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Abstract
Agnostic learning is an extremely hard task in computational learning theory. In this paper
we revisit the results in [Kalai et al. SIAM J. Comput. 2008] on agnostically learning boolean
functions with finite polynomial representation and those that can be approximated by the former.
An example of the former is the class of all boolean low-degree polynomials. For the former, [Kalai
et al. SIAM J. Comput. 2008] introduces the l1-polynomial regression method to learn them to
error opt + ε. We present a simple instantiation for one step in the method and accordingly give
the analysis. Moreover, we show that even ignoring this step can bring a learning result of error
2opt + ε as well. Then we consider applying the result for learning concept classes that can be
approximated by the former to learn richer specific classes. Our result is that the class of s-term
DNF formulae can be agnostically learned to error opt+ ε with respect to arbitrary distributions
for any ε in time poly(nd, 1/ε), where d = O(

√
n · s · log s log2(1/ε)).
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1 Introduction

Learning various boolean function classes plays a central role in computational learning
theory. In the PAC learning model [18], a boolean function class C is learnable if there is an
efficient algorithm that, given parameters (ε, δ) and many labelled examples of form (x, f(x))
where x is chosen from some arbitrary distribution D and f ∈ C is an unknown, can with
probability 1− δ output a hypothesis h satisfying Prx←D[h(x) 6= f(x)] ≤ ε.

In this model, there are rich boolean function classes that can be learned, such as
conjunctions [18], s-term DNF formulas [14], intersections of halfspaces [13], polynomial
threshold functions [13, 9] etc. If the underlying distribution D is restricted to some
specific ones, some more classes can also be learned. For instance, if D is specified to be
the uniform distribution, [15] shows that the Fourier spectrum of any function in AC0 is
concentrated on low-degree coefficients and then introduced the Low Degree Algorithm to
learn the low-degree coefficients under the uniform distribution and thus generated a function
approximately identical to the concept function. Following [15], some works present various
Fourier concentration results for more expressive circuits augmented from AC0 [10, 2, 7],
monotone circuits [3] and boolean functions with small total influence or small noise sensitivity
[13] and thus gain corresponding learning results with the Low Degree Algorithm.
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29:2 Agnostically Learning Boolean Functions

Besides the PAC learning model, there is another much harder model, called the agnostic
learning model [12, 8]. In this model, a boolean function class C is learnable if there is
an efficient algorithm that, given many pairs of form (x, b) sampled from some arbitrary
distributionD, can output a hypothesis f satisfying letting erD(h) denote Pr(x,b)←D[h(x) 6= b],
erD(f) ≤ opt + ε, where opt = minh∈C(erD(h)). So far there have been a few successful
attempts to agnostically learning functions. For instance, [11] shows that concept classes
that can be approximated by low-degree polynomials can be agnostically learned. Some
other works present relaxed requirements for this model: that the output hypothesis f is
only required to satisfy erD(f) ≤ O(opt) + ε and even at the same time that the learning
algorithm only needs to deal with uniform distributions or other specific ones. For instance,
[11] shows that boolean function classes with Fourier concentration bounds and halfspaces
can be agnostically learned under uniform distributions. [1, 5] show that halfspaces can be
agnostically learned to error O(opt) + ε under isotopic log-concave distributions.

1.1 Our Results
In this paper we revisit the results in [11] on agnostically learning boolean functions with
finite polynomial representation and those that can be approximated by the former. By
finite polynomial representation, we mean (in an non-rigorous way) that each one in the class
admits a polynomial representation in which the number of monomials is much less than 2n.

More precisely, let S denote a collection of some subsets of [n]. Let Hn,S denote the class
of boolean functions in which each h(x) =

∑
S∈S gS

∏
j∈S xj : {0, 1}n → {0, 1} where xj

denotes the jth bit of x and gS ’s denote coefficients. Thus Hn,S is thought of as one with
finite polynomial representation if |S| is not large. For example, Hn,S is the class of boolean
low-degree polynomials if S consists of all S’s with |S| ≤ d for some small d.

