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Abstract
We study the following dynamic graph problem: given an undirected graph G, we maintain a
connectivity oracle between any two vertices in G under any on-line sequence of vertex deletions
and insertions with incident edges. We propose two algorithms for this problem: an amortized
update time deterministic one and a worst case update time Monte Carlo one. Both of them
allow an arbitrary number of new vertices to insert. The update time complexity of the former
algorithm is no worse than the existing algorithms, which allow only limited number of vertices
to insert. Moreover, for relatively dense graphs, we can expect that the update time bound of
the former algorithm meets a lower bound, and that of the latter algorithm can be seen as a
substantial improvement of the existing result by introducing randomization.
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1 Introduction

In this paper, we consider the dynamic graph connectivity problem. Given an undirected
graph G, the goal for this problem is to build a data structure which can process an on-line
sequence of graph updates and queries. Here for the query C(u, v), the data structure should
answer whether there is a path between two vertices u and v in G. There are some variants
for this problem with respect to the kinds of operations allowed as the graph updates.

Dynamic subgraph connectivity (DSGC): a binary status is associated with each vertex in
G, and we can switch it between “on” and “off”. The query is to answer whether there is
a path between two vertices in the subgraph of G induced by the “on” vertices.
Fully dynamic graph connectivity under edge updates (FGCE): we can delete an existing
edge e from G and insert a new edge e′ to G.
Fully dynamic graph connectivity under general vertex updates (FGCV): we can delete an
existing vertex w from G, and insert a new vertex v and its incident edges to G.

In this paper, we study the FGCV problem.
Among these three problems, the FGCV problem is the most general framework when

we focus on vertex updates. First, an FGCV data structure allows us to insert new vertices,
while a DSGC data structure does not. Second, the FGCV problem can be somewhat solved
by an FGCE data structure as follows, but there is a limitation on the number of new vertices.
In the preprocessing, we add some isolated vertices to G. Then when a new vertex insertion
occurs, we select one of the isolated vertices and regard it as the new vertex. Since single
vertex update amounts to O(n) edge updates (insertions or deletions) for a graph with n
vertices and m edges, the FGCE data structure can process vertex updates. However, in
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Table 1 Comparison of the vertex update time for the (fully) dynamic graph connectivity. “A”,
“M”, and “D” in the first column mean that the corresponding rows show the time complexity of
amortized update time deterministic, worst case update time Monte Carlo, and worst case update
time deterministic algorithms, respectively. The query time is all O(logn) or o(logn).

FGCE * FGCV
A O(n log2 n

log log n
) [14] O(

√
m log1.25 n+ l log2 n

log log n
+ n) X

M O(n log5 n) [10] O(
√
ml log2.75 n+ n) Y

D O(n
√

n(log log n)2

log n
) [11] O(

√
mn log1.25 n) [12]

* They are multiplied by n since we focus on vertex updates.

this approach we cannot insert an arbitrary number of new vertices. On the other hand, an
FGCV data structure can solve the DSGC and FGCE problems (in FGCE setting, one edge
update can be converted to two vertex updates).

The FGCE problem is well-studied for years, and various kinds of algorithms for this
problem were developed even recently, e.g. an amortized update time deterministic one [14],
a worst case update time Monte Carlo one [10], and a worst case update time deterministic
one [11]. There were also these kinds of algorithms for the DSGC problem [6, 8, 7]. However,
there exist almost no FGCV algorithms which allow us to insert an arbitrary number of
new vertices. The only exception is the algorithm of Baswana et al. [2], which maintains a
depth-first search (DFS) tree of undirected graphs. Their worst case deterministic update
time is recently improved by Nakamura and Sadakane [12]. The comparison of the “vertex”
update time of these algorithms is shown in Table 1. Here the update time of the FGCE
algorithm is multiplied by n since single vertex update amounts to O(n) edge updates.
Note that the update time for the DSGC algorithms [6, 8, 7] is omitted since they have
O(mαpolylog(n)) query time with α ≥ 1/5. This is much slower than O(logn), which is the
upper bound for the query time of the algorithms in Table 1.

1.1 Our Results

We develop two data structures for the FCGV problem, both of which allow us to insert an
arbitrary number of new vertices. One is an amortized update time deterministic algorithm
(algorithm X), and the other is a worst case update time Monte Carlo algorithm (algorithm
Y). Both algorithms X and Y have a query time of O(logn). Their time bounds for single
vertex update are shown in the right column of Table 1.

Our time bounds in Table 1 depend on l, that is, the number of leaves of a DFS forest (a
spanning forest generated by DFS) of G at some point. Both algorithms X and Y internally
rebuild a DFS forest of G periodically, and l is in fact the number of leaves of it. Since l ≤ n,
algorithm X can solve the FGCV problem no slower than using the FGCE data structure [14].
Indeed, we can expect l� n for relatively dense graphs as described in Sect. 7.

For algorithm X, its update time complexity becomes O(n) if l = O(n/ log2 n) (unless
m = Ω(n2/ log2.5 n)), which is a firm lower bound since the size of input incident edges
around the inserted vertex may become Θ(n). In addition to this, both algorithms X and Y
permit G to have some edges initially, while the amortized update time FGCE algorithm [14]
assumes G has no edges initially. In summary, the advantages of using algorithm X over
using amortized update time FGCE data structure [14] directly is as follows.

