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—— Abstract

Let G = (V, E) be an undirected graph, T C V be a set of terminals. Then a natural combi-
natorial problem consists in finding the maximum number of vertex-disjoint paths connecting
distinct terminals. For this problem, a clever construction suggested by Gallai reduces it to com-

logn?/m

o )—time algorithm
gn

puting a maximum non-bipartite matching and thus gives an O (m\/ﬁ
(hereinafter n := |V, m := | E]).

Now let us consider the fractional relaxation, i.e. allow T-path packings with arbitrary
nonnegative real weights. It is known that there always exists a half-integral solution, that is,
, 2,1 to maximize the total weight of T-paths. It is also known
that an optimum half-integral packing can be found in strongly-polynomial time but the actual

one only needs to assign weights 0

time bounds are far from being satisfactory.
In this paper we present a novel algorithm that solves the half-integral problem within

2
0 (m\/ﬁ loglong T{ m) time, thus matching the complexities of integral and half-integral versions.
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1 Introduction

1.1 Basic Notation and Definitions

We shall use some standard graph-theoretic notation throughout the paper. For an undirected
graph G, we denote its sets of vertices and edges by V(G) and E(G), resp. A similar notation
is used for paths, trees, and etc. A subgraph of G induced by a subset U C V(G) is denoted
by G[U]. Let P = (x1,...,x,) be a path viewed as a sequence of vertices. By P[xz;, x;] we
denote the part of the path from vertex z; to vertex z;. For paths P and ) with a common
endpoint, we denote by P o ) the concatenation of P and Q.

Let G = (V, E) be an undirected graph, T' C V be a set of terminals. By a T-path we
mean a simple s-t path P connecting two distinct terminals s,¢ € T such that all intermediate
vertices of P arein V—T. A T-path packing is a weighted collection P = {ay - Py,...,ax - Pr}
where each P; is a T-path and each «; is a non-negative real weight. The value of a T-path
packing P is val(P) := a1 + ...+ ai. Forv e V, let P(v) :=> (ay : v € V(PF;)) be the total
weight of paths in P containing v. Clearly, >, . P(t) = 2val(P).
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Let ¢: V — Z4 be vertex capacities. A T-path packing P is called c-feasible if P(v) < c(v)
for all v € V. Then a natural combinatorial problem consists in finding a c-feasible T-path
packing P of maximum value val(P).

1.2 Prior Art and Our Contribution

The above T-path packing problem has two flavors: one might either require all path weights
to be integral or agree to deal with arbitrary nonnegative real weights.

One of the simplest cases is ¢ = 1. Then for the integral version of the problem a clever

trick due to Gallai [10, Th. 74.1] reduces the path packing problem to finding a maximum
logn?/m ) _

logn

matching in an auxiliary (possibly non-bipartite) graph. This implies an O (m\/ﬁ
time algorithm [5] (hereinafter n := |V|, m := |E|). This connection to matchings, in fact,
is not surprising since for T'=V the problem is equivalent to maximum matchings (either
integral or fractional).

For general ¢, the integral version has a rich and sophisticated combinatorial structure,
which was first studied by Mader [7]. Polynomial-time algorithms for this problem appear
in, e.g., [8], [9]; however the actual complexity bounds are not satisfactory. In particular,
strongly-polynomial approaches seem to be non-combinatorial and rely on general LP solvers.

For the fractional version of the problem, Pap [8] proved the primal half-integrality; i.e.
there always exists a T-path packing with half-integral weights and maximum value. Due to
this, we can double the capacities and search for an integral solution; hereinafter we mostly
focus on integral packings.

Thus the fractional relaxation of ¢ = 1 is exactly ¢ = 2. This case seems pretty natural
and the existence of the elegant algorithm of Gallai suggests that some efficient direct
combinatorial approach might exists here. Indeed, Babenko [1] proposed a combinatorial
algorithm that computes a maximum path packing in O(mn?) time. The latter bound,
however, is significantly worse than that of Gallai, which seems weird since typically fractional
relaxations of integral problems are easier, both structurally and algorithmically.