Recall that [11] presents a result for learning such classes, in which the l1-polynomial
regression method is introduced. Let p(x) denote the polynomial generated by the method.
After obtaining p(x), the method outputs Sign(p(x)− t) for some t as the learned hypothesis.
Note that the choice of t is not specified in [11]. So we use a simple sampling technique to
determine t. That is, uniformly sample t ∈ [0, 1] many times and select the one such that
Sign(p(x)− t) is consistent with the most examples. We then show that the t selected this
way can indeed satisfy that Sign(p(x)− t) achieves the error opt + ε. Moreover, we will also
show that t = 1

2 is a universal constant such that for any distribution D, Sign(p(x) − 1
2 )

achieves the error 2opt + ε.
Then we consider the question of learning richer classes by applying the general result in

[11] for all concept classes admitting low-degree polynomial l1-approximation in expectation.
The concept class in our consideration consists of all s-term DNF formulae. To do this, we
show that each s-term DNF formula can be ε-uniformly approximated (i.e. l∞ approximation)
by a polynomial of degree O(

√
n·s·log s log2(1/ε)). Thus the degree is less than n if s = O(nκ)

for any κ < 1
2 . Then we have the following result.

I Theorem 1. Let D be any distribution over {−1, 1}n × {−1, 1}. For the class of s-term
DNF formulae, there is an algorithm that on input (ε, δ) and sufficiently many pairs sampled
from D can with probability 1− δ output a hypothesis f such that erD(f) ≤ opt + ε in time
poly(nd, 1/ε, log(1/δ)) where opt denotes the optimal error among all such DNF formulae
and d = O(

√
n · s · log s log2(1/ε)).

Our Techniques. We first outline the technique underlying the first part of this paper. The
l1-polynomial regression method in [11] converts the given examples to a l1-norm minimization
problem. Let f denote the one in Hn,S , achieving the optimal error. For each given pair
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(x, b) ← D, b may not equal f(x). So we introduce a variable e to denote b − f(x). Then
e ∈ {1,−1, 0}. Since f =

∑
S∈S gS

∏
j∈S xj , substituting the value of xj into f and letting

aS =
∏
j∈S xj , we obtain

∑
S∈S gSaS + e = b. Viewing all aS ’s as coefficients, this equality is

a linear equation of all gS ’s. We also use a to denote the (row) vector (aS1 , · · · , aSN ) (where
we assume there is an order for all sets in S and let N = |S|). Let g denote the (column)
vector (gS1 , · · · , gSN ). Thus the equation is a · g + e = b.

Thus when given m random pairs, we can construct m equations of form a · g + e = b.
Let A denote the m×N matrix consists of all such a as rows, e denote the (column) vector
consisting of all e’s, b denote the (column) vector consisting of all b’s. Thus m equalities can
be represented as A · g + e = b. Then the l1-polynomial regression method finds a solution
g such that A · g− b achieves the minimal l1-norm. Let p(x) denote the polynomial formed
using g. After obtaining p(x), the method outputs Sign(p(x)− t) for some t as the learned
hypothesis.

Note that the choice of t is not specified in [11]. So we consider using uniformly sampled
t. That is, uniformly sample t ∈ [0, 1] many times and select the one such that Sign(p(x)− t)
is consistent with the most examples. We then show that the t selected this way can indeed
satisfy that Sign(p(x) − t) achieves the error opt + ε. Moreover, we will show that due
to the l1-polynomial strategy, there is at most 2opt-fraction of the examples such that
|p(x)− b| ≥ 1

2 , which means that there is at least 1− 2opt fraction such that |p(x)− b| < 1
2 .

Thus Sign(p(x)− 1
2 ) is correct on this 1− 2opt fraction of the examples. This shows that

t = 1
2 is a universal constant such that Sign(p(x)− 1

2 ) achieves the error 2opt + ε.
Then we sketch the technique underlying the second part. By using the uniform approx-

imations for OR and AND operations in [17] twice, we show that each s-term DNF formula
f can be ε-uniformly approximated by a polynomial p of degree O(

√
n · s · log s log2(1/ε)).