Algorithm X allows us to insert an arbitrary number of new vertices.
Algorithm X permits G to have some edges initially.
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The update time complexity of algorithm X is no slower than using [14] directly. For
relatively dense graphs it is expected to become O(n) which is a firm lower bound.

For algorithm Y, if l � n, the time bound O(
√
ml · polylog(n)) can be seen as a

considerable improvement of that of [12] by introducing randomization. Moreover, in Sect. 7
it is shown that under ER model [9], which is a popular model of random graphs, the time
bound becomes O(n log3.25 n) with high probability, which is faster than using the Monte
Carlo FGCE data structure [10] directly. Again note that algorithm Y allows us to insert an
arbitrary number of vertices while the Monte Carlo FGCE data structure [10] does not.

Our work can be summarized as follows. Our algorithms use a disjoint tree partitioning,
which is used in the dynamic DFS algorithm of Baswana et al. [2], and the FGCE data
structures ([14] for algorithm X, [10] for algorithm Y). First, we develop an efficient method
to maintain disjoint tree partitioning (Sect. 3.1), which reduces the update time when the
number of incident edges around the new vertex is small. Second, we define some queries on
the graph and show an efficient way to solve them (Sect. 4). We believe these queries are of
independent interest. Third, we find a good property of the disjoint tree partitioning for the
amortized time complexity analysis (Lemma 2), and develop an algorithm which fully adopts
this property (Sect. 5). Lastly, we develop a method to convert the amortized update time
algorithm to a worst case update time one (Sect. 6). Note that this kind of technique is also
employed in various dynamic graph algorithms such as dynamic DFS [2, 12] and dynamic
all-pairs shortest paths [1], but in our situation we need some additional considerations.

2 Preliminaries

Throughout this paper, n and m denote the numbers of vertices and edges of a graph,
respectively. We use log(·) as the base-2 logarithm; the natural logarithm is denoted by ln(·).
Note that they differ only by a constant factor, thus ln x = Θ(log x).

Given a spanning forest T of an undirected graph G each tree in which is a rooted tree,
the parent vertex of a vertex v is denoted by par(v). A subtree τ of T is said to be hanging
from a path p if the root r of τ satisfies both r /∈ p and par(r) ∈ p. Two vertices x and y are
said to have ancestor-descendant relation if x = y, x is an ancestor of y, or y is an ancestor
of x. A path p in T is said to be an ancestor-descendant path if the endpoints of p have
ancestor-descendant relation. A spanning forest T of G is a DFS forest of G iff each tree in
T is a DFS tree of the corresponding connected component of G. The number of leaves of a
DFS forest T is the sum of that of each tree in T .

The DFS tree satisfies the following property. Let G be a connected undirected graph and
T be a rooted spanning tree of G. Then T is a DFS tree of G, iff every edge in G connects
two vertices which have ancestor-descendant relation. We call this DFS property.

3 Disjoint Tree Partitioning

In this section, we refer to a disjoint tree partitioning [2], and develop an efficient way to
maintain this partition. The disjoint tree partitioning is defined as follows.

I Definition 1 ([2]). Given a DFS forest T of an undirected graph G and a set U of vertices,
the forest T − U obtained by deleting the vertices in U from T is considered. Then the
disjoint tree partitioning of T −U is a partition of T −U into a set P of ancestor-descendant
paths in T with |P| ≤ |U | and a set T of subtrees of T .

From now we abbreviate disjoint tree partitioning as DTP.

ISAAC 2017
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Figure 1 (A) An example of the building process of DTP. Subtrees τ ∈ T are colored with light
gray and ancestor-descendant paths p ∈ P with dark gray. (B) Corresponding binary trees B and
lists P and T . Here the pointers from B to P or T are omitted.

In [2] the way to construct DTP is also given. First, if U = ∅ then we set P = ∅ and add
all DFS trees in the DFS forest T to T . Next, the DTP of T − (U ∪ {v}) can be obtained
by modifying the DTP of T − U as follows. If v ∈ ∃p ∈ P we remove p from P and add (at
most) two paths obtained by deleting v from p to P. Otherwise if v ∈ ∃τ ∈ T , we remove
τ from T and add a path p′ from par(v) to the root of τ to P. Then we add all subtrees
hanging from v or p′ to T . An example of this process is shown in Fig. 1(A). Note that since
the number of paths in P is increased by at most one during each operation, |P| ≤ |U | holds.
This operation takes O(n) time for each v, thus the DTP of T − U can be calculated one by
one in total O(|U |n) time [2].

3.1 More Efficient Construction
Now we show a more efficient method of maintaining DTP we develop. First, if T is connected,
a heavy-light (HL) decomposition [13] of T is calculated, and the order L of vertices is decided
according to the pre-order traversal of T , such that for the first time a vertex v is visited,
the next vertex to visit is one that is directly connected with a heavy edge derived from the
HL decomposition. Then the vertices of T are numbered from 0 to n− 1 according to L; the
vertex id of v is denoted by f(v). If T is disconnected, we calculate the order of vertices for
each DFS tree in the same way and vertices are numbered by consecutive integers from 0 to
n− 1. Note that this numbering originates in the dynamic DFS algorithm of Baswana et
al. [2], but they utilize this in order to solve some other queries on G. An example of this
numbering is shown in Fig. 1(A).