Also for arbitrary even capacities, Babenko and Karzanov [3] proposed a weakly polynomial
scaling algorithm with complexity O(A(n, m, C)n?log? nlog C'), where C is the maximum
vertex capacity and A(n,m,C) denotes the complexity of finding a maximum integral flow
in a digraph with n vertices, m edges, and integer edge capacities not exceeding C.

In this paper we present two new faster algorithms for the case ¢ = 2 (or, equivalently,

the fractional version of the Gallai’s problem). The first algorithm employs a simple
labeling technique and runs in O(mn) time. The second algorithm is more involved and

runs in O (m\/ﬁ loglgg/L m) time. It relies on the Gallai’s approach to construct the initial
approximation (a packing with all path weights equal to 2) and then turns it into an optimal
solution in linear time; this is where the previous labeling technique appears useful. Note
that a conceptually similar approach was employed for computing maximum triangle-free
2-matchings [2].

The rest of the paper is organized as follows. In Section 2 we introduce some basic facts
about T-path packings and the Edmonds—Gallai decomposition. Section 3 and Section 4
present the descriptions of O(mn)-time and O(m+/nlog %)—time algorithms, resp. Finally
in Section 5 we conclude.

Note that due to the lack of space some proofs are moved into Appendix.



M. Babenko and St. Artamonov

ty
to tl t(] t2
® O O ® ® O O
(a) A double path. (b) An odd star. (c) Turning an even star into

double paths.

Figure 1 Elements of a canonical path packing. Terminal vertices are marked with dots.

2 Preliminaries

2.1 Canonical Decomposition

A 2-feasible T-path packing P is called canonical if it can be represented as a vertex-disjoint
union of elements of two types: double paths and odd stars. Both of our algorithms will
produce canonical packings.

A double path (Fig. 1(a)) is a collection P’ = {2 - P} consisting of a T-path P that is taken
twice. A star (Fig. 1(b)) is a collection P” = { Py, ..., Py_1} of T-paths that form a star-like
shape. The formal definition is rather technical and proceeds as follows. There must be a
sequence of distinct terminals tg, ..., tx—1 such that P; connects ¢; and t;41 (1 =0,...,k —1
and indices are taken modulo k). For each i, P; and P;;; share a common path incident to
ti+1. Such common paths are called legs. If a vertex v belongs to both P; € P” and P; € P”
then |i — j| = 1 and v should belong to the corresponding leg. Vertices covered by a single
path (resp. two paths) in P” are called inner (resp. leg vertices). Each vertex belonging to
a leg is covered by exactly two paths in P”. Edges that are traversed by exactly one P; in
P” form a simple cycle called the inner cycle of the star. A star is called odd (resp. even) if
k is odd (resp. even). Note that each even star can be easily turned into a number of double
paths as shown in Fig. 1(c); this preserves the packing value.

In both algorithms we only consider canonical path packings. We also stress that canonical
elements Py, ..., P, that form P are vertex-disjoint, i.e. each v € V is covered by at most
one of Py,...,P;. Clearly this is only important for odd stars since overlapping a double
path with any other component violates vertex capacities.

2.2 Min-Max Relation
» Lemma 1. Let P be a 2-feasible T-path packing, U be an arbitrary subset of V.. Then
val(P) < |T|+|UNT|4+2U\T| - ot(G —U), (1)

where G — U stands for the graph obtained from G by removing vertices in U, and for a
subgraph H of G, ot(H) denotes the number of connected components of H containing exactly
one terminal.