This ensures that the expectation of |f − p| is less than ε. Then applying the general result
in [11], we obtain the learning result for s-term DNF formulae.

1.2 Organization

The rest of this paper is arranged as follows. Section 2 presents the preliminaries used
throughout the paper. Section 3 recalls the l1-polynomial regression method in [11] in which
we instantiate the choice of t and show the universality of 1

2 . Section 4 presents the result
for learning s-term DNF formulae.

2 Preliminaries

This section contains the notations and definitions used throughout this paper.

2.1 Basic Notions

Let [n] denote the integers in [1, n]. Let Z,Q,R denote integers, rational numbers and reals.
For any vector z = (z1, · · · , zm) ∈ Rm, ‖z‖1 denotes its l1-norm, defined as

∑m
i=1 |zi|. For a

vector v ∈ Rm and a set I ⊂ [m], we denote by vI the vector in Rm which coincides with
v on the indices in I and is extended to zero outside I. We say that a vector e ∈ Rm is
s-sparse if the number of non-zero entries of e is at most s.

Letb·e denote the operation of rounding to the nearest integer.
For any distribution D over {0, 1}n × {0, 1}, letting D’s output be of form (x, b), we will

use (xk, bk) to denote the output of D in the kth sampling, while we use xj to denote the
jth bit of x, 1 ≤ j ≤ n.

ISAAC 2017



29:4 Agnostically Learning Boolean Functions

Let (x1, b1), · · · , (xm, bm) denote m pairs drawn from D independently. We say a function
f is consistent with α fraction of the pairs if |{k ∈ [m] : f(xk) = bk}|/m = α. Following
literatures, we say f is consistent with the pairs if α = 1 and say it is approximate-consistent
if 0 < α < 1 which differs from 1 by a small quantity.

Let Sign(·) denote the function that on input y outputs 1 if y ≥ 0 and outputs 0 otherwise.
For a boolean function class H, and a set S of M points in the input space X, if the

restriction of H to the set S computes all 2M functions on S, we say that H shatters S. The
VC-dimension of H is the size of the largest shattered subset of X, also denoted VCdim(H).

2.2 Agnostic Learning
Informally, in the agnostic learning model [12, 8], there is a class of functions C which we wish
to learn. We consider each function of C is boolean. Each example-label pair is chosen from
a distribution D over X × {0, 1} (X denotes the input space). When given many pairs, the
learning algorithm is supposed to output a function f that can achieve almost the minimal
error among all functions in C with respect to D.

For any function f , let erD(f) denote Pr(x,b)←D[f(x) 6= b]. A training sample drawn
from D is of form ((x1, b1, · · · , (xm, bm)) where each (xk, bk) is drawn from D independently
1 ≤ k ≤ m.

I Definition 2. (Agnostic Learning). Let D be a distribution on X × {0, 1} and let C be a
class of boolean functions. We say that an algorithm L agnostically learns C if L is given
(ε, δ) and many random example-label pairs drawn from any D, then with probability 1− δ,
L outputs a hypothesis f such that erD(f) ≤ opt + ε, where opt denotes minh∈C(erD(h)).

If L can only work under some specific distribution D, we say L agnostically learns C
under D. We refer to ε as the accuracy parameter and δ as the confidence parameter.

We also consider a relaxation by only requiring that the f output by L is such that
erD(f) ≤ O(opt) + ε.

The learning algorithm sometimes needs some additional input parameters. For instance,
the Low Degree algorithm has as input the maximal Fourier degree. For our learning
algorithm for Hn,S in this paper, it needs to have as input some representation of S.

