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Abstract
We consider the problem of computing all maximal repetitions contained in a string that is given
in run-length encoding. Given a run-length encoding of a string, we show that the maximum
number of maximal repetitions contained in the string is at most m+k−1, where m is the size of
the run-length encoding, and k is the number of run-length factors whose exponent is at least 2.
We also show an algorithm for computing all maximal repetitions in O(mα(m)) time and O(m)
space, where α denotes the inverse Ackermann function.
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1 Introduction

Periodicity and repetitions in strings are one of the most important characteristic features
in strings. They have been one of the first objects of study in the field of combinatorics on
words [25] and have many theoretical, as well as practical applications, e.g., in bioinformat-
ics [14].

Maximal repetitions are periodically maximal substrings of a string where the smallest
period is at most half the length of the substring, i.e., there are at least two consecutive
occurrences of the same substring. An O(n logn) time algorithm for computing all of the
maximal repetitions contained in a string of length n, was shown by Main and Lorentz [24],
which is optimal for general unordered alphabets, i.e., when only equality comparisons
between the letters are allowed. Kolpakov and Kucherov [15] further showed that the
number of maximal repetitions is actually O(n), and gave a linear time algorithm for ordered
constant size alphabets (and essentially for integer alphabets), to compute all of them. The
algorithm was a modification of the algorithm by Main [23], which in turn relies on the
Lempel-Ziv 77 (LZ77) factorization [27] of the string, which can be computed in linear time
for ordered constant size or integer alphabets [8], but requires Ω(n log σ) time for general
ordered alphabets [16], where σ is the size of the alphabet. Recently, a new characterization
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of maximal repetitions using Lyndon words was proposed by Bannai et al. [2, 3], which lead
to a very simple proof to what was known as the “runs” conjecture, i.e., that the number of
maximal repetitions in a given string of length n is less than n [3]. The characterization also
lead to a new linear time algorithm for computing maximal repetitions on ordered constant
size and integer alphabets, which does not require the LZ77 factorization, but only on a
linear number of longest common extension queries. Furthermore, based on this algorithm,
the running time for computing all maximal repetitions for general ordered alphabets were
subsequently improved to O(n log2/3 n) by Kosolobov [17], O(n log logn) by Gawrychowski
et al. [12], and O(nα(n)) by Crochemore et al. [9], where α denotes the inverse Ackermann
function.

In this paper, we consider the problem of computing all maximal repetitions contained
in a string when given the run-length encoding (RLE) of the string, which is a well known
compressed representation where each maximal substring of the same character is encoded as
a pair consisting of the letter and the length of the substring. For example, the run-length
encoding of the string aaaabbbaaacc is (a, 4)(b, 3)(a, 3)(c, 2). The main contributions of the
paper are:

1. an upper bound m+ k − 1 on the number of maximal repetitions contained in a string,
where m is the size of its run-length encoding and k is the number of run-length factors
whose exponent is at least 2, and

2. an O(mα(m)) time and O(m) space algorithm to compute all maximal repetitions in a
string.

Our algorithm is at least as efficient as the non-RLE algorithms for general ordered alphabets.
Furthermore, when the input string is compressible via RLE, our algorithm can be faster
and more space efficient compared to the non-RLE algorithms. Although our algorithm
mimics those for non-RLE strings and is conceptually simple, its correctness is based on new
non-trivial observations on the occurrence of specific Lyndon words in run-length encoded
strings.