The O(mn) algorithm will provide both a T-path packing P and a set U turning (1) into
equality, thus proving the following min-max relation:

8:3

ISAAC 2017



8:4

Faster Algorithms for Half-Integral T-Path Packing

» Theorem 2. For 2-feasible T-packings P,

mngal(?) = pin T+ |UNT|+2U\T|—ot(G—U). (2)

2.3 Edmonds—Gallai Decomposition

For the faster algorithm we will need several standard facts concerning maximum matchings
(see [6, Ch. 3] for a survey). For an undirected graph G = (V, E), let v(G) denote the size of
a maximum matching in G and odd(G) be the number of connected components of G with
an odd number of vertices. A graph G is factor-critical if for any v € V, G — v admits a
perfect matching. For a matching M, a vertex v is called exposed if v ¢ V(M).

» Theorem 3 (Tutte—Berge, [6, Ch. 3, Th. 3.1.14]). v(G) = min LIV + U] = 0dd(G - U)).

» Theorem 4 (Edmonds—Gallai, [6, Ch. 3, Th. 3.2.1]). For an undirected graph G, let

D = {v eV | there exists a mazimum matching exposing v},
A = {veV —D]|wvis aneighbor of D},
cC = V-(AUD).

Then U := A achieves the minimum in the Tutte—Berge formula, and D is the union of the
odd connected components of G[V — A]. Every connected component of G|D] is factor-critical.
Any mazimum matching in G induces a perfect matching in G[C] and a matching in G|V —C]
that matches all vertices of A to distinct connected components of G[D].

Note that once a maximum matching M in G is found, an Edmonds-Gallai decomposition
of G can be constructed in linear time by running a search for an M-augmenting path. Most
algorithms that find M yield this decomposition as a by-product.

3 O(mn)-time algorithm

The algorithm will be iterative. Each iteration gets the current T-path packing P, which is
represented as a set of its canonical elements, and aims to increase val(P).

Each iteration will assign labels from the set {*} UT to vertices of G, i.e. maintain a
partial map I: V — {x} UT. During one iteration, a once labeled vertex never changes its
label. Here x is a special label, the remaining labels correspond to terminals.

A vertex v is called free if P(v) = 0, and covered otherwise. Similarly an edge e is called
free if there does not exist P € P such that e € E(P). Note that since P is canonical, if a
terminal ¢ is not free then P(t) = 2. For a vertex v € V — T covered by P, P(v) = 1 if it is
an inner vertex of some odd star and P(v) = 2 otherwise.

The outline of the algorithm is the following. We initially set I(t) := ¢ for each free t € T}
other vertices are unlabeled. Then, if for the current P there is no free terminal then P is
obviously maximum. Otherwise, we enumerate all free terminals and run a certain search
procedure from each such terminal.

The search assigns labels to the vertices it visits; see Subsection 3.1 for the details. It
builds a certain tree; let F; be this tree for the current terminal ¢. During this search we may
say that we obtained a breakthrough, which means that we can modify P to increase its value
in O(m + n) time. The detailed explanation of a breakthrough is given in Subsection 3.2.
When the search at the current free terminal finishes and yields no breakthrough, we will
ignore this ¢ with its tree F; and proceed with searches from other free terminals. If no free
terminals are left then it will be shown in Subsection 3.3 that the current P is maximum.
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Figure 2 Example of F; and F;. Grayed vertices correspond to contracted double paths.

3.1 Labeling Procedure

Let ¢ be the current free terminal (see above). To start the search from ¢, we mark ¢ as active.

We will maintain the property that all active vertices are labeled. Then we run the following
labeling procedure.
Let v be an active vertex, I[(v) = a. The algorithm scans all free edges incident to v. Let
e = {v,w} be some free edge. We perform a case-splitting as follows:
(A1) I(w) is defined.
(A1-1) (w) = a or I[(w) = *. Then edge e is ignored.
(A1-2) I(w) # « and l(w) # *. Then we get a breakthrough.

(A2) I(w) is not defined and w is a free vertex. Then we set {(w) := «, make w active and
add w together with e to F3.

