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—— Abstract

We introduce the fully-dynamic conflict-free coloring problem for a set S of intervals in R! with
respect to points, where the goal is to maintain a conflict-free coloring for S under insertions and
deletions. A coloring is conflict-free if for each point p contained in some interval, p is contained
in an interval whose color is not shared with any other interval containing p. We investigate
trade-offs between the number of colors used and the number of intervals that are recolored upon
insertion or deletion of an interval. Our results include:

a lower bound on the number of recolorings as a function of the number of colors, which implies
that with O(1) recolorings per update the worst-case number of colors is Q(logn/loglogn),
and that any strategy using O(1/¢) colors needs Q(en®) recolorings;

a coloring strategy that uses O(logn) colors at the cost of O(logn) recolorings, and another

strategy that uses O(1/¢) colors at the cost of O(n®/e) recolorings;

stronger upper and lower bounds for special cases.
We also consider the kinetic setting where the intervals move continuously (but there are no
insertions or deletions); here we show how to maintain a coloring with only four colors at the
cost of three recolorings per event and show this is tight.
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1 Introduction

Consider a set S of fixed base stations that can be used for communication by mobile clients.
Each base station has a transmission range, and a client can potentially communicate via
that base station when it lies within the transmission range. However, when a client is within
reach of several base stations that use the same frequency, the signals will interfere. Hence,
the frequencies of the base stations should be assigned in such a way that this problem does
not arise. Moreover, the number of used frequencies should not be too large. Even et al. [10]
and Smorodinsky [14] introduced conflict-free colorings to model this problem, as follows.
Let S be a set of disks in the plane, and for a point ¢ € R? let S(q) C S denote the set of disks
containing the point ¢q. A coloring of the disks in S is conflict-free if, for any point ¢ € R?
with non-empty S(gq), the set S(q) has at least one disk with a color that is unique among
the disks in S(q). Even et al. [10] proved that any set of n disks in the plane admits a
conflict-free coloring with O(logn) colors, and this bound is tight in the worst case.

The concept of conflict-free colorings can be generalized and extended in several ways,
giving rise to a host of challenging problems. Below we mention some of them; for lack
of space we only discuss the papers most directly related to our work. A more extensive
overview is given by Smorodinsky [15]. One obvious generalization is to work with types of
regions other than disks. For instance, Even et al. [10] showed how to find a coloring with
O(logn) colors for a set of translations of any single centrally symmetric polygon. Har-Peled
and Smorodinsky [12] extended this result to regions with near-linear union complexity. One
can also consider the dual setting, where one wants to color a given set P of n points in the
plane, such that any disk — or rectangle, or other range from a given family — contains at
least one point with a unique color (if it contains any point at all). This too was studied by
Even et al. [10] and they show that this can be done with O(logn) colors when the ranges
are disks or scaled translations of a single centrally symmetric convex polygon.

The results mentioned above deal with the static setting, in which the set of objects to
be colored is known in advance. This may not always be the case, leading Fiat et al. [11]
to introduce the online version of the conflict-free coloring problem. Here the objects to be
colored arrive one at a time, and each object must be colored upon arrival. Fiat et al. show
that when coloring points in the plane with respect to disks, n colors may be needed in
the online version. Hence, they turn their attention to the 1-dimensional problem of online
coloring points with respect to intervals. They prove that this can be done deterministically
with O(log?n) colors and randomized with O(lognloglogn) colors with high probability.
Later Chen [8] gave a randomized algorithm that uses O(logn) colors with high probability.
In the same paper, similar results were obtained for conflict-free colorings of points with
respect to halfplanes, unit disks and axis-aligned rectangles of almost the same size. In
these cases the colorings use O(polylog n) colors with high probability. Bar-Noy, Cheilaris,
and Smorodinsky [3] discussed several versions of the deterministic one-dimensional variant.
Furthermore, Abam et al. [1] studied the dual version of coloring intervals on a line with
respect to points. Later, Bar-Noy et al. [2] considered the case where recolorings are allowed
for each insertion. They prove that for coloring points in the plane with respect to halfplanes,
one can obtain a coloring with O(logn) colors in an online setting at the cost of O(n)
recolorings in total. More recent variants include strong conflict-free colorings [7, 13], where
we require several unique colors, and conflict-free multicolorings [4], which allow assigning
multiple colors to a point. Even more variants of online conflict-free colorings can be found
in the survey [15].
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Our contributions. We introduce a variant of the conflict-free coloring problem where
the objects to be colored arrive and disappear over time. This fully-dynamic conflict-free
coloring problem models a scenario where new base stations may be deployed (to deal with
increased capacity demands, for example) and existing base stations may break down or be
taken out of service (either permanently or temporarily). We also define the semi-dynamic
conflict-free coloring problem as the online variant where recolorings are allowed (or the fully-
dynamic variant without deletions). Note that when we talk about the dynamic variant,
we mean fully-dynamic. These natural variants have, to the best of our knowledge, not
been considered so far. It is easy to see that, unless one maintains a coloring in which any
two intersecting objects have distinct colors, there is always a sequence of deletions that
invalidates a given conflict-free coloring. Hence, recolorings are needed to ensure that the
new coloring is conflict-free. This leads to the question: how many recolorings are needed to
maintain a coloring with a certain number of colors? We initiate the study of fully-dynamic
conflict-free colorings by considering the problem of coloring intervals with respect to points.
In this variant, we are given a (dynamic) set S of intervals in R!, which we want to color
such that for any point ¢ € R! the set S(gq) of intervals containing ¢ contains an interval with
a unique color. This version of the problem can be used to model the case where the base
stations are located along a highway, for instance, and 1-dimensional range and frequency
assignment problems have already been studied in various settings [2, 7, 11]. Moreover, the
lower bounds that we prove hold for the 2-dimensional problem as well. In the static setting,
coloring intervals is rather easy: a simple procedure yields a conflict-free coloring with three
colors. The dynamic version turns out to be much more challenging.