Efficient algorithm for string problems when the input is given in RLE has been considered
in various contexts, for example, edit distance [6], various Longest Common Subsequence
problems [20, 18], palindrome retrieval [7], computing Lempel Ziv factorization [26], etc. We
shall repeat below a claim made in [18] concerning the significance of RLE-based solutions:

“A common criticism against RLE based solutions is a claim that, although they are
theoretically interesting, since most strings “in the real world” are not compressible by
RLE, their applicability is limited and they are only useful in extreme artificial cases.
We believe that this is not entirely true. There can be cases where RLE is a natural
encoding of the data, for example, in music, a melody can be expressed as a string of
pitches and their duration. Furthermore, in the data mining community, there exist
popular preprocessing schemes for analyzing various types of time series data, which
convert the time series to strings over a fairly small alphabet as an approximation of
the original data, after which various analyses are conducted (e.g. SAX (Symbolic
Aggregate approXimation) [19], clipped bit representation [1], etc.). These conversions
are likely to produce strings which are compressible by RLE (and in fact, shown to
be effective in [1]), indicating that RLE based solutions may have a wider range of
application than commonly perceived.”
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2 Preliminaries

2.1 Strings

Let Σ denote the alphabet, i.e. the set of letters (or characters). An element of Σ∗ is called
a string. For any strings x, y ∈ Σ∗, xy represents their concatenation. If w = xyz for any
strings w, x, y, z ∈ Σ∗, x, y, z are respectively called a prefix, substring, suffix of w. A prefix
x and a suffix z of w are respectively called a proper prefix, and proper suffix of w, if x 6= w

and z 6= w. A string x is called a border of w, if it is a proper suffix as well as a prefix
of w. The length of a string w is denoted as |w|. The empty string is a string of length 0
and will be denoted by ε. For any 1 ≤ i ≤ j ≤ |w|, w[i] denotes the ith letter of w, and
w[i..j] = w[i] · · ·w[j]. For convenience, let w[i..j] = ε when i > j. For any integer k ≥ 0 and
string x ∈ Σ∗, x0 = ε, and xk = xk−1x.

We assume a general ordered alphabet, where a total order ≺ is defined on Σ, and the order
between two letters in the alphabet can be computed in constant time. A total order ≺ on the
alphabet induces a total order on the set of strings called the lexicographic order, which we also
denote by ≺, i.e., for any x, y ∈ Σ∗, x ≺ y ⇐⇒ x is a proper prefix of y, or, there exists 1 ≤
i ≤ min{|x|, |y|} s.t. x[1..i− 1] = y[1..i− 1] and x[i] ≺ y[i].

All previous linear time algorithms either assume a constant size ordered alphabet or
an integer alphabet, i.e., Σ = {1, . . . , nc} for some constant c. We will later see that this
assumption does not help in our case.

2.2 Maximal Repetitions

For any string w ∈ Σ∗, an integer 1 ≤ p < |w| is called a period of w if w[i] = w[i+ p] for all
1 ≤ i ≤ |w| − p. A string whose smallest period is at most half its length is called a repetition.
We are interested in occurrences of repetitions as a substring of a given string which are
periodically maximal. Specifically, a triplet r = (i, j, p) is called a maximal repetition of w, if
and only if all the following hold:
1. p is the smallest period of w[i..j] and |w[i..j]| ≥ 2p (repetition),
2. i = 1 or w[i− 1] 6= w[i− 1 + p] (left maximal), and
3. j = |w| or w[j + 1] 6= w[j + 1− p] (right maximal).
For any string w, we denote the set of maximal repetitions as MReps(w). Although maximal
repetitions are commonly referred to as “runs” in the literature, we use the term “maximal
repetitions” so as not to confuse it with “run” in “run-length encoding”.

For example, the string w = abaababaabaab contains seven maximal repetitions, i.e.,
MReps(w) = {(3, 4, 1), (8, 9, 1), (11, 12, 1), (4, 8, 2), (1, 6, 3), (6, 13, 3), (1, 11, 5)}.

