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Preface

This volume contains the proceedings of the 28th International Symposium on Algorithms
and Computation (ISAAC 2017), held in Phuket, Thailand, December 9–12, 2017. ISAAC is
an annual international symposium that covers the very wide range of topics in the field of
algorithms and computation. The main purpose of the symposium is to provide a forum
for researchers working in algorithms and theory of computation from all over the world.
In response to our call for papers, we received 160 submissions from 36 countries, among
which three submissions were withdrawn. Each submission was reviewed by at least three
Program Committee members, possibly with the assistance of external reviewers. After a
rigorous review process and extensive discussion, the Program Committee selected 65 papers.
Two special issues of Algorithmica and International Journal of Computational Geometry
and Applications will publish selected papers from ISAAC 2017. The best paper award
was given to “Crossing Number for Graphs with Bounded Pathwidth” by Therese Biedl,
Markus Chimani, Martin Derka and Petra Mutzel. Selected from submissions authored
by students only, the best student paper award was given to “Fully Dynamic Connectivity
Oracles under General Vertex Updates” by Kengo Nakamura. In addition to selected papers,
the program also included plenary talks by two prominent invited speakers, Satoru Iwata,
University of Tokyo, Japan, and Suresh Venkatasubramanian, University of Utah, USA. We
thank all the Program Committee members and external reviewers for their professional
service and volunteering their time to review the submissions under time constraints. We also
thank all authors who submitted papers for consideration, thereby contributing to the high
quality of the conference. We would like also to acknowledge our supporting organizations
for their assistance and support, in particular Artificial Intelligence Association of Thailand,
Sirindhorn International Institute of Technology, and Thammasat University. Finally, we are
deeply indebted to the Organizing Committee members, Thanaruk Theeramunkung, Jittat
Fakcharoenphol, Natsuda Kaothanthong, Chutima Beokhaimook, and Pokpong Songmuang,
whose excellent effort and professional service to the community made the conference an
unparalleled success.
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Weighted Linear Matroid Parity∗

Satoru Iwata

Department of Mathematical Informatics, University of Tokyo, Tokyo, Japan
iwata@mist.i.u-tokyo.ac.jp

Abstract
The matroid parity (or matroid matching) problem, introduced as a common generalization of
matching and matroid intersection problems, is so general that it requires an exponential number
of oracle calls. Nevertheless, Lovasz (1978) showed that this problem admits a min-max formula
and a polynomial algorithm for linearly represented matroids. Since then efficient algorithms
have been developed for the linear matroid parity problem.

This talk presents a recently developed polynomial-time algorithm for the weighted linear
matroid parity problem. The algorithm builds on a polynomial matrix formulation using Pfaffian
and adopts a primal-dual approach based on the augmenting path algorithm of Gabow and
Stallmann (1986) for the unweighted problem.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems

Keywords and phrases Matroid, matching, Pfaffian, polynomial-time algorithm
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Category Invited Talk

1 Introduction

The concept of matroids was introduced by Whitney [33] as a combinatorial abstraction of
linear dependence. A matroid is a pair (S, I) of a finite set E and its subset family I that
satisfy the following axioms.
(I0) ∅ ∈ I.
(I1) I ⊆ J ∈ I ⇒ I ∈ I.
(I2) I, J ∈ I, |I| < |J | ⇒ ∃e ∈ J \ I, I ∪ {e} ∈ I.
A primary example is a set S of vectors in a certain linear space, where I is the collection of
vector subsets that are linearly independent. Such a matroid representable in this way is
called a linear matroid.

The importance of matroids in the context of combinatorial otimization was established
by Edmonds [6, 8]. In particular, the framework of matroid intersection generalizes bipartite
matching and captures various combinatorial optimizations problems solvable in polynomial
time.

As a common generalization of matroid intersection and nonbipartite matching, Lawler [19]
introduced matroid parity. Suppose that the ground set S of a matroid (S, I) is partitioned
into pairs, called lines. The matroid parity problem asks for finding a maximum cardinality
independent set that is a disjoint union of lines. It turned out, however, that this framework
is too general to be solvable. In fact, it includes NP-hard problems and requires exponential
number of independence oracle calls [17, 21]. A PTAS for this general framework has been
developed only recently [20].
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1:2 Weighted Linear Matroid Parity

For linear matroids, however, Lovász [21, 23, 24] showed a min-max formula and presented
a polynomial algorithm that is applicable if the linear representation is available. Since then,
efficient combinatorial algorithms have been developed for this linear matroid parity problem
[11, 29, 30]. Gabow and Stallmann [11] developed an augmenting path algorithm with the
aid of a linear algebraic trick, which was later extended to the linear delta-matroid parity
problem [13]. Orlin and Vande Vate [30] provided an algorithm that solves this problem by
repeatedly solving matroid intersection problems coming from the min-max theorem. Later,
Orlin [29] improved the running time bound of this algorithm. The current best deterministic
running time bound due to [11, 29] is O(nmω), where n is the cardinality of the ground set,
m is the rank of the linear matroid, and ω is the matrix multiplication exponent, which is at
most 2.38.

Since matching and matroid intersection algorithms [4, 7] have been successfully extended
to their weighted version [5, 9, 15, 18], it is natural to expect polynomial algorithms for
the weighted linear matroid parity problem. In fact, a recent work [16] has presented a
combinatorial, deterministic, polynomial-time algorithm for the weighted linear matroid
parity problem. The algorithm builds on a polynomial matrix formulation, which naturally
extends the one discussed in [12] for the unweighted problem.

2 The Linear Matroid Parity Problem

Let A be a matrix of row-full rank over an arbitrary field K with row set U and column set
V . Assume that n = |V | are even. The column set V is partitioned into pairs, called lines.
Each v ∈ V has its mate v̄ such that {v, v̄} is a line. We denote by L the set of lines.

The linear dependence of the column vectors naturally defines a matroid M(A) on V .
The independent set family I is given by I = {J | rankA[U, J ] = |J |} A subset X ⊆ V is
called a parity set if it consists of lines. The linear matroid parity problem asks for finding
an independent parity set of maximum cardinality. We denote the optimal value by ν(A,L)
This problem generalizes finding a maximum matching in graphs and a maximum common
independent set of a pair of linear matroids on the same ground set.

For a skew-symmetric matrix Φ whose rows and columns are indexed by W , the support
graph of Φ is the graph G = (W,E) with edge set E = {(u, v) | Φuv 6= 0}. We denote by Pf Φ
the Pfaffian of Φ, which is defined as follows:

Pf Φ =
∑
M

σM
∏

(u,v)∈M

Φuv,

where the sum is taken over all perfect matchings M in G and σM takes ±1 in a suitable
manner, see [25]. It is well-known that det Φ = (Pf Φ)2 and Pf (SΦS>) = Pf Φ · detS for any
square matrix S.

Associated with the linear matroid parity problem, we consider a skew-symmetric matrix
ΦA defined by

ΦA =
(

O A

−A> D

)
,

where D is a block-diagonal matrix in which each block is a 2× 2 skew-symmetric matrix

D` =
(

0 −τ`
τ` 0

)
corresponding to a line ` ∈ L. Assume that the coefficients τ` are

independent parameters (or indeterminates).
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I Lemma 1 ([12]). The optimal value ν(A,L) of the linear matroid parity problem is given
by

ν(A,L) = rank ΦA − n.

This characterization leads to an efficient randomized algorithm for solving the linear
matroid parity problem in high probability by substituting randomly generated numbers to
the indeterminates. In fact, Lovász [22] introduced such an approach using another skew-
symmetric matrix, and Cheung, Lau, and Leung [3] improved it to run in O(nmω−1) time,
extending the techniques of Harvey [14] developed for matching and matroid intersection.

3 The Minimum-Weight Parity Base Problem

In the same setting as the linear matroid parity problem, suppose that each line ` ∈ L has a
weight w` ∈ R. Let B be the base family of M(A), i.e., B = {B | rankA[U,B] = |B| = |U |}.
A base B ∈ B is called a parity base if it consists of lines. As a weighted version of the linear
matroid parity problem, we will consider the problem of finding a parity base of minimum
weight, where the weight of a parity base is the sum of the weights of lines in it. We denote
the optimal value by ζ(A,L,w). This problem generalizes finding a minimum-weight perfect
matching in graphs and a minimum-weight common base of a pair of linear matroids on the
same ground set.

As another weighted version of the matroid parity problem, one can think of finding
an independent parity set of maximum weight. This problem can be easily reduced to the
minimum-weight parity base problem.

Associated with the minimum-weight parity base problem, we consider a skew-symmetric
polynomial matrix ΦA(θ) in variable θ defined by

ΦA(θ) =
(

O A

−A> D(θ)

)
,

where D(θ) is a block-diagonal matrix in which each block is a 2 × 2 skew-symmetric

polynomial matrix D`(θ) =
(

0 −τ`θw`

τ`θ
w` 0

)
corresponding to a line ` ∈ L. Assume that

the coefficients τ` are independent parameters (or indeterminates).
We have the following lemma that associates the optimal value of the minimum-weight

parity base problem with Pf ΦA(θ).

I Lemma 2 ([16]). The optimal value of the minimum-weight parity base problem is given by

ζ(A,L,w) =
∑
`∈L

w` − degθ Pf ΦA(θ).

In particular, if Pf ΦA(θ) = 0, then there is no parity base.

Note that Lemma 2 does not immediately lead to a polynomial-time algorithm for the
minimum weight parity base problem. This is because computing the degree of the Pfaffian
of a skew-symmetric polynomial matrix is not so easy. Indeed, randomized algorithms in
[2, 3] for the weighted linear matroid parity problem compute the degree of the Pfaffian of
another skew-symmetric polynomial matrix, which results in pseudopolynomial complexity.

Starting with the characterization in Lemma 2, we have developed a combinatorial,
deterministic polynomial-time algorithm for the minimum-weight parity base problem [16].

ISAAC 2017



1:4 Weighted Linear Matroid Parity

The algorithm employs a modification of the augmenting path search procedure for the
unweighted problem by Gabow and Stallmann [11]. The correctness proof for the optimality
is based on the idea of combinatorial relaxation for polynomial matrices due to Murota [28].

I Theorem 3 ([16]). The minimum-weight parity base problem can be solved with O(mn3)
arithmetic operations over K, where m = |U | and n = |V |.

This leads to a strongly polynomial algorithm for linear matroids represented over a finite
field. For linear matroids represented over the rational field, one can exploit that algorithm
to solve the problem in polynomial time.

4 Applications

The linear matroid parity problem finds various applications: structural solvability analysis
of passive electric networks [27], pinning down planar skeleton structures [25], and maximum
genus cellular embedding of graphs [10]. We describe two interesting applications of the
weighted matroid parity problem in combinatorial optimization.

A T -path in a graph is a path between two distinct vertices in the terminal set T .
Mader [26] showed a min-max characterization of the maximum number of openly disjoint
T -paths. The problem can be equivalently formulated in terms of S-paths, where S is a
partition of T and an S-path is a T -path between two different components of S. Lovász [24]
formulated the problem as a matroid matching problem and showed that one can find a
maximum number of disjoint S-paths in polynomial time. Schrijver [32] has described a
more direct reduction to the linear matroid parity problem.

As a weighted version of the disjoint S-paths problem, it is quite natural to think of finding
disjoint S-paths of minimum total length. It is not immediately clear that this problem
reduces to the weighted linear matroid parity problem. A recent paper of Yamaguchi [34]
clarifies that this is indeed the case.

The weighted linear matroid parity has also been used in the design of approximation
algorithms. Prömel and Steger [31] provided a 5/3-approximation algorithm for the Steiner
tree problem with the aid of the weighted parity problem for graphic matroids. Even though
the performance ratio is larger than the current best one for the Steiner tree problem [1],
this suggests that there may be other combinatorial optimization problems that admit new
approximation algorithms using weighted linear matroid parity.
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Computational Philosophy: On Fairness in
Automated Decision Making
Suresh Venkatasubramanian
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Abstract
As more and more of our lives are taken over by automated decision making systems (whether
it be for hiring, college admissions, criminal justice or loans), we have begun to ask whether
these systems are making decisions that humans would consider fair, or non-discriminatory. The
problem is that notions of fairness, discrimination, transparency and accountability are concepts
in society and the law that have no obvious formal analog.

But our algorithms speak the language of mathematics. And so if we want to encode our
beliefs into automated decision systems, we must formalize them precisely, while still capturing
the natural imprecision and ambiguity in these ideas.

In this talk, I’ll survey the new field of fairness, accountability and transparency in computer
science. I’ll focus on how we formalize these notions, how they connect to traditional notions in
theoretical computer science, and even describe some impossibility results that arise from this
formalization. I’ll conclude with some open questions.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, J.4 Social and
Behavioral Sciences

Keywords and phrases fairness, transparency, accountability, impossibility results

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.2

Category Invited Talk

© Suresh Venkatasubramanian;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de




Faster Algorithms for Growing Prioritized Disks
and Rectangles
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Abstract
Motivated by map labeling, we study the problem in which we are given a collection of n disks
in the plane that grow at possibly different speeds. Whenever two disks meet, the one with the

∗ The work was supported by the MSIT(Ministry of Science and ICT), Korea, under the SW Starlab support
program(IITP–2017–0–00905) supervised by the IITP (Institute for Information & communications
Technology Promotion.).

† S.W. Bae was supported by Basic Science Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01057220).

‡ The work was supported by the MSIT(Ministry of Science and ICT), Korea, under the SW Starlab support
program(IITP–2017–0–00905) supervised by the IITP (Institute for Information & communications
Technology Promotion.).

§ M. K. was supported in part by KAKENHI Nos. 15H02665 and 17K12635, Japan.
¶ W. M. was supported in part by DFG Grants MU 3501/1 and MU 3501/2.
‖ The work was supported by the MSIT(Ministry of Science and ICT), Korea, under the SW Starlab support
program(IITP–2017–0–00905) supervised by the IITP (Institute for Information & communications
Technology Promotion.).

∗∗ J.-W. Park was supported by the NRF Grant 2011-0030044 (SRC-GAIA) funded by the Korea government
(MSIP).

†† A. v. R. was supported by JST ERATO Grant Number JPMJER1201, Japan.
‡‡ A. Vigneron was supported by the 2016 Research Fund (1.160054.01) of UNIST (Ulsan National Institute

of Science and Technology).

© Hee-Kap Ahn, Sang Won Bae, Jongmin Choi, Matias Korman, Wolfgang Mulzer, Eunjin Oh,
Ji-won Park, André van Renssen, and Antoine Vigneron;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 3; pp. 3:1–3:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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higher index disappears. This problem was introduced by Funke, Krumpe, and Storandt [IWOCA
2016]. We provide the first general subquadratic algorithm for computing the times and the order
of disappearance. Our algorithm also works for other shapes (such as rectangles) and in any fixed
dimension.

Using quadtrees, we provide an alternative algorithm that runs in near linear time, although
this second algorithm has a logarithmic dependence on either the ratio of the fastest speed to
the slowest speed of disks or the spread of the disk centers (the ratio of the maximum to the
minimum distance between them). Our result improves the running times of previous algorithms
by Funke, Krumpe, and Storandt [IWOCA 2016], Bahrdt et al. [ALENEX 2017], and Funke and
Storandt [EWCG 2017]. Finally, we give an Ω(n logn) lower bound on the problem, showing
that our quadtree algorithms are almost tight.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems–Geometrical
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Keywords and phrases map labeling, growing disks, elimination order

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.3

1 Introduction

Suppose we are given a sequence D1, . . . , Dn of n growing disks. At time t = 0, each disk Di

starts out as a point pi ∈ R2, and as time passes, it grows linearly with growth rate vi > 0.
Thus, at any time t ≥ 0, the disk Di is centered at pi and has radius tvi. The position of a
disk in the sequence corresponds to its priority (the smaller the index, the higher its priority).
Whenever two disks meet, we eliminate the one with lower priority from the arrangement.
More precisely, for any 1 ≤ i < j ≤ n, let t(i, j) > 0 be the time when Di and Dj touch,
i.e., t(i, j) = |pipj |/(vi + vj). Then, if neither of the two disks Di and Dj has been removed
before time t(i, j), we eliminate Dj at this time, while Di keeps growing. Our goal is to
determine the elimination order, that is, the instants of time and the order in which the
disks are removed from the arrangement.

Motivated by map labeling, this problem was first considered by Funke, Krumpe, and
Storandt [7]. As one zooms out from a labeled map, labels grow in size. Clearly, we do not
want the labels to overlap, so whenever this happens, one of the two is removed. This creates
the need to determine when and in which order the labels need to be discarded. Funke,
Krumpe, and Storandt [7] observed that a straightforward simulation of the growth process
with a priority queue solves the problem in time O(n2 logn). They also gave an algorithm
that runs in expected time O(n(log6 n+∆2 log2 n+∆4 logn)), where ∆ = maxi vi/minj vj is
the maximum ratio between two growth rates. Subsequently, Bahrdt et al. [2] improved this
to an algorithm that runs in worst-case time O(∆2n(logn+∆2)). This generalizes to growing
balls in arbitrary fixed dimension d, with running time O(∆dn(logn+ ∆d)). Recently, Funke
and Storandt [8] presented two further parameterized algorithms for the problem. The first
algorithm runs in time O(n log ∆(logn+ ∆d−1)), for arbitrary dimension d, while the second
algorithm is specialized for the plane and runs in time O(Cn logO(1) n), where C denotes the
number of distinct growth rates. If we are interested only in the first pair of touching disks,
our problem is equivalent to the weighted closest pair of the disk centers. Formann showed
how to compute it in optimal O(n logn) time [6].

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.3
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Table 1 Summary of our results. The O(dn2)-time algorithm in the first row works for growing
objects of any shape in Rd such that the touching time of any pair of them can be computed in O(d)
steps. SAk stands for any semialgebraic shape that is described with k parameters. Φ denotes the
spread of the disk centers and ∆ = maxi vi/ minj vj is the maximum ratio between two growth rates.

Shape Time Method Where

Balls, Boxes in Rd O(dn2) Priority sort Section 2
Disks in R2 expected O(n5/3+ε)

Rectangles in R2 expected O(n11/6+ε) Bucketing Section 3
SAk, k ≥ 4 expected O(n2−1/(2k−2)+ε)
Cubes in Rd O(n logd+2 n) Linearity of queries Section 4

Disks in R2 O(n log Φ min{log ∆, log Φ}) Quadtree Section 5.1
Disks in R2 O(n(log n + min{log ∆, log Φ})) Compressed quadtree Section 5.2

Our results. We first present a simple algorithm that runs in time O(dn2) in any fixed
dimension d (Section 2). In Section 3, we combine it with an advanced data structure for
querying lower envelopes of algebraic surfaces [1, 11] and with bucketing. In particular, the
algorithm runs in O(n5/3+ε) and O(n11/6+ε) expected time for disks and rectangles in two
dimensions, respectively. These are the first subquadratic-time algorithms for the problem.
More generally, we show that the elimination sequence of a set of n growing objects of any
semi-algebraic shape described with k ≥ 4 parameters can be computed in subquadratic time
for any fixed k. In Section 4, we consider the case of growing squares. These objects are
much simpler, hence we can use ray shooting techniques and similar properties to reduce the
running time to O(n logd+2 n).

In Section 5, we consider a completely different approach based on quadtrees. The running
time of these algorithms also depends on the spread Φ of the disk centers (that is, the ratio
of the maximum to the minimum distance between disk centers) and the ratio ∆ between the
fastest and slowest speed of the disks. Table 1 provides a summary of our results. Finally, we
give an Ω(n logn) lower bound using a simple reduction from sorting. Our algorithm using
compressed quadtrees is thus nearly optimal as well as it is an improvement over Bahrdt et
al.’s algorithm [2] that runs in O(∆2n(logn+ ∆2)) time.

Note. Parallel to our work, Castermans et al. [4] considered a variant of the problem for
squares in the plane. Whenever two squares meet, they are replaced by a new one located at
their weighted center. Like us, they are interested in the elimination/replacement sequence.
Although our algorithms are slightly faster (by polylogarithmic factors) and more general
(their algorithm can only handle square shapes), we emphasize that they are not comparable,
since our techniques do not apply in their setting.

Notation. For any 1 ≤ i ≤ n, we denote by ti the time at which disk Di is eliminated.
Since D1 will never be eliminated, we set t1 =∞. We denote by t(i, j) = |pipj |/(vi + vj) the
time at which disks the Di and Dj would touch, supposing that no other disk has interfered.
We assume general position, meaning that all times t(i, j), for i 6= j, are pairwise distinct.

2 A simple quadratic algorithm

We provide a simple iterative way to determine the elimination times ti. This method will
be used for small groups of disks afterwards. As noted above, we have t1 =∞. For i ≥ 2,
the next lemma shows how to find ti, provided that t1, . . . , ti−1 are known.
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Algorithm 1 A quadratic time algorithm
1: function EliminationOrder(p1, . . . , pn, v1, . . . , vn)
2: t1 ←∞
3: for i← 2, n do
4: ti ← t(i, 1)
5: for j ← 2, i− 1 do
6: if tj ≥ t(i, j) and ti ≥ t(i, j) then
7: ti ← t(i, j)
8: S ← (D1, . . . , Dn)
9: Sort S using key ti for each disk Di

10: return S

I Lemma 2.1. Let i ∈ {2, . . . , n}, and let

j∗ = argminj=1,...,i−1{t(i, j) | t(i, j) ≤ tj}.

Then, ti = t(i, j∗), i.e., the disk Di is eliminated by the disk Dj∗ .

Proof. On the one hand, we have ti ≤ t(i, j∗), because at time t(i, j∗), the disk Di would
meet the disk Dj∗ that has higher priority and that has not been eliminated yet. On the
other hand, we have ti ≥ t(i, j∗), because every disk that Di could meet before time t(i, j∗)
either has lower priority or has been eliminated before the encounter. J

Lemma 2.1 leads to a straightforward iterative algorithm, see Algorithm 1.

I Theorem 2.2. Algorithm 1 computes the elimination order of a set of prioritized disks in
O(n2) time. It generalizes to growing objects of any shape in Rd such that the touching time
of any pair of them can be computed in O(d) steps, with running time O(dn2).

Proof. The correctness follows directly from Lemma 2.1. The running time analysis is
straightforward. Lemma 2.1 is purely combinatorial and requires only that the times t(i, j)
are well defined. Thus, Algorithm 1 can be generalized to balls and rectangles in Rd by using
an appropriate subroutine for computing t(i, j). This subroutine takes O(d) steps. J

3 A subquadratic algorithm using bucketing

We now improve Algorithm 1 by using a bucketing approach and lifting the problem to higher
dimensions. For this purpose, we will use a data structure for querying lower envelopes in
R4, which allows us to compute ti in increasing order of i.

Suppose that for a set B ⊂ {1, . . . , n} of indices, we know the elimination time tj of any
Dj with j ∈ B. In an elimination query, we are given a query index q > maxB, and we
ask for the disk Dj∗ with j∗ ∈ B, that eliminates the query disk Dq. The argument from
Lemma 2.1 shows that we can find j∗ as follows

j∗ = argminj∈B{t(q, j) | t(q, j) ≤ tj}.

This leads to a natural interpretation of elimination queries: a query disk D corresponds
to a point (x, y, v) ∈ R3, where (x, y) is the center of D and v is the growth rate. For each
j ∈ B, consider the function fj : R3 → R defined by

fj(x, y, v) =
{
t(j,D(x, y, v)), if t(j,D(x, y, v)) < tj ,

∞, otherwise,
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where t(j,D(x, y, v)) denotes the time when Dj and the growing disk given by (x, y, v) touch.
For q > maxB, let (xq, yq, vq) ∈ R3 be the point that represents Dq. Then, the elimination
query q corresponds to finding the point vertically above (xq, yq, vq) in the lower envelope of
the graphs of the functions fj for all j ∈ B. The following lemma is a direct consequence of
a result by Agarwal et al. [1].

I Lemma 3.1. Let B ⊂ {1, . . . , n} with |B| = m. Then, for any fixed ε > 0, elimination
queries for B can be answered in O(log2 m) time, after randomized expected preprocessing
time O(m3+ε).

We describe our subquadratic algorithm. Set m = bn1/3c. We group the disks into dn/me
buckets B1, . . . , Bdn/me such that the kth bucket Bk contains the disks D(k−1)m+1, . . . , Dkm.
There are O(n2/3) buckets, each of which contains at most m disks. As before, we compute
the elimination times t1, . . . , tn in this order. As soon as the elimination times of all the disks
in a bucket Bk have been determined, we construct the elimination query data structure for
Bk. For each bucket, this takes O(n1+ε) expected time, for a total time of O(n5/3+ε).

Now, in order to determine the elimination time ti of a disk Di, note that we must check
the previous buckets (as well as the bucket containing Di). We first perform elimination
queries for the previous buckets, that is, buckets Bk with 1 ≤ k ≤ b(i− 1)/mc. There are
O(n2/3) such queries, so this takes O(n2/3 log2 n) time. Then, we handle the disks that are
in the same bucket as Di by brute force, which takes O(n1/3) time. Overall, the running
time is dominated by the time spent in preprocessing the buckets for elimination queries,
which takes O(n5/3+ε) expected time.

I Theorem 3.2. The elimination sequence of a set of n growing disks can be computed in
O(n5/3+ε) expected time for any fixed ε > 0.

As before, our algorithm generalizes to other types of shapes. Consider for example the
problem of growing rectangles in R2. Each rectangle is given by 4 parameters: the x- and
y-coordinates of two opposite corners after one unit of time (these values allow us to also
obtain the center and the speed of the rectangle). Thus, the data structure for elimination
queries is obtained by computing a lower envelope in R5. Given m growing rectangles, such
a data structure with query time O(logm) can be constructed in O(m6+ε) expected time
for any fixed ε > 0 [11]. We now apply the same approach as for growing disks, but using
buckets of size m = bn1/6c.

I Theorem 3.3. The elimination sequence of a set of n growing rectangles can be computed
in O(n11/6+ε) expected time for any ε > 0.

More generally, we can use regions defined by any semi-algebraic shape of constant
complexity. If the shape of the object is described with k ≥ 4 parameters, we need to
construct the lower envelope of n surfaces in Rk+1 to answer elimination queries. After
O(n2k−2+ε)-time preprocessing, we can answer queries in logarithmic time [11] (again, for
any fixed ε > 0). The optimal size of the buckets is n1/(2k−2), which gives an overall running
time of O

(
n

4k−5
2k−2 +ε

)
, which is subquadratic for any fixed k ≥ 4.

I Theorem 3.4. The elimination sequence of a set of n growing objects of any semi-algebraic
shape, each described with k ≥ 4 parameters can be computed in O

(
n2− 1

2k−2 +ε
)
expected

time for any ε > 0.
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t

y1

y2

y4

y3

yq t 7→ yq + vqt

t 7→ yj − vjt defined for t ∈ [0, tj] for j = 1, . . . , 4.

0

Figure 1 The lower envelope of four line segments. An elimination query for a square Dq with
center (xq, yq) and growth rate vq consists of shooting a ray t 7→ yq + vqt from below.

4 Growing cubes

Axis-aligned cubes in Rd are described with d+ 1 parameters. Thus, the approach from the
previous section applies. However, elimination queries become much easier, since they are
linear functions on the input. In this section, we combine the bucketing approach with ray
shooting techniques for lines to reduce the running time to an almost linear bound.

To simplify the presentation, we first assume that d = 2. Now, a sequence of n growing
squares is given by the centers p1, . . . , pn and the growth rates v1, . . . , vn. At time t ≥ 0,
each square Di has edge length 2vit. We consider the four quadrants around each center
pi = (xi, yi). The north, east, south, and west quadrants are, respectively, {(x, y) ∈ R2 |
y − yi ≥ |x− xi|}, {(x, y) ∈ R2 | x− xi ≥ |y − yi|}, {(x, y) ∈ R2 | −(y − yi) ≥ |x− xi|}, and
{(x, y) ∈ R2 | −(x− xi) ≥ |y − yi|}.

Suppose that pj is in the north quadrant of pi. Then, the possible elimination time of
Di and Dj is t(i, j) = (yj − yi)/(vi + vj). Thus, suppose we have a set B ⊂ {1, . . . , n} of
m growing cubes, and let q > maxB such that all centers pj with j ∈ B lie in the north
quadrant of pq. Then, an elimination query for q in B is essentially a two-dimensional
problem: the x-coordinates do not matter any more. We can solve it using ray-shooting for
the lower envelope of a set of line segments in R2.

I Lemma 4.1. Let B ⊂ {1, . . . , n}, |B| = m. We can preprocess B in O(m logm) time,
so that elimination queries can be answered in O(logm) time, given that the centers of the
squares in B lie in the north quadrant of the query square Dq.

Proof. For each j ∈ B, consider the line segment t 7→ yj − vjt, defined for t ∈ [0, tj ]. See
Figure 1. All these line segments intersect the line t = 0, so their lower envelope has at most
λ2(m) = 2m− 1 edges, where λ2(m) denotes the maximum length of a Davenport-Schinzel
sequence of order 2 with alphabet size m [12]. An elimination query for a square Dq with
center (xq, yq) and growth rate vq consists of shooting a ray t 7→ yq + vqt from below. Thus,
we first compute the lower envelope in O(m logm) time [10]. Then we build a ray-shooting
data structure for this lower envelope, which takes O(m) preprocessing time with O(logm)
query time [5]. J

We now give a slightly less efficient data structure that does not require B to be in the
north quadrant of Di.

I Lemma 4.2. Let B ⊂ {1, . . . , n}, |B| = m. We can preprocess B in time O(m log3 m) so
that elimination queries can be answered in O(log3 m) time.

Proof. Our aim is to build a data structure for each quadrant that answers which square (if
any) of B in the quadrant will be the first to eliminate the query square. To answer a query
Dq, we query the data structure for each quadrant, and we return the minimum value.
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For each quadrant, the data structure is a two-dimensional range tree [3], where the
coordinate axes have been rotated by an angle of π/4, so that the new coordinate axes are
the bisectors of the original ones. For each canonical subset of each range tree, we construct
the data structure of Lemma 4.1.

Now, given the query disk Dq and a quadrant, the centers of the disks of B in this quadrant
are in the union of O(log2 m) canonical subsets. So we query the O(log2 m) corresponding
data structures in O(logm) time each, and we return the result with the smallest timestamp.
All these data structures can be built in O(m log3 m) time. J

Once we have the data structure for elimination queries, we can apply the bucketing
technique from Section 3. This time, we will use varying bucket sizes as points are processed.
More precisely, we construct a balanced binary tree T whose leaves represent the squares
D1, . . . , Dn, from left to right. As usual, a node ν ∈ T represents the subset that consists of
the leaves in the subtree that is rooted in ν.

As soon as the elimination times of all the disks associated with a node of T have been
determined, we compute the elimination query structure from Lemma 4.2. Thus, after we
have determined tj for all j < i, we can find ti in O(log4 n) time by querying the data
structures recorded at O(logn) nodes of T (at most one node per level in the tree will be
queried). The running time is bounded by the time needed to preprocess the points for
elimination queries (O(n log3 n) per level). So overall, this algorithm runs in O(n log4 n)
time. In higher dimensions, this bound increases by a factor O(logn) per dimension, as we
need one more level in the range tree.

I Theorem 4.3. The elimination sequence of a set of n axis-aligned cubes in fixed dimension
d = O(1) can be computed in O(n logd+2 n) time.

5 Quadtree-based approach

Let Φ denote the spread of the disk centers and ∆ denote the ratio of the growth rates, i.e.,
Φ = max1≤i<j≤n |pipj |/min1≤i<j≤n |pipj | and ∆ = maxi∈{1,...,n} vi/minj∈{1,...,n} vj . We
first present an algorithm that runs in O(n log Φ min{log Φ, log ∆}) time using a quadtree.
Then, we present an improved algorithm that runs in O(n(logn+ min{log Φ, log ∆})) time
using a compressed quadtree. To simplify the notation, we set α = min{log Φ, log ∆}.

5.1 Using an (uncompressed) quadtree
Without loss of generality, all disk centers lie in the unit square [0, 1]2, and their diameter is
1. We construct a quadtree Q for the disk centers. It is a rooted tree in which every internal
node has four children. Each node ν of Q has an associated square cell b(ν). To obtain Q,
we recursively split the unit square. In each step, the current node is partitioned into four
congruent quadrants (cells) if its corresponding cell contains one or more disk centers. We
stop when each cell at the bottom level contains at most one disk center and the diameter of
the cell becomes smaller than a quarter of the smallest distance between disk centers. This
takes O(n log Φ) time as the depth of the quadtree is O(log Φ). See Figure 2 (left) for an
illustration.

For a node ν ∈ Q, we let p(ν) be the parent node of ν. We denote by |ν| the diameter of
the cell b(ν). For two nodes ν, ν′ ∈ Q, we write d(ν, ν′) for the smallest distance between a
point in b(ν) and a point in b(ν′). For a point q and a node ν ∈ Q, we write d(q, ν) for the
smallest distance between q and a point in b(ν). For t ≥ 0, we let Dt

i be the disk Di at time
t. We say that Dt

i occupies a node ν if (i) pi ∈ b(ν); (ii) ν is a leaf or b(ν) ⊆ Dt
i ; and (iii) Dt

i
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Figure 2 Obtaining a quadtree and its compressed quadtree: (left) a quadtree for 6 disk centers,
where the subdivision process stops once a cell contains at most one disk center and the diameter of
the cell becomes smaller than a quarter of the smallest distance between disk centers.; (right) the
compressed quadtree obtained after eliminating the maximal singular paths.

has not been eliminated before time t. At each moment, each node ν is occupied by at most
one disk, and we denote by D(ν) the index of the disk that occupies ν. If there is no such
disk, we set D(ν) =⊥. We denote by ν(i, t) the node of the largest cell of Q that is occupied
by Dt

i .

I Lemma 5.1. Let i ∈ {2, . . . , n}, and let Dj(j ∈ {1, . . . , i− 1}) be the disk that eliminates
Di, i.e., ti = t(i, j). Then,

d (ν(i, ti), ν(j, ti)) ≤ 2 (|ν(i, ti)|+ |ν(j, ti)|) ,

and

1/(4∆) ≤ |ν(i, ti)| / |ν(j, ti)| ≤ 4∆.

Proof. We note three simple facts from the construction of Q and the definition of ν(·, ·):
(i) all non-empty leaf cells have the same diameter; (ii) for any k ∈ {1, . . . , n} and t > 0, if
ν(k, t) is not a leaf, then |ν(k, t)| ≤ 2vkt; and (iii) for any k ∈ {1, . . . , n} and t ≥ 0, we have
|ν(k, t)| ≥ vkt/2.

For the first claim, let q = ∂Dti
i ∩ ∂D

ti
j . By fact (iii), we have viti ≤ 2 |ν(i, ti)| and

vjti ≤ 2 |ν(j, ti)|. Hence, it follows that d (ν(i, ti), ν(j, ti)) ≤ d (q, ν(i, ti)) + d (q, ν(j, ti)) ≤
viti + vjti ≤ 2 |ν(i, ti)|+ 2 |ν(j, ti)|.

Now we prove the second claim. Suppose first that vi ≥ vj . If ν(j, ti) is a leaf,
|ν(i, ti)| / |ν(j, ti)| ≥ 1, by fact (i). If ν(j, ti) is not a leaf, it follows from facts (ii) and
(iii) that
|ν(i, ti)|
|ν(j, ti)|

≥ viti/2
2vjti

≥ 1
4 ≥

1
4∆ .

By construction, the leaf cell that contains pi has diameter smaller than a quarter of the
smallest distance between disk centers. Hence, the node ν(i, ti) is not a leaf. Thus, by facts
(ii) and (iii),
|ν(i, ti)|
|ν(j, ti)|

≤ 2viti
vjti/2

≤ 4 maxi vi
minj vj

≤ 4∆.

The argument for vj > vi is analogous: if ν(i, ti) is a leaf, then |ν(j, ti)| / |ν(i, ti)| ≥ 1, by
fact (i). If not, then
|ν(j, ti)|
|ν(i, ti)|

≥ vjti/2
2viti

>
1
4 ≥

1
4∆ ,
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Algorithm 2 Quadtree based algorithm
1: function EliminationOrder(p1, . . . , pn, v1, . . . , vn)
2: Q ← ConstuctQuadTree(p1, . . . , pn)
3: CandidatePairs(Q)
4: D(ν)←⊥ for every node ν of Q
5: D(root)← 1
6: for i← 1, n do
7: ν ← getLeaf(pi)
8: ti ←∞
9: while ν 6= root and ti ≥ τ(ν, i) do
10: D(ν)← i

11: for (ν, ν′) in CNP(ν) do
12: if D(ν′) 6=⊥ and tD(ν′), ti ≥ t(i,D(ν′)) then
13: ti ← t(i,D(ν′))
14: ν ← p(ν)
15: S ← (D1, . . . , Dn)
16: Sort S using key ti for each disk Di

17: return S

by facts (ii) and (iii). Now, the node ν(j, ti) cannot be a leaf, so by facts (ii) and (iii)

|ν(j, ti)|
|ν(i, ti)|

≤ 2vjti
viti/2

≤ 4 maxj vj
mini vi

≤ 4∆.

The lemma follows. J

Lemma 5.1 implies that instead of checking all disk pairs for elimination events, we can
restrict ourselves to the nodes given by Q. We say that two unrelated1 nodes ν, ν′ ∈ Q form
a candidate pair if (i) |ν|/4∆ ≤ |ν′| ≤ 4∆|ν| and (ii) d(ν, ν′) ≤ 2(|ν| + |ν′|). In this case,
we say that ν forms the candidate pair (ν, ν′) with ν′. We denote by CNP(ν) the set of
candidate pairs formed by ν.

I Lemma 5.2. Let ν ∈ Q. Then, CNP(ν) has O(α) candidate pairs (ν, ν′) with |ν| ≤ |ν′|.
All the sets CNP(ν) over ν ∈ Q can be computed in O(nα log Φ) time.

Proof. Using a packing argument we can show that each level of Q contains at most O(1)
candidate pairs (ν, ν′) that satisfy |ν| ≤ |ν′|. Furthermore, by definition of Φ and of candidate
pair, |ν′| = O(min{Φ,∆})|ν|, which implies that the levels of ν and ν′ in Q differ by O(α).
This implies that globally CNP(ν) contains O(α) candidate pairs (ν, ν′) with |ν| ≤ |ν′|. Since
Q has O(n log Φ) nodes, and since (ν, ν′) ∈ CNP(ν) if and only if (ν′, ν) ∈ CNP(ν′), there
are O(nα log Φ) candidate pairs overall. While building Q, we can find all sets CNP(ν) in
O(nα log Φ) time by maintaining pointers between nodes whose cells are neighboring and by
traversing the cells, using these pointers when needed. J

Our algorithm for computing the elimination sequence of the input disks is given as
Algorithm 2. We use τ(ν, i) for the first time at which b(ν) is covered by disk Di.

1 That is, no node is an ancestor or descendant of the other node.
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I Theorem 5.3. The elimination sequence of n growing disks can be computed in O(nα log Φ)
time, where α = min{log Φ, log ∆}.

Proof. We can compute in O(n log Φ) time the quadtree Q with O(n log Φ) nodes. By
Lemma 5.2, there are O(nα log Φ) candidate pairs, which can be found in O(nα log Φ) time.

The outer for-loop iterates over the input disks in decreasing order of priority. In the
while-loop, the algorithm traverses each node ν ∈ Q from the leaf-node containing pi to
the root. It updates D(ν) if necessary until it encounters a node ν with ti < τ(ν, i). The
inner for-loop iterates over every candidate pair (ν, ν′) in CNP(ν). It checks if disk i = Dν

and D′ν have the possibility to touch by computing the time t(i,D(ν′)); if so, it updates the
elimination time for Di. Thus, the algorithm takes O(nα log Φ) time. Since Φ = Ω(

√
n), this

subsumes the time for the sorting step.2 J

5.2 Using a compressed quadtree
Now we show how to improve the running time by using a compressed quadtree. Let Q
be the (usual) quadtree for the n disk centers. The tree Q is obtained as in the previous
section. We describe how to obtain the compressed quadtree QC from Q. A node ν in Q is
empty if b(ν) does not contain a disk-center, and non-empty otherwise. A singular path σ in
Q is a path ν1, ν2, . . . , νk of nodes such that (i) νk is a non-empty leaf or has at least two
non-empty children; and (ii) for i = 1, . . . , k − 1, the node νi+1 is the only non-empty child
of νi. We call σ maximal if it cannot be extended by the parent of ν1 (either because ν1
is the root or because p(ν1) has two non-empty children). For each maximal singular path
σ = ν1, . . . , νk in Q, we remove from Q all proper descendants of ν1 that are not descendants
of νk, together with their incident edges. Then, we add a new compressed edge between
ν1 and νk. The resulting tree QC has O(n) nodes. Each internal node has 1 or 4 children.
There are algorithms that can compute QC in O(n logn) time [9]. A node ν from Q may
appear as a node in QC or not. We let π(ν) be the lowest ancestor node and σ(ν) the highest
descendant node (in both cases including ν) of ν in Q that appears also in QC . See Figure 2
(right) for an illustration. For a node ν in QC , we define the set of compressed candidate
pairs CNPC(ν) for ν as

CNPC(ν) = {(ν, π(ν′)) | (ν, ν′) ∈ CNP(ν), |ν| ≤ |π(ν′)|}.

For a pair (ν, ν′) ∈ CNPC(ν), we say ν forms the candidate pair with ν′ in QC . The following
lemmas will be handy for the rest of the section.

I Lemma 5.4. Let (ν, ν′) ∈ CNP(ν), such that p(ν) 6= p(ν′). Then, (i) we have (p(ν), p(ν′)) ∈
CNP(p(ν)). Moreover, (ii) if |ν| ≤ |ν′|, then (ν′′, ν′) ∈ CNP(ν′′) for any ancestor ν′′ of ν
with |ν′′| ≤ |ν′|.

Proof. For the first part (i), we have d(p(ν), p(ν′)) ≤ d(ν, ν′) ≤ 2(|ν|+|ν′|) ≤ 2(|p(ν)|+p(|ν′|))
and |p(ν′)|/|p(ν)| = |ν′|/|ν| lies between 1/4∆ and 4∆.

For the second part (ii), we have d(ν′′, ν′) ≤ d(ν, ν′) ≤ 2(|ν|+ |ν′|) ≤ 2(|ν′′|+ |ν′|) and
1 ≤ |ν′|/|ν′′| ≤ |ν′|/|ν| ≤ 4∆. J

I Lemma 5.5. Let ν be a node of Q. Then, for every (ν, ν′) ∈ CNP(ν), we have that
(π(ν), π(ν′)) ∈ CNPC(π(ν)) or (π(ν′), π(ν)) ∈ CNPC(π(ν′)).

2 A packing argument shows that the spread of any d-dimensionsonal n-point set is Ω(n1/d): if any two
points have distance at least 1, the point set must cover at least Ω(n) units of volume and hence must
have diameter Ω(n1/d).
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Proof. First, we note that π(ν) and π(ν′) are distinct, since ν and ν′ are unrelated nodes in
Q, so their least common ancestor in Q must have two non-empty children. Since the lemma
is symmetric in ν and ν′, we may assume without loss of generality that |π(ν)| ≤ |π(ν′)|. We
apply Lemma 5.4(i) repeatedly until we meet π(ν) or π(ν′), whichever happens first. If we
meet π(ν), we have (π(ν), ν′′) ∈ CNP(π(ν)) for some ancestor ν′′ of ν′ in Q. Since π(ν) is
encountered first, we have π(ν′′) = π(ν′), so it follows that (π(ν), π(ν′)) ∈ CNPC(π(ν)). If we
meet π(ν′), we have (ν′′, π(ν′)) ∈ CNP(ν′′) for some ancestor ν′′ of ν. Since |π(ν)| ≤ |π(ν′)|
and again π(ν′′) = π(ν), it follows that (π(ν), π(ν′)) ∈ CNP(π(ν)) by Lemma 5.4(ii), and
thus (π(ν), π(ν′)) ∈ CNPC(π(ν)). J

As with Lemma 5.2, we argue that CNPC(ν) has O(α) candidate pairs. To that end,
we charge each pair (ν, π(ν′)) ∈ CNPC(ν) to a pair (ν, ν′′) ∈ CNP(ν) with |ν| ≤ |ν′′|, such
that each such pair in CNP(ν) is charged at most once. First, if |ν| ≤ |ν′|, we can charge
(ν, π(ν′)) ∈ CNPC(ν) directly to (ν, ν′) ∈ CNP(ν) (in this way, we may even charge several
such pairs in CNP(ν) for (ν, π(ν′))). Second, if |ν′| < |ν|, by Lemma 5.4(ii) there is an
ancestor ν′′ of ν′ with |ν| = |ν′′| and (ν, ν′′) ∈ CNP(ν). Furthermore, since by definition
of CNPC(ν) we have |ν| ≤ |π(ν′)|, it follows that π(ν′′) = π(ν′), so we can charge the
pair (ν, π(ν′)) ∈ CNPC(ν) to the pair (ν, ν′′) ∈ CNP(ν). It follows that there are O(nα)
compressed candidate pairs in total. The following lemma shows how to compute CNPC(ν)
for all nodes ν in QC .

I Lemma 5.6. We can compute all the sets CNPC(ν) over ν ∈ QC in O(nα) total time.

Proof. We traverse the nodes in QC from the root in BFS-fashion, ordered by decreasing
diameter. We compute CNPC(ν) for each node ν in order. For a node ν in QC , we put into
CNPC(ν) all pairs (ν, ν′) ∈ CNP(ν) with ν′ ∈ QC and |ν| = |ν′|. Furthermore, we check all
pairs (ν, ν′) with |ν| < |ν′| and (a) (p(ν), ν′) ∈ CNPC(p(ν)) or (b) (ν′, p(ν)) ∈ CNPC(ν′). We
add (ν, ν′) to CNPC(ν) if (ν, ν′) fulfills the requirements of a compressed candidate pair. This
can be checked in O(1) time. By our BFS-traversal, we already know the sets CNPC(p(ν))
and CNPC(ν′) for |ν| < |ν′|.

For |ν| = |ν′|, there are O(1) pairs to check, and they can be found at the same time
using appropriate pointers in QC . For |ν| < |ν′|, since |CNPC(p(ν))| = O(α), there are O(α)
pairs to check for case (a). There can be ω(α) pairs for case (b), but obviously there are
O(nα) such pairs in total for all ν ∈ QC .

Now we show that the algorithm correctly computes all the compressed candidate
pairs in CNPC(ν). Consider a pair (ν, π(ν′)) ∈ CNPC(ν), where (ν, ν′) ∈ CNP(ν) and
|ν| ≤ |π(ν′)|. If |ν| = |π(ν′)|, we have (ν, π(ν′)) ∈ CNP(ν) so the algorithm will find it. If
|ν| < |π(ν′)|, let η be the parent of ν in Q. If π(ν′) = ν′, we have (η, π(ν′)) ∈ CNP(η)
by Lemma 5.4(ii), since |η| ≤ |π(ν′)|. If |π(ν′)| > |ν′|, let η′ be the parent of ν′ in
Q. Lemma 5.4(i) implies (η, η′) ∈ CNP(η). Since π(η) = p(ν) (as a node in QC this
time) and π(η′) = π(ν′), we conclude with Lemma 5.5 that (p(ν), π(ν′)) ∈ CNPC(p(ν)) or
(π(ν′), p(ν)) ∈ CNPC(π(ν′)). J

Recall that, in the uncompressed quadtree approach each candidate pair (of nodes) leads
to a pair of disks that may touch at some time. We will call such a pair a candidate pair of
disks. Note that two distinct candidate pairs may be associated to the same candidate pair
of disks. Let D be the set of all candidate pairs of disks obtained using the uncompressed
quadtree approach.

We set DC(ν) to D(ν), if D(ν) 6=⊥. If D(ν) =⊥ and ν has a single child ν′ connected by a
compressed edge, we set DC(ν) = D(ν′). In all other cases, we set DC(ν) =⊥. A compressed
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candidate pair (ν, ν′) for ν, ν′ ∈ QC defines a candidate pair of disks (DC(ν), DC(ν′)) if
both DC(ν), DC(ν′) 6=⊥. We let DC denote the set of all candidate pairs of disks defined by
compressed candidate pairs. We claim that D ⊆ DC . That is, even though the compressed
quadtree has fewer candidate pairs of nodes, we discard only candidates that are already in
DC . We first introduce a helpful lemma.

I Lemma 5.7. Let ν ∈ Q, and consider the nodes σ(ν) and π(ν) in QC . If π(ν)σ(ν) is
a compressed edge, then for any node ν′ ∈ Q on the singular path for π(ν)σ(ν), we have
D(ν′) ∈ {D(σ(ν)),⊥}.

Proof. Recall that, for any node η ∈ Q, we have D(η) = i if and only if Di occupies η and
b(η) contains pi. Since each node ν′ on the singular path has only one non-empty child, the
only disk that can occupy ν′ is D(σ(ν)). J

I Lemma 5.8. D ⊆ DC .

Proof. Let (D(ν), D(ν′)) ∈ D. If ν ∈ QC , π(ν) = ν and DC(π(ν)) = D(ν). If ν 6∈ QC ,
then if D(π(ν)) 6=⊥, by Lemma 5.7, D(π(ν)) = D(σ(ν)) and hence DC(π(ν)) = D(σ(ν)). If
D(π(ν)) =⊥, then the child node of π(ν) in QC is σ(ν), and therefore DC(π(ν)) = D(σ(ν)).
Thus, in both cases, we have DC(π(ν)) = D(σ(ν)). Since D(ν) 6=⊥, we have D(ν) = D(σ(ν))
by Lemma 5.7, so DC(π(ν)) = D(ν). The same holds for ν′. Finally, (ν, ν′) ∈ CNP(ν) implies
tha (π(ν), π(ν′)) ∈ CNPC(π(ν)) or (π(ν′), π(ν)) ∈ CNPC(π(ν′)) by Lemma 5.5. We conclude
that (D(ν), D(ν′)) = (DC(π(ν)), DC(π(ν′)) ∈ DC . J

I Theorem 5.9. The elimination sequence of n disks can be computed in O(n logn+ nα)
time, where α = min{log Φ, log ∆}.

Proof. We compute the compressed quadtree for the disk centers, and we find the compressed
candidate pairs. As described above, this takes O(n logn+nα) time. After that, we make the
candidate pairs symmetric so that for all pairs ν, ν′, we have (ν, ν′) ∈ CNPC(ν) if and only
if (ν′, ν) ∈ CNPC(ν′). This takes O(nα) time. Finally, we proceed as in Algorithm 2, but
using QC instead of Q and the compressed candidate pairs instead of the (regular) candidate
pairs. By Lemma 5.8, this algorithm still considers all the relevant candidate pairs of disks.
The running time for the last step is proportional to the number of nodes in QC and the
number of compressed candidates, i.e., O(nα). The total running time of the algorithm is
O(n logn+ nα). J

6 Lower bound

We show that the elimination order can be used to sort n numbers vn+1, . . . , v2n larger
than 1 and smaller than 2, which implies an Ω(n logn) lower bound. Place n growing disks
D1, . . . , Dn centered at points (2, 0), (4, 0), . . . (2n, 0), all with growth rate vi = 1. Also,
place n disks Dn+1, . . . , D2n centered at points (2, 1), (4, 1), . . . (2n, 1) with growth rates
vn+1, . . . , v2n. Observe that disk Dn+i will be eliminated by disk Di at tn+i = t(n+ i, i) =
1/(1 + vn+i) < 1/2 since ti = 1/2 for 1 ≤ i ≤ n. Then the elimination order of this set of
growing disks gives the input growth rates {vn+1, . . . , v2n} in reversed sorted order. The
same argument holds for squares.

I Theorem 6.1. It takes at least Ω(n logn) time to find the elimination order of a set of n
growing disks or squares in the plane under the algebraic decision tree model.
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Abstract
We consider the problem of packing a family of disks “on a shelf,” that is, such that each disk
touches the x-axis from above and such that no two disks overlap. We prove that the problem
of minimizing the distance between the leftmost point and the rightmost point of any disk is
NP-hard. On the positive side, we show how to approximate this problem within a factor of 4/3

in O(n logn) time, and provide an O(n logn)-time exact algorithm for a special case, in particular
when the ratio between the largest and smallest radius is at most four.
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1 Introduction

Packing problems have a long history and abundant literature. Circular disks and spherical
balls, because of their symmetry and simplicity, are of particular interest from a theoretical
point of view. Historically, Johannes Kepler conjectured that an optimal packing of unit
spheres into the Euclidean three-space cannot have greater density than the face-centered
cubic packing [8]. The conjecture was first proven to be correct by Hales and Ferguson [7]. A
more recent treatment of the proof is given by Hales et al. [6]. The proof of the 2-dimensional
version of Kepler’s conjecture, that is, packing unit disks into the Euclidean two-space, is
elementary and attributed to Lagrange (1773).

Packing unit disks into 2-dimensional shapes in the plane is a well studied problem in
recreational mathematics. Croft et al. [2] give an overview of packing geometrical objects in
finite-sized containers, for instance finding the smallest square (circle, isosceles triangle, etc.)
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w

Figure 1 Illustration of the span w of a valid (but not optimal) placement of five discs.

such that a given number of n unit disks can be packed into it. Specht [10] presents the best
known packings of up to 10, 000 disks into various containers.

Algorithmically, many packing problems are NP-hard, some are not even known to be
in NP. Demaine, Fekete, and Lang showed that the problems whether a given set of circular
disks of arbitrary radii can be packed into a given square, rectangle, or triangle are all
NP-hard problems [3].

We will discuss a particular “nearly” one-dimensional packing problem for disks from an
algorithmic aspective. We are given a family of disks that we wish to arrange “on a shelf,”
that is, such that each disk touches the x-axis from above and such that no two disks overlap;
see Figure 1. The goal is to minimize the span of the resulting configuration, that is, to
minimize the horizontal distance between the leftmost point and the rightmost point of any
disk. In other words, we want to minimize the required width of the shelf. Obviously, this
problem is trivial for unit disks, so we allow the disks to have different sizes.

Related work. Independently from us, Dürr et al. [4] have studied the same problem, but
for an isosceles, right-angled triangle. Given n sizes of this triangle, they ask for the shortest
horizontal span in which the triangles can be arranged so that their lowest point lies on
the x-axis, while the triangles do not overlap. Their entirely independent results are quite
similar to ours: an NP-hardness proof by reduction from 3-Partition, a fast algorithm for
a special case, and a 3/2-approximation algorithm.

Klemz et al. [9] show that it is NP-hard to decide if n given disks fit around a large center
disk, such that each disk is in contact with the center disk while all disks are disjoint. Their
proof is by reduction from 3-Partition as well.

Stoyan and Yaskov [11] introduce the problem of packing disks of unequal sizes into a
strip of given height and minimizing the required width which is known as the circular open
dimension problem.

Our results. We first give some useful definitions and properties for touching disks in
Section 2. The hardness of the problem arises from the fact that disks can sometimes “hide”
in the holes formed by larger disks, as in Figure 2b. For this reason, in Section 3, we consider
the special case where, for any ordering of the disks, each disk can touch only its left and
its right neighbor (where the two walls bounding the span count as neighbors as well). In
particular, this implies that no disk will ever fit in a gap between two other disks. We
call this the linear case, see Figure 2a. It turns out that for this (linear) case the optimal
configuration depends only on the relative order of the disk sizes,1 so it suffices to sort the
disks in O(n logn) time to determine the optimal sequence.

1 The median disk for an odd number of disks is the only exception, it can be on either end, depending
on its actual size.
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(a) The linear case. (b) Small disks can “hide” between larger disks.

Figure 2 Illustration of different instances of the problem.

a2

b2

2ab

A

B

˙
A

˙
B

Figure 3 The footpoint distance of two touching disks.

In Section 4, we show that in its general form, the problem is NP-hard. More precisely, we
show that given n disk sizes and a number δ > 0, it is NP-hard to decide if a non-overlapping
arrangement of the disks with horizontal span at most δ exists. Our NP-hardness proof is
by a reduction from 3-Partition, and exploits the fact that disks can “hide” in the holes
formed by larger disks.

Finally, in Section 5, we give an approximation algorithm that runs in O(n logn) time
and guarantees a span at most 4/3 times the optimal span.

2 Preliminaries

For reasons that will become obvious shortly, it will be convenient to define the size of a disk
as the square root of its radius. We will denote disks by capital letters, and their size by the
corresponding lower-case letter. Namely, disk A has size a, radius a2, and diameter 2a2.

In a valid placement, each disk A touches the x-axis in its lowest point. We will call
this point the footpoint of the disk and denote it

˙
A. All of our arguments are based on

calculations involving the distances between footpoints, so we start with the following lemma.

I Lemma 1. If A and B touch, then their footpoint distance
˙
A

˙
B is 2ab.

Proof. The statement holds for a = b, so we assume a > b and consider the right-angled
triangle with edge lengths

˙
A

˙
B, a2 + b2, and a2 − b2, see Figure 3. We obtain (

˙
A

˙
B)2 =

(a2 + b2)2 − (a2 − b2)2 = 4a2b2. J

I Lemma 2. Let G be the largest disk that fits in the gap formed by two touching disks A
and B. Then 1/g = 1/a+ 1/b.

Proof. Since G is the largest disk that fits in the gap, it must touch both A and B. By
Lemma 1 we have 2ab =

˙
A

˙
B =

˙
A

˙
G+

˙
G

˙
B = 2ag + 2gb, proving the lemma. J

I Lemma 3. Let G be the largest disk that fits in the gap between a disk A and the vertical
wall through A’s rightmost point. Then g = (

√
2− 1) · a.
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Proof. Again, G must touch both A and the wall, so we have a2 =
˙
A

˙
G + g2 = 2ag + g2.

The positive solution to g2 + 2ag − a2 = 0 is (
√

2− 1) · a. J

In any valid placement of the disks, their footpoints are distinct. Thus, the footpoints
induce a linear left-to-right order on the disks. We refer to this linear order as the footpoint
sequence of a valid placement. Further, disks are called consecutive or neighbors when their
footpoints are consecutive in the footpoint sequence.

3 The Linear Case

In this section, we consider linear case instances, that is, instances where in any valid
placement only consecutive pairs of disks can touch, only the first disk (with the leftmost
footpoint) touches the left wall, and only the last disk touches the right wall.

By Lemmas 2 and 3, this is true if and only if the following condition holds: Let A
be the largest disk, B the second largest, and Z the smallest disk in the collection. Then
1/z < 1/a+ 1/b, and z > (

√
2− 1)a. The condition holds in particular if the ratio between

the largest and smallest disk size is less than two (that is, if the ratio of diameters is less
than four), since then we have 1/z < 2/a 6 1/a+ 1/b and z > a/2 > (

√
2− 1)a.

In an optimal placement of a linear case instance, each disk must touch both its neighbors.
Thus, the ordering of the disks uniquely determines the exact placement of every disk in any
layout of minimal span. From now on, we represent placements by the ordering of the disks,
with the understanding that the placement minimizes the span for this ordering. It remains
to determine the optimal ordering. We will first give a lemma that allows us to improve a
given ordering.

I Lemma 4. Let D be a left-to-right or right-to-left ordering of the disks in a linear case
instance. Let A, B, Z be three disks that appear in this order in D such that AB is a
consecutive pair. Let D′ be the ordering obtained from D by reversing the subsequence from B

to Z. Then D′ has smaller span than D if one of the following is true:
1. Z is the last disk and a > b > z;
2. Z is the last disk and a < b < z;
3. a > y and b > z, where Y is the disk after Z in D;
4. a < y and b < z, where Y is the disk after Z in D.

Proof. First, suppose that Z is the last disk in D. Then, except for
˙
A

˙
B being replaced by

˙
A

˙
Z, each consecutive footpoint distance in D′ is the same as in D. So, since the last disk

in D′ is B, the change in span is
˙
A

˙
Z+b2−

˙
A

˙
B−z2 = 2az+b2−2ab−z2 = (b+z−2a)(b−z).

For both a < b < z and a > b > z, this is negative, and so D′ has smaller span than D.
Now suppose Z is not the last disk, and let Y be the disk after Z. Here, except for

˙
A

˙
B being replaced by

˙
A

˙
Z and

˙
Z

˙
Y being replaced by

˙
B

˙
Y , each consecutive footpoint

distance in D′ is the same as in D. Thus, the change in span is
˙
A

˙
Z +

˙
B

˙
Y −

˙
A

˙
B −

˙
Z

˙
Y =

2(az + by − ab − zy) = 2(a − y)(z − b). For a > y and b > z or a < y and b < z, this is
negative. So, again D′ has smaller span than D. J

We label a given family of n disks in order of decreasing size as D1, D2, D3, . . . , Dn, and
in order of increasing size as S1, S2, S3, . . . , Sn. In other words, d1 > d2 > d3 > · · · > dn and
s1 6 s2 6 s3 6 · · · 6 sn. Thus, each disk has two names, and we have D1 = Sn, D2 = Sn−1,
and so on until Dn = S1.

We now prove our claim about the structure of the optimal ordering (see also Figure 4):
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D1 = S9 D2 = S8D3 = S7 D4 = S6D5 = S5 S4 = D6 S3S2 S1

Figure 4 An optimal placement in the linear case. For instance for k = 2, the disks in
{S1, S2, D1, D2} form the consecutive subsequence starting with S2 and ending with D2.

I Lemma 5. Let k be an integer with 1 6 k 6 n/2. In any optimal placement of n disks
with distinct sizes in a linear case instance, the k largest disks D1, . . . , Dk and the k smallest
disks S1, . . . , Sk appear as a consecutive subsequence terminated by the disks Sk and Dk. If
k > 1, then DkSk−1 and SkDk−1 are consecutive pairs.

Proof. We use induction over k. For k = 1, it suffices to prove that S1 and D1 are consecutive,
so assume for a contradiction that this is not the case. Let A = D1, Z = S1, assume A is to
the left of Z, and let B be the right neighbor of A. By Lemma 4 (Case 1 or 3), the sequence
can now be improved by reversing the subsequence from B up to Z.

Assume now that k > 1 and that the statement holds for k−1. This means that there is a
consecutive subsequence of the disks {S1, . . . , Sk−1, D1, . . . , Dk−1}, terminated by disk Sk−1
at the, say, right end and disk Dk−1 at the left end, as in the example of Figure 4.

We first show that the right neighbor of Sk−1 is Dk. Assume this is not the case. We
distinguish four cases:
1. If Dk appears to the right of Sk−1 (but not immediately adjacent), then we apply Lemma 4

(Case 2 or 4) with A = Sk−1, B the right neighbor of Sk−1, and Z = Dk.
2. If Dk appears to the left of Sk−1, then it must appear to the left of Dk−1. If Dk is not

the left neighbor of Dk−1, then apply Lemma 4 (Case 1 or 3) with A = Dk, B the right
neighbor of Dk, and Z = Sk−1.

3. If Dk is the left neighbor of Dk−1 and Sk−1 is not the rightmost disk, then apply Lemma 4
(Case 3) with A = Dk, B = Dk−1, and Z = Sk−1.

4. If Dk is the left neighbor of Dk−1 and Sk−1 is the rightmost disk, then Sk appears
somewhere to the left of Dk. We apply Lemma 4 (Case 1 or 3) with A = Dk−1, B = Dk,
and Z = Sk.

We next show that the left neighbor of Dk−1 is Sk. Assume this is not the case. If Sk

appears somewhere to the left of Dk−1, apply Lemma 4 (Case 1 or 3) with A = Dk−1, B the
left neighbor of Dk−1, and Z = Sk. If, on the other hand, Sk appears to the right of Dk,
apply Lemma 4 (Case 2 or 4) with A = Sk, B the left neighbor of Sk, and Z = Dk−1. (Note
that in this case B might be Dk.) J

I Theorem 6. Let D be a linear case instance of n disks D1, . . . , Dn of sizes d1 > d2 >
· · · > dn. If n is even, then the following ordering is optimal:

. . . , Dn−5, D5, Dn−3, D3, Dn−1, D1, Dn, D2, Dn−2, D4, Dn−4, D6, Dn−6 . . .

For odd n, the median disk needs to be appended at the end of the sequence with the larger
size difference.

Proof. Let D be in the given ordering, and assume a better ordering D′ exists. We can
modify the disk sizes slightly so as to make them unique while keeping D′ better than D.
But then we have a contradiction to Lemma 5. If n is odd, then the only possible placements
of the median disk are the left end and the right end, so choosing the end with the larger
size difference gives the optimal solution. J
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4 NP-Hardness of the General Case

Let us denote the decision version of our problem as CoinsOnAShelf. Its input is a set
of disks with rational radii and a rational number δ > 0, the question is whether there is a
feasible placement of the disks with span at most δ.

I Theorem 7. CoinsOnAShelf is NP-hard, even when the ratio of the largest and smallest
disk size is bounded by six and when all numbers are given in unary notation.

Our proof is by reduction from 3-Partition [5, Problem SP15]. An instance of 3-
Partition consists of 3m integers A = a1, . . . , a3m and another integer B, with

∑3m
i=1 ai =

mB and B/4 < ai < B/2 for all i. 3-Partition decides if there is a partition of A into m
three-element groups A1, . . . , Am such that

∑
a∈Ai

a = B for each group Ai.
Given a 3-Partition instance (A, B), we construct a family D of 12m + 11 disks, as

follows:
m+ 1 disks of size 1, we will refer to these disks as outer frame disks;
4(m+ 1) disks of size s0 = 33/100 = 0.33, we will refer to these disks as inner frame disks;
2(m + 1) disks of size s1 = s0/1+s0 = 33/133 (≈ 0.24812), we will refer to these disks as
large filler disks;
2(m+ 1) disks of size s2 = s1/1+s1 = 33/166 (≈ 0.198795), we will refer to these disks as
small filler disks;
2 disks of size s3 = 1−s2

0−2s0
4s0

= 2311/13200 (≈ 0.175076), referred to as end disks;

3m disks D1, . . . , D3m, referred to as partition disks, where di = 17
99

(
3

100
ai

B + 99
100

)
.

In the following, we will identify disks by their size or type. We observe that all disk sizes
are rational, where numerator and denominator can be computed in time polynomial in the
input size. The radius of a disk is obtained by squaring its size. Note that, if we multiply all
radii by the product of the denominators, then we obtain in polynomial time an instance of
our problem with integer radii.

I Lemma 8. Each end disk and partition disk has size at least s4 = 2261/13200 > 0.17128.

Proof. Since s3 > s4, the statement is trivial for end disks. Let ai ∈ A. From ai > B/4

follows that the size di of the corresponding partition disk is di > 17/99(3/400 + 99/100) =
17/99 · 399/400 = 2261/13200. J

Equivalence of the problem instances. We show that D has a placement with span 2(m+1)
if and only if (A, B) is a Yes-instance of 3-Partition, implying the NP-hardness of Coin-
sOnAShelf.

The m+ 1 outer frame disks alone already require a span of 2(m+ 1), so no better span is
possible. A placement of all disks of D with span 2(m+ 1) therefore implies that consecutive
outer frame disks touch, and that all remaining disks fit into the space under these outer
frame disks.

Let’s call the m spaces between two consecutive (and touching) outer frame disks gaps.
The space to the left of the leftmost outer frame disk is called the left end, the right end is
defined symmetrically.

I Lemma 9. There is only one pattern of frame and filler disks (ignoring end disks and
partition disks) that has span 2(m+ 1).
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(a) The overall picture for m = 3.

s0 s0 s0 s0s1 s1s2 s21 1

(b) The frame and filler disks inside a gap.

Figure 5 The unique pattern of span 2(m + 1) in Lemma 9.

The proof can be found in the full paper [1], here we only show the pattern in Figure 5a.
Each gap contains eight disks of sizes s2, s1, s0, s0, s0, s0, s1, s2; see Figure 5b. The left
end contains four disks of sizes s0, s0, s1, s2, the right end contains disks of sizes s2, s1, s0, s0.

I Lemma 10. Three end/partition disks X, Y , and Z fit in the three gaps formed by the
three pairs of consecutive inner frame disks in a common gap if and only if x+ y + z 6 17/33.

Proof. By Lemma 2, the largest disk that fits in the space between two touching disks of
size s0 has size s0/2. By Lemma 8, an end/partition disk has size at least s4 > s0/2, so it
does not fit entirely in this space. It follows that the total footpoint distance of the sequence
1, s0, x, s0, y, s0, z, s0, 1 is at least 4s0 + 4s0x+ 4s0y + 4s0z = 4s0(x+ y + z + 1). X, Y , and
Z fit in the prescribed manner if and only if this total footpoint distance is at most two,
proving the lemma. J

I Lemma 11. Placing a disk X in the space between the two consecutive inner frame disks
in the left end or the right end causes the total span to increase if and only if x > s3.

Proof. If x 6 s0/2 < s3, the statement follows from Lemma 2, so assume x > s0/2. Then the
total width of the sequence 1, s0, x, s0 is 2s0 + 4s0x+ s2

0. The span increases if and only if
this is larger than one, proving the lemma. J

A 3-partition implies small span. Assume that A can be partitioned into m groups Ai

such that
∑

a∈Ai
a = B. Consider a group Ai = (ai1, ai2, ai3) and let X, Y , and Z be the

partition disks corresponding to ai1, ai2, ai3. Then we have

x+ y + z = 17
99

( 3
100

ai1 + ai2 + ai3

B
+ 3 · 99

100

)
= 17

33 .

By Lemma 10 this implies that X, Y , and Z can be placed in a common gap in the pattern of
Figure 5 without increasing the total span. Since there are m gaps, we can place all partition
disks into the m gaps. Finally, by Lemma 11, we can place the two end disks inside the left
end and the right end.

Small span implies a 3-partition. We assume now that a placement of the disks D with
span 2(m+ 1) exists. By Lemma 9, the frame and filler disks must be placed in the pattern
of Figure 5. It remains to discuss the possible locations of the end disks and the partition
disks. We need a number of observations about a placement of span 2(m+ 1):
1. The left end and right end can contain at most one end disk or partition disk, and only

between the two inner frame disks or between the outer frame disk and the small filler
disk, see top of Table 1.

2. A gap can contain at most three partition disks or end disks. If a gap contains three such
disks, each has to appear between two inner frame disks, see bottom of Table 1.
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4:8 Placing your Coins on a Shelf

Table 1 Impossible placements of end/partition disks. . .

. . . in the right end
sequence width
1 s0 s0 s4 2s0 + 2s2

0 + 2s0s4 + s2
4 > 1.0201

1 s1 s4 s0 s0 2s1 + 2s1s4 + 2s0s4 + 3s2
0 > 1.0209

1 s2 s4 s1 s0 s0 2s2 + 2s2s4 + 2s1s4 + 2s1s0 + 3s2
0 > 1.0411

1 s0 s4 s4 s0 2s0 + 4s0s4 + 2s2
4 + s2

0 > 1.0536
1 s4 s4 s2 s1 s0 s0 2s4 + 2s2

4 + 2s2s4 + 2s1s2 + 2s1s0 + 3s2
0 > 1.0584

1 s4 s2 s1 s0 s4 s0 2s4 + 2s2s4 + 2s1s2 + 2s1s0 + 4s0s4 + s2
0 > 1.0080

. . . in a gap
sequence total footpoint distance
1 s1 s4 s0 s0 s0 s0 1 2s1 + 2s1s4 + 2s0s4 + 6s2

0 + 2s0 > 2.0076
1 s2 s4 s1 s0 s0 s0 s0 1 2s2 + 2s2s4 + 2s4s1 + 2s1s0 + 6s2

0 + 2s0 > 2.0278
1 s0 s4 s4 s0 s0 s0 1 4s0 + 4s0s4 + 2s2

4 + 4s2
0 > 2.0403

1 s4 s4 s2 s1 s0 s0 s0 s0 1 2s4 + 2s2
4 + 2s4s2 + 2s2s1 + 2s1s0 + 6s2

0 + 2s0 > 2.0451
1 s4 s2 s1 s0 s4 s0 s4 s0 s0 1 2s4 + 2s4s2 + 2s2s1 + 2s1s0 + 8s0s4 + 2s2

0 + 2s0 > 2.0030
1 s4 s2 s1 s0 s4 s0 s0 s0 s1 s2 s4 1 4s4 + 4s4s2 + 4s2s1 + 4s1s0 + 4s0s4 + 4s2

0 > 2.0078

3. Since there are 3m+ 2 end and partition disks, (1) and (2) imply that each gap contains
three such disks, while the left end and right end each contain one.

4. By (1) and Lemma 11, the left end and the right end can contain only disks of size at
most s3. We can assume that these are the two end disks (otherwise, swap them with an
end disk).

5. Consider a gap. It contains exactly three partition disks X, Y , and Z. By Lemma 10, we
have x+ y + z 6 17/33. Let a, b, c be the elements of A corresponding to X, Y , and Z.
Then we have

x+ y + z = 17
99

( 3
100

a+ b+ c

B
+ 3 · 99

100

)
6

17
33 ,

which implies a + b + c 6 B. It follows that we have partitioned the elements of A
into m groups A1, A2, . . . , Am with

∑
a∈Ai

a 6 B. Since
∑

a∈A a = mB, we must have∑
a∈Ai

a = B for each i, so (A, B) is a Yes-instance of 3-Partition.
This concludes the proof of Theorem 7, noting that by Lemma 8 all disks have size at
least s4 > 1/6.

5 A 4/3-Approximation

In this section, we give a greedy algorithm and prove that it computes a 4/3-approximation
to the problem.

Our algorithm starts by sorting the disks D1, D2, . . . , Dn by decreasing size, such that
d1 > d2 > · · · > dn. It then considers the disks one by one, in this order, maintaining a
placement of the disks considered so far. Each disk D is placed as follows:
1. If there is a gap between two consecutive disks A and B in the current placement that is

large enough to contain D, then we place D in this gap, touching the smaller one of the
two disks A and B.

2. Otherwise, let A be the leftmost disk in the current placement (that is, the disk with the
leftmost footpoint—this is not necessarily the disk defining the left end of the current
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1

2

3

ttt

Figure 6 Support of three disks of radius 1, 2 and 3 respectively.

span), and let Z be the rightmost disk. Since d 6 a, we can place D so that it touches A
from the left (candidate placement DA), and since d 6 z, we can place D so that it
touches Z from the right (candidate placement DZ).

3. If one of the candidate placements DA or DZ does not increase the span, we place D in
this way.

4. Otherwise, we place D at DA if a > z and at DZ otherwise.
The algorithm can be implemented to run in time O(n logn) as follows: We maintain a
priority queue that stores, for each pair of consecutive disks, the size of the largest disk that
will fit between them. Since we are placing disks in order of decreasing size, a newly placed
disk can only touch its two neighbors, and so it will fit into the gap if and only if its size is
at most the stored gap size.

For the analysis of the approximation factor, we will assume, without loss of generality,
that the final disk Dn is placed using the last rule (as otherwise it does not contribute to the
final span and can be ignored in the analysis). We also assume that dn = 1.

Next, let’s call a disk D large if d > 2, and small otherwise. We have the following:

I Lemma 12. Any two consecutive small disks placed by the algorithm touch.

Proof. Assume, for a contradiction, that D is the first small disk whose placement causes
two small disks to be consecutive but non-touching.

If D was placed by the third or fourth rule (at the left or right end of the sequence), it
is touching its only neighbor. Therefore, D must have been placed in a gap between two
disks A and B. If both A and B are small, they must be touching (since D is the first small
disk that will not touch a neighboring small disk). But by Lemma 2 that implies that the
gap between A and B is too small to contain a disk of size d > 1. It follows that at most one
of A and B is small, say B. But then the algorithm will place D such that it touches B, a
contradiction. J

We now associate with each disk a support interval. The support interval of a disk A is
the interval [

˙
A− 2a+ 1,

˙
A+ 2a− 1]. Since 0 6 (a− 1)2 = a2 − 2a+ 1, we have 2a− 1 6 a2,

and so the support interval of a disk lies within the disk’s span, see Figure 6.

I Lemma 13. In any feasible placement of disks of size at least one, the open support
intervals of the disks are disjoint.

Proof. Consider the function f(a, b) = (a+ b− 1)/ab for a, b > 1. Since f(1, ·) = f(·, 1) = 1
and the partial derivatives of f are negative for a, b > 1, we have f(a, b) 6 1.

Consider two consecutive touching disks of size a and b. Their footpoints are at dis-
tance 2ab. The support intervals cover 2a + 2b − 2 of this distance. From f(a, b) 6 1 it
follows that 2a+ 2b− 2 6 2ab, and so the support intervals do not overlap. J
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Lemma 13 implies that the total length of the support intervals is a lower bound for the
span of a family of disks. We will show that our greedy algorithm computes a solution where
the support intervals cover at least 3/4 of the span, implying approximation factor 4/3.

Consider a pair of two consecutive disks A and B placed by the algorithm, and let G be
the (imaginary) largest disk that can be placed in the gap between A and B. Since Dn was
not placed in this gap, we have g < 1. By Lemma 1, we have

˙
A

˙
B =

˙
A

˙
G+

˙
G

˙
B = 2ag+ 2gb =

2g(a+ b).
Consider first the case where A and B touch. Lemma 2 gives 1/g = 1/a + 1/b or

g = ab/(a+ b). The support intervals cover 2a+ 2b− 2 of the footpoint distance 2ab, so the
ratio is 1/a+ 1/b− 1/ab. For 1 6 a, b under the constraint 1/a+ 1/b > 1 this is minimized
at a = b = 2 and we have 1/a+ 1/b− 1/ab > 3/4, so the claim holds for this interval.

Now suppose that A and B do not touch. By Lemma 12, this means at least one of the
disks is large, say A, that is a > 2. The footpoint distance

˙
A

˙
B is 2g(a+ b) 6 2(a+ b), and

the support intervals cover 2a+ 2b− 2 of this distance, so the ratio is

2a+ 2b− 2
2g(a+ b) >

a+ b− 1
a+ b

= 1− 1
a+ b

.

If a > 3 or b > 2, we already have 1− 1/(a+ b) > 3/4, and this bound is good enough.
It remains to consider the situation when 2 6 a < 3 and 1 6 b 6 2. Without loss of

generality, we assume that B is to the right of A. We denote the first disk to the right
of A that is touching A as D. By the nature of our algorithm, when B was placed, it was
placed inside the space between A and D (possibly, other disks were already present in this
space at that time). Since B does not touch A, the disk D must be smaller than A, that is
1 6 d 6 a < 3.

We analyze the entire interval [
˙
A,

˙
D] as a whole. Since A and D touch, the length of this

interval is 2ad. In between A and D, some k > 1 disks have been placed, with B being the
leftmost of these.

We first consider the case k > 2. If two disks X and Y of size one fit between A and D,
then we have

2ad =
˙
A

˙
D =

˙
A

˙
X +

˙
X

˙
Y +

˙
Y

˙
D > 2a+ 2 + 2d,

and from a < 3 follows

d >
a+ 1
a− 1 = 1 + 2

a− 1 > 2.

The total length of the support intervals in the interval
˙
A

˙
D is at least 2a− 1 + 2d− 1 + 2k >

2(a+ d+ 1). The distance
˙
A

˙
D is 2ad. For 2 6 a, d 6 3, the ratio (a+ d+ 1)/ad is at least

7/9 > 3/4, implying the claim.
In the second case, B is the only disk between A and D. This means that B touches D.

The total support interval length in the interval
˙
A

˙
D is

2a− 1 + 4b− 2 + 2d− 1 = 2a+ 4b+ 2d− 4.

Let G be the largest disk that fits in the gap between A and B. Its size is determined by the
equality 2ag + 2gb + 2bd = 2ad, so g = (a − b)d/(a + b). Since Dn was not placed in this
gap, we have g < 1, and so (a− b)d < a+ b. Minimizing the expression

a+ 2b+ d− 2
ad



H.Alt, K. Buchin, S. Chaplick, O. Cheong, P. Kindermann, C. Knauer, and F. Stehn 4:11

under the constraints 2 6 a 6 3, 1 6 d 6 a, 1 6 b 6 2, and (a − b)d < a + b leads to the
minimum 7/9 > 3/4 for a = d = 3 and b = 3/2.

To complete the proof, we need to argue about the part of the span that does not lie
between two footpoints, in other words, the two intervals between the left wall (defined by the
leftmost point on any disk) and the leftmost footpoint, and between the rightmost footpoint
and the right wall. Recall that we assumed that placing Dn increased the total span. This
implies that Dn was placed using the algorithm’s last rule and therefore touches one of the
two walls, let’s say the right wall. Let A and B be the leftmost two disks (in footpoint order),
and let Y and Z be the rightmost two disks (in footpoint order). By assumption, Z = Dn

and so z = 1. Since Dn was placed using the last rule, we have y > a, and Z touches Y . Let
us call G the (imaginary) largest disk that would fit into the space between the left wall
and A. Since Dn was not placed in this position, we have g < 1. Note that the left wall is at
coordinate

˙
G− g2, the right wall at coordinate

˙
Z + 1. We now distinguish two cases.

We first consider the case where a > 3/2. We then analyze the two intervals [
˙
G− g2,

˙
A]

and [
˙
Y,

˙
Z+ 1] together. Their total length is g2 + 2ga+ 2y+ 1 < 2y+ 2a+ 2, and the support

intervals of A, Y , and Z cover 2a− 1 + 2y − 1 + 2 = 2y + 2a of this. The ratio is

2y + 2a
2y + 2a+ 2 = 1− 1

y + a+ 1 > 1− 1
4 = 3

4 since y > a > 3/2.

In the second case we have a < 3/2. Then B must be touching A. This is true if b > a,
because then A was placed later than B using the third rule. When b < a, then it follows from
Lemma 12. The distance between

˙
G−g2 and

˙
B is then g2 +2ag+2ab 6 2ab+2a+1 6 3b+4.

Since B fits inside the span, we must have b2 6 3b+ 4, which solves to −1 6 b 6 4.
We now analyze the intervals [

˙
G− g2,

˙
B] and [

˙
Y,

˙
Z + 1] together. Their total length is

g2 + 2ga+ 2ab+ 2y + 1 < 2y + 2a+ 2ab+ 2,

while the support intervals of A, B, Y , and Z cover

4a− 2 + 2b− 1 + 2y − 1 + 2 = 2y + 4a+ 2b− 2.

Since y > a, we can lower-bound the ratio

2y + 4a+ 2b− 2
2y + 2a+ 2ab+ 2 >

6a+ 2b− 2
4a+ 2ab+ 2 = 3a+ b− 1

2a+ ab+ 1 .

Consider the function h(a, b) = 3a+ 2b− 3ab/2 over the domain 1 6 a 6 3/2 and 1 6 b 6 4.
For fixed b, the function h(a, b) is linear in a, so h(a, b) > min

{
h(1, b), h(3/2, b)

}
. We have

h(1, b) = 3 + 2b− 3b/2 = 3 + b/2 > 7/2 and h(3/2, b) = 9/2 + 2b− 9b/4 = 9/2− b/4 > 7/2.
It follows that 3

2a+ b− 3
4ab >

7
4 , and so

3a+ b− 1 >
3
2a+ 3

4ab+ 3
4 = 3

4
(
2a+ ab+ 1

)
.

Note that in this second case we have used the interval [
˙
A,

˙
B] to help bound the coverage of

the two end intervals. This could be a problem if the same interval was also needed to help
bound a larger interval of the form [

˙
A,

˙
C], where A and C touch and B was inserted into

this interval later. But note that we needed to analyze [
˙
A,

˙
C] as a whole only if c < 3. Since

a < 3/2, no disk of size one would then fit into the gap between A and C, so this situtation
cannot occur.

This completes the proof of the following theorem.

I Theorem 14. The greedy algorithm computes a 4/3-approximation in time O(n logn).

ISAAC 2017



4:12 Placing your Coins on a Shelf

6 Conclusions

Our best approximation algorithm achieves an approximation factor of 4/3. We were unable
to find a polynomial time approximation scheme, so it would be natural to try to prove that
the problem is APX-hard. This, however, seems unlikely to be true, for the same reasons as
outlined by Dürr et al. [4]: The ideas they present appear to transfer to our problem, and
would lead to an 2O(logO(1) n) algorithm with approximation factor (1 + ε). APX-hardness,
on the other hand, would imply that for some ε > 0 this approximation problem is NP-hard,
implying subexponential algorithms for NP.
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Abstract
A plane tiling by the copies of a polyomino is called isohedral if every pair of copies in the tiling
has a symmetry of the tiling that maps one copy to the other. We show that, for every n-omino
(i.e., polyomino consisting of n cells), the number of non-equivalent isohedral tilings generated
by 90 degree rotations, so called p4-tilings or quarter-turn tilings, is bounded by a constant
(independent of n). The proof relies on the analysis of the factorization of the boundary word of
a polyomino.
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1 Introduction

The investigation of plane tilings by polyominoes have attracted many researchers for a long
time. In this paper, we focus on the following type of problem: what is the maximum number
of isohedral tilings that a single polyomino can have? A plane tiling by a polyomino is called
isohedral if every pair of copies in the tiling has a symmetry of the tiling that maps one copy
to the other. Two tilings are said to be equivalent if they are congruent, i.e., they can be
mapped onto each other by a combination of rotations, translations and reflections.

A polyomino having an isohedral tiling can be classified into seven types according to its
boundary word. See the recent work by Langerman and Winslow [14, Section 3] for a clear
description of the classification based on earlier works (e.g., [11]). In this paper, we focus
on the isohedral tiling called p4-tiling (or quarter-turn tiling) among these seven types. A
polyomino is said to have a p4-tiling if it covers the plane by only 90 degree rotations around
two designated points called rotation centers. See Figure 1.

Some polyominoes have multiple p4-tilings. Figure 2 shows an example of a pentomino
(i.e., 5-omino) having two non-equivalent p4-tilings. One can see that each pentomino is
adjacent to four (five, respectively) pentominoes in the left (right, respectively) tiling.

It is known that (see e.g., [6, 7]), if an n-omino has a p4-tiling, then the relative distance
(x, y) of two rotation centers satisfies

n = x2 + y2

2 . (1)

This says that an n-omino can have a p4-tiling only if

n = 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, . . . .
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5:2 On the Number of p4-Tilings by an n-Omino

Figure 1 An example of a p4-tiling by a pentomino. The rotation centers are represented by red
and green circles.

Figure 2 A pentomino having two non-equivalent p4-tilings. The rotation centers shown in (a)
gives the left tiling, and (b) gives the right tiling. The rotation centers shown in (c) gives the tiling
equivalent to the left tiling, and (d) is considered to be same as (b) since these are overlapped by
the 180 degree rotation.

For example, every pentomino (like the one in Figure 2) has rotation centers with relative
distance (1, 3) (ignoring the order of x and y). We call such a tiling as a p4-tiling with center
(1, 3).

Eq. (1) not only restricts the values of n, but also arises another multiplicity of p4-tilings
since Eq. (1) may have many solutions. For examples, (x, y) = (1, 7) and (5, 5) satisfies Eq.
(1) for n = 25. A computer experiment shows that among 2,557,227,044,764 25-ominoes
(Sequence A000105 in OEIS [15]), 3,076,890 and 1,526,416 have a p4-tiling with center (1, 7)
and (5, 5), respectively. The size of their intersection is 10,824. See Figure 3 for one of such
25-ominoes.

The number of solutions to Eq. (1) can be unbounded as n goes to infinity (see e.g.,
[10, 17]). Indeed, if n is factored as n = 2a0p2a1

1 · · · p2ar
r qb1

1 · · · qbr
r , where the pis are primes

of the form 4k + 3 and the qis are primes of the form 4k + 1, then the number of solutions
R(n) to Eq. (1) (allowing zeros and ignoring order and signs) is given by1

R(n) =
{

0, if any ai is a half-integer,
d (b1+1)(b2+1)···(br+1)

2 e, if all ai are integers.
(2)

1 In [17], the formula for the number of solutions of n = x2 + y2 not allowing zeros and ignoring order and
signs is given. Eq. (2) is essentially the same to this by observing n = x2 +y2 iff 2n = (x−y)2 +(x+y)2.
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Figure 3 A 25-omino having p4-tilings with centers (1, 7) and (5, 5). It has four pairs of rotation
centers. The rotation centers (a-1) and (a-2) admit the left tiling, and (b-1) and (b-2) admit the
right tiling. Note that this is the only 25-omino having (at least) four pairs of rotation centers found
through our experiments.

Hence, for example, n = 52k−1 has k = Θ(logn) solutions.
Figure 4 shows a 1300-omino that has three p4-tilings with centers (x, y) = (10, 50), (22, 46)

and (34, 38). Note that 325 = (52 + 252)/2 = (112 + 232)/2 = (172 + 192)/2 is the smallest
integer having three solutions to Eq. (1) (up to the order of x and y), but we have not
succeeded to find a 325-omino that has p4-tilings for these three distances. Note also that
we found the 1300-omino shown in Figure 4 by using a SAT solver [12].

Now the following questions become interesting: what is the maximum number of p4-
tilings that a single polyomino can have? Is it bounded, or is there a polyomino having an
unbounded number of p4-tilings?

1.1 Our Contributions
The contribution of this paper is to show that the number of p4-tilings by an n-omino is
bounded by a constant (Theorem 1). This is true even for n having an unbounded number
of solutions to Eq. (1). It is in sharp contrast to the tiling by translations; a 1× n rectangle
has Θ(n) translation tilings.

In order to show the upper bound on the number of p4-tilings, we use an equivalence
between p4-tilings and factorizations of the boundary word of a polyomino into some specific
form. Then, we show that the number of such factorizations is bounded for every polyomino
based on the analysis of words having such factorizations.

1.2 Related Works
There are plenty of works dealing with polyomino tilings since Golomb [9] initiated the work
in 60s. We listed here only those closely related to our work.

Fukuda et al. [6, 7] enumerated n-ominoes that have a p4-tiling for n ≤ 10. Horiyama
and Samejima [13] gave an algorithm for generating many n-ominoes for p4-tilings.

Winslow [18] gave a linear time algorithm for deciding whether a given polyomino has an
isohedral tiling by translations. This improved the earlier works of Beauquier and Nivat [1],
Gambini and Vuillon [8] and Provençal [16] in terms of its running time, and generalized
the works of Brlek et al. [2, 3] that dealt with some restricted cases. In [18], Winslow also
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5:4 On the Number of p4-Tilings by an n-Omino

Figure 4 Top: A 1300-omino having p4-tilings for three pairs of rotation centers with distinct
relative distances. Bottom: A p4-tiling by rotation centers (0, 0) and (10, 50) (left), (0, 0) and (22, 46)
(center), and (−12, 8) and (22, 46) (right).

showed that every n-omino has O(n) translation tilings. Recently, Langerman and Winslow
[14] extended this work to give quasi-linear time algorithms for all of seven types of isohedral
tilings. Their results include a linear time algorithm for deciding whether a polyomino has a
p4-tiling. We note here that our proof borrows many useful analyses on words that appeared
in their work [14].

2 Notations and Definitions

The notations and definitions used in this paper are similar to those of Langerman and
Winslow [14].

A polyomino is a two-dimensional shape formed by connecting one or more unit squares
edge to edge. A polyomino consisting of n unit squares is called n-omino. A polyomino
having a p4-tiling never includes a hole, and so its boundary is naturally represented by
a four-letter word. A letter is a symbol x ∈ Σ = {0,1,2,3}, where 0,1,2 and 3 represent
the directions up, right, down and left, respectively. If no confusion arises, we identify the
letters 0,1,2 and 3 with the integers 0, 1, 2 and 3, respectively. This is convenient when
we consider a rotation. For Θ ∈ {0, 90, 180, 270}, the Θ◦-rotation of a letter x, denoted
tΘ(x), is the letter obtained by rotating x clockwise by Θ◦, i.e., t90k(x) = x+ k (mod 4) for
k ∈ {0, 1, 2, 3}2.

2 Remark that our definition of the function tΘ(·) is different from the one used in [14].



K. Amano and Y. Haruyama 5:5

A word is a sequence of letters and the length of a word W , denoted by |W |, is the number
of letters in W . For an integer 1 ≤ i ≤ |W |, the i-th letter of a word W is denoted by W [i],
and the i-th from the last letter of W is denoted by W [−i].

A factor (or subword) of W is a contiguous sequence X of letters in W , written X �W .
A factor X � W is a prefix if X starts at W [1], written X �pre W . Similarly, X � W is
a suffix if X ends at W [−1], written X �suf W . For 1 ≤ i ≤ j ≤ |W |, a factor of W that
starts at W [i] and ends at W [j] is denoted by W [i : j]. We say that a word W has a period
p if W [i] = W [i+ p] for every 1 ≤ i ≤ |W | − p.

The reverse of a word W , denoted by ←−W , is the word obtained by reading W in reverse
order. The Θ-rotation of a word W , denoted by tΘ(W ), is the word obtained by replacing
each letter of W by its Θ-rotation. A word W is called a palindrome if W =←−W , and is called
a Θ-drome if W = XtΘ(←−X ) for some word X. For example, W = 010121 is a 90-drome
with X = 010. Note that, in this paper, we only deal with a palindrome of even length.

The boundary of a polyomino can naturally be represented by a circular word on Σ, in
which a first letter is not fixed. The boundary word of a polyomino P , denoted by B(P ),
is the circular word on Σ coding the boundary of P in a clockwise manner. For example,
the boundary word of the pentomino P5 shown in Figure 2 is B(P5) = 300110122332. A
Θ-drome (or a palindrome for which Θ := 0) factor X of a circular word W is said to be
admissible if W = XU satisfies U [−1] 6= tΘ(U)[1], which intuitively says that X is maximal
in a natural sense.

3 p4-tilings with Multiple Rotation Centers

This section is devoted to prove the main theorem of this paper.

I Theorem 1. Every polyomino has O(1) p4-tilings.

In Section 3.1, we describe a number of lemmas which will be used in the proof of Theorem
1. Many of them are taken from Langerman and Winslow [14]. Here and hereafter, when we
refer [14] the numbering of the lemmas or theorems is according to its full version (appeared
in arXiv:1507.02762v2). The main body of the proof of Theorem 1 is described in Section
3.2.

The characterization of a polyomino that admits a p4-tiling in terms of its boundary
word is formalized as follows (See e.g., [14, Section 3].)

I Theorem 2. A polyomino P has a p4-tiling if and only if its circular boundary word
B(P ) can be factorized as B(P ) = ABC where A is a palindrome and B,C are 90-dromes.
In addition, all of A, B and C are admissible, and A can be empty but B and C are
non-empty. J

The admissibility is shown in [14, Lemma 5.8], and the non-emptiness of 90-dromes is
verified as follows: Suppose to the contrary that a polyomino P with B(P ) = AB, where
|B| 6= 0, has a p4-tiling. One of the rotation centers should be just before B[1] or just after
B[−1] (the other center is between B[|B|/2] and B[|B|/2 + 1]). Suppose without loss of
generality that B[1] = 0 and B[−1] = 1. Then, A[1](= A[−1]) ∈ {2,3} is prohibited since it
contradicts that B(P ) is the boundary word of a polyomino, and A[1](= A[−1]) ∈ {0,1} is
prohibited since it contradicts that exactly one of four cells surrounding a rotation center
should be occupied by P .

Recall that two tilings are said to be equivalent if they can be mapped onto each other
by combination of rotations, translations and reflections. Obviously, the number of non-
equivalent p4-tilings by a polyomino P is upper bounded by the number of factorizations of
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5:6 On the Number of p4-Tilings by an n-Omino

the boundary word B(P ) into a form given by Theorem 2. For example, the boundary word
of the pentomino P5 shown in Figure 2 has four factorizations;

B(P5) = 300)(110122)(332 (3)
= (300110)(12)(2332) (4)
= (300110)(122332) (5)
= (30)(0110)(122332) (6)

where the factorizations (3), (4), (5) and (6) correspond to (a), (b), (c) and (d) in Figure 2,
respectively.

In the factorizations (3) and (5), a palindrome A is empty. The rotation centers are
designated by the centers of each of two 90-dromes. As shown in Figure 2, the factorizations (3)
and (5) (or (4) and (6)) admit an equivalent p4-tiling, and hence the number of factorizations
and the number of non-equivalent p4-tilings are not necessarily identical.

3.1 Miscellaneous Lemmas
We start with the following lemmas on words.

I Lemma 3. ([14, Lemma 4.1]) Let W = PX with P,W palindromes and 0 < |P | < |W |.
Then W has a period |X|. J

I Lemma 4. (Fine and Wilf’s theorem [5], or see [14, Lemma 4.2]) Let W be a word with
periods p and q. If p+ q ≤ |W |, then W also has a period GCD(p, q). J

I Lemma 5. Let k be an integer such that k ≥ 2. Let X1, . . . , Xk be palindromes such that
Xi+1 �pre Xi for every 1 ≤ i ≤ k − 1 and |X1| > |X2| > · · · > |Xk| ≥ (2/3)|X1|. Then X1
has a period p such that p ≤ (|X1| − |Xk|)/(k − 1).

Proof. For each 2 ≤ i ≤ k, let ak := |Xk−1| − |Xk|. Let p := GCD(a2, . . . , ak). We will show
that X1 has a period p, which implies Lemma 5 by

∑k
i=2 ak = |X1| − |Xk|.

By Lemma 3, X1 has a period a2. This implies that Xk also has a period a2 since
Xk �pre X1. Similarly, for every 2 ≤ j ≤ k − 1, Xj has a period aj+1. These imply that
Xk has periods a2, . . . , ak. Since |Xk| ≥

∑k
i=2 ak, Lemma 4 implies that Xk has a period p.

Since Xk �pre X1, X1[i] = X1[i+p] for every 1 ≤ i ≤ |Xk|−p. Since X1 is a palindrome and
p ≤ |X1|/3, we have X1[(2/3)|X1| − p+ α] = X1[|X1|/3 + p− α+ 1] = X1[|X1|/3− α+ 1] =
X1[(2/3)|X1|+ α] for every 1 ≤ α ≤ |X1|/3, which completes the proof. J

We will use the following lemma extensively in Section 3.2.

I Lemma 6. ([14, Lemma 5.3]) Let P,Q,W be 90-dromes with P,Q �pre W and |P | <
|Q| < |W |. Then |P | < (2/3)|W |, or equivalently |W | > (3/2)|P |. J

An analogous argument to the proof of Lemma 6 gives a suffix version of the lemma.

I Corollary 7. Let P,Q,W be 90-dromes with P,Q �suf W and |P | < |Q| < |W |. Then
|P | < (2/3)|W |, or equivalently |W | > (3/2)|P |. J

The following lemma, which will also be used in Section 3.2, can easily be derived from
Lemma 6 (and Corollary 7).

I Lemma 8. There is no word that can be factorized into two 90-dromes in more than 8
ways.
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Proof. Suppose to the contrary that, W can be factorized into XiYi where Xi and Yi are
90-dromes for 1 ≤ i ≤ 9. Without loss of generality, we assume that |X1| < |X2| < · · · < |X9|,
and also that |X5| ≥ |W |/2 (by interchanging X’s and Y ’s and will use Corollary 7 instead
of Lemma 6 if necessary). Since Xi �pre Xi+1 for every 1 ≤ i ≤ 8, Lemma 6 implies
|X9| > (3/2)|X7| > (9/4)|X5| > |W |, which is a contradiction. J

I Lemma 9. ([14, Lemma 5.4]) Let W be a boundary word. There exist O(1) admissible
90-drome factors of W with length at least |W |/3. J

The following lemma, whose proof is elementary but a bit long, is also useful in the proof
of Theorem 1.

I Lemma 10. Let W be a word. The number of factorizations of W in such a way that
W = XY with X a non-empty 90-drome and Y a palindrome is at most two. The same
holds for W = Y X with X a non-empty 90-drome and Y a palindrome.

Proof. We only show the first case of the lemma (the proof of the second case is completely
analogous.). Suppose to the contrary that W = X1Y1 = X2Y2 = X3Y3 where X1, X2, X3 are
90-dromes with 0 < |X1| < |X2| < |X3| and Y1, Y2, Y3 are palindromes. Put pi := |Xi|/2 for
1 ≤ i ≤ 3. Note that 0 < p1 < p2 < p3. For 1 ≤ i ≤ 3, let Li and Ri denote the first and
second half of Xi, respectively.

We divide the proof into several cases depending on the values of p1, p2 and p3.
Case 1: p1 + p2 > p3.

Note that, in this case, we have p1 ≥ 2 since p3 − p2 ≥ 1. Let v0 := p1 + p2 − p3 and
suppose without loss of generality that W [v0] = 0. Since 1 ≤ v0 ≤ p1 − 1, W [v0] ∈ L1.
So the reflection of W [v0] w.r.t. the center of X1 is the v1 := (p1 − p2 + p3 + 1)-th letter
in W and W [v1] = W [v0] + 1 = 1 since X1 is a 90-drome. Alternatively, we can write
this as

W [v1] = X1[−v0] = X1[v0] + 1 = W [v0] + 1 = 1.
Since v1 ≤ p3, we have W [v1] ∈ L3. Hence the reflection of W [v1] w.r.t. the center of X3
is the v2 := (−p1 + p2 + p3)-th letter in W and W [v2] = W [v1] + 1 = 2. By continuing
this argument to X2, X1, X3, X2 in this order, we have the chain of implications:

W [v0] = 0 ⇒ W [v1 := p1 − p2 + p3 + 1] = 1 (∵W [v0] ∈ L1)
⇒ W [v2 := −p1 + p2 + p3] = 2 (∵W [v1] ∈ L3)
⇒ W [v3 := p1 + p2 − p3 + 1] = 1 (∵W [v2] ∈ R2)
⇒ W [v4 := p1 − p2 + p3] = 2 (∵W [v3] ∈ L1)
⇒ W [v5 := −p1 + p2 + p3 + 1] = 3 (∵W [v4] ∈ L3)
⇒ W [v0] = 2 (∵W [v5] ∈ R2),

which is a contradiction.
Case 2: p1 + p2 ≤ p3.
Case 2.1: p2 ≥ 2p1.

Suppose W [1] = 0. By considering the reflection of W [1] w.r.t. the center of X1, we
have W [2p1] = X1[−1] = X1[1] + 1 = 1. Then, by considering the reflection of these two
letters w.r.t. the center of X2, we have W [2p2] = X2[−1] = X2[1] + 1 = W [1] + 1 = 1,
and W [2p2 − 2p1 + 1] = X2[−2p1] = X2[2p1] + 1 = W [2p1] + 1 = 2.
We further divide this case into two subcases.

Case 2.1.1: p3 ≥ 2p2 − 2p1 + 1.
By considering the reflection of W [1] and W [2p2 − 2p1 + 1] w.r.t. the center of X3,
we have W [2p3] = X3[−1] = X3[1] + 1 = W [1] + 1 = 1, and W [2p3 − 2p2 + 2p1] =
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5:8 On the Number of p4-Tilings by an n-Omino

X3[−(2p2 − 2p1 + 1)] = X3[2p2 − 2p1 + 1] + 1 = W [2p2 − 2p1 + 1] + 1 = 3 (*). Here we
use the condition p3 ≥ 2p2 − 2p1 + 1 to derive the second equality. However, we have

1 = W [2p3] = Y2[2p3 − 2p2] = Y2[−(2p3 − 2p2)] (∵ Y2 is a palindrome.)
= W [−(2p3 − 2p2)] = Y1[−(2p3 − 2p2)] = Y1[(2p3 − 2p2)] (∵ Y1 is a palindrome.)
= W [2p3 − 2p2 + 2p1],

which contradicts (*).
We can show the remaining three cases (Cases 2.1.2, 2.2.1 and 2.2.2) similarly.

Case 2.1.2: p3 ≤ 2p2 − 2p1.
By considering the reflection of W [2p1](= 1) and W [2p2](= 1) w.r.t. the center of
X3, we have W [2p3 − 2p1 + 1] = X3[−2p1] = X3[2p1] + 1 = W [2p1] + 1 = 2, and
W [2p3 − 2p2 + 1] = X3[−2p2] = X3[2p2] − 1 = W [2p2] − 1 = 0 (**), where the second
equality follows from 2p2 > p3 in this case. On the other hand, we have

2 = W [2p3 − 2p1 + 1]
= Y2[2p3 − 2p2 − 2p1 + 1] (∵ 2p3 − 2p1 + 1 ≥ p2)
= Y2[−(2p3 − 2p2 − 2p1 + 1)] (∵ Y2 is a palindrome.)
= W [−(2p3 − 2p2 − 2p1 + 1)]
= Y1[−(2p3 − 2p2 − 2p1 + 1)]
= Y1[2p3 − 2p2 − 2p1 + 1] (∵ Y1 is a palindrome.)
= W [2p3 − 2p2 + 1],

which contradicts (**).

Case 2.2: p2 < 2p1.

Case 2.2.1: p3 < 2p2.
Suppose that W [1] = 0. By considering the reflection of W [1] w.r.t. the center of X1 and
X2, we get W [2p1] = 1 and W [2p2] = 1, respectively. Then, by considering the reflection
of W [2p2] w.r.t. the center of X3, we have W [2p3− 2p2 + 1] = X3[−2p2] = X3[2p2]− 1 =
W [2p2]− 1 = 0, and W [2p3 − 2p1 + 1] = X3[−2p1] = X3[2p1] + 1 = W [2p1] + 1 = 2 (*3).
Here we use 2p2 > p3 and 2p1 ≤ p3. However, we have

0 = W [2p3 − 2p2 + 1]
= Y1[2p3 − 2p2 − 2p1 + 1] (∵ 2p3 − 2p2 + 1 > 2p1 = |X1|)
= Y1[−(2p3 − 2p2 − 2p1 + 1)] (∵ Y1 is a palindrome.)
= W [−(2p3 − 2p2 − 2p1 + 1)]
= Y2[−(2p3 − 2p2 − 2p1 + 1)] (∵ (2p3 − 2p2 − 2p1 + 1) + |X2| ≤ 2p3 ≤ |W |)
= Y2[2p3 − 2p2 − 2p1 + 1] (∵ Y2 is a palindrome.)
= W [2p3 − 2p1 + 1],

which contradicts (*3).

Case 2.2.2: p3 ≥ 2p2.
In this case, we first suppose that W [p1] = X1[p1] = 0. We have W [p1 +1] = X1[p1 +1] =
X1[p1] + 1 = 1 since X1 is a 90-drome, and this implies W [2p2 − p1] = X2[−(p1 +
1)] = X2[p1 + 1] + 1 = W [p1 + 1] + 1 = 2 since X2 is a 90-drome. Since X3 is a
90-drome, we have W [2p3 − p1 + 1] = X3[−p1] = X3[p1] + 1 = W [p1] + 1 = 1, and
W [2p3 − 2p2 + p1 + 1] = X3[−(2p2 − p1)] = X3[2p2 − p1] + 1 = W [2p2 − p1] + 1 = 3 (*4).
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Here we use 2p2 − p1 ≤ p3 to derive the second equality. However, we have
1 = W [2p3 − p1 + 1]

= Y2[2p3 − 2p2 − p1 + 1] (∵ 2p3 − p1 + 1 > 2p2 = |Y2|)
= Y2[−(2p3 − 2p2 − p1 + 1)] (∵ Y2 is a palindrome.)
= W [−(2p3 − 2p2 − p1 + 1)]
= Y1[−(2p3 − 2p2 − p1 + 1)]
= Y1[2p3 − 2p2 − p1 + 1] (∵ Y1 is a palindrome.)
= W [2p3 − 2p2 + p1 + 1],

which contradicts (*4). This completes the proof of Lemma 10. J

The following two lemmas are also from [14].

I Lemma 11. ([14, Lemma 5.1]) Let W be a word with a period p, and X a 90-drome
subword of W . Then |X| ≤ p. J

I Lemma 12. ([14, Lemma 5.7]) Let W be a word. There exists an O(1)-sized set F of
factors W such that every admissible palindrome factor with length at least |W |/3 is an affix
(i.e., a prefix or suffix) factor of an element of F . J

The final statement in this subsection is a famous theorem on integer sequences due to
Erdős and Szekeres.

I Theorem 13. ([4]) Any sequence of n2 + 1 distinct integers has either an increasing or a
decreasing subsequence of length n+ 1. J

3.2 Proof of Theorem 1
Proof of Theorem 1. Given an arbitrary polyomino P , we will show that the number of
ways such that B(P ) is factorized into ABC with A a palindrome and B,C 90-dromes as
described in Theorem 2 is O(1), which is sufficient to prove Theorem 1. Let n := |B(P )|.

Below we show this for each of two cases (i) |B| or |C| is at least n/3, and (ii) |A| is at
least n/3. The first case follows easily from the lemmas shown in Section 3.1.
Case 1: |B| ≥ n/3 or |C| ≥ n/3.

Suppose that |B| ≥ n/3. (The case |C| ≥ n/3 is analogous.) Lemma 9 says that there
are O(1) possibilities of B.
Fix a 90-drome B. Lemma 10 implies that the number of factorizations of B(P ) including
B as an admissible 90-drome factor is at most two. This completes the proof of Case 1.

Case 2: |A| ≥ n/3.
This case covers the complement of Case 1. Lemma 12 implies that there are O(1)
possibilities of the position of the first or the last letter of A in B(P ).
Fix a position of the first letter of A in B(P ). The case for fixing the last letter of A
is analogous. Let W be a non-circular word obtained from B(P ) by applying a circular
shift if necessary such that A starts at W [1]. Let c be a sufficiently large constant whose
value will be determined at the end of the proof. Suppose to the contrary that W has at
least c factorizations ABC with A a palindrome and B and C 90-dromes as described in
Theorem 2. By Lemma 8, for every fixed A, there are at most eight such factorizations.
Hence, we can assume that there are at least c0 := c/8 factorizations W = AiBiCi

(1 ≤ i ≤ c0) such that Ai starts at W [1] for every 1 ≤ i ≤ c0, and that all the |Ai|s are
distinct. Moreover, all the Bis and the Cis are non-empty.
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We label these factorizations so that |A1| > |A2| > · · · > |Ac0 |. Let S0, S1 and S2
be the partition of the indices {1, . . . , c0} such that S0 := {i : (2/3)n ≤ |Ai| ≤ n},
S1 := {i : (4/9)n ≤ |Ai| < (2/3)n} and S2 := {i : n/3 ≤ |Ai| < (4/9)n}. Choose the
largest set among S0, S1 and S2, and relabel the indices in the chosen set as 1, . . . , c1,
where c1 ≥ c0/3. Note that this ensures that |Ac1 | ≥ (2/3)|A1|, which will be needed
when we apply Lemma 5.
Let di := |Ai|+ |Bi|/2 which represents the position of the center of Bi in W . We now
focus on the dis. We can assume that the dis are all different. This is because di = dj

with i < j implies that Bi is a subword of Bj having the same center, and hence Bi is
not admissible. Now the theorem of Erdős-Szekeres (Theorem 13) guarantees that we
can pick a sequence of indices 1 ≤ i1 < i2 < · · · < ic2 ≤ c1 with c2 := d√c1e such that
di1 , di2 , . . . , dic2

are sorted in increasing or decreasing order.
Now we divide Case 2 into two subcases depending on the order of di1 , di2 , . . . , dic2

. In
what follows, we write Aik

Bik
Cik

as AkBkCk for simplicity (to avoid a double subscript).
For 1 ≤ k ≤ c2, let bk := |Ak|+ |Bk| − |A1|, which represents the position of Bk[−1] in
W where we count the position of B1[1] in W as 1.

Case 2.1: d1 < d2 < · · · < dc2 .
Notice that |B1| = b1 > b2 > · · · > bc2 . For each 1 ≤ k ≤ c2, let Xk be a 90-drome
subword of Bk obtained from Bk by truncating a same number of letters from both sides of
Bk so that Xk starts at W [|A1|+1]. Equivalently, Xk := W [|A1|+1 : 2|Ak|+ |Bk|− |A1|].
Note that X1 = B1 and Xk �pre Xk+1 for every 1 ≤ k ≤ c2 − 1.
Suppose that c2 ≥ 17. Put m := |B1C1|(= n − |A1|). By Lemma 6, we have |Xk+2| >
(3/2)|Xk| for every k ≥ 1. Thus, we can assume that |B1| = |X1| < m/10. This
is because otherwise |X17| > (3/2)8(1/10)m > m which is impossible. Hence, the
center of C1 is located at the position between |A1| + m/2 and |A1| + (m/2 + m/20)
in W (*5). By noticing that Ck+1 �suf Ck for every k, we can apply Corollary 7 to
get |C9| < (2/3)4|C1| ≤ (2/3)4m < m/5 which implies b9 > (4/5)m. We also have
|X9| < m/5 because otherwise |X17| > (1/5)(3/2)4m > m by Lemma 6.
Notice that Ai+1 �pre Ai for every 1 ≤ i ≤ 8 and |A9| ≥ (2/3)|A1|. By Lemma 5, A1 has
a period at most (|A1|− |A9|)/8. We have |A1|− |A9| ≤ m since otherwise d9 > d1 > |A1|
implies b9 > m which is impossible. Hence, A1 has a period at most m/8, and this implies
W [|A1|+ |X9|+ 1 : |A9|+ |B9|] (i.e., a suffix of B9 succeeding X9) also has a period at
most m/8. However, we can pick a 90-drome factor of length greater than m/8 inside this
interval as a subword of C1 (and hence a subword of W ) by truncating a same number of
letters from both side of C1 since (*5) holds. This contradicts Lemma 11 which completes
the proof of Case 2.1.

Case 2.2: d1 > d2 > · · · > dc2 .
Notice that, in this case, di > dj does not imply bi > bj . So we first apply Lemma
10 and Theorem 13 to the sequence b1, . . . , bc2 to obtain a subsequence of length c3 :=
d
√
c2/2e such that the selected bis are sorted in increasing or decreasing order. (Here

we first pick c2/2 indices such that the selected bis are all distinct (the existence of
such a set is guaranteed by Lemma 10), and then apply Theorem 13 to get a desired
subsequence.) For simplicity, we write the indices of the selected bis as 1, 2, . . . , c3. That
is, W = AkBkCk with Ak a palindrome and Bk and Ck non-empty admissible 90-dromes
for 1 ≤ k ≤ c3. Moreover, b1, b2, . . . , bc3 are increasing or decreasing. As to Case 2.1, we
put m := |B1C1|(= n− |A1|), and put bk := |Ak|+ |Bk| − |A1| for 1 ≤ k ≤ c3.

Case 2.2.1: d1 > d2 > · · · > dc3 and b1 < b2 < · · · < bc3

Suppose that c3 ≥ 13. Note that (3/2)6 > 10. By Corollary 7 and |C1| ≤ m, we
have |C13| < (2/3)6m < m/10, and equivalently b13 > (9/10)m. As to Case 2.1, for



K. Amano and Y. Haruyama 5:11

1 ≤ k ≤ c3, let Xk := W [|A1|+ 1 : 2|Ak|+ |Bk| − |A1|]. In other words, Xk is a 90-drome
subword of Bk sharing the center with Bk that starts at W [|A1| + 1]. If dk ≤ |A1|,
Xk := ∅. We have |X13| < m/10 because otherwise Lemma 6 implies |B1| = |X1|
> (3/2)6(1/10)m > m, which is impossible.
Now we focus on the Ais. Recall that Ak+1 �pre Ak for every 1 ≤ k < c3 − 1. Then by
Lemma 5, A1 has a period at most p := (|A1| − |A13|)/12. We have d13 ≥ |A1| − p/2
since d13 < |A1| − p/2 implies that we can pick a 90-drome factor of length greater than
p which shares the center with B13 within W [1 : |A1|] and this contradicts Lemma 11.
Then, we have
|B13|

2 = d13 − |A13| ≥ −
p

2 + (|A1| − |A13|) = −p2 + 12p ≥ 23
2 p,

and hence m ≥ b13 = d13 + |B13|/2− |A1| ≥ 11p, which implies p ≤ m/11. Since Bk is a
90-drome, W [|A1|+ |X13|+ 1 : |A13|+ |B13|] has a period at most m/11.
By recalling that b13 ≥ (9/10)m, we have |X13| < m/10. Assume that |B1| ≤ m/2. Then
the center of C1 is located left to the |A1|+ (3/4)m-th letter in W . This guarantees that
we can pick a 90-drome factor of length greater than m/10 whose center is common to
C1 within W [|A1|+ |X13|+ 1 : |A13|+ |B13|], which contradicts Lemma 11.
Now we can assume that |B1| > m/2. Then the position of the center of B1 is located right
to the |A1|+ (1/4)m-th letter in W . However, in this case, we can pick a 90-drome factor
of W sharing the center with B1 whose length is greater than m/10. This contradicts
Lemma 11, and thus completes the proof of Case 2.2.1.

Case 2.2.2: d1 > d2 > · · · > dc3 and b1 > b2 > · · · > bc3 .
Suppose that c3 ≥ 19. By the same argument to the second paragraph of Case 2.2.1, we
can show that |A1| and also W [|A1|+ |X13|+ 1 : |A13|+ |B13]| has a period at most m/11
and b13 ≥ 0. We also have b19 ≥ 0 by a similar argument to this. We have |B1| > (9/10)m,
or equivalently |C1| < m/10, because |C1| ≥ m/10 implies |C13| ≥ (1/10)(3/2)6m > m

by Corollary 7, which contradicts b13 ≥ 0. Hence the center of B1 is located at a position
between |A1|+ (9/20)m and |A1|+m/2 in W .
Define Xk as to Case 2.2.1. We have |X13| < m/10, since otherwise |B1| = |X1| >
(1/10)(3/2)6m > m by Lemma 6. If |A13| + |B13| ≥ |A1| + (7/10)m, then there is a
90-drome factor of length greater than m/10 within W [|A1|+ |X13|+ 1 : |A13|+ |B13|]
which shares the center with B1. This contradicts Lemma 11. Hence we can assume
|A13|+ |B13| < |A1|+ (7/10)m which means that |C13| > (3/10)m. However, this implies
|C19| > (3/10)(3/2)3m > m (by Corollary 7), which contradicts b19 ≥ 0. This completes
the proof of Case 2.2.2.

By putting c� 3 · 8 · (2 · 202)2, we can satisfy all the conditions on c0, c1, c2 and c3 in the
proof, which completes the proof of Theorem 1. J

4 Concluding Remarks

In this work, we did not make any effort to optimize the constant in Theorem 1. Currently,
the upper bound is dominated by Case 2, which is roughly (the value of c in the proof) ×
(the size of F in Lemma 12) × (2 · (representing the choice of A[1] or A[−1] at the beginning
of Case 2)). An inspection of the proof of Lemma 12 (in [14, Lemma 5.7]) shows that O(1)
in Lemma 12 can be replaced by 34, and hence our upper bound is ∼ 109. Currently, we do
not know a polyomino having more than three non-equivalent p4-tilings (see Figure 4 for the
one having three p4-tilings). Closing the gap to determine the true value is an interesting
future work.
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6:2 Network Optimization on Partitioned Pairs of Points

Table 1 Table of results: α is the Steiner ratio and β the best approximation factor of the TSP
in the underlying metric space. Unless specified otherwise, all other results in this table apply to
general metric spaces.

min |f(R)|+ |f(B)| min-max{|λ(R)|, |λ(B)|} min-max{|f(R)|, |f(B)|}

Spanning tree 3α 9
3 for R 4α

Matching 2 3 3
TSP tour 3β 18 6β

1 Introduction

We study a class of network optimization problems on pairs of sites in a metric space. Our
goal is to determine how to split each pair, into a “red” site and a “blue” site, in order to
optimize both a network on the red sites and a network on the blue sites. In more detail,
given n pairs of points, S = {{p1, q1}, {p2, q2}, . . . , {pn, qn}}, in the Euclidean plane or in a
general metric space, we define a feasible coloring of the points in S =

⋃n
i=1{pi, qi} to be a

coloring, S = R ∪ B, such that pi ∈ R if and only if qi ∈ B. Among all feasible colorings
of S, we seek one which optimizes the cost function over a pair of network structures,
spanning trees, traveling salesman tours (TSP tours) or matchings, one on the red set and
one on the blue set. Let f(X) be a certain structure computed on point set X and let
λ(X) be the longest edge of a bottleneck structure, f(X), computed on point set X. For
each of the aforementioned structures we consider the objective of (over all feasible colorings
S = R ∪ B) minimizing |f(R)| + |f(B)|, minimizing max{|f(R)|, |f(B)|} and minimizing
max{|λ(R)|, |λ(B)|}. Here, | · | denotes the cost (e.g., sum of edge lengths) of the structure.

The problems we study are natural variants of well-studied network optimization prob-
lems. Our motivation comes also from a model of secure connectivity in networks involving
facilities with replicated data. Consider a set of facilities each having two (or more) replica-
tions of their data; the facilities are associated with pairs of points (or k-tuples of points in
the case of higher levels of replication). Our goal may be to compute two networks (a “red”
network and a “blue” network) to interconnect the facilities, each network visiting exactly
one data site from each facility; for communication connectivity, we would require each net-
work to be a tree, while for servicing facilities with a mobile agent, we would require each
network to be a Hamiltonian path/cycle. By keeping the red and blue networks distinct, a
malicious attack within one network is isolated from the other.

Our results. We show that several of these problems are NP-hard and give O(1)-approx-
imation algorithms for each of them. Table 1 summarizes our O(1)-approximation results.

Related work. Several optimization problems have been studied of the following sort:
Given sets of tuples of points (in a Euclidean space or a general metric space), select exactly
one point or at least one point from each tuple in order to optimize a specified objective
function on the selected set. Gabow et al. [12] explored the problem in which one is given
a directed acyclic graph with a source node s and a terminal node t and a set of k pairs
of nodes, where the objective was to determine if there exists a path from s to t that uses
at most one node from each pair. Myung et al. [17] introduced the Generalized Minimum
Spanning Tree Problem: Given an undirected graph with the nodes partitioned into subsets,
compute a minimum spanning tree that uses exactly one point from each subset. They show
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that this problem is NP-hard and that no constant-factor approximation algorithm exists for
this problem unless P = NP . Related work addresses the generalized traveling salesperson
problem [6, 18, 19, 20], in which a tour must visit one point from each of the given subsets.
Arkin et al. [4] studied the problem in which one is given a set V and a set of subsets of
V , and one wants to select at least one element from each subset in order to minimize the
diameter of the chosen set. They also considered maximizing the minimum distance between
any two elements of the chosen set. In another recent paper, Consuegra et al. [8] consider
several problems of this kind. Abellanas et al. [1], Das et al. [10] and Khantemouri et al. [15]
considered the following problem. Given colored points in the Euclidean plane, find the
smallest region of a certain type (e.g., strip, axis-parallel square, etc.) that encloses at least
one point from each color. Barba et al. [5] studied the problem in which one is given a set of
colored points (of t different colors) in the Euclidean plane and a vector c = (c1, c2, . . . , ct),
and the goal is to find a region (axis-aligned rectangle, square, disk) that encloses exactly ci
points of color i for each i. Efficient algorithms are given for deciding whether or not such
a region exists for a given c.

While optimization problems of the “one of a set” flavor have been studied extensively,
the problems we study here are fundamentally different: we care not just about a single
structure (e.g., network) that makes the best “one of a set” choices on, say, pairs of points;
we must consider also the cost of a second network on the “leftover” points (one from each
pair) not chosen. As far as we know, the problem of partitioning points from pairs into two
sets in order to optimize objective functions on both sets has not been extensively studied.
One recent work of Arkin et al. [3] does address optimizing objectives on both sets: Given
a set of pairs of points in the Euclidean plane, color the points red and blue so that if one
point of a pair is colored red (resp. blue), the other must be colored blue (resp. red). The
objective is to optimize the radii of the minimum enclosing disk of the red points and the
minimum enclosing disk of the blue points. They studied the objectives of minimizing the
sum of the two radii and minimizing the maximum radius.

2 Spanning Trees

Let MST (X) be a minimum spanning tree over the point set X, and |MST (X)| be the cost
of the tree, i.e. sum of edge lengths. Let λ(X) be the longest edge in a bottleneck spanning
tree on point set X and |λ(X)| be the cost of that edge. Given n pairs of points in a metric
space, find a feasible coloring which minimizes the cost of a pair of spanning trees, one built
over each color class.

2.1 Minimum Sum
In this section we consider minimizing |MST (R)|+ |MST (B)|.

I Theorem 1. The Min-Sum 2-MST problem is NP-hard in general metric spaces. [See full
paper [2] for proof.]

An O(1)-approximation algorithm for Min-Sum 2-MST problem.

Compute MST (S), a minimum spanning tree on all 2n points. Imagine removing the
heaviest edge, h, from MST (S). This leaves us with two trees; T1 and T2. Perform a
preorder traversal on T1, coloring nodes red as long as there is no conflict. If there is a
conflict (qi is reached in the traversal and pi was already colored to red) then color the
node blue. Repeat this for T2. We then return the coloring S = R ∪B as our approximate
coloring.

ISAAC 2017
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Case 1: All nodes in T1 are of the same color and all nodes in T2 are of the same color.
This partition is optimal. To see this, note that the weight of MST (S) \ {h} is a lower
bound on the cost of the optimal solution as it is the cheapest way to create two trees, the
union of which span all of the input nodes. Since each tree is single colored, we know that
each tree must have n points, exactly one from each pair, and thus is also feasible to our
problem.

Case 2: One tree is multicolored and the other is not. Let OPT be the optimal solution.
Suppose without loss of generality that T1 contains only red nodes and T2 contains both blue
and red nodes. Then, there must be a pair with both nodes in T2. Imagine also constructing
an MST on each color class of an optimal coloring. By definition, in the MSTs built over
each color class, at least one point in T2 must be connected to a point in T1. This implies
that the weight of the optimal solution is at least as large as |h|, as h is the cheapest edge
which spans the cut (T1, T2). Therefore, |h| ≤ |OPT |.

Consider MST (R). By the Steiner property, we have that an MST over a subset U ⊆ S
has weight at most α|MST (S)| where α is the Steiner ratio of the metric space. Recall
that |MST (S) \ {h}| ≤ |OPT |. In this case, since |h| ≤ |OPT |, we have that |MST (R)| ≤
α|MST (S)| ≤ 2α|OPT |.

Next, consider building MST (B). Since no blue node exists in T1, there does not exist
an edge that crosses the cut (T1, T2) in MST (B), and thus we have that |MST (B)| ≤
α|MST (S) \ {h}| ≤ α|OPT |. Therefore, |MST (R) ∪MST (B)| ≤ 3α|OPT |.

Case 3: Both trees are multicolored. In this case, there are two pairs one with both nodes
contained in T1 and one with both nodes contained in T2. Imagine, again, constructing an
MST on each color class in this optimal coloring. In this case, there must be at least two
edges crossing the cut (T1, T2), one edge belonging to each tree. Note that each of these
edges has weight at least |h| as h is the cheapest edge spanning the cut (T1, T2), implying
that |h| ≤ |OPT |/2. Thus, |MST (S)| ≤ 1.5|OPT | as |MST (S) \ {h}| ≤ |OPT | and
|h| ≤ |OPT |/2.

Using our approximate coloring, one can compute MST (B) and MST (R), each with
weight at most α|MST (S)|. Therefore |MST (R) ∪MST (B)| ≤ 2α|MST (S)| ≤ 3α|OPT |,
where α is again the Steiner ratio of the metric space.

Using the above case analysis, we have the following theorem.

I Theorem 2. There exists a 3α-approximation for the Min-Sum 2-MST problem.

I Remark. The Steiner ratio is the supremum of the ratio of length of an minimum spanning
tree and a minimum Steiner tree over a point set. In a general metric space α = 2 and in
the Euclidean plane α ≤ 1.3546 [14].

2.2 Min-max
In this section the objective is to min max{|MST (R)|, |MST (B)|}.

I Theorem 3. The Min-Max 2-MST problem is strongly NP-hard in general metric spaces.

Proof. The reduction is from a problem which we will call connected partition [11]. In
connected partition one is given a graph G = (V,E), where |V | = n, and asked if it is
possible to remove a set of edges from G which breaks it into two connected components
each of size n/2.
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Given an instance of connected partition, G = (V,E), we will create an instance of min-
max 2-MST as follows. For each vertex vi ∈ V create an input pair {pi, qi}. For each edge
e = (vi, vj) ∈ E set the distance between the corresponding points, pi and pj to be one. Set
the distances d(qi, qj) to be zero for all i, j, and the distances d(pi, qj) to be two for all i, j.
In order to complete the construction, set all remaining distances to be the shortest path
length among the distances defined above.

Claim: G can be partitioned into two connected components of size n/2 if and only if
there is a solution to the corresponding instance of min-max 2-MST with value n/2 + 1.

To show the first direction, suppose that the graph G can be split into two connected
components, C1, C2, of size exactly n/2. Without loss of generality suppose {vi : 1 ≤ i ≤
n/2} ∈ C1 and {vj : n/2 < j ≤ n} ∈ C2. Then, it is easy to verify based on the pairwise
distances in the metric space described above that the coloring {pi : 1 ≤ i ≤ n/2} ∪ {qj :
n/2 < j ≤ n} ∈ R, {pi : n/2 < i ≤ n} ∪ {qj : 1 ≤ j ≤ n/2} ∈ B, achieves a cost of n/2 + 1.

To show the opposite direction, suppose that there is a solution to the instance of min-
max 2-MST of cost n/2 + 1. Notice that the minimum distance from point pi to any
other point is at least one; therefore, there can be at most n/2 + 2 points from the set
P = {pi : 1 ≤ i ≤ n} colored either red or blue in the solution which achieves this cost.
Thus there are at least n/2− 2 points from the set Q = {qj : 1 ≤ j ≤ n} colored either red
or blue in this solution in order for it to be a feasible coloring. This implies that there will
be at least one edge crossing the cut (P,Q) in both the red and blue MST which realize the
cost of this solution, and this edge has cost two. Then, of the remaining budget of n/2− 1
units in order to complete the trees which realize the cost of this solution, it must be the
case that we can utilize n/2 − 1 edges of length one which interconnect exactly n/2 nodes
from the set P in each color class.

The edges of length one in our metric space correspond directly to original edges of
the graph G in connected partition thus showing that there exists two spanning trees each
of which spans exactly n/2 nodes of G and thus G can be partitioned into two connected
components of size exactly n/2. J

I Theorem 4. There exists a 4α-approximation for the Min-Max 2-MST problem.

Proof. We use the same algorithm as we did for the Min-Sum 2-MST problem. The ap-
proximation factor is dominated by case 2 in the Min-Sum 2-MST analysis. For the Min-
Max objective function, we have that max{|MST (B)|, |MST (R)|} ≤ α|MST (S)| and that
|MST (S)| ≤ 4|OPT |. Thus, max{|MST (B)|, |MST (R)|} ≤ 4α|OPT |. J

2.3 Bottleneck

In this section the objective is to min max{|λ(R)|, |λ(B)|}.

I Lemma 5. Given n pairs of points on a line in R2 where consecutive points on the line are
unit separated, there exists a feasible coloring of the points, such that max{|λ(R)|, |λ(B)|} ≤
3.

Proof. The proof will be constructive, using Algorithm 1. We partition the points into n
disjoint buckets, where a bucket consists of two consecutive points on the line.

Observe that at the end of Algorithm 1, each bucket has exactly one red point and one
blue point by construction. Thus, the maximum distance between any two points of the
same color is 3. J
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Algorithm 1: Coloring points on a line.
Color the leftmost point, p, red
Let p′ be the point that is in p’s bucket
Let R be a set of red points and B be a set of blue points
R← {p}; B ← ∅
while There exists an uncolored point do

while p′ is uncolored do
if p is red then

Color p’s pair, q, blue
B ← B ∪ {q}
p← q

else
Let p′′ be the point in p’s bucket
Color p′′ red
R← R ∪ {p′′}
p← p′′

end
end
Find the leftmost uncolored point x and color it red. Let x′ be the point in x’s
bucket
p← x; p′ ← x′

end
return {R,B}

I Theorem 6. There exists a 3-approximation algorithm for the Bottleneck 2-MST problem
on a line.

Proof. Note that if the leftmost n points do not contain two points from the same pair, then
it is optimal to let R be the leftmost n points and B be the rightmost n points. Suppose
now that the leftmost n points contain two points from the same pair. We run Algorithm 1
on the input. Imagine building two bottleneck spanning trees over the approximate coloring
as well as over an optimal coloring. Let λ be the longest edge (between two points of the
same color) in our solution and λ∗ be the longest edge in the optimal solution.

Consider any two consecutive input points si and si+1 on the line. We first show that
|λ∗| ≥ |sisi+1| by arguing that the optimal solution must have an edge that covers the
interval [si, si+1]. Suppose to the contrary that no such edge exists. This means that si is
connected to n − 1 points only to its left and si+1 is connected to n − 1 points only to its
right. This contradicts the assumption that the leftmost n points contain two points from
the same pair.

Let the longest edge in our solution be defined by two points, pi and pj . Consider the
number of input points in interval [pi, pj ]. Input points in this interval other than pi and
pj will have a different color than pi and pj . It is easy to see that if [pi, pj ] consists of two
input points, that |λ∗| = |λ|, and if [pi, pj ] consists of three input points, that |λ∗| ≥ |λ/2|.
We know by lemma 5 that [pi, pj ] can consist of no more than four input points. In this last
case, |λ∗| must be at least the length of the longest edge of the three edges in [pi, pj ]. Thus,
we see that |λ∗| ≥ |λ|/3. J

I Theorem 7. There exists a 9-approximation algorithm for the Bottleneck 2-MST problem
in a metric space.
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Proof. First, we compute MST (S) and consider the heaviest edge, h. The removal of this
edge separates the nodes into two connected components, H1 and H2. If @ i : pi, qi ∈ Hj for
1 ≤ i ≤ n and 1 ≤ j ≤ 2, then we let R = H1 and B = H2 and return R and B. Let λ∗ be
the heaviest edge in the bottleneck spanning trees built on an optimal coloring. Note that
MST (S) lexicographically minimizes the weight of the kth heaviest edge, 1 ≤ k ≤ 2n − 1,
among all spanning trees over S, and thus the weight of the heaviest edge inMST (S)\{h} is
a lower bound on |λ∗|. Thus, in this case, our solution is clearly feasible and is also optimal
as MST (R) and MST (B) are subsets of MST (S) \ {h}.

Now suppose ∃ j ∈ {1, 2} : pi, qi ∈ Hj , 1 ≤ i ≤ n. This means that |λ∗| ≥ |h|. In
this case, we compute a bottleneck TSP tour on the entire point set. It is known that
that a bottleneck TSP tour with bottleneck edge λ can be computed from MST (S) so that
|λ| ≤ 3|h| ≤ 3|λ∗| [9].

Next we run Algorithm 1 on the TSP tour and return two paths, each having the property
that the largest edge has weight no larger than 9|λ∗|. J

I Remark. Consider the problem of computing a feasible partition which minimizes the bot-
tleneck edge across two bottleneck TSP tours. Let the heaviest edge in the bottleneck TSP
tours built on the optimal partition be λ∗∗. The above algorithm gives a 9-approximation to
this problem as well because the algorithm returns two Hamilton paths and we know that
(using the notation in the above proof) |λ∗| ≤ |λ∗∗|. Thus, |λ| ≤ 9|λ∗| ≤ 9|λ∗∗|.

The following is a generalization of Lemma 5. Let S = {S1, S2, . . . , Sn} be a set of n
k-tuples of points on a line. Each set Si, 1 ≤ i ≤ n, must be colored with k colors. That is,
no two points in set Si can be of the same color.

Consider two consecutive points of the same color, p and q. We show that there exists
a polynomial time algorithm that colors the points in S so that the number of input points
in interval (p, q) is O(k).
I Lemma 8. There exists a polynomial time algorithm to color S so that for any two
consecutive input points of the same color, p and q, the interval (p, q) contains at most
2k − 2 input points.
Proof. The algorithm consists of k steps, where in the jth step, we color n of the yet
uncolored points with color j. We describe the first step.

Divide the kn points into n disjoint buckets, each of size k, where the first bucket B1
consists of the k leftmost points, the second bucket B2 consists of the points in places
k+ 1, k+ 2, . . . , 2k, etc. Let G = (V,E) be the bipartite graph, with node set V = {S ∪B =
{B1, . . . , Bn}}, in which there is an edge between Bi and Sj if and only if at least one of Sj ’s
points lies in bucket Bi. According to Hall’s theorem [13], there exists a perfect matching in
G. LetM be such a matching and for each edge e = (Bi, Sj) inM , color one of the points in
Bi∩Sj with color 1. Now, remove from each tuple the point that was colored 1, and remove
from each bucket the point that was colored 1. In the second step we color a single point in
each bucket with the color 2, by again computing a perfect matching between the buckets
(now of size k− 1) and the (k− 1)-tuples. It is now easy to see that for any two consecutive
points of the same color, p and q, at most 2k − 2 points exist in interval (p, q). J

3 Matchings

Let M(X) be the minimum weight matching on point set X and |M(X)| be the cost of
the matching. Let λ(X) be the longest edge in a bottleneck matching on point set X and
|λ(X)| be the cost of that edge edge. Given n pairs of points in a metric space, find a feasible
coloring which minimizes the cost of a pair of matchings, one built over each color class.
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1 1− ε 1

OPT APX

pi pi+1
qi qi+1

. . .. . .

Figure 1 |AP X|
|OP T | ≈ 2.

3.1 Minimum Sum
In this section the objective is to minimize |M(R)|+ |M(B)|.

I Theorem 9. There exists a 2-approximation for the Min-Sum 2-Matching problem in
general metric spaces.

Proof. First, note that the weight of the minimum weight perfect matching on S,M∗, which
forbids edges (pi, qi) for all i is a lower bound on |OPT |. Next, we define the minimum weight
one of a pair matching, M̂ , to be a minimum weight perfect matching which uses exactly
one point from each input pair {pi, qi} . Observe that |M̂ |, is a lower bound on the weight
of the smaller of the matchings of OPT and therefore has weight at most |OPT |/2.

Our algorithm is to compute M̂ , and color the points involved in this matching red, and
the remainder blue. We return the coloring R ∪B as our approximate solution.

We have that |M(R)| = |M̂ | ≤ |OPT |/2. To bound |M(B)|, consider the multigraph
G = (V = S,E = M∗ ∪ M̂). All v ∈ B have degree 1 (from M∗), and all u ∈ R have
degree 2 (from M∗ and M̂). For each vi ∈ B, either vi is matched to vj ∈ B by M∗, or vi
is matched to ui ∈ R by M∗. In the former case we can consider vi and vj matched in B
and charge the weight of this edge to |M∗|. In the latter case, note that each u ∈ R is part
of a unique cycle, or a unique path. If u ∈ R is part of a cycle then no vertex in that cycle
belongs to B due to the degree constraint. Thus, if vi ∈ B is matched to ui ∈ R, ui is part
of a unique path whose other terminal vertex x belongs to B, due to the degree constraint.
We can consider vi, and x matched and charge the weight of this edge to the unique path
connecting vi and x in G. Thus, |M(B)| can be charged to |M∗ ∪ M̂ | and has weight at
most 1.5|OPT |.

Therefore, our partition guarantees |M(R)| + |M(B)| ≤ 2|OPT |. Figure 1 shows the
approximation factor using our algorithm is tight. J

3.2 Min-max
In this section the objective is to min max{|M(R)|, |M(B)|}.

I Theorem 10. The Min-Max 2-Matching problem is weakly NP-hard in the Euclidean
plane. [See full paper [2] for proof.]

I Remark. The reduction used can be easily modified to also show that the Min-Max 2-MST
problem is weakly NP-hard in the Euclidean plane.

I Theorem 11. The approximation algorithm for the Min-Sum 2-Matching problem serves
as a 3-approximation for the Min-Max 2-Matching problem in general metric spaces. [See
full paper [2] for proof.]

3.3 Bottleneck
In this section the objective is to min max{|λ(R)|, |λ(B)|}.
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Algorithm 2: Algorithm A(µ, β). 0 < µ < 1 and β > 1.
Let TSPβ(X) denote a β-factor approximate TSP tour on set X.
1. Compute TSPβ(S).
2. Let 2k be the largest even number not exceeding (2+ 1

µ )β. Enumerate all ways of
decomposing TSPβ(S) into 2k connected components: for each decomposition,
color the nodes from consecutive components red and blue alternately (i.e. color
all nodes in component one red, all nodes in component two blue, etc.). If this
coloring is infeasible, then skip to the next decomposition; otherwise compute
TSPβ(R) and TSPβ(B).

3. Compute a random feasible coloring, S = R ∪ B, and compute TSPβ(R) and
TSPβ(B).

4. Among all pairs of tours produced in steps 2 and 3, choose the pair of minimum
sum.

I Theorem 12. There exists a 3-approximation to the Bottleneck 2-Matching problem in
general metric spaces. [See full paper [2] for proof]

4 TSP Tours

Let TSP (X) be a TSP tour on point set X and |TSP (X)| be the cost of the tour. Let
λ(X) be the longest edge in a bottleneck TSP tour on point set X and |λ(X)| be the cost of
that longest edge. Given n pairs of points in a metric space, find a feasible coloring which
minimizes the cost of a pair of TSP tours, one built over each color class.

It is interesting to note the complexity difference emerging here. In prior sections, the
structures to be computed on each color class of a feasible coloring were computable exactly
in polynomial time. Thus, the decision versions of these problems, which ask if there exists
a feasible coloring such that some cost function over the pair of structures is at most k,
are easily seen to be in NP. However, when the cost function is over a set of TSP tours or
bottleneck TSP tours, this is no longer the case. That is, suppose that a non-deterministic
Touring machine could in polynomial time, for a point set S and k ∈ R, return a coloring
for which it claimed the cost of the TSP tours generated over both color classes is at most k.
Unless P = NP , the verifier cannot in polynomial time confirm that this is a valid solution,
and therefore the problem is not in NP. Thus, the problems considered in this section are
all NP-hard.

4.1 Minimum Sum
In this section the objective is to minimize |TSP (R)|+ |TSP (B)|.

We will show for β > 1 and for the proper choice of µ, that Algorithm 2 gives a 3β-
approximation for the Min-Sum 2-TSP problem. Fix a constant µ < 1. Let OPT be the
optimal (feasible) coloring S = R∗ ∪ B∗. Let d(R,B) be the minimum point-wise distance
between sets R and B. We call an instance of the problem µ-separable if there exists a
feasible coloring S = R ∪B : d(R,B) ≥ µ(|TSP (R)|+ |TSP (B)|).

Let APX be the coloring returned by our algorithm. We will show that if S is not
µ-separable, then |APX| ≤ 2

1−4µβ|OPT | (see Lemma 13) and that if S is µ-separable,
then |APX| ≤ 1

4µβ|OPT | (see Lemma 14). Supposing both of these are true, then the
approximation factor of our algorithm is max{ 1

4µ ,
2

1−4µ}β. One can easily verify that µ =
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1/12 is the minimizer which gives the desired 3β factor. The following lemma states that if
S is not µ-separable, then any feasible coloring yields a “good” approximation.

I Lemma 13. If S is not µ-separable, then |APX| ≤ 2
1−4µβ|OPT |.

Proof. If S is not µ-separable, then for any feasible coloring S = R ∪B we have d(R,B) ≤
µ(|TSP (R)| + |TSP (B)|). In particular, for the coloring induced by the optimal solution,
S = R∗ ∪B∗, d(R∗, B∗) ≤ µ(|TSP (R∗)|+ |TSP (B∗)|). Then,

|TSP (S)| ≤ |OPT |+ 2d(R∗, B∗)
≤ |OPT |+ 2µ(|TSP (R∗)|+ |TSP (B∗)|)
≤ |OPT |+ 4µ|TSP (S)|.

Hence, when µ < 1
4 , |TSP (S)| ≤ 1

1−4µ |OPT |. Let S = R̂∪B̂ be the random feasible coloring
computed by A(µ, β). Then, as we are returning the best coloring between R̂ ∪ B̂ and all
O(n2k) colorings of TSPβ(S), we have |APX| ≤ β(|TSP (R̂)|+ |TSP (B̂)|) ≤ 2β|TSP (S)| ≤

2β
1−4µ |OPT |. J

The following lemma states that if S is µ-separable, then any witness coloring to the µ-
separability of S gives a “good” approximation.

I Lemma 14. If S is µ-separable, then |APX| ≤ 1
4µβ|OPT |.

Proof. Suppose we successfully guessed a coloring X0 = R0 ∪B0 that is a “witness” to the
µ-separability of S (we will show how to guess X0 later).

Case 1: OPT = X0. Then |APX| ≤ β(|TSP (R0)| + |TSP (B0)|) = β(|TSP (R∗)| +
|TSP (B∗)|) = β|OPT |.
Case 2: OPT 6= X0. Then R∗ 6= R0, B∗ 6= B0 which means each tour in OPT must
contain at least 2 edges crossing the cut (R0, B0), hence the optimal solution must contain
at least 4 edges crossing the cut (R0, B0). So |OPT | ≥ 4d(R0, B0) ≥ 4µ(|TSP (R0)| +
|TSP (B0)|) ≥ 4µ

β |APX|. Equivalently, |APX| ≤
β

4µ |OPT |. J

The next two lemmas show how to guess a witness coloring X0 in polynomial time. First,
we show that if S is µ-separable with a witness coloring X0, then TSPβ(S) cannot cross the
red/blue cut defined by this coloring “too many” times.

I Lemma 15. Let TSPβ(S) be an β-factor approximation for TSP (S). Also, suppose S
is µ-separable with witness X0. Then TSPβ(S) crosses the cut (R0, B0) at most (2 + 1

µ )β
times.

Proof. One can construct a TSP tour for S by adding two bridges to TSP (R0) and
TSP (B0), thus we have |TSP (S)| ≤ |TSP (R0)| + |TSP (B0)| + 2d(R0, B0)
≤ (2 + 1

µ )d(R0, B0). Also, suppose TSPβ(S) crosses the cut (R0, B0) 2k times. Then,
2kd(R0, B0) ≤|TSPβ(S)|≤ β|TSP (S)|. Combining the above two inequalities, we obtain
2k ≤ (2 + 1

µ )β. J

The next lemma completes our proof.

I Lemma 16. Suppose S is µ-separable. Let X0 be any coloring which serves as a “witness”.
Then, in step 2 of A(µ, β), we will encounter X0 at some stage.
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Proof. Given a nonnegative integer k and a TSP tour P , define Π(P, k) ={X: X is a feasible
coloring and P crosses X at most k times}. By Lemma 15, we know X0 ∈ Π(TSPβ(S), (2 +
1
µ )β). Since step 2 of A(µ, β) is actually enumerating all colorings in Π(TSPβ(S), (2 + 1

µ )β),
this completes the proof. J

Note that step 2 considers O(n2k) = O(n14β) decompositions and for each coloring that is
feasible, we compute two approximate TSP tours. Suppose the running time to compute a
β-factor TSP tour on n points is hβ(n). Then the worst case running time of Algorithm 2
is O(hβ(2n)n14β). Thus, we have the following Theorem.

I Theorem 17. For any β > 1, the algorithm A( 1
12 , β) is a 3β-approximation for the Min-

Sum 2-TSP problem with running time O(hβ(2n)n14β).

I Remark. If S is in the Euclidean plane then β = 1 + ε for some ε > 0 [16] yielding a
(3 + ε)-approximation and if S is in a general metric space then β = 3/2 [7] yielding a
4.5-approximation. In both cases hβ(2n) is polynomial.

4.2 Min-Max
In this section the objective is to min max{|TSP (R)|, |TSP (B)|}.

I Theorem 18. There exists a 6β-approximation to the Min-Max 2-TSP problem, where β
is the approximation factor for TSP in a certain metric space. [See full paper [2] for proof.]

4.3 Bottleneck
In this section the objective is to min max{|λ(R)|, |λ(B)|}.

I Theorem 19. There exists an 18-approximation algorithm for the Bottleneck 2-TSP prob-
lem. [See full paper [2] for proof.]

References
1 Manuel Abellanas, Ferran Hurtado, Christian Icking, Rolf Klein, Elmar Langetepe, Lihong

Ma, Belén Palop, and Vera Sacristán. Smallest color-spanning objects. In FriedhelmMeyer
auf der Heide, editor, Algorithms — ESA 2001, volume 2161 of Lecture Notes in Computer
Science, pages 278–289. Springer Berlin Heidelberg, 2001. doi:10.1007/3-540-44676-1_
23.

2 Esther M Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Su Jia, Matthew J Katz, Tyler
Mayer, and Joseph SB Mitchell. Network optimization on partitioned pairs of points. arXiv,
submission 2025570, 2017. URL: https://arxiv.org/abs/1710.00876.

3 Esther M. Arkin, José M. Díaz-Báñez, Ferran Hurtado, Piyush Kumar, Joseph S. B.
Mitchell, Belén Palop, Pablo Pérez-Lantero, Maria Saumell, and Rodrigo I. Silveira.
Bichromatic 2-center of pairs of points. Comput. Geom., 48(2):94–107, 2015. doi:
10.1016/j.comgeo.2014.08.004.

4 Esther M. Arkin and Refael Hassin. Minimum-diameter covering problems. Networks,
36(3):147–155, 2000.

5 Luis Barba, Stephane Durocher, Robert Fraser, Ferran Hurtado, Saeed Mehrabi, Debajyoti
Mondal, Jason Morrison, Matthew Skala, and Mohammad Abdul Wahid. On k-enclosing
objects in a coloured point set. In Proceedings of the 25th Canadian Conference on Compu-
tational Geometry, CCCG 2013, Waterloo, Ontario, Canada, August 8-10, 2013. Carleton

ISAAC 2017

http://dx.doi.org/10.1007/3-540-44676-1_23
http://dx.doi.org/10.1007/3-540-44676-1_23
https://arxiv.org/abs/1710.00876
http://dx.doi.org/10.1016/j.comgeo.2014.08.004
http://dx.doi.org/10.1016/j.comgeo.2014.08.004


6:12 Network Optimization on Partitioned Pairs of Points

University, Ottawa, Canada, 2013. URL: http://cccg.ca/proceedings/2013/papers/
paper_35.pdf.

6 Binay K. Bhattacharya, Ante Custic, Akbar Rafiey, Arash Rafiey, and Vladyslav Sokol.
Approximation algorithms for generalized MST and TSP in grid clusters. In Zaixin Lu,
Donghyun Kim, Weili Wu, Wei Li, and Ding-Zhu Du, editors, Combinatorial Optimiza-
tion and Applications - 9th International Conference, COCOA 2015, Houston, TX, USA,
December 18-20, 2015, Proceedings, volume 9486 of Lecture Notes in Computer Science,
pages 110–125. Springer, 2015. doi:10.1007/978-3-319-26626-8_9.

7 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Technical report, DTIC Document, 1976.

8 Mario E. Consuegra and Giri Narasimhan. Geometric avatar problems. In Anil Seth and
Nisheeth K. Vishnoi, editors, IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2013, December 12-14, 2013, Guwa-
hati, India, volume 24 of LIPIcs, pages 389–400. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2013. doi:10.4230/LIPIcs.FSTTCS.2013.389.

9 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction
to algorithms second edition, 2001.

10 Sandip Das, Partha P. Goswami, and Subhas C. Nandy. Smallest color-spanning object
revisited. International Journal of Computational Geometry and Applications, 19(05):457–
478, 2009. doi:10.1142/S0218195909003076.

11 Martin E Dyer and Alan M Frieze. On the complexity of partitioning graphs into connected
subgraphs. Discrete Applied Mathematics, 10(2):139–153, 1985.

12 Harold N. Gabow, Shachindra N. Maheshwari, and Leon J. Osterweil. On two problems
in the generation of program test paths. IEEE Transactions on Software Engineering,
2(3):227–231, 1976.

13 Philip Hall. On representatives of subsets. J. London Math. Soc, 10(1):26–30, 1935.
14 Dan Ismailescu and Joseph Park. Improved upper bounds for the steiner ratio. Discrete

Optimization, 11:22–30, 2014. doi:10.1016/j.disopt.2013.10.004.
15 Payam Khanteimouri, Ali Mohades, MohammadAli Abam, and MohammadReza Kazemi.

Computing the smallest color-spanning axis-parallel square. In Leizhen Cai, Siu-Wing
Cheng, and Tak-Wah Lam, editors, Algorithms and Computation, volume 8283 of Lecture
Notes in Computer Science, pages 634–643. Springer Berlin Heidelberg, 2013. doi:10.
1007/978-3-642-45030-3_59.

16 Joseph SB Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric tsp, k-mst, and related problems.
SIAM Journal on Computing, 28(4):1298–1309, 1999.

17 Young-Soo Myung, Chang-ho Lee, and Dong-wan Tcha. On the generalized minimum
spanning tree problem. Networks, 26(4):231–241, 1995. doi:10.1002/net.3230260407.

18 Petrica C. Pop. New models of the generalized minimum spanning tree problem. J. Math.
Model. Algorithms, 3(2):153–166, 2004. doi:10.1023/B:JMMA.0000036579.83218.8d.

19 Petrica C. Pop, Walter Kern, Georg Still, and Ulrich Faigle. Relaxation methods for the
generalized minimum spanning tree problem. Electronic Notes in Discrete Mathematics,
8:76–79, 2001. doi:10.1016/S1571-0653(05)80085-X.

20 Petr Slavik. Approximation algorithms for set cover and related problems. PhD thesis,
State University of New York at Buffalo, Buffalo, NY, USA, 1998.

http://cccg.ca/proceedings/2013/papers/paper_35.pdf
http://cccg.ca/proceedings/2013/papers/paper_35.pdf
http://dx.doi.org/10.1007/978-3-319-26626-8_9
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.389
http://dx.doi.org/10.1142/S0218195909003076
http://dx.doi.org/10.1016/j.disopt.2013.10.004
http://dx.doi.org/10.1007/978-3-642-45030-3_59
http://dx.doi.org/10.1007/978-3-642-45030-3_59
http://dx.doi.org/10.1002/net.3230260407
http://dx.doi.org/10.1023/B:JMMA.0000036579.83218.8d
http://dx.doi.org/10.1016/S1571-0653(05)80085-X


Voronoi Diagrams for Parallel Halflines and Line
Segments in Space ∗

Franz Aurenhammer1, Bert Jüttler2, and Günter Paulini3

1 Institute for Theoretical Computer Science, University of Technology, Graz,
Austria
auren@igi.tugraz.at

2 Institute of Applied Geometry, Johannes Kepler University, Linz, Austria
bert.juettler@jku.at

3 Institute for Theoretical Computer Science, University of Technology, Graz,
Austria
guenter.paulini@igi.tugraz.at

Abstract
We consider the Euclidean Voronoi diagram for a set of n parallel halflines in R3. A relation
of this diagram to planar power diagrams is shown, and is used to analyze its geometric and
topological properties. Moreover, an easy-to-implement space sweep algorithm is proposed that
computes the Voronoi diagram for parallel halflines at logarithmic cost per face. Previously only
an approximation algorithm for this problem was known. Our method of construction generalizes
to Voronoi diagrams for parallel line segments, and to higher dimensions.
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1 Introduction

The Voronoi diagram of a set of sites in Euclidean d-space Rd is a powerful and widely used
geometric partitioning structure. It associates each site with the region of all points in Rd

for which this site is closest among the given set. In the plane R2, many of the properties
of Voronoi diagrams are well understood, also in generalized settings of various kinds; see
e.g. [7].

Knowledge becomes quite sparse in dimensions larger than two, when sites of a shape
more general than points are allowed. This concerns the structural as well as the algorithmic
properties, and is already true for the seemingly harmless generalization from point sites to
line segments. The combinatorial complexity of the Voronoi diagram for n line segments,
and in particular, for n straight lines in Rd can be as large as Ω(nd−1), as has been shown
in [4]. The only known upper bound follows from a general result in [17] on lower envelopes
of hypersurfaces in Rd+1 that represent the distance functions to the line segments, and is
O(nd+ε) for any ε > 0.

Even in R3, no better bounds than Ω(n2) and O(n3+ε), respectively, are known up to
date. This may be partially due to the complicated shape of the arising bisector surfaces.
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7:2 Voronoi Diagrams for Parallel Halflines and Line Segments in Space

They contain, among even more complex components, parabolic and hyperbolic patches,
and can lead to a diagram of fairly complicated topological structure. Already for three
straight lines as sites, the induced structure gets so intricate that a separate paper has been
devoted to its exploration [12].

To make the problem more tractable, several restricted scenarios have been considered.
For example, if the line segment sites are confined to have only constantly many orient-
ations [15], then the size of the diagram reduces to O(n2+ε). If, on the other hand, the
underlying distance function is polyhedral and convex, then the diagram becomes piecewise-
linear. The upper bound then can be tightened to O(n2α(n) logn) when the sites are straight
lines [9], and to O(n2+ε) when line segments and even constant-sized convex polyhedra are
allowed as sites [14]. A practical algorithm for computing the medial axis of a nonconvex
polytope in R3 under a convex polyhedral distance function is given in [3].

In the present note, we discuss a non-trivial special case for the Euclidean distance,
namely, the case where all sites are parallel halflines in R3, being unbounded in the same
direction. Apart from the theoretical interest, practical applications arise in certain problems
in the drilling industry (mining exploitation, offshore drilling, hydraulics, etc.), as is reported
by Adamou [1]. In particular, such Voronoi diagrams serve in the exploration of the nearest
layers to avoid collision between wells and identifying unwanted plies. A related problem
where these diagrams may be useful is approximate nearest-neighbor searching among a set
of parallel line segments in R3, which has been studied in Emiris et al. [10].

The only known construction algorithm [1, 2] is algebraic and uses a box subdivision
process. It produces a topologically correct approximation of the Voronoi diagram for par-
allel halflines; the runtime naturally depends on the accuracy of the approximation. (A
related general approach, for planar Voronoi diagrams, is given in [11].) The algorithm we
are going to present is exact, easy to implement (we have implemented and tested it on vari-
ous inputs), and its runtime is output-sensitive. In particular, it runs at logarithmic cost
per diagram face, extracts the correct topology of the diagram without manipulating any
three-dimensional objects, and its most complex operation is solving a quadratic equation.

Our method is based on the insight that the diagram to be constructed is related to planar
power diagrams, which are piecewise linear structures [5]. We describe this correspondence
in Section 2, along with its structural implications. On the algorithmic side, a simple space-
sweep algorithm is obtained in Section 3. Basically, a power diagram for fixed sites has
to be updated under continuous changes of site weights. Section 4 studies the behavior of
the trisector curves for the halfline Voronoi diagram, motivated by an attempt to reduce
the O(n2+ε) upper bound on its combinatorial complexity (which follows from the afore-
mentioned result in [15]) to O(n2). Some extensions of our results are mentioned in Section 5.
A preliminary version of this paper has appeared in [8].

2 Diagram

We start with a formal definition of the halfline Voronoi diagram. Let H = {h1, . . . , hn}
be a set of parallel halflines in R3. We assume that each hi is vertical (which is no loss
of generality), and that each hi is unbounded in negative z-direction (a restriction which is
valid for the application mentioned before [1]). The upper endpoint of hi is denoted by zi.
We call zi the tip of hi and, by slight abuse of notation, we will use zi also to denote the
z-coordinate of the tip. The distance of a point x ∈ R3 to a halfline hi is defined as

d(x, hi) = min{δ(x, q) | q ∈ hi}
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where δ denotes the Euclidean distance function. This distance is the normal distance of
x to the supporting line, `i, of hi, unless d(x, hi) is attained at the tip zi. The region of a
halfline in the Voronoi diagram, V(H), of H is given by

reg(hi) = {x ∈ R3 | d(x, hi) ≤ d(x, hj), for all j}.

Regions are bounded by bisectors, Bij , for pairs of halflines hi, hj , which are sets of points
equidistant from two halflines. Let the respective tips satisfy zi ≥ zj . Then Bij is composed
of three parts: a planar patch, contained in the (vertical) bisecting plane of the lines `i

and `j , a piece of a parabolic cylinder equidistant from line `i and point zj , and another
planar patch in the bisecting plane of the points zi and zj . In the special case zi = zj , the
bisector Bij is just a vertical plane.

Concerning the parabolic bisector patch, note that its intersection with the (vertical)
plane through hi and hj is the parabola defined by `i and zj . Moreover, its intersection
with any horizontal plane is a straight line. That is, the generators of the parabolic bisector
patches are horizontal lines, which leads us to conclude a property that eases the analysis
of the structure of V(H).

I Observation 1. The intersection of Bij with any horizontal plane is a straight line.

Denote now by E∆ the horizontal plane z = ∆, and consider the lines bij = Bij ∩ E∆. As
bisectors intersect triple-wise in so-called trisectors, tijk = Bij ∩Bik ∩Bjk, the lines bij , bik,
and bjk concur in a common point (or are parallel), for any pairwise different indices i, j, k.
This implies, by a result in [6], that the line system (bij)1≤i<j≤n is the set of power lines
defined by n weighted points (that represent n circles) in E∆. A more direct argument for
this fact follows from the lemma below.

I Lemma 2. Consider the point pi = `i∩E∆, and assign the weight wi = −max{0, (∆−zi)}2
to it. For any x ∈ E∆, we have d(x, hi)2 = δ(x, pi)2 − wi.

In other words, the squared Euclidean distance of a point x ∈ R3 to the halfline hi is
the power distance [5] of x to the point pi with weight wi.

Proof. If E∆ lies below zi then pi ∈ hi and wi = 0, and the assertion is trivial. Otherwise,
it follows from the Pythagorean theorem, because hi is normal to E∆. J

Notice that the weight but not the position of pi in E∆ depends on ∆. By Lemma 2 we
have the following geometric relation:

I Theorem 3. For all values ∆, the sectional diagram V(H)∩E∆ is identical to the power
diagram of the points p1, . . . , pn, for the weights wi in Lemma 2.

In particular, if the plane E∆ lies below all tips then the Euclidean Voronoi diagram of
p1, . . . , pn is obtained.

Figure 1 displays the trisector arcs of V(H) for a set H of 10 halflines. A corresponding
sectional power diagram is shown in Figure 2.

Theorem 3 indicates that V(H) must have an assessable structure, which we study now
in more detail. First of all, the weights wi, when seen as functions wi(∆), are continuous.
More precisely, wi(∆) is zero for ∆ ≤ zi, and decreases quadratically for ∆ > zi.

We watch the interplay on E∆ when ∆ is increased from −∞ to ∞. The power cells
Ci(∆) = reg(hi) ∩ E∆ are convex polygons, whose vertices move continuously with ∆. For
sufficiently small ∆, each cell Ci(∆) is a planar Voronoi region, and therefore is non-empty.

ISAAC 2017
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Figure 1 Halfline Voronoi diagram and some sectional plane E∆ (projected view).

Figure 2 The sectional power diagram that corresponds to Figure 1.

Its edges first poise, and then move self-parallely because p1, . . . , pn stay fixed and any power
line for a pair of points pi, pj has to be perpendicular to the line segment pipj . Moreover, the
movement of each single edge is always in a fixed direction, by the afore-mentioned shape of
a bisector Bij . So each point x ∈ E∆ can enter or leave Ci(∆) at most once. Also, if Ci(∆)
disappears from the diagram it cannot reappear, by the monotone movement of its edges.
We summarize by stating the following observations on the regions of V(H).

I Property 4. The intersection of reg(hi) with every vertical line is connected or empty.
Moreover, reg(hi) is a connected set.
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Note that a power cell Ci(∆) survives for ∆→∞ if and only if the tip zi appears on the
upper convex hull of {h1, . . . , hn}, that is, on that part of the convex hull of the point set
{z1, . . . , zn} which is visible from z =∞.

Unfortunately, Property 4 does not imply that the combinatorial size of reg(hi) is O(n):
Although the number of bisectors Bij that border reg(hi) is trivially limited to n− 1, a single
bisector may define more than one facet (connected boundary patch) of reg(hi). Indeed,
there are multiple adjacencies between the regions in V(H) in general; see Section 4.

Let us now have a look at the Voronoi diagram V({hi, hj , hk}) for only three halflines.
The trisector curve tijk corresponds to a power diagram vertex u∆ = tijk ∩ E∆ for all ∆,
unless the three points pi, pj , and pk are collinear. (We exclude the latter case for the ease
of description; it leads to tijk = ∅). This implies:

I Property 5. Each trisector tijk is a connected curve, unbounded in both z-directions, and
monotone with respect to z.

In particular, tijk does not contain cycles. For pairwise different tip heights, the curve tijk

is composed of 4 pieces, as can be easily verified: a halfline, two quadratic arcs, and another
halfline. Therefore the algebraic degree of tijk is only two. Still, trisectors show a complicated
intersection pattern in general. We will address this issue in Section 4.

3 Algorithm

We now turn to the algorithmic aspects of the halfline Voronoi diagramm V(H). Theorem 3
suggests a space-sweep algorithm that computes V(H) piece by piece, by moving a horizontal
plane E∆ in ascending z-direction. In fact, an entirely two-dimensional implementation is
possible (and has been done by the authors), which avoids computing costly intersections of
bisector surfaces in R3. Once the combinatorial structure of V(H) has been extracted, the
bisector patches and trisector arcs that determine the geometry of V(H) can be ‘filled in’ in
a final step.

The basic task is to maintain a power diagram for fixed points in the plane, under
variation of their weights. The incidence structure of V(H) then can be inferred from the
combinatorial changes that take place in the power diagram: When a power diagram edge
appears (or disappears, respectively), then a facet of V(H) is born (or completed). Moreover,
the collapse of a power cell signals the completion of a region in V(H).

To describe the combinatorial part of the algorithm in more detail, let PD(∆) be the
power diagram for the points p1, . . . , pn with weights w1(∆), . . . , wn(∆), as defined in Sec-
tion 2. We start with any value ∆ < min{z1, . . . , zn}, and initialize PD(∆) as the planar
Voronoi diagram of the set {p1, . . . , pn}.

There is only one type of events (z-values) where the power diagram can change. These
are the anticipated life ends aij of its edges eij .

More specifically, aij is the z-value of the lowest intersection point above E∆ of the
respective two trisector curves tijk and tijm, which define the endpoints of eij . This value
can be calculated in O(1) time, by solving a single quadratic equation in the variable z, for
each of the 5 intervals given by zi, zj , zk, zm. (These intervals determine the weights to be
used.) In the diagram PD(aij), an update of constant complexity has to be performed. This
update is either a ‘flip’ that replaces the edge eij by the edge ekm (and a facet of the halfline
Voronoi diagram V(H) in the bisector Bij gets completed), or a collapse of a triangular cell
incident to the edge eij , say Ci(aij) (and the region reg(hi) of V(H) gets completed).
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1

42

3

41,32

Figure 3 Two spheres touching the same set of 4 halflines. (Thanks go to Peter Widmayer’s
group for pointing us to this example.)

Notice that the tips zi of the halflines hi do not lead to combinatorial changes in PD(zi).
They only alter the speeds of the edges in the power cell Ci(zi). This information is already
incorporated in the trisector intersection task above.

We use a priority queue organized by z-values to maintain the order of events. Only
O(n) entries need to be stored at a time, by the linear number of edges in a power diagram
of n weighted points [5]. The next event to be performed then is accessible in O(logn) time.
Moreover, the total number of entries aij is bounded by the number of facets of V(H).

Note finally that the numbers of facets, arcs, and nodes of V(H) are linearly related:
A region in V(H) with f facets has O(f) arcs and nodes by the Euler characteristic, because
the degree of its nodes is at least 3. We conclude a main result of this paper:

I Theorem 6. The halfline Voronoi diagram V(H) can be computed in O(k logn) time and
O(k) space, where the number k of faces is bounded by O(n2+ε).

4 Trisectors

The combinatorial size of V(H) tends to be near-linear for many data, as has been observed
in our experiments. Thus our output-sensitive algorithm in Section 3 can be expected to run
fast in practice. On the other hand, V(H) can attain a complexity of Ω(n2), for example,
when the tips zi are arranged like in an Θ(n2) worst-case example for the Voronoi diagram
of n point sites in R3; see e.g. [13]. This almost matches the upper bound of O(n2+ε)
for V(H), which follows from the more general bound in [15]; see Section 1. Proving a
possible quadratic upper bound is complicated by the fact that the trisector curves of V(H)
do not behave like pseudo-lines. Let us comment on this fact and its consequences.

For the halfline hL with lowest tip, its region is always convex; all the bisectors BLj either
‘bend’ towards hL or are vertical planes. If the size of reg(hL) can be shown to be O(n),
then an insertion argument for regions in ascending order of tip heights implies an overall
O(n2) diagram size. Unfortunately, two trisector curves on the boundary of reg(hL) can
intersect in more than one point, such that the result in [16] on the linear size of surface
envelopes does not apply to reg(hL).

To see an example with two intersection points, consider four halflines h1, h2, h3, and
h4 arranged as is illustrated in Figure 3, from the top view (left) and from the front view
(right), respectively. The two trisector curves t123 and t124 (and two others) concur in a
point x, if and only if there exists a sphere centered at x that simultaneously touches all
four halflines. There are two such spheres, a smaller one resting on the tip of the rightmost
halfline, and a bigger one passing through all four tips.
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Figure 4 Two very high tips and a tip of height zero on the left, followed by n−3 tips of (roughly)
linearly increasing heights.

Figure 5 Power diagram for the lowest sectional plane, positioned at the bottom in Figure 4.

The trisectors defined by 4 halflines can have at most 3 intersection points, by a simple
algebraic case analysis. This bound is actually attained, and even worse, there are constel-
lations of n halflines for any n ≥ 4 where every quadruple of related trisectors shows such
an intersection behavior. For instance, this happens when the n tips are chosen to lie on
the modified moment curve

M(t) =

 t

t2

tn2t

 , for 1 ≤ t ≤ n.

As another approach to proving a quadratic upper bound for V(H), one can try to bound
the overall number of edges that appear in the power diagram PD(∆) for varying ∆. This
quantity describes the number of facets of V(H). There are

(
n
2
)
potential power edges.

However, once having disappeared, an edge between the same two power cells can appear
again. In fact, this can happen a linear number of times: From the trisector pattern in
Figure 4 it can be seen that the small horizontal power edge in Figure 5 (left lower corner)
will vanish and reappear n− 3 times when the sectional plane is raised up.
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Stated differently, a fixed bisector Bij can define Ω(n) facets where the two regions
reg(hi) and reg(hj) are adjacent. On the other hand, edge speeds in PD(∆) are not arbitrary:
Starting with 0, the speed of an edge increases at constant acceleration, until it stays constant
forever. Thus a local multiple appearence of several edges might exclude some related power
lines from contributing edges in the future. However, we found an example with 6 points
where each of the

(6
2
)
− 6 = 9 bounded power edges they define appears at least twice.

By the relationship between power diagrams and convex hulls (see e.g. [7]), the problem
above can be transformed into a dynamic convex hull problem in R3. Starting from the
paraboloid of revolution z = x2 + y2 at different times, n points move upwards vertically
and at constant accelerations. The question of interest is now to bound the number of
combinatorial changes that occur on their convex hull.

5 Extensions

The results of this paper can be extended in two different ways. One concerns the Voronoi
diagram of parallel line segments that are bounded in both directions.

Lemma 2 generalizes straightforwardly to this case, such that Theorem 3 still holds.
However, the resulting space-sweep algorithm now has to deal with the detection of new
regions because, in general, not all of them will be witnessed by a power cell in the diagram
PD(∆) for small ∆. Detection of new power cells cannot be done locally, unless involved
data structures are maintained during the updates that occur in PD(∆) when ∆ is increased.

A simple solution is to insert the input line segments s1, s2, . . . , sn one by one, thereby
using the space-sweep algorithm of Section 3. This is possible, because the region of a
segment is always connected, even in the non-parallel case.1 Initially, for those segments sj

which are unbounded in negative z-direction, the Voronoi diagram is constructed as before.
If there are no such segments, we start with the Voronoi diagram of {s1, s2}, which just
consists of the bisector of these two segments. An insertion step in the current diagram V
then proceeds as follows:

Let si, for i ≥ 3, be the line segment to be inserted. Choose a value of ∆ where the
corresponding point pi has a non-empty cell in the power diagram, PD′(∆), for the weighted
points whose segments have been inserted so far. (Clearly, the z-value of the midpoint of si

is a valid choice.) Construct the power cell Ci(∆) by insertion into PD′(∆), in O(n) time.
Now, starting from ∆ in both z-directions, compute the Voronoi region of si and incooporate
it into the diagram V, by maintaining Ci(∆) during two space sweeps. The parts of V that
have to be deleted in this process can be identified on the fly. By adapting the runtime
arguments given in Section 3, we obtain:

I Lemma 7. Let f be the number of facets of the region of line segment si at the stage of
its processing. Then si can be inserted in O(f logn) time.

While the insertion of a single region thus can be done efficiently, the overall time for
constructing the Voronoi diagram for parallel line segments can vary strongly, depending
on the shapes of the regions and the insertion order. Unfortunately, no non-trivial upper
bounds on the size of a region are known; the combinatorial complexity of the entire diagram
is O(n2+ε), by the results in [15]. In particular, the construction algorithm is not output-
sentive any more. It still performs quite well in practice (if the search for a starting edge

1 In particular, each point of a region is visible from its defining segment, like the two-dimensional case.
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Figure 6 The Voronoi diagram for a set of 20 vertical line segments in 3-space

for Ci(∆) is implemented efficiently), as we could observe in our experiments. Figure 6 gives
an illustration of the output.

Our method of construction also generalizes to higher dimensions, as the geometric re-
lations in Lemma 2 and Theorem 3 are dimension-independent. For example, to compute
the Voronoi diagram of n vertical halflines in R4, a space-sweep algorithm that maintains
a power diagram in a horizontal hyperplane E∆ of R4 can be applied. This power diagram
is a cell complex consisting of at most n convex 3-dimensional cells. For increasing ∆, the
combinatorial changes (events) in this cell complex in E∆ can be detected by the collapses
of its edges. These edges correspond to 2-dimensional faces in the desired 4-dimensional
Voronoi diagram, V. That is, the sweep algorithm constructs the diagram V 2-face by
2-face. Thereby, a simultaneous collapse of 3 edges indicates the completion of a 3-face
(facet) of V, and a simultaneous collapse of 6 edges witnesses the completion of a region
of V (in the generic case).

In this way, the topological structure of V is computed in an output-sensitive manner,
namely, in O(logn) time per 2-face. The same approach works in arbitrary fixed dimensions,
where the halfline Voronoi diagram in Rd can be derived from a dynamically changing power
diagram in Rd−1. We refrain from describing the details which get more involved rapidly.

I Theorem 8. For constant d, let H be a set of n parallel halflines in Rd that are unbounded
in the same direction. If the Voronoi diagram of H is of combinatorial size K, then it can
be computed in O(K logn) time and O(K) space.
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Abstract
Let G = (V,E) be an undirected graph, T ⊆ V be a set of terminals. Then a natural combi-
natorial problem consists in finding the maximum number of vertex-disjoint paths connecting
distinct terminals. For this problem, a clever construction suggested by Gallai reduces it to com-
puting a maximum non-bipartite matching and thus gives an O

(
m
√
n log n2/m

log n

)
-time algorithm

(hereinafter n := |V |, m := |E|).
Now let us consider the fractional relaxation, i.e. allow T -path packings with arbitrary

nonnegative real weights. It is known that there always exists a half-integral solution, that is,
one only needs to assign weights 0, 1

2 , 1 to maximize the total weight of T -paths. It is also known
that an optimum half-integral packing can be found in strongly-polynomial time but the actual
time bounds are far from being satisfactory.

In this paper we present a novel algorithm that solves the half-integral problem within
O
(
m
√
n log n2/m

log n

)
time, thus matching the complexities of integral and half-integral versions.
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1 Introduction

1.1 Basic Notation and Definitions
We shall use some standard graph-theoretic notation throughout the paper. For an undirected
graph G, we denote its sets of vertices and edges by V (G) and E(G), resp. A similar notation
is used for paths, trees, and etc. A subgraph of G induced by a subset U ⊆ V (G) is denoted
by G[U ]. Let P = (x1, . . . , xp) be a path viewed as a sequence of vertices. By P [xi, xj ] we
denote the part of the path from vertex xi to vertex xj . For paths P and Q with a common
endpoint, we denote by P ◦Q the concatenation of P and Q.

Let G = (V,E) be an undirected graph, T ⊆ V be a set of terminals. By a T -path we
mean a simple s-t path P connecting two distinct terminals s, t ∈ T such that all intermediate
vertices of P are in V −T . A T -path packing is a weighted collection P = {α1 · P1, . . . , αk · Pk}
where each Pi is a T -path and each αi is a non-negative real weight. The value of a T -path
packing P is val(P) := α1 + . . .+ αk. For v ∈ V , let P(v) :=

∑
(αi : v ∈ V (Pi)) be the total

weight of paths in P containing v. Clearly,
∑

t∈T P(t) = 2 val(P).
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8:2 Faster Algorithms for Half-Integral T -Path Packing

Let c : V → Z+ be vertex capacities. A T -path packing P is called c-feasible if P(v) ≤ c(v)
for all v ∈ V . Then a natural combinatorial problem consists in finding a c-feasible T -path
packing P of maximum value val(P).

1.2 Prior Art and Our Contribution

The above T -path packing problem has two flavors: one might either require all path weights
to be integral or agree to deal with arbitrary nonnegative real weights.

One of the simplest cases is c ≡ 1. Then for the integral version of the problem a clever
trick due to Gallai [10, Th. 74.1] reduces the path packing problem to finding a maximum
matching in an auxiliary (possibly non-bipartite) graph. This implies an O

(
m
√
n log n2/m

log n

)
-

time algorithm [5] (hereinafter n := |V |, m := |E|). This connection to matchings, in fact,
is not surprising since for T = V the problem is equivalent to maximum matchings (either
integral or fractional).

For general c, the integral version has a rich and sophisticated combinatorial structure,
which was first studied by Mader [7]. Polynomial-time algorithms for this problem appear
in, e.g., [8], [9]; however the actual complexity bounds are not satisfactory. In particular,
strongly-polynomial approaches seem to be non-combinatorial and rely on general LP solvers.

For the fractional version of the problem, Pap [8] proved the primal half-integrality; i.e.
there always exists a T -path packing with half-integral weights and maximum value. Due to
this, we can double the capacities and search for an integral solution; hereinafter we mostly
focus on integral packings.

Thus the fractional relaxation of c ≡ 1 is exactly c ≡ 2. This case seems pretty natural
and the existence of the elegant algorithm of Gallai suggests that some efficient direct
combinatorial approach might exists here. Indeed, Babenko [1] proposed a combinatorial
algorithm that computes a maximum path packing in O(mn2) time. The latter bound,
however, is significantly worse than that of Gallai, which seems weird since typically fractional
relaxations of integral problems are easier, both structurally and algorithmically.

Also for arbitrary even capacities, Babenko and Karzanov [3] proposed a weakly polynomial
scaling algorithm with complexity O(Λ(n,m,C)n2 log2 n logC), where C is the maximum
vertex capacity and Λ(n,m,C) denotes the complexity of finding a maximum integral flow
in a digraph with n vertices, m edges, and integer edge capacities not exceeding C.

In this paper we present two new faster algorithms for the case c ≡ 2 (or, equivalently,
the fractional version of the Gallai’s problem). The first algorithm employs a simple
labeling technique and runs in O(mn) time. The second algorithm is more involved and
runs in O

(
m
√
n log n2/m

log n

)
time. It relies on the Gallai’s approach to construct the initial

approximation (a packing with all path weights equal to 2) and then turns it into an optimal
solution in linear time; this is where the previous labeling technique appears useful. Note
that a conceptually similar approach was employed for computing maximum triangle-free
2-matchings [2].

The rest of the paper is organized as follows. In Section 2 we introduce some basic facts
about T -path packings and the Edmonds–Gallai decomposition. Section 3 and Section 4
present the descriptions of O(mn)-time and O(m

√
n log n2

m )-time algorithms, resp. Finally
in Section 5 we conclude.

Note that due to the lack of space some proofs are moved into Appendix.
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t0 t1

(a) A double path.

t0

t1

t2

(b) An odd star.

t0

t1 t2

t3

(c) Turning an even star into
double paths.

Figure 1 Elements of a canonical path packing. Terminal vertices are marked with dots.

2 Preliminaries

2.1 Canonical Decomposition
A 2-feasible T -path packing P is called canonical if it can be represented as a vertex-disjoint
union of elements of two types: double paths and odd stars. Both of our algorithms will
produce canonical packings.

A double path (Fig. 1(a)) is a collection P ′ = {2 · P} consisting of a T -path P that is taken
twice. A star (Fig. 1(b)) is a collection P ′′ = {P0, . . . , Pk−1} of T -paths that form a star-like
shape. The formal definition is rather technical and proceeds as follows. There must be a
sequence of distinct terminals t0, . . . , tk−1 such that Pi connects ti and ti+1 (i = 0, . . . , k − 1
and indices are taken modulo k). For each i, Pi and Pi+1 share a common path incident to
ti+1. Such common paths are called legs. If a vertex v belongs to both Pi ∈ P ′′ and Pj ∈ P ′′
then |i− j| = 1 and v should belong to the corresponding leg. Vertices covered by a single
path (resp. two paths) in P ′′ are called inner (resp. leg vertices). Each vertex belonging to
a leg is covered by exactly two paths in P ′′. Edges that are traversed by exactly one Pi in
P ′′ form a simple cycle called the inner cycle of the star. A star is called odd (resp. even) if
k is odd (resp. even). Note that each even star can be easily turned into a number of double
paths as shown in Fig. 1(c); this preserves the packing value.

In both algorithms we only consider canonical path packings. We also stress that canonical
elements P1, . . . ,Pl that form P are vertex-disjoint, i.e. each v ∈ V is covered by at most
one of P1, . . . ,Pl. Clearly this is only important for odd stars since overlapping a double
path with any other component violates vertex capacities.

2.2 Min-Max Relation
I Lemma 1. Let P be a 2-feasible T -path packing, U be an arbitrary subset of V . Then

val(P) ≤ |T |+ |U ∩ T |+ 2|U \ T | − ot(G− U), (1)

where G − U stands for the graph obtained from G by removing vertices in U , and for a
subgraph H of G, ot(H) denotes the number of connected components of H containing exactly
one terminal.

The O(mn) algorithm will provide both a T -path packing P and a set U turning (1) into
equality, thus proving the following min-max relation:

ISAAC 2017



8:4 Faster Algorithms for Half-Integral T -Path Packing

I Theorem 2. For 2-feasible T -packings P,

max
P

val(P) = min
U⊆V

|T |+ |U ∩ T |+ 2|U \ T | − ot(G− U). (2)

2.3 Edmonds–Gallai Decomposition
For the faster algorithm we will need several standard facts concerning maximum matchings
(see [6, Ch. 3] for a survey). For an undirected graph G = (V,E), let ν(G) denote the size of
a maximum matching in G and odd(G) be the number of connected components of G with
an odd number of vertices. A graph G is factor-critical if for any v ∈ V , G − v admits a
perfect matching. For a matching M , a vertex v is called exposed if v /∈ V (M).

I Theorem 3 (Tutte–Berge, [6, Ch. 3, Th. 3.1.14]). ν(G) = min
U⊆V

1
2 (|V |+ |U | − odd(G− U)).

I Theorem 4 (Edmonds–Gallai, [6, Ch. 3, Th. 3.2.1]). For an undirected graph G, let

D := {v ∈ V | there exists a maximum matching exposing v} ,
A := {v ∈ V −D | v is a neighbor of D} ,
C := V − (A ∪D).

Then U := A achieves the minimum in the Tutte–Berge formula, and D is the union of the
odd connected components of G[V −A]. Every connected component of G[D] is factor-critical.
Any maximum matching in G induces a perfect matching in G[C] and a matching in G[V −C]
that matches all vertices of A to distinct connected components of G[D].

Note that once a maximum matchingM in G is found, an Edmonds–Gallai decomposition
of G can be constructed in linear time by running a search for an M -augmenting path. Most
algorithms that find M yield this decomposition as a by-product.

3 O(mn)-time algorithm

The algorithm will be iterative. Each iteration gets the current T -path packing P, which is
represented as a set of its canonical elements, and aims to increase val(P).

Each iteration will assign labels from the set {∗} ∪ T to vertices of G, i.e. maintain a
partial map l : V → {∗} ∪ T . During one iteration, a once labeled vertex never changes its
label. Here ∗ is a special label, the remaining labels correspond to terminals.

A vertex v is called free if P(v) = 0, and covered otherwise. Similarly an edge e is called
free if there does not exist P ∈ P such that e ∈ E(P ). Note that since P is canonical, if a
terminal t is not free then P(t) = 2. For a vertex v ∈ V − T covered by P, P(v) = 1 if it is
an inner vertex of some odd star and P(v) = 2 otherwise.

The outline of the algorithm is the following. We initially set l(t) := t for each free t ∈ T ;
other vertices are unlabeled. Then, if for the current P there is no free terminal then P is
obviously maximum. Otherwise, we enumerate all free terminals and run a certain search
procedure from each such terminal.

The search assigns labels to the vertices it visits; see Subsection 3.1 for the details. It
builds a certain tree; let Ft be this tree for the current terminal t. During this search we may
say that we obtained a breakthrough, which means that we can modify P to increase its value
in O(m+ n) time. The detailed explanation of a breakthrough is given in Subsection 3.2.
When the search at the current free terminal finishes and yields no breakthrough, we will
ignore this t with its tree Ft and proceed with searches from other free terminals. If no free
terminals are left then it will be shown in Subsection 3.3 that the current P is maximum.
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t t

Ft F ′
t

Figure 2 Example of Ft and F ′
t . Grayed vertices correspond to contracted double paths.

3.1 Labeling Procedure

Let t be the current free terminal (see above). To start the search from t, we mark t as active.
We will maintain the property that all active vertices are labeled. Then we run the following
labeling procedure.

Let v be an active vertex, l(v) = α. The algorithm scans all free edges incident to v. Let
e = {v, w} be some free edge. We perform a case-splitting as follows:
(A1) l(w) is defined.

(A1-1) l(w) = α or l(w) = ∗. Then edge e is ignored.
(A1-2) l(w) 6= α and l(w) 6= ∗. Then we get a breakthrough.

(A2) l(w) is not defined and w is a free vertex. Then we set l(w) := α, make w active and
add w together with e to Ft.

(A3) l(w) is not defined and w is covered by a double path P = (x0 = β, . . . , xk = γ)
(viewed as a sequence of vertices). Here β, γ ∈ T . Let w = xj . Then we set l(xi) := β for
all i < j, l(xi) := γ for all i > j, and l(xj) := ∗, mark all these labeled vertices except for
xj as active, and add the whole path P together with the edge e to the tree Ft.

(A4) l(w) is not defined and w belongs to an odd star S. Then we get a breakthrough.
When all free edges incident to v are examined, v becomes inactive.
Note that once the algorithm reaches a double path P in the current P, it immediately

labels all of its vertices. In particular, ∗-vertices are only present on reached paths P , and
for each such path there is a unique such vertex; note that this vertex might be a terminal.

Consider the tree Ft rooted at t and contract each double path P that belongs to Ft into
a new vertex v(P ). Then we obtain a tree F ′t where each non-root vertex corresponds to
either a double path or a free non-terminal vertex; see Fig. 2.

Note that by choosing the order in which we examine active vertices and scan edges
incident to them, we may assume that this tree F ′t is a DFS-tree, that is, if there is an edge
{x, y} outside the tree between two distinct vertices x, y of the tree then x is an ancestor of
y or vice versa. To achieve this property, we run the usual DFS from the terminal t; the only
difference with the standard DFS is that when examining an edge e triggers case (A3), all
vertices that become active are added to the DFS stack.

We note that all vertices that were labeled during the current search from t belong to Ft,
and if for some edge e case (A1-2) applies then it either connects Ft with a free terminal
distinct from t or the image of this edge in F ′t connects two vertices which either coincide or
one is an ancestor of the other; note that loops are also possible here as there might be an
edge outside Ft connecting two vertices that belong to one double path.
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t

t11
x1

y1

t21

t12
x2 v = y2 t22

t

v′

Ft F ′
t

Figure 3 An example of trees Ft and F ′
t . Grayed edges indicate paths Q in Ft and Q′ in F ′

t .

3.2 Breakthrough
Suppose that at some point during an iteration we obtained a breakthrough. We now prove
that in this case we can augment the current T -path packing P. Let t be the free terminal
that is currently being evaluated, Ft be the tree that grows from it, F ′t be the tree obtained
from Ft after contracting each double path. For trees F ′t containing at least one contracted
vertex, we define the following operation that alters P preserving its size but making the
terminal t covered and exposing some of the earlier covered terminals.

Let v be some vertex in Ft, v′ be its image in F ′t , Q be the (unique) t–v path in Ft, and
Q′ be the image of Q in F ′t . Let P1, P2, . . . , Pk be the sequence of double paths which appear
as contracted vertices p1, p2, . . . , pk in Q′ when travelling from t to v′, and denote by t1i and
t2i the endpoints of Pi. Path Q intersects each Pi by a segment; let xi and yi be the first and
the last (resp.) vertices of this segment (assuming that Q is directed from t to v). Note that
vertices xi have label ∗. Also note that xi 6= yi as we do not scan edges from xi. See Fig. 3
for an example.

Note that for each Pi we may exchange t1i with t2i ; we shall be using this idea extensively
to simplify the case-splitting.

The cornerstone is the following switching routine. Fix i ∈ {1, . . . , k} and an arbitrary
endpoint of Pi, say t2i . Then we can alter P (namely, change P1, . . . , Pi) so that t becomes
covered, all vertices between t2i and xi (excluding xi) in Pi are made free, and the rest of the
terminals do not change their covering status. We call this expose(t2i ).

To prove this, we apply induction on i. If i = 1 then we replace P1 with P1[t11, x1]◦Q[x1, t].
Now let i > 1. Exchanging t1i−1, t

2
i−1 if needed, we may assume that Pi−1[t1i−1, yi−1] contains

xi−1. We first invoke expose(t2i−1) to update P1, . . . , Pi−1 and make t2i−1 free. Then we
replace Pi with Pi[t1i , xi] ◦Q[xi, yi−1] ◦ Pi−1[yi−1, t

2
i−1]. It is straightforward to see that the

resulting double paths do not intersect and cover the desired set of vertices.
Now, recall that we can get the breakthrough in cases (A1-2) and (A4). Let v be the

current active vertex and e = {v, w} be the edge triggering the breakthrough. We keep the
above notation for Q, Pi, t1i , t2i , xi, yi. Exchanging t1i , t2i if needed, we may assume that
Pi[t1i , yi] contains xi for all i ∈ {1, . . . , k}.

3.2.1 Case A1-2
Note that w can either be a free terminal or a vertex in Ft since the only other labeled
vertices are the ones that belong to the trees Ft′ for free terminals t′ that were already
scanned, but in that case e should have already been visited while examining w and would
have either led to a breakthrough or to vertex v being added to Ft′ , which did not happen.
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Figure 4 An example of expose(t2
2) call. Grayed edges indicate paths Q in Ft and Q′ in F ′

t .
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x2 y2

t22

v

Figure 5 Subcase 2a (k > 1).

We thus consider these two cases.
1. w is a free terminal (other than t). If k = 0 then we just add Q ◦ e as a new double path

to P . Otherwise, we first apply expose(t2k) and then add Pk[t2k, yk] ◦Q[yk, v] ◦ e as a new
double path.

2. w belongs to Ft. As mentioned above, F ′t is a DFS-tree, so the image of e in F ′t is either
a loop or connects a vertex with its ancestor; it might be a loop if both v and w belong to
the same double path Pk (in this case Pk[v, w] contains xk as l(v) 6= l(w)). We shall apply
expose to alter some double paths in P and turn the rest into an odd star. Namely, we
have the following possible subcases for w:
a. w belongs to Pk. We first note that yk and v have the same label. Then, note that w

belongs to Pk[t1k, xk] since otherwise w and yk and thus v would have had the same
label. If k = 1 then we form an odd star with legs Q[t, x1], P1[t11, w], P1[t21, y1] and
the inner cycle P1[w, y1] ◦Q[y1, v] ◦ e. Otherwise we apply expose(t2k−1) and create a
similar odd star with legs Pk−1[t2k−1, yk−1] ◦Q[yk−1, xk], Pk[t1k, w], Pk[t2k, yk] and the
inner cycle Pk[w, yk] ◦Q[yk, v] ◦ e, see Fig. 5.

b. w belongs to Pi for i < k and xi does not belong to Pi[w, yi]. We apply expose(t2i )
and create an odd star S with the inner cycle Pi[w, yi] ◦Q[yi, v] ◦ e. The legs of S are
formed as follows. For endpoint tqj of Pj for j ∈ {i+ 1, . . . , k}, q ∈ {1, 2}, we take the
part of Pj from tqj to the closest of xj and yj . For endpoint t2i of Pi, we take the part
of Pi from t2i to the closest of yi and w, see Fig. 6.

c. w belongs to Pi for i < k and xi belongs to Pi[w, yi]. If i = 1 then we replace all
P1, . . . , Pk with an odd star. The inner cycle, the legs for terminals tqj for j ∈ {1, . . . , k},
q ∈ {1, 2}, and the leg for terminal t are constructed similarly to the previous case;
see Fig. 7. Otherwise we apply expose(t2i−1) and then again form a similar odd star
using Pi−1[t2i−1, yi−1] ◦Q[yi−1, xi] as its leg from t2i−1.
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Figure 6 Subcase 2b.
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Figure 7 Subcase 2c (i = 1).

d. w is a free vertex belonging to Ft. We follow from w to t in Ft until either reaching Pi

for some i ∈ {1, . . . , k} or the root t. In the first subcase the vertex where we stop is
exactly yi. Moreover, i 6= k as l(v) 6= l(w). We apply expose(t2i ) and construct an
odd star. In the second subcase no expose call is needed and we just construct an
odd star out of P1, . . . , Pk. In both subcases the inner cycle of this star is Q[w, v] ◦ e.
We omit the details since they are straightforward and very similar to the above.

3.2.2 Case A4
Here we have two cases: either w is an inner vertex of a star S or w belongs to a leg of S.

1. w is an inner vertex of S. Then we apply expose(t2k), attach Pk[t2k, yk] ◦Q[yk, v] ◦ e as a
new leg to S thus turning S into an even star, and finally dissolve S into a collection of
double paths.

2. w belongs to a leg L of S ending in a terminal tL. In this case we similarly apply
expose(t2k), then remove leg L from S making S an even star, dissolve S into a collection
of double paths, and finally add double path Pk[t2k, yk] ◦Q[yk, v] ◦ e ◦ L[w, tL].

Note that in each of the mentioned cases after the transformation all terminals that were
covered by P remain covered by the new path packing, plus t becomes covered, which means
that the value of path packing increases by 2, as desired.

3.3 Proof of Maximality
Suppose that we visited all free terminals and did not find a breakthrough. This means
that there is no free edge between two labeled vertices with different non-∗ labels or a non-∗
labeled and an unlabeled vertex. This in turn means that for each free terminal t and its
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tree Ft (in which t is the unique free terminal), the only edges that connect Ft with vertices
outside Ft have label ∗ on at least one of its ends. Define U := {v | l(v) = ∗} and look at the
connected components of G−U . Let U ′ := U ∩T , U ′′ := U \T . Consider a terminal s ∈ T \U
and suppose that s belongs to some tree Ft. Then in the connected component of G − U
containing s there is just one terminal (namely s itself). Indeed, we prove that this component
is G[S] for S := {v | l(v) = s}. Suppose first that s is covered by a double path P , and
x ∈ V (P ) is the (unique) vertex with l(x) = ∗. In this case S = V (P [s, x] − x), and s is
obviously connected to all vertices in S. If there would be an edge connecting S with the rest
of G− U , it would have to go either to a different tree, or to a vertex with a different label,
or to an unlabeled vertex; all these cases are impossible. Thus S is the connected component
of G− U containing s and it indeed has just one terminal. Similar reasoning applies if s is a
free terminal in Ft, meaning that s = t; here S consists of all vertices in Ft for which the
path to t in Ft consists solely of free vertices.

Now suppose that we have k free terminals t1, . . . , tk. Fix i ∈ {1, . . . , k} and consider Fti
.

Let u′i (resp. u′′i ) be the number of terminal (resp. non-terminal) vertices in this tree that
belong to U . Then in Fti

we have one free terminal ti and u′i + 2u′′i covered terminals that
are the only terminals in their connected components of G− U (see above). Summing over
all i, we get ot(G− U) ≥ k + |U ′|+ 2|U ′′|. We then obtain

val(P ) = |T | − k ≥ |T |+ |U ′|+ 2|U ′′| − ot(G− U) = |T |+ |U ∩ T |+ 2|U \ T | − ot(G− U).

This together with (1) proves the min-max relation Theorem 2 and the fact that the current
P is optimal.

3.4 Complexity Analysis
I Lemma 5. Each iteration can be implemented to run in O(m+ n) time.

Since each iteration either results in a breakthrough which increases the value of P or
reports that the current P is maximum, the number of iterations is O(n), thus the total time
complexity is O(mn).

4 O
(
m

√
n log n2/m

log n

)
-time algorithm

Following Gallai [10, Th. 73.1], we build an auxiliary graph Ĝ = (V̂ , Ê) from G as follows.
For each v ∈ V − T , we make a second copy v′ of v. Vertices v and v′ are called mates.
For each edge {v, u}, we add edge {v′, u} and also {v′, u′} if u ∈ V − T . We also add edges
{v, v′} for each v ∈ V − T .

For each subset U ⊆ V , denote by Û ⊆ V̂ its image in Ĝ that consists of all t ∈ T ∩ U
and includes both v and v′ for all v ∈ U \ T . We call a subset W ⊆ V (Ĝ) symmetric if v
belongs to W iff v′ belongs to W , for each v ∈ V − T . Clearly, symmetric subsets of V̂ are
exactly the images of subsets of V .

The outline of the algorithm is the following. First, we construct a maximum matching
in Ĝ with some special properties. Gallai [10, Th. 73.1] showed that a maximum matching
in Ĝ provides a maximum packing of T -paths subject to unit capacities; in particular, the
number of vertices not covered by this matching in Ĝ is equal to the number of terminals
that are not covered by a maximum T -path packing.

Recall that we are interested in the case c ≡ 2, so after doubling path weights Gallai’s
packing is not necessarily a maximum one. However this matching gives us an approximation
for the optimal solution.
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The next step is to augment this approximation using the O(mn) algorithm. We will
need to run this algorithm in some subgraphs of G, however in each subgraph we will only
need to run one iteration of the algorithm, thus leading to linear time complexity for this
step.

4.1 Algorithm Description
First, we compute an arbitrary maximum matching in Ĝ and an Edmonds–Gallai decompo-
sition (D̂, Â, Ĉ) of Ĝ. Let D̂1, . . . , D̂k ⊆ D̂ be the factor-critical connected components of
Ĝ− Â. The following lemma justifies the notation and proves that these sets are images of
certain sets D,Di, A,C ⊆ V .

I Lemma 6. D̂, D̂i, Â, Ĉ are symmetric subsets of V̂ .

Each component D̂i consists of an odd number of vertices and thus contains at least
one terminal. A component D̂i is called bad if Di contains exactly one terminal, and good
otherwise. Typically Ĝ admits more than just one maximum matching. Our goal is to
choose this matching in a proper way, i.e. to cover as many bad components as possible;
cf. [2]. To this aim, we first build an auxiliary bipartite graph H with vertices in the upper
part corresponding to contracted components D̂i, and Â as the the lower part. Edges of
H correspond to edges of Ĝ between Â and D̂. Let H ′ be formed from H by dropping all
vertices in the upper part corresponding to good components. We construct a maximum
(bipartite) matching M ′ in H ′ and then augment it to a maximum matching M in H.

It is widely known that augmenting a matching only increases the set of covered vertices.
Also the resulting M is a maximum matching in H and by Theorem 4 this M covers all
vertices in Â.

We convert M into a matching M̂ in Ĝ by taking the preimages w.r.t. contractions. Now,
for each component D̂i covered by M in H, we extend M̂ to cover all vertices of D̂i as it is
factor-critical. For each good component D̂j not covered by M in H, we extend M̂ to cover
all vertices of D̂j expect for one arbitrarily chosen terminal tj . We also extend M̂ with some
perfect matching in Ĉ.

Let D̂′ be the union of bad components that are not covered by M in H, T ′ be the set of
terminals belonging to components in D̂′ (one per component). Let T ′′ be the set of terminals
belonging to good components that are not covered by M̂ (again, one per component).

We now turn this matching M̂ into a path packing (subject to c ≡ 2) that covers terminals
T − (T ′ ∪ T ′′) (twice); the reader may refer to [10, Th. 73.1]. Let us temporarily remove
D̂′ ∪ T ′′ from Ĝ and the corresponding D ∪ T ′′ from G. Then M̂ is a perfect matching. Let
N be the set of edges {v, v′} ∈ Ê for v ∈ V − T . It is straightforward to see that the union
M̂ ∪ N consists of the following vertex-disjoint components: edges {v, v′}, simple cycles
avoiding terminals, and paths between terminals. After shrinking edges {v, v′} in these paths
we obtain a collection of disjoint T -paths in G covering all terminals covered by M̂ in Ĝ. We
assign weight 2 to these paths, i.e. regard them as double paths. Let P be the resulting path
packing in G.

The last step is to deal with the terminals T ′′. Let D̂i be a good component not covered
by M in H. Then M̂ ∩ E(D̂i) is a nearly-perfect matching in D̂i, i.e. it exposes exactly one
(terminal) vertex ti ∈ Di ∩ T . Note that the current P covers all terminals in Di expect for
ti. Our goal is to adjust P to cover ti as well. To accomplish this, we run a search procedure
from Section 3 for G[Di] (using ti as the starting terminal). This iteration may either find a
breakthrough or report that the current packing is maximum. We prove that the latter is
not possible, completing the description of the algorithm.
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I Lemma 7. P can always be augmented in each good D̂i.

Proof. Suppose that the augmentation procedure did not find a breakthrough. Let Ft

be the tree obtained by the algorithm, P1, . . . , Pk be the set of double paths belonging to
Ft. Note that k > 0, since otherwise it would mean that t is not connected to the other
terminals in Di, but it must be connected as G[Di] is factor-critical. Let U := {v | l(v) = ∗},
u′ = |U ∩T |, u′′ = |U \T |. Note that due to the above observation U is not empty. Removing
U from Di gives us at least u′ + 2u′′ + 1 connected components containing exactly one
terminal (see Subsection 3.3). Let us now look at the images of these sets in Ĝ. Note that
|Û | = u′ + 2u′′. Graph Ĝ[D̂i − Û ] has at least u′ + 2u′′ + 1 connected components of odd
size. Indeed, consider the subgraph of Ĝ induced by V̂ (Pi) for some double path Pi. Let
xi be the unique vertex of Pi with l(xi) = ∗. If xi ∈ T then xi does not have a mate in
D̂i, and removing it gives one connected component which is symmetric and contains a
single terminal (the other endpoint of Pi). If xi /∈ T then removing {xi, x

′
i} gives rise to

two connected components, each of which is symmetric and contains a single terminal (the
respective endpoint of Pi).

Now, recall again that Ĝ[D̂i] is factor-critical. We pick and remove an arbitrary vertex
in Û ; the resulting graph must contain a perfect matching. However, if we proceed and
remove the remaining u′ + 2u′′ − 1 vertices of Û then the resulting graph would contain
u′ + 2u′′ + 1 connected components of odd size, which is a contradiction to Theorem 3. J

4.2 Proof of Maximality
I Theorem 8. The above algorithm indeed produces a maximum packing P.

Proof. Consider the maximum matching M ′ in H ′ constructed by the algorithm and let
L be the corresponding minimum vertex cover in H ′. It is straightforward to see that the
set L ∩ Â is symmetric, i.e. is equal to L̂A for some LA ⊆ A. Indeed, suppose that some
vertex v ∈ V − T belongs to L ∩ Â but its mate v′ does not. This means that for every edge
e = {v′, w} ∈ E(H ′), w should belong to L. But then v can be removed from this vertex
cover, contradicting its minimality. The case v′ ∈ L ∩ Â, v /∈ L ∩ Â is symmetric.

Define LD := L\ L̂A. Let β be the number of bad components D̂i. Then Ĝ− L̂A contains
at least β − |LD| connected components with just one terminal (each bad component D̂i

not covered by L can only be connected to L̂A and hence separates when L̂A gets removed).
Therefore ot(G− LA) ≥ β − |LD|.

Note that in the resulting path packing P exactly β−|M ′| terminals are not covered. Also
|M ′| = |LD|+ |L̂A| by the max-matching min-cover duality. Then val(P) = |T |−(β−|M ′|) =
|T | − (β− |L̂A| − |LD|) ≥ |T |+ |L̂A| − ot(G−LA) = |T |+ |LA ∩T |+ 2|LA \T | − ot(G−LA),
which by Theorem 2 implies that P is maximum. J

4.3 Complexity Analysis
Using the algorithm from [5], a maximum matching in Ĝ and an Edmonds-Gallai decomposi-
tion for Ĝ can be constructed in O

(
m
√
n log n2/m

log n

)
time. The algorithm from [4], which has

the same time bound, can be applied to construct M̂ in the bipartite H, and finally again
the matching algorithm for general graphs from [5] can be used to augment M̂ in each D̂i

which are not covered by M in H.
Turning the union M̂ ∪N into the desired collection of T -paths can obviously be done in

O(m + n) time. As for the last step that deals with good components not covered by M

ISAAC 2017
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in H, in each such component we need to run exactly one iteration of the first algorithm,
thus for a component Di it takes O(|V (G[Di])|+ |E(G[Di])|) time. Summing over all such
components we get O(m+ n) time; hence the total time complexity is O

(
m
√
n log n2/m

log n

)
.

5 Conclusions

We have presented an efficient algorithm for constructing maximum integral packings of
T -path subject to capacities c ≡ 2 (or, equivalently, fractional packings subject to c ≡ 1). A
natural question is if some similar approach could handle the case of arbitrary even capacities
and give rise to, e.g., a pseudo-polynomial or a even strongly-polynomial algorithm.

Note that the standard vertex splitting (which replaces each vertex v with capacity c(v)
by c(v)/2 copies v1, . . . , vc(v)/2 with capacity 2 each and adjusts the edges appropriately)
does not help, since one needs to prevent paths in P from having (distinct) endpoints to be
split-mates that correspond to a single t ∈ T — a new restriction, which is non-local and is
seemingly inexpressible in terms of the Gallai’s auxiliary graph.

We suspect that there is a way to extend the labeling approach presented in Section 3 in
the needed way and hope to deal with this topic in a subsequent paper.
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Abstract
Let C be the unit circle in R2. We can view C as a plane graph whose vertices are all the points
on C, and the distance between any two points on C is the length of the smaller arc between
them. We consider a graph augmentation problem on C, where we want to place k > 1 shortcuts
on C such that the diameter of the resulting graph is minimized.

We analyze for each k with 1 6 k 6 7 what the optimal set of shortcuts is. Interestingly, the
minimum diameter one can obtain is not a strictly decreasing function of k. For example, with
seven shortcuts one cannot obtain a smaller diameter than with six shortcuts. Finally, we prove
that the optimal diameter is 2 + Θ(1/k 2

3 ) for any k.
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1 Introduction

Graph augmentation problems have received considerable attention over the years. The goal
in such problems is typically to add extra edges to a given graph G in order to improve
some quality measure. One natural quality measure is the (vertex- or edge-)connectivity
of G. This has led to work where one tries to find the minimum number of edges that can be
added to the graph to ensure it is k-connected, for a desired value of k. Another natural
measure is the diameter of G, that is, the maximum distance between any pair of vertices.
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The goal then becomes to reduce the diameter as much as possible by adding a given number
of edges, or to achieve a given diameter with a small number of extra edges; see for example
the papers by Erdös, Rényi, and Sós [7, 8].

Chung and Garey [6] studied this problem for the special case where the original graph is
the n-vertex cycle. They showed that if k edges are added, then the diameter of the resulting
graph is at least n

k+2 − 3 for even k and n
k+1 − 3 for odd k, and that there is a way to add k

edges so that the resulting graph has diameter at most n
k+2 − 1 for even k and n

k+1 − 1 for
odd k. (For paths, slightly better bounds are known [13].)

The algorithmic problem of finding a set of k > 1 edges that minimizes the diameter of
the augmented graph was first asked by Chung [5] in 1987. Since then many papers have
considered the problem for general graphs, see [2, 9, 11, 12, 13]. Große et al. [10] were the
first to consider the diameter minimization problem in the geometric setting where the graph
is embedded in the Euclidean plane. They presented an O(n log3 n) time algorithm that
determined the optimal shortcut that minimizes the diameter of a polygonal path with n
vertices. The running time was later improved to O(n logn) by Wang [14].

In the above papers only the discrete setting is considered, that is, shortcuts connect
two vertices and the diameter is measured between vertices. In the continuous setting all
points along the edges of the network are taken into account when placing a shortcut and
when measuring distances in the augmented network. In the continuous setting, Yang [15]
studied the special case of adding a single shortcut to a polygonal path and gave several
approximation algorithms for the problem. De Carufel et al. [4] considered the problem for
paths and cycles. For paths they showed that an optimal shortcut can be determined in
linear time. For cycles they showed that a single shortcut can never decrease the diameter,
while two shortcuts always suffice. They also proved that for convex cycles the optimal pair
of shortcuts can be computed in linear time. Recently, Cáceres et al. [3] gave a polynomial
time algorithm that can determine whether a plane geometric network admits a reduction of
the continuous diameter by adding a single shortcut.

We are interested in a geometric continuous variant of this problem. Let C be a unit
circle in the plane. We define the distance d(p, q) between two points p, q ∈ C to be the
length of the smaller arc along C that connects p to q. Thus the diameter of C in this metric
is π. We now want to add a number of shortcuts—a shortcut is a chord of C—to improve the
diameter. Here the distance dS(p, q) between p and q for a given collection S of shortcuts is
defined as the length of the shortest path between p and q that can travel along C and along
the shortcuts where, if two shortcuts intersect in their interior, we do not allow the path
to switch from one shortcut to the other at the intersection point. In other words, if the
path uses a shortcut, it has to traverse it completely. Note that if we view the circle C as a
graph with infinitely many vertices (namely all points on C) where the graph distance is the
distance along C, then adding shortcuts corresponds to adding edges to the graph. For a
set S of shortcuts, define diam(S) := maxp,q∈C dS(p, q) to be the diameter of the resulting
“graph.” We are interested in the following question: given k, the number of shortcuts we are
allowed to add, what is the best diameter we can achieve? In other words, we are interested
in the quantity diam(k) := inf |S|=k diam(S).

It is obvious that π = diam(0) > diam(1) > · · · > diam(k) > · · · > limk→∞ diam(k) = 2.
Our main results are as follows.
For 1 6 k 6 7, we determine diam(k) exactly. Our results show that diam(k) is not
strictly decreasing as a function of k. This not only holds at the very beginning—it is
easy to see that diam(1) = diam(0)—but, interestingly also for certain larger values of k.
In particular, we show that diam(7) = diam(6).



S.W. Bae, M. de Berg, O. Cheong, J. Gudmundsson, and C. Levcopoulos 9:3
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a

a
δ(a)

δ(a)a

α(a)

u

v

u1

v1

u′

u′1

v′1

v′

Figure 1 For a shortcut s of length a = |s|, (left) α(a) = a+ 2δ(a) and (right) the umbra U(s)
(consisting of two arcs of length a in thick black) and radiance (in thick blue).

We have diam(8) < diam(7).
We show that diam(k) = 2 + Θ(1/k 2

3 ).

We rely on a number of numerical calculations. A Python script that performs these
calculations can be found at http://github.com/otfried/circle-shortcuts.

2 The umbra and the region of a shortcut

A shortcut s is a chord of C. A shortcut of length a = |s| ∈ [0, 2] spans an angle of α(a) ∈ [0, π],
where α(a) := 2 arcsin

(
a
2
)
. The following function δ : [0, 2] 7→ [0, π/2− 1] will play a key role

in our arguments:

δ(a) := α(a)− a
2 = arcsin

(a
2

)
− a

2 .

Note that both α(a) and δ(a) are increasing and convex functions, and α(a) = a + 2δ(a).
See Figure 1. To simplify the notation, we will allow shortcuts themselves as the function
argument, with the understanding that α(s) = α(|s|) and δ(s) = δ(|s|).

We parameterize the points on the circle C using their polar angle in [0, 2π). For a
shortcut s with endpoints u and v we will write s = uv if the counter-clockwise arc ıuv is the
shorter arc of C connecting u and v. Only for |s| = 2, we have s = uv = vu; in this case u
and v are antipodal points, that is v = u+ π.

The inner umbra of a shortcut s = uv is the arc ū1v1 where u1 = u+δ(s) and v1 = v−δ(s).
The outer umbra is the set of antipodal points of the inner umbra, that is the arc ū′1v′1 where
x′ = x + π. Together they form the umbra U(s) of s. Since α(s) = |s| + 2δ(s), the inner
and outer umbra have length |s|. The radiance of s consists of the two arcs v̂u′ and v̂′u.
For |s| = 2, we cannot distinguish inner and outer umbra, and the radiance consists of two
isolated points, see Figure 1.

Let p ∈ U(s). Then a path going from p to one endpoint of s and traversing the shortcut
is at least as long as going directly from p to the other endpoint—so the shortcut is not
useful. This gives us the following observation:

I Observation 1. Given a set S of shortcuts, if the shortest path γ from p to q uses
shortcuts s1, s2, . . . , sm ∈ S in this order, then p 6∈ U(s1) and q 6∈ U(sm). If γ traverses si
from its endpoint ui to its other endpoint vi, then vi /∈ U(si+1) and ui+1 /∈ U(si) for
i = 1, . . . ,m− 1.
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p

θ − ξ/2

p+ π + δ∗

p+ π − δ∗

q

π + ξ

0 π 2π

−δ∗

0

δ∗

θ

ξ
(θ, ξ)

Figure 2 (left) (θ, ξ) corresponds to the pair of points p = θ − ξ/2 and q = θ + π + ξ/2. (right)
S(δ∗) represents all pair of points p = θ − ξ/2 and q = θ + π + ξ/2 with −δ∗ 6 ξ 6 δ∗.

(For the boundary cases, we will assume that a shortest path uses the minimum number
of shortcuts possible.) An immediate implication is that one shortcut alone cannot help to
improve the diameter, that is, diam(1) = diam(0) = π.

Another useful observation is the following (remember that d(p, q) = min(|Ùpq|, |Ùqp|) is the
distance along C without shortcuts):

I Observation 2. Given a set S of shortcuts, if the shortest path from p to q uses the set of
shortcuts {s1, s2, . . . , sm} ⊆ S, then dS(p, q) > d(p, q)− 2

∑m
i=1 δ(si).

Indeed, if γ is the shortest path, we can replace each shortcut si by walking along the circle
instead, increasing the path length by exactly 2δ(si).

Let us now fix a target diameter of the form π−δ∗, for some δ∗ ∈ [0, π−2]. To achieve the
target diameter, pairs of points p, q ∈ C that span an angle of at most π − δ∗ do not need a
shortcut, so it suffices to consider pairs of points p, q ∈ C where q = p+π+ξ, for −δ∗ 6 ξ 6 δ∗.
We represent these point pairs by the rectangle S(δ∗) = [0, 2π] × [−δ∗,+δ∗], where (θ, ξ)
corresponds to the pair of points p = θ − ξ/2 and q = θ + π + ξ/2, as illustrated in Figure 2.
So the counter-clockwise angle from p to q is π + ξ.

S(δ∗) is topologically a cylinder: the right edge θ = 2π is identified with the left edge θ = 0.
Furthermore, if the point pair (p, q) ∈ C × C corresponds to (θ, ξ), then the point pair (q, p)
corresponds to (θ + π,−ξ). Since dS(p, q) = dS(q, p), we could therefore identify the middle
segment θ = π with the left edge θ = 0, but with opposite orientation, resulting in a Möbius
strip topology. As will become clear shortly, for our purposes it is easier to work with the
cylinder topology, but keep in mind that, for instance, the upper boundary ξ = δ∗ and the
lower boundary ξ = −δ∗ of S(δ∗) really represent the same point pairs.

For a shortcut s, we define the region R(s, δ∗) ⊂ S(δ∗) consisting of those pairs (θ, ξ) ∈ S

where ds(θ − ξ/2, θ + π + ξ/2) 6 π − δ∗. In the following, we will use ds(p, q) for d{s}(p, q).)
Let us fix a shortcut s of length a > 0, and let α = α(a) and δ = δ(a). Rotating a

shortcut around the origin means translating R(s, δ∗) horizontally in (the cylinder) S(δ∗).
We can thus choose s to be vertical and connect the points −α/2 and α/2. This implies that
the umbra of s consists of the two intervals [−α/2 + δ, α/2− δ] and [π − α/2 + δ, π + α/2− δ].
The radiance of s consists of the two intervals [α/2, π − α/2] and [π + α/2, 2π − α/2].

The following function gives the length of the path from p to q that uses the shortcut s
from top to bottom, that is from the point α/2 to −α/2:

f(θ, ξ) := |α/2− p|+ a+ |q − (2π − α/2)|, where (p, q) = (θ − ξ/2, θ + π + ξ/2).

By the observation about the Möbius topology above, it suffices to understand R(s, δ∗)
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0 π/2 πα/2 π − α/2

0

−δ∗

δ∗

0 π/2 π

0

−δ∗

δ∗

A
C

B A

C

B

D

Figure 3 The regions A,B,C,D.

for 0 6 θ 6 π. We claim that for 0 6 θ 6 π we have ds(p, q) < π − δ∗ if and only if
f(θ, ξ) < π − δ∗.

This is clearly true if the shortest path from p to q uses s from top to bottom, or not at
all, because the length of the shorter circle arc between p and q is π−|ξ| > π− δ∗. It remains
to consider the case when the shortest path uses s from bottom to top. This can only happen
when p is closer to the bottom end of s than to its top end—in other words, when π < p < 2π.
Since 0 6 θ 6 π and p = θ − ξ/2, this implies either θ < δ∗

/2 and ξ > 2θ, or θ > π − δ∗
/2 and

ξ < −2(π − θ). Since q = θ + π + ξ/2, the first case implies π 6 q 6 π + δ∗ < 2π, while the
second case implies π < 2π − δ∗ 6 q 6 2π. In both cases, q lies closer to the bottom end of
the shortcut than to its top end, a contradiction to the shortcut being used from bottom to
top to go from p to q.

It follows that for 0 6 θ 6 π, we have (θ, ξ) ∈ R(s, δ∗) if and only if f(θ, ξ) 6 π − δ∗. To
analyze f , we partition the rectangle [0, π]× [−δ∗, δ∗] into regions, depending on the signs of
α/2− p and q − (2π − α/2). First, we have p < α/2 if and only if ξ > 2θ − α. This is the light
gray region above the blue line in Figure 3(left). Second, we have q > 2π − α/2 if and only if
ξ > 2π − α− 2θ. This is the dark gray region above the green line in Figure 3(left). If the
two regions do not intersect then we get three regions as shown in Figure 3(left). Otherwise,
if α > π − δ∗, or equivalently, δ∗ > π − a − 2δ, then the regions intersect and we get four
regions as illustrated in Figure 3(right). We now study R(s, δ∗) independently for each of
the three or four regions.

In region A, we have p < α/2 and q < 2π − α/2. It follows that

f(θ, ξ) = α/2− p+ α− 2δ + 2π − α/2− q
= −θ + ξ/2 + α− 2δ + 2π − θ − π − ξ/2

= π − 2δ + 2(α/2− θ).

This implies that f(θ, ξ) 6 π − δ∗ if and only if θ > α/2 + δ∗
/2− δ = a/2 + δ∗

/2. This is the
blue area as shown in Figure 4.

In region B, we have p > α/2 and q > 2π − α/2. This implies

f(θ, ξ) = p− α/2 + α− 2δ + q − 2π + α/2

= θ − ξ/2 + α− 2δ + θ + π + ξ/2− 2π
= 2(θ − (π − α/2)) + π − 2δ,

and so we have f(θ, ξ) 6 π − δ∗ if and only if θ 6 π − α/2− δ∗
/2 + δ. This is the green area

in Figure 4.
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Figure 4 The region R(s, δ∗) in four different situations.

Next, in region C, we have p > α/2 and q 6 2π − α/2. Therefore,

f(θ, ξ) = p− α/2 + α− 2δ + 2π − α/2− q
= θ − ξ/2− 2δ + 2π − θ − π − ξ/2

= π − 2δ − ξ.

We have f(θ, ξ) 6 π − δ∗ if and only if ξ > δ∗ − 2δ. This is the red area in Figure 4.
When α > π − δ∗ regions A and B intersect in region D, as shown in Figure 3(right). In

region D we have p < α/2 and q > 2π − α/2, and therefore

f(θ, ξ) = α/2− p+ α− 2δ + q − 2π + α/2

= 2α− 2δ − 2π − θ + ξ/2 + θ + π + ξ/2

= 2(α− δ)− π + ξ

= 2(a+ δ)− π + ξ,

since α− δ = a+ δ. Thus, we have f(θ, ξ) 6 π− δ∗ if and only if ξ 6 2(π− a− δ)− δ∗. This
is the yellow area in region D in Figure 4. There are two cases that can occur, as is shown
on the bottom left and bottom right of Figure 4. The discussion of these cases can be found
in the proof of the following lemma, given in the full paper [1].

I Lemma 3. Let δ∗ ∈ [0, π − 2], and let s be a shortcut of length a ∈ (0, 2]. Then, the
region R(s, δ∗) of s in the cylinder S(δ∗) = [0, 2π]× [−δ∗,+δ∗] forms two identical rectangles
whose width is exactly π − a− δ∗ and whose height is

2δ∗ if δ∗ 6 δ(a)
2δ(a) if δ∗ > δ(a) and δ∗ 6 π − a− δ(a)
2(π − a− δ∗) otherwise.

Note that if δ∗ 6 δ(2) = π/2−1, then it always holds that δ∗ 6 π−a− δ(a) for any 0 6 a 6 2
since π − a − δ(a) > π − 2 − δ(2) = δ(2) > δ∗. Hence, the last case of Lemma 3 where
δ∗ > π − a− δ(a) only happens when δ∗ > δ(2) = π/2− 1.
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Table 1 The values a∗
k, δ∗

k, and π − δ∗
k.

k a∗
k δ∗

k diam(S) = π − δ∗
k

2 1.4782 0.0926 3.0490
3 1.8435 0.2509 2.8907
4 1.9619 0.3943 2.7473
5 1.9969 0.5164 2.6252
6 2.0000 0.5708 2.5708

We will also be interested in the length of the intersection of R(s, δ∗) with the middle
line M = {ξ = 0} of S(δ∗). Note that M has length 2π. We have the following corollary to
Lemma 3:

I Corollary 4. Let δ∗ ∈ [0, π − 2], and let s be a shortcut of length a ∈ (0, 2]. Then

|M ∩R(s, δ∗)| =
{

2(π − a− δ∗) if δ(a) > δ∗
/2

0 otherwise.

3 Up to five shortcuts

In this section we derive the exact value of diam(k) for k ∈ {2, 3, 4, 5}, and show the unique
optimal configuration of shortcuts in each case. The proof is quite easy, comparing the areas
of R(s, δ∗) with the area of S(δ∗), if one assumes that the shortest path between any pair of
points uses at most one shortcut. Showing that using a combination of shortcuts does not
help takes considerable additional effort.

Using only one shortcut. Again we consider a target diameter of the form π − δ∗, with
δ∗ ∈ [0, π − 2]. By Lemma 3, the region R(s, δ∗) of a shortcut s of length a consists of two
rectangles of width π − a− δ∗ and height 2δ(a) for δ(a) < δ∗, and height 2δ∗ for δ(a) > δ∗.
We define a∗ such that δ(a∗) = δ∗, or a∗ = 2 when δ∗ > δ(2).

Then the area A(a, δ∗) of R(s, δ∗) is

A(a, δ∗) =
®

4δ∗(π − a− δ∗) for a > a∗

4δ(a)(π − a− δ∗) for a 6 a∗

I Lemma 5. For fixed δ∗ 6 0.7, the function a 7→ A(a, δ∗) is increasing for a 6 a∗ and
decreasing for a > a∗. Its maximum value is A(a∗, δ∗) = 4δ∗(π − a∗ − δ∗).

The proof can be found in the full paper [1].
Let k ∈ {2, 3, 4, 5}. Since a 7→ a + δ(a) is an increasing function that maps [0, 2]

to [0, π/2 + 1], there is a unique a∗k that solves the equation

a∗k + δ(a∗k) = k − 1
k

π.

We set δ∗k := δ(a∗k), and will show that this number determines the optimal diameter for
k shortcuts. Table 1 shows the numerical values. For completeness, we already include the
case k = 6 in the table by setting a∗6 = 2.

I Lemma 6. For k ∈ {2, 3, 4, 5} there is a set S of k shortcuts that achieves diam(S) = π−δ∗k.
Assuming that no pair of points uses more than one shortcut, this is optimal and the solution
is unique up to rotation.

ISAAC 2017
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Figure 5 The optimal shortcut configurations for k = 2, 3, 4, 5.

Proof. By Lemma 3, the region R(s, δ∗k) of a shortcut s of length |s| = a∗k consists of two
rectangles of height 2δ∗k and width π − (a∗k + δ∗k) = π/k. Each rectangle covers the entire
height of S(δ∗), and by rotating s about the origin we can translate the rectangles anywhere
inside S(δ∗). This implies that we can use k such rectangles to cover the range 0 6 θ 6 π.
Then for every (θ, ξ) ∈ S(δ∗) there is a shortcut s such that ds(θ− ξ/2, θ+ π + ξ/2) 6 π − δ∗k,
and diam(S) = π − δ∗k. Figure 5 shows the resulting configurations.

Assume now that a set S = {s1, . . . , sk} of k shortcuts is given with diam(S) 6 π − δ∗,
where δ∗ > δ∗k, and that no pair of points uses more than one shortcut. This implies that the
regions R(si, δ∗) must entirely cover the strip S(δ∗), and in particular

k∑
i=1

A(|si|, δ∗) > 4δ∗π.

If we choose a∗ such that δ(a∗) = δ∗, then a∗ > a∗k. By Lemma 5 we have

A(|si|, δ∗) 6 A(a∗, δ∗) = 4δ∗(π − a∗ − δ∗).

From kA(a∗, δ∗) > 4δ∗π we have k(π − a∗ − δ∗) > π, or a∗ + δ∗ 6 k−1
k π, which implies

a∗ = a∗k and δ∗ = δ∗k. But then the regions R(si, δ∗k) must be non-overlapping, and the
solution is unique up to rotation. J

Shortcuts cannot be combined. It remains to show that the configurations in Figure 5
are optimal even if combinations of shortcuts can be used. We start by defining µk ∈ [0, 2] to
be such that δ(µk) = δ∗k/2. By Lemma 3, R(s, δ∗k) intersects the middle line M if and only
if |s| > µk. In other words, for two antipodal points p and q we can have ds(p, q) 6 π − δ∗k
only if |s| > µk.

We handle the somewhat special case k = 2 first.

I Lemma 7. If S is a set of two shortcuts that achieves diameter diam(S) 6 π− δ∗2 , then S
is identical to the configuration of Figure 5 up to rotation.

Proof. Let S = {s1, s2} with |s1| 6 |s2|. Let p and q be the midpoints of the inner and
outer umbra of s2. The shortest path between p and q cannot use s2 at all by Observation 1,
so ds1(p, q) 6 π− δ∗2 . This implies |s1| > µ2 ≈ 1.2219. Since δ∗2 ≈ 0.0926 < µ2/2, the interval
[q − δ∗2 , q + δ∗2 ] lies in U(s2), and so we have ds1(p, q′) 6 π − δ∗2 for all q′ ∈ [q − δ∗2 , q + δ∗2 ].
This implies |s1| > a∗2.

We next observe that U(s1)∩U(s2) = ∅. Otherwise, Observation 1 applied to an antipodal
pair in U(s1) ∩ U(s2) implies diam(S) = π, a contradiction.

The two arcs between the inner and outer umbras of s1 have length π − |s1| 6 π − a∗2.
The inner umbra U(s2) has length |s2| > a∗2 and lies in one of these arcs. That leaves a gap of
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u1

u2

v2

s2

x

Figure 6 The two shortcuts must intersect.

Figure 7 An optimal configuration of six shortcuts.

most π−2a∗2 = 2δ∗2 between the two inner umbras (by definition of a∗2, we have a∗2 +δ∗2 = π/2).
Since δ(s2) > δ(s1) > δ∗2 , this implies that the two shortcuts intersect, see Figure 6.

Let x be the length of overlap of the arcs of s1 and s2, that is, x = |ū1v2| in Figure 6.
Any path that uses both s1 and s2 has length at least |s1|+ |s2|+ x > 2a∗2 + x = π− 2δ∗2 + x.
This is bounded by π − δ∗2 only if x 6 δ∗2 . But then the arc v̄1u2 has length at most

2π − α(s1)− α(s2) + x 6 2π − 2(a∗2 + 2δ∗2) + δ∗2 = π + (π − 2a∗2)− 3δ∗2 = π − δ∗2 ,

and there is no reason to use the two shortcuts at all. It follows that there is no pair of
points that uses more than one shortcut, and Lemma 6 implies the claim. J

For 3 6 k 6 6, the key insight is the following lemma, proven in the full paper [1].

I Lemma 8. Let S be a set of k shortcuts for k ∈ {3, 4, 5, 6} such that diam(S) 6 π − δ∗k.
Then there is no antipodal pair of points p, q ∈ C such that the path of length dS(p, q) uses
more than one shortcut.

I Lemma 9. Let S be a set of k shortcuts for k ∈ {3, 4, 5} such that diam(S) 6 π − δ∗k.
Then there is no pair of points p, q ∈ C such that the path of length dS(p, q) uses more than
one shortcut.

Proof. By Lemma 8 pairs of antipodal points cannot use more than one shortcut. This implies
that the middle line M of S(δ∗k) is covered by the regions R(si, δ∗k). The region R(si, δ∗k)
intersects M only if |si| > µk, so by Corollary 4 R(si, δ∗k) covers at most 2(π−µk− δ∗k) of M.
Calculation shows that (k − 1)(π − µk − δ∗k) < π, so all k shortcuts have length at least µk.
Since 2µk > π, this implies that no shortcuts can be combined. J

Combining Lemmas 6, 7, and 9, we obtain our first theorem.

I Theorem 10. For k ∈ {2, 3, 4, 5} there is a set S of k shortcuts that achieves diam(S) =
π − δ∗k. This is optimal and the solution is unique up to rotation.

ISAAC 2017
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Figure 8 A shortcut configuration S of 8 shortcuts with diam(S) < diam(6), and the corresponding
regions in the strip S(δ∗).

4 Six and seven shortcuts

The configuration of six shortcuts of length 2 (that is, all shortcuts are diameters of the circle)
shown in Figure 7 achieves diameter π − δ(2) = π/2 + 1. Unlike the cases 2 6 k 6 5, this
configuration is not unique—it can be perturbed quite a bit without changing the diameter.

It remains to argue that the configuration is indeed optimal, that is, there is no set S of
six shortcuts that achieves diam(S) < π − δ(2). Here, we cannot use a simple area argument
as in the case k < 6, as the regions of the optimal solution in S(δ∗6) overlap heavily.

In fact, we can show that even if we allow seven shortcuts, there is no set S of shortcuts
that achieves diam(S) < π − δ(2). This implies a collapse between the cases of k = 6 and
k = 7, that is, diam(7) = diam(6) = π − δ(2). The proof is quite long and rather technical,
and can be found in the full paper [1].

I Theorem 11. There is a set S of six shortcuts that achieves diam(S) = π− δ(2) = π/2 + 1.
There is no configuration of six or seven shortcuts that has diameter smaller than π/2 + 1.
Therefore, we have diam(7) = diam(6) = π/2 + 1.

5 Eight shortcuts

With eight shortcuts we can improve on the diameter, obtaining diam(8) < diam(7) =
diam(6). Our construction S consists of six long shortcuts with length a1 ≈ 1.999870869 and
two short ones with length a2 ≈ 0.988571799, placed as in Figure 8(left), and achieves the
diameter diam(S) ≈ π − 0.5822245291 = 2.559368125 < diam(6).

We obtained this construction by maximizing δ∗ with constraints π − a1 − δ∗ > π/6,
π − a2 − δ∗ > π/2, and δ(a1) + δ(a2) > δ∗. We can thus cover S(δ∗) as seen in the diagram
in Figure 8(right). In particular, we have π − a2 − δ∗ = π/2 and δ(a1) + δ(a2) = δ∗, while
we have a strict inequality π − a1 − δ∗ > π/6 in our construction. So, in the strip S(δ∗), the
regions slightly overlap.

6 An asymptotically tight bound

In this final section, we show that diam(k) = 2 + Θ(1/k 2
3 ) as k goes to infinity.

I Theorem 12. To achieve diameter at most 2 + 1/m, Θ(m 3
2 ) shortcuts are both necessary

and sufficient.

Proof. We prove the necessary condition first. Consider two points p, q that form an angle
of π − t/m, for some integer 0 6 t 6

√
m− 2. Consider two intervals Ip and Iq, both of arc

length 4/m, and centered at p and q, respectively. We claim that if there is no shortcut
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π + t/m

Iqq

p

Ip

r

2/m

> π − 4
»

1
m

Figure 9 (left) If there is no shortcut between Ip and Iq then the shortest path from p to q must
visit a point r on the circle not in either interval. (center) Shortcut between every pair that makes
an angle larger than π − 4

√
1/m. (right) Adding shortcuts of arc length π − t/m.

connecting a point of Ip with a point of Iq, then the distance between p and q is larger
than 2 + 1/m.

If there is no such shortcut, then the shortest path from p to q must visit a point r on
the circle not in either interval, see Figure 9(left). The sum |pr|+ |rq| is minimized when r
is the point making angle 2/m with q, so we have α(pr) = π − (t+ 2)/m and α(rq) = 2/m.

This gives us

|qr| = 2 sin 2
2m = 2 sin 1

m
>

2
m
− 2

3!
1
m3 >

2
m
− 1

3m = 5
3m,

|pr| = 2 sin(π2 −
t+ 2
2m ) = 2 cos t+ 2

2m > 2 cos
√
m

2m = 2 cos 1
2
√
m

> 2− 1
4m,

and so |pr|+ |rq| > 2 + 1/m.
We now subdivide C into Θ(m) intervals of length at least 6/m. Consider a pair of

intervals I, J at arc distance at least π − 1/
√
m. Then there are points p ∈ I and q ∈ J

with Ip ⊂ I and Iq ⊂ J and p, q forming an angle of the form π − t/m for an integer
0 6 t 6

√
m − 2. It follows that there must be some shortcut connecting I and J . Since

there are Θ(m3/2) such pairs of intervals, we must have at least Ω(m3/2) shortcuts.

We now turn to the sufficient condition, and construct a set of Θ(m3/2) shortcuts that
give a diameter of 2 + 1/m.

We start by placing 4πm points uniformly around the circle, and connect each pair that
makes an angle larger than π − 4

√
1/m, as shown in Figure 9(center). This creates Θ(m3/2)

shortcuts and ensures that for points p, q with angle larger than π − 4
√

1/m the distance
between p and q is bounded by 2 + 1/m.

It remains to add shortcuts to decrease the distance of point pairs p, q that form an arc
between 2 and π − 4

√
1/m. For each integer t with 4

√
m < t < 2m we will create a set

of shortcuts of arc length π − t/m, see Figure 9(right). These shortcuts will be used for
pairs p, q forming an arc between π − t/m and π − (t− 1)/m.

Let us fix such a t, and consider a shortcut s of arc length π − t/m. Then the length of
the shortcut is

|s| = 2 sin π − t/m2 = 2 cos t

2m.

Using the bound cosx 6 1− x2

2 + x4

24 6 1− ( 1
2 −

1
24 )x2 = 1− 11

24x
2 for x < 1, we have

|s| 6 2− 211
24

t2

4m2 = 2− 11
48

t2

m2 < 2− 1
6
t2

m2 = 2− 2∆,
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where we define ∆ = 1
12 ( tm )2. Since t > 4

√
m we have ∆ > 16

12
1
m > 1

m .
We repeat shortcuts of this length every arc interval of length ∆. Consider now a pair of

points p, q forming an angle in the interval π− t/m to π− (t− 1)/m. We can go from p to q
by first going to the nearest shortcut along an arc of length at most ∆, then following the
shortcut of length at most 2− 2∆, and finally going backwards by at most ∆, or forward by
at most 1/m < ∆. It follows that the distance between p and q is at most 2− 2∆ + 2∆ = 2.

The number of shortcuts of length π− t/m is 2π/∆, and so the total number of shortcuts
of this type is

2m∑
t=4
√
m+1

24πm
2

t2
= 24πm2

2m∑
t=4
√
m+1

1
t2

6 24πm2
∫ ∞

4
√
m

1
x2 dx = 6πm3/2.

This completes the proof. J

7 Conclusions

We have given exact bounds on the diameter for up to seven shortcuts. In all cases, the
shortcuts are of equal length. For k = 8, however, our upper bound construction uses
shortcuts of two different lengths. On the other hand, it is not difficult to see that eight
shortcuts of equal length cannot even achieve a slightly better diameter than diam(6). In
general, what is the diameter achievable with k shortcuts of equal length?

We have shown that for k = 0 and k = 6 we have diam(k) = diam(k + 1). Are there any
other values of k for which this holds?
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Abstract
We consider the problem of routing a data packet through the visibility graph of a polygonal
domain P with n vertices and h holes. We may preprocess P to obtain a label and a routing
table for each vertex. Then, we must be able to route a data packet between any two vertices p
and q of P , where each step must use only the label of the target node q and the routing table
of the current node.

For any fixed ε > 0, we present a routing scheme that always achieves a routing path that
exceeds the shortest path by a factor of at most 1 + ε. The labels have O(logn) bits, and the
routing tables are of size O((ε−1 +h) logn). The preprocessing time is O(n2 logn+hn2 +ε−1hn).
It can be improved to O(n2 + ε−1n) for simple polygons.
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1 Introduction

Routing is a crucial problem in distributed graph algorithms [11, 22]. We would like to
preprocess a given graph G in order to support the following task: given a data packet that
lies at some source node p of G, route the packet to a given target node q in G that is
identified by its label. We expect three properties from our routing scheme: first, it should be
local, i.e., in order to determine the next step for the packet, it should use only information
stored with the current node of G or with the packet itself. Second, the routing scheme
should be efficient, meaning that the packet should not travel much more than the shortest
path distance between p and q. The ratio between the length of the routing path and the
shortest path in the graph is also called stretch. Third, it should be compact: the total space
requirement should be as small as possible.

There is an obvious solution: for each node v of G, we store at v the complete shortest
path tree for v. Thus, given the label of a target node w, we can send the packet for one
more step along the shortest path from v to w. Then, the routing scheme will have perfect
efficiency, sending each packet along a shortest path. However, this method requires that
each node stores the entire topology of G, making it not compact. Thus, the challenge lies in
finding the right balance between the conflicting goals of compactness and efficiency.

Thorup and Zwick introduced the notion of a distance oracle [30]. Given a graph G, the
goal is to construct a compact data structure to quickly answer distance queries for any two
nodes in G. A routing scheme can be seen as a distributed implementation of a distance
oracle [24].

The problem of constructing a compact routing scheme for a general graph has been
studied for a long time [1, 3, 7–9, 23, 24]. One of the most recent results, by Roditty and
Tov, dates from 2016 [24]. They developed a routing scheme for a general graph G with
n vertices and m edges. Their scheme needs to store a poly-logarithmic number of bits
with the packet, and it routes a message from s to t on a path with length O(k∆ +m1/k),
where ∆ is the shortest path distance between s and t and k > 2 is any fixed integer. The
routing tables use mnO(1/

√
logn) total space. In general graphs, any efficient routing scheme

needs to store Ω(nc) bits per node, for some constant c > 0 [22]. Thus, it is natural to ask
whether there are better algorithms for specialized graph classes. For instance, trees admit
routing schemes that always follow the shortest path and that store O(logn) bits at each
node [10,25,29]. Moreover, in planar graphs, for any fixed ε > 0, there is a routing scheme
with a poly-logarithmic number of bits in each routing table that always finds a path that is
within a factor of 1 + ε from optimal [28].

Another approach is called geometric routing. Here, the graph is embedded in a geometric
space and the routing algorithm has to determine the next vertex for the data packet based
on the knowledge of the source and target vertex, the current vertex, and its neighbourhood,
see for instance [5,6] and references therein. A recent result by Bose et al. [6] is very close
to our setting. They show that under certain conditions, no geometric routing scheme can
achieve stretch o(

√
n).

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.10
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Here, we consider the class of visibility graphs of a polygonal domain P with h holes and
n vertices. Two vertices p and q in P are connected by an edge if and only if they can see
each other, i.e., if and only if the line segment between p and q is contained in the (closed)
region P . The problem of computing a shortest path between two vertices in a polygonal
domain has been well-studied in computational geometry [2, 4, 12, 13, 16, 17, 19–21,26, 27, 31].
Nevertheless, to the best of our knowledge, prior to our work there have been no routing
schemes for visibility graphs of polygonal domains that fall into our model. For any ε > 0,
our routing scheme needs O((ε−1 + h) logn) bits in each routing table, and for any two
vertices s and t, it produces a routing path that is within a factor of 1 + ε of optimal. This
constitutes a dramatic improvement over traditional geometric routing. Thus, we believe
that it makes sense to look for compact routing schemes for geometrically defined graphs.

2 Preliminaries

Let G = (V,E) be an undirected, connected and simple graph. In our model, G is embedded
in the Euclidean plane: a node p = (px, py) ∈ V corresponds to a point in the plane, and an
edge {p, q} ∈ E is represented by the line segment pq. The length |pq| of an edge {p, q} is
given by the Euclidean distance between the points p and q. The length of a shortest path
between two nodes p, q ∈ V is denoted by d(p, q).

Now, we formally define a routing scheme for G. Each node p of G is assigned a label
`(p) ∈ {0, 1}∗ that identifies it in the network. Furthermore, we store with p a routing table
ρ(p) ∈ {0, 1}∗. The routing scheme works as follows: the packet contains the label `(q) of
the target node q, and initially it is situated at the start node p. In each step of the routing
algorithm, the packet resides at a current node p′ ∈ V . It may consult the routing table
ρ(p′) of p′ and the label `(q) of the target to determine the next node q′ to which the packet
is forwarded. The node q′ must be a neighbor of p′ in G. This is repeated until the packet
reaches its destination q. The scheme is modeled by a routing function f : ρ(V )× `(V )→ V .

In the literature, there are varying definitions for the notion of a routing scheme [15,24,32].
For example, we may sometimes store additional information in the header of a data packet
(it travels with the packet and can store information from past vertices). Similarly, the
routing function sometimes allows the use of an intermediate target label. This is helpful
for recursive routing schemes. Here, however, we will not need any of these additional
capabilities.

As mentioned, the routing scheme operates by repeatedly applying the routing function.
More precisely, given a start node p ∈ V and a target label `(q), the scheme produces the
sequence of nodes p0 = p and pi = f(ρ(pi−1), `(q)), for i ≥ 1. Naturally, we want routing
schemes for which every packet reaches its desired destination. More precisely, a routing
scheme is correct if for any p, q ∈ V , there exists a finite k = k(p, q) ≥ 0 such that pk = q

(and pi 6= q for 0 ≤ i < k). We call p0, p1, . . . , pk the routing path between p and q. The
routing distance between p and q is defined as dρ(p, q) =

∑k
i=1 |pi−1pi|.

The quality of the routing scheme is measured by several parameters: (i) the label size
L(n) = max|V |=n maxp∈V |`(p)|, (ii) the table size T (n) = max|V |=n maxp∈V |ρ(p)|, (iii) the
stretch ζ(n) = max|V |=n maxp 6=q∈V dρ(p, q)/d(p, q), and (iv) the preprocessing time.

Let P be a polygonal domain with n vertices. The boundary ∂P of P consists of h pairwise
disjoint simple closed polygonal chains: one outer boundary and h− 1 hole boundaries, or h
hole boundaries with no outer boundary. All hole boundaries lie inside the outer boundary,
and no hole boundary lies inside another hole boundary. In both cases, we say that P has
h holes. The interior induced by a hole boundary and the exterior of the outer boundary
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p

p′

α

r0(p)

r2(p)r3(p)

rt(p)

r1(p)

C2(p)

α/t

Figure 1 The cones and rays of a vertex p with apex angle α.

are not contained in P . We denote the (open) interior of P by intP , i.e., intP = P \ ∂P .
We make no general position assumption on P . Let ni, 0 ≤ i ≤ h − 1, be the number of
vertices on the i-th boundary of P . For each boundary i, we number the vertices from 0 to
ni − 1, in clockwise order, if i is a hole boundary, or in counterclockwise order if i is the
outer boundary. The kth vertex of the ith boundary is denoted by pi,k.

Two points p and q in P can see each other in P if and only if pq ⊂ P . In particular,
note that the line segment pq may touch ∂P . The visibility graph of P , VG(P ), has the same
vertices as P and an edge between two vertices if and only if they see each other in P . We
show the following main theorem:

I Theorem 2.1. Let ε > 0, and let P be a polygonal domain with n vertices and h holes. There
is a routing scheme for VG(P ) with stretch ζ(n) = 1+ε, label size L(n) = O(logn) and routing
table size T (n) = O((ε−1 + h) logn). The preprocessing time is O(n2 logn+ hn2 + ε−1hn).
If P is a simple polygon, the preprocessing time can be improved to O(n2 + ε−1n).

3 Cones in Polygonal Domains

Let P be a polygonal domain with n vertices and h holes. Furthermore, let t > 2 be a
parameter, to be determined later. Following Yao [33], we subdivide the visibility polygon of
each vertex in P into t cones with a small enough apex angle. This will allow us to achieve
small stretch and compact routing tables.

Let p be a vertex in P and p′ the clockwise neighbor of p if p is on the outer boundary,
or the counterclockwise neighbor of p if p lies on a hole boundary. We denote with r the ray
from p through p′. To obtain our cones, we rotate r by certain angles. Let α be the inner
angle at p. For j = 0, . . . , t, we write rj(p) for the ray r rotated clockwise by angle j · α/t.

Now, for j = 1, . . . , t, the cone Cj(p) has apex p, boundary rj−1(p) ∪ rj(p), and opening
angle α/t; see Figure 1. For technical reasons, we define rj(p) not to be part of Cj(p),
for 0 ≤ j < t, whereas we consider rt(p) to be part of Ct(p). Furthermore, we write
C(p) = {Cj(p) | 1 ≤ j ≤ t} for the set of all cones with apex p. Since the opening angle of
each cone is α/t ≤ 2π/t and since t > 2, each cone is convex.

I Lemma 3.1. Let p be a vertex of P and let {p, q} be an edge of VG(P ) that lies in the
cone Cj(p). Furthermore, let s be a vertex of P that lies in Cj(p), is visible from p, and that
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Cj(p)

≤ 2π
t

s
s′

q

p

γ

Figure 2 Illustration of Lemma 3.1. The points s and s′ have the same distance to p. The dashed
line represents the shortest path from s to q.

is closest to p. Then, d(s, q) ≤ |pq| − (1− 2 sin(π/t)) |ps|.

Proof. Let s′ be the point on the line segment pq with |ps′| = |ps|; see Figure 2. Since p
can see q, we have that p can see s′ and s′ can see q. Furthermore, s can see s′, because p
can see s and s′ and we chose s to be closest to p, so the triangle ∆(p, s, s′) cannot contain
any vertices or (parts of) edges of P in its interior. Now, the triangle inequality yields
d(s, q) ≤ |ss′|+ |s′q|. Let β be the inner angle at p between the line segments ps and ps′.
Since both segments lie in the cone Cj(p), we get β ≤ 2π/t. Thus, the angle between s′p
and s′s is γ = π/2− β/2. Using the sine law and sin 2x = 2 sin x cosx, we get

|ss′| = |ps| · sin βsin γ = |ps| · sin β
sin ((π/2)− (β/2)) = |ps| · 2 sin(β/2) cos(β/2)

cos(β/2) ≤ 2|ps| sin(π/t).

Furthermore, we have |s′q| = |pq| − |ps′| = |pq| − |ps|. Thus, the triangle inequality gives

d(s, q) ≤ 2|ps| sin(π/t) + |pq| − |ps| = |pq| − (1− 2 sin(π/t)) |ps|. J

4 The Routing Scheme

Let ε > 0, and let P be a polygonal domain with n vertices and h holes. We describe a
routing scheme for VG(P ) with stretch factor 1 + ε. The idea is to compute for each vertex
p the corresponding set of cones C(p) and to store a certain interval of indices for each cone
Cj(p) in the routing table of p. If an interval of a cone Cj(p) contains the target vertex t, we
proceed to the nearest neighbor of p in Cj(p); see Figure 3. We will see that this results in a
routing path with small stretch.

In the preprocessing phase, we first compute the label of each vertex pi,k. The label of
pi,k is the binary representation of i, concatenated with the binary representation of k, that
is, `(pi,k) = (i, k). Thus, all labels are distinct binary strings of length dlog he+ dlogne.

Let p be a vertex in P . Throughout this section, we will write C and Cj instead of C(p)
and Cj(p). The routing table of p is constructed as follows: first, we compute a shortest
path tree T for p. For a vertex s of P , let Ts be the subtree of T with root s, and denote the
set of all vertices on the i-th hole in Ts by Is(i). The following well-known observation lies
at the heart of our routing scheme. For space reasons, we omit the proof from this extended
abstract.

I Observation 4.1. Let q1 and q2 be two vertices of P . Let π1 be the shortest path in T from
p to q1, and π2 the shortest path in T from p to q2. Let l be the lowest common ancestor of
q1 and q2 in T . Then, π1 and π2 do not cross or touch in a point x with d(p, x) > d(p, l).
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p

rj−1(p)

rj(p)

qs

Figure 3 The idea of the routing scheme. The first edge on a shortest path from p to q (red)
is contained in Cj(p). The routing algorithm will route the packet from p to s (green), the closest
vertex to p in Cj .

p s

q1

q2

a

s̃

r
b

H1

H2

Figure 4 The shortest path from p to a (green) crosses the shortest path from p to q1 (red). This
gives a contradiction by Observation 4.1.

I Lemma 4.2. Let e = (p, s) be an edge in T . Then, the indices of the vertices in Is(i)
form an interval. Furthermore, let f = (p, s′) be another edge in T , such that e and f are
consecutive in the cyclic order around p in T . Then, the indices of the vertices in Is(i)∪ Is′(i)
are again an interval.

Proof. For the first part of the lemma, suppose that the indices for Is(i) do not form an
interval. Then, there are two vertices q1, q2 ∈ Is(i) such that if we consider the two polygonal
chains H1 and H2 with endpoints q1 and q2 that constitute the boundary of hole i, there
are two vertices a, b /∈ Is(i) with a ∈ H1 and b ∈ H2 (see Figure 4). Let π1 and π2 be the
shortest paths in T from s to q1 and from s to q2. Let r be the last common vertex of π1 and
π2, and suppose without loss of generality that H1, the subpath of π1 from r to q1, and the
subpath of π2 from r to q2 bound a region inside P . Then, there has to be a child s̃ of p in
T such that a ∈ Is̃(i) and such that the shortest path from s̃ to a intersects π1 ∪ π2. Since p
is the lowest common ancestor of a and q1 and of a and q2, this contradicts Observation 4.1.

The proof for the second part of the lemma is almost identical. We assume for the sake
of contradiction that the indices in Is(i)∪ Is′(i) do not form an interval, and we find vertices
q1, q2 ∈ Is(i) ∪ Is′(i) such that if we split the boundary of hole i into two chains H1 and H2
between q1 and q2, there are two vertices a, b /∈ Is(i)∪ Is′(i) with a ∈ H1 and b ∈ H2. Again,
let π1 be the shortest path in T from s to q1 and π2 the shortest path in T from s to q2,
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and consider the least common ancestor r of q1 and q2 in T . Without loss of generality, we
assume that the region R bounded by H1, the subpath of π1 from r to q1, and the subpath of
π2 from r to q2 lies inside P . Now, the lowest common ancestor r may be p, but since s and
s′ are consecutive in the cyclic order around p, the other children of p are either all inside or
all outside R. In either case, we can derive a contradiction to Observation 4.1 by noting that
either the shortest path from s to a or the shortest path from s to b has to cross π1 ∪ π2. J

Lemma 4.2 indicates how to construct the routing table ρ(p) for p. We set

t = π/ arcsin
(

1
2 (1 + ε−1)

)
, (1)

and we construct a set C of cones for p as in Section 3. Let Cj ∈ C be a cone, and let Πi be
a hole boundary or the outer boundary. We define Cj uΠi as the set of all vertices q on Πi

for which the first edge of the shortest shortest path from p to q lies in Cj . By Lemma 4.2,
the indices of the vertices in Cj u Πi form a (possibly empty) cyclic interval [k1, k2]. If
Cj uΠi = ∅, we do nothing. Otherwise, if Cj uΠi 6= ∅, there is a vertex r ∈ Cj closest to p,
and we add the entry (i, k1, k2, r) to ρ(p). This entry needs dlog he+ 3 · dlogne bits.

Now, the routing function f : ρ(V )× `(V )→ V is quite simple. Given a current vertex
p and a target label `(t) = (i, k), we search the routing table ρ(p) for an entry (i, k1, k2, r)
with k ∈ [k1, k2]. By construction, this entry is unique. We then forward the packet from p

to the neighbor r (see Figure 3).

5 Analysis

We analyze the stretch factor of our routing scheme and give upper bounds on the size of the
routing tables and the preprocessing time. Let ε > 0 be fixed, and let 1 + ε be the desired
stretch factor. We set t as in (1). First, we bound t in terms of ε. This immediately gives
that |C(p)| ∈ O(ε−1), for every vertex p.

I Lemma 5.1. We have t ≤ 2π
(
1 + ε−1) .

Proof. For x ∈ (0, 1/2], we have sin x ≤ x, so for z ∈ [2,∞), we get that sin(1/z) ≤ 1/z.
Applying arcsin(·) on both sides, this gives 1/z ≤ arcsin(1/z)⇔ 1/ arcsin(1/z) ≤ z. We set
z = 2(1 + ε−1) and multiply by π to derive the desired inequality. J

5.1 The Routing Table
Let p be a vertex of P . We again write C for C(p) and Cj instead of Cj(p). To bound the
size of ρ(p), we need some properties of holes with respect to cones. For i = 0, . . . , h− 1, we
write m(i) for the number of cones Cj ∈ C with Cj uΠi 6= ∅. Then, ρ(p) contains at most
|ρ(p)| ≤ O

(∑h−1
i=0 m(i) logn

)
bits. We say that Πi is stretched for the cone Cj if there are

indices 0 ≤ j1 < j < j2 < t such that Cj1 uΠi, Cj uΠi and Cj2 uΠi are non-empty. If Πi is
not stretched for any cone of p, then m(i) ≤ 2. We prove the following lemma:

I Lemma 5.2. For every Cj ∈ C, there is at most one boundary that is stretched for Cj.

Proof. Let Πi be a hole boundary that is stretched for Cj . There are indices j1 < j < j2 and
vertices q ∈ Cj1 uΠi, r ∈ Cj uΠi, and s ∈ Cj2 uΠi. We subdivide P into three regions Q, R
and S: the boundary of Q is given by the shortest path from p to r, the shortest path from
p to q, and the part of Πi from r to q not containing s. Similarly, the region R is bounded
by the shortest path from p to r, the shortest path from p to s and the part of Πi between r
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Figure 5 The shortest paths from p to q, r, s (blue). The hole Π contains t and lies in Q.

and s that does not contain q. Finally, S is the closure of P \ (Q∪R). The interiors of Q, R,
and S are pairwise disjoint; see Figure 5.

Suppose there is another boundary Π that is stretched for Cj . Then, Π must lie entirely
in either Q, R, or S. We discuss the first case, the other two are symmetric. Since Π is
stretched for Cj , there is an index j′ > j and a vertex t ∈ Cj′ u Π. Consider the shortest
path π from p to t. Since j′ > j, the first edge of π lies in R or S, and π has to cross or
touch the shortest path from p to q or from q to r. Furthermore, by definition, we have
Cj ∩Cj′ = {p} and Cj1 ∩Cj′ = {p}. Therefore, p is the lowest common ancestor of all three
shortest paths, and Observation 4.1 leads to a contradiction. J

For i = 0, . . . , h− 1, let s(i) be the number of cones in C for which Πi is stretched. By
Lemma 5.2, we get

∑h−1
i=0 s(i) ≤ |C(p)| ∈ O(ε−1). Since m(i) ≤ s(i) + 2, we conclude

|ρ(p)| ∈ O
(
h−1∑
i=0

m(i) logn
)

= O
(
h−1∑
i=0

(s(i) + 2) logn
)

= O ((|C(p)|+ 2h) logn) = O
(
(ε−1 + h) logn

)
.

5.2 The Stretch Factor
Next, we bound the stretch factor. First, we prove that the distance to the target decreases
after the first step. This will then give the bound on the overall stretch.

I Lemma 5.3. Let p and q be two vertices in P . Let s be the next vertex computed by the
routing scheme for a data packet from p to q. Then, d(s, q) ≤ d(p, q)− |ps|/(1 + ε).

Proof. By construction of ρ(p), we know that the next vertex q′ on the shortest path from p

to q lies in the same cone as s. Hence, by the triangle inequality and Lemma 3.1, we obtain

d(s, q) ≤ d(s, q′) + d(q′, q) ≤ |pq′| −
(

1− 2 sin π
t

)
|ps|+ d(q′, q)

= d(p, q)−
(

1− 2 sin π
t

)
|ps| = d(p, q)−

(
1− 1

1 + ε−1

)
|ps| (definition of t)

= d(p, q)− |ps|/(1 + ε).

J

Lemma 5.3 immediately implies the correctness of the routing scheme: since the distance
to the target q decreases strictly in each step and since there is a finite number of vertices,
there is a k = k(p, q) ≤ n such that after k steps, the packet arrives at q. Using this, we can
now bound the stretch factor of the routing scheme.
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I Lemma 5.4. Let p and q be two vertices of P . Then, dρ(p, q) ≤ (1 + ε)d(p, q).

Proof. Let π = p0p1 . . . pk be the routing path from p = p0 to q = pk. By Lemma 5.3, we
have d(pi+1, q) ≤ d(pi, q)− |pipi+1|/(1 + ε). Thus,

dρ(p, q) =
k−1∑
i=0
|pipi+1| ≤ (1 + ε)

k−1∑
i=0

(d(pi, q)− d(pi+1, q))

= (1 + ε) (d(p0, q)− d(pk, q)) = (1 + ε)d(p, q).

J

5.3 The Preprocessing Time
Finally, we discuss the details of the preprocessing algorithm and its time complexity.

I Lemma 5.5. The preprocessing time for our routing scheme is O(n2 logn+ hn2 + ε−1hn).

Proof. Let p be a vertex of P . We compute the shortest path tree T for p. Using the
algorithm of Hershberger and Suri [13], this can be done in time O(n logn). Now, we perform
a post-order traversal of T to compute the intervals for each child of p. Given a node q,
the post-order traversal provides at most h different intervals. For each hole, we compute
the union of the intervals among the children. Lemma 4.2 shows that the union of these
intervals is again an interval, and it can be found in time O(h outdeg(q)), where outdeg(q) is
the number of q’s children in T . In total, the post-order traversal needs O(hn) time.

Let q1, . . . , qk be the children of p, and let α1, . . . , αk be the angles between the ray r0(p)
and the edges (p, qi), i = 1, . . . , k. By construction, the qi are sorted by increasing angle
αi. Into this sorted sequence, we insert the rays rj(p), and we call the resulting sequence L.
By Lemma 5.1, the sequence L has O(ε−1 + outdeg(p)) elements. We scan through L, and
between each two consecutive rays rj−1(p) and rj(p), we join all the corresponding intervals
for each hole. Again by Lemma 4.2, this gives a set of intervals. Finally, we compute the
vertex closest to p in each cone, and we store the appropriate entries in the routing table ρ(p).
This last step takes time O(h(ε−1 + outdeg(p))) = O(hε−1 + hn). Thus, the preprocessing
time for p is O(n logn+ hn+ hε−1), for a total of O(n2 logn+ hn2 + ε−1hn). J

Combining the last two lemmas with Section 4, we get the following theorem.

I Theorem 5.6. Let P be a polygonal domain with n vertices and h holes. For any ε > 0
we can construct a routing scheme for VG(P ) with labels of O(logn) bits and routing tables
of O((ε−1 + h) logn) bits. For any two sites p, q ∈ P , the scheme produces a routing path
with stretch factor at most 1 + ε. The preprocessing time is O(n2 logn+ hn2 + ε−1hn).

6 Improvement for Simple Polygons

We show how to improve the preprocessing time for polygons without holes. Let P be a
simple polygon with n vertices, and let 1+ε, ε > 0, be the stretch factor. The previous section
computes a shortest path tree for each vertex, which leads to O(n2 logn) preprocessing time.
In simple polygons, we can use a different technique to avoid this large overhead in the
preprocessing phase. The routing function, the vertex labels, and the structure of the routing
tables remain unchanged.

Let p be a vertex of P . We compute the visibility polygon vis(p) for p. This gives a
sequence V of points v0, v1, . . . vm with p = v0 = vm. Some points of V may not be vertices
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Figure 6 The boundaries of Cj hit ∂P in the points wj−1 and wj . The vertex s is the vertex in
Cj with smallest distance to p.

of P . We assume that V is sorted clockwise. Then, the sequence α1, α2, . . . , αm−1 of the
angles αj between the ray r0(p) and the edges {p, vj}, j = 1, . . . ,m− 1, is increasing. For
j = 1, . . . , t− 1, let wj be the intersection point of rj(p) and vis(p) that is closest to p. The
sequence of edges ej of P that contain the points wj can be found in O(n) time by traversing
the sorted sequence V ; see Figure 6.

Next, let Cj ∈ C be a cone. Recall that Cj is bounded by the rays rj−1(p) and rj(p).
The vertices related to Cj are determined as follows: starting from wj−1, we walk along
the boundary of P , until we meet wj . During the walk, we collect all the visited vertices.
This set forms a (possibly empty) interval I(j). We let s be the vertex in I(j) with the
smallest distance to p. As before, we add the endpoints of I(j) together with s to ρ(p). This
needs 3 · dlogne bits. By Lemma 5.1, the routing table ρ(p) has O(ε−1 logn) bits, as in the
previous section. To show correctness, we need the following lemma.

I Lemma 6.1. Let p and q be two vertices of P , and let (p, q′) bet the first edge on the
shortest path from p to q. If q ∈ I(j), then q′ ∈ Cj.

Proof. Suppose that q′ /∈ Cj . Since q ∈ I(j), the shortest path π from p to q has to meet
pwi−1 or pwi at least twice. The first intersection is p itself. Let a 6= p be the second
intersection, and π′ the subpath of π from p to a. By the triangle inequality |pa| is strictly
smaller than the length of π′; see Figure 7. This contradicts the fact that π is a shortest
path from p to q. J

Thus, we obtain our main theorem for simple polygons.

I Theorem 6.2. Let P be a simple polygon with n vertices. For any ε > 0, we can construct
a routing scheme for VG(P ) with labels of dlogne bits and routing tables of O(ε−1 logn) bits.
For any two vertices p, q ∈ P , the scheme produces a routing path with stretch 1 + ε. The
preprocessing time is O(n2 + ε−1n).
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q

p

q′ a

Figure 7 The red curve is the “shortest” path from p to q with q′ as first step, whereas the green
dashed line represents a shortcut from p to a.

p q
Cj

Figure 8 In this polygon, p and q can see each other, so their hop-distance is 1. Our routing
scheme routes from one spire to the next, giving stretch Θ(n).

Proof. Let p be a vertex of P . First, we compute the visibility polygon of the vertex p. This
needs time O(n) [14, 18]. Let V be the vertices of vis(p), sorted by increasing angle. Using
V , we can find in time O(n+ ε−1) all the intersection points wj and the edges ej of P that
contain them. Finally, let Cj be a cone. We can find in constant time the endpoints of I(j)
and in O(|I(j)|) time the vertex s in I(j) with the smallest distance to p. This step costs
O(n+ ε−1) time in total over all cones. The total running time is O(n2 + ε−1n). J

7 Conclusion

We gave an efficient routing scheme for the visibility graph of a polygonal domain. Our
scheme produces routing paths whose length can be made arbitrarily close to the optimum.

Several open questions remain. First of all, we would like to obtain an efficient routing
scheme for the hop-distance in polygonal domains P , where each edge of VG(P ) has unit
weight. For our routing scheme, we can easily construct examples where the stretch is Ω(n);
see Figure 8. Moreover, it would be interesting to improve the preprocessing time or the size
of the routing tables, perhaps using a recursive strategy.

A final open question concerns routing schemes in general: what is the time needed by a
data packet to travel through the graph? In particular, it would be interesting to see how
much time a data packet needs at one single vertex until it knows the vertex where it is
forwarded. It would be a sightly different, but important measure for routing schemes.
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1 Introduction

In recent years, progress on flexible construction at micro- and nano-scale has given rise to a
large set of challenges that deal with algorithmic aspects of programmable matter. Examples
of cutting-edge application areas with a strong algorithmic flavor include self-assembling
systems, in which chemical and biological substances such as DNA are designed to form
predetermined shapes or carry out massively parallel computations; and swarm robotics, in
which complex tasks are achieved through the local interactions of robots with highly limited
individual capabilities, including micro- and nano-robots.

Moving individual particles to their appropriate attachment locations when assembling a
shape is difficult because the small size of the particles limits the amount of onboard energy
and computation. One successful approach to dealing with this challenge is to use molecular
diffusion in combination with cleverly designed sets of possible connections: in DNA tile
self-assembly, the particles are equipped with sophisticated bonds that ensure that only a
predesigned shape is produced when mixing together a set of tiles, see [18]. The resulting
study of algorithmic tile self-assembly has given rise to an extremely powerful framework
and produced a wide range of impressive results. However, the required properties of the
building material (which must be specifically designed and finely tuned for each particular
shape) in combination with the construction process (which is left to chemical reactions,
so it cannot be controlled or stopped until it has run its course) make DNA self-assembly
unsuitable for some applications.

An alternative method for controlling the eventual position of particles is to apply a
uniform external force, causing all particles to move in a given direction until they hit an
obstacle or another blocked particle. As two of us (Becker and Fekete, [1]) have shown in
the past, combining this approach with custom-made obstacles (instead of custom-made
particles) allows complex rearrangements of particles, even in grid-like environments with
axis-parallel motion. The appeal of this approach is that it shifts the design complexity from
the building material (the tiles) to the machinery (the environment). As recent practical
work by Manzoor et al. [15] shows, it is possible to apply this to simple “sticky” particles
that can be forced to bond, see Fig. 1: the overall assembly is achieved by adding particles
one at a time, attaching them to the existing sub-assembly. Moreover, pipelining this process
may result in efficient rates of production, see Fig. 2 [15].

One critical issue of this approach is the requirement of getting particles to their destination
without being blocked by or bonding to other particles. As Fig. 3 shows, this is not always
possible, so there are some shapes that cannot be constructed by Tilt Assembly.

This gives rise to a variety of algorithmic questions: (1) Can we decide efficiently whether
a given polyomino can be constructed by Tilt Assembly? (2) Can the resulting process
be pipelined to yield low amortized building time? (3) Can we compute a maximum-size
subpolyomino that can be constructed? (4) What can be said about three-dimensional
versions of the problem?

1.1 Our Contribution
We present the results shown in Table 1.

1.2 Related Work
Assembling polyominoes with tiles has been considered intensively in the context of tile
self-assembly. In 1998, Erik Winfree [18] introduced the abstract tile self-assembly model
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Figure 1 A practical demonstration of Tilt Assembly based on alginate (i.e., a gel made by
combining a powder derived from seaweed with water) particles [15]. (a) Alginate particles in initial
positions. (b) After control moves of 〈e, s, w, n, e, s〉 (for east, south, west, north), the alginate
microrobots move to the shown positions. (c) After 〈w, n〉 inputs, the system produces the first
multi-microrobot polyomino. (d) The next three microrobot polyominoes are produced after applying
multiple 〈e, s, w, n〉 cycles. (e) After the alginate microrobots have moved through the microfluidic
factory layout, the final 4-particle polyomino is generated.

ew

n

s

Figure 2 (Top left) Initial setup of a seven-tile polyomino assembly; the composed shape is shown
enlarged on the lower left. The bipartite decomposition into blue and red particles is shown for
greater clarity, but can also be used for better control of bonds. The sequence of control moves is
〈e, s, w, n〉, i.e., a clockwise order. (Bottom left) The situation after 18 control moves. (Right) The
situation after 7 full cycles, i.e., after 28 control moves; shown are three parallel “factories”.

Figure 3 A polyomino (black) that cannot be constructed by Tilt Assembly: the last tile cannot
be attached, as it gets blocked by previously attached tiles.
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Table 1 Results for Tilt Assembly Problem (TAP) and its maximization variant (MaxTAP).

Dimension Decision Maximization Approximation Constructible Path

2D (simple) O(N log N) (Sec. 3) polyAPX -hard Ω(N1/3), O(
√

N) (Sec. 4) O(N log N)(Sec. 4)

3D (general) NP-hard (Sec. 5) polyAPX -hard Ω(N1/3), - (Sec. 4) NP-hard (Sec. 5)

(aTAM), in which tiles have glue types on each of the four sides and two tiles can stick
together if their glue type matches and the bonding strength is sufficient. Starting with
a seed tile, tiles will continue to attach to the existing partial assembly until they form
a desired polyomino; the process stops when no further attachments are possible. Apart
from the aTAM, there are various other models like the two-handed tile self-assembly model
(2HAM) [8] and the hierarchical tile self-assembly model [9], in which we have no single
seed but pairs of subassemblies that can attach to each other. Furthermore, the staged
self-assembly model [10, 11] allows greater efficiency by assembling polyominoes in multiple
bins which are gradually combined with the content of other bins.

All this differs from the model in Tilt Assembly, in which each tile has the same glue
type on all four sides, and tiles are added to the assembly one at a time by attaching them
from the outside along a straight line. This approach of externally movable tiles has actually
been considered in practice at the microscale level using biological cells and an MRI, see [12],
[13], [5]. Becker et al. [6] consider this for the assembly of a magnetic Gauß gun, which can
be used for applying strong local forces by very weak triggers, allowing applications such as
micro-surgery.

Using an external force for moving the robots becomes inevitable at some scale because
the energy capacity decreases faster than the energy demand. A consequence is that all
non-fixed robots/particles perform the same movement, so all particles move in the same
direction of the external force until they hit an obstacle or another particle. These obstacles
allow shaping the particle swarm. Designing appropriate sets of obstacles and moves gives
rise to a range of algorithmic problems. Deciding whether a given initial configuration of
particles in a given environment can be transformed into a desired target configuration
is NP-hard [1], even in a grid-like setting, whereas finding an optimal control sequence is
shown to be PSPACE-complete by Becker et al. [2]. However, if it is allowed to design the
obstacles in the first place, the problems become much more tractable [1]. Moreover, even
complex computations become possible: If we allow additional particles of double size (i.e.,
two adjacent fields), full computational complexity is achieved, see Shad et al. [16]. Further
related work includes gathering a particle swarm at a single position [14] and using swarms
of very simple robots (such as Kilobots) for moving objects [7]. For the case in which human
controllers have to move objects by such a swarm, Becker et al. [3] study different control
options. The results are used by Shahrokhi and Becker [17] to investigate an automatic
controller.

Most recent and most closely related to our paper is the work by Manzoor et al. [15], who
use global control to assembly polyominoes in a pipelined fashion: after constructing the first
polyomino, each cycle of a small control sequence produces another polyomino. However,
the algorithmic part is purely heuristic; providing a thorough understanding of algorithms
and complexity is the content of our paper.
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2 Preliminaries

Polyomino. For a set P ⊂ Z2 of N grid points in the plane, the graph GP is the induced
grid graph, in which two vertices p1, p2 ∈ P are connected if they are at unit distance. Any
set P with connected grid graph GP gives rise to a polyomino by replacing each point p ∈ P
by a unit square centered at p, which is called a tile; for simplicity, we also use P to denote
the polyomino when the context is clear, and refer to GP as the dual graph of the polyomino;
P is tree-shaped, if GP is a tree.

A polyomino is called hole-free or simple if and only if the grid graph induced by Z2 \ P
is connected.

Blocking sets. For each point p ∈ Z2 we define blocking sets Np, Sp ⊆ P as the set of
all points q ∈ P that are above or below p and |px − qx| ≤ 1. Analogously, we define the
blocking sets Ep, Wp ⊆ P as the set of all points q ∈ P that are to the right or to the left of
p and |py − qy| ≤ 1.

Construction step. A construction step is defined by a direction (north, east, south, west,
abbreviated by n, e, s, w) from which a tile is added and a latitude/longitude l describing a
column or row. The tile arrives from (l,∞) for north, (∞, l) for east, (l,−∞) for south, and
(−∞, l) for west into the corresponding direction until it reaches the first grid position that
is adjacent to one occupied by an existing tile. If there is no such tile, the polyomino does
not change. We note that a position p can be added to a polyomino P if and only if there
is a point q ∈ P with ||p− q||1 = 1 and one of the four blocking sets, Np, Ep, Sp or Wp, is
empty. Otherwise, if none of these sets are empty, this position is blocked.

Constructibility. Beginning with a seed tile at some position p, a polyomino P is constructible
if and only if there is a sequence σ = ((d1, l1), (d2, l2), . . . , (dN−1, lN−1)), such that the
resulting polyomino P ′, induced by successively adding tiles with σ, is equal to P . We
allow the constructed polyomino P ′ to be a translated copy of P . Reversing σ yields a
decomposition sequence, i.e., a sequence of tiles getting removed from P .

3 Constructibility of Simple Polyominoes

In this section we focus on hole-free (i.e., simple) polyominoes. We show that the problem of
deciding whether a given polyomino can be constructed can be solved in polynomial time.
This decision problem can be defined as follows.

I Definition 1 (Tilt Assembly Problem). Given a polyomino P , the Tilt Assembly
Problem (TAP) asks for a sequence of tiles constructing P , if P is constructible.

3.1 A Key Lemma
A simple observation is that construction and (restricted) decomposition are the same
problem. This allows us to give a more intuitive argument, as it is easier to argue that we do
not lose connectivity when removing tiles than it is to prove that we do not block future tiles.

I Theorem 2. A polyomino P can be constructed if and only if it can be decomposed using
a sequence of tile removal steps that preserve connectivity. A construction sequence is a
reversed decomposition sequence.

ISAAC 2017
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t

(a) Removing t destroys decomposability. The
polyomino can be decomposed by starting with
the three tiles above t.

(b) Removing the red convex tile leaves the
polyomino non-decomposable; it can be decom-
posed by starting from the bottom or the sides.

Figure 4 Two polyominoes and their convex tiles (white). (a) Removing non-convex tiles may
destroy decomposability. (b) In case of non-simple polygons we may not be able to remove convex
tiles.

Proof. To prove this theorem, it suffices to consider a single step. Let P be a polyomino and
t be a tile that is removed from P into some direction l, leaving a polyomino P ′. Conversely,
adding t to P ′ from direction l yields P , as there cannot be any tile that blocks t from
reaching the correct position, or we would not be able to remove t from P in direction l. J

For hole-free polyominoes we can efficiently find a construction/decomposition sequence
if one exists. The key insight is that one can greedily remove convex tiles. A tile t is said to
be convex if and only if there is a 2× 2 square solely containing t; see Fig. 4. If a convex
tile is not a cut tile, i.e., it is a tile whose removal does not disconnect the polyomino, its
removal does not interfere with the decomposability of the remaining polyomino.

This conclusion is based on the observation that a minimal cut (i.e., a minimal set of
vertices whose removal leaves a disconnected polyomino) of cardinality two in a hole-free
polyomino always consists of two (possibly diagonally) adjacent tiles. Furthermore, we can
always find such a removable convex tile in any decomposable hole-free polyomino. This
allows us to devise a simple greedy algorithm.

We start by showing that if we find a non-blocked convex tile that is not a cut tile, we can
simply remove it. It is important to focus on convex tiles, as the removal of non-convex tiles
can harm the decomposability: see Fig. 4a for an illustration. In non-simple polyominoes,
the removal of convex tiles can destroy decomposability, as demonstrated in Fig. 4b.

I Lemma 3. Consider a non-blocked non-cut convex tile t in a hole-free polyomino P . The
polyomino P − t is decomposable if and only if P is decomposable.

Proof. The first direction is trivial: if P − t is decomposable, P is decomposable as well,
because we can remove the non-blocked tile t first and afterwards use the existing decom-
position sequence for P − t. The other direction requires some case distinctions. Suppose
for contradiction that P is decomposable but P − t is not, i.e., t is important for the later
decomposition.

Consider a valid decomposition sequence for P and the first tile t′ we cannot remove if we
were to remove t in the beginning. W.l.o.g., let t′ be the first tile in this sequence (removing
all previous tiles obviously does not destroy the decomposability). When we remove t first,
we are missing a tile, hence t′ cannot be blocked but has to be a cut tile in the remaining
polyomino P − t. The presence of t preserves connectivity, i.e., {t, t′} is a minimal cut on P .
Because P has no holes, then t and t′ must be diagonal neighbors, sharing the neighbors a
and b. Furthermore, by definition neither of t and t′ is blocked in some direction. We make
a case distinction on the relation of these two directions.
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t

t
0
b

a

(a) If the unblocked directions of t and t′ are
orthogonal, one of the two adjacent tiles (w.l.o.g.
a) cannot have any further neighbors. There
can also be no tiles in the upper left corner,
because the polyomino cannot cross the two
free directions of t and t′ (red marks).

t

t
0
b

c

d

a

(b) If the unblocked directions of t and t′ are
parallel, there is only the tile c for which some-
thing can change if we remove t before t′.

Figure 5 The red marks indicate that no tile is at this position; the dashed outline represents
the rest of the polyomino.

t

(a) If the removal direction of t is not crossed,
the last blocking tile has to be convex (and has
to be removed before).

t

t
0

A
B

(b) If the removal direction of t crosses P , then
P gets split into components A and B. Com-
ponent B has a convex tile t′ that needs to be
removed before t.

Figure 6 Polyominoes for which no convex tile should be removable, showing the contradiction
to t being the first blocked convex tile in P getting removed.

The directions are orthogonal (Fig. 5a). Either a or b is a non-blocked convex tile, because
t and t′ are both non-blocked; w.l.o.g., let this be a. It is easy to see that independent of
removing t or t′ first, after removing a we can also remove the other one.

The directions are parallel (Fig. 5b). This case is slightly more involved. By assumption,
we have a decomposition sequence beginning with t′. We show that swapping t′ with our
convex tile t in this sequence preserves feasibility.
The original sequence has to remove either a or b before it removes t, as otherwise the
connection between the two is lost when t′ is removed first. After either a or b is removed,
t becomes a leaf and can no longer be important for connectivity. Thus, we only need to
consider the sequence until either a or b is removed. The main observation is that a and b
block the same tiles as t or t′, except for tile c as in Fig. 5b. However, when c is removed,
it has to be a leaf, because a is still not removed and in the original decomposition
sequence, t′ has already been removed. Therefore, a tile d 6= t′ would have to be removed
before c. Hence, the decomposition sequence remains feasible, concluding the proof. J

Next we show that such a convex tile always exists if the polyomino is decomposable.

I Lemma 4. Let P be a decomposable polyomino. Then there exists a convex tile that is
removable without destroying connectivity.

ISAAC 2017
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Proof. We prove this by contradiction based on two possible cases.
Assume P to be a decomposable polyomino in which no convex tile is removable. Because

P is decomposable, there exists some feasible decomposition sequence S. Let Pconvex denote
the set of convex tiles of P and let t ∈ Pconvex be the first removed convex tile in the
decomposition sequence S. By assumption, t cannot be removed yet, so it is either blocked
or a cut tile.
t is blocked. Consider the direction in which we would remove t. If it does not cut the

polyomino, the last blocking tile has to be convex (and would have to be removed before
t), see Fig. 6a. If it cuts the polyomino, the component cut off also must have a convex
tile and the full component has to be removed before t, see Fig. 6b. This is again a
contradiction to t being the first convex tile to be removed in S.

t is a cut tile. P − t consists of exactly two connected polyominoes, P1 and P2. It is easy
to see that P1 ∩ Pconvex 6= ∅ and P2 ∩ Pconvex 6= ∅, because every polyomino of size n ≥ 2
has at least two convex tiles of which at most one becomes non-convex by adding t. (A
polyomino of size 1 is trivial.) Before being able to remove t, either P1 or P2 has to be
completely removed, including their convex tiles. This is a contradiction to t being the
first convex tile in S to be removed. J

3.2 An Efficient Algorithm
An iterative combination of these two lemmas proves the correctness of greedily removing
convex tiles. As we show in the next theorem, using a search tree technique allows an efficient
implementation of this greedy algorithm.

I Theorem 5. A hole-free polyomino can be checked for decomposability/constructibility in
time O(N logN).

Proof. Lemma 3 allows us to remove any convex tile, as long as it is not blocked and does
not destroy connectivity. Applying the same lemma on the remaining polyomino iteratively
creates a feasible decomposition sequence. Lemma 4 proves that this is always sufficient. If
and only if we can at some point no longer find a matching convex tile (to which we refer as
candidates), the polyomino cannot be decomposable.

Let B be the time needed to check whether a tile t is blocked. A naïve way of doing this
is to try out all tiles and check if t gets blocked, requiring time O(N). With a preprocessing
step, we can decrease B to O(logN) by using O(N) binary search trees for searching for
blocking tiles and utilizing that removing a tile can change the state of at most O(1) tiles.
For every vertical line x and horizontal line y going through P , we create a balanced search
tree, i.e., for a total of O(N) search trees. An x-search tree for a vertical line x contains tiles
lying on x, sorted by their y-coordinate. Analogously define a y-search tree for a horizontal
line y containing tiles lying on y sorted by their x-coordinate. We iterate over all tiles
t = (x, y) and insert the tile in the corresponding x- and y-search tree with a total complexity
of O(N logN). Note that the memory complexity remains linear, because every tile is in
exactly two search trees. To check if a tile at position (x′, y′) is blocked from above, we
can simply search in the (x′ − 1)-, x′- and (x′ + 1)-search tree for a tile with y > y′. We
analogously perform search queries for the other three directions, and thus have 12 queries
of total cost O(logN).

We now iterate on all tiles and add all convex tiles that are not blocked and are not a cut
tile to the set F (cost O(N logN)). Note that checking whether a tile is a cut tile can be
done in constant time, because it suffices to look into the local neighborhood. While F is
not empty, we remove a tile from F , from the polyomino, and from its two search trees in
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Figure 7 When removing the red tile, only the orange tiles can become unblocked or convex.

0 1 6

7

543

2

Figure 8 (Left) A polyomino P . Shown is the assembly order and the direction of attachment to
the seed (tile 0). (Right) A maze environment for pipelined construction of the desired polyomino P .
After the fourth cycle, each further cycle produces a new copy of P .

time O(logN). Next, we check the up to 12 tiles that are blocked first from the removed
tile for all four orientations, see Fig. 7. Only these tiles can become unblocked or a convex
tile. Those that are convex tiles, not blocked and no cut tile are added to F . All tiles
behind those cannot become unblocked as the first tiles would still be blocking them. The
cost for this is again in O(logN). This is continued until F is empty, which takes at most
O(N) loops each of cost O(logN). If the polyomino has been decomposed, the polyomino
is decomposable/constructible by the corresponding tile sequence. Otherwise, there cannot
exist such a sequence. By prohibiting to remove a specific tile, one can force a specific start
tile. J

3.3 Pipelined Assembly
Given that a construction is always possible based on adding convex corners to a partial
construction, we can argue that the idea of Manzoor et al. [15] for pipelined assembly can
be realized for every constructible polyomino: We can transform the construction sequence
into a spiral-shaped maze environment, as illustrated in Fig. 8. This allows it to produce D
copies of P in N +D cycles, implying that we only need 2N cycles for N copies. It suffices
to use a clockwise order of four unit steps (west, north, east, south) in each cycle.

The main idea is to create a spiral in which the assemblies move from the inside to the
outside. The first tile is provided by an initial south movement. After each cycle, ending
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with a south movement, the next seed tile of the next copy of P is added. For every direction
corresponding to the direction of the next tile added by the sequence, we place a tile depot
on the outside of the spiral, with a straight-line path to the location of the corresponding
attachment.

I Theorem 6. Given a construction sequence σ := ((d1, l1), . . . , (dN−1, lN−1)) that constructs
a polyomino P , we can construct a maze environment for pipelined tilt assembly, such that
constructing D copies of P needs O(N +D) unit steps. In particular, constructing one copy
of P can be done in amortized time O(1).

A more detailed proof can be found in the full version of this paper [4].

4 Optimization Variants in 2D

For polyominoes that cannot be assembled, it is natural to look for a maximum-size subpoly-
omino that is constructible. As it turns out, this optimization variant is polyAPX-hard, i.e.,
we cannot hope for an approximation algorithm with an approximation factor within Ω(N 1

3 ),
unless P = NP.

I Definition 7 (Maximum Tilt Assembly Problem). Given a polyomino P , the Maximum Tilt
Assembly Problem (MaxTAP) asks for a sequence of tiles building a cardinality-maximal
connected subpolyomino P ′ ⊆ P .

I Theorem 8. MaxTAP is polyAPX-hard, even for tree-shaped polyominoes, and cannot be
approximated within a factor of Ω(N 1

3 ).

The proof is based on a reduction from Maximum Independent Set (MIS) to MaxTAP.
See full version [4] for details. On the positive side, we can give an O(

√
N)-approximation

algorithm.

I Theorem 9. The longest constructible path in a tree-shaped polyomino P is a
√
N-

approximation for MaxTAP, and we can find such a path in polynomial time.

Proof. Consider an optimal solution P ∗ and a smallest enclosing box B containing P ∗.
Then there must be two opposite sides of B having at least one tile of P ∗. Consider the
path S between both tiles. Because the area AB of B is at least the number of tiles in P ∗,
|S| ≥

√
AB and a longest, constructible path in P has length at least |S|, we conclude that

the longest constructible path is a
√
N -approximation.

To find such a path, we can search for every path between two tiles, check whether we
can build this path, and take the longest, constructible path. J

Checking constructibility for O(N2) possible paths is rather expensive. However, we can
efficiently approximate the longest constructible path in a tree-shaped polyomino with the
help of sequentially constructible paths, i.e., the initial tile is a leaf in the final path.

I Theorem 10. We can find a constructible path in a tree-shaped polyomino in O(N2 logN)
time that has a length of at least half the length of the longest constructible path.

Proof. We only search for paths that can be built sequentially. Clearly, the longest such
path is at least half as long as the longest path that can have its initial tile anywhere. We
use the same search tree technique as before to look for blocking tiles. Select a tile of the
polyomino as the initial tile. Do a depth-first search and for every tile in this search, check if
it can be added to the path. If it cannot be added, skip all deeper tiles, as they also cannot



A.T. Becker et al. 11:11

be added. During every step in the depth-first search, we only need to change a single tile in
the search trees, doing O(1) updates with O(logN) cost. As we only consider O(N) vertices
in the depth-first search, this results in a cost of O(N logN) for a fixed start tile. It is trivial
to keep track of the longest such constructible path. Repeating this for every tile results in a
running time of O(N2 logN). J

In tree-shaped polyominoes, finding a constructible path is easy. For simple polyominoes,
additional arguments and data structures lead to a similar result.

I Theorem 11. In simple polyominoes, finding the longest of all shortest paths that are
sequentially constructible takes O(N2 logN) time.

See full version [4] for details.

5 Three-Dimensional Shapes

An interesting and natural generalization of TAP is to consider three-dimensional shapes, i.e.,
polycubes. As it turns out, the local considerations for simply connected two-dimensional
shapes are no longer sufficient. In the following we show that deciding whether a polycube is
constructible is NP-hard. Moreover, it is NP-hard to check whether there is a constructible
path from a start cube s to an end cube t in a partial shape.

As a stepping stone, we start with a restricted version of the three-dimensional problem.

I Theorem 12. It is NP-hard to decide if a polycube can be built.

The proof is based on a reduction from 3SAT and omitted for lack of space; see full version [4]
for details.

The difficulties of construction in 3D are highlighted by the fact that even identifying
constructible connections between specific positions is NP-hard.

I Theorem 13. It is NP-hard to decide whether a path from one tile to another can be built
in a general polycube.

The proof proceeds by a reduction from SAT; see full version [4] for details.

6 Conclusion/Future Work

We have provided a number of algorithmic results for Tilt Assembly. Various unsolved
challenges remain. What is the complexity of deciding TAP for non-simple polyominoes?
While Lemma 4 can be applied to all polyominoes, we cannot simply remove any convex tile.
Clearly, TAP ∈ NP if the polyomino is encoded tile by tile, which is usually done in practice.
Can we find a constructible path in a polyomino from a given start and endpoint? This
would help in finding a

√
N -approximation for non-simple polyominoes. How can we optimize

the total makespan for constructing a shape? And what options exist for non-constructible
shapes?

An interesting approach may be to consider staged assembly, as shown in Fig. 9, where a
shape gets constructed by putting together subpolyominoes, instead of adding one tile at
a time. This is similar to staged tile self-assembly [10, 11]. This may also provide a path
to sublinear assembly times, as a hierarchical assembly allows massive parallelization. We
conjecture that a makespan of O(

√
N) for a polyomino with N tiles can be achieved.

All this is left to future work.
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Figure 9 (Left) A polyomino that cannot be constructed in the basic TAP model. (Right)
Construction in a staged assembly model by putting together subpolyominoes.
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Abstract
Graph orientations with low out-degree are one of several ways to efficiently store sparse graphs. If
the graphs allow for insertion and deletion of edges, one may have to flip the orientation of some
edges to prevent blowing up the maximum out-degree. We use arboricity as our sparsity measure.
With an immensely simple greedy algorithm, we get parametrized trade-off bounds between out-
degree and worst case number of flips, which previously only existed for amortized number of
flips. We match the previous best worst-case algorithm (in O(logn) flips) for general arboricity
and beat it for either constant or super-logarithmic arboricity. We also match a previous best
amortized result for at least logarithmic arboricity, and give the first results with worst-case O(1)
and O

(√
logn

)
flips nearly matching degree bounds to their respective amortized solutions.
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1 Introduction

An important building block in algorithmic theory and practice is the ability to store graphs
with low memory usage and fast query times. Classical storage methods are edge lists and
adjacency matrix, but both have pitfalls for sparse graphs: adjacency matrices use too much
memory, while edge lists can have slow adjacency queries and/or updates on high-degree
vertices. Much research has been devoted to improving these simple methods. The graph
parameter arboricity α is a well-known measure of a graph’s sparsity, which captures the
minimum number of forests the edges of a graph can be partitioned into. Kannan et al. [6]
showed how to efficiently store static graphs with low arboricity and supporting fast (O(α)
time) adjacency queries in the worst case.

Brodal and Fagerberg [3] extended this idea to consider dynamic graphs, where edges
may be arbitrarily inserted or deleted. If the arboricity of the graphs remains bounded
by a constant α, the forest partitions may be forced to change due to the updates. The
authors deal with this by considering the problem of orienting the edges of the dynamic
graph as in [6], but by re-orienting (“flipping”) edges as needed to maintain low out-degree.
They gave a simple greedy algorithm and proved that its amortized number of flips was
O(1)-competitive to the number of flips made by any other algorithm – even if that other
algorithm is afforded unlimited computational resources and knowledge of the entire sequence
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Table 1 Previous and new results for the dynamic edge orientation of dynamic graphs with
bounded arboricity α. Flip bounds are either amortized (am.) or worst-case (w.c.) per update.

Reference Out-degree Flips α known Note
Brodal & Fagerberg [3] O(α) O(logn) am. yes Ω(n) worst-case flips
Kowalik [8] O(α logn) O(1) am. yes uses alg. from [3]
Kopelowitz et al. [7] O(α+ logn) O(α+ logn) w.c. no
Kopelowitz et al. [7] O

( logn
log logn

)
O
( logn

log logn

)
w.c. no if α = O

(√
logn

)
He et al. [5] O

(
α
√

logn
)

O
(√

logn
)
am. yes uses alg. from [3]

He et al. [5] O(α logn) O(α logn) w.c. no
New (Corollary 18) O(α+ logn) O(logn) w.c. no
New (Corollary 19) O(α logn) O

(√
logn

)
w.c. no

New (Corollary 20) O(logn) O
(
α
√

logn
)
w.c. yes if α = O

(√
logn

)
New (Corollary 17) O

(
α log2 n

)
O(1) w.c. no

New (Corollary 16) O
(
α log2 n
f(n)

)
O(f(n)) w.c. no if f(n) = O(logn)

of updates in advance. In this paper, we will use the term ‘offline strategy’ to describe such
an algorithm. In particular, Brodal and Fagerberg showed how to maintain the out-degrees
bounded by O(α) with O(logn) amortized flips, where n is the number of vertices in the
graph. They also gave a lower bound of Ω(n) flips for maintaining the out-degrees bounded
by α. It is not hard to see that this bound holds even for α = 1.

Kowalik [8] gave another offline strategy and applied it to the algorithm by Brodal and
Fagerberg, getting O(α logn) out-degree in constant amortized flips, demonstrating that
a reasonable trade-off was possible. Both the algorithms of Brodal and Fagerberg [3] and
Kowalik [8] need to know, and use as a parameter, a bound on the arboricity of the graph.

Kopelowitz et al. [7] later found a different algorithm, which came with slightly worse
bounds but in the worst case rather than amortized. Their algorithm maintains O(α+ logn)
out-degree with O(α+ logn) flips, without knowing α. However, if α is known, they give an
alternate algorithm with somewhat faster running time but otherwise equal bounds. Also,
if α = O

(√
logn

)
, both bounds can be improved slightly to O(logn/ log logn) due to some

freedom in setting the base of the logarithmic terms.
He et al. [5] gave a new offline strategy with a parametrized trade-off between out-degree

and flips, generalizing the two strategies in [3] and [8]. When applied to the algorithm by
Brodal and Fagerberg it achieves O

(
α
√

logn
)
out-degree with O

(√
logn

)
amortized flips.

They also give another algorithm with worst-case bounds, nearly matching those in [7] but
with somewhat simpler pseudocode.

The problem was originally motivated by quick adjacency queries [6]. But rather than
making an explicit dictionary data structure, we focus on the problem of dynamically flipping
edges to guarantee low maximum out-degree. This allows us to ignore lower bounds for
dictionary operations, and we deliberately omit comparisons of update time complexity
as they might be skewed unfairly in our favor. It is straightforward to create such a data
structure on top of our machinery, should one so desire, by extending our solution to report
which edges are flipped. This allows programmers to tailor the balance between update and
query time to suit their own needs.

Dynamic edge orientations have recently become a very popular building block in dynamic
graph algorithms, especially for maintaining maximal matchings; see e.g. [1] [2] [10] [11] [12].
For an overview of other applications, we refer to the appendix in the full version of [7].
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1.1 Our contribution

We present a new algorithm for maintaining an edge orientation of a dynamic graph, with a
guarantee of low out-degree and worst-case number of flips. Like many previous solutions we
relate the performance to the arboricity α of the dynamic graph, but unlike some previous
works, ours does not require knowledge of the arboricity in the general case. Our algorithm
is furthermore much simpler than previous ones, and uses queues as the only under-the-hood
data structure. It owes its simplicity to the fact that it greedily chooses which edge to flip.

By controlling a run-time parameter, our algorithm allows a user-specified trade-off
between the out-degree and the number of flips; this was previously only possible for
algorithms with amortized number of flips. Depending on the choice of the parameter,
the algorithm can maintain e.g. O(α+ logn) out-degree with O(logn) flips, or O

(
α log2 n

)
out-degree with constant flips. Various other parameter settings are possible. We match
or improve all known bounds with worst-case flips, except when the arboricity is within a
specific, very narrow range.

2 Preliminaries

The arboricity of a graph G is the smallest number t such that the edges of G can be
partitioned into t forests. Several equivalent definitions are used throughout the literature.
We use arboricity(G) to denote the arboricity of G. A graph G with bounded arboricity
arboricity(G) ≤ α is sparse: any induced subgraph of G on n′ ≤ n vertices contains at most
(n′−1)α edges. Note that while bounded arboricity graphs have no dense neighbourhood they
can still have vertices of arbitrarily high degree, e.g. stars have arboricity 1 but maximum
degree n− 1.

We say that G = G0, G1, G2, . . . , Gt is an edit-sequence of graphs if for each i > 0
there exists some edge (u, v) s.t. either Gi = Gi−1 ∪ {(u, v)} (update i is an insertion) or
Gi = Gi−1 \ {(u, v)} (update i is a deletion). We typically assume G0 = ∅. We say that G
has bounded arboricity (by a number α), or that arboricity(G) ≤ α, if arboricity(Gi) ≤ α

for every i.
An orientation of a graph G is a directed graph G with the same vertex and edge sets

as G, but where an undirected edge (u, v) ∈ G exists as the directed edge (u, v) or (v, u) in G.
We use deg(G) to denote the maximum out-degree of G; it is a c-orientation if deg(G) ≤ c.
Any graph G with arboricity(G) ≤ α has an α-orientation; to see this, partition the edges
into α forests, pick an arbitrary root in every tree, and direct every edge towards the root of
its respective tree.

We say that G = G0, G1, . . . , Gt is a sequence of orientations of G if every Gi is an
orientation of Gi. Similarly, G is a c-orientation if every Gi is a c-orientation. A flip is a
triple (i, v, u) such that (v, u) is an edge in Gi−1 and (u, v) is an edge in Gi.

An offline c-orientation strategy κ is some method that takes G and produces a c-
orientation G. By abusing notation we will also use κ to refer to the G produced by κ.

An online c-orientation algorithm A is analogous to the offline strategy, except that it
receives G as a stream and has only a single Gi stored in memory at any time. Hence, upon
receiving update i, it produces Gi as a function of Gi and Gi−1 and then forgets Gi−1. We
also say that A maintains an online c-orientation of G.

We say that κ or A makes σ flips (in the worst case) if the number of flips between any
two updates i, i+ 1 is at most σ, and that it makes σ amortized flips if after any update i
the total amount of flips is at most σi.
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Note the difference in wording: a strategy has access to the whole sequence G and produces
the entire c-orientation at once, possibly using brute force. The online algorithm instead sees
G as a stream of unknown length and, after every update i, produces only a single “current”
orientation.

3 The algorithm

The algorithm takes an edit-sequence of graphs G as an online stream, and a positive integer
parameter k. Each vertex v maintains a standard FIFO queue Qv which holds all of its
out-edges. On an insertion (deletion) update, orient the new edge arbitrarily (delete the edge
via object reference) and then k times pick a vertex v with maximum out-degree and flip the
first edge in Qv. The book-keeping of out-degrees is trivial by using e.g. a degree-indexed
array and a pointer to the maximum degree. We do not explicitly support queries. See
pseudocode below for ease of reading.

Algorithm 1 Greedy flipping algorithm

procedure insertion(v, u)
push (v, u) to Qv
k-flips

procedure deletion(v, u)
remove (v, u) from Qv
k-flips

procedure k-flips
for i = 1 to k do

let v be a max out-degree vertex
pop an edge (v, u) from Qv
push (u, v) to Qu

4 Analysis

To show the efficiency of Algorithm 1, we will prove that its out-degree is competitive to an
unknown offline strategy. For given G and k, let δ, σ and ε be values satisfying the following
conditions: (i) there exists an offline δ-orientation strategy κ of G making at most σ flips in
the worst case, (ii) 0 < ε ≤ 1, and (iii) k ≥ 1 + 1/ε+ 2σ.

I Theorem 1. Algorithm 1 maintains an online O(δ + (δε+ 1) log2 n)-orientation of G with
k flips and in O(k) time.

Note that Algorithm 1 is completely oblivious to the values of δ, σ and ε, as well as any graph
properties of G itself. The number of flips, and hence the running time, in Theorem 1 is
trivial from the pseudocode. The rest of this section is dedicated to proving the bound on the
out-degree. While the proof is quite non-trivial, the roadmap thereof is easy. We will associate
potentials on all edges, such that the potential of an edge depends on where it is stored. Then
we show that the total potential cannot increase, unless the maximum out-degree is O(δ) in
which case the potentials do not matter. Finally we re-interpret the moving of potentials
as a game, where even an adversary cannot concentrate more than O((δε+ 1) logn) extra
potential in any single vertex – this also (roughly) bounds the maximum out-degree.

For purposes of analysis, we consider each queue Qv to be two queues, the Front Fv and
Back Bv. Edges are always inserted into Bv, and extracted from Fv. If Fv is empty when
an edge should be extracted from Qv, simply swap the two queues (by renaming) and then
continue. It should be trivially clear that this is equivalent to using a single queue. We say
an edge was flipped from v and to u if it was removed from Qv/Fv and inserted into Qu/Bu.
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Table 2 Potential by type and placement in queue.

Front Back
Good 1 + 2ε 1− ε
Bad (first 3δ) 1 1 + ε

Bad (rest) 1 1

To bound the maximum out-degree, we introduce potentials on the edges. At update i,
we say that an edge in Gi is good if it has the same orientation as in κ(Gi) and bad otherwise.
Good edges have 1 + 2ε potential if they are in a Front queue and 1− ε in a Back queue.
Bad edges have potential 1, except for the first 3δ bad edges in any Back queue which have
potential 1 + ε. Let p(v) be the sum of potentials of all edges stored in Qv, p̂(G) = maxv p(v)
and P (G) =

∑
v p(v). When we need to differentiate the potential of a vertex in a specific

orientation Gi, we use pi(v) to denote p(v) at the time that the algorithm was storing Gi.
Since Algorithm 1 does not know the values of δ or ε, it cannot determine the exact

potential of a vertex. But as the following lemma shows, the out-degree of a vertex is a
close approximation of its potential. We will prove the theorem by bounding the maximum
potential of any vertex, which then implies a bound on its degree.

I Lemma 2. For any vertex v, deg(v) + 5δε ≥ p(v) ≥ deg(v)− δε.

Proof. For the upper bound, all edges contribute a base 1 potential, accounting for the
deg(v) term. Note that at most δ out-edges of v are good. If they are all placed in Fv, they
contribute an extra 2δε. At most 3δ bad edges in Bv contribute an extra ε each, giving at
most 5δε extra potential in total.

For the lower bound, only good edges in Bv can contribute less than 1 potential. Again
there are at most δ of these and they contribute ε less, giving at least deg(v)− δε potential
in the vertex. J

Let β = 6δε be the resolution of the system. The following states that the potential of
the highest-degree vertex is not too far from the maximum potential of any vertex.

I Lemma 3. Let u be some vertex with maximum potential, and let v be some maximum
out-degree vertex. Then p(u)− p(v) ≤ β.

Proof. By Lemma 2, the potential of v is at least p(v) ≥ deg(v) − δε and the potential
of u is at most p(u) ≤ deg(u) + 5δε ≤ deg(v) + 5δε. Rearranging we get p(u) − p(v) ≤
deg(v) + 5δε− (deg(v)− δε) = 6δε = β. J

I Lemma 4. Assume a vertex v has an empty Fv and at least 4δ edges in Bv. Then swapping
Fv and Bv does not increase p(v).

Proof. The Back queue contains at most δ good edges and at least 3δ bad edges, hence
exactly 3δ bad edges carry an extra ε potential which is released when moving from Bv to Fv.
This 3δε potential is enough to raise the potential of all δ good edges from 1− ε to 1 + 2ε.
Any surplus potential is lost. J

I Lemma 5. Let v have out-degree at least 4δ. Then flipping an edge from v releases at
least ε potential.

Proof. By Lemma 4 we can assume Fv is non-empty. Let (u, v) be the edge moved from Fv
to Bu. Note that if the edge was previously good it is now bad, and vice versa. Hence its
potential decreases either from 1 + 2ε to at most 1 + ε, or from 1 to 1− ε. J
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I Lemma 6. Let S be any suffix of the sequence of flips performed by Algorithm 1 after
some update. Let d = deg(G) at the start of S. Then deg(G) ≤ d+ 1 after S.

Proof. Note that flips can increase the maximum degree only if there are at least two vertices
u, v with maximum degree, and the algorithm flips an edge incident on both of them. As
soon as some vertex reaches degree d+ 1, it will be the only vertex of maximum degree and
immediately fall down to degree d in the following flip. Consequently no sequence of flips can
raise a second vertex to degree d+ 1, which is a necessary condition for raising any vertex to
degree d+ 2. J

I Lemma 7. Let v be a vertex that had an edge flipped from it on update i. Then degGi
(v) ≥

deg(Gi)− 2.

Proof. Take the suffix S of flips that begins with the last flip from v. Before S, v had
maximum out-degree d. After S, d− 1 ≤ deg(v) and deg(Gi) ≤ d+ 1 by Lemma 6. J

Consider the algorithm as it receives an update i. We say that the currently stored
graph Gi−1 has sufficient degree if each of the k flips associated with update i is from a
vertex with out-degree at least 4δ. Conversely, we say the graph Gi−1 has insufficient degree
if at least one of the k flips is from a vertex with out-degree less than 4δ.

I Lemma 8. If Gi−1 has insufficient degree, then deg(Gi) = O(δ).

Proof. Since some edge was flipped from a vertex with out-degree d < 4δ, it follows from
Lemma 6 that deg(Gi) ≤ d+ 1 ≤ 4δ. J

I Lemma 9. If Gi−1 has sufficient degree, then P (Gi) ≤ P (Gi−1).

Proof. Assume update i is an insertion. The new edge is inserted into a Back queue, and
adds at most 1 + ε potential. The offline strategy κ makes at most σ flips, which causes σ
stored edges to swap their classification (“renaming”) from good to bad or vice versa. A
Front edge that was bad increases potential from 1 to 1 + 2ε, and a Back edge that was good
increases from 1− ε to 1 or 1 + ε. The renaming can therefore increase the total potential by
at most 2σε. Each flip frees ε potential by Lemma 5 and the assumption of sufficient degree,
so the total potential does not increase as long as kε ≥ 1 + ε+ 2σε. This is guaranteed by
the choice of parameters.

If the update was instead a deletion, the flips still release kε potential while even less
potential is inserted. J

Note that the potential of the system can increase on both insertion and deletion updates
if the graph has insufficient degree, since we cannot rely on Lemma 4 to ensure that the
potential of a vertex is well-behaved when flipping edges from it. Also note that if κ is known
not to perform any flips on deletion updates, no potential gets added to the system and so
our algorithm can also forgo flipping on deletions.

So far we have shown that either the maximum out-degree is O(δ), or we have a non-
increasing quantity of potential and the degree of each vertex is closely approximated by its
own potential. We next bound the maximum out-degree via a counter game, disassociated
from the actual graph orientation, played by an adversary whose goal it is to concentrate as
much potential as possible in a single counter. Counter games have been explored previously,
under various names, in e.g. [4] and [9]: typically they may be thought of as two-player
games where the second player is benevolent. Our game is different because the lone player
is instead restricted by the concept of resolution β.
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Formally, the game is played by a single player on n counters x1, . . . , xn. Each counter xi
will hold a non-negative real-valued weight |xi|, and the sum of weights is a constant∑

i |xi| = X. Any such distribution of X on the n counters is called a game configuration C.
Let x̂ = maxi |xi| be the maximum weight at any time. The player can perform arbitrarily
many iterations of the following three-step operation: (i) pick a counter xi and a c > 0 such
that |xi| − c ≥ max(0, x̂− β − 2), (ii) remove c weight from xi and (iii) add positive weights
whose sum is c to any set of counters.

The player is therefore allowed to redistribute weight to arbitrary counters, but must take
it in not-too-large chunks from counters that are within the resolution (here β + 2) of the
maximum counter. Before upper-bounding x̂, we show that the player is powerful enough
to simulate the movement of potentials by Algorithm 1. We say a game configuration C
dominates a graph orientation G if |xj | ≥ p(vj) for every j.

I Lemma 10. Let i be an update such that Gi−1 has sufficient degree. Let C be a game
configuration that dominates Gi−1. Then the player can reach a game configuration C ′ that
dominates Gi.

Proof. We need to show that if some vertex gains potential (so its corresponding counter
no longer dominates it), then we can safely take enough weight from other counters to fill
that ‘gap’. Keep in mind that the total potential does not increase (Lemma 9). Since the
player is allowed to redistribute weight to any counter, we let the gaps be filled in arbitrary
order and only show that enough weight can be taken from other counters to make up the
difference. If x̂ > p̂(Gi−1) then greedily take weight from all counters greater than p̂(Gi−1)
to get x̂ = p̂(Gi−1).

Let vj be a vertex that had an edge flipped from it. Then its resulting out-degree
is degGi

(vj) ≥ deg(Gi) − 2 (Lemma 7) and its potential is pi(vj) ≥ degGi
(vj) − δε ≥

deg(Gi) − 2 − δε (Lemma 2). Also by Lemma 2 the maximum potential in the system is
p̂(Gi) ≤ deg(Gi) + 5δε. Hence the final potential of vj is within 6δε + 2 = β + 2 of the
maximum potential. As the rules of the counter game allow us to take weight up to β + 2
from the maximum counter, then however much potential vj lost we can take at least the
same amount of weight from its corresponding counter xj .

Conversely, if a vertex loses potential but its resulting potential is not at least p̂(Gi)−β−2,
it must have lost that potential due to deletion or renaming rather than flipping. Its counter
can safely be left untouched and still dominate the potential of the vertex.

Since the sum of potential decreases (by flipping) is at least as large as the sum of increases
(for any reason) (Lemma 9), and for any vertex that lost potential by flipping we can remove
at least as much weight from its counter, then we can redistribute enough weight to raise the
too-low counters to again dominate their respective vertex potentials. The updated counters
form a game configuration that dominates Gi. J

I Lemma 11. Let Ga, . . . , Gb be any sequence of orientations such that Gi has sufficient
degree for every a ≤ i ≤ b. Consider a game with starting configuration Ca that dominates
Ga, with x̂ = p̂(Ga). Then the player can reach game configurations Ca, . . . , Cb where Ci
dominates Gi for every a ≤ i ≤ b.

Proof. For every a < i ≤ b iterate Lemma 10 on Ci−1 to create Ci. J

We now let an adversary play the game, with the goal to increase x̂ as much as possible.
For simplicity we assume that every counter is raised to x̂ as the starting configuration.
For j = −1, 0, 1, 2, . . . let `j = X/n + j(β + 2) be weight level j. A counter xi is above
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level j, or above `j , if |xi| ≥ `j . Let Xj =
∑n
i=1 max(0, |xi| − `j) be the weight above `j , and

Xj = X −Xj the weight below `j . We say a counter xi contributes max(0, |xi| − `j) to Xj

and min(|xi|, `j) to Xj .

I Lemma 12. Let j be a weight level such that `j ≤ x̂. Let the player make any sequence of
moves that maintain the condition `j ≤ x̂. Then Xj−1 does not increase.

Proof. Note that any counter xi contributes min(|xi|, `j−1) to Xj−1. By assumption there
will always be a counter xk with `j ≤ |xk|. Hence the resolution rule prevents the player
from making any counter contribute less to Xj−1 than it already does. Since X is a constant
and Xj−1 is non-decreasing, Xj−1 = X −Xj−1 is non-increasing. J

Since `0 = X/n is the average weight of all counters, it must always be the case that x̂ ≥ `0
and X−1 ≤ n(β + 2).

I Lemma 13. Let j be a weight level such that `j ≤ x̂ ≤ `j+1. Let the player make any
sequence of moves that maintain the condition `j ≤ x̂ ≤ `j+1. Then 2Xj ≤ Xj−1.

Proof. By Lemma 12, Xj−1 is a non-increasing amount. Let xi be any counter that will
contribute some positive weight w to Xj . Since the player maintains that x̂ ≤ `j+1, no
counter will be able to contribute more than `j+1 − `j = β + 2 to Xj , i.e. 0 < w ≤ β + 2.
Then xi must contribute w + β + 2 to Xj−1. Hence any counter that contributes to Xj

contributes at least twice as much to Xj−1, and 2Xj ≤ Xj−1. J

The player is therefore stuck in the following dilemma: once x̂ reaches some level `j , only a
bounded amount Xj−1 of weight remains available to redistribute. But once x̂ reaches `j+1,
only the weight above `j will be possible to redistribute. Therefore, in order to concentrate as
much weight as possible above `j+2, the player must first maximize Xj without any counter
actually reaching above `j+1.

I Lemma 14. The player cannot increase x̂ to `1+log2 n.

Proof. Assume x̂ ≥ `log2 n. By alternatingly iterating Lemma 12 and Lemma 13, the weight
above `log2 n is Xlog2 n ≤

( 1
2
)1+log2 nX−1 = 1

2nX−1 ≤ 1
2nn(β + 2) < β + 2. Since the weight

is strictly less than β + 2, even concentrating all of it in a single counter is not enough to
make that counter reach `1+log2 n. Hence x̂ < `1+log2 n. J

We are now ready to prove the out-degree part of Theorem 1.

Proof of Theorem 1. Either the graph orientation has insufficient degree and maximum out-
degree O(δ) (Lemma 8) or it has non-increasing potential (Lemma 9) which is dominated by a
counter game where the starting weight of any counter is O(δ) (Lemma 11). By Lemma 14, the
maximum counter is x̂ < `1+log2 n = O(δ)+(1+log2 n)(β+2). By Lemma 2, deg(v) ≤ p(v)+δε,
and therefore any vertex has out-degree bounded by O(δ) + (1 + log2 n)(β + 2) + δε =
O(δ + (δε+ 1) log2 n). J

5 De-amortizing offline strategies

In the previous work by Brodal and Fagerberg [3], their amortized algorithm is shown
competitive with an offline strategy with bounded amortized number of flips, and hence
subsequently published strategies have focused on achieving good amortized bounds. However,
for our algorithm analysis, we require an offline strategy with worst-case flips per update.
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In this section we show one way to de-amortize offline strategies. Our technique does not
generalize to every offline strategy, but relies on the special structure inherent to the strategies
of both [7] and [5]. These strategies partition the edit-sequence into blocks of consecutive
updates, with some length λ. No flips occur within a block, only in the seams between two
blocks. The amortized flip complexity of these strategies is therefore simply the maximum
number of flips between two blocks, divided by the length λ of the preceding block.

Since no flips are allowed within a block, the strategy is required to find an orientation of
the union of all graphs Gi, . . . , Gi+λ−1 within a block. The maximum out-degree of the entire
strategy is therefore upper bounded by the maximum out-degree of any oriented union-graph.
Higher λ gives a less sparse union-graph, necessitating higher out-degree, but also allows for a
better amortized flip complexity. The following theorem shows a simple way of de-amortizing
strategies with this structure, by taking all the flips between two blocks and spreading them
evenly over the updates in the later block.

I Theorem 15. Let κ be a δ-orientation strategy of G where, for arbitrary λ, any update with
σλ flips is followed by at least λ− 1 updates with no flips. Then there exists a 2δ-orientation
strategy of G making σ flips in the worst case.

Note that if the last block of flips is not followed by λ− 1 updates due to G ending, then one
can pad G to appropriate length by repeatedly inserting and removing a dummy edge after
the end of G. Also note that λ can vary within the same sequence – blocks do not need to be
of uniform length.

Proof. Let i be an update where κ performs a set of λσ flips. Let F be the set of flipped
edges. Let κ′ be an offline strategy with the same edge orientations as κ except on updates
i, . . . , i+ λ− 1. On any insertion update i, . . . , i+ λ− 1, let κ′ orient the new edge in the
same direction as κ. Furthermore, on each update i, . . . , i+ λ− 1, κ′ takes σ arbitrary edges
in F , removes them from F , and flips them.

Then F will be empty after update i+ λ− 1, so κ(Gi+λ−1) = κ′(Gi+λ−1). At all times
F forms a δ-orientation, since F is a subset of κ(Gi−1). Similarly, κ′(Gj) \F is δ-orientation
for every i ≤ j ≤ i+ λ− 1, since they are a subset of κ(Gj). Hence κ′ is a 2δ-orientation.
Finally, κ′ performs at most σ flips per update between updates i and i+ λ− 1; exhaustively
perform the same transformation on all of κ for σ flips on any update. J

6 Discussion

With our two theorems proven, we can relate the algorithm to known offline strategies and
achieve the following corollaries. In all of the following, G is an arbitrary edit-sequence with
arboricity(G) ≤ α.

Kowalik [8] presents an offline O(α logn)-orientation strategy making 1 amortized flip.
Using Theorem 15 we can de-amortize it to an offline O(α logn)-orientation strategy making
1 flip in the worst case, giving the following two corollaries.

I Corollary 16. For a positive function f(n) = O(logn), Algorithm 1 maintains an
O
(
α log2 n
f(n)

)
-orientation with k = 3 + df(n)e flips.

Proof. Let δ = O(α logn), σ = 1 and ε = 1/f(n). Then the algorithm maintains out-degree
O
(
α logn+

(
α logn
f(n) + 1

)
logn

)
= O

(
α log2 n
f(n)

)
. J

I Corollary 17. Algorithm 1 maintains an O
(
α log2 n

)
-orientation of G with k = 4 flips.
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Proof. Let f(n) ≡ 1 in Corollary 16. J

Corollary 17 is the first result with O(1) worst-case flips. Compared to [8] (with O(1)
amortized flips), it incurs an extra O(logn) factor on the out-degree, but avoids the Ω(n)
worst-case flips which that algorithm can experience.

Brodal and Fagerberg [3] give an offline O(α)-orientation strategy with O(logn) flips in
the worst case. It only makes flips on insertion updates.

I Corollary 18. Algorithm 1 maintains an O(α+ logn)-orientation of G with k = O(logn)
flips.

Proof. Let δ = O(α), σ = O(logn) and ε = 1/ logn. Then the algorithm maintains
out-degree O

(
α+

(
α

logn + 1
)

logn
)

= O(α+ logn). J

He et al. [5] give an offline O
(
α
√

logn
)
-orientation strategy making O

(√
logn

)
amortized

flips, which we de-amortize using Theorem 15.

I Corollary 19. Algorithm 1 maintains an O(α logn)-orientation of G with k = Θ(
√

logn)
flips.

Proof. Let δ = O
(
α
√

logn
)
, σ = O

(√
logn

)
and ε = 1/

√
logn. Then the algorithm

maintains out-degree O
(
α
√

logn+
(
α
√

logn√
logn

+ 1
)

logn
)

= O(α logn). J

I Corollary 20. Algorithm 1 maintains an O(logn)-orientation of G with k = O
(
α
√

logn
)

flips, if α = O
(√

logn
)
.

Proof. Let δ = O
(
α
√

logn
)
, σ = O

(√
logn

)
and ε = 1/α

√
logn. Then the algorithm

maintains out-degree O
(
α
√

logn+
(
α
√

logn
α
√

logn
+ 1
)

logn
)

= O(logn). J

Corollary 19 is an improvement over [7] in the flip complexity for edit-sequences with
arboricity bounded by a constant. For α = O

(√
logn/ log logn

)
, Corollary 20 matches or

improves the flip complexity from [7], albeit with a slightly worse degree bound, and only if
α is known. If α is both O

(√
logn

)
and ω(

√
log(n)/ log logn) we are narrowly outperformed

by [7], by no more than an O(log logn) factor.
Corollary 19 also nearly matches the degree bound in [5] but with worst-case flips instead

of amortized. Corollary 18 matches the bounds in [7] for general arboricity and improves on
their flip complexity if α = ω(logn). Furthermore, if α = Ω(logn), Corollary 18 matches the
amortized bounds from [3].

6.1 Reverse trade-off
Compared to an offline strategy, our analysis lends itself to a trade-off in one direction,
getting (at most) an O(logn) factor on the out-degree for a constant factor on the number of
flips. It allows us to perform much fewer flips than in [7] at the price of weaker degree bounds.
A trade-off in the opposite direction would also be highly desirable, achieving out-degree
(closer to) O(δ) by making Ω(σ) flips. We have only found a very weak such trade-off:

I Lemma 21. Algorithm 1 can maintain an O(α)-orientation of G with k = O(αn) flips.
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Proof. Let δ = O(α) and ε = 1 (the value of σ is inconsequential). Then each edge holds
between 0 and 3 potential. And since any Gi has at most αn edges (by definition of arboricity),
the total potential is between 0 and 3αn. Furthermore each flip releases 1 potential from the
system, contingent on the graph having sufficient degree (Lemma 5). Hence after performing
at most 3αn flips on any starting orientation Gi, we must reach a state where the next
flip does not release potential, contradicting Lemma 5, and so by Lemma 8 the graph has
out-degree at most 4δ = O(α) after all flips. J

Lemma 21 only matches the worst-case bound of the algorithm in [3], which has drastically
better amortized performance. Hence it should not be used in practice. Still, we believe a
stronger reverse trade-off is possible and conjecture the following:

I Conjecture 22. For some function f , Algorithm 1 maintains an online O
(
δ + σ+1

f(k)δ logn
)
-

orientation of G with k flips and in O(k) time.

6.2 Dynamic arboricity
Throughout the paper we have done all our performance analysis against a static arboricity
bound, i.e. a bound on the greatest arboricity seen anywhere in the edit-sequence. An
interesting issue arises if the sequence contains contiguous sub-sequences, of non-trivial
length, with higher or lower arboricity than elsewhere in the sequence. Some previous
algorithms, e.g. one of the algorithms in [7] and the non-amortized algorithm in [5], adapt to
increasing and decreasing arboricity automatically.

Our analysis immediately adapts to sequences with increasing arboricity, since the analysis
can be performed on any prefix (or contiguous sub-sequence) of G. In the case of periods
with lower arboricity than earlier in the sequence, our algorithm obeys the new arboricity if
the maximum out-degree is already within that new bound. In other words, if the maximum
out-degree is already bounded relative to the new arboricity, then it will remain so. However,
if the arboricity falls enough that the current maximum out-degree breaks the new bounds,
our analysis does not require the maximum out-degree to decrease accordingly. Intuitively,
using a k strictly larger than 1 + 1/ε+ 2σ (thus experiencing a net loss of total potential with
every update) should force the maximum out-degree to tend towards the updated degree
bounds, similar to the proof of Lemma 21. However, we do not have a formal argument for
this.

6.3 Open problems
For all known strategies that maintain out-degree δ with σ (amortized) flips, it holds
that δσ = Ω(α logn) and most achieve δσ = Θ(α logn). Can one design a strategy with
δσ = o(α logn)?
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Abstract
The crossing number is the smallest number of pairwise edge crossings when drawing a graph
into the plane. There are only very few graph classes for which the exact crossing number is
known or for which there at least exist constant approximation ratios. Furthermore, up to now,
general crossing number computations have never been successfully tackled using bounded width
of graph decompositions, like treewidth or pathwidth.

In this paper, we for the first time show that crossing number is tractable (even in linear
time) for maximal graphs of bounded pathwidth 3. The technique also shows that the crossing
number and the rectilinear (a.k.a. straight-line) crossing number are identical for this graph class,
and that we require only an O(n)×O(n)-grid to achieve such a drawing.

Our techniques can further be extended to devise a 2-approximation for general graphs with
pathwidth 3, and a 4w3-approximation for maximal graphs of pathwidth w. This is a constant
approximation for bounded pathwidth graphs.
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1 Introduction

The crossing number cr(G) is the smallest number of pairwise edge-crossings over all
possible drawings of a graph G into the plane. Despite decades of lively research, see
e.g. [25, 26], even most seemingly simple questions, such as the crossing number of complete
or complete bipartite graphs, are still open, cf. [23]. There are only very few graph classes,
e.g., Petersen graphs P (3, n) or Cartesian products of small graphs with paths or trees,
see [4, 20, 24], for which the crossing number is known or can be efficiently computed.
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Considering approximations, we know that computing cr(G) is APX-hard [5], i.e., there
does not exist a PTAS (unless P = NP). The best known approximation ratio for general
graphs with bounded maximum degree is Õ(n0.9) [10]. We only know constant approximation
ratios for special graph classes. In fact, all known constant approximation ratios are based
on one of three concepts: Topology-based approximations require that G can be embedded
without crossings on a surface of some fixed or bounded genus [13,16,17]. Insertion-based
approximations assume that there is only a small (i.e., bounded size) subset of graph elements
whose removal leaves a planar graph [6–9]. In either case, the ratios are constant only if we
further assume bounded maximum degree. Finally, some approximations for the crossing
number exist if the graph is dense [12].

While treewidth and pathwidth have been very successful tools in many graph algorithm
scenarios, they have only very rarely been applied to crossing number: Since general crossing
number seems not to be describable with second order monadic logic, Courcelle’s result [11]
regarding treewidth-based tractability can only be applied if cr itself is bounded [14, 18].
The related strategy of “planar decompositions” lead to linear crossing number bounds [27].

Contribution. In this paper, we for the first time show that such graph decompositions,
in our case pathwidth, can be used for computing crossing number. We show for maximal
graphs G of pathwidth 3 (see Section 3):

We can compute the exact crossing number cr(G) in linear time.
The topological cr(G) equals the rectilinear crossing number cr(G), i.e., the crossing
number under the restriction that all edges need to be drawn as straight lines.
We can compute a drawing realizing cr(G) on an O(n)×O(n)-grid.

We then generalize these techniques to show:
A 2-approximation for cr(G) and cr(G) for general graphs of pathwidth 3, see Section 4.
A 4w3-approximation for cr(G) for maximal graphs of pathwidth w, see Section 5. This
can be achieved by placing vertices and bend points on a 4n×wn grid.

Observe that in contrast to most previous results, these approximation ratios are not
dependent on the graph’s maximum degree. As a complementary side note, we show (in the
full version of the paper, see [1]) that the weighted (possibly rectilinear) crossing number is
weakly NP-hard already for maximal graphs with pathwidth 4.

Focusing on graphs with bounded pathwidth may seem very restrictive, but in some sense
these are the most interesting graphs for crossing minimization because Hliněný showed that
crossing-number critical graphs have bounded pathwidth [15].

2 Preliminaries

We always consider a simple undirected graph G with n vertices as our input. A drawing of
G is a mapping ϕ of vertices and edges to points and simple curves in the plane, respectively.
The curve ϕ(e) of an edge e = (u, v) does not pass through any point ϕ(w), w ∈ V (G),
but has its ends at ϕ(u) and ϕ(v). When asking for a crossing minimum drawing of G,
we can restrict ourselves to good drawings, which means that adjacent edges do not cross,
non-adjacent edges cross at most once, and no three edges cross at the same point of the
drawing. For other drawings, straightforward redrawing arguments, see e.g. [25], show that
the crossing number can never increase when establishing these properties.

A clique is a complete graph and a biclique is a complete bipartite graph. While the
exact crossing number is unknown for general cliques and bicliques, there are upper bound
constructions, conjectured to attain the optimal value. In particular the old construction
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due to Zarankiewicz, attaining bn1
2 cb

n1−1
2 cb

n2
2 cb

n2−1
2 c crossings for Kn1,n2 , is known to give

the optimum for n1 ≤ 6 [19].
A prominent variant of the traditional (“topological”) crossing number cr(G) is the

rectilinear crossing number cr(G) ≥ cr(G), sometimes also known as geometric or straight-
line crossing number. Thereby, edges are required to be drawn as straight line segments
without any bends. Interestingly, while we know cr(G) > cr(G) in general (e.g., already
for complete graphs), Zarankiewicz’s construction is a straight-line drawing, suggesting that
maybe cr(G) = cr(G) for bicliques.

Alternating path decompositions and clusters. There are several equivalent definitions
of pathwidth; we use here the one based on tree decompositions, see e.g. [21]. A path
decomposition P of a connected graph G consists of a finite set of bags {Xi | 1 ≤ i ≤ ξ ∈ N},
where each bag is a subset of the vertices of G, such that for every edge (v, w) at least one
bag contains both v and w, and for every vertex v of G the set of bags containing v forms
an interval (i.e., the underlying graph formed by the bags is a path). The indexing of the
bags gives a total ordering and we may speak of first, last, preceding, and succeeding bags.
The width of a path decomposition is the maximum cardinality of a bag minus one, i.e.,
max1≤i≤ξ |Xi|−1. The pathwidth w := w(G) of G is the smallest width that can be achieved
by a path decomposition of G. A maximal pathwidth-w graph is a graph of pathwidth w for
which adding any edge increases its pathwidth. In particular, this implies that the vertices in
each bag form a clique. We assume that n > w + 1; otherwise G is a clique and the crossing
number is 0 for w = 3 and easily approximated within a factor of O(1) for bigger w (e.g.,
via the crossing lemma [22]).

Several additional constraints can be imposed on the bags and the path decomposition
without affecting the required width. We use a variant of a nice path decomposition that
we call an alternating path decomposition (see Fig. 1); one can easily show that such a
decomposition exists:

There are exactly ξ = 2n− 2w− 1 bags.
|Xi| = w + 1 if i is odd and |Xi| = w if i is even.
For any even 1 < i < ξ, we have Xi−1 ⊃ Xi ⊂ Xi+1.

Note that for any odd i there is exactly one vertex v that is in Xi but not in bag Xi+1. We
say that v is forgotten by bag Xi+1. Similarly, bag Xi contains exactly one vertex v that was
not in bag Xi−1. We say that v is introduced by bag Xi. We define the age-order {v1, . . . , vn}
of the vertices of G as follows: v1 is forgotten by X2; v2, . . . , vw+1 are the other vertices of
bag X1 in arbitrary order. The order of the remaining vertices corresponds to the order of
the bags by which they are introduced. We say that vi is older than vj if i < j, so the three
oldest vertices are v1, v2, v3. Note that we can choose v2, v3 arbitrarily among X1 − {v1}. In
particular, if two vertices p, q ∈ X1 are specified, then we can ensure that they are among
the three oldest; this will be exploited in Section 4.2.

In our algorithms and proofs, we will work with special subsets of bags called clusters.
Let G be a connected graph of pathwidth 3 with an alternating path decomposition P =
{Xi}1≤i≤ξ. Consider a set of three vertices Y that constitute at least one bag (this bag
has an even index). There can be several such bags with exactly those vertices, but all
bags containing Y are consecutive. For any such Y , we define a cluster C as the maximal
consecutive set of bags that all contain Y . We say that T (C) := Y is the anchor-triplet of C.
Any cluster has at least 3 bags. They alternate between size 4 and 3, starting and ending
with size-4 bags. Two consecutive clusters overlap in exactly one bag (which consequently
has size 4). The order of the bags induces a unique order of the clusters {C1, . . . , Cκ} =: C.
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1 2 3 4 5 6 7
9 10

8

432 432 432 432 382 382

1423 64235423 10328932884237423

C1 C2=κ

Figure 1 (left) A graph, with vertices in age order according to P. (right) Its alternating path
decomposition P of width 3, with two clusters: C1 has T (C1) = {2, 3, 4}, and consists of all bags
containing this anchor-triplet. Analogously, we have T (C2) = {2, 3, 8}. In C1, the lost vertex is
x−

1 = 1 and the emerging vertex is x+
1 = 8.

Note that a cluster C can be described as a set of bags, or by its anchor-triplet. Denote
the vertices that appear in the union of bags of C by V (C), and let n(C) := |V (C)|. The
following observation is trivial (because any vertex of the anchor-triplet of C belongs to all
bags of C) but crucial for our analysis.

I Observation 1. Let G be a maximal pathwidth-3 graph and let C be a cluster. Then the
graph induced by V (C) consists of the triangle induced by T (C) and (edge-disjoint) a biclique
K3,n(C)−3 with one partition being T (C).

We define the emerging vertex of Ci, denoted by x+
i , as the vertex introduced by the

last bag of Ci. Note that x+
i belongs to the anchor-triplet of the next cluster Ci+1 if i < κ.

We define the lost vertex of Ci, denoted by x−i , as the vertex that was forgotten by the
second bag of Ci. Note that x−i belongs to the anchor-triplet of the previous cluster Ci−1
if i > 1, but not to the anchor-triplet of Ci. Observe that x−1 = v1, x+

κ = vn, x+
i−1 6= x−i

and T (Ci) = T (Ci−1) ∪ {x+
i−1} \ {x

−
i } for all 2 ≤ i ≤ κ. For notational simplicity, we define

x+
0 := v2. Any vertex x that belongs to Ci but is not in T (Ci)∪{x+

i , x
−
i } is called a singleton

of Ci. Vertex x belongs to a “middle” bag of Ci and only appears in this bag; it belongs to
no cluster other than Ci. See Fig. 1 for an example.

3 Exact Algorithm for Maximal Pathwidth-3 Graphs

Let G be a maximal pathwidth-3 graph and fix an alternating path decomposition of width 3.
By maximality, all bags form cliques, and in particular, each anchor-triplet induces a triangle
in the graph, called anchor triangle consisting of anchor edges.

The general idea to draw G is to iterate through the clusters C1, . . . , Cκ. When considering
cluster Ci, its first bag will already be drawn and the anchor triangle will form the outer
face of the current drawing. About half of the vertices introduced by Ci will be drawn inside
the anchor triangle while the other half will be drawn outside, mimicking Zarankiewicz’
construction locally. The number of crossings that these vertices add will be exactly the
minimum number of crossings needed to draw the biclique K3,n(Ci)−3 of cluster Ci, hence
leading to an optimal drawing.

We start with drawing bag X1 = {v1, v2, v3, v4} as a planar drawing of K4 with the
vertices T (C1) = X2 = {v2, v3, v4} on the outer face. Now we iterate over all clusters Ci,
1 ≤ i ≤ κ, drawing their bags with the following invariants:

The drawing is good and straight-line.
Before drawing Ci, the outer face contains the three vertices T (Ci).
For any j ≤ i, the anchor edges of Cj are drawn without crossings.
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W1

W2
W3

x+
i−1

x−i

p

q

(a) Wedges W1, W2, and W3.

x+
i−1

x−i

p

q

(b) Adding `1 vertices inside.

x+
i

x−i+1

p′

q′

(c) Adding `2 vertices outside.

Figure 2 Drawing maximal pathwidth-3 graphs. For ease of legibility we draw some edges in (c)
slightly curved. Dotted lines mark boundaries of the regions defined in the text.

Let ` be the number of singleton vertices in Ci (possibly ` = 0). We need to place the `
singletons and the emerging vertex x+

i . We will add `1 := b(`+ 1)/2c ≤ ` vertices into an
inner face of the current drawing and `2 = d(`+ 1)/2e ≥ 1 vertices on the outside. Note that
`1 + `2 = `+ 1.

Placement on the inside. By the invariant the outer face consists of the edges connecting
T (Ci) = {x+

i−1, p, q} for some p, q. W.l.o.g. assume that x+
i−1, p, and q occur in clockwise

order walking along the outer face. By maximality, and because x+
i−1 has just been introduced,

x+
i−1 has degree 3 in the current graph, and its neighbors are p, q, x−i .
Let R be the open region obtained by the intersection of three open “wedges”W1,W2,W3

defined as follows: Wedge W1 emanates from x+
i−1 between edges (x+

i−1, p) and (x+
i−1, x

−
i ) in

the interior of the triangle induced by T (Ci). Wedge W2 (W3) emanates at p (q) inside of
T (Ci) and runs along edge (p, x+

i−1) ((q, x+
i−1), respectively) with a sufficiently small angle

such that it crosses only edges incident to x+
i−1. Any point inside R can be connected to all

of p, q, x+
i−1 with straight lines and a single crossing (with edge (x+

i−1, x
−
i )).

Consider a straight line s through R but not through any of p, q, x+
i−1. Place `1 vertices

(for `1 singletons of Ci) along s within R, and connect each of them to all of p, q, x+
i−1. All

generated crossings are with edge (x+
i−1, x

−
i ) or among the added edges. The drawing is

straight-line and good (no three edges cross in a point), and the number of added crossings
is `1 +

(
`1
2
)

= 1
2`1(`1 + 1).

Placement on the outside. The outer face of the drawing is still formed by the edges
connecting T (Ci), since all vertices from the paragraph above were added inside R and thus
in the interior of T (Ci). We know that the vertex x−i+1 in T (Ci) will be lost in the next
cluster Ci+1 (if there is any); it will play a prominent role now. Since we may or may not
have x−i+1 = x+

i−1, we label the vertices of T (Ci) afresh as {x−i+1, p
′, q′}.

Define an open wedge W in the exterior of T (Ci) emanating from x−i+1 between the
extensions of the edges (p′, x−i+1) and (q′, x−i+1) beyond x−i+1. Any point inside W can be
connected via straight lines to all of p′, q′, x−i+1 without any crossings. Consider a straight
line s′ through W , not through any of x−i+1, p

′, q′, and crossing (p′, q′). Now place `2 vertices
along s′ withinW , and connect all of them to all of x−i+1, p

′, q′ via straight lines. All generated
crossings are among the added edges. The drawing is still straight-line and good, and the
number of added crossings is

(
`2
2
)
. The outer face of the resulting drawing is again a triangle

with two corners being p′ and q′ and the third corner being a vertex that was added on s′. We
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assign this latter vertex the role of the emerging vertex x+
i ; the other inserted vertices are the

necessary singletons. With this, the invariant holds since T (Ci+1) = T (Ci) ∪ {x+
i } \ {x

−
i+1}.

This finishes the description of the drawing algorithm. We claim that the final drawing
has the minimum possible number of crossings: We first give an upper bound on the number
of crossings that we achieve, and then show that any drawing requires this number.

I Lemma 2. The above algorithm produces at most
∑κ
i=1b

1
2 (n(Ci) − 3)cb 1

2 (n(Ci) − 4)c
crossings.

Proof. The algorithm started with a planar drawing of K4. We argued above that the i-th
iteration (drawing Ci, which contains ` singletons) added

1
2`1(`1 + 1) + 1

2`2(`2 − 1) = b12(`+ 1)cb12(`+ 2)c

crossings, where `1 = b(`+ 1)/2c and `2 = d(`+ 1)/2e. Finally, observe that ` = n(Ci)− 5
since all vertices of Ci except T (Ci) ∪ {x+

i , x
−
i } are singletons. J

I Lemma 3. Any good drawing of G requires at least
∑κ
i=1b

1
2 (n(Ci) − 3)cb 1

2 (n(Ci) − 4)c
crossings.

Proof. From Observation 1 we know that each cluster Ci contains a biclique B(Ci) :=
K3,n(Ci)−3. By Zarankiewicz’ formula, K3,m needs bm/2c b(m − 1)/2c crossings in any
drawing. Thus, within each cluster we only introduce the optimal number of crossings.

However, we must argue that it is impossible for one crossing to belong to two or more
clusters in an optimal drawing. This holds because nearly all of V (Ci) does not belong to
other clusters. More precisely, assume some other cluster Cj shares vertices with Ci; we may
assume j < i. Then all common vertices must appear in the first bag X = T (Ci) ∪ {x−i } of
Ci. However, only three edges of those induced by X are in B(Ci), and all three of them
are incident to x−i . Since adjacent edges do not cross in a good drawing, no crossing can be
shared between B(Ci) and B(Cj). J

I Theorem 4. There is a linear time algorithm to compute the exact crossing number cr(G)
of any maximal pathwidth-3 graph G. Furthermore, cr(G) = cr(G), and the algorithm gives
rise to a straight-line drawing where the anchor edges are not crossed.

Proof. Optimality follows from Lemmas 2 and 3. The second part of the claim follows from
the first and third invariant in the above algorithmic description. It remains to argue linear
running time. Computing a path decomposition of width 3 (if it exists) can be done in linear
time [2,3]. This path decomposition can be turned into an alternating path decomposition
in linear time as well. On it we compute cr(G) as the sum in Lemma 2 in linear time. J

Assume we are interested in the drawing achieving this solution. The drawing algorithm
uses O(n) operations, but this does not immediately imply linear time, since coordinates
may become very small. We also cannot list all crossings, as there can be Θ(n2) many. If,
however, we are careful about how to place anchor-triplets, then singletons can be inserted
while keeping all vertices at grid-points of an O(n)× O(n)-grid, and thus we require only
linear time to compute and output the drawing. Details are given in the full version of the
paper [1, Appendix B]. We summarize:

I Theorem 5. Every maximal pathwidth-3 graph on n vertices has a crossing-minimum
drawing that is good, straight-line, and lies on a 28n×29n-grid. It can be found in O(n) time.
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4 Approximation Algorithm for Pathwidth-3 Graphs

We now give an algorithm that draws graphs of pathwidth 3 (not necessarily maximal) such
that the number of crossings is within a factor of 2 of the optimum. Roughly speaking, if the
graph is 3-connected (technically, we will define a slightly weaker assumption 3-traceable),
then the algorithm for maximal pathwidth-3 graphs is applied, and the number of crossings
is within a factor of 2. If the graph is not 3-traceable, then it can be split and the arising
subdrawings can be “glued” together without increasing the approximation ratio.

4.1 3-traceable graphs
We first analyze graphs that satisfy a condition that is weaker than 3-connectivity. Define a
non-anchor vertex to be a vertex that occurs in exactly one bag. Those are exactly v1, vn,
and all the singletons defined earlier.

I Definition 6 (3-traceable graph). A graph G with an alternating path decomposition P of
width 3 is 3-traceable if every non-anchor vertex has degree at least 3, and for all 1 ≤ i ≤ κ,
edge (x+

i−1, x
−
i ) exists.

Assume we are given a 3-traceable graph G with an alternating path decomposition P of
width 3. We can first maximize G (obtaining G′) by adding all edges that have both ends in
one bag, but are not in G′ yet. We then apply the algorithm described in Section 3 to G′,
and finally delete the temporarily added edges again. We will show:

I Lemma 7. Let G be a 3-traceable graph. Then the algorithm of Theorem 4 gives a drawing
of G with at most 2cr(G) crossings.

We first give a sketch of the proof. The main challenge is that a cluster C now does
not necessarily contain a biclique K3,n(C)−3. However, we can argue that G contains a
subdivision of K3,n(C)−3 that uses mostly vertices of C, but “borrows” a non-anchor vertex
each (to play the role of x−i and x+

i ) from the nearest preceding and succeeding cluster
that has such vertices. This subdivided K3,n(C)−3 requires cr(K3,n(C)−3) crossings. The
main work is then in arguing that these subdivided bicliques cannot overlap much, or more
precisely, that any crossing can belong to at most 2 of them. Lemma 7 then follows by
applying the upper bound given in Lemma 2.

As before, let C1, . . . , Cκ be the clusters of G with anchor-triplets T (C1), . . . , T (Cκ), and
recall that we have an age-order {v1, . . . , vn}.

There are three types of edges in G. Type I are edges that are incident to non-anchor
vertices. Type II are edges that have the form (x+

i−1, x
−
i ) for some 2 ≤ i ≤ κ. Finally, Type

III are the remaining edges (they connect vertices of some anchor-triplet T (Ci), 1 ≤ i ≤ κ).

I Observation 8. Consider a 3-traceable graph. For any 1 ≤ i < j ≤ κ, there are three
vertex-disjoint paths Πi,j from T (Ci) to T (Cj) that are either single vertices or consist exactly
of the Type II edges (x+

k−1, x
−
k ) for i < k ≤ j. Every non-anchor vertex attaches to the three

different paths Π := Π1,κ.

Proof. For any 1 ≤ i < κ, we have T (Ci+1) = T (Ci)∪{x+
i } \ {x

−
i+1}. By 3-traceability of G,

edge (x−i+1, x
+
i ) exists and Πi,i+1 consists of two paths of length 0 (the common vertices of

the triplets) and the third path being this edge. We obtain arbitrary Πi,j by extending Πi,i+1
via Πi+1,j . Since G is 3-traceable, the non-anchor vertices have degree 3 and are adjacent to
the vertices of the anchor-triplet of their unique cluster; those lie on distinct paths of Π. J

ISAAC 2017



13:8 Crossing Number for Graphs with Bounded Pathwidth

Singleton vertices

v1 vn

Figure 3 The structure of a 3-traceable graph. Dotted triangles mark anchor-triples with at least
one adjacent singleton. In bold, we show one cluster biclique: the anchor vertices depicted as circles
form one partition side. The left- and rightmost bold singleton is “borrowed” from the preceding
and succeeding singleton-containing cluster, respectively.

This shows that G has K3,n′ as a minor, where n′ is the number of non-anchor vertices.
Unfortunately this is not sufficient for crossing number arguments as contracting edges may
increase the crossing number. Instead, we will use the above structure to extract a subdivision
of K3,n(C)−3 for each cluster C in such a way that these bicliques do not overlap “much.”

I Definition 9. Let Ci, 1 ≤ i ≤ κ, be a cluster with at least one singleton. The cluster biclique
of Ci, denoted B(Ci), is a subdivision of K3,n(Ci)−3 obtained as follows, cf. Fig. 3:
(a) The 3-side is formed by the three vertices of T (Ci).
(b) Every singleton w that belongs to Ci (there are n(Ci)− 5 of them) is one of the vertices

on the side that will have n(Ci)− 3 vertices. We know that deg(w) = 3 by 3-traceability,
and it is adjacent to all of T (Ci) as required for the biclique.

(c) Let i− < i (i+ > i) be maximal (minimal) such that cluster Ci− (Ci+ , respectively)
has a non-anchor vertex; among its non-anchor vertices, let w− (w+) be the youngest
(oldest, respectively). If i = 1, we simply set w− := v1; if i = κ, we set w+ := vn. By
Observation 8, we can establish three disjoint paths from w− and w+ to T (Ci). Hence,
add w− and w+ to the “big” side of B(Ci). Observe that in either case, w− and w+ are
distinct from the the singletons of Ci and their paths to T (Ci).

I Lemma 10. Let e1, e2 be two edges of G without common endpoint. There are at most
two cluster bicliques that contain both e1 and e2.

Proof. We are done if at least one of e1 and e2 is of Type III, because then it belongs to no
cluster biclique at all. Assume that one of e1 and e2 is of Type II, say e1 = (x+

i−1, x
−
i ) for

some 2 ≤ i ≤ κ. Edge e1 may be used only for the cluster bicliques B(Cj−) and B(Cj+) where
j− < i (j+ ≥ i) is the maximal (minimal) index such that cluster Cj− (Cj+ , respectively)
has singletons. The fact that e1 belongs to at most two cluster bicliques proves the claim.

Finally, assume that both e1 and e2 are of Type I, i.e., incident to distinct non-anchor
vertices, say y1 ∈ Ci and y2 ∈ Ci′ . Let C′ ⊆ C be the ordered subsequence of clusters that
have at least one non-anchor vertex. A non-anchor vertex x can belong to at most three
cluster bicliques, refer to Definition 9: the one of its “own” cluster C ∈ C′, and those of the
directly preceding and succeeding cluster in C′. Assume that y1 and y2 are in three cluster
bicliques. If i = i′, y1 and y2 are singletons of different age in Ci, and the two clusters directly
preceding and succeeding Ci would have chosen distinct singletons of Ci, a contradiction. If
i 6= i′, any overlap of three-element subsequences of C′ with distinct middle clusters has size
at most 2, a contradiction. J
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Proof of Lemma 7. We know from Lemma 2 that the algorithm of Theorem 4 gives a
drawing with at most

∑
C∈Cb

1
2 (n(C) − 3)cb 1

2 (n(C) − 4)c crossings. We need to consider
only clusters C that have at least one singleton; for any other cluster we have n(C) = 5
and therefore its summand is 0. For any cluster C that has a singleton, we have B(C), a
subdivision of K3,n(C)−3, which requires at least b 1

2 (n(C)− 3)cb 1
2 (n(C)− 4)c crossings in

any good drawing D of G. Any crossing in D is created by two edges without common
endpoints, and by Lemma 10, any such pair belongs to at most two cluster bicliques. Hence
any drawing of G has at least 1

2
∑
C∈Cb

1
2 (n(C)− 3)cb 1

2 (n(C)− 4)c crossings, yielding the
2-approximation. J

4.2 General pathwidth-3 graphs
A pair of vertices {u, v} of a 2-connected graph G is called a separation pair if G− {u, v} is
not connected. Assume that the pathwidth-3 graph G is 2-connected but not 3-traceable.
We will show that we can split the graph at separation pairs within anchor-triplets, draw the
cut-components recursively, and merge them without introducing additional crossings. We
start with a more general auxiliary statement whose proof is in [1, Appendix C].

I Lemma 11. Let G be a 2-connected graph with a separation pair {u, v}. Consider a
partition of G into two edge-disjoint connected subgraphs H1, H2 with H1 ∩ H2 = {u, v}.
Define H+

i = Hi ∪ {(u, v)} for i = 1, 2. Then cr(H+
1 ) + cr(H+

2 ) ≤ cr(G).

We will draw cut-components inside triangles bounded by their three oldest vertices.

I Lemma 12. Let G be a 2-connected graph with an alternating path decomposition P of
width 3. Then there exists an algorithm to create a straight-line drawing of G with at most
2cr(G) crossings. All anchor-edges are drawn without crossings, and the three oldest vertices
{v1, v2, v3} form the corners of the triangular convex hull of the drawing.

Proof. We prove the result by induction on the structure and size of the graph.
Base case: G is 3-traceable or a K4. If G = K4, the claim is obvious. Otherwise, we

apply Lemma 7. However, the algorithm of Theorem 4 used therein grows the drawing
“outwards”, while we would now like the oldest vertices to form the outer triangle. Thus
we apply the algorithm for the reverse path decomposition; this makes (by suitably
placing the last vertex) T (C1) = {v1, v2, v3} the outer face and draws it as a triangle.

Induction Step: G is neither 3-traceable nor a K4. For every non-anchor vertex w 6= v1
of degree 2, let pw, qw be its adjacent anchor vertices. We can temporarily remove w
from G, ensure that the reduced graph contains edge (pw, qw), draw the reduced graph,
and—since (pw, qw) will be drawn crossing free by the induction hypothesis—reinsert
each w with (pw, w), (w, qw) crossing-free close to the drawing of (pw, qw). Similarly, we
can remove v1 if it has degree 2: We can choose an age-order of the reduced graph G′
such that the neighbors of v1 are among the three oldest vertices of G′ and hence draw
G′ such that the neighbors of v1 are on the outer-triangle; then v1 can be reinserted on
the outside to form the desired outer triangle. If the graph became 3-traceable by these
operations, we are done (base case). Otherwise, we can now assume that all non-anchor
vertices have degree 3.
Since G is not 3-traceable, (x+

i−1, x
−
i ) 6∈ G for some 2 ≤ i ≤ κ. There exists a unique

bag Xj , the common bag of Ci−1 and Ci, that contains both x+
i−1 and x−i . Let p, q

be the two other vertices in this bag, and observe that T (Ci−1) = {p, q, x−i } while
T (Ci) = {p, q, x+

i−1}. Let G` be the graph induced by all vertices that appear in bags
P` := [X1, Xj−2], and let Gr be the graph induced by all vertices that appear in bags
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Pr := [Xj+2, Xξ]. Any edge of G appears in G` or Gr, since {x−i , x
+
i−1} is the only

vertex-pair that existed in bags of P, but neither of P` nor Pr. Clearly, {p, q} is a
separation pair with G` ∩Gr = {p, q}.
Define G+

` = G` ∪ {(p, q)} and G+
r = Gr ∪ {(p, q)}. By the addition of edge (p, q) (if

it did not already exist), both graphs are 2-connected. Apply induction to G+
r (with

path decomposition Pr) and G+
` (with the path decomposition P`). Since p, q belong to

the first bag of Pr, we can ensure that they are among the three oldest vertices of G+
r .

We obtain two drawings D+
1 ,D

+
2 in both of which (p, q) is not crossed. We can insert

(affinely transformed) D+
2 , which has (p, q) on its bounding triangle, along (p, q) in D+

1
without additional crossings. Finally, we remove edge (p, q) from the resulting drawing if
(p, q) 6∈ E(G).
By induction hypothesis, cr(D+

` ) ≤ 2cr(G+
` ) and cr(D+

r ) ≤ 2cr(G+
r ). By Lemma 11,

cr(G+
` )+cr(G+

r ) ≤ cr(G) and since the gluing gave no new crossings, the claim follows. J

We are now ready to establish the theorem for general pathwidth-3 graphs.

I Theorem 13. Let G be any pathwidth-3 graph. We have cr(G) ≤ 2cr(G), and a linear
time algorithm to create a good straight-line drawing of G with at most 2cr(G) crossings.

Proof. (Sketch) If G is 2-connected, then the result holds by Lemma 12. It is well known
that cr(G) is additive over the 2-connected components of G. When gluing at cut-vertices,
the cut-vertex must be on the outer face of the drawing to be inserted into the other. We
can achieve this while maintaining a straight-line drawing by choosing appropriate path
decompositions; see [1, Appendix D]. The running time follows as in Theorem 4. J

5 Approximation Algorithm for Graphs of Higher Pathwidth

We now study the crossing number of graphs that have pathwidth w ≥ 4, and are maximal
within this class. We give an algorithm to draw such graphs, and show that the number
of crossings in the resulting drawing is within a factor of 4w3 of the crossing number. As
opposed to Section 3, the drawings we create here are not straight-line drawings.

As before we assume that we have an alternating path decomposition P = {Xi}1≤i≤ξ of
width w. We again use the age-order {v1, . . . , vn} of the vertices of G. Define Gi to be the
graph induced by vertices v1, . . . , vi, and use degGi

(v) to denote the number of neighbors
that v has within graph Gi. For any 1 ≤ i ≤ n, let the predecessors of vertex vi be those
neighbors that are older. We will only use this concept for i ≥ w + 1, which implies that
vi has exactly w predecessors by maximality of G. We enumerate them as {pi1, . . . , piw} in
age-order, with pi1 the oldest.

Drawing algorithm. We create a drawing of G by starting with Gw+1 (the graph induced
by v1, . . . , vw+1) and then iteratively adding vertex vi. We maintain the following invariants
for the drawing of Gi (see also Figure 4):

Vertex vj is drawn at (j, 0) for all 1 ≤ j ≤ i.
The drawing is contained in the half-space {(x, y) : x ≤ i}.
All vertices w in the bag introducing vi are bottom-visible, i.e., the vertical ray downward
from w does not intersect any edge.

We start by placing v1, . . . , vw+1 at their specified coordinates, and draw the edges between
them as half-circles above the x-axis. This satisfies the above invariants and gives rise to(w+1

4
)
crossings since crossings are in 1-to-1-correspondence with subsets of 4 vertices.
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pi1 pi2 pi3 piw
vi

drawing of Gi−1

Figure 4 The construction for higher pathwidth: edge routings when adding vertex vi.

Assume Gi−1 is drawn and consider vi, for i ≥ w + 2. Place vi as specified, i.e., to the
right of all previous vertices and edges. Let pi1, . . . , piw be the predecessors of vi, all of which
are bottom-visible by the invariant. We draw the edges to them using two different methods
(and then redraw previous edges as a third step for each i). See also Figure 4.

The edge to pi1 (the oldest predecessor) is routed counterclockwise around the drawing
of Gi−1 until it is below but slightly to the left of pi1, from where it connects to pi1. We
need no crossings, and all predecessors remain bottom-visible.
All other w − 1 edges incident to vi are routed together as a bundle from vi leftward
below the drawing of Gi−1. This allows vi to be bottom-visible. Whenever the bundle
is slightly to the right of some pik, w ≥ k ≥ 2, one of the bundle’s lines (the lowest one)
connects to pik. The remaining bundle lines go counterclockwise around pik, in its direct
vicinity, until they are to the left of pik and below Gi−1. The bundle hence crosses every
edge incident to pik in Gi−1, but no other edges, and pik remains bottom-visible. This
drawing scheme continues until the last bundle line connects to pi2.
Finally, we redraw the edges (pik−1, p

i
k) for 3 ≤ k ≤ w; they exist by maximality. Both

ends of any such edge are bottom-visible, so we can redraw it without crossing below
the entire drawing, including the newly drawn edges from vi. We remove the previous
drawings of these edges and retain bottom-visibility of the vertices in the current bag.

In the full paper [1, Appendix E] we analyze of the number of crossings and obtain:

I Theorem 14. Let G be a maximal graph of pathwidth w ≥ 4. The described algorithm runs
in linear time and finds a drawing of G with at most 2(w−1)(w−2)(2w−4)cr(G) ≤ 4w3cr(G)
crossings. In particular, for any constant pathwidth w, we have an O(1)-approximation of
the crossing number. The drawing is poly-line on a 4n×wn grid.

6 Conclusions and Open Questions

We have shown that the path decomposition of a graph can be used to efficiently compute
or bound the crossing number of a graph. This is the first successful use of such graph
decomposition for crossing numbers (besides the use of a tree decomposition in the special
case that cr(G) is bounded by a constant [14,18]). Several interesting questions remain:

Can we attain stronger approximation results for general pathwidth-3 graphs? The proven
ratio of 2 may simply be due to a too weak lower bound, and we, in fact, do currently
not know an instance where the algorithm does not obtain the optimum.
Can we approximate cr(G) for arbitrary (not maximal) pathwidth-w-graphs?
In [1] we only showed weak NP-completeness for the weighted crossing number version
on pathwidth-restricted graphs. Can this be strengthened to unweighted graphs?

Finally, there is of course the question whether we can use the stronger tool of tree decom-
positions, instead of path decompositions, to achieve crossing number results.
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Abstract
A tree σ-spanner of a positively real-weighted n-vertex and m-edge undirected graph G is a
spanning tree T of G which approximately preserves (i.e., up to a multiplicative stretch factor
σ) distances in G. Tree spanners with provably good stretch factors find applications in com-
munication networks, distributed systems, and network design. However, finding an optimal or
even a good tree spanner is a very hard computational task. Thus, if one has to face a transient
edge failure in T , the overall effort that has to be afforded to rebuild a new tree spanner (i.e.,
computational costs, set-up of new links, updating of the routing tables, etc.) can be rather
prohibitive. To circumvent this drawback, an effective alternative is that of associating with each
tree edge a best possible (in terms of resulting stretch) swap edge – a well-established approach
in the literature for several other tree topologies. Correspondingly, the problem of computing
all the best swap edges of a tree spanner is a challenging algorithmic problem, since solving it
efficiently means to exploit the structure of shortest paths not only in G, but also in all the
scenarios in which an edge of T has failed. For this problem we provide a very efficient solution,
running in O(n2 log4 n) time, which drastically improves (almost by a quadratic factor in n in
dense graphs!) on the previous known best result.
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1 Introduction

The problem of computing all the best swap edges (ABSE) of a tree has a long and rich
algorithmic tradition. Basically, let G = (V (G), E(G), w) be an n-vertex and m-edge 2-edge-
connected undirected graph, with edge-weight function w : E(G) → R+, and assume we
are given a spanning tree T of G, which was computed by addressing some criterion (i.e.,
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objective function) φ. Then, the problem is that of computing a BSE for every edge e ∈ E(T ),
namely an edge f ∈ E(G) \ E(T ) such that the swap tree Te/f obtained by swapping e with
f in T optimizes some objective function φ′ out of all possible swap trees. Quite reasonably,
the function φ′ must be related (if not coinciding at all) with φ.

The first immediate motivation for studying an ABSE problem comes from the edge
fault-tolerance setting – a commonly accepted framework. Broadly speaking, the algorithmic
question here is to design sparse subgraphs that guarantee a proper level of functionality
even in the presence of an edge failure. In such a context, the rationale of an ABSE-based
solution is the following: operations are normally performed on a (possibly optimal) spanning
tree, and whenever an edge failure takes place, a corresponding BSE is plugged in. This
way, the connectivity is reestablished in the most prompt and effective possible way (see
also [13, 19] for some additional practical motivations).

Besides their practical relevance, ABSE problems have also an interesting theoretical
motivation. Indeed, swapping can be reviewed as an exploration of the space of the perturbed
(w.r.t. an edge swap) solutions to a given spanning tree optimization problem. Thus, the
algorithmic challenge of solving efficiently an ABSE problem is related with the understanding
of the structure of this space of perturbed solutions. And this is exactly why each ABSE
problem has its own combinatorial richness, and thus requires a specific approach to be solved
efficiently. Then, different ABSE problems have required the use of completely different
approaches and methods in order to obtain efficient solutions. For instance, the most famous
and studied ABSE problem comes when T is a minimum spanning tree (MST) of G. In
this case, a best swap is of course a swap edge minimizing the cost (i.e., sum of the edge
weights) of the swap tree, i.e., a swap edge of minimum weight (and we know this produces
a MST of the perturbed graph). This problem is also known as the MST sensitivity analysis
problem, and can be solved in O(m logα(m,n)) time [18], where α denotes the inverse of the
Ackermann function, by using an efficient data structure, namely the split-findmin [11]. This
was improving on another efficient solution given by Tarjan [21], running in O(mα(m,n))
time and making use of the transmuter, namely a compact way of representing the cycles
of a graph. Other data structures which revealed their usefulness to solve efficiently ABSE
problems include kinetic heaps [6], top trees [3], mergeable heaps [17], and many others.

In this paper, we focus on the ABSE problem on the elusive spanning tree structure,
namely the tree spanner (ABSE-TS problem in the following). A tree spanner is built with
the aim of preserving node-to-node distances in G. Indeed, the stretch factor σ of a spanning
tree T of G is defined as the maximum, over all the pairs u, v ∈ V (G), of dT (u, v)/dG(u, v),
where dT and dG denote distances in T and G, respectively. Correspondingly, an optimal tree
spanner has minimum stretch out of all the spanning trees of G. Unfortunately, finding an
optimal tree spanner is notoriously an APX-hard problem, with no known o(n)-approximation.
Hence, once a given solution undergoes a transient edge failure, the recomputation from
scratch of a new (near) optimal solution is computationally unfeasible. Thus, swapping in
a tree spanner is even more attractive than in general, and indeed the ABSE-TS problem
was studied in [9], where the authors devised two solutions for both the weighted and the
unweighted case, running in O(m2 logn) and O(n3) time, respectively, and using O(m)
and O(n2) space, respectively. However, there the authors assume that a BSE is an edge
minimizing the stretch of the swap tree w.r.t. distances in the original graph G, and not in
the graph G deprived of e, say G− e. This contrasts with the general assumption (and the
intuition) that the quality of a swap tree should be evaluated in the surviving graph. Hence,
in [3] the authors resorted to such a standard setting, and provided two efficient linear-space
solutions for both the weighted and the unweighted case, running in O(m2 logα(m,n)) and
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O(mn logn) time, respectively, and both using linear space. Notice that from a computational
point of view, as shown in [3], the two settings are substantially equivalent, so our solutions
can be used to improve the results given in [9] as well.

1.1 Our result
In this paper, we present a new algorithm that solves the ABSE-TS problem in O(n2 log4 n)
time and O(n2 +m log2 n) space. Thus, our solution improves on the running time of both
the algorithms provided in [3], for weighted and unweighted graphs, respectively, whenever
m = Ω(n log3 n). Most remarkably, for dense weighted graphs, the improvement is almost
quadratic in n.

To put into focus our result, it is worth noticing that, as observed in [9], the estimation
of the stretch of the swap tree induced by a single swap edge f for a given failing edge e,
would in principle ask for the evaluation of the stretch of O(m) relevant pairs of nodes in G,
namely the endvertices of all the non-tree edges that may serve as swap edge for e besides f .
And in fact, a critical edge for f is the one whose endvertices maximize such a stretch out of
these non-tree edges, and two swap edges will be essentially compared on the basis of their
stretch w.r.t. their critical edge. This is basically the reason why both previous approaches
take Ω(m2) time. Thus, to avoid such a bottleneck, we drastically reduce, on the one hand,
the number of candidate best swap edges, and on the other hand, the number of potential
critical edges that need to be checked. More precisely, for each of the n− 1 considered edges
in T , we succeed in reducing to O(n logn) the number of best swap edge candidates, and for
each one of them we just need to check O(log2 n) possible critical edges. The key ingredients
to reach such a goal are the following:

A centroid decomposition of T , which consists of a log-depth hierarchical decomposition
of the vertices in T ; a careful use of such a decomposition, combined with a set of
preprocessing steps that associate various information with the tree nodes, allows us to
reduce the number of candidate BSEs and of their corresponding candidate critical edges.
As far as we know, this is the first time that such a decomposition is used to solve an
ABSE problem, and we believe it will possibly be useful in other contexts as well.
The second ingredient is given by the dynamic maintenance of the upper envelopes of a
set of linear functions. Each of these functions is associated with a non-tree edge, and
whenever the failure of a given tree edge is considered, it expresses the stretch such a
non-tree edge induces w.r.t. a variable candidate BSE. This way, when we have to find
a critical edge for a given candidate BSE f , we have to select the maximum out of all
the functions once they are evaluated in f . In geometric terms, this translates into the
maintenance of the upper envelope of a set of functions, with the additional complication
that, for consistency reasons, this set of functions must be suitably partitioned into
groups according to the underlying centroid decomposition, and moreover these groups
are dynamic, since they depend on the currently considered tree edge.

1.2 Related work
The research on tree spanners is very active, also due to the strong relationship with the huge
literature on spanners, where distances in G are approximately preserved through a sparse
spanning subgraph. As mentioned before, finding an optimal tree spanner is a quite hard
problem. More precisely, on weighted graphs, if G does not admit a tree 1-spanner (i.e., a
spanning tree with σ = 1, which can be established in polynomial time [8]), then the problem
is not approximable within any constant factor better than 2, unless P=NP [15]. In terms of
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approximability, no non-trivial upper bounds are known, except for the O(n)-approximation
factor returned by a minimum spanning tree (MST) of G. If G is unweighted, things go slightly
better. More precisely, in this case the problem becomes O(logn)-approximable, while unless
P=NP, the problem is not approximable within an additive term of o(n) [10]. Moreover, the
corresponding decision problem of establishing whether G admits a tree spanner with stretch
σ is NP-complete for every fixed σ ≥ 4 (for σ = 2 it is polynomial-time solvable [8], while for
σ = 3 the problem is open). Finally, it is known that constant-stretch tree spanners can be
found for several special classes of (unweighted) graphs, like strongly chordal, interval, and
permutation graphs (see [7] and the references therein).

Concerning the problem of swapping in spanning trees, this has received a significant
attention from the algorithmic community. There is indeed a line of papers that address
ABSE problems starting from different types of spanning trees. Just to mention a few, besides
the MST, we recall the minimum diameter spanning tree (MDST), the minimum routing-cost
spanning tree (MRCST), and the single-source shortest-path tree (SPT). Concerning the
MDST, a best swap is instead an edge minimizing the diameter of the swap tree [12, 16],
and the best solution runs in O(m logα(m,n)) time [6]. Regarding the MRCST, a best
swap is clearly an edge minimizing the all-to-all routing cost of the swap tree [22], and the
fastest solution for solving this problem has a running time of O

(
m2O(α(n,n)) log2 n

)
[5].

Concerning the SPT, the most prominent swap criteria are those aiming to minimize either
the maximum or the average distance from the root, and the corresponding ABSE problems
can be addressed in O(m logα(m,n)) time [6] and O(mα(n, n) log2 n) time [20], respectively.
Recently, in [4], the authors proposed two new criteria for swapping in a SPT, which are in a
sense related with this paper, namely the minimization of the maximum and the average
stretch factor from the root, for which they proposed an efficient O(mn + n2 logn) and
O(mn logα(m,n)) time solution, respectively.

Finally, for the sake of completeness, we mention that for the related concept of average
tree σ-spanners, where the focus is on the average stretch w.r.t. all node-to-node distances,
it was shown that every graph admits an average tree O(1)-spanner [1].

1.3 Preliminary definitions
Let G = (V (G), E(G), w) be a 2-edge-connected, edge-weighted, and undirected graph with
cost function w : E(G)→ R+. We denote by n and m the number of vertices and edges of
G, respectively. If X ⊆ V (G), let E(X) be the set of edges incident to at least one vertex in
X. When X = {v}, we may write E(v) instead of E({v}). Given an edge e ∈ E(G), we will
denote by G− e the graph obtained from G by removing edge e. Similarly, given a vertex
v ∈ V (G), we will denote by G− v the graph obtained from G by removing vertex v and all
its incident edges. Given an edge e ∈ E(T ), we let S(e) be the set of all the swap edges for e,
i.e., all edges in E(G) \ {e} whose endpoints lie in two different connected components of
T − e. We also define S(e,X) = S(e)∩E(X), and S(e,X, Y ) = S(e)∩E(X)∩E(Y ). When
X = {v}, we will simply write S(e, v) in lieu of S(e, {v}). For any e ∈ E(T ) and f ∈ S(e),
let Te/f denote the swap tree obtained from T by replacing e with f .

Given two vertices x, y ∈ V (G), we denote by dG(x, y) the distance between x and y in G.
We define the stretch factor of the pair (x, y) w.r.t. G and T as σG(T, x, y) = dT (x,y)

dG(x,y) . Accord-
ingly, the stretch factor σG(T ) of T w.r.t. G is defined as σG(T ) = maxx,y∈V (G) σG(T, x, y).

I Definition 1 (Best Swap Edge). An edge f∗ ∈ S(e) is a best swap edge (BSE) for e if
f∗ ∈ arg minf∈S(e) σG−e(Te/f ).

In the sequel, in order to solve the ABSE-TS problem, we will show how to efficiently find
a BSE for every edge e of a tree spanner T of G.
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Algorithm: ABSE-TS(G, T )
1 T ← Centroid decomposition of T ;
2 foreach e ∈ E(T ) in postorder do // n− 1 phases
3 Ue ← vertices of the component of T − e that contains the root of T ;
4 f∗ ← ⊥; // Current BSE for e
5 foreach v ∈ Ue do // O(n) sub-phases
6 compute a v-BSE f for e and the corresponding stretch factor; // This takes

O(log4 n) time by using T and the dynamic maintenance of the upper
envelopes associated with the swap edges, as shown in Section 3

7 if σG−e(Te/f ) < σG−e(Te/f∗) then f∗ ← f ;
8 return f∗ as BSE for e and continue with the next phase.

2 High-level description of the algorithm

It is useful to consider the tree T as rooted at any fixed vertex, and to assume, w.l.o.g., that
T is binary. Indeed, if T is not binary, then it is possible to transform G and T into an
equivalent graph G′ and a corresponding binary spanning tree T ′, with |V (G′)| = Θ(n) and
|E(G′)| = Θ(m), and such that a BSE for any edge of T is univocally associated with a BSE
for a corresponding edge of T ′. This transformation uses standard techniques and can be
performed in linear time.

As a preprocessing step, we compute a centroid decomposition of T . A centroid of an
n-vertex tree is a vertex whose removal splits T into subtrees of size at most n/2 [14]. A
centroid decomposition of T can be computed in O(n logn) time, and can be represented by
a tree T of height O(logn), whose nodes are actually subtrees of T . T is recursively defined
as follows: the root of T is T . Then, let τ be a node of T (i.e., a subtree of T ) such that τ
contains more than one vertex, and let c be a centroid of τ . Since T is binary, the forest τ − c
contains at most 3 trees, that we call τ1

c , τ2
c , and τ3

c (if τ − c generates less than 3 subtrees,
we allow some τ ic to be the empty tree). Moreover, let τ0

c be the subtree of T containing the
sole vertex c. Then, τ will have in T a child for each of the subtrees τ ic , i = 0, . . . , 3 (see
Figure 1 (a)). Since a centroid on a n-vertex tree can be found in linear time, the whole
procedure requires O(n logn) time, and it is easy to see that the height of T is O(logn).

Our solution (see Algorithm ABSE-TS) works in n− 1 phases, one for each tree edge as
considered in preorder w.r.t. T , and at the end of each phase returns a BSE for that edge.
Let e ∈ E(T ) be the currently considered edge, and let Ue (resp. De) be the set of vertices
that belong to the connected component of T − e that contains (resp. does not contain) the
root of T . We break down each of these phases into O(n) additional sub-phases: when edge e
is failing, we consider all the vertices in Ue and, for each such vertex v, we solve a restricted
version of the ABSE-TS problem where we compute: (i) a v-restricted best swap edge (v-BSE
for short), i.e., an edge f ∈ arg minf∈S(e,v) σG−e(Te/f ), and (ii) the corresponding stretch
factor σG−e(Te/f ). To simplify handling of special cases, whenever S(e, v) = ∅, we assume
that f = ⊥ and that σG−e(Te/f ) = +∞. As we will see in the rest of the paper, the core
of our algorithm is exactly the efficient computation of these v-BSEs and of their stretch
factors. This is done trough a clever selection of a small set of candidate v-BSEs, as we will
discuss in more detail in the next section. Once all the v-BSEs for e are computed, a BSE
for e can be found as the one minimizing the associated stretch factor.

3 Computing efficiently a v-BSE

To show how a v-BSE for e can be computed efficiently, we need some preliminary definitions:
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Figure 1 (a) An example of centroid decomposition of the tree T (which corresponds to the first
vertex of T ). (b) and (c): Two of the four possible cases situation illustrated in Lemma 5. The
subtree T̂ is represented by the three gray triangles along with the vertex c. f is a swap edge for
e that minimizes w(f) + dT (u, c), and g is its corresponding critical edge. The (c, y)-tree of T̂ is
drawn in bold. Notice that f and g do not need to be incident to T̂ .

I Definition 2 (Critical Edge). Given e ∈ E(T ) and a swap edge f = (v, u) ∈ S(e, v), a critical

edge1 for f is an edge g = (x, y) ∈ S(e) maximizing φ(f, g) := dT (x, v) + w(f) + dT (u, y)
w(g) .

I Definition 3 (Best Cut Edge). A v-best cut edge for e (v-BCE) is an edge f ∈ S(e, v)
minimizing ϕe(f) = maxg∈S(e) φ(f, g).

Then, we will make use of the following property, which was given in [3]:

I Proposition 4. Every v-BCE for e is a v-BSE for e.

Let us first provide a high-level description of how we compute a v-BCE (i.e., a v-BSE)
for e. The algorithm will compute O(logn) v-BCE candidates, the best of which will be a
v-BCE for e. Informally speaking, each candidate f will be a swap edge close to the centroid
of a certain subtree Λ of T . Depending on the position of a critical edge for f , the algorithm
will recurse on a subtree of Λ and it will look for the next candidate. Thanks to the centroid
decomposition of T , the number of recursions/candidates will then be O(logn).

The key ingredient for the correctness of our algorithm is the next lemma. Given a
subtree T̂ of T , a vertex c ∈ V (T̂ ), and a vertex y ∈ V (T ), consider the first vertex z of the
unique path from y to c in T that also belongs to V (T̂ ). The (c, y)−tree of T̂ is defined as
follows: (1) if z = c, then it is the empty tree; otherwise (2) it is the tree of the forest T̂ − c
that contains z. Then, the following holds (see also Figure 1 (b) and (c)):

I Lemma 5. Let T̂ be a subtree of T such that V (T̂ ) ⊆ De, and let c ∈ V (T̂ ). Moreover, let
f = (v, u) ∈ S(e, v) be a swap edge for e that minimizes w(f) + dT (u, c), and let g = (x, y)
be a critical edge for f . Assume that S(e, v, V (T̂ )) contains a v-BCE for e. If f is not a
v-BCE for e, then S(e, v, V (T ′)) contains a v-BCE for e, where T ′ is the (c, y)-tree of T̂ .

1 Notice that this definition does not contain dG−e(x, y) at the denominator, as expected, since it already
incorporates the property stated in the forthcoming Proposition 4.
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Procedure FindBCE(Λ)
1 if |V (Λ)| = 0 then return (⊥,⊥) ;
2 c← Centroid of Λ;
3 if c ∈ Ue then
4 τ ← unique child of Λ in T that contains all the vertices in V (Λ) ∩De;
5 return FindBCE (τ);
6 else // c ∈ De

7 Compute an edge f = (v, u) ∈ arg min(v,u)∈S(e,v){w(v, u) + dT (u, c)} g1 = (x, y)←
FindCritical(f, T ); // Compute a critical edge for f (see Sec. 3.1)

8 τ ← (c, y)-tree of Λ; // Either τ is empty or it is a child of Λ in T
9 (f ′, g2)← FindBCE (τ);

10 if φ(f, g1) ≤ φ(f ′, g2) then return (f, g1); else return (f ′, g2);

Proof. Suppose that f is not a v-BCE for e, we will show that no swap edge f ′ = (v, u′) ∈
S(e, v) with u′ 6∈ V (T ′) can be a v-BCE for e. Indeed:

ϕ(f ′) ≥ φ(f ′, g) = dT (x, v) + w(f ′) + dT (u′, y)
w(g)

= dT (x, v) + w(f ′) + dT (u′, c) + dT (c, y)
w(g)

≥ dT (x, v) + w(f) + dT (u, c) + dT (c, y)
w(g) ≥ φ(f, g) = ϕ(f),

where we used the fact that dT (u′, y) = dT (u′, c) + dT (c, y) as either u′ = c or u′ and y are
in two different connected components of T − c. J

Lemma 5 allows us to design a recursive algorithm for computing a v-BCE for e, whose key
steps are highlighted in Procedure FindBCE (notice that v and e are fixed). More precisely,
the algorithm takes a tree Λ of the centroid decomposition T such that V (Λ) ∩De 6= ∅, and
it computes a pair (f∗, g∗) such that if S(e, v, V (Λ)∩De) contains a v-BCE for e, then f∗ is
a v-BCE for e, and g∗ is its critical edge. Procedure FindBCE makes use of an additional
function FindCritical(f, T ) that returns a critical edge for f w.r.t. the failure of e. The
initial call will be FindBCE(T ). In order to handle base cases, we assume φ(⊥,⊥) = +∞.

We now prove the correctness of the procedure:

I Lemma 6. Procedure FindBCE(T ) computes a v-BCE for e.

Proof. Consider an invocation of the procedure and let Λ and (f∗, g∗) be its parameter
and the edges it returns, respectively. We prove the following claim by induction on the
cardinality of V (Λ): if S(e, v, V (Λ) ∩De) contains a v-BCE for e, then f∗ is a v-BCE for e
and g∗ is a critical edge for f∗.

If |V (Λ)| = 0, then the claim trivially holds. Otherwise, |V (Λ)| > 0, and we distinguish
two cases depending on the position of the centroid c of Λ. If c ∈ Ue, then there is only
one child τ jc of Λ in T that contains all the vertices in V (Λ) ∩De, as otherwise the vertices
in De would be disconnected in Λ. Hence, if S(e, v, V (Λ) ∩ De) contains a v-BCE for e,
then S(e, v, V (τ jc ) ∩De) also contains a v-BCE for e, and the claim follows by the inductive
hypothesis (as |V (τ jc )| < |V (Λ)|). The remaining case is the one in which c ∈ De, here
the claim follows from Lemma 5 (where now T̂ is the subtree of T induced by V (Λ) ∩De)
together with the inductive hypothesis. J

Next lemma provides an upper bound to the running time of the procedure:
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I Lemma 7. Procedure FindBCE(T ) requires O((Γf + ΓFC) logn) time, where Γf and ΓFC

is the time required to perform Steps 7 and 7, i.e., the time to find edge f , and to execute
Procedure FindCritical, respectively.

Proof. First of all, notice that Step 4 can be performed in O(1) time, after a O(logn)
preprocessing time in which we mark all the nodes of T on the path between the leaf of T
containing the lower vertex of e (which clearly belongs to De) and the root of T . Then, we
only need to bound the depth of the recursion of the call FindBCE(T ). Observe that each
time Procedure FindBCE(Λ) recursively invokes itself on a tree Λ′, we have that Λ′ is a child
of Λ in T . The claim follows since the height of T is O(logn). J

Actually, the time to execute Step 7 is O(logn), after a preprocessing time and space of
O(n2), by making use of top-trees [2]. Due to space limitations, the discussion of this result
will appear in the full version of the paper. On the other hand, Procedure FindCritical will
require O(log3 n) time and O(m log2 n) space, as we will show in the next two subsections.

3.1 Computing a critical edge for f

We will compute O(log2 n) critical edge candidates for f and we will show that a critical
edge for f will be one of them. More precisely, we look at O(logn) subtrees of the centroid
decomposition T and, for each such subtree Λ, we will consider O(logn) subtrees Ψ to find
a critical edge candidate having one endpoint in Ψ and the other in Λ. The choice of the
O(log2 n) pairs of trees is guided by the position of f , while the computation of a candidate
for a given pair (Ψ,Λ) is the core of the procedure and is described in the next subsection.

I Definition 8 ((Ψ,Λ)-Critical Edge). Given a failing edge e and a swap edge f = (v, u) ∈
S(e, v), and given two trees Ψ,Λ of the centroid decomposition T , a (Ψ,Λ)-critical edge for
f is an edge g = (x, y) ∈ arg maxg′∈S(e,V (Ψ)∩Ue,V (Λ)∩De) φ(f, g′). When Ψ = T we will refer
to a (Ψ,Λ)-critical edge as a Λ-critical edge.

Let f = (v, u) ∈ S(e, v) and let Λ be a tree of the centroid decomposition T such that
u ∈ V (Λ). Procedure FindCritical returns a Λ-critical edge for f , when edge e fails (such
an edge always exists as f has one endpoint in Ue and the other in V (Λ) ∩De). Notice that
the call FindCritical(f, T ) in Procedure FindBCE computes a critical edge for f , since a
T -critical edge for f is actually a critical edge for f .

Procedure FindCritical uses as a subroutine Procedure FindCriticalCandidate(f , Ψ,
Λ), which for the sake of clarity will be described in the next subsection. For the moment, it
suffices to know that FindCriticalCandidate receives three inputs, i.e., edge f = (v, u) and
two subtrees Ψ,Λ of the centroid decomposition T such that v ∈ Ψ and, either u 6∈ V (Λ) or Λ
is the tree containing the sole vertex u, and it returns a (Ψ,Λ)-critical edge for f . If no such
edge exists, then FindCriticalCandidate returns ⊥ and we assume that φ(f,⊥) = −∞.

I Lemma 9. Let f = (v, u) ∈ S(e, v), and let Λ be a tree of the centroid decomposition T
such that u ∈ V (Λ). Procedure FindCritical(f,Λ) returns a Λ-critical edge for f .

Proof. The proof is by induction on the cardinality of V (Λ).
If |V (Λ)| = 1, then the only vertex in Λ must be u and Procedure FindCritical invokes

Procedure FindCriticalCandidate(f, T,Λ). Hence, assuming such a procedure is correct,
it returns a (T,Λ)-critical edge, i.e., a Λ-critical edge. If |V (Λ)| > 1 then we distinguish two
cases, depending on the position of the centroid c of Λ.

If c ∈ De it is sufficient to notice that a Λ-critical edge for f must be incident to a tree τ ic
for some i = 0, 1, 2, 3. Let j be the unique index in {0, 1, 2, 3} such that u ∈ V (τ jc ). If j 6= i
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Procedure FindCritical(f = (v, u),Λ)
1 if V (Λ) = {u} then return FindCriticalCandidate(f , T , Λ) ;
2 c← Centroid of Λ;
3 Let j be the unique index in {0, 1, 2, 3} such that u ∈ V (τ j

c );
4 if c ∈ Ue then return FindCritical(f, τ j

c ) ;

5 G ← {FindCriticalCandidate(f, T, τ i
c) : i = 0, 1, 2, 3 ∧ i 6= j}; // Here c ∈ De

6 g1 ← arg maxg∈G φ(f, g);
7 g2 ← FindCritical(f, τ j

c );
8 return arg maxg∈{g1,g2}{φ(f, g)};

then, assuming Procedure FindCriticalCandidate is correct, it returns a (T,Λ)-critical
edge g1 (and hence a Λ-critical edge) for f . Procedure FindCritical then returns either g1
or another edge g such that φ(f, g) = φ(f, g1). If j = i, the algorithm is recursively invoked
and, since |V (τ ic)| < |V (Λ)| we know, by the induction hypothesis, that it correctly returns a
τ ic-critical edge for f , which is also Λ-critical edge for f .

If c ∈ Ue, then we know that there is at most one τ ic containing one or more vertices in
De (as otherwise the vertices in V (Λ) ∩De would be disconnected in Λ, a contradiction).
Moreover, since u ∈ V (Λ) ∩De, there is exactly one such tree τ ic , namely τ jc . The algorithm
recursively invokes itself on τ jc and, since |V (τ jc )| < |V (Λ)|, we know, by induction hypothesis,
that it returns a τ jc -critical edge for f , which is also Λ-critical edge for f . J

I Lemma 10. Procedure FindCritical(f,Λ) requires O(ΓFCC · logn) time, where ΓFCC is the
time required by an invocation of Procedure FindCriticalCandidate.

Proof. Notice that Procedure FindCritical performs exactly one recursive invocation for
each vertex of the tree T on the unique path between the root of T and u in T . The claim
follows since the height of T is O(logn). J

In the next subsection, we show that ΓFCC = O(log2 n), and then we give our final result.

3.2 Procedure FindCriticalCandidate
In this subsection, we describe the core of the procedure that computes a critical edge for f .
Let us first describe informally the main idea of this part. Let b ∈ Ue and c ∈ De, and consider
any two edges f = (v, u), g = (x, y) ∈ S(e) such that b (resp. c) is on the unique path from x

to v (resp. from y to u) in T (see Figure 2). It turns out that the stretch factor of any f w.r.t.
a given g can be though as a linear function Φb,c,g(t) = αb,c(g) · t + βb,c(g), where αb,c(g)
and βb,c(g) only depend on g. More precisely, we will have that φ(f, g) = Φb,c,g(tb,c(f)), for
a suitable value tb,c(f) which only depends on f . Hence, whenever we look for a critical
edge for f , we can ask for a corresponding function Φb,c,g(t) with maximum value on tb,c(f).
Since we do not know a priori the edge f for which we need to compute a critical edge, we
will maintain this information as the upper envelope of a suitable set of functions. Let us
make this idea more precise.

I Definition 11 (Upper Envelope). Let F = {Φ1,Φ2, . . . ,Φ`} be a finite set of functions,
where Φi : R→ R for every i = 1, 2, . . . , `. The upper envelope of F is defined as UEF : t ∈
R 7→ arg max

Φ∈F
Φ(t) ∈ 2F .

Let b ∈ Ue and c ∈ De. Given an edge f = (v, u), define tb,c(f) as the quantity
dT (b, v) + w(f) + dT (u, c). Given an edge g = (x, y), define αb,c(g) = 1

w(g) and βb,c(g) =
dT (x,b)+dT (c,y)

w(g) . Notice how, once b and c are fixed, tb,c(f) only depends on f while αb,c(g)
and βb,c(g) only depend on g. Let Φb,c,g(t) = αb,c(g) · t+ βb,c(g).
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Figure 2 Illustration of Lemma 14. f is a swap edge for e, Ψ and Λ are two trees of the centroid
decomposition, and b and c are their corresponding parent centroids. g is a potential (Ψ,Λ)-critical
edge for f . Notice that the unique path from x to v (resp. from y to u) passes through b (resp. c).

I Lemma 12. Let f = (v, u) ∈ S(e, v). Let b ∈ Ue and c ∈ De. Let X (resp. Y ) be a set of
vertices x ∈ Ue (resp. y ∈ De) such that vertex b (resp. c) is on the unique path from x to v
(resp. from y to u) in T . For every g ∈ S(e,X, Y ) we have φ(f, g) = Φb,c,g(tb,c(f)).

Proof. Let g = (x, y). We have:

φ(f, g) = dT (x, v) + w(f) + dT (u, y)
w(g) = dT (x, b) + dT (b, v) + w(f) + dT (u, c) + dT (c, y)

w(g)

= dT (b, v) + w(f) + dT (u, c)
w(g) + dT (x, b) + dT (c, y)

w(g) = αb,c(g)tb,c(f) + βb,c(g)

= Φb,c,g(tb,c(f)). J

I Definition 13 (Parent centroid). Let τ be a tree of the centroid decomposition T . The
parent centroid of τ is the centroid of the parent of τ in T .

Lemma 12 is instrumental to proving the following (see Figure 2):

I Lemma 14. Let f = (v, u) ∈ S(e, v), and let Ψ,Λ be two trees of the centroid decomposition
of T such that the following conditions hold: (i) v 6∈ V (Ψ) or V (Ψ) = {v}, and (ii) u 6∈ V (Λ)
or V (Λ) = {u}. Let b (resp. c) be the parent centroid of Ψ (resp. Λ), and assume that
b ∈ Ue (resp. c ∈ De). Then, an edge g is a (Ψ,Λ)-critical edge for f if and only if
Φb,c,g ∈ UEF (tb,c(f)) where F = {Φb,c,g′ : g′ ∈ S(e, V (Ψ) ∩ Ue, V (Λ) ∩De)}.

Proof. First of all we show the following property of the centroid decomposition T : let
p, q ∈ V (T ), and suppose that the unique path in T between the leaf nodes associated with
p and q contains a node whose corresponding centroid is z. Then, the unique path between
p and q in T contains z. Indeed, if z is either p or q, the property is trivially true. On the
other hand, suppose that z 6∈ {p, q}, and let τ be the subtree of T associated with z in T .
Then, let τ iz be the child subtree of τ containing p. Observe that q is not in τ iz. Moreover, by
construction, each path from a node of τ iz, and in particular from p, to any node outside τ iz,
and in particular to q, must pass through z.

We now prove the claim. If V (Ψ) = {v} (resp. V (Λ) = {u}) then it follows from
Lemma 12 by choosing X = {v} and Y = V (Λ) ∩De (resp. X = V (Ψ) ∩ Ue and Y = {u}).
The complementary case is the one in which v 6∈ V (Ψ) and u 6∈ V (Λ). Consider the vertices
v and b (resp. u and c) in T and notice that v (resp. u) cannot be an ancestor of b (resp. c).
Indeed, if that were the case, then the subtree of T induced by the vertices in V (Ψ) (resp.
V (Λ)) would contain b (resp. c) contradicting the hypothesis. Hence, the path from any
vertex in V (Ψ) to v (resp. V (Λ) to u) traverses b (resp. c) in T and therefore the same holds
in T . The claim follows by invoking Lemma 12 with X = V (Ψ)∩Ue and Y = V (Λ)∩De. J
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Procedure FindCriticalCandidate(f = (v, u),Ψ,Λ)
1 if V (Λ) ∩De = ∅ then return ⊥;
2 if V (Ψ) = {v} then return Qe(f,Ψ,Λ);
3 b← Centroid of Ψ;
4 Let j be the unique index in {0, 1, 2, 3} such that v ∈ V (τ j

b );
5 if b ∈ De then return FindCriticalCandidate(f, τ j

b ,Λ);
6 G ← {Qe(f, τ i

b ,Λ) : i = 0, 1, 2, 3 ∧ i 6= j}; // Here b ∈ Ue

7 g1 ← arg maxg∈G φ(f, g);
8 g2 ← FindCriticalCandidate(f, τ j

b ,Λ);
9 return arg maxg∈{g1,g2}{φ(f, g)};

Lemma 14 allows us to design a recursive procedure to compute a (Ψ,Λ)-critical edge
for f (see Procedure FindCriticalCandidate). To this aim we will make use of a data
structure Qe that, for each edge f ∈ S(e), and for each pair of trees Ψ,Λ of the centroid
decomposition, can perform a query operation that we name Qe(f,Ψ,Λ). This query reports
an edge whose function Φb,c,g is in UEF (tb,c(f)) where b and c are the parent centroids of Ψ
and Λ, respectively, and F = {Φb,c,g′ : g′ ∈ S(e, V (Ψ) ∩ Ue, V (Λ) ∩De)}.

Next two lemmas show the correctness and the running time of the procedure:

I Lemma 15. Let be given an edge f = (v, u) ∈ S(e, v) and two trees Ψ,Λ of the centroid
decomposition such that: (i) v ∈ V (Ψ), and (ii) u 6∈ V (Λ) or V (Λ) = {u}. Then, Proced-
ure FindCriticalCandidate(f,Ψ,Λ) computes a (Ψ,Λ)-critical edge for f .

Proof. First of all notice that if V (Λ) ∩De = ∅, then the algorithm correctly returns ⊥. We
now prove the claim by induction on |V (Ψ)|. If |V (Ψ)| = 1, then the only vertex in Ψ must
be v and Procedure FindCriticalCandidate queries Qe for Qe(f,Ψ,Λ). By Lemma 14,
the returned edge is a (Ψ,Λ)-critical edge for f . If |V (Ψ)| > 1 then we distinguish two
cases, depending on the position of the centroid b of Ψ. If b ∈ Ue it is sufficient to notice
that a (Ψ,Λ)-critical edge for f must be incident to a tree τ ib for some i = 0, 1, 2, 3. Let j
be the unique index in {0, 1, 2, 3} such that v ∈ V (τ jb ). If j 6= i then, by Lemma 14, the
query Qe(f, τ ib ,Λ) returns a (τ ib ,Λ)-critical edge g′ (and hence g′ is also a (Ψ,Λ)-critical
edge) for f . Procedure FindCritical then returns either g′ or another edge g such that
φ(f, g) = φ(f, g′). If j = i, the algorithm is recursively invoked and, since |V (|τ ib |)| < |V (Ψ)|
we know, by the induction hypothesis, that it returns a (τ ib ,Λ)-critical edge for f , which is
also (Ψ,Λ)-critical edge for f . If b ∈ De, then there is at most one τ ib containing at least one
vertex in Ue (as the converse would imply that the vertices in V (Ψ) ∩Ue are disconnected in
Ψ, a contradiction). Moreover, since v ∈ V (Ψ)∩Ue, there is exactly one such tree τ ib , namely
τ jb . The algorithm recursively invokes itself on τ jb and we know, by induction hypothesis,
that it returns a τ jb -critical edge for f , which is also (Ψ,Λ)-critical edge for f . J

I Lemma 16. Procedure FindCriticalCandidate(f,Ψ,Λ) requires O(ΓQe · logn) time,
where ΓQe

is the time required by a query on Qe.

Proof. Notice that Procedure FindCriticalCandidate performs exactly one recursive in-
vocation for each vertex of the tree T on the unique path between the root of T and u in T .
The claim follows since the height of T is O(logn). J

Thus, to get the promised running time of O(log2 n) for ΓFCC, we are left to prove that
ΓQe = O(logn). Actually, such a bound can be obtained by suitably implementing Qe in
such a way that all the underlying upper envelope functions are efficiently maintained. Due to
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space limitation, this technical part will appear in the full version of the paper. By combining
all the lemmas, and by observing that we need O(n2) space to handle the top-trees, and
O(m log2 n) space to implement each Qe, we eventually can give the following:

I Theorem 17. The ABSE-TS problem can be solved in O(n2 log4 n) time and O(n2+m log2 n)
space.
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Abstract
We introduce the problem of hub-laminar decomposition which generalizes that of computing a
shortest path with minimum eccentricity (MESP). Intuitively, it consists in decomposing a graph
into several paths that collectively have small eccentricity and meet only near their extremities.
The problem is related to computing an isometric cycle with minimum eccentricity (MEIC). It
is also linked to DNA reconstitution in the context of metagenomics in biology. We show that
a graph having such a decomposition with long enough paths can be decomposed in polynomial
time with approximated guaranties on the parameters of the decomposition. Moreover, such
a decomposition with few paths allows to compute a compact representation of distances with
additive distortion. We also show that having an isometric cycle with small eccentricity is related
to the possibility of embedding the graph in a cycle with low distortion.
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1 Introduction

The goal of this paper is to extend the MESP (Minimum Eccentricity Shortest Path) Problem
from Dragan and Leitert [5] and the related problem of recognizing k-laminar graphs from
Völkel et al. [16]. Both consist in finding a shortest path (in the sense that no path joining
the same endpoints is shorter) k-dominating a graph (every vertex is at distance at most k
from that path). The k-laminar problem additionally requires that path to be a diameter
(there is no longer shortest path in the graph). Relationships between the two parameters
are derived in [4].

To generalize this problem to more complex underlying structures, we introduce the
problem of decomposing a graph into subgraphs with bounded shortest-path eccentricity.
More precisely, we introduce the hub-laminar decomposition as a set of paths that k-dominates
the graph and meet only near their extremities. To formalize this property, we introduce the
notion of hub, that is a ball with fixed radius r centered at a path endpoint. The laminar
associated to a path is the set of nodes k-dominated by the path. Our definition requires
that an edge between two nodes belonging to two different laminars must also belong to a
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hub. The degree of a hub is then the number of laminars that meet in the hub. The main
result of the paper is that computing such a decomposition becomes tractable when hub
centers are far enough one from another, or equivalently when paths are long enough. The
MESP problem is equivalent to a hub-laminar decomposition with one laminar.

Such a generalization is naturally interesting in networks where one might want to identify
a set of speedy linear routes that are “highly accessible” with applications in communication
networks, transportation planning and water resource management. It is also motivated by
DNA assembly in biology. DNA sequencing proceed through the reading of DNA fragments
that must be assembled. When a single DNA strand is sequenced, comparison of fragments
leads to a graph with “laminar” structure [16] that is with large diameter and small shortest
path eccentricity. In the context of metagenomics, several DNA strands are sequenced
together and more complex structures appear (see Figure 1 in [16]). Identifying the laminar
structures of such graphs is typically encountered in metagenomic approaches for evolution
questions (see e.g. [13]). The problem of the assembly (gluing DNA fragments to reconstruct
a DNA strand) is then mixed with that of binning (sort DNA strands into groups that
represent an individual genome or genomes from closely related organisms). See [14] for a
presentation of assembly and binning problems in the context of metagenomics. Efficient
decomposition of a graph into laminars could thus enhance the techniques for assembly and
binning in this context.

The problem of decomposing a graph into λ laminars that k-cover the graph is not well
defined as there may be several trade-offs of parameters λ and k. However, we show that
when laminars are long enough compared to parameters r and k, then all (r, k)-hub-laminar
decompositions are equivalent (same global structure) and have closely located hubs (except
for hubs of degree two that do not affect the global structure). This implies for example that
the positions of the extremities of the minimum eccentricity shortest path (MESP) can be
approximated within O(k) distance when the diameter of a graph is large with respect to
the eccentricity k of the MESP.

From a graph perspective, a very natural generalization of MESP is the problem of finding
a minimum eccentricity isometric cycle (MEIC), that is a cycle preserving distances that has
minimum eccentricity k. Note that such a cycle can be seen as a hub-laminar decomposition
with two laminars and two hubs with degree two. An important motivation for the MESP
problem is its relationship with embedding a graph into the line with small multiplicative
distortion [5]. We similarly show that the MEIC problem is related to embedding a graph
into a circle with low multiplicative distortion, i.e. such that distances in the circle are
within a constant factor of distances in the graph. Note that circle distortion is bounded by
line distortion as a line segment can isometrically be embedded in a sufficiently long circle.
(However, line distortion can be much larger than circle distortion.) Graph embedding in
classical metrics is a well studied problem [9, 10]. Another related subject with abundant
literature is that of compactly representing the distances of a graph [15, 12]. We show that a
decomposition with few laminars ensures a compact representation of distances with bounded
additive distortion.

Related works

Finding a MESP is NP-complete but can be approximated within a constant factor [5].
Better trade-off between computation time and approximation factor for MESP is obtained
in [4]. The problem of efficiently representing the distances in a graph encompasses a vast
literature dating from metric embedding [1]. Approximating embedding with low distortion
is introduced in [2] where some results are provided in the case of the line. The case of
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embedding the metric induced by an unweighted graph is studied in [3]. Embedding a graph
metric into the line with minimum distortion is NP-complete but fixed parameter tractable
with respect to distortion [6]. Approximate distance oracles, i.e. compact data-structures for
representing an approximation of distances, are investigated in [15]. A particular approach
introduced by Peleg [12] resides in assigning a label to each node of a graph such that the
distance between two nodes can be estimated from their labels. Several results exist about
the trade-off between label size and approximation quality. Exact distance estimation is
investigated in [8] and requires Ω(n) bits labels for general graphs. Approximation with a
constant factor and sub-linear label size is derived in [15]. Some results concern additive
approximation such as [7] in the case of hyperbolic graphs. A longest isometric cycle can be
found in polynomial time [11].

2 Definitions

We consider finite, undirected and connected graphs (the connectivity is always assumed
within the paper). Given a graph G, with vertex set V (G) and edge set E(G), we let dG(u, v)
denote the distance between two vertices, i.e. the length of a shortest path from u to v. When
the graph G is clear from the context, we omit the G subscript and simply write d(u, v). Let
B(u, r) = {v ∈ V (G) | d(u, v) ≤ r} denote the ball of radius r centered at u. Given a set of
vertices U we set B(U, r) = ∪u∈UB(u, r). Given two sets U and W of vertices, we say that
U k-dominates W when every vertex in W is at distance at most k from some vertex in
U , i.e. W ⊆ B(U, k). We say that U has eccentricity k, denoted ecc(U) = k, when k is the
smallest integer such that B(U, k) = V (G). A path P in G is a sequence of nodes such that
any two consecutive nodes are linked by an edge of G. We consider only simple paths: a
node appears at most once in the sequence. The first node of the sequence and the last one
are called the endpoints of P . For the simplicity of notations, we also let P denote the set
of nodes appearing in the sequence. For any vertices u and v on P , we denote by Puv the
subpath of P having u and v as endpoints.

2.1 Hub-laminar decomposition
I Definition 1 (Hub-laminar decomposition). Consider a connected undirected graph G, two
positive integers r and k, H = {h1, . . . , hq} a set of vertices of G called hub centers, and
P = {P1, . . . , Pp} a set of paths of G called laminar paths. A ball B(h, r) with h ∈ H is called
a hub, and a set B(P, k) with P ∈ P is called a laminar. (H,P) is an (r, k)-hub-laminar
decomposition of G if the following conditions are satisfied:
1. each laminar links two hubs centers: the endpoints h, h′ of any P ∈ P belong to H and

for every other hub h′′ ∈ H \ {h, h′}, B(P, k) ∩B(h′′, r + 1) = ∅ ,
2. the laminars and the hubs dominate G: V (G) ⊆

⋃
h∈H B(h, r) ∪

⋃
P∈P B(P, k),

3. each laminar path is locally a shortest path: any path P ∈ P with endpoints h and h′ is
a shortest path of the graph G[B(P, k) ∪B(h, r) ∪B(h′, r)],

4. laminars meet at hubs only: for all i 6= j and uv ∈ E(G) such that u ∈ B(Pi, k) and
v ∈ B(Pj , k), there is a hub center h ∈ H such that Pi and Pj both have h as endpoint
and u, v ∈ B(h, r).

The minimal laminar length of a decomposition (H,P), denoted l, is the minimal length
of the paths in P. Its laminar size, denoted λ, is the number of paths in P.

A hub-laminar decomposition (H,P) with l ≥ 2r + 1 forms a partition of the edges of G
in the following sense: each edge is either inside exactly one hub (possibly touching many
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Graph G

r k

Quotient graph of G

Reduced quotient graph of G

Figure 1 Illustration of an hub-laminar decomposition with r = 2, k = 1. Every vertex is at
distance r from a hub center (diamond vertices) or at distance k from a laminar path (bold paths
between hub centers).

laminars ending in that hub), i.e ∃!h ∈ H s.t. u, v ∈ B(h, r); or, else, inside a unique laminar
(possibly touching one hub extremity of that laminar), i.e, ∃!P ∈ P s.t. u, v ∈ B(P, k).

Figure 1 illustrates this definition and the notion of quotient graph that we define next.
This definition basically defines a decomposition into k-neighborhoods of internally far apart
shortest paths. It may seem a bit involved, but we think it expresses in a minimalist way
what we mean by “internally far apart” with Item 4. Items 1 and 2 indicate that the graph
is decomposed into laminars which are k-neighborhoods of certain paths and hubs which are
balls centered at the extremities of those paths. Item 3 requires path to be shortest in the
induced graph (rather than in G), to allow laminars with different length.

2.2 Quotient graph and equivalence between decompositions

As previously mentioned, the hub-laminar decomposition gives naturally raise to a skeleton,
which can be simplified into a quotient graph.

I Definition 2 (quotient graph and reduced quotient). Given a graph G and an (r, k)-hub-
laminar decomposition (H,P) of G, the quotient of this decomposition is an edge-labeled
multigraph with vertex-set H and for each P ∈ P with endpoints h, h′ there is an edge hh′
whose label is the length of P .

The degree of a hub denotes the degree of the corresponding vertex in the quotient graph,
or equivalently the number of laminar paths its center is the endpoint of.

The reduced quotient graph of a decomposition (H,P) is the multigraph obtained from
its quotient graph by repeatedly removing degree 2 nodes: for every vertex u of the quotient
incident with exactly two edges uv and uw with respective labels a and b, u and both edges
are removed and a new edge vw is added with label a+ b. (It is a loop when v = w.)

When the quotient is not a cycle (a case specifically adressed by MEIC, see Section 3)
the reduced quotient is well defined and unique (recall that graphs are supposed connected).

I Definition 3 (equivalence between decompositions). Two hub-laminar decomposition of a
given graph G, possibly with different parameters r, k, are D-equivalent if they have the same
reduced quotient graph, up to an isomorphism φ of vertex-sets such that d(h, φ(h)) ≤ D (d
is the distance between hub centers in G, not in the reduced quotient).



E. Birmelé, F. de Montgolfier, L. Planche, and L. Viennot 15:5

2.3 Isometric cycle, circle embedding and distance labeling
A cycle C in a graph G is isometric if it preserves distances, i.e. dC(u, v) = d(u, v) for all
u, v ∈ V (C). In other words, for any pair u, v of nodes on the cycle, one of the two path
linking u and v in the cycle is a shortest path in the graph. Note that an isometric cycle is
necessarily an induced cycle. The MEIC problem consists in finding an isometric cycle with
minimum eccentricity. It can be shown to be NP-complete following a similar proof as [5] for
the NP-completeness of MESP problem.

A circle embedding of a graph G is a mapping f : V (G)→ C where C is a circle of given
length c. It has distortion γ if d(u, v) ≤ dC(f(u), f(v)) ≤ γd(u, v) for all u, v in V (G). The
circle distortion cd(G) of G is the minimum distortion of a circle embedding of G.

A distance labeling of a graph G consists in assigning a label Lu to each node u ∈ V (G)
together with a distance estimation function f that outputs an estimation of d(u, v) when
given Lu and Lv as input. It has additive distortion α if d(u, v) ≤ f(Lu, Lv) ≤ d(u, v) + α

for all u, v in G.

3 Main results

Obviously, the reduced quotient graph of a graph having a (r, k)-hub-laminar decomposition
follows the following trichotomy: it is either a path, a cycle or has a degree three node. We
treat separately the three cases.

In the first case, the graph has a shortest path with eccentricity max {3k, 2r} and can be
recognized through an approximate MESP algorithm such as [4]. (The max {3k, 2r} bound
is a consequence of Lemma 12 given in Section 4.) In the second case, the graph has an
isometric cycle with eccentricity at most max {3k, 2r}. To recognize such graphs, we propose
an approximate MEIC algorithm:

I Theorem 4. Given a graph containing a K-dominating isometric cycle with length `, a
6K-dominating isometric cycle can be computed in O(n4.752 log(n)) time. Moreover, the
computed cycle is indeed 3K-dominating when ` ≥ 12K + 2.

We obtain therefore an algorithm for approximating circle embedding with low distortion.

I Proposition 5. If a graph has circle distortion γ, it is possible to embed it in a circle with
distortion O(γ2) in polynomial time.

Recognizing the general case of decomposition is not a well defined problem as several
decompositions may yield different trade-offs of the parameters. However, when laminars are
long enough, all (r, k)-hub-laminar decompositions are indeed O(k) equivalent. This can be
seen as a consequence of the following recognition result.

I Theorem 6. Given a graph G having a (r, k)-hub-laminar decomposition (H,P) of minimal
laminar length ` ≥ 8r + 60k + 4 and integers K,R such that K ≥ 3k, R ≥ 2K + 3r + 3k and
2R+ 8K < `− 2r − 18k − 4, it is possible to compute in O(min(n, λ)m) time a (K,R)-hub-
laminar decomposition which is (K + 2r)-equivalent to (H,P).

From the graph metric point of view, we obtain then a compact representation of distances:

I Proposition 7. Given a graph G having an (r, k)-hub-laminar decomposition with laminar
size λ, it is possible to compute in polynomial time a O(max {k, r})-additive distance labeling
with O(λ logn) bit labels.

Due to lack of space, the proofs of these theorems, and of the lemmas and propositions
stated below, are put in Appendix.
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4 Algorithms

4.1 Minimum Eccentricity Isometric Cycle
We propose to approximate the MEIC problem by computing a longest isometric cycle, that
is an isometric cycle of G with maximum length. The following lemma shows that a longest
isometric cycle O(k)-dominates any k-dominating isometric cycle.

I Lemma 8. Let G be a graph with an isometric cycle C = c1, ...cp k-dominating G, and
let D be a longest isometric cycle of G. Every vertex of C is at distance at most 5k of D.
Furthermore, if D has length more than 12k+ 2 then every vertex of C is at distance at most
2k of D.

Consequently, a longest isometric cycle in a graph is a 6-approximation for the MEIC
problem, and a 3-approximation when the graph has a diameter large enough. As shown in
[11], a longest isometric cycle can be computed in O(n4.752 log(n)) time. Theorem 4 is thus
a direct consequence of this and Lemma 8.

4.2 General case outline
Consider a graph G having a (r, k) hub-laminar decomposition (H,P) of minimal laminar
length ` and having at least one hub of degree at least 3. The underlying idea of the algorithm
is to use BFS (Breadth-first search) to compute shortest paths and their K-neighborhoods,
K being chosen large enough to dominate every laminar traversed by the considered shortest
paths, but small enough compared to ` to detect all hubs of degree at least 3.

The first step, called FindHubs, consists in applying the procedure NextHub described
in section 4.4 until it discovers no new hubs. This step yields two sets of hub-centers A and
B, respectively called unmovable and movable hub-centers, which will be used to determine
the laminars. An unmovable hub center a ∈ A corresponds to exactly one hub center h ∈ H
such that d(a, h) is bounded. It will be shown that A contains exactly one such vertex for
every hub-center of H which degree is not 2.

A movable hub center b ∈ B will only be added by NextHub in a configuration corres-
ponding to a cycle in the quotient graph of (H,P) containing only one hub of degree at least
3, like the three laminars on the left of Figure 1. This is called a Problematic Configuration
We then know there exists at least a degree 2 hub h ∈ H somewhere in that cycle, but if
they are thin enough they may remain merged in the laminars and we can not bound d(b, h),
and b may be moved in the second step described bellow.

The laminars are determined in a second step by the FindLaminars procedure, which
links the hub-centers of the previous step by shortest paths. The only difficulty which has
to be taken into account refers to hubs of degree 2 in (H,P). Indeed, the BFS runs of the
hub-detection step may have missed one of them because they K-dominated it, whereas the
BFSs of second step don’t. In that case, the set of hubs A is adapted by adding the new
discovered hub, and if needed, the corresponding movable hub center is deleted from B.

Figure 2 gives a summary of the two steps by showing a possible outcome of the FindHubs
and FindLaminars on an example. The FindHubs procedure detects all hubs of degree
different from 2 and some of those of degree 2. Moreover, it places a movable hub on
each problematic configuration. FindLaminars then computes the corresponding laminars,
adding new hubs if a hub of degree 2 missed in the first step is detected. Some of them may
however still be undetected, being replaced by a movable hub or just missing in the final
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Unknow decomposition Hubs computed with FindHubs

a1

a2 a3
a4

a5

b1

Decomposition after FindLaminars

a1

a2 a3
a4

a5

a6

Figure 2 Illustration of the different steps of the algorithm. The (H,P) decomposition is unknown
(top left). Notice a Problematic Case on the right of the graph: a cycle of laminar with only one
degree not 2 hub. First, hub centers are computed such that every hub B(h, r), h ∈ H with degree
different from 2 is covered by B(ai, R), ai ∈ A (top right). Finally the laminars are computed
(greyed, bottom) and some movable hubs may be moved (like b1 moved into a5). Some thin degree 2
hubs from H are not found but merged in the K-laminars. Fortunately the hub center a5 was found
by BFS in the second step, but we could also have output b1 instead, or both a5 and b1, yielding in
any case an equivalent reduced quotient.

decomposition. The quotient graphs of the decomposition supposed by Theorem 6 and that
of the constructed decomposition may therefore be different, but their reduced quotients are
equivalent.

4.3 Some rules to compute a decomposition
We rely on the following properties for running our algorithm. The first tool is used to
identify hub centers. Fortunately there is a pattern that, when it occurs, signals that any
hub-laminar decomposition must have a hub nearby:

I Lemma 9 (Hub trigger). Consider three numbers r, k and K ≥ 3k. If there exists
a shortest path Q from a to b
a vertex u ∈ V (Q) such that d(a, u) > K + 6k and d(b, u) > K + 6k
a vertex v such that d(u, v) = K

a vertex w such that vw ∈ E(G) and d(Q,w) = K + 1 and d(u,w) = K + 1,
then any (r, k)-hub-laminar decomposition (H,P) has a hub center h ∈ H with d(u, h) ≤ K+r.

Fig. 3 (right) illustrates this. This pattern, when found, allows to propose u as a hub. And
it is very powerful, since every hub h of degree at least three of any (r, k)-hub-laminar
decomposition shall trigger this pattern, for any shortest path Q passing close to h and long
enough, as stated by the following lemma:

I Lemma 10 (Degree ≥ 3 Hub Detection). Consider a graph admitting an (r, k)-hub-laminar
decomposition (H,P), and having a hub h ∈ H whose degree is at least 3, and consider
K ≥ 3k. For any shortest path Q and vertex u ∈ V (Q) such that

d(u, h) ≤ K,
u is at distance at most r + 4K + 9k + 2 of both endpoints of Q,
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h h′
v′

u′ v

u

(a)

Q

P

(b)

h
u

v

w

Q

(c)

h1 h2
hzd f K

≤ R

Figure 3 Illustration of the structural properties. (a) Lemma 12: The part of the laminar
k-covered by Pu′v′ is K-covered by Q. (b) Lemma 9: If Q goes through a hub of degree ≥ 3, a triplet
u, v, w can be found, and it is the only such case far apart the extremities of Q. (c) Lemma 11.

there exists
x ∈ V (Q) such that x is at distance at least K + 6k from both endpoints of Q, and
vw ∈ E(G) such that d(x, v) = K and d(Q,w) = K + 1

Notice that if a graph admits an (r, k)-hub-laminar decomposition (H,P) where all hubs
have degree at least three, then the pattern is enough to find all its hubs, or more exactly to
compute a set of hubs H ′ which is in bijection φ with H, i.e. for all h ∈ H d(h, φ(h)) ≤ K+r.
Of course to do so in polynomial time we shall use a clever collection of paths Q to trigger
all hubs. This is the idea developed in the algorithm. But before we shall explain how to
deal with degree 1 hubs, the “dead end” hubs.

I Lemma 11 (Dead-end hub). Consider the graph G′ induced by a sequence of incident
hubs and laminar H1, L1, H2, ...Hz, such that h1 and hz are at distance at least 2R+ r + 2.
Suppose moreover that Hz is a hub of degree 1 and all other hubs but H1 are of degree 2.

Let d in L1 be at distance at most R+ r of h1 and f a vertex of G′ the furthest from d.
f is then at distance at most 2r + 2k from hz.

This lemma allow to approximate h with f . As we have just seen, hubs with degree
different from 2 are, in some sense, uniquely defined (up to a certain distance) in any
hub-laminar decomposition of given parameters. Degree 2 hubs however may be added at
discretion on any hub-laminar decomposition, in the middle of long laminar, so we cannot
imagine a sufficient condition for detecting them. However, they are necessary in very few
case, namely

to dominate a vertex at distance more than k, but less than r, inside of a r-laminar (not
k-laminar)
for the Problematic Configuration, since a laminar must have two distinct extremities

The last property, proved in [4], deals no more with computing hub centers but with
computing laminars. While it is is NP-hard to find a shortest path that k-dominates a
k-laminar graph, any path 3k-dominates a section of the laminar between its extremities.
Stated more formally:



E. Birmelé, F. de Montgolfier, L. Planche, and L. Viennot 15:9

I Lemma 12 (Path local dominating). Consider a shortest path P (say, from h to h′). Let
Q be a path from u to v contained in B(P, k).

Assume there exists u′ ∈ P and v′ ∈ P such that d(u, u′) ≤ k and d(v, v′) ≤ k.
Then every vertex of Pu′v′ is at distance at most 2k from Q.
Furthermore, every vertex of B(Pu′v′ , k) is at distance at most 3k of Q.

Fig. 3 (left) illustrates this. We extensively use this lemma for designing an approximation
algorithm: P is any laminar path, and Q is chosen to 3k dominate the middle of the laminar
of P , i.e. all vertices far enough from P extremities (Lemma13 and 14 define “far enough”
as 2R+ 8K + 2r + 18k + 4) and we therefore get a decomposition into 3k-laminar graphs.

4.4 Finding hubs
In the following section, graphs are vertex-colored, with possibly some uncolored vertices.

The general idea of the algorithm is that starting with an uncolored graph, we end with
a fully colored one, such that :

Every vertex at distance less than K + 1 of a computed hub a is colored with color a.
Other vertices of the graph are colored with color lam.

4.4.1 The StopBFS function
The StopBFS procedure, provided a vertex d and a color c, consists in running an usual
Breadth-first search, starting at vertex d, with the following additional rules:

only uncolored vertices are put in the BFS queue
the BFS stops immediately if a vertex f is visited (i.e. extracted from BFS queue) and f
has a colored neighbor whose color is not c.
otherwise, if the BFS stops because its queue is empty, let f be the last visited vertex
function StopBFS(d, c) returns the BFS path P from d to f (which is a shortest path in
the graph induced by G after removing c-colored vertices).

4.4.2 Finding a new hub: NextHub
Given a vertex s, typically corresponding to an already selected hub center, the NextHub
procedure (see pseudo-code in Algorithm 1) detects new hubs: it colors B(s,R) with a new
color and runs a StopBFS procedure from its border. In the case of a not deep-enough tree,
the discovered vertices are colored to not be reused during the hub discovery. Otherwise,
it may either find a new hub of degree at least 3 by Lemma 10, find a new hub of degree 1
by Lemma 11, meet another hub and dominate a laminar by Lemma 12 or cycle and come
back to hit B(s,R). The later case indicates that the algorithm encountered the problematic
configuration and induces the creation of a movable hub.

Given a path P , r3K(P ) denotes the subpath of P obtained by removing the 3K first
and 3K last vertices of P . In the sequel, sets A and B respectively denote the unmovable
and movable hub centers.

4.4.3 Finding all hubs : FindHub
The FindHub simply consists in considering the initial uncolored graph G and to construct
the sets A and B of unmovable and movable hub-centers by repeatedly applying NextHub
(see pseudo-code in Appendix).
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Algorithm 1: NextHub
1 NextHub

Input: A graph G with possibly colored vertices, integers R and K, hub-center
sets A and B, and a vertex s

Output: Updated sets A, B and vertex coloring
2 Color every vertex in B(s,R) with a new color col(s)
3 Choose an uncolored vertex d at distance R+ 1 from s

4 Let P = stopBFS(d, col(s)) and f the last vertex of P
5 If P is of length less that 2R+ 4K + 2 then

/* Not deep enough tree: no laminar is crossed */
6 Color all vertices visited by stopBFS(d, col(s)) with color lam
7 else if ∃w, a s.t. col(w) 6=col(s) and h∈r3K(P) and d(w, a)=K+1 and

d(w,P )=K+1 then
/* A hub has been detected by Lemma 9 configuration */

8 Add to A the first vertex a of r3K(P ) satisfying the above
9 else if f is at distance less than 2K of B(s,R) then

/* P is deep, found no hub and came back near the root:
problematic configuration */

10 Add to B the vertex b in the middle of P
11 Color uncolored vertices in BG\{B(d,R)∪B(f,R)}(P,K) with color lam
12 else if f is not adjacent to a colored vertex then

/* P is long, found no hub and doesn’t come back: dead end */
13 Add f to A
14 else

/* P links B(s,R) to a vertex of a color different from col(s).
The dominated vertices correspond to a laminar. */

15 Color uncolored vertices in BG\{B(d,R)∪B(f,R)}(P,K) with color lam

For the first call, we first compute a long path Q using a double BFS. More precisely,
starting at any s0, we compute a furthest node s and then repeatedly apply NextHub until
a vertex a is added to A. If there is a unique hub of degree at least three, the fact that
` > 2R+ 8K + 2r+ 18k+ 4 ensures that the deepest vertex of any BFS is at distance greater
than R + (r + 4K + 9k + 2) of the hub center. If there are at least two hubs of degree at
least three, ` > 2R+ 8K + 2r + 18k + 4 implies that any vertex is at distance greater than
`
2 > R + (r + 4K + 9k + 2) of one of the two hub-centers. In any case, the Next_Hub
function applied to s has to find the configuration from Lemma 9 at some point, ensuring
that a first hub center a ∈ A is found. We set A = {a} and B = ∅, and uncolor the whole
graph.

Once this first vertex of A has been found, NextHub is run while there exists a hub center
a ∈ A having an uncolored vertex in its R + 1-neighborhood. If ` is large, the FindHubs
procedure finds all hubs of (H,P) up to those of degree 2, as stated in the following lemma.

I Lemma 13. Suppose that (H,P) has at least a hub of degree 3, and `(H,P) > 2R+ 8K +
2r + 18k + 4. Then, for every vertex a ∈ A, there exists a vertex h ∈ H such that their
distance is at most K + 2r. Conversely, for every h ∈ H of degree different from 2, such a
vertex a is selected in A.
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4.5 Finding laminars
At this step we have a set of unmovable hubs including all hubs of degree 1 or at least 3, and
potentially those of degree 2. Moreover, the set B of movable hub-centers indicates the places
where problematic configuration occur. We have to identify the laminars and their paths,
keeping in mind that some new hubs of degree 2 may be detected. Each path is found by a
BFS starting at an hub center and ending at the first other hub center encountered.Then we
remove from the graph the vertices from the laminar, but not the hubs. For each path P
linking two hub centers h and h′, the vertices from B(P, k)− (B(h,R)∪B(h′, R) are removed
from the graph. Hub center h is no more used when B(h,R) becomes disconnected and the
whole process ends when the graph consists in disconnected hubs only.

To prevent any difficulty arising from ending a shortest path with a movable hub B(b, R),
we start by those hubs to run BFSs. Indeed, such hubs correspond to a configuration where
the quotient of the decomposition (the one supposed by Theorem 6 and the computed one,
since they have the same reduced quotient) contains a cycle . If a movable hub has been
used, it means that only one hub center a ∈ A corresponding to hub-center h ∈ H of degree
at least 3 has been found, and that all other hubs are of degree 2 on the cycle and have
been missed. Starting from b, the first element of A ∪ B which is hit is then a, whatever
direction was followed from B(b, R). Thus, two BFS from b to a are run and follow the ring
in opposite directions. Either the two obtained paths K-dominate all vertices of the ring, in
which case b is transferred to A and the two paths added to Q; Or there exist a vertex in
the ring which is not K-dominated. This vertex is then at distance at most K + 2r of some
h ∈ H (cf Appendix for a proof). It is thus added to A and b is deleted from B.

Once the movable centers have been considered, no other places with problematic config-
urations are left. One therefore just has to draw shortest paths between vertices of A, and
Lemma 12 ensures that they cover the laminars of (H,P). The only difficulty is again that a
hub of degree 2 that had not been discovered by FindHubs may this time be discovered by
FindLaminars because Lemma 9 configuration is encountered. In that case, this degree 2
hub center is added to A and a new BFS is run from it. See pseudo-code of FindLaminars
in Appendix.

I Lemma 14. Suppose that (H,P) has at least a hub of degree 3, and `(H,P) > 2R+ 8K +
2r + 18k + 4. Suppose that FindLaminars is run on sets A and B returned by FindHubs.