The important point is that the vertices of τ ∈ T occupy single interval in L since L
is a pre-order traversal of T , and those of p ∈ P occupy O(logn) intervals thanks to HL
decomposition. Now we maintain these intervals by a balanced binary search tree B. Here
the key of each element is the lower endpoint of its interval. We can say |B| ≤ n and
|B| = O(|T |+ |P| logn). Besides this, P and T are retained by lists; each p ∈ P is expressed
by a pair of its endpoints and each τ ∈ T by its root. Here all vertices are stored as the
vertex id f(·). Additionally, we add a pointer from each element in B to the corresponding
x ∈ P ∪ T . Examples of B and the lists are shown in Fig. 1(B).

Thanks to B, we can efficiently update DTP when a vertex v is deleted. First, search
f(v) in B and detect p ∈ P or τ ∈ T which contains v, which takes O(log |B|) = O(logn)
time. Then if v ∈ ∃p ∈ P, remove p from P and corresponding intervals from B, and add
at most two paths obtained by deleting v from p to P and corresponding intervals to B.
These processes take O(log2 n) time, since they amount to O(logn) deletions and insertions
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of elements on B. If v ∈ ∃τ ∈ T , first remove τ from T and a corresponding interval from B.
Then while traversing a path p′ from par(v) to the root of τ , add subtrees hanging from v or
p′ to T and corresponding intervals to B. Finally, add p′ to P and corresponding O(logn)
intervals to B. These take O(log2 n+ |p′|+ δ logn) time, where δ is the number of hanging
subtrees. In fact, we can limit the sum of |p′| and δ as follows.

I Lemma 2. Given a graph G, its DFS forest T and a set of vertices U = {v1, . . . , v|U |},
suppose the DTP of T − {v1, . . . , vi} (i = 1, . . . , |U |) is calculated one by one by the above
process. In calculating the DTP of T − {v1, . . . , vi} by modifying that of T − {v1, . . . , vi−1},
if vi ∈ ∃τ ∈ T , let p′i be the traversed path (i.e. the path from par(vi) to the root of τ) and
δi be the number of hanging subtrees from p′i or vi. (if vi ∈ ∃p ∈ P set p′i = ∅ and δi = 0).
Then

∑|U |
i=1 |p′i| ≤ n and

∑|U |
i=1 δi ≤ l + |U | hold, where l is the number of leaves of T .

Proof. For any vertex v, once v is contained in some p′i, v is always contained in one of the
paths in P until deleted. This means that v cannot be contained in more than one of p′i.
Then

∑|U |
i=1 |p′i| ≤ n holds. Next, it can be pointed out that |T | cannot be more than l at any

time, since every τ ∈ T has at least one distinct leaf of T . In the process of calculating DTP,
|T | increases by 0 if vi ∈ ∃p ∈ P or δi − 1 if vi ∈ ∃τ ∈ T . Therefore

∑|U |
i=1(δi − 1) ≤ l. J

Note that in the preprocessing, the HL decomposition can be calculated in O(n) time and
the initialization of DTP can be done in O(t) time, where t ≤ l is the number of connected
components of T . Hence we can immediately obtain the following result from Lemma 2.

I Lemma 3. By the process described above, the DTP of T − U can be calculated one by
one in total O(|U | log2 n+ n+ l logn) time.

4 Queries on the Disjoint Tree Partitioning

In this section, we define some queries related to the DTP and show an efficient solution for
them. We consider the following queries Q and Q′.

I Definition 4. An undirected graph G and its DFS forest T are given. Then for any subtree
τ of T and ancestor-descendant path p in T , Q(τ, p) returns one of the edges in G which
directly connect τ and p if exists, or ∅ otherwise. Here we assume τ and p have no common
vertices. Similarly, for any two disjoint ancestor-descendant paths p1, p2 in T , Q′(p1, p2)
returns one of the edges in G which directly connect p1 and p2 if exists, or ∅ otherwise.

The motivation to consider these queries is as follows. Roughly speaking, our algorithms
proposed later treat paths p ∈ P and subtrees τ ∈ T derived from the DTP of T − U as
virtual vertices and maintain a data structure to answer connectivity queries among them.
Therefore for any distinct τ1, τ2 ∈ T and p1, p2 ∈ P it is important to judge quickly whether
there are some edges in G − U between p1 and p2 or between p1 and τ1. Here it is noted
that thanks to DFS property, there are no edges in G− U between τ1 and τ2.

Indeed, the query very similar to Q(τ, p) is utilized in the dynamic DFS algorithm by
Baswana et al. [2], and is revealed to be efficiently solved with the vertex numbering described
in Sect. 3 and the orthogonal range search problem [2, 12].

I Definition 5. On grid points in a 2-dimensional plane, k points are given. Then for any
rectangular region R = [x1, x2]× [y1, y2], the orthogonal range one reporting query returns
one of the points within R if exists, or ∅ otherwise. We abbreviate it as ORR query.

ISAAC 2017
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Figure 2 The possible configurations of two ancestor-descendant paths in T .

The queries Q(τ, p) and Q′(p1, p2) can be converted to the ORR query in the following
way. First, the vertices of T are numbered from 0 to n − 1 in the same way as Sect. 3.
Second, we consider a grid G and, for each edge (v, w) of G, put two points on the coordinates
(f(v), f(w)) and (f(w), f(v)) in G. This is equivalent to consider the adjacency matrix of G,
therefore 2m points are placed. Now a careful case analysis shows the following results. Since
Lemma 6 is almost the same as what is proved in [12], we only show the proof of Lemma 7.

I Lemma 6 ([12]). For any subtree τ of T and ancestor-descendant path p in T , the query
Q(τ, p) can be answered by solving single ORR query on G.