In Section 2 we prove lower bounds on the possible tradeoffs between the number of
colors used and the worst-case number of recolorings per update: for any algorithm that
maintains a conflict-free coloring on a sequence of n insertions of intervals with at most ¢(n)
colors and at most 7(n) recolorings per insertion, we must have r(n) > n!/(c("+1) /(8¢(n)).
This implies that for O(1/¢) colors we need (en®) recolorings per updated, and with only
O(1) recolorings per update we must use Q(logn/loglogn) colors.

In Section 3 we then present several algorithms that achieve bounds close to our lower
bound. All bounds are worst-case, unless specifically stated otherwise. First, we present
two algorithms for the case where the interval endpoints come from a universe of size U.
One algorithm uses O(log U) colors and two recolorings per update; the other uses O(log, U)
colors and O(t) recolorings per update in the worst case, where 2 < ¢t < U is a parameter.
We then extend the second algorithm to an unbounded universe, leading to two results: we
can use O(log, n) colors and perform at most O(tlog, n) recolorings per update for any fixed
t > 2, or we can use O(1/¢) colors and O(n¢/e) recolorings, amortized, for any fixed & > 0.

Finally, in Section 4 we turn our attention to kinetic conflict-free colorings. Here the
intervals do not appear or disappear, but their endpoints move continuously on the real line.
At each event where two endpoints of different intervals cross each other, the coloring may
need to be adapted so that it stays conflict-free. One way to handle this is to delete the two
intervals involved in the event, and re-insert them with the new endpoint order. We show
that a specialized approach is much more efficient: we show how to maintain a conflict-free
coloring with four colors at the cost of three recolorings per event. We also show that on
average O(1) recolorings per event are needed in the worst case when using only four colors.

Due to space constraints some proofs have been deferred to the full version [6].
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2 Lower bounds for semi-dynamic conflict-free colorings

In this section we present lower bounds on the semi-dynamic (insertion only) conflict-free
coloring problem for intervals. More precisely, we present lower bounds on the number of
recolorings necessary to guarantee a given upper bound on the number of colors. We prove a
general lower bound and a stronger bound for so-called local algorithms. The general lower
bound uses a construction where the choice of segments to be added depends on the colors
of the segments already inserted. This adaptive construction is also valid for randomized
algorithms, but it does not give a lower bound on the expected behavior.

» Theorem 1. Let ALG be a deterministic algorithm for the semi-dynamic conflict-free color-
ing of intervals. Suppose that on any sequence of n > 0 insertions, ALG uses at most ¢(n) col-
ors and r(n) recolorings per insertion, where r(n) > 0. Then r(n) > n/(c(M+1) /(8¢(n)).

Proof. We first fix a value for n and define ¢ := ¢(n) and r := r(n). Our construction
will proceed in rounds. In the i-th round we insert a set R; of n; disjoint intervals — which
intervals we insert depends on the current coloring provided by ALG. After R; has been
inserted (and colored by ALG), we choose one of the colors used by ALG for R; to be the
designated color for the i-th round. We denote this designated color by ¢;. We will argue
that in each round we can pick a different designated color, so that the number of rounds,
p, is a lower bound on the number of colors used by ALG. We then prove a lower bound on
p in terms of n, ¢, and 7, and derive the theorem from the inequality p < c.