2.3 Run Length Encoding

Let N denote the set of positive integers. For any string w ∈ Σ∗, let ai ∈ Σ and ei ∈ N ,
for 1 ≤ i ≤ m, be such that w = ae1

1 · · · aem
m and ai 6= ai+1 for all 1 ≤ i < m. The run-

length encoding RLE(w) of string w is a string over the alphabet Σ×N , and is defined as
RLE(w) = (a1, e1) · · · (am, em). For any 1 ≤ i ≤ m, each letter RLE(w)[i] = (ai, ei) and its
corresponding substring aei

i in w is called a run-length factor, and ei is called its exponent.
The set of starting (resp. ending) positions of run-length factors of w is denoted by Sw

(resp. Ew), i.e., Sw = {1 +
∑i−1
k=1 ek : 1 ≤ i ≤ m} and Ew = {

∑i
k=1 ek : 1 ≤ i ≤ m}. We will

also write Sw[i] = 1 +
∑i−1
k=1 ek and Ew[i] =

∑i
k=1 ek for any 1 ≤ i ≤ m.

ISAAC 2017
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2.4 Lyndon Words
A string w is a Lyndon word [22] with respect to lexicographic order ≺, if and only if
w ≺ w[i..|w|] for any 1 < i ≤ |w|, i.e., w is lexicographically smaller than any of its proper
suffixes with respect to ≺. It is easy to see that a Lyndon word w cannot have a non-empty
border, since a border would be a proper suffix of w that is lexicographically smaller than w,
since it is also a prefix of w. An equivalent definition for a Lyndon word, is a word which is
lexicographically smaller than any of its proper cyclic rotations.

For example, if a ≺ b, then, the string abaabb, baa, abab are not Lyndon words with
respect to ≺, while aabab is. The following is also well known.

I Lemma 1 (Proposition 1.3 [10]). For any Lyndon words u and v, uv is a Lyndon word iff
u ≺ v.

2.5 Longest Common Extension
For any string w of length n, the longest common extension query is, given two positions
1 ≤ i, j ≤ n, to answer

LCEw(i, j) = max{k | w[i..i+ k − 1] = w[j..j + k − 1], i+ k − 1, j + k − 1 ≤ n}.

We also define the longest common extension in the reverse direction, i.e.,

LCER
w(i, j) = max{k | w[i− k + 1..i] = w[j − k + 1..j], i− k + 1, j − k + 1 ≥ 1}.

Note that if there is a way to compute LCEw(i, j) given w, there is also a way to com-
pute LCER

w(i, j) by considering the reversed string wR = w[n] · · ·w[1], since LCER
w(i, j) =

LCEwR(n− i+ 1, n− j + 1).

3 The Maximum Number of Maximal Repetitions by RLE

The goal of this section is to prove the following Theorem.

I Theorem 2. For any string w, let m be the size of its run-length encoding, and k the
number of run-length factors of w whose exponent is at least 2. Then, |MReps(w)| ≤ m+k−1.

The proof basically follows the idea of [3] for normal strings, but it is extended to deal with
RLE strings.

For any maximal repetition r = (i, j, p) of string w and any lexicographic order ≺, there
exists a substring of length p in w[i..j] that is a Lyndon word with respect to ≺. This
is because the set {w[i′..i′ + p − 1] | i + 1 ≤ i′ ≤ i + p} contains all p cyclic rotations of
w[i+1..i+p] which are all distinct, since p is the smallest period of w, and a lexicographically
smallest rotation will always exist. Any length p subinterval [`, ` + p − 1] of a maximal
repetition r = (i, j, p) such that w[`..`+ p− 1] is a Lyndon word with respect to ≺, is called
an L-root of r with respect to ≺.

Theorem 2 is trivial when |Σ| = 1, so we can assume |Σ| ≥ 2, and thus, we are
able to consider two orderings denoted by ≺0 and ≺1, where ≺0=≺ and for any a, b ∈ Σ,
a ≺0 b ⇐⇒ b ≺1 a. We also use ≺0 and ≺1 to denote the lexicographic orders on Σ∗ induced
by the respective total orders. As in [3], we choose, for each maximal repetition r = (i, j, p),
a specific lexicographic order denoted by ≺r∈ {≺0,≺1} so that w[j + 1] ≺r w[j + 1− p]. We
note that either order can be chosen when j = n. The set Br is defined as the beginning
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positions of L-roots of r with respect to this order, but excludes a position if it coincides with
the beginning position of the maximal repetition, i.e., for any maximal repetition r = (i, j, p),

Br = {` | [`..`+ p− 1] is an L-root of r w.r.t. ≺r , and ` 6= i}.

