge ev in G′ corresponds to vertex v in G.
Let G′ be the constructed graph. Since we only replace vertices in G by paths, G′ remains
planar and acyclic and for any vertex v in G′, indeg(v) + outdeg(v) ≤ 3. Then the following
lemma completes the proof.

I Lemma 10. An instance (G, k) of Vertex Cover is a yes-instance if and only if an
instance (G′, n + k) of Directed (1, 1)-Edge Dominating Set is a yes-instance. J

We also obtain the following result on the distance-generalized version.

I Corollary 11. Directed (p, q)-Edge Dominating Set is NP-complete on directed acyc-
lic planar graphs such that indeg(v) + outdeg(v) ≤ 3 holds for any vertex when p, q ≥ 1.

3.3 Distance generalization
In this subsection, we consider the distance-generalized versions as with Corollary 11. We
first show that Directed r-In (Out) Vertex Cover and Directed (0, q), (p, 0)-Edge
Dominating Set are NP-complete on directed acyclic planar graphs of bounded degree.

I Theorem 12. When r, p and q are greater than 1, Directed r-In (Out) Vertex
Cover and Directed (0, q), (p, 0)-Edge Dominating Set are NP-complete on directed
acyclic planar graphs such that indeg(v) + outdeg(v) ≤ 4 holds for any vertex v.

From Theorems 5 and 12, we can conclude directed r-Dominating Set on directed line
graphs is NP-complete.

I Corollary 13. The (directed) r-Dominating Set problem is NP-complete on directed line
graphs even if r = 1.

Finally, we show that Directed r-In (Out) Vertex Cover and Directed (p, q)-
Edge Dominating Set are W [2]-hard on directed acyclic graphs by a reduction from Set
Cover, which is W [2]-complete and Ω(log n)-inapproximable [10, 9].

I Theorem 14. Directed r-In (Out) Vertex Cover is W [2]-hard on directed acyclic
graphs when r ≥ 2. Directed (p, q)-Edge Dominating Set is W [2]-hard on directed
acyclic graphs when p ≥ 2 or q ≥ 2. For these problems, there is no polynomial-time
c ln k-approximation algorithm for any constant c < 1 unless P=NP, where k is the size
of an optimal solution, though they can be approximated within ratio O(log n) by a greedy
algorithm.

4 Algorithms

In this section, we give polynomial-time algorithms for Directed r-In (Out) Vertex
Cover and Directed (p, q)-Edge Dominating Set on trees and fixed-parameter al-
gorithms for Directed (0, 1), (1, 0), (1, 1)-Edge Dominating Set on general graphs.

4.1 Algorithms on Trees
We solve Directed (p, q)-Edge Dominating Set by dynamic programming on a graph
G for which the underlying undirected graph is a tree, which we can root at an arbitrary
vertex; henceforth we use Ĝ to denote such a rooted tree. When we use the terms parent,
child, ancestor, and descendant, we are referring to the relationships between vertices in Ĝ.



T. Hanaka, N. Nishimura, and H. Ono 45:9

We first extend the definition of distance to specify distances between vertices and edges.
For an edge e = (u, v) and vertices w and x, we define dist(w, e) to be dist(w, u) and
dist(e, x) to be dist(v, x). Moreover, for two edges e = (u, v) and f = (x, y), we define
dist(e, f) to be dist(v, x). An edge e i-in-dominates (or just in-dominates) all edges f such
that dist(f, e) ≤ i and an edge e j-out-dominates (or just out-dominates) all edges f such
that dist(e, f) ≤ j. In a directed path containing edges e and f , the edges (not including e

and f) traversed along the path are between e and f . If there are k edges between e and f ,
then e (k + 1)-out-dominates f and f (k + 1)-in-dominates e.