To describe our construction more precisely, we need to introduce some notation and
terminology. Let R; := {I,...,I,,}, where the intervals are numbered from left to right.
(Recall that the intervals in R; are disjoint.) To each interval I = I; we associate the
set I¢ := (a,b), where a is the right endpoint of I, and b is the left endpoint of I,;4; if j < n;
and 400 if j = n;, that is, I° represents the empty space to the right of I. We call (I, I¢)
an i-brick. We define the color of a brick (I, 7¢) to be the color of I, and we say a point or
an interval is contained in this brick if it is contained in I U I€. Recall that each round R;
has a designated color ¢;. We say that an i-brick B := (I, 1¢) is living if:

I has the designated color ¢;;

if ¢ > 1 then both I and ¢ contain living (¢ — 1)-bricks.

A brick that is not alive is called dead and an event such as a recoloring that causes a brick

to become dead is said to kill the brick. By recoloring an interval I, ALG can kill the brick

B = (I,1°) and the death of B may cause some bricks containing B to be killed as well.
We can now describe how we generate the set R; of intervals we insert in the i-th round

and how we pick the designated colors. (Note that the designated color of a round is fixed

once it is picked; it is not updated when recolorings occur.) We denote by R} the subset of
intervals I € R; such that (I, 1°) is a living é-brick. Note that R} can be defined only after
the i-th round, when we have picked the designated color ¢;.

1. The set R; contains the § intervals [0,1],[2,3],...,[n —2,n — 1], and the designated
color ¢; of the first round is the color used most often in the coloring produced by ALG
after insertion of the last interval in R;.

2. To generate R; for i > 1, we proceed as follows. Partition R; ; into groups of 4r
consecutive intervals. (If |R;_;| is not a multiple of 4r, the final group will be smaller
than 4r. This group will be ignored.) For each group G := I, ..., I4 we put an interval
Is into R;, which starts at the left endpoint of I; and ends slightly before the left
endpoint of I, 1; see Fig. 1 for an illustration.
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group G of 4r intervals from living bricks first interval in next group G’

Figure 1 Example of how the intervals are created when r = 2. The designated color ¢;—; is
blue, and the grey rectangles around them indicate living (i — 1)-bricks. The grey rectangle around
I indicates the brick (I, I¢). Note that Io extends further to the right.

The designated color ¢; is picked as follows. Consider the coloring after the last interval
of R; has been inserted, and let C(i) be the set of colors assigned by ALG to intervals
in R, and that are not a designated color from a previous round — we argue below
that C(i) # 0. Then we pick ¢; as the color from C(i) that maximizes the number of
living ¢-bricks.
We continue generating sets R; in this manner until |R}| < 4r, at which point the construc-
tion finishes. Below we prove that in each round ALG must introduce a new designated color,
and we prove a lower bound on the number of rounds in the construction.

» Claim. Let B = (I,1°) be a living i-brick. Then for any j € {1,...,4} there is a point q; €
TUI° that is contained in a single interval of color c; and in no other interval from Uz;i Ry.
Moreover, there is a point q; € I UI° not contained in any interval from Uz;i Ry.

Proof of claim. We prove this by induction on i. For ¢ = 1 the statement is trivially true,
so suppose i > 1. By definition, both I and I¢ contain living (i — 1)-bricks, B and B°.
Using the induction hypothesis we can now select a point g; with the desired properties: for
j =i we use that B contains a point that is not contained in any interval from Uz: Ry,
for j < ¢ we use that B contains a point in an interval of color ¢; and in no other interval
fromigz;i Ry, and to find a point not contained in any interval from Uz: Ry we can also
use B . <

Now consider the situation after the i-th round, but before we have chosen the designated
color ¢;. We say that a color ¢ is eligible (to become ¢;) if ¢ # c1, ..., ¢;—1, and we say that
an i-brick (I,1¢) is eligible if its color is eligible and (I, 1¢) would be living if we were to
choose its color as the designated color ¢;. Note that due to some recolorings, some of the
newly inserted intervals might not contain any living brick and hence can never be living no
matter the designated color; the next claim shows that at most half intervals inserted this
round are eligible.

» Claim. Immediately after the i-th round, at least half of the i-bricks are eligible.