Note that |Br| ≥ 1 since a maximal repetition always contains an L-root that does not start
at its beginning. One of the crucial results of [3] was the following lemma, which implies
that the number of maximal repetitions in a string w of length n is at most n − 1 since
∪r∈MReps(w)Br ⊆ [2..n] and thus |MReps(w)| ≤

∑
r∈MReps(w) |Br| ≤ n− 1.

I Lemma 3 (Lemma 8 of [3]). For any distinct maximal repetitions r, r′ of w, Br ∩Br′ = ∅.

The following lemma is an important new observation for L-roots of maximal repetitions
with respect to their run-length encoding.

I Lemma 4. For any maximal repetition r = (i, j, p) of string w with p ≥ 2, it holds that
Br ⊂ Sw, i.e., a position in Br must be the beginning of an RLE-factor.

Proof. Suppose to the contrary, that there is some ` ∈ Br that is not at the beginning of
an RLE-factor, i.e., ` 6∈ Sw, and let [`..`+ p− 1] be the corresponding L-root of r. By the
assumption, w[`− 1] = w[`]. Furthermore, by the definition of Br, we have that i < ` and
by the periodicity of r, w[`− 1] = w[`+ p − 1]. However, this implies that w[`..`+ p − 1]
has a border, contradicting that it is a Lyndon word. The lemma holds, since 1 ∈ Sw but
1 6∈ Br. J

Of course, a run-length factor can be a maximal repetition of period 1, and can be stated as
follows.

I Lemma 5. For any string w, let RLE(w) = (a1, e1) · · · (am, em). For any 1 ≤ i ≤ m,
(Sw[i],Ew[i], 1) is a maximal repetition of period 1 if and only if ei ≥ 2.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Recall that k is the number of run-length factors of w whose exponent
is at least 2. Due to Lemma 5, the number of maximal repetitions with period 1 is equal to
k. Note that for any maximal repetition r of period 1, any position i ∈ Br satisfies i 6∈ Sw.
Let MRepsp≥2 (w) be the set of maximal repetitions such that the period is at least 2. From
|Br| ≥ 1 and Lemmas 3 and 4,

|MRepsp≥2 (w)| ≤
∑

r∈MRepsp≥2 (w)

|Br| ≤ m− 1 < m = |Sw|

holds. Thus, the total number of maximal repetitions is at most m+ k − 1. J

If we consider the 2 cases w.r.t. m, we can get better bounds for each of 2 cases. Corollary 6
is the tight bound for smaller m. Corollary 7 is a improved bound for larger m.

I Corollary 6. For any string w, let m be the size of its run-length encoding. If m ≤ 3,
|MReps(w)| ≤ m.

If m = 3, it is easy to see that |MRepsp≥2 (w)| = 0. Obviously, |MReps(w)| = k also holds,
where k is the number of run-length factors of w whose exponent is at least 2.

I Corollary 7. For any string w, let m be the size of its run-length encoding, and k the number
of run-length factors of w whose exponent is at least 2. If m ≥ 4, |MReps(w)| ≤ m+ k − 3.