(A3) I(w) is not defined and w is covered by a double path P = (o = 3,..., 2, = 7)
(viewed as a sequence of vertices). Here 5,7 € T. Let w = ;. Then we set I(x;) := § for
all i < j, l(z;) :== for all i > j, and I(z;) := *, mark all these labeled vertices except for
x; as active, and add the whole path P together with the edge e to the tree F;.

(A4) [(w) is not defined and w belongs to an odd star S. Then we get a breakthrough.
When all free edges incident to v are examined, v becomes inactive.

Note that once the algorithm reaches a double path P in the current P, it immediately
labels all of its vertices. In particular, x-vertices are only present on reached paths P, and
for each such path there is a unique such vertex; note that this vertex might be a terminal.

Consider the tree F; rooted at t and contract each double path P that belongs to F} into
a new vertex v(P). Then we obtain a tree F] where each non-root vertex corresponds to
either a double path or a free non-terminal vertex; see Fig. 2.

Note that by choosing the order in which we examine active vertices and scan edges
incident to them, we may assume that this tree F} is a DFS-tree, that is, if there is an edge
{z,y} outside the tree between two distinct vertices x, y of the tree then z is an ancestor of
y or vice versa. To achieve this property, we run the usual DFS from the terminal ¢; the only
difference with the standard DFS is that when examining an edge e triggers case (A3), all
vertices that become active are added to the DFS stack.

We note that all vertices that were labeled during the current search from ¢ belong to Fy,
and if for some edge e case (A1-2) applies then it either connects F; with a free terminal
distinct from ¢ or the image of this edge in F} connects two vertices which either coincide or
one is an ancestor of the other; note that loops are also possible here as there might be an
edge outside F; connecting two vertices that belong to one double path.
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Figure 3 An example of trees I; and F;. Grayed edges indicate paths Q in F; and Q" in Fy.

3.2 Breakthrough

Suppose that at some point during an iteration we obtained a breakthrough. We now prove
that in this case we can augment the current T-path packing P. Let ¢ be the free terminal
that is currently being evaluated, F; be the tree that grows from it, F} be the tree obtained
from F; after contracting each double path. For trees F} containing at least one contracted
vertex, we define the following operation that alters P preserving its size but making the
terminal ¢ covered and exposing some of the earlier covered terminals.

Let v be some vertex in Fy, v’ be its image in F}, @Q be the (unique) t—v path in F;, and
Q' be the image of Q in F/. Let Py, Ps, ..., Py be the sequence of double paths which appear
as contracted vertices p1,pa, ..., px in Q" when travelling from ¢ to v/, and denote by ¢} and
t? the endpoints of P;. Path @ intersects each P; by a segment; let x; and y; be the first and
the last (resp.) vertices of this segment (assuming that @ is directed from ¢ to v). Note that
vertices x; have label . Also note that x; # y; as we do not scan edges from x;. See Fig. 3
for an example.

Note that for each P; we may exchange t} with ¢?; we shall be using this idea extensively
to simplify the case-splitting.

The cornerstone is the following switching routine. Fix ¢ € {1,...,k} and an arbitrary
endpoint of P;, say t7. Then we can alter P (namely, change P, ..., P;) so that ¢ becomes
covered, all vertices between tf and z; (excluding ;) in P; are made free, and the rest of the
terminals do not change their covering status. We call this EXPOSE(?).

To prove this, we apply induction on 4. If i = 1 then we replace P; with P;[t}, 71]0Q[z1,1].
Now let i > 1. Exchanging t!_;,t?_; if needed, we may assume that P;_[t}_;,y;_1] contains
x;_1. We first invoke EXPOSE(t?_;) to update Pi,..., P,_; and make t? ; free. Then we
replace P; with P;[t}, ;] o Q[zy, yi—1] © Pi—1[yi—1,t7_1). It is straightforward to see that the
resulting double paths do not intersect and cover the desired set of vertices.