3 On Learning Boolean Polynomials

In this section we revisit the result of learning boolean polynomials in [11], in which the
l1-polynomial regression method is employed. We recall this method, instantiate one strategy
in it and accordingly present the analysis. Moreover, we show that even ignoring this strategy
can bring a learning result of error 2opt + ε as well. In Section 3.1 we demonstrate this
learning task and introduce the notations. In Section 3.2 we present the the instantiation
and analysis for the l1-polynomial regression method to find hypotheses consistent with given
examples. In Section 3.3 we follow the standard way to convert consistent-hypotheses to
learned hypotheses.

3.1 Goal and Notations
Let h : {0, 1}n → {0, 1} be any one in Hn,S , which can be represented as h(x) =∑
S∈S gS

∏
j∈S xj over x1, · · · , xn, where gS ’s denote the coefficients. So the task of learning

Hn,S is to output a boolean function f ′ (not necessarily in Hn,S) when given many pairs
of form (x, b) sampled from any distribution D over {0, 1}n × {0, 1}, such that f ′ achieves
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almost the optimal error among all ones in Hn,S . Typically, if S consists of all S’s with
|S| ≤ d, the task is actually the agnostic learning of boolean d-degree polynomials.

Precisely, let (x1, b1), · · · , (xm, bm) denote m pairs independently sampled from D. Then
the learning goal is, when given (ε, δ), with probability 1 − δ, to output a hypothesis f ′
satisfying Pr[f ′(x) 6= b] ≤ opt + ε for (x, b)← D, where opt = minh∈Hn,S (Pr(x,b)←D[h(x) 6=
b]).

Assume that f ∈ Hn,S is the one satisfying opt = erD(f). For each pair (xk, bk), we view
bk as the sum of f(xk) and an error ek. That is, bk = f(xk) + ek. Thus, each ek is of value
in {0,−1, 1}, in which ek = 0 indicates f(xk) = bk and ek = ±1 indicates f(xk) = 1 − bk.
Let xkj denote the jth bit of xk. For (xk, bk), we can generate an equality as follows.∑

S∈S
gS
∏
j∈S

xkj + ek = bk, k ∈ [1,m]

Let akS be the value of
∏
j∈S x

k
j . Then list the m equalities as follows.

∑
S∈S gSa

1
S + e1 = b1

· · · · · · · · · · · · · · ·∑
S∈S gSa

m
S + em = bm

(1)

In the above equalities, all gS ’s are unknown and the goal of learning is to recover them.
Viewing all akS as coefficients, the equalities are linear for the unknown variables gS ’s. For
convenience, for all S ∈ S, we use S1, · · · , SN denote all of them where N = |S|.

Let ak denote the (row) vector (akS1
, · · · , akSN ) ∈ ZN . Let g denote the (column) vector

(gS1 , · · · , gSN ) ∈ ZN . Then for the kth example, we have

ak · g + ek = bk

Let e denote the (column) vector (e1, · · · , em) ∈ Zm. Let A denote the m by N matrix
which rows consist of all ak’s. Let b denote the (column) vector (b1, · · · , bm) ∈ Zm. Then
the m linear equations can be written as

A · g + e = b

Then we can define the following problem: find a solution g∗ such that

‖A · g∗ − b‖1 = inf
g′
‖A · g′ − b‖1

where g′,g∗ should satisfy that each entry of A · g′ and A · g∗ is in [0, 1]. This problem can
be solved using linear programming.

When obtaining a solution g∗, let z denote b −Ag∗. Then we can run the remaining
strategy of the l1-polynomial regression to generate a consistent-hypothesis as well as a
learned one. In the rest of this section we will formalize these procedures.

3.2 Finding Consistent-Hypotheses
Recall that (x1, b1), · · · , (xm, bm) denote m pairs sampled from D independently, 1 ≤ k ≤ m,
and f is the function in Hn,S which achieves opt-error with respect to D. Refer to Section 3.1
for the definitions of notations A,b,g∗, e, z.

ISAAC 2017



29:6 Agnostically Learning Boolean Functions

Algorithm 1: The consistent-hypothesis-finder.
Input:

m pairs of form (x, b) drawn from D independently.
ε, δ and the knowledge of S.