In Ĝ, we use Tv to denote the subtree rooted at the vertex v, and G[Tv] to denote the
subgraph of (the directed graph) G induced on the vertices in Tv. We call G[Tv] the subtree
of G rooted at v and use conn(v) to denote the edge connecting v to its parent, if it has
one. We refer to a vertex v as an out-vertex if conn(v) is directed from v to its parent and a
in-vertex if conn(v) is directed from v’s parent to v. If v is the root of Ĝ, it is neither an out-
vertex nor an in-vertex. We use same(v) and diff(v) to denote the sets of children of v that
are out-vertices and in-vertices, respectively, if v is an out-vertex and that are in-vertices
and out-vertices, respectively, if v is an in-vertex. Furthermore, we use ST (v) to denote the
set of subtrees rooted at vertices in same(v) and DT (v) to denote the set of subtrees rooted
at vertices in diff(v); these are considered to be two different types of subtrees. In addition,
we use Cs to denote the set of edges between v and vertices in same(v), and Cd to denote
the set of edges between v and vertices in diff(v); just as there are two types of subtrees,
we consider these set to constitute two types of connecting edges.

Our dynamic-programming algorithm processes vertices in an order such that a vertex
v is processed after all its descendants, where we use information about the subtrees rooted
at the children of v to determine how to dominate edges in G[Tv]. We store not only the
sizes of edge dominating sets, but also the sizes of edge dominating sets defined in terms of
their reach and deficit, which are measures of the impact of edges inside a subtree in the
domination of edges outside the subtree and the impact of edges outside a subtree in the
domination of edges inside the subtree.

To see how edges in subtrees rooted at children of v can have an impact on each other,
suppose v has two children w and x such that w is an out-vertex and x is a in-vertex.
Furthermore, consider an edge ew in G[Tw] such that dist(ew, w) = i and an edge ex in
G[Tx] such that dist(x, ex) = j. We can form a directed path that starts at ew and traverses
the edges (w, v) and (v, x) to end at ex. The number of edges between ew and ex is i+ j +2,
which means that ew (i + j + 3)-out-dominates ex and that ex (i + j + 3)-in-dominates e.

To determine the reach of a set of edges K in G[Tv], we first determine the shortest
distance i from an edge in K to v, if v is an out-vertex, or the shortest distance i from v to
an edge in K, if v is an in-vertex. When v is an endpoint of an edge in K (that is, i = 0),
that edge will be able to q-out-dominate an edge outside of G[Tv], if v is an out-vertex, or
p-in-dominate an edge outside of G[Tv], if v is an in-vertex. We thus define maxreach(v) = q

for each out-vertex v and maxreach(v) = p for each in-vertex v. More generally, we define
the reach of K beyond G[Tv] to be maxreach(v)− i.

To measure which edges depend on outside edges for domination, we define the deficit
of K within G[Tv] to be maximum over dist(e, v) (resp., dist(v, e)) over all edges e in G[Tv]
not (p, q)-dominated by any edge in K, for v an out-vertex (resp., in-vertex). Since the
edge between v and its parent is the outside edge that can cover the largest deficit, we set
maxdeficit(v) = p for v an out-vertex and maxdeficit(v) = q for v a in-vertex. We refer to
all edges e with dist(e, v) ≤ d (resp., dist(v, e) ≤ d) to be edges of deficit of most d in G[Tv],
for v an out-vertex (resp., an in-vertex). Should an edge outside a subtree have sufficient
reach to dominate all edges of deficit at most d, we will say that the edge covers the deficit.
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Using these concepts, we say that a set of edges K is a reach-r-deficit-d edge dominating
set for G[Tv] if the reach of K beyond G[Tv] is r, and K (p, q)-dominates G[Tv\J ] where J

is the set of edges of deficit at most d in G[Tv]. In our algorithm, we use D[v, r, d] to store
the minimum number of edges in a reach-r-deficit-d edge dominating set for G[Tv].

When processing a vertex v, we determine D[v, r, d] for values of r and d in the ranges
0 ≤ r ≤ maxreach(v) and 0 ≤ d ≤ maxdeficit(v). For the base cases, for each leaf v

in Ĝ, we set D[v, r, d] = 0 for all values of r and d. To determine the value of D[v, r, d],
we will consider all possible options for adding edges between v and its children to K, a
reach-r-deficit-d edge dominating set for G[Tv], as the choice of edges of K in the subtrees
rooted at the children of v will be represented by already-computed table entries.

The computation of the table entries depends on the following lemmas.