Now, recall that we can get the breakthrough in cases (A1-2) and (A4). Let v be the
current active vertex and e = {v, w} be the edge triggering the breakthrough. We keep the
above notation for Q, P;, t!, t2, x;, y;. Exchanging t},t2

i, t7 if needed, we may assume that
Pt} y;] contains x; for all i € {1,...,k}.

3.2.1 Case Al1-2

Note that w can either be a free terminal or a vertex in F; since the only other labeled
vertices are the ones that belong to the trees Fy for free terminals ¢’ that were already
scanned, but in that case e should have already been visited while examining w and would
have either led to a breakthrough or to vertex v being added to F},, which did not happen.
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Figure 5 Subcase 2a (k > 1).

We thus consider these two cases.

1. wis a free terminal (other than ¢). If £ = 0 then we just add Q o e as a new double path
to P. Otherwise, we first apply EXPOSE(t7) and then add Py[t2, yi] o Q[yk,v] 0 € as a new
double path.

2. w belongs to F;. As mentioned above, F/ is a DFS-tree, so the image of e in F is either
a loop or connects a vertex with its ancestor; it might be a loop if both v and w belong to
the same double path Py (in this case Py[v, w] contains xy as I(v) # l(w)). We shall apply
EXPOSE to alter some double paths in P and turn the rest into an odd star. Namely, we
have the following possible subcases for w:

a. w belongs to P,. We first note that y; and v have the same label. Then, note that w
belongs to Py [t,lv, x] since otherwise w and y; and thus v would have had the same
label. If k = 1 then we form an odd star with legs Q[t, z1], Pi[t}, w], Pi[t?,y1] and
the inner cycle Pi[w, y1] o Q[y1,v] o e. Otherwise we apply EXPOSE(t7_,) and create a
similar odd star with legs Py_1[t7_;,yk—1] © Qyr—1, 2], Plt}, w], Pkt3,yx] and the
inner cycle Pglw, yx] o Qyk,v] o e, see Fig. 5.

b. w belongs to P; for i < k and z; does not belong to P;[w,y;]. We apply EXPOSE(t?)
and create an odd star S with the inner cycle P;[w, y;] o Q[y;,v] o e. The legs of S are
formed as follows. For endpoint t? of Pj for j € {i+1,...,k}, g € {1,2}, we take the
part of P; from tg- to the closest of z; and y;. For endpoint t? of P;, we take the part
of P; from #? to the closest of y; and w, see Fig. 6.

c. w belongs to P; for i < k and xz; belongs to P;[w,y;]. If ¢ = 1 then we replace all
Py, ..., Py with an odd star. The inner cycle, the legs for terminals t? for j € {1,...,k},
q € {1,2}, and the leg for terminal ¢ are constructed similarly to the previous case;
see Fig. 7. Otherwise we apply EXPOSE(t?_;) and then again form a similar odd star
using P;_1[t? 1, yi—1) 0 Qyi—1, ;] as its leg from t7_,.

8:7
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Figure 7 Subcase 2¢ (i = 1).

d. w is a free vertex belonging to F;. We follow from w to t in F} until either reaching P;
for some ¢ € {1,...,k} or the root ¢. In the first subcase the vertex where we stop is
exactly y;. Moreover, i # k as [(v) # [(w). We apply EXPOSE(¢?) and construct an
odd star. In the second subcase no EXPOSE call is needed and we just construct an
odd star out of Py, ..., P;. In both subcases the inner cycle of this star is Qw,v] o e.
We omit the details since they are straightforward and very similar to the above.

3.2.2 Case A4

Here we have two cases: either w is an inner vertex of a star .S or w belongs to a leg of S.

1. w is an inner vertex of S. Then we apply EXPOSE(t}), attach Py[t7,yr] o Qlyx,v] o€ as a
new leg to S thus turning S into an even star, and finally dissolve S into a collection of
double paths.