Proof of claim. Consider an i-brick (I,7¢). At the beginning of the i-th round, before we
have actually inserted the intervals from R;, both the interval I and its empty space I°¢
contain 2r living (¢ — 1)-bricks. As the intervals from R; are inserted, ALG may recolor
certain intervals from Ry U...U R;_1, thereby killing some of these (i — 1)-bricks. Now
suppose that ALG recolored at most 2r — 1 of the intervals from R; U...U R;_1 that are
contained in I U I¢. Then both I and I¢ still contain a living (¢ — 1)-brick. By the previous
claim and the definition of a conflict-free coloring, this implies ALG cannot use any of the
colors ¢; with j < 4 for I. Hence, the color of I is eligible and the i-brick (I, I°) is eligible
as well.

26:5
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It remains to observe that ALG can do at most rn; recolorings during the ¢-th round.
We just argued that to prevent an i-brick from becoming eligible, ALG must do at least
2r recolorings inside that brick. Hence, ALG can prevent at most half of the i-bricks from
becoming eligible. <

Recall that after the i-th round we pick the designated color ¢; that maximizes the
number of living é-bricks. In other words, ¢; is chosen to maximize |R}|. Next we prove a
lower bound on this number. Recall that p denotes the number of rounds.

» Claim. For all 1 <i < p we have |R}| = nq/(8rc)t — 1.

Proof of claim. Since ALG can use at most ¢ colors, we have |Rf| = ni/c. Moreover, for
i > 1 the number of intervals we insert is ||[R;_,|/4r|. By the previous claim at least half of
these are eligible. The eligible intervals have at most ¢ different colors, so if we choose ¢; to
be the most common color among them we see that |R;| > ||R;_|/4r| /2c. We thus obtain
the following recurrence:

LRl i

|RY| > . 2c (1)
-1 if i =1.
C

We can now prove the result using induction.

[IR;_1l/47] 1 ni n
o IS Rl i IS (U S )/ P | .
I 2¢ 2c (8re)i—1 /4 ” (8rc)t h

\

Finally we can derive the desired relation between n,c, and r. Since n; = n/2 and
ni+1 < n;/2 for all i = 1,...,p — 1, the total number of insertions is less than n. The
construction finishes when |Rf| < 4r. Hence, p, the total number of rounds, must be such
that n/(2(8rc)?) — 1 < |R}| < 4r, which implies p > logg,.(n/(8r +2)) > logg,.n — 1. The
number of colors used by ALG is at least p, since every round has a different designated
color. Thus ¢ > logg,.n — 1 and so n < (8re)°Tt, from which the theorem follows. |

Two interesting special cases of the theorem are the following: with » = O(1) we will have
¢ = Q(logn/loglogn), and for ¢ = O(1/e) (for some small fixed &€ > 0) we need r = § (en®).
Note that the theorem requires > 0. Obviously the Q (logn/loglogn) lower bound on ¢
that we get for » = 1 also holds for r = 0. For the special case of r = 0 — this is the standard
online version of the problem — we can prove a stronger result, however: here we need at
least [logn| + 1 colors. This bound even holds for a nested set of intervals, that is, a set .S
such that I c I’ I' C I, or INI' = { for any two intervals I,I’ € S. We also show in the
full paper [6] that a greedy algorithm achieves this bound for nested intervals.

Local algorithms. We now prove a stronger lower bound for so-called local algorithms.
Intuitively, these are deterministic algorithms where the color assigned to a newly inserted
interval I only depends on the structure and the coloring of the connected component where 1
is inserted — hence the name local. More precisely, local algorithms are defined as follows.
Suppose we insert an interval I into a set .S of intervals that have already been colored.
The union of the set S U {I} consists of one or more connected components. We define
S(I) C S to be the set of intervals from S that are in the same connected component as I.
(In other words, if we consider the interval graph induced by S U {I} then the intervals
in S(I) form a connected component with I.) Order the intervals in S(I) U {I} from left
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Figure 2 Example of a signature. The set S(I) contains the segments labeled 1,2,4,5. The
signature of I is (2,1, 3,4, 5,red, blue, NIL, blue, green).

to right according to their left endpoint, and then assign to every interval its rank in this
ordering as its label. (Here we assume that all endpoints of the intervals in S(I) C S are
distinct. It suffices to prove our lower bound for this restricted case.) Based on this labeling
we define a signature for S(I)U{I} as follows. Let A1,..., Ay, where k := |S(I)| + 1, be the
sequence of labels obtained by ordering the intervals from left to right according to their
right endpoint. Furthermore, let ¢; be the color of the interval labeled i, where ¢; = NIL if
the interval labeled ¢ has not yet been colored. Then we define the signature of S(I)U I to
be the sequence sig(l) := (A1,..., Ak, c1,...,ck); see Fig. 2.