Output: a hypothesis f0.
1. Run a l1-polynomial regression algorithm to find a solution g∗ such that

‖A · g∗ − b‖1 = inf
g′
‖A · g′ − b‖1

where g′,g∗ satisfy that each entry of A · g′,A · g∗ is in [0, 1].
Assume that g∗ consists of all g∗S ’s. Let p(x) =

∑
S∈S g

∗
S

∏
j∈S xj . (Thus p(xk) ∈

[0, 1] for 1 ≤ k ≤ m.)

2. Uniformly sample t ∈ (0, 1) O(1 + 1/ε) ln( 1
δ ) times. Select one t satisfying

f0(x) = Sign(p(x)− t) achieves the minimal empirical error on the m examples
and finally output f0.

End Algorithm

Let I denote the set of the indices k ∈ [m] on which ek 6= 0. Let µ = |I|/m. (It can be
seen that µ ≈ opt.)

First it can be seen that since e = b −Ag and g∗ achieves the minimal ‖b −Ag∗‖1
among all g′, ‖z‖1 ≤ ‖e‖1 = |I|. Then we follow the method of [11] to construct a consistent
hypothesis as shown in Algorithm 1, in which we instantiate the second step for determining t.

For distribution D, let erD(h) denote Pr[h(x) 6= b] for (x, b) ← D. Let Z denote pairs
(x1, b1), · · · , (xm, bm). Then let êrZ(h) denote 1

m |{k : h(xk) 6= bk}|.

I Proposition 3. With probability 1− δ, the hypothesis f0(x) in Algorithm 1 is such that
êrZ(f0) ≤ µ+ µε < µ+ ε.

Proof. Let h denote Sign(p(x)− t) for uniform t. First using the argument of [11] (the proof
of Theorem 5), we have the following claim.

Et[êrZ(h)] ≤ 1
m

m∑
k=1
|p(xk)− bk|

To see this, Et[êrZ(h)] equals the average sum of the probabilities of all events h(xk) 6= bk.
Thus for each (xk, bk), f0(xk) 6= bk if t lies between p(xk) and bk. Note that p(xk) ∈ [0, 1] and
bk ∈ {0, 1}. Hence, for uniform u ∈ (0, 1), for any k, the probability that t lies in between
the two numbers is |p(xk)− bk|. So the above inequality holds.

Then notice that
1
m

m∑
k=1
|p(xk)− bk)| = 1

m

m∑
k=1
|zk| =

1
m
· ‖z‖1 ≤

1
m
· ‖e‖1 = |I|

m
= µ

So Et[êrZ(h)] ≤ µ. Furthermore, by Markov’s inequality, Pr[êrZ(h) > (1+ε)µ] ≤ µ
(1+ε)µ =

1
1+ε = 1− ε

1+ε . Thus

Pr[êrZ(h) ≤ (1 + ε)µ] > ε

1 + ε

So forO(1+1/ε) ln( 1
δ ) times sampling of u, with probability 1−(1− ε

1+ε )
O(1+1/ε) ln 1

δ > 1−δ,
there is at least one u such that êrZ(h) ≤ (1+ ε)µ < µ+ ε. Then f0 is this h. The proposition
holds. J



Ning Ding 29:7

We remark that Proposition 3 can be extended to any concept class C that can be l1- (or
l2) approximated by Hn,S in expectation as shown [11].

In the following we show that t = 1
2 is a universal constant such that for any distribution

D, letting f0 = Sign(p(x)− 1
2 ) in Algorithm 1 (ignoring (ε, δ) and omitting the second step),

the following result holds.

I Proposition 4. The hypothesis f0(x) = Sign(p(x)− 1
2 ) is such that êrZ(f0) ≤ 2µ.