2. w belongs to a leg L of S ending in a terminal ¢;. In this case we similarly apply
EXPOSE(#}), then remove leg L from S making S an even star, dissolve S into a collection
of double paths, and finally add double path Py[t2,yx] o Q[y,v] o e o L{w, t1].

Note that in each of the mentioned cases after the transformation all terminals that were
covered by P remain covered by the new path packing, plus ¢ becomes covered, which means
that the value of path packing increases by 2, as desired.

3.3 Proof of Maximality

Suppose that we visited all free terminals and did not find a breakthrough. This means
that there is no free edge between two labeled vertices with different non-* labels or a non-x
labeled and an unlabeled vertex. This in turn means that for each free terminal ¢ and its
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tree F; (in which ¢ is the unique free terminal), the only edges that connect F; with vertices
outside Fy have label * on at least one of its ends. Define U := {v | [(v) = *} and look at the
connected components of G—U. Let U’ := UNT, U” := U\T. Consider a terminal s € T\U
and suppose that s belongs to some tree F;. Then in the connected component of G — U
containing s there is just one terminal (namely s itself). Indeed, we prove that this component
is G[S] for S := {v | l(v) = s}. Suppose first that s is covered by a double path P, and
x € V(P) is the (unique) vertex with I(x) = *. In this case S = V(P[s,z] — x), and s is
obviously connected to all vertices in .S. If there would be an edge connecting S with the rest
of G — U, it would have to go either to a different tree, or to a vertex with a different label,
or to an unlabeled vertex; all these cases are impossible. Thus S is the connected component
of G — U containing s and it indeed has just one terminal. Similar reasoning applies if s is a
free terminal in F}, meaning that s = ¢; here S consists of all vertices in F; for which the
path to ¢ in F} consists solely of free vertices.

Now suppose that we have k free terminals ¢1,...,t;. Fix i € {1,...,k} and consider F},.

Let ] (resp. u}) be the number of terminal (resp. non-terminal) vertices in this tree that
belong to U. Then in F;, we have one free terminal ¢; and u} + 2u! covered terminals that
are the only terminals in their connected components of G — U (see above). Summing over
all i, we get ot(G —U) > k+ |U’| + 2[U"”|. We then obtain

val(P) = |T| —k > |T|+ |U'| +2|U"| —ot(G = U) = |T|+|[UNT|+2|U\T| — ot(G — U).

This together with (1) proves the min-max relation Theorem 2 and the fact that the current
P is optimal.

3.4 Complexity Analysis
» Lemma 5. FEach iteration can be implemented to run in O(m + n) time.

Since each iteration either results in a breakthrough which increases the value of P or
reports that the current P is maximum, the number of iterations is O(n), thus the total time
complexity is O(mn).

4 O (mﬁ%)-time algorithm

Following Gallai [10, Th. 73.1], we build an auxiliary graph G= (‘7, E) from G as follows.
For each v € V — T, we make a second copy v’ of v. Vertices v and v’ are called mates.
For each edge {v,u}, we add edge {v,u} and also {v',v'} if u € V —T. We also add edges
{v,v'} foreachv e V —T.

For each subset U C V', denote by U C V its image in G that consists of all ¢ eTnNnU
and includes both v and o’ for all v € U \ T. We call a subset W C V(G) symmetric if v
belongs to W iff v/ belongs to W, for each v € V — T. Clearly, symmetric subsets of V are
exactly the images of subsets of V.

The outline of the algorithm is the following. First, we construct a maximum matching
in G with some special properties. Gallai [10, Th. 73.1] showed that a maximum matching
in G provides a maximum packing of T-paths subject to unit capacities; in particular, the
number of vertices not covered by this matching in G is equal to the number of terminals
that are not covered by a maximum T-path packing.

Recall that we are interested in the case ¢ = 2, so after doubling path weights Gallai’s
packing is not necessarily a maximum one. However this matching gives us an approximation
for the optimal solution.