We now define a semi-dynamic algorithm ALG to be local if upon insertion of an interval I
the following holds: (i) ALG only performs recoloring in S(I), and (ii) the color assigned to
I and the recolorings in S(I) are uniquely determined by sig(l), that is, the algorithm is
deterministic with respect to sig(l). Note that randomized algorithms are not local.

To strengthen Theorem 1 for the case of local algorithms, it suffices to observe that the
intervals inserted in the same round must all receive the same color. Hence, the factors c
in the denominators of Inequality (1) disappear, leading to the theorem below. Note that
for r(n) = O(1), we now get the lower bound c¢(n) = Q(logn).

» Theorem 2. Let ALG be a local algorithm for the semi-dynamic conflict-free coloring of
intervals. Suppose that on any sequence of n > 0 insertions, ALG uses al most c(n) colors
and r(n) recolorings per insertion, where r(n) > 0. Then r(n) = n'/(c(M+2) _ 2,

3 Upper bounds for fully-dynamic conflict-free colorings

Next we present algorithms to maintain a conflict-free coloring for a set S of intervals under
insertions and deletions. The algorithms use the same structure, which we describe first.
From now on, we use n to denote the current number of intervals in S.

Let P be the set of 2n endpoints of the intervals in S. (To simplify the presentation we
assume that all endpoints are distinct, but the solution is easily adapted to the general case.)
We will maintain a B-tree on the set P. A B-tree of minimum degree ¢ on a set of points
in R! is a multi-way search tree in which each internal node has between ¢ and 2t children
(except the root, which may have fewer children) and all leaves are at the same level; see
the book by Cormen et al. [9, Chapter 18] for details. Thus each internal or leaf node stores
between t — 1 and 2¢ — 1 points from P (again, the root may store fewer points). We denote
the set of points stored in a node v by P(v) := {p1(v),...,pn, (v)}, where n, := |P(v)| and
the points are numbered from left to right. For an internal node v we denote the i-th subtree
of v, where 1 < i < n, + 1, by T;(v). Note that the search-tree property guarantees that all
points in 7;(v) lie in the range (p;—1(v),p;(v)), where pg = —oo and py,,+1 = o0.

We now associate each interval I € S to the highest node v such that I contains at
least one of the points in P(v), either in its interior or as one of its endpoints. Thus our
structure is essentially an interval tree [5, Chapter 10] but with a B-tree as underlying tree
structure. We denote the set of intervals associated to a node v by S(v). Note that if
level(v) = level(w) = £, for some nodes v # w, and I € S(v) and I’ € S(w), then I and I’
are separated by a point p;(z) of some node z at level m < £. Hence, I N I' = {).

26:7
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We partition S(v) into subsets S;(v),..., S, (v) such that S;(v) contains all intervals

I € S(v) for which p;(v) is the leftmost point from P(v) contained in I. From each subset

S;(v) we pick at most two extreme intervals: the left-extreme interval I; 1ef (v) is the interval

from S;(v) with the leftmost left endpoint, and the right-extreme interval I; yignt(v) is the

interval from S;(v) with the rightmost right endpoint. Since all intervals from .S;(v) contain
the point p;(v), every interval from S;(v) is contained in I jefc (v)UI; right (v). Note that it may
happen that I je (v) = I yignt (v). Finally, we define Sexer(v) := U2 {Ti et (V), L rignt (v) }

to be the set of all extreme intervals at v.

Our two coloring algorithms both maintain a coloring with the following properties.

(A.1) For each level £ of the tree T, there is a set C(£) of colors such that the color sets of
different levels are disjoint.

(A.2) For each node v at level £ in T, the intervals from Sext,(v) are colored locally conflict-
free using colors from C(¢). Here locally conflict-free means that the coloring of Seyt, (v)
is conflict-free if we ignore all other intervals.

(A.3) All non-extreme intervals receive a universal dummy color, which is distinct from any
of the other colors used, that is, the dummy color is not in C(¢) for any level ¢.

The two coloring algorithms that we present differ in the size of the sets C(¢) and in which

local coloring algorithm is used for the sets Sextr(v). It is not hard to show that the properties

above guarantee a conflict-free coloring.

» Lemma 3. Any coloring with properties (A.1)-(A.8) is conflict free and uses at most
14>2,1C(0)| colors.

