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Abstract
For an integer k ≥ 1, k-coloring reconfiguration is one of the most well-studied reconfigur-
ation problems, defined as follows: In the problem, we are given two (vertex-)colorings of a graph
using k colors, and asked to transform one into the other by recoloring only one vertex at a time,
while at all times maintaining a proper coloring. The problem is known to be PSPACE-complete
if k ≥ 4, and solvable for any graph in polynomial time if k ≤ 3. In this paper, we introduce
a recolorability constraint on the k colors, which forbids some pairs of colors to be recolored
directly. The recolorability constraint is given in terms of an undirected graph R such that each
node in R corresponds to a color and each edge in R represents a pair of colors that can be
recolored directly. We study the hardness of the problem based on the structure of recolorabil-
ity constraints R. More specifically, we prove that the problem is PSPACE-complete if R is of
maximum degree at least four, or has a connected component containing more than one cycle.
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1 Introduction

Recently, reconfiguration problems [11] have been intensively studied in the field of theoretical
computer science. The problem arises when we wish to find a step-by-step transformation
between two feasible solutions of a search problem such that all intermediate results are also
feasible and each step conforms to a fixed reconfiguration rule, that is, an adjacency relation
defined on feasible solutions of the original search problem. (See, e.g., a survey [16] and
references in [7, 12].)

One of the most well-studied reconfiguration problems is based on the (vertex-)coloring
search problem [1, 2, 3, 4, 6, 8, 9, 13, 17], defined as follows. In the k-coloring recon-
figuration problem, we are given two proper k-colorings f0 and fr of the same graph G,
and asked to determine whether there is a sequence 〈f0, f1, . . . , f`〉 of proper k-colorings of
G such that f` = fr and fi can be obtained from fi−1 by recoloring only a single vertex in
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Figure 1 (a) Input graph G, (b) a recolorability graph R with four colors 1, 2, 3 and 4, and (c)
an (f0 → f7)-reconfiguration sequence.

G for all i ∈ {1, 2, . . . , `}. The complexity status of this reconfiguration problem has been
clarified based on several “standard” measures (e.g., the number of colors [3, 6] and graph
classes [2, 9, 17]) which are used well also for analyzing the original search problem.

In this paper, we propose a new measure to capture the hardness of coloring recon-
figuration according to recoloring steps.

1.1 Our problem

For an integer k ≥ 1, let C be the color set consisting of k colors 1, 2, . . . , k. Let G be a
graph with vertex set V (G) and edge set E(G). Recall that a k-coloring f of G is a mapping
f : V (G)→ C such that f(v) 6= f(w) holds for each edge vw ∈ E(G).

In this paper, we introduce the concept of “recolorability” and generalize the adjacency
relation on k-colorings. The recolorability on the color set C is given in terms of an undirected
graph R, called the recolorability graph on C, such that V (R) = C; each edge ij ∈ E(R)
represents a “recolorable” pair of colors i, j ∈ V (R) = C. Then, two k-colorings f and f ′ of
G are adjacent (under R) if the following two conditions (a) and (b) hold:
(a)

∣∣{v ∈ V (G) : f(v) 6= f ′(v)}
∣∣ = 1, that is, f ′ can be obtained from f by recoloring a

single vertex v ∈ V (G); and
(b) if f(v) 6= f ′(v) for a vertex v ∈ V (G), then f(v)f ′(v) ∈ E(R), that is, the colors f(v)

and f ′(v) form a recolorable pair.
Figure 1(c) shows eight different 4-colorings of the graph in Figure 1(a). Then, for each
i ∈ {1, 2, . . . , 7}, two 4-colorings fi−1 and fi are adjacent under the recolorability graph R in
Figure 1(b). As defined above, the known adjacency relation in [1, 2, 3, 4, 6, 8, 9, 13, 17]
only requires the condition (a) above, that is, we can recolor a vertex from any color to any
color directly. Observe that this corresponds to the case where R is a complete graph of size
k, and hence our adjacency relation generalizes the known one.

Given a graph G, and two k-colorings f0 and fr of G, the coloring reconfiguration
problem under R-recolorability is the decision problem of determining whether there
exists a sequence 〈f0, f1, . . . , f`〉 of k-colorings of G such that f` = fr and fi−1 and fi are
adjacent under R for all i ∈ {1, 2, . . . , `}; such a desired sequence is called an (f0 → fr)-
reconfiguration sequence. For example, the sequence 〈f0, f1, . . . , f7〉 in Figure 1(c) is an
(f0 → f7)-reconfiguration sequence.