ISAAC 2017
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Proof. Since an L-root of r ∈ MRepsp≥2 (w) must contain at least two different characters,
the beginning position Sw[m] of the last run-length factor (am, em) cannot be in Br for
any r ∈ MRepsp≥2 (w). If Sw[m − 1] ∈ Br for some r ∈ MRepsp≥2 (w), this implies that
[Sw[m− 1],Ew[m]] is an L-root of r. Thus, [Sw[m− 2],Ew[m− 1]] must also be an L-root
with respect to the lexicographically reversed order, and Sw[m − 2] /∈ Br. Since r ends
at position |w|, we can choose either Sw[m − 1] or Sw[m − 2] as an element of Br. This
implies that either Sw[m − 1] or Sw[m − 2] is not in Br for any r ∈ MRepsp≥2 (w). Thus
|MRepsp≥2 (w)| ≤ m− 3 also holds. Since 1 and Sw[m] are not contained in Br, and since
only one of Sw[m − 1] or Sw[m − 2] is contained in some Br, we have that the maximum
number of maximal repetitions in a string is at most m+ k − 3. J

4 Computing All Maximal Repetitions on RLE strings

In this section, we propose an algorithm to compute all maximal repetitions on RLE strings.
Our algorithm follows the new algorithm for normal strings proposed in [3], but is modified
to handle RLE strings. We first review the algorithm for non-RLE strings.

4.1 Overview of Algorithm for Non-RLE Strings
The crucial observation made in [3] (which was also required for the proof of Lemma 3 in the
previous section) is the following:

I Lemma 8 (Lemma 7 of [3]). For any maximal repetition r = (i, j, p) of string w, let
[`, `+ p− 1] be an L-root of r with respect to order ≺r. Then, w[`..`+ p− 1] is the longest
Lyndon word that is a prefix of w[`..|w|].

Based on this observation, the algorithm consists of two steps. Step 1: Compute all the
longest Lyndon words with respect to ≺0 and ≺1 that start at each position of the string
(the occurrences are candidates for L-roots). Step 2: For each such candidate λ = w[iλ..jλ],
compute `h = LCEw(iλ, jλ + 1) and `g = LCER

w(iλ − 1, jλ) to see how long the period
pλ = |w[iλ..jλ]| = jλ − iλ + 1 continues to the left and to the right. We see that [iλ, jλ] is
indeed an L-root of the maximal repetition r = (iλ− `g, jλ+ `h, pλ) if and only if `g + `h ≥ pλ.

Noticing that a Lyndon word can be created from any string by appending a unique
smallest letter to the front of the string, we can use the Lyndon tree of a Lyndon word for
Step 1. Given a Lyndon word w of length n > 1, (u, v) is the standard factorization [5, 21] of
w, if w = uv and v is the longest proper suffix of w that is a Lyndon word, or equivalently,
the lexicographically smallest proper suffix of w. It is well known that for the standard
factorization (u, v) of any Lyndon word w, the factors u and v are also Lyndon words (e.g.[4]).
The Lyndon tree of w is the full binary tree defined by recursive standard factorization of w;
w is the root of the Lyndon tree of w, its left child is the root of the Lyndon tree of u, and
its right child is the root of the Lyndon tree of v. The longest Lyndon word that starts at
each position can be obtained from the Lyndon tree, due to the following lemma.

I Lemma 9 (Lemma 22 of [3]). Let w be a Lyndon word with respect to ≺. w[i..j] corresponds
to a right node (or possibly the root) of the Lyndon tree with respect to ≺ if and only if w[i..j]
is the longest Lyndon word with respect to ≺ that starts from i.

The Lyndon tree of a normal string can be computed in O(nα(n)) time over general
ordered alphabet because of the following lemmas.

I Lemma 10 (Observation 4 of [9]). The Lyndon tree of a string of length n can be constructed
by using O(n) non-crossing LCE queries.
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I Lemma 11 (Theorem 12 of [9]). In a string of length n, a sequence of q non-crossing
LCE queries can be answered in time O(q + nα(n)), where α denotes the inverse Ackermann
function.

Here, a set of LCE queries is non-crossing if there are no two queries (i, j) and (i′, j′), such
that i < i′ < j < j′ or i′ < i < j′ < j. After computing the Lyndon tree, O(n) non-crossing
LCE queries are computed again for each right node in Step 2 as described above. Thus the
total time complexity for computing all maximal repetitions in non-RLE string is O(nα(n))
time over general ordered alphabet.