I Lemma 7. For any ancestor-descendant paths p1, p2 in T , the query Q′(p1, p2) can be
answered by solving O(logn) ORR queries on G.

Proof. Let x, y be the endpoints of p1 with f(x) ≤ f(y) and z, w be those of p2 with
f(z) ≤ f(w). W.l.o.g. we can assume f(x) < f(z). Due to the HL decomposition, the
vertices of p2 occupy O(logn) intervals [a1, b1], . . . , [ak, bk] in the vertex id. Now we assume
that p1 and p2 are in the same connected component in G. Then there are three patterns on
the configuration of p1 and p2 as drawn in Fig. 2, and two patterns on the vertex id: (a)
f(x) ≤ f(y) < f(z) ≤ f(w) and (b) f(x) < f(z) ≤ f(w) < f(y).

When (a) holds, the answer for Q′(p1, p2) can be obtained by solving ORR queries on G
with R = [f(x), f(y)]× [ai, bi] for i = 1, . . . , k and combining these results. The inequality
(a) can appear in all configurations in Fig. 2. In (i), it may be that [f(x), f(y)] contains
some branches forking from p1, but it makes no problem since there are no edges between
these branches and p2 thanks to DFS property. The same argument can be applied to (ii).
In (iii), the answer for Q′(p1, p2) is ∅ due to DFS property, and each ORR query also returns
∅. Note that even if p1 and p2 are in different connected components in G, (a) holds and the
above procedure returns ∅ correctly. When (b) holds, the answer can be obtained in a similar
way except that the rectangles are R = [f(x), f(LCA(y, z))]× [ai, bi], where LCA(y, z) is the
lowest common ancestor of y and z in T . The inequality (b) can appear in only (ii). In (ii),
all edges between p1 and p2 are indeed between the path from x to LCA(y, z) and p2, and
again it does not matter [f(x), f(LCA(y, z))] contains some branches forking from p1. Note
that the LCA query can be solved in O(1) time with a data structure constructed in O(n)
time [5]. This construction time is absorbed in the cost of HL decomposition. J

Recently, Belazzougui and Puglisi [4] proved that an ORR query with k points in a rank
space can be solved in O(logε k) time with a data structure of O(k) space constructed in
O(k
√

log k) time. With a standard conversion between a rank space and a general grid via
bit vectors (see e.g. [12]), we can apply it to Lemma 6 and 7, and obtain the following lemma.

I Lemma 8. The queries Q(τ, p) and Q′(p1, p2) can be solved in O(logε n) time and
O(log1+ε n) time for arbitrary 0 < ε < 1, respectively, with a data structure of O(m)
space constructed in O(m

√
logn) time.
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5 Amortized Update Time Algorithm

In this section, we show an amortized update time FGCV algorithm. First we give an
overview of our algorithm. As described in Sect. 4, paths p ∈ P and subtrees τ ∈ T derived
from the DTP of T − U are treated as virtual vertices. If we deal with only deletion of
vertices, all we have to do is maintain a connectivity oracle (i.e. a data structure to answer
connectivity queries) among them. However, in the fully dynamic setting we deal with
insertion of vertices and their incident edges. Thus we also treat each inserted vertex as a
virtual vertex, i.e. we maintain a connectivity oracle among P ∪ T ∪ V, where V is a set of
inserted vertices. Then our amortized update time algorithm can be described as follows.
First, perform DFS on G to build a DFS forest T and initialize the DTP of T , an FGCE data
structure (a connectivity oracle) C, and the data structure of Lemma 8 to solve Q and Q′.
Second, for the first ∆(≤ n) vertex updates, if vertex insertion occurs then insert the new
vertex to V and update C, otherwise if vertex deletion occurs then update V (if the deleted
vertex is in V) or the DTP (otherwise) and also update C. Third, when ∆ vertex updates are
processed, again perform DFS on G to rebuild the DFS forest T and reinitialize the DTP,
the connectivity oracle, and the data structure in Lemma 8, which is used for the next ∆
updates. In summary, we initialize data structures periodically after every ∆ updates.

We proceed to the detailed description of the initialization. In the initialization, we have
to construct the FGCE data structure C. From now we call the vertex in C node to avoid
confusion. Since in the edge update setting we cannot change the number of nodes, we
must decide at first the number of nodes C has. Because C maintains connectivity among
P ∪ T ∪ V, it suffices to prepare M nodes for C where M is an upper bound of |P ∪ T ∪ V|
while ∆ updates are being processed. The following lemma ensures us that l + ∆ nodes
are sufficient. Note that C is initialized to have no edges between any nodes since at first
P = V = ∅ and each τ ∈ T is indeed a connected component of G.

I Lemma 9. While ∆ updates are being processed from the initialization, |P ∪ T ∪ V| is not
more than l + ∆ at any time, where l is the number of leaves of T .

Proof. It suffices to show that |P ∪ T ∪ V| is not more than l + ∆ “when” ∆ updates are
processed. Let ∆D and ∆I be the numbers of deleted and inserted vertices during ∆ updates,
respectively. First, it is already shown that |T | ≤ l at any time. Second, from the definition
of DTP, |P| ≤ ∆D. Finally, |V| ≤ ∆I holds trivially (the case |V| < ∆I occurs when some
inserted vertices are deleted). Then |P ∪ T ∪ V| ≤ l + ∆D + ∆I = l + ∆. J

Since each element in P ∪T ∪V can be deleted, we may have to reuse the nodes of deleted
elements when new elements are created. This can be addressed by numbering the nodes in
C, storing the corresponding node id for each p ∈ P, τ ∈ T and v ∈ V, and maintaining the
unused nodes by list. We assume this node recycling runs in background, and for simplicity,
the node in C representing x ∈ P ∪ T ∪ V is denoted by C(x).