We emphasize that the concept of recolorability graphs changes the situation drastically
from k-coloring reconfiguration. For example, the (f0 → f7)-reconfiguration sequence
in Figure 1(c) is a shortest one between f0 and f7 under the recolorability graph R in
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Figure 2 (a) Recolorability graph R with three colors 1, 2 and 3, and (b) and (c) 3-colorings f0

and fr of a graph consisting of a single edge, respectively.

Figure 1(b). However, in 4-coloring reconfiguration (in other words, if R would be
K4 and would have the edge joining colors 1 and 3), we can recolor the vertex from 1 to 3
directly. As another example, the instance illustrated in Figure 2 is a no-instance for our
problem even if the number of colors is larger than the number of vertices in an input graph
(a single edge), but is clearly a yes-instance for 3-coloring reconfiguration.

1.2 Related results

As we have mentioned above, k-coloring reconfiguration has been studied intensively
from various viewpoints.

From the viewpoint of the number k of colors in the color set C, a sharp analysis has
been obtained: Bonsma and Cereceda [3] proved that k-coloring reconfiguration is
PSPACE-complete if k ≥ 4. On the other hand, Cereceda et al. [6] proved that k-coloring
reconfiguration is solvable for any graph in polynomial time if k ∈ {1, 2, 3}, despite the
fact that the original search problem (i.e., asking for the existence of one 3-coloring in a given
graph) is NP-complete. In addition, for any yes-instance of 3-coloring reconfiguration,
an (f0 → fr)-reconfiguration sequence with the shortest length can be found in polynomial
time [6, 13].

From the viewpoint of graph classes, Wrochna [17] proved that k-coloring reconfig-
uration remains PSPACE-complete even for graphs with bounded bandwidth (and hence
bounded pathwidth). Bonamy et al. [2] gave some sufficient condition with respect to graph
structures so that any pair of k-colorings of a graph has a reconfiguration sequence: for
example, chordal graphs and chordal bipartite graphs satisfy their sufficient condition.

From the viewpoint of parameterized complexity, the length ` of a desired sequence
is taken as a parameter for various reconfiguration problems [14]. Bonsma et al. [4] and
Johnson et al. [13] independently developed a fixed-parameter algorithm to solve k-coloring
reconfiguration when parameterized by k + `. In contrast, if the problem is parameterized
only by `, then it is W[1]-hard when k is an input [4] and does not admit a polynomial
kernelization when k is fixed unless the polynomial hierarchy collapses [13].

As generalizations of k-coloring reconfiguration, reconfiguration problems for H-
colorings [18] and circular colorings [5] have been studied. Note that both colorings are
generalizations of k-colorings, and always form k-colorings of the same graph; but k-colorings
do not always form these colorings. The two reconfiguration problems take the same adjacency
relation as the original k-coloring reconfiguration (i.e., satisfying only the condition (a)
in Section 1.1), but the set of feasible solutions does not always contain all k-colorings. On the
other hand, our problem takes the same set of feasible solutions as the original k-coloring
reconfiguration (i.e., all k-colorings), but takes different adjacency relation which obeys
a recolorability graph R.

ISAAC 2017
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1.3 Our contribution
In this paper, we show the hardness of the coloring reconfiguration problem under
R-recolorability based on the graph structure of recolorability graphs. We show the
PSPACE-completeness of the problem for two cases. We first prove in Section 3.2 that the
problem is PSPACE-complete for any recolorability graph with maximum degree at least four.
We then show in Section 3.3 that the problem is PSPACE-complete for any recolorability graph
R which contains a connected component RC such that |E(RC)| > |V (RC)|, equivalently,
for the case where the recolorability graph contains a connected component RC having at
least two cycles. This result implies that there exists a graph R of maximum degree three
for which the problem remains PSPACE-complete. We note that our first result is strong
in the sense that it shows PSPACE-completeness for all recolorability graphs of maximum
degree at least four.

Due to the page limitation, we omit some proofs from this extended abstract.

2 Preliminaries

Since we deal with (vertex-)coloring, we may assume without loss of generality that an
input graph G is simple, connected and undirected. For a vertex v ∈ V (G), let N(G, v) =
{w ∈ V (G) : vw ∈ E(G)}. We say that a graph H is a supergraph of a graph G if both
V (G) ⊆ V (H) and E(G) ⊆ E(H) hold; and hence H can be G itself.