Next we describe two algorithms based on this general framework: one for the easy case
where the interval endpoints come from a finite universe, and one for the general case.

Solutions for a polynomially-bounded universe. The framework above uses a B-tree on
the interval endpoints. If the interval endpoints come from a universe of size U — for
concreteness, assume the endpoints are integers in the range 0,...,U — 1 — then we can use
a B-tree on the set {0,...,U — 1}. Thus the B-tree structure never has to be changed.

» Theorem 4. Let S be a dynamic set of intervals whose endpoints are integers in the

range 0,...,U — 1.

(i) We can maintain a conflict-free coloring on S that uses O(logU) colors and that per-
forms at most two recolorings per insertion and deletion.

(i) For any t with 2 < t < U, we can maintain a conflict-free coloring on S that uses
O(log, U) colors and performs O(t) recolorings per insertion and deletion.

When U is polynomially bounded in n — that is, U = O(n*) for some constant k — this gives
very efficient coloring schemes. In particular, we can then get O(logn) colors with at most
two recolorings using method (i), and we can get O(1/¢) colors with O(n®) recolorings (for
any fixed € > 0) by setting t = U¢/¥ in method (ii).

Note finally that we do not need to explicitly store the whole tree as it is enough to
compute the location of any node when needed, yielding a linear space complexity.

A general solution. If the interval endpoints do not come from a bounded universe then we
cannot use a fixed tree structure. Next we explain how to deal with this when we apply the
method from Theorem 4(ii), which colors the sets Sext:(v) using the so-called chain method:
we take the interval with the leftmost left endpoint, and color it blue. Then, among all
intervals whose left endpoint lies in the blue interval, we pick the one with the rightmost
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right endpoint and color it red. We then repeat this process, alternating between blue and
red, until we reach the rightmost interval. Finally, we color all uncolored intervals grey.

Suppose we want to insert a new interval I into the set S. We first insert the two
endpoints of I into the B-tree 7. Inserting an endpoint p can be done in a standard manner.
The basic operations for an insertion are (i) to split a full node and (ii) to insert a point
into a non-full leaf node.

Splitting a full node v (that is, a node with 2t — 1 points) is done by moving the median
point into the parent of v, creating a node containing the ¢ — 1 points to the left of the
median and another node containing the ¢ — 1 points to the right of the median. Note that
this means that some intervals from S(v) may have to be moved to S(parent(v)). Thus
splitting a node v involves recoloring intervals in S(v) and S(parent(v)). Observe that an
interval only needs to be recolored if it was extreme before or after the change. Hence, we
recolor O(t) intervals when we split a node v.

Since an insertion splits only nodes on a root-to-leaf path and the depth of T is O(log, n),
the total number of recolorings due to node splitting is O(tlog, n). Moreover, inserting a
point into a non-full leaf node only takes O(t) recolorings. We conclude that an insertion per-
forms O(tlog, n) recolorings in total. For deletions the argument is similar. Since recoloring
at a single node induces O(t) recolorings, the total number of recolorings is O(tlog, n).

» Theorem 5. Let S be a dynamic set of intervals.

(i) For any fized t > 2 we can maintain a conflict-free coloring on S that uses O(log, n)
colors and that performs O(tlog, n) recolorings per insertion and deletion, where n is
the current number of intervals in S. In particular, we can maintain a conflict-free
coloring with O(logn) colors using O(logn) recolorings per update.

(ii) For any fized e > 0 we can maintain a conflict-free coloring on S that uses O(1/e)
colors and that performs O(n€/e) recolorings per insertion or deletion. The bound on
the number of recolorings is amortized.

The idea behind part (ii) is to use a t with n°/2 < ¢t < 2n®. This causes the bound in (ii) to
be amortized, since now we need to change t when n has halved or doubled.

We have not been able to efficiently generalize the first method of Theorem 4 to an
unbounded universe. The problem is that splitting a node v may require many intervals
in Sextr(v) to be recolored, since many intervals may be moved to parent(v). Hence, the
method would use the same number of recolorings as the chain method, but more colors.

Bounded-length intervals. Next we present a simple method that allows us to improve
the bounds when the intervals have length between 1 and L for some constant L > 1.

» Theorem 6. Let S be a dynamic set of intervals with lengths in the range [1, L) for some
fized L > 1. Suppose we have a dynamic conflict-free coloring algorithm for a general set
of intervals that uses at most c(n) colors and at most r(n) recolorings for any insertion or
deletion. Then we can obtain a dynamic conflict-free coloring algorithm on S that uses at
most 2+ ¢(2L) + 1 colors and at most 2-r(2L) 4+ 1 recolorings for any insertion or deletion.