We note that the LCE queries and thus all maximal repetitions can be computed in total
O(n) time for integer alphabets (using e.g. [11]).

4.2 Extending Lyndon structures for RLE
We now consider computing maximal repetitions on RLE strings. By Theorem 2, the number
of maximal repetitions in an RLE string is O(m), and from Lemmas 4 and 8, we can limit
the candidate L-roots of maximal repetitions with period at least 2, to the longest Lyndon
words that start at beginning positions of a run-length factor. We propose the RLE-Lyndon
tree of a string which can be represented in O(m) space and contains this information. In the
RLE-Lyndon tree, we treat each run-length factor like a character. The idea of the extension
comes from the following lemma.

I Lemma 12. For any 1 ≤ i < j ≤ |w|, if w[i..j] is the longest Lyndon word with respect to
≺ that is a prefix of w[i..|w|], then j ∈ Ew, i.e., j is an end of a RLE-factor.

Proof. Suppose to the contrary, that there is some j /∈ Ew such that w[i..j] is the longest
Lyndon word with respect to ≺ that is a prefix of w[i..|w|]. Let RLE(w)[k] be the run-length
factor such that Sw[k] ≤ j < Ew[k]. Since w[i..j] is a Lyndon word of length at least 2 and
w[j] = ak = w[j + 1], w[i..j] ≺ w[j] = w[j + 1] holds. By Lemma 1, w[i..j + 1] is also a
Lyndon word. This contradicts that w[i..j] is the longest Lyndon word with respect to ≺
that is a prefix of w[i..|w|]. J

From Lemmas 4 and 12, we have that for any maximal repetition r, each L-root of r that
has a starting position in Br, starts at the beginning position of some run-length factor and
ends at the ending position of some run-length factor. We note that RLE-Lyndon substring
and RLE-Lyndon factorization which will be defined in this section were introduced in [13]
in a different context.

I Definition 13 (RLE-Lyndon substring). A string x is an RLE-Lyndon substring of w if x
is a Lyndon word that is a concatenation of consecutive run-length factors of w, or x is a
run-length factor.

I Definition 14 (RLE-standard factorization). A pair of strings (u, v) is an RLE-standard
factorization of w if w = uv and v is the longest proper suffix of w that is an RLE-Lyndon
substring.

I Definition 15 (RLE-Lyndon tree). The RLE-Lyndon tree of a Lyndon word w, denoted
LyndonTre2 (w), is an ordered full binary tree defined recursively as follows:

if |RLE(w)| = 1, then LyndonTre2 (w) consists of a single node labeled by (a1, e1);
if |RLE(w)| ≥ 2, then the root of LyndonTre2 (w), labeled by RLE(w), has left child
LyndonTre2 (u) and right child LyndonTre2 (v), where (u, v) is the RLE-standard factor-
ization of w.

ISAAC 2017
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a!a!a!b!b!a!a!b!b!a!a! b! a! b!b!a!a!b!b!a!a!b!b!b!b! a! a!

Figure 1 The RLE-Lyndon tree for the Lyndon word a3b2a2b2a2b2a3b2a2b2a2b3 with respect to
order a ≺ b. The double-headed arrows shows the L-roots that start at a position in Br,for all 4
maximal repetitions with period at least 2.

Figure 1 shows the RLE-Lyndon tree of a string a3b2a2b2a2b2a3b2a2b2a2b3. Though the
above structures are simply extended to RLE, it is interesting to note that these structures
satisfy similar properties of the original structures. The most important property of the
RLE-Lyndon tree in this paper is stated in Lemma 16, which is an analogous to Lemma 9.
The lemma can be shown by similar arguments as in [3].