Proof. Notice that A · g∗ = b − z. First since ‖z‖1 ≤ ‖e‖1 = µm, there is at most 2µ
fraction of k ∈ [1,m] such that |zk| ≥ 1

2 . That is, there is at least 1− 2µ fraction of all k’s
satisfying |zk| < 1

2 . This means that for this 1− 2µ fraction of all k’s, p(xk) differs from bk

by a quantity less than 1
2 . This also means that bp(xk)e equals bk for this fraction. We now

show this rounding to the closest integers is identical to the sign operation to p(xk)− 1
2 for

this fraction. It can be seen that if bk = 1, p(xk) is more than 1
2 . Thus bp(x

k)e will output 1.
In this case Sign(p(xk)− 1

2 ) outputs 1 either. If bk = 0, p(xk) is less than 1
2 . Thus bp(x

k)e
will output 0. In this case Sign(p(xk)− 1

2 ) outputs 0 either. The proposition holds. J

3.3 The Learning Result
In the rest of this section we present the required sample complexity and state the learning
result. Let Fn,S denote the boolean function class, in which each one on input x ∈ {0, 1}n
first computes

∏
j∈S xj for all S ∈ S and compute a halfspace of all

∏
j∈S xj . Thus it can

be seen that Hn,S and the output hypotheses of Algorithm 1 are in Fn,S . In the following
let us estimate the VC-dimension of Fn,S .

I Proposition 5. Fn,S is contained in the class of 2-level threshold circuits of |S| · (n+ 1)
weights and thresholds and |S + 1| computation gates which is of VC-dimension O(n · |S| ·
log |S|).

Proof. First each monomial of form
∏
j∈S xj can be computed by an AND gate of j ≤ n

inputs and each AND gate of n inputs can be computed by a threshold gate of the n inputs
and n+ 1 weights and threshold. Thus f can be computed by a 2-level threshold circuits in
which the first level computes

∏
j∈S xj for all S ∈ S and the second computes the threshold

gate above. It can be seen that this circuit is of O(|S| · n) weights and thresholds and |S|+ 1
gates in total. Thus due to [4], the VC dimension of all such circuits is O(n · |S| · log |S|). J

Then recall the following result.

I Theorem 6. ([19]) Let D be any distribution over {0, 1}n × {0, 1}. Let Z denote m pairs
independently sampled from D. For 0 < ε < 1, it holds that for all h ∈ Fn,S ,

Pr[|erD(h)− êrZ(h)| ≥ ε] ≤ δ, if m ≥ 64
ε2

(2VCdim(Fn,S) ln(12
ε

) + ln(4
δ

))

Suppose that when given Z, f0 ∈ Fn,S is a hypothesis such that erZ(f0) ≤ c · opt + ε0
for some constant c (c = 1 in Proposition 3 and c = 2 in Proposition 4). Then we have the
following result.

I Claim 7. When m ≥ 64
ε2 (2VCdim(Fn,S) ln( 12

ε )+ln( 4
δ )) and let Z,D, f0 be defined as above,

with probability 1− δ, erD(f0) < c · opt + ε0 + ε.

Proof. Given the condition of m, by Theorem 6, we have that with probability 1 − δ,
|erD(h)− êrZ(h)| ≤ ε for all h ∈ Fn,S . Thus for f0 ∈ Fn,S , we have

erD(f0) ≤ êrZ(f0) + ε ≤ c · opt + ε0 + ε

The claim holds. J

ISAAC 2017
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Combining Proposition 5 and Claim 7, we have the following proposition.

I Proposition 8. Choosing m ≥ O( 1
ε2 (n|S| log |S| ln( 12

ε ) + ln( 4
δ ))) and letting f0 ∈ Fn,S be

such that êrZ(f0) < c · opt + ε0 where Z denotes m pairs sampled from D, with probability
1− δ, erD(f0) < c · opt + ε0 + ε.

Then we estimate |I| as follows, which will be used in the proof of Proposition 10.

I Claim 9. For any 0 < δ < 1, with probability 1− δ, |I| ≤ (opt ·m+
√

3 ln 1
δ · opt ·m).