I Lemma 15. The reach of K beyond G[Tv] is maxreach(v) if and only if K ∩ Cs 6= ∅.

I Lemma 16. If K ∩ Cs = ∅, the reach of K beyond G[Tv] is one less than the maximum
over all vertices u ∈ same(v) of the reach of K restricted to G[Tu].

I Lemma 17. For any child u of v, conn(u) covers a deficit of maxdeficit(u) in G[Tu].

I Lemma 18. For any child u of v, if conn(u) is not included in K, then the maximum
possible deficit within G[Tv] that can be covered by K is maxdeficit(u)− 1.

I Lemma 19. For any child u of v, if conn(u) is not included in K, the deficit in G[Tv] will
be covered by any single connecting edge of the opposite type. Thus, if K ∩ Cd 6= ∅, d = 0.

The complete proofs of Theorems 20 and 21 are omitted.

I Theorem 20. There is an algorithm that solves Directed (p, q)-Edge Dominating
Set on trees in O(n4)-time.

I Theorem 21. There is an algorithm that solves Directed r-In (Out) Vertex Cover
on trees in O(n4)-time.

4.2 Fixed-Parameter Algorithm for Directed Edge Dominating Set
In this subsection, we give a 2O(k)n-time algorithm for Directed (1, 1)-Edge Dominating
Set. First, we obtain the following lemmas and theorem.

I Lemma 22. Given a directed graph G, let G∗ be the underlying undirected graph of G

and s be the minimum size of Directed (1, 1)-Edge Dominating Set on G. Then the
following inequality holds: tw(G∗) ≤ 2s.

Proof. Let G∗ be an undirected graph, tw(G∗) be the treewidth of G∗, and vc(G∗) be the
size of minimum vertex cover. Then we have tw(G∗) ≤ vc(G∗) [14]. Let M∗ be a minimum
maximal matching in G∗. A minimum (1, 1)-edge dominating set in G is an (not necessarily
minimum) edge dominating set in G∗. If not, there is an edge not dominated by the (1, 1)-
edge dominating set in G. Moreover, for any edge dominating set D in undirected graphs,
|D| ≥ |M∗| holds because a minimum maximal matching is a minimum edge dominating
set [24]. Therefore, s ≥ |M∗| holds. On the other hand, we have a well-known result
that for any maximal matching M , vc(G∗) ≤ 2|M | [16]. Moreover, we already know that
tw(G∗) ≤ vc(G∗) holds. Finally, we can obtain tw(G∗) ≤ 2s. J

I Lemma 23. Given a directed graph G, let G∗ be the underlying undirected graph of G.
Then given a tree decomposition of G∗ of width at most `, there exists an algorithm that
solves Directed (1, 1)-Edge Dominating Set in 25``O(1)n-time.
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I Theorem 24 ([5]). There exists an algorithm that, given an n-vertex graph G and an
integer `, in time 2O(`)n either outputs that the treewidth of G is larger than `, or constructs
a tree decomposition of G of width at most 5` + 4.

Finally, Directed (1, 1)-Edge Dominating Set can be solved in the following time.

I Theorem 25. Given an instance (G, k) of Directed (1, 1)-Edge Dominating Set, it
can be solved in 2O(k)n-time.

Proof. Given an instance (G, k), we first determine whether the treewidth of G∗ is at most
2k in 2O(k)n-time by using Theorem 24. If tw(G∗) > 2k, we conclude that it is a no-
instance by Lemma 22. Otherwise, we use the 25``O(1)n-time algorithm based on a tree
decomposition of width at most 10k + 4 obtained by Theorem 24. Therefore, the total
running time is 2O(k)n + 2510k+4(10k + 4)O(1)

n = 2O(k)n. J

Thus, Directed (1, 1)-Edge Dominating Set is fixed-parameter tractable with re-
spect to k. We emphasize that the running time of this algorithm is single exponential in k

and linear in n. In the same way, we can prove Directed (0, 1), (1, 0)-Edge Dominating
Set is fixed-parameter tractable with respect to k.

I Theorem 26. Given an instance (G, k) of Directed (0, 1), (1, 0)-Edge Dominating
Set, it can be solved in 2O(k)n-time.
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