For instance, by applying Theorem 5(i) we can maintain a coloring with O(log L) colors and
O(log L) recolorings. We can also plug in a trivial dynamic algorithm with ¢(n) = n and
r(n) = 0 to obtain 4L 4+ 1 colors with only 1 recoloring per update; when L is sufficiently
small this gives a better result.
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Al A2 C.1 Cc.2
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Figure 3 Tllustration of the different events in the KDS.

4 Kinetic conflict-free colorings

In this section we consider conflict-free colorings of a set of intervals in R! whose endpoints
move continuously. Note that we allow the endpoints of an interval to move independently,
that is, we allow the intervals to expand or shrink over time. We show that by using only
three recolorings per event — an event is when two endpoints cross each other — we can
maintain a conflict-free coloring consisting of only four colors. Our recoloring strategy is
based on the chain method discussed in the proof of Theorem 4(ii). This method uses three
colors: two colors for the chain and one dummy color. To be able to maintain the coloring
in the kinetic setting without using many recolorings, we relax the chain properties and
we allow ourselves three colors for the chain. Next we describe the invariants we maintain
on the chain and its coloring, and we explain how to re-establish the invariants when two
endpoints cross each other. In the remainder we assume that the endpoints of the chains
are in general position except at events, and that events do not coincide (that is, we never
have three coinciding endpoints and we never have two events at the same time). These
conditions can be removed by using consistent tie-breaking.

The chain invariants. Let S be the set of intervals to be colored, where all interval en-

dpoints are distinct. (Recall that we assumed this to be the case except at event times.)

Consider a subset C C S and order the intervals in C according to their left endpoint. We

denote the predecessor of an interval I € C in this order by pred.(I), and we denote its

successor by succe(I). A chain (for S) is defined as a subset C with the following three

properties.

(C1) Any interval I € C can intersect only two other intervals in C, namely pred;(I) and
succe (I).

(C2) Any interval I € S\ C is completely covered by the intervals in C.

(C3) No interval I € C is fully contained in any other interval I’ € S.

Now consider a set S and a chain C for S. We maintain the following color invariant: each

interval I € C has a non-dummy color and this color is different from the color of suce(I),

and each interval in S\ C has the dummy color.

» Lemma 7. Let S be a set of intervals and C be a chain for S. Then any coloring of S
satisfying the color invariant is conflict-free.

Handling events. Our kinetic coloring algorithm maintains a chain C for I and a coloring
with three colors (excluding the dummy color) satisfying the color invariant. Later we show
how to re-establish the color invariant at each event, but first we show how to update the
chain by adding at most one interval to the chain and removing at most two. We distinguish
several cases.
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Case A: The right endpoints of two intervals I and I' cross.
Assume without loss of generality that I is shorter than I’. We have two subcases.
Subcase A.1: Interval I is contained in I' before the event. In this case I was not
a chain interval before the event. If after the event I is still fully covered by the
chain intervals, then there is nothing to do: we can keep the same chain. Otherwise,
property (C2) is violated after the event. We now proceed as follows. First we add T
to the chain. If I intersects pred.(I’) — note that I’ must be a chain interval if (C2)
is violated — then we remove I’ from the chain.
Subcase A.2: Interval I is contained in I' after the event. If I was not a chain interval,
there is nothing to do. Otherwise property (C3) no longer holds after the event, and
we have to remove I from the chain. If I’ is also a chain interval then this suffices.
Otherwise we add I’ to the chain, and remove pred,(I) if pred.(pred.(I)) intersects I'.
Case B: The left endpoints of two intervals I and I' cross.
This case is symmetric to Case A.
Case C: The right endpoint of an interval I crosses the left endpoint of an interval I'.
Again we have two subcases.
Subcase C.1: Intervals I and I' start intersecting. Note that properties (C2) and (C3)
still hold after the event. The only possible violation is in property (C1), namely when
both I and I’ are chain intervals and there is a chain interval I with pred,(I") = I
and succe(I"”) = I'. In this case we simply remove I from the chain.
Subcase C.2: Intervals I and I' stop intersecting. First note that this cannot violate
properties (C1) and (C3). The only possible violation is property (C2), namely when
both I and I’ are chain intervals and there is at least one non-chain interval containing
the common endpoint of I and I’ at the event. Of all such non-chain intervals, let I”
be the interval with the leftmost left endpoint. Note that I” is not contained in any
other interval, so we can add I" to the chain without violating (C3). After adding I"”
we check if we have to remove I and/or I': if I"” intersects pred,(I) then we remove
I from the chain, and if I” intersects succe(I’) then we remove I’ from the chain.
It is easy to check that in each of these cases the new chain that we generate has the chain
properties (C1)—(C3). Next we show that each case requires at most three recolorings and
summarize the result.