8:9
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The next step is to augment this approximation using the O(mn) algorithm. We will
need to run this algorithm in some subgraphs of GG, however in each subgraph we will only
need to run one iteration of the algorithm, thus leading to linear time complexity for this
step.

4.1 Algorithm Description

First, we compute an arbitrary maximum matching in G and an Edmonds-Gallai decompo-
sition (D A,C) of G. Let Dy, ...,Dy C D be the factor-critical connected components of
G — A. The following lemma Justrﬁes the notation and proves that these sets are images of
certain sets D, D;, A,C C V.

» Lemma 6. E,E,E,é are symmetric subsets of V.

Each component D\Z consists of an odd number of vertices and thus contains at least
one terminal. A component D\z is called bad if D; contains exactly one terminal, and good
otherwise. Typically G admits more than just one maximum matching. Our goal is to
choose this matching in a proper way, i.e. to cover as many bad components as possible;
cf. [2]. To this aim, we first build an auxiliary bipartite graph H with vertices in the upper
part corresponding to contracted components D\i, and A as the the lower part. Edges of
H correspond to edges of G between A and D. Let H’ be formed from H by dropping all
vertices in the upper part corresponding to good components. We construct a maximum
(bipartite) matching M’ in H' and then augment it to a maximum matching M in H.

It is widely known that augmenting a matching only increases the set of covered vertices.
Also the resulting M is a maximum matching in H and by Theorem 4 this M covers all
vertices in A.

We convert M into a matching MinG by taking the ' preimages w.r.t. contractions. Now,
for each component D covered by M in H we extend M to cover all vertices of D as it is
factor-critical. For each good component D not covered by M in H, we extend M to cover
all vertices of D expect for one arbitrarily chosen terminal ¢;. We also extend M with some
perfect matching in C.

Let D’ be the union of bad components that are not covered by M in H, T’ be the set of
terminals belonging to components in D (one per component). Let 7" be the set of terminals
belonging to good components that are not covered by M (again, one per component).

We now turn this matching M into a path packing (subject to ¢ = 2) that covers terminals
T —(T"UT") (twice); the reader may refer to [10, Th. 73.1]. Let us temporarily remove
D' UT" from G and the corresponding D U T" from G. Then M is a perfect matching. Let
N be the set of edges {v,v'} € E forv eV —T. It is straightforward to see that the union
M U N consists of the following vertex-disjoint components: edges {v,v’}, simple cycles
avoiding terminals, and paths between terminals. After shrinking edges {v, v’} in these paths
we obtain a collection of disjoint T-paths in G covering all terminals covered by M in G. We
assign weight 2 to these paths, i.e. regard them as double paths. Let P be the resulting path
packing in G.

The last step is to deal with the terminals T". Let D be a good component not covered
by M in H. Then MNE (Di) is a nearly-perfect matching in D27 i.e. it exposes exactly one
(terminal) vertex t; € D; N T. Note that the current P covers all terminals in D; expect for
t;. Our goal is to adjust P to cover t; as well. To accomplish this, we run a search procedure
from Section 3 for G[D;] (using t; as the starting terminal). This iteration may either find a
breakthrough or report that the current packing is maximum. We prove that the latter is
not possible, completing the description of the algorithm.
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» Lemma 7. P can always be augmented in each good /D\Z

Proof. Suppose that the augmentation procedure did not find a breakthrough. Let F}
be the tree obtained by the algorithm, Py, ..., P; be the set of double paths belonging to
F;. Note that £ > 0, since otherwise it would mean that ¢ is not connected to the other
terminals in D;, but it must be connected as G[D;] is factor-critical. Let U := {v | I(v) = %},
u' = |UNT|, u” =|U\T|. Note that due to the above observation U is not empty. Removing
U from D; gives us at least v’ 4+ 2u” + 1 connected components containing exactly one
terminal (see Subsection 3.3). Let us now look at the images of these sets in G. Note that
U| = u' + 2u”. Graph CAT'[Z/): — U] has at least v/ + 2u” + 1 connected components of odd
size. Indeed, consider the subgraph of G induced by @ for some double path P;. Let
x; be the unique vertex of P; with {(z;) = *. If ; € T then x; does not have a mate in
/D\i , and removing it gives one connected component which is symmetric and contains a
single terminal (the other endpoint of P;). If x; ¢ T then removing {x;,z;} gives rise to
two connected components, each of which is symmetric and contains a single terminal (the
respective endpoint of P;).