Proof. Let ξk = 1 if ek 6= 0 and ξk = 0 if ek = 0 for 1 ≤ k ≤ m. Let X =
∑m
k=1 ξk. Then

E[X] = opt ·m. Due to the Chernoff bound, for any 0 < λ < 1,

Pr[X < (1 + λ)E[X]] > 1− e−λ
2E[X]/3

So set λ =
√

3 ln 1
δ ·

1√
opt·m . Then the above probability formula is simplified to

Pr[X < (opt ·m+
√

3 log 1
δ
· opt ·m)] > 1− δ

The claim holds. J

Lastly, replace ε, δ in Algorithm 1 by ε
3 ,

δ
3 . We have the following result.

I Proposition 10. Algorithm 1 can with probability at least 1−δ output a hypothesis, denoted
f0 in time poly(|S|, n, 1

ε , log 1
δ ) satisfying erD(f0) ≤ c·opt+ε, where opt = minh∈Hn,S (erD(h))

(c = 1 when using Proposition 3 or c = 2 when using Proposition 4).

Proof. By Claim 9, except for probability δ
3 , µ = |I|/m ≤ opt +

√
3 ln 3

δ · opt ·m
− 1

2 . By
Proposition 3 (or Proposition 4), except for another δ/3 probability, êrZ(f0) ≤ cµ+ ε/3 =
c · opt + O(m−1/2) + ε/3, where Z denotes the sample consisting of the m pairs. So by
Proposition 8, erD(f0) ≤ c · opt + O(m−1/2) + 2ε/3 < c · opt + ε (where O(m−1/2) < ε/3),
and the total failure probability is at most δ.

Moreover, (A,b) can be generated in time polynomial in (|S|,m), and the l1-polynomial
regression algorithm runs in time polynomial in its input. Thus the time complexity holds. J

4 Learning DNF Formulae

In this section we present an agnostic learning result for DNF formulae, as an application of
the general result in [11] for all concept classes admitting l1-approximation with low-degree
polynomials in expectation. Recall that s-term DNF formulae can be PAC learned in time
nO(n1/3·log s) [13], and [6] combined with [16] presents a query algorithm to agnostically
learn DNFs in time nO(log(1/ε) log logn) under the uniform distribution. We will present an
agnostically learning algorithm for s-term DNF formulae (s <

√
n) by showing that such

DNF formulae have uniform approximation with low-degree polynomials. First, let us recall
the general result in [11] as follows.

I Theorem 11. ([11]) Let C denote a concept class, D be any distribution over {−1, 1}n ×
{−1, 1}. Assume for any hypothesis h ∈ C, there is a polynomial p of degree d such that
ED[|h(x) − p(x)|] < ε. Then there is an algorithm that on input parameters (ε, δ) and d,
sufficiently many pairs sampled from D independently can with probability 1 − δ output a
hypothesis f such that erD(f) ≤ opt+ε in time poly(nd, 1

ε , log 1
δ ) where opt = minh∈C(erD(h)).
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Let f be a boolean function mapping {−1, 1}n → {−1, 1}. Let p be a degree-dε′ n-
variate polynomial mapping Rn → R. We say that p(x) ε′-uniformly approximates f(x) if
|f(x)− p(x)| ≤ ε′ for any x ∈ {−1, 1}n.

In the following we show that each s-term DNF formula f can be 2ε′-uniformly ap-
proximated by a polynomial p of degree O(

√
n · s · log s log2(1/ε′)) for any ε′. This implies

ED[|f − p|] ≤ 2ε′. Thus by Theorem 11 we obtain the result of agnostically learning s-term
DNFs.

Now consider f as a DNF formula which is the OR of s conjunctions f1, · · · , fs. W.l.o.g.,
assume each fi is the AND of at most n literals in {x1, · · · , xn, x1, · · · , xn}. (If it connects
more than n literals, then there is an j such that xj , xj appear in it simultaneously, which
means it is always equal to false and thus can be got rid of from f .) In the following we show
that f admits a uniform approximation.

I Proposition 12. Each s-term DNF formula f can be 2ε′-uniformly approximated by a
polynomial p of degree O(

√
n · s · log s log2(1/ε′)) for any ε′.