» Lemma 8. In each of the above cases, the changes to the chain require at most three
recolorings to re-establish the color invariant.

» Theorem 9. Let S be a kinetic set of intervals in R'. We can maintain a conflict-free
coloring for S with four colors at the cost of at most three recolorings per event, where an
event is when two interval endpoints cross each other.

A lower bound. Now consider the simple scenario where the intervals are rigid — each
interval keeps the same length over time — and each interval is either stationary or moves
with unit speed to the right. Our coloring algorithm may perform recolorings whenever two
endpoints cross, which means that we do O(n?) recolorings in total. We show that even in
this simple setting, this bound is tight in the worst case if we use at most four colors.
Consider four intervals Iy, Is, I, I, where I; = (a4, b;), with a; < b; as shown in Figure 4.
Here I, C Iy, I C I3, the right endpoints of I; and Iy are contained in I3 N Iy, and the
left endpoints of I3 and I are contained in I; N I. The exact locations of the endpoints
with respect to each other is not important and we focus on the different overlap sets of the
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1

—
I
— L

Figure 4 The gadget used to show the lower bound.

gadget. Specifically within a gadget there is a point contained in each of the following sets,

Gr,....Gr={L},{L, L}, {1, 12,13, }, {11, 12, I3, Is}, {11, I3, Is }, {13, Is }, {I3}.

Based on these sets we can show that no coloring for crossing gadgets exists that provides a
valid conflict-free coloring for each combination of intersection sets between the two gadgets.
The proof relies on the following lemma.

» Lemma 10. Let G = {1, 15, I3, 14} and H = {Jy, Jo, J3, 4} be two gadgets, with overlap
sets G1,...,G7 and Hy, ..., H7 as defined above. There is no 4-coloring for G and H such
that all sets {G1,...,GryU{Hy,...,H;} U{1 <4,j < 7| G; UH;} are conflict-free.

Proof. We can assume that not both I, I, Is, I, and Ji, Jo, J3, J4 use all four colors, oth-
erwise G4 U Hy = {1, I2,I5, 14, J1, Jo2, J3, J4} is not conflict-free. It is also not possible to
use at most two colors, since each gadget by itself needs to be conflict-free. Hence, suppose
that there are exactly three colors among I3, Is, I3, I, (the other case is symmetric), say
two are red, one is blue, and one is green. We define col(G;), respectively col(H;), to be
the multiset of the colors used by the intervals in G;, respectively H;. Then col(G4) =
{red, red, blue, green} and without loss of generality, col(G2) = {red, blue} and col(Gs) =
{red, green}. We now have two cases.

1. One interval among Jy, Jo, J3, J4 uses the fourth color, say yellow. If J; or J3 is yellow,
then either col(Hg) = {red, blue}, implying that GoU Hp is not conflict-free; or col(Hg) =
{red, green} implying that Gg U Hg is not conflict-free; or col(Hg) = {blue, green} im-
plying that G4 U Hg is not conflict-free. A similar argument holds when Js or Jy is
yellow.

2. Two intervals among Ji,Js, J3, JJy use yellow. It follows that H, contains two yel-
low intervals and the remaining two intervals are colored either {red,blue}, implying
that G2 U Hy is not conflict-free; or {red, green}, implying that G¢ U Hy is not conflict-
free; or {blue, green}, implying that G4 U Hy is not conflict-free. <

Now we place Q(n) of these gadgets in two groups and for simplicity assume a gadget
has width of 1. The gadgets in the first group are spaced with distance 2 between them, so
a gadget from the second group can fit between any two consecutive gadgets. In the second
group the gadgets are spaced with distance 3n between them, so that all gadgets of the
first group fit between them. All gadgets of the first group then move at the same speed,
starting somewhere to the left of the second group and moving to the right. The gadgets of
the second group remain stationary. These motions ensure that each gadget of first group
will cross each gadget of the second group, generating Q(n?) crossing events, each of which
results in at least one recoloring by Lemma 10.

» Theorem 11. For any n > 0, there is a set of 8n intervals, each of which is either
stationary or moves with unit speed to the right, so that when coloring the intervals using
four colors at least n? recolorings are required to maintain a conflict-free coloring.
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