Now, recall again that G [Z/)\Z] is factor-critical. We pick and remove an arbitrary vertex
in U ; the resulting graph must contain a perfect matching. However, if we proceed and
remove the remaining v’ + 2u” — 1 vertices of U then the resulting graph would contain
u' + 2u” + 1 connected components of odd size, which is a contradiction to Theorem 3. <«

4.2 Proof of Maximality

» Theorem 8. The above algorithm indeed produces a mazimum packing P.

Proof. Consider the maximum matching M’ in H’ constructed by the algorithm and let
L be the corresponding minimum vertex cover in H’. It is straightforward to see that the
set LN A is symmetric, i.e. is equal to I//; for some Ly C A. Indeed, suppose that some
vertex v € V — T belongs to LN A but its mate v’ does not. This means that for every edge
e ={v,w} € E(H'), w should belong to L. But then v can be removed from this vertex
cover, contradicting 1ts minimality. The case v € LN A veg LN A is symmetrlc

Define Lp := L\ L 4. Let 8 be the number of bad components D Then G — L, A contalns
at least 8 — |Lp| connected components with just one terminal (each bad component D;
not covered by L can only be connected to L and hence separates when I//; gets removed).
Therefore ot(G — L4) > 8 — |Lp|.

Note that in the resulting path packing P exactly §—|M’| terminals are not covered. Also
|M'| = |Lp|+ |L 4| by the max-matching min-cover duality. Then val(P) = |T|— (8 —|M'|) =
T = (8= Lal — [Lpl) > [T+ L] — 0t(G — La) = |T|+|La N T|+2/La\T| — ot(G — L),
which by Theorem 2 implies that P is maximum. <

4.3 Complexity Analysis

Using the algorithm from [5], a maximum matching in G and an Edmonds-Gallai decomposi-

tion for G can be constructed in O (m\/ﬁ logl;ongif m) time. The algorithm from [4], which has

the same time bound, can be applied to construct M in the bipartite H, and finally again
the matching algorithm for general graphs from [5] can be used to augment M in each E
which are not covered by M in H.

Turning the union M U N into the desired collection of T-paths can obviously be done in
O(m + n) time. As for the last step that deals with good components not covered by M
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in H, in each such component we need to run exactly one iteration of the first algorithm,

thus for a component D; it takes O(|V (G[D;])| + |E(G[D;])|) time. Summing over all such
log n2/m)

logn

components we get O(m + n) time; hence the total time complexity is O ( my/n

5 Conclusions

We have presented an efficient algorithm for constructing maximum integral packings of
T-path subject to capacities ¢ = 2 (or, equivalently, fractional packings subject to c =1). A
natural question is if some similar approach could handle the case of arbitrary even capacities
and give rise to, e.g., a pseudo-polynomial or a even strongly-polynomial algorithm.

Note that the standard vertex splitting (which replaces each vertex v with capacity ¢(v)
by ¢(v)/2 copies v1,...,vc()/2 With capacity 2 each and adjusts the edges appropriately)
does not help, since one needs to prevent paths in P from having (distinct) endpoints to be
split-mates that correspond to a single ¢t € T'— a new restriction, which is non-local and is
seemingly inexpressible in terms of the Gallai’s auxiliary graph.

We suspect that there is a way to extend the labeling approach presented in Section 3 in
the needed way and hope to deal with this topic in a subsequent paper.
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