Proof. By [17], for each AND of n variables, for any ε0, there is a multi-variate real
polynomial that can ε0-uniformly approximate it. That is, for each fi, there is a pi(x) of
degree O(

√
n log(1/ε0)) satisfying |pi(x) − fi(x)| ≤ ε0 for all x ∈ {−1, 1}n. It can be seen

that fi(x)/pi(x) ∈ [ 1
1+ε0

, 1
1−ε0

] for fi(x) = ±1 and for each i.
Notice that 1

1+ε0
> 1− ε0. Since (1− ε0)(1 + 2ε0) = 1 + ε0 − 2ε20, choosing ε0 < 1

n2 , we
have that

1
1− ε0

= 1 + 2ε0
1 + ε0 − 2ε20

< 1 + 2ε0

So fi(x)/pi(x) ∈ (1 − ε0, 1 + 2ε0) for all i’s. Let fi(x)/pi(x) = 1 + ∆i(x). Then
∆i ∈ (−ε0, 2ε0).

Since f is OR of f1, · · · , fs, using [17] again, we have that there exists an s-variate
multi-linear polynomial P (f1, · · · , fs) of degree O(

√
s log(1/ε′)) such that |f(f1, · · · , fs)−

P (f1, · · · , fs)| ≤ ε′ for any f1, · · · , fs. Denote the Fourier expansion of P (f1, · · · , fs) by∑
|S|≤O(

√
s log(1/ε′)) βS

∏
j∈S fj , where each S ⊂ [n] and βS ’s are coefficients each of which is

less than a constant. Thus we have

P (f1, · · · , fs) =
∑

|S|≤O(
√
s log(1/ε′))

βS
∏
j∈S

fj =
∑

|S|≤O(
√
s log(1/ε′))

βS
∏
j∈S

(pj · (1 + ∆j))

=
∑

|S|≤O(
√
s log(1/ε′))

βS
∏
j∈S

pj ·
∏
j∈S

(1 + ∆j)

=
∑

|S|≤O(
√
s log(1/ε′))

βS
∏
j∈S

pj · (1 +
|S|∑
j=1

∆j +O(max
j

(∆j)))

= P (p1, · · · , ps) +
∑

|S|≤O(
√
s log(1/ε′))

βS
∏
j∈S

pj(
|S|∑
j=1

∆j +O(max
j

(∆j)))

When ε0 ·n ·
(

s
O(
√
s log(1/ε′))

)
< ε′/n, the second addend in the right side of the last equality

is less than ε′. Thus in the beginning, we would choose

ε0 <
ε′

n2 · s
−O(
√
s) log(1/ε′)

Then each pi(x) is of degree O(
√
n log(1/ε0)) = O(

√
n · (logn +

√
s log s log(1/ε′))) =

O(
√
ns log s log(1/ε′)) (when

√
s > logn).

ISAAC 2017
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More importantly, we have |P (f1, · · · , fs) − P (p1, · · · , ps)| < ε′, which shows that
|f(f1(x), · · · , fs(x))− P (p1(x), · · · , ps(x))| < 2ε′ for any x ∈ {−1, 1}n.

Notice that P (p1(x), · · · , ps(x)) is actually a multi-linear polynomial on x of degree
O(
√
ns log s log(1/ε′)) ·O(

√
s log(1/ε′)) = O(

√
n · s · log s log2(1/ε′)). The proposition holds.

J

Thus we have the following learning result.

I Proposition 13. For each s, for any (ε, δ), all s-term DNF formulae can be agnostically
learned to error opt + ε and confidence δ in time poly(nd, 1

ε , log 1
δ ), where d = O(

√
n · s ·

log s log2(1/ε)).

Proof. By Proposition 12, ED[|f(x) − P (p1(x), · · · , ps(x))|] ≤ 2ε′ for any ε′ > 0 where
P (p1(x), · · · , ps(x) is of degree O(

√
n · s · log s log2(1/ε′)). Thus, choosing ε = 2ε′, by

Theorem 11, the proposition holds. J
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