I Lemma 16. Let w be a Lyndon word with respect to ≺. For any i ∈ Sw, w[i..j] corresponds
to a right node (or possibly the root) of LyndonTre2 (w) with respect to ≺ if and only if w[i..j]
is the longest Lyndon word with respect to ≺ that starts from i.

From the above lemma, we can detect all maximal repetitions in MRepsp≥2 (w) if we have
LyndonTre2 (w) (maximal repetitions with period 1 correspond to run-length factor or leaves
of LyndonTre2 (w)). In the example of Figure 1, for each maximal repetition r, the L-roots
that start at a position in Br are drawn by double-headed arrows. For example, the 2 L-roots
[Sw[3]..Ew[4]] and [Sw[5]..Ew[6]] (corresponding to a Lyndon word aabb) with respect to the
same order ≺ as the Lyndon tree is represented by an internal node which is a right child.
Also, it can be observed that each L-root begins at the starting position of a run-length
factor and ends at the ending position of a run-length factor of w.

In Section 4.3, we show an algorithm to compute LyndonTre2 (w). For convenience, we
present the notion of RLE-Lyndon factorizations and show some properties of RLE-Lyndon
factorizations.

I Definition 17 (RLE-Lyndon factorization). A sequence w1, . . . , ws is the RLE-Lyndon
factorization of w if each wi is an RLE-Lyndon substring, w1 � . . . � ws, and w = w1 · · ·ws.

The difference between the original Lyndon factorization [5] and the RLE-Lyndon factoriza-
tion arises for Lyndon factors which are a single letter in the original
Lyndon factorization. For a string w = bbbabbaabbaa, the original Lyndon factorization
of w is b � b � b � abb � aabb � a � a, the RLE-Lyndon factorization of w is
b3 � abb � aabb � a2. Thus similar argument about the longest Lyndon word on Lyn-
don factorizations holds, as below.

I Lemma 18. Let w1, . . . , ws be the RLE-Lyndon factorization of w. Then, w1 is either
RLE(w)[1] or the longest Lyndon word that is a prefix of w.

This implies that wi is either RLE(wi · · ·ws)[1] or the longest Lyndon word that is a prefix
of wi · · ·ws.
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4.3 Algorithms
Finally, we show how to compute LyndonTre2 (w) in O(mα(m)) time and O(m) space. After
we compute LyndonTre2 (w), we can compute all maximal repetitions by using non-crossing
LCE queries. Note that the O(n) time and space solution for non-RLE strings over the
integer alphabet cannot be applied to RLE(w) to achieve an O(m) time and space solution,
since the alphabet for RLE(w) cannot be assumed to be an integer alphabet in terms of its
length m (m could be much smaller than n, while an exponent of a run-length factor could
be as large as n). However, the solution to non-crossing LCE queries for non-RLE strings
over a general ordered alphabet can be easily extended to LCE queries on an RLE string,
since the algorithm is based only on character comparisons.

I Corollary 19. For any RLE string RLE(w) of size m, a sequence of q non-crossing LCE
queries on RLE(w) can be answered in time O(q +mα(m)).

We use the above corollary in order to decide the lexicographic order between RLE
substrings in the construction of LyndonTre2 (w), and to compute maximal repetitions.

I Lemma 20. LyndonTre2 (w) can be computed in O(mα(m)) time and O(m) space.

Proof. Firstly, we show our algorithm. The algorithm constructs LyndonTre2 (w) in bottom-
up and from right to left. The main idea is that the right factor of RLE-standard factorization
is the longest proper suffix which is an RLE-Lyndon substring. We will find such a suffix by
concatenating two RLE-Lyndon substrings based on Lemma 1. Since each leaf corresponds to
a single run-length factor (i.e., RLE-Lyndon substring), we know that the tree has m leaves.
A stack is maintained so that at the beginning of k-th step, the stack contains the sequence of
subtrees of LyndonTre2 (w) such that the corresponding sequence of RLE-Lyndon substrings
is the RLE-Lyndon factorization of the suffix w[Sw[m− k + 2]..|w|]. In the k-th step, the
algorithm pushes the leaf corresponding to RLE(w)[m − k + 1] on the stack. Let (fb, fe)
(resp. (sb, se)) be pair of positions in RLE(w) such that the top (resp. second) subtree in the
stack corresponds to the RLE-Lyndon substring w[Sw[fb]..Ew[fe]] (resp. w[Sw[sb]..Ew[se]]).
Note that Ew[fe] + 1 = Sw[sb] always holds. After pushing the new leaf, the algorithm does
the following;