We next describe the update procedure. Let n be the number of vertices of G at the
initialization. Since the initial vertices are numbered from 0 to n − 1, the newly inserted
vertices, i.e. the vertices in V, are numbered one by one from n.

First we describe how to update the data structures when vertex insertion occurs. At
this time the list A of vertices the newly inserted vertex v is incident with is given. Let
k(≥ n) be the vertex id of v. First, convert each element of A to the vertex id f(·) and store
in an array A[k][·] sorted in ascending order. A is an adjacency list for the newly inserted
vertices. If A has a vertex u ∈ V, append k to A[f(u)], and connect C(v) with C(u). Next,
for each x ∈ P ∪ T judge whether v is incident with x and connect C(v) with C(x) if so.

ISAAC 2017
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These judgments can be performed by traversing B while scanning A[k] from left to right,
since A[k] is sorted. For each interval [a, b] in B, if [a, b] contains some elements in A[k] then
we mark the corresponding x ∈ P ∪ T incident with v. If y ∈ P ∪ T is not marked when the
traversal of B finishes, y is not incident with v.

Next we describe what to do when the deletion of a vertex w occurs. Let k = f(w). The
vertex u with f(u) = x is denoted by f−1(x). First, if w ∈ V, i.e. k ≥ n, then undo what is
performed when inserting w. More specifically, first disconnect C(f−1(A[k][i])) from C(w)
for each i such that A[k][i] ≥ n, then judge whether w is incident with each x ∈ T ∪ P and
disconnect C(x) from C(w) if so. This judgment can be done in the same way as described
above. Next, if w /∈ V , detect y ∈ P ∪T which contains w by a search on B, and then update
DTP and C simultaneously as described later. When the DTP is updated as in Sect. 3,
some of the following four operations may occur: adding a path p to P, removing p from P,
adding a subtree τ to T , and removing τ from T .

Now we focus on a path p, and show how to judge whether x ∈ P ∪T ∪V \{p} is incident
with p, i.e. there are some edges between x and p. For each u ∈ V we can judge it by the
following way. Let [a1, b1], . . . , [ak, bk] be the intervals the vertices of p occupy in the vertex
id, and lb(A[i], j) be the smallest element in A[i] which is not less than j, which can be
obtained by a binary search on A[i]. Then p is incident with u iff there exists i such that
lb(A[f(u)], ai) ≤ bi. For each p′ ∈ P and τ ′ ∈ T we can judge the incidence by the queries
Q′(p′, p) and Q(τ ′, p), respectively. Using these judging frameworks, we can update C when
the addition or removal of p occurs: for each x ∈ P ∪ T ∪ V incident with p, disconnect C(x)
from C(p) when p is removed from P, or connect C(x) with C(p) when p is added to P.

We can cope with the addition or removal of a subtree τ in a similar way. Let [a, b] be
the interval the vertices of τ occupy in the vertex id. Then τ is incident with u ∈ V iff
lb(A[f(u)], a) ≤ b. For each p′ ∈ P , we can judge whether p′ is incident with τ by the query
Q(τ, p′). Again note that τ is not incident with any τ ′ ∈ T \ {τ} due to DFS property. The
update procedure for C is the same: for each x ∈ P ∪ V incident with τ , disconnect C(x)
from C(τ) when τ is removed from T , or connect C(x) with C(τ) when τ is added to T .

Finally we show how to answer the connectivity query between v and w. First we detect
x ∈ P ∪ T ∪ V containing v. Even if v /∈ V we can determine x ∈ P ∪ T by searching the
interval which contains f(v) on B. The same argument can be applied to the conversion
from w to y ∈ P ∪ T ∪ V. If x = y then v and w are obviously connected, otherwise the
answer can be obtained by querying on C whether C(x) and C(y) are connected.

5.1 Time Complexity Analysis
We proceed to the time complexity analysis of this algorithm. In our analysis, we use
the FGCE data structure proposed by Wulff-Nilsen [14] as C, which has O(log2 k/ log log k)
amortized update time and O(log k/ log log k) query time for a graph with k nodes. Since
k = l + ∆ ≤ n+ n as in Lemma 9, these are bounded by O(Tu) amortized time for update
and O(Tq) time for query, with Tu = log2 n/ log logn and Tq = logn/ log logn. First of all,
the query time of our algorithm is O(logn), since a search on B takes O(log |B|) = O(logn)
time and a query on C takes O(Tq) = o(logn) time. From now the update time is considered.

First, we consider the time consumed by the (periodic) initialization, which is amortized
over ∆ updates. The data structure in Lemma 8 can be built in O(m

√
logn) time and C in

O(k log k) = O((l+∆) logn) time (though the initialization cost of C is not explicitly described
in [14], we prove that for a graph with k nodes and no edges C can be initialized in O(k log k)
time). From Lemma 3, the total time of maintaining DTP is O(∆ log2 n+ n+ l logn).
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Next, we focus on the vertex insertion. Let mv be the number of incident vertices of
the newly inserted vertex v, i.e. the number of newly inserted edges. Sorting these incident
vertices takes O(mv logmv) = O(mv logn) time, or O(n) time by bucket sort. Traversing
B while scanning A[k] takes O(mv + |B|) = O(mv + |T | + |P| logn) time. Connecting
C(v) with some C(x) occurs at most |P ∪ T ∪ V| times, thus updating C takes at most
O((|P|+ |T |+ |V|)Tu) time.

Finally we consider the deletion of a vertex w. There are three cases, namely, w ∈ V,
w ∈ ∃p ∈ P and w ∈ ∃τ ∈ T . If w ∈ V, the time complexity is almost the same as that of
vertex insertion, except that sorting incident vertices is not needed. If not, we can detect
y ∈ P ∪ T which contains v in O(log |B|) = O(logn) time. Then if y = p ∈ P, one path is
removed from P and at most two paths are added to P. For each removal or addition of a
path, judging the incidence takes O(log2 n) time for each u ∈ V (since this amounts to at
most O(logn) binary searches on A[f(u)]), O(log1+ε n) time for each p′ ∈ P, and O(logε n)
time for each τ ′ ∈ T (Lemma 8). Updating C takes at most O((|P| + |T | + |V|)Tu) time.
Then the total cost is bounded by O((|P|+ |T |)Tu + |V| log2 n) time. The most complicated
case is y = τ ∈ T . In this case, one subtree is removed from T , one path is added to P , and
δw subtrees are added to T , where δw is the number of hanging subtrees as described in Sect.
3. Here judging the incidence between τ ∈ T and each u ∈ V takes O(logn) time, since this
amounts to one binary search on A[f(u)]. Then a similar analysis shows that the total cost
is bounded by O((|P|+ |T |)Tu + |V| log2 n+ δw(|P|+ |V|)Tu).

Now we sum up all of the costs described above. The most crucial point is that we
can amortize the sum of δw over ∆ updates by Lemma 2:

∑
w δw ≤ l + ∆. Since |P| ≤ ∆,

|T | ≤ l and |V| ≤ ∆, the amortized cost for the update procedure (other than initialization)
over ∆ updates is bounded by O(lTu + ∆ log2 n + min{m logn, n}) per update, where
m =

∑
vmv/∆ is the average number of newly inserted edges per update. The overall

amortized update time is obtained by adding the initialization cost divided by ∆ to it.
Some terms are absorbed in lTu and ∆ log2 n terms and we obtain the following bound:
O((n + m

√
logn)/∆ + ∆ log2 n + lTu + min{m logn, n}). By taking ∆ = d

√
m/ log0.75 ne,

this bound becomes O(
√
m log1.25 n+ l log2 n/ log logn+ n). If m = Ω(n/

√
logn), the n/∆

term is absorbed in m
√

logn/∆ term and the last n term becomes min{m logn, n}.

I Theorem 10. There exists a deterministic fully dynamic connectivity algorithm under
general vertex updates such that each update can be processed in amortized O(

√
m log1.25 n+

l log2 n/ log logn+n) time and each query in O(logn) time, where l is the number of leaves of
a DFS forest of G at some point. If m = Ω(n/

√
logn), the amortized update time complexity

is reduced to O(
√
m log1.25 n+ l log2 n/ log logn+ min{m logn, n}), where m is the average

number of newly inserted edges per update.

6 Worst Case Update Time Algorithm

In this section, we show a worst case update time FGCV algorithm. In our worst case update
time algorithm, the procedure for processing graph updates and queries is kept same as
the amortized update time algorithm in Sect. 5. We alter the periodic initialization. The
principles to achieve “worst case” update time are as follows: (i) to perform simultaneously
the processing of graph updates and queries and the initialization of data structures, and (ii)
to utilize the data structures built from a DFS forest with “less” number of leaves. The idea
(i) is used for various worst case update time dynamic graph algorithms such as dynamic
DFS [2, 12] and dynamic all-pairs shortest paths [1]. The idea (ii) is due to the observation
that in the amortized update time algorithm, smaller l leads to a better update time bound.
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The overview of our algorithm is described as follows. Let a > 1 be a positive constant
and ∆0,∆1, . . . be positive integers (their values are decided later). We virtually divide the
sequence of graph updates into phases; the first ∆0 updates are called phase 0, the next ∆1
updates are called phase 1, and similarly from (∆0 + · · ·+ ∆j−1 + 1)-st to (∆0 + · · ·+ ∆j)-th
updates are called phase j. Let Gj be the graph at the end of phase (j − 1). First, given an
original undirected graph G, calculate a DFS forest T0 of G to get the number of leaves l0
of T0, initialize the data structure D0 for G and T0, and use D0 for processing updates and
queries in phase 0 and 1. Here D0 is indeed a collection of the DTP of T0, the FGCE data
structure C, and the data structure to solve Q and Q′. Besides this, in phase j ≥ 1, in the
first half (i.e. first ∆j/2 updates) the followings are performed gradually: calculate a DFS
forest Tj of Gj to get the number of leaves lj of Tj and initialize the data structure Dj for
Gj and Tj . Then if lj > alj−1 (i.e. the number of leaves of Tj is too much), do nothing other
than processing updates and queries in the second half, and in the next phase (j + 1) the
data structure used in phase j is consecutively utilized for processing updates and queries. If
lj ≤ alj−1, in the second half apply the ∆j vertex updates (from (∆0 + · · ·+ ∆j−1 + 1)-st
to (∆0 + · · ·+ ∆j)-th) on Dj gradually. This can be done by applying two updates on Dj
during each graph update. In this way Dj is ready to use for processing updates and queries
in the end of phase j, and Dj is utilized in the next phase (j + 1).

6.1 Probability and Time Complexity Analysis
Now we consider the probability of correctness and the update time complexity. Here we
use the Monte Carlo FGCE data structure proposed by Kapron et al. [10] as C, which has
O(log5 k) worst case update time and O(log k/ log log k) query time for a graph with k nodes.
Their algorithm has only one-sided error: if their algorithm answers “yes” for the query, the
answer is always correct, otherwise the answer is correct with probability at least 1− k−c
for any fixed constant c. If the data structures are used for processing updates and queries
in the same way as Sect. 5, the most time consuming case occurs when a vertex w with
w ∈ ∃τ ∈ T is deleted, which causes δw ≤ l subtrees to be added to T . When ∆ updates are
already processed, |P| ≤ ∆ and |V| ≤ ∆. Therefore the worst case cost for single update
in phase j is bounded by O(l∆ log5 n + n) when ∆ updates are processed, where l is the
number of leaves of a DFS forest the data structures used in phase j are built from. Note
that the O(n) term derived from the vertex insertion is also not negligible.

First we consider the probability of correctness. The connectivity oracle by Kapron et
al. [10] maintains a spanning forest of the graph internally. Indeed, their oracle guarantees
that this spanning forest is maintained correctly with probability at least 1 − k−c. This
means that in our algorithm the spanning forest of a graph with vertex set P ∪ T ∪ V is
maintained correctly in C with probability at least 1− k−c. Later we set k ≥

√
n, then our

algorithm answers the query correctly with probability at least 1− n−c/2.
Next we consider the time complexity. In the analysis, we assume the number of edges

of G is not drastically changed during each phase for simplicity. In other words, let mj

be the number of edges of Gj , then we assume clmj−1 ≤ mj ≤ cumj−1 for all j ≥ 1 with
some fixed constants cl and cu (note that this assumption is also implicitly imposed on the
analysis of the dynamic DFS algorithms [2, 12]). We set a = 4, ∆0 = b

√
m/l0/ log2.25 nc

and ∆j = b
√
m/lj−1/ log2.25 nc (j ≥ 1).

In phase j ≥ 1, performing DFS and initializing the data structure to solve Q and Q′ takes
O((m

√
logn + n)/(∆j/2)) = O(

√
mlj−1 log2.75 n + n) time per update (similar argument

can be applied to phase 0). If lj ≤ 4lj−1, in the second half of phase j applying ∆j updates
on Dj takes O(lj∆j log5 n+ n) = O(

√
mlj−1 log2.75 n+ n) time per update.
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The most important point is how many updates each data structure Dt is processed. It
seems to be difficult to analyze it because even if m does not change drastically during each
phase, l may change drastically. However, we can obtain the following lemma.

I Lemma 11. During our algorithm, Dt processes at most O(
√
m/lt/ log2.25 n) updates.

Proof. Suppose Dt (t ≥ 1) is used for processing updates and queries from phase (t+ 1) to
(t+ k). Then Dt processes ∆t + · · ·+ ∆t+k updates overall. Due to the assumption of the
periodic initialization described above, we can say alt−1 ≥ lt < lt+1/a < · · · < lt+k−1/a

k−1.
Therefore ∆t+i ≤ (

√
m/lt/ log2.25 n)/2i−1 (i = 0, . . . , k) (with a = 4). Since the sum of

geometric series converges to a constant, ∆t + · · ·+ ∆t+k ≤ (
√
m/lt/ log2.25 n) · (2 + 1 + · · ·+

1/2k−1) = O(
√
m/lt/ log2.25 n). Similar arguments can be applied to D0. J

Then the worst case cost of processing single update with Dt is bounded by O(lt log5 n ·√
m/lt/ log2.25 n+ n) = O(

√
mlt log2.75 n+ n). If Dt (t ≥ 1) is used for processing updates

and queries in phase j > t, we can say lt < lj−1/a
j−1−t, so the bound can be written as

O(
√
mlj−1 log2.75 n+ n). Similar arguments hold for the cases t = 0 and t = j.

We do not care the cost of C’s initialization, but this does not cause trouble. From
the choice of ∆j , k = dmax{lj + 2

√
m/ log2.25 n,

√
n}e is enough for Dj . The initialization

cost of C is O(k log4 n) [10] since C is initialized to have no edges as in Sect. 5. Here
lj log4 n/∆j ,

√
m log1.75 n/∆j and

√
n log4 n/∆j are absorbed in lj∆j log5 n, m

√
logn/∆j

and n/∆j , respectively. Similarly, the initialization cost of DTP is also negligible. Overall, it
can be said that the worst case update time complexity is O(

√
ml0 log2.75 n+ n) in phase 0

and O(
√
mlj−1 log2.75 n+ n) in phase j. Now we obtain the following theorem.

I Theorem 12. There exists a Monte Carlo fully dynamic connectivity algorithm under
general vertex updates such that each update can be processed in worst case O(

√
ml log2.75 n+n)

time and each query in O(logn) time, where l is the number of leaves of a DFS forest of G
at some point. If this algorithm answers “yes” for the query, the answer is always correct,
otherwise correct with probability at least 1− n−c for any fixed constant c.

7 The Number of Leaves of DFS Forest

In this section, we focus on the value of l, that is, the number of leaves of the DFS forest.
Now we state that for relatively dense random graphs l = o(n) holds with high probability.

Here we consider the ER model [9] G(n, p). In a random graph G(n, p) which is an
undirected graph with n vertices, for every pair (v, w) of vertices an edge between v and w is
added to the graph with probability p independent of other pairs. The average number of
edges is M = Np with N =

(
n
2
)
≤ n2/2. Recently, Baswana et al. [3] proved the following

result, which is about the property of DFS on G(n, p).

I Lemma 13 ([3]). Given a random graph G(n, p) with p = (lnn0 + c)/n0 for any integers
n0 ≤ n and c ≥ 1, the DFS on G(n, p) proceeds without moving backward for the first n− n0
vertices with probability at least 1− 2/ec.

The DFS on a graph can be seen as a sequence of moving forward and moving backward; if
there exist unvisited adjacent vertices then it moves forward, otherwise it moves backward.
This lemma implies that with high probability the number of leaves of the DFS forest of
G(n, p) is less than n0 since the first n − n0 vertices are all non-leaf vertices in the DFS
forest. The proof of Lemma 13 in [3] is very simple: the probability that the DFS on G(n, p)
proceeds without moving backward for the first n− n0 vertices is

∏n−n0
j=1 {1− (1− p)n−j},

and this probability is lower bounded by 1− 2/ec using some elementary inequalities.
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In Lemma 13, if we set M = n ln1+α n/2 then n0 ≤ n/ lnα n and M = n1+ε/2 then
n0 ≤ n1−ε lnn. If l = O(n/ log2 n), the amortized update time complexity in Theorem 10
becomes O(n) (unless m = Ω(n2/ log2.5 n)), which is a firm lower bound. Simple calculations
show that l ≤ n0 = O(n/ log2 n) is achieved with high probability when M = Ω(n log3 n) or
Ω(n1+ε). Moreover, if we set M = gn with g ≥ 1 then n0 ≤ n lnn/2g in Lemma 13. This
means that under ER model, Ml ≤Mn0 ≤ n2 lnn/2 holds with high probability. Therefore
the worst case update time complexity in Theorem 12 becomes O(n log3.25 n) (which is faster
than O(n log5 n) [10]) also with high probability.

It is regrettable that maintaining a connectivity oracle of dense G(n, p) is often useless
since G(n, p) with M > n lnn/2 is almost surely connected. However, these observations
suggest that for a graph with a few parts each of which is dense (e.g. a graph with a few
isolated and dense connected components), algorithms X and Y work fast. We think this kind
of graph may appear in a social graph with a few isolated or almost isolated communities.

Acknowledgements. The author would like to thank Kunihiko Sadakane for helpful com-
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6 T. M. Chan, M. Pǎtraşcu, and L. Roditty. Dynamic connectivity: connecting to networks
and geometry. SIAM J. Comput., 40:333–349, 2011. doi:10.1137/090751670.

7 R. Duan. New data structures for subgraph connectivity. In Proc. ICALP, Part I, pages
201–212, 2010. doi:10.1007/978-3-642-14165-2_18.

8 R. Duan and L. Zhang. Faster randomized worst-case update time for dynamic subgraph
connectivity. In Proc. WADS, pages 337–348, 2017. doi:10.1007/978-3-319-62127-2_29.

9 P. Erdős and A. Rényi. On random graphs I. Publ. Math., 6:290–297, 1959.
10 B. M. Kapron, V. King, and B. Mountjoy. Dynamic graph connectivity in polylogarithmic

worst case time. In Proc. SODA, pages 1131–1142, 2013. doi:10.1137/1.9781611973105.
81.

11 C. Kejlberg-Rasmussen, T. Kopelowitz, S. Pettie, and M. Thorup. Faster worst case de-
terministic dynamic connectivity. In Proc. ESA, pages 53:1–53:15, 2016. doi:10.4230/
LIPIcs.ESA.2016.53.

12 K. Nakamura and K. Sadakane. A space-efficient algorithm for the dynamic DFS prob-
lem in undirected graphs. In Proc. WALCOM, pages 295–307, 2017. doi:10.1007/
978-3-319-53925-6_23.

13 D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci.,
26:362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

14 C. Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Proc. SODA,
pages 1757–1769, 2013. doi:10.1137/1.9781611973105.126.

http://dx.doi.org/10.1137/1.9781611974782.28
http://dx.doi.org/10.1137/1.9781611974782.28
http://dx.doi.org/10.1137/1.9781611974331.ch52
http://dx.doi.org/10.1137/1.9781611974331.ch52
http://arxiv.org/abs/1705.02613
http://dx.doi.org/10.1137/1.9781611974331.ch143
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1137/090751670
http://dx.doi.org/10.1007/978-3-642-14165-2_18
http://dx.doi.org/10.1007/978-3-319-62127-2_29
http://dx.doi.org/10.1137/1.9781611973105.81
http://dx.doi.org/10.1137/1.9781611973105.81
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.53
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.53
http://dx.doi.org/10.1007/978-3-319-53925-6_23
http://dx.doi.org/10.1007/978-3-319-53925-6_23
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1137/1.9781611973105.126

	Introduction
	Our Results

	Preliminaries
	Disjoint Tree Partitioning
	More Efficient Construction

	Queries on the Disjoint Tree Partitioning
	Amortized Update Time Algorithm
	Time Complexity Analysis

	Worst Case Update Time Algorithm
	Probability and Time Complexity Analysis

	The Number of Leaves of DFS Forest