For a graph G and a recolorability graph R on C, we define the R-reconfiguration graph
on G, denoted by CR(G), as follows: CR(G) is an undirected graph such that each node of
CR(G) corresponds to a k-coloring of G, and two nodes in CR(G) are joined by an edge if their
corresponding k-colorings are adjacent under R. We sometimes call a node in CR(G) simply
a k-coloring if it is clear from the context. A path in CR(G) from a k-coloring f to another
one f ′ is called an (f → f ′)-reconfiguration sequence. Note that any (f → f ′)-reconfiguration
sequence is reversible, that is, the path in CR(G) forms an (f ′ → f)-reconfiguration sequence,
too. Then, the coloring reconfiguration problem under R-recolorability is the
decision problem of determining whether CR(G) contains an (f0 → fr)-reconfiguration
sequence. Note that the problem does not ask for an actual (f0 → fr)-reconfiguration
sequence as the output.

We introduce the concept of “frozen” vertices from the viewpoint of recoloring, which
plays an important role in the paper. For a k-coloring f of a graph G and a recolorability
graph R on C, a vertex v ∈ V (G) is said to be frozen on f (under R) if f ′(v) = f(v) holds
for any k-coloring f ′ of G such that CR(G) has an (f → f ′)-reconfiguration sequence.

3 PSPACE-completeness

In this section, we clarify the computational hardness of the problem from the viewpoint
of recolorability graphs R. In Section 3.1, we introduce the list variant of the problem.
Interestingly, the list variant is equivalent to the non-list one in our reconfiguration problem,
and hence it suffices to construct reductions to the list variant. In Sections 3.2 and 3.3, we
give our hardness results.

3.1 List recolorability
In the list variant, each vertex v of a graph G is associated with a subgraph LR(v) of the
common recolorability graph R; we call LR(v) the list recolorability of v, and sometimes call
the list assignment (mapping) LR the list R-recolorability. Note that LR(v) is not necessarily
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Figure 3 (a) Recolorability graph R such that LR(v) is a subgraph of R for each vertex v ∈ V (G),
(b) a vertex v ∈ V (G) whose list recolorability LR(v) is written inside, and (c) the vertex v in
G′, where the (red) thick dotted part corresponds to forbidding the pair of colors 1 and 2 in
E(R) \ E(LR(v)) and the (blue) thick part corresponds to forbidding the pair of colors 2 and 3 in
E(R) \ E(LR(v)).

a spanning subgraph of R. Let k = |V (R)|. Then, a k-coloring f of G is called a list coloring
of G if f(v) ∈ V (LR(v)) for all vertices v in G. Observe that for any supergraph R′ of R,
any list R-recolorability is also list R′-recolorability. We say that two list colorings f and f ′

are adjacent under LR if they differ in exactly one vertex v such that f(v)f ′(v) ∈ E(LR(v)).
Analogous to the R-reconfiguration graph, we define the LR-reconfiguration graph on G,
denoted by CLR

(G), as the undirected graph whose nodes correspond to list colorings of
G, and two nodes in CLR

(G) are joined by an edge if their corresponding list colorings are
adjacent under LR.

Let G be an input graph with a list R-recolorability LR. Then, for two list colorings f0
and fr of G, the coloring reconfiguration problem under list R-recolorability
(the list variant, for short) is the decision problem of determining whether CLR

(G) contains
an (f0 → fr)-reconfiguration sequence. Observe that coloring reconfiguration under
R-recolorability can be seen as the list variant such that LR(v) = R holds for every
vertex v ∈ V (G). Furthermore, note that CLR

(G) forms a subgraph of CR(G).
Interestingly, the list variant for our reconfiguration problem is equivalent to the non-list

one, as in the following theorem.

I Theorem 1. Coloring reconfiguration under list R-recolorability can be
reduced to coloring reconfiguration under R-recolorability in time polynomial in
|V (G)| and |V (R)|, where G is an input graph of the list variant.

Proof. Let G be an input graph for the list variant with a list R-recolorability LR, and suppose
that we are given two list colorings f0 and fr of G. Then, we construct a corresponding
instance of coloring reconfiguration under R-recolorability; we denote by G′ the
corresponding graph, and by f ′0 and f ′r the corresponding initial and target k-colorings of G′,
respectively, where k = |V (R)|.

Indeed, we will give a gadget which forbids recoloring a vertex v ∈ V (G) directly from a
color i to another color j for each pair ij ∈ E(R) \ E(LR(v)). Note that, for each color i

in V (R) \ V (LR(v)), we can add the vertex i to LR(v) as an isolated vertex (by adding the
forbidding gadgets between i and all colors j such that ij ∈ E(R)). Then, since f0 and fr

are list colorings of G, both f0(v) 6= i and fr(v) 6= i hold and hence v is never recolored to
the isolated color i.

ISAAC 2017
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To construct such a forbidding gadget, we will use a (newly added) clique of size k = |V (R)|
such that all vertices are colored with distinct colors. Notice that no vertex in the clique can
be recolored to any color, that is, they are frozen vertices on the k-coloring. We use this
property, and construct the corresponding instance, as follows.

We first add to G a new clique Kk of k vertices r1, r2, . . . , rk. Then, for each vertex
v ∈ V (G), consider any pair of colors i and j such that ij ∈ E(R) \E(LR(v)). We add a new
vertex vij to G, and join it with v. In addition, we join vij with all vertices in V (Kk)\{ri, rj}.
(See Figure 3(a)–(c) as an example of the application of this procedure.) Let G′ be the
resulting graph after applying the procedure above to all vertices v ∈ V (G) and all pairs
ij ∈ E(R) \E(LR(v)). For notational convenience, we denote by VF the set of all vertices vij

in G′ that are newly added for each vertex v ∈ V (G) and ij ∈ E(R) \ E(LR(v)). We note
that V (G′) is partitioned into V (G), V (Kk), and VF . Furthermore, each vertex vij ∈ VF

satisfies N(G′, vij) ∩ V (G) = {v}. We denote by v this unique vertex in N(G′, vij) ∩ V (G)
for each vertex vij ∈ VF . Then, the corresponding k-colorings f ′0 and f ′r of G′ are defined as
follows: for each l ∈ {0, r} and a vertex w ∈ V (G′),

f ′l (w) =


fl(w) if w ∈ V (G);
i if w = ri ∈ V (Kk);
j if w = vij ∈ VF and fl(v) = i; and
i otherwise, that is, w = vij ∈ VF and fl(v) 6= i.

Then, all vertices r1, r2, . . . , rk are frozen on both f ′0 and f ′r (indeed, under any recolorability
graph). This completes the construction of the corresponding instance. This construction
can be done in time polynomial in |V (G)| and k = |V (R)|.

The correctness proof of our reduction is omitted from this extended abstract. J

Recall that for any supergraph R′ of R, any list R-recolorability is also a list R′-
recolorability, therefore we obtain the following corollary:

I Corollary 2. Let R′ be an arbitrary supergraph of a recolorability graph R. Then, Col-
oring reconfiguration under list R-recolorability can be reduced to coloring
reconfiguration under R′-recolorability in time polynomial in |V (G)| and |V (R′)|,
where G is an input graph of the list variant.

3.2 Recolorability graphs of maximum degree at least four
In this subsection, we consider the case where a recolorability graph is of maximum degree at
least four. We emphasize again that the following theorem holds for an arbitrary recolorability
graph as long as its maximum degree is at least four.

I Theorem 3. Let R′ be any recolorability graph whose maximum degree is at least four.
Then, coloring reconfiguration under R′-recolorability is PSPACE-complete.

Proof. Observe that the problem can be solved in (most conveniently, nondeterministic [15])
polynomial space, and hence it is in PSPACE. Therefore, we show that the problem is
PSPACE-hard for such a recolorability graph R′. Notice that, since R′ is of maximum
degree at least four, R′ is a supergraph of a star K1,4. Therefore, by Corollary 2 it suffices
to prove that the list variant remains PSPACE-hard even for a list R-recolorability such
that R = K1,4. (See Figure 4(a).) To show this, we give a polynomial-time reduction from
4-coloring reconfiguration, which is known to be PSPACE-complete [3].
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Figure 4 (a) Recolorability graph K1,4. In our reduction, the star K1,4 with center color 5 is the
list recolorability of all vertices v ∈ V (G). (b) Recolorability graph which is a diamond graph. (c)
Recolorability graph which is a 2K3 + e graph.

Let G be an input graph for 4-coloring reconfiguration, and let f0 and fr be two
given 4-colorings of G; let C = {1, 2, 3, 4} be the color set. As a corresponding instance of
the list variant, we take the same graph G in which the list recolorability LR(v) of each
vertex v ∈ V (G) is a star K1,4 such that its center is a new color 5 and its leaves are the
four colors 1, 2, 3 and 4. Then, both f0 and fr are list colorings of the corresponding graph
G, and we take the 4-colorings f0 and fr as the corresponding list colorings. This completes
the construction of the corresponding instance, and hence it can be done in polynomial time.

The correctness proof of our reduction is omitted from this extended abstract. J

3.3 Recolorability graphs with more than one cycle
In this subsection, we consider the case where a recolorability graph R′ contains a connected
component having more than one cycle. Our result is expressed as follows:

I Theorem 4. Let R′ be a recolorability graph which contains a connected component R such
that |E(R)| > |V (R)|. Then, coloring reconfiguration under R′-recolorability is
PSPACE-complete.

To prove Theorem 4, by Corollary 2 it suffices to prove that the list variant remains
PSPACE-hard for a list R-recolorability, where R is a connected component in R′ such that
|E(R)| > |V (R)|. We first characterize the structure of R by two small graphs: A graph is
called a diamond graph if it can be obtained by deleting exactly one edge from a complete
graph K4 of size four (see Figure 4(b)); a 2K3 +e graph is a graph obtained by adding exactly
one edge to disjoint union of two triangles K3 (see Figure 4(c).) We have the following
lemma.

I Lemma 5. Let R be a connected graph such that |E(R)| > |V (R)|. Then, R satisfies at
least one of the following statements:
(a) R has a vertex whose degree is at least four;
(b) R is a supergraph of some subdivision of a diamond graph; and
(c) R is a supergraph of some subdivision of a 2K3 + e graph.

If Lemma 5(a) holds for the recolorability graph R, then coloring reconfiguration
under R-recolorability is PSPACE-complete by Theorem 3. Therefore, it suffices to
prove the PSPACE-hardness for the other cases, that is, the recolorability graph R is either
(b) any subdivision of a diamond graph, or (c) any subdivision of a 2K3 + e graph.

We now give a sketch of our proof. We first prove that the list variant remains PSPACE-
hard for a list R-recolorability when R is either a diamond graph or a 2K3 +e graph (without
subdivisions). We use these claims as the bases of inductive proofs for the cases (b) and (c).
Due to the page limitation, we only prove the base for the case (b), as follows.

ISAAC 2017
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Figure 5 (a) A configuration of an NCL machine, (b) NCL and vertex u, and (c) NCL or vertex
v.

I Lemma 6. Let D be a diamond graph. Then, coloring reconfiguration under list
D-recolorability is PSPACE-complete.

Proof. We give a polynomial-time reduction from nondeterministic constraint logic
(NCL, for short) [10], defined as follows. An NCL “machine” is specified by an undirected
graph together with an assignment of weights from {1, 2} to each edge of the graph. An
(NCL) configuration of this machine is an orientation (direction) of the edges such that the
sum of weights of in-coming arcs at each vertex is at least two. Figure 5(a) illustrates a
configuration of an NCL machine, where each weight-2 edge is depicted by a thick (blue) line
and each weight-1 edge by a thin (orange) line. Then, two NCL configurations are adjacent
if they differ in a single edge direction. Given an NCL machine and its two configurations, it
is known to be PSPACE-complete to determine whether there exists a sequence of adjacent
NCL configurations which transforms one into the other [10].

In fact, the problem remains PSPACE-complete even for and/or constraint graphs, which
consist only of two types of vertices, called “NCL and vertices” and “NCL or vertices.” A
vertex of degree three is called an NCL and vertex if its three incident edges have weights 1,
1 and 2. (See Figure 5(b).) An NCL and vertex u behaves as a logical and, in the following
sense: the weight-2 edge can be directed outward for u if and only if both two weight-1 edges
are directed inward for u. Note that, however, the weight-2 edge is not necessarily directed
outward even when both weight-1 edges are directed inward. A vertex of degree three is
called an NCL or vertex if its three incident edges have weights 2, 2 and 2. (See Figure 5(c).)
An NCL or vertex v behaves as a logical or: one of the three edges can be directed outward
for v if and only if at least one of the other two edges is directed inward for v. It should be
noted that, although it is natural to think of NCL and/or vertices as having inputs and
outputs, there is nothing enforcing this interpretation; especially for NCL or vertices, the
choice of input and output is entirely arbitrary because an NCL or vertex is symmetric. For
example, the NCL machine in Figure 5(a) is an and/or constraint graph. From now on,
we call an and/or constraint graph simply an NCL machine, and call an edge in an NCL
machine an NCL edge.

Gadgets. We first subdivide every NCL edge vw into a path vv′w′w of length three by
adding two new vertices v′ and w′; the newly added vertices v′ and w′ are called connectors
for v and w, respectively. (See Figure 6(a) and (b).) We call the edge v′w′ a link edge
between two NCL vertices v and w, and call the edges vv′ and ww′ NCL one-third edges for
v and w, respectively. Notice that every vertex in the resulting graph belongs to exactly one
of stars K1,3 such that the center v of each K1,3 corresponds to an NCL and/or vertex and
the three leaves are connectors for v. Furthermore, these stars are all mutually disjoint, and
joined together by link edges. (See Figure 6(c) as an example.)
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Figure 6 (a) An NCL edge vw, (b) its subdivision into a path vv′w′w, and (c) the resulting
graph which corresponds to the NCL machine in Figure 5(a), where each connector is depicted by a
(red) large circle and each link edge by a thin (green) line.

2-4 4-1 1-2 2-3 3-4 4-2

v' w'

Figure 7 The link edge gadget Gv′w′ between two connectors v′ and w′.

Therefore, our reduction involves constructing three types of gadgets which correspond
to link edges and stars of NCL and/or vertices. In our gadgets, all connectors v′ for NCL
and/or vertices v have the same list recolorability LD(v′) such that V (LD(v′)) = {2, 4} and
E(LD(v′)) = {24}. Then, in our reduction, assigning the color 4 to v′ always corresponds to
directing the NCL one-third edge vv′ from v′ to v (i.e., the inward direction for v), while
assigning the color 2 to v′ always corresponds to directing vv′ from v to v′ (i.e., the outward
direction for v).

(i) Link edge gadget. Figure 7 illustrates our link edge gadget Gv′w′ for each link edge
v′w′, where v′ and w′ are connectors for NCL and/or vertices v and w, respectively. The
graph in each vertex (circle) indicates the list recolorability of the vertex. Recall that, in
a given NCL machine, v and w are joined by a single NCL edge. Therefore, the link edge
gadget should be consistent with the orientations of the NCL edge, as follows (see also
Figure 8(a) and (b)): If we assign 4 to v′ (the inward direction for v), then w′ must be
colored with 2 (the outward direction for w); conversely, v′ must be colored with 2 if we
assign 4 to w′. In particular, the gadget must forbid a list coloring which assigns 4 to both
v′ and w′ (the inward directions for both v and w), because such a list coloring corresponds
to the direction which contributes to both v and w illegally. On the other hand, assigning
2 to both v′ and w′ (the outward directions for both v and w) corresponds to the neutral
orientation of the NCL edge vw which contributes to neither v nor w, and hence we simply
do not care such an orientation.

Figure 8(c) illustrates the LD-reconfiguration graph CLD(Gv′w′) on the link edge gadget
Gv′w′ . Each rectangle corresponds to a node of CLD(Gv′w′), that is, a list coloring of
Gv′w′ , where the underlined bold number represents the color assigned to the vertex. Then,
CLD(Gv′w′) is connected, and there is no list coloring which assigns 4 to both v′ and w′, as
claimed above. Furthermore, the reversal of the NCL edge vw can be simulated by the path
on CLD(Gv′w′) via the neutral orientation of vw, as illustrated in Figure 8(c). Thus, this
gadget works correctly as a link edge.

(ii) And gadget. Figure 9 illustrates our and gadget Gand for each NCL and vertex v,
where va, vb and vc correspond to the three connectors for v. In the figure, the connectors
va and vb come from the two weight-1 NCL edges, while the connector vc comes from the
weight-2 NCL edge. We now explain this gadget works as an NCL and vertex. Similarly as
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v' w'

2-4 4-1 1-2 2-3 3-4 4-2

2-4 4-1 1-2 2-3 3-4 4-2

2-4 4-1 1-2 2-3 3-4 4-2

2-4 4-1 1-2 2-3 3-4 4-2

2-4 4-1 1-2 2-3 3-4 4-2

2-4 4-1 1-2 2-3 3-4 4-2

2-4 4-1 1-2 2-3 3-4 4-2

v' w'v wv w

v' w'v wv w

v' w'v wv w

neutral

(a)                                                                    (b)                                                                                 (c)

Figure 8 (a) Three orientations of an NCL edge vw, (b) their corresponding orientations of the
NCL one-third edges vv′ and ww′, and (c) all list colorings of the link edge gadget Gv′w′ in the
LD-reconfiguration graph CLD (Gv′w′ ).

4-2 2-1 1-4 4-3 3-2 2-3 3-4 4-1 1-2 2-4-2
4

va vbvc

Figure 9 And gadget Gand with three connectors va, vb and vc.

for the link edge gadget, the and gadget must forbid the case where all the connectors va,
vb and vc are colored with 2 at the same time (i.e., all NCL one-third edges vva, vvb and
vvc take the outward direction for v). In addition, the gadget must simulate the following
situation: vc can be colored with 2 (i.e., the weight-2 edge vvc can take the outward direction
for v) only when both va and vb are colored with 4 at the same time (i.e., both the weight-1
edges vva and vvb take the inward direction for v).

Figure 10(a) illustrates all feasible orientations of the three NCL one-third edges vva,
vvb and vvc, whose corresponding assignments of colors to the connectors are depicted in
Figure 10(b). Due to the space limitation, in Figure 10(b), we only indicate the colors
assigned to va, vc and vb, but Figure 10(c) shows all list (proper) colorings of Gand that assign
the colors 2, 4 and 4 to va, vc and vb, respectively. Then, as illustrated in Figure 10(c), these
list colorings are “internally connected,” that is, any two list colorings are reconfigurable
with each other without recoloring any connector of Gand. Furthermore, this gadget preserves
the “external adjacency” in the following sense: if we contract the list colorings in CLD(Gand)
having the same color assignments to the connectors into a single vertex, then the resulting
graph is exactly the graph depicted in Figure 10(a). We have checked by a computer search
that these two properties hold for our and gadget. Therefore, we can conclude that our and
gadget correctly works as an NCL and vertex.
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Figure 10 (a) All feasible orientations of the three NCL one-third edges incident to an NCL and
vertex together with their adjacency, (b) image of LD-reconfiguration graph CLD (Gand) on the and
gadget Gand, and (c) the inside of the rightmost (green) thick box in the image which corresponds
to assigning the colors 2, 4 and 4 to va, vc and vb, respectively, where we simply write the colors
assigned to Gand by a sequence of colors.

1 4 3 1 4 3 1 4 3

4 2 3 42 3 4 1 1 2 2 4 4 2 3 42 3 4 1 1 2 2 4
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1 2 3 2
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2

4

2

4

3 2 3 21 2 1 2

A

C

B
vb1 vb2 vb3

vx vy vz

Figure 11 Or gadget Gor with three connectors vx, vy and vz.

(iii) Or gadget. Figure 11 illustrates our or gadget Gor for each NCL or vertex v, where
vx, vy and vz correspond to the three connectors for v. We now explain this gadget works as
an NCL or vertex. For each NCL or vertex v, it suffices that at least one of the three NCL
edges take the inward direction for v. Thus, the or gadget must forbid only the case where
all the connectors vx, vy and vz are colored with 2 at the same time. Indeed, our gadget in
Figure 11 forbids such the case, because otherwise all three vertices vb1, vb2 and vb3 in Part B
must be colored with 4 and this yields that there is no available color for vertices in Part A.

Similarly as for the and gadget, we have checked by a computer search that our or gadget
is internally connected and preserves the external adjacency. Therefore, we can conclude
that our or gadget correctly works as an NCL or vertex.
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Reduction. As we have mentioned above, we first subdivide every NCL edge vw into a
path vv′w′w of length three by adding two connectors v′ and w′. (See Figure 6.) Then, we
replace each of link edges and NCL and/or vertices with its corresponding gadget; let G be
the resulting graph. In addition, we construct two list colorings of G which correspond to
two given configurations C0 and Cr of the NCL machine. Note that there are (in general,
exponentially) many list colorings which correspond to the same NCL configuration. However,
by the construction of the three gadgets, no two distinct NCL configurations correspond
to the same list coloring of G. We thus choose any two list colorings f0 and fr of G which
correspond to C0 and Cr, respectively. This completes the construction of the corresponding
instance for the list variant under list D-recolorability. This construction can be done in
polynomial time.

We omit the correctness proof of our reduction from this extended abstract. J
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