If w[Sw[fb]..Ew[fe]] ≺ w[Sw[sb]..Ew[se]], pop the two elements and push the subtree which
is the concatenation of the two popped subtrees, and repeat the process.
Otherwise, go to the next step.

We now prove that the above invariant condition of the stack holds before k + 1-th step.
We denote the RLE-Lyndon factorization of the suffix w[Sw[m− k + 2]..|w|] by W1, . . . ,Wj .
Because of the above operations, a factorization of the suffix w[Sw[m− k + 1]..|w|] can be
represented byW ′,Wi, . . . ,Wj for some 1 ≤ i ≤ j whereW ′ = RLE(w)[m−k+1]W1 · · ·Wi−1
(for convenience, W0 = ε). By the assumption, Wi, . . . ,Wj is the RLE-Lyndon factorization
of the suffix Wi · · ·Wj . By the algorithm and Lemma 1, W ′ is an RLE-Lyndon substring
and W ′ � Wi holds. Thus W ′,Wi, . . . ,Wj is the RLE-Lyndon factorization of the suffix
w[Sw[m− k + 1]..|w|] since W ′ �Wi � . . . �Wj holds. Since w is a Lyndon word, when all
leaves are pushed on the stack and the number of elements in the stack is one, the algorithm
stops and the RLE-Lyndon tree is completely constructed.

We can determine the lexicographic order by using LCE queries. More precisely, for
each lexicographic comparison described above, we compute LCERLE(w)(fb, sb) = k. Then,
w[Sw[fb]..Ew[fe]] ≺ w[Sw[sb]..Ew[se]] if and only if sb + k − 1 < se and, either
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1. afb+k ≺ asb+k or, afb+k = asb+k and
2. efb+k < esb+k and afb+k+1 ≺ asb+k or
3. efb+k > esb+k and asb+k+1 ≺ afb+k.
Thus, in the algorithm, we call O(m) non-crossing LCE queries such that each query positions
is the beginning position of some run-length factor and we can compute LyndonTre2 (w) in
O(mα(m)) time.

To compute all maximal repetitions, we need to compute another O(m) sets of LCE
queries on w (or wR) for each candidate L-root. The query positions are starting positions
of run-length factors in w (or wR). It is easy to see that this can also be achieved in
O(mα(m)) time by Corollary 19 since if k = LCERLE(w)(i, j), then LCEw(Sw[i],Sw[j]) =
Ew[i+ k − 1]− Sw[i] + 1 + e, where e = min{ei+k, ej+k} if ai+k = aj+k and 0 otherwise. It
is also clear that the algorithm requires O(m) space. J

Therefore, the following theorem holds.

I Theorem 21. Given a run-length encoding of a string w, all maximal repetitions in w can
be computed in O(mα(m)) time and O(m) space.

I Corollary 22. For any string w, let RLE(w) = (a1, e1) · · · (am, em). If for all 1 ≤ i ≤ m,
ai ∈ {1, . . . ,mc1}, and ei = O(mc2) for some constants c1 and c2, then all maximal repetitions
in w can be computed in O(m) time and O(m) space.

Proof. Under the assumption, any set of O(m) LCE queries on RLE(w) can be answered
in O(m) total time using the methods for integer alphabets (i.e., Σ = {1, . . . ,mc} for some
constant c), since aei

i = O(mc1+c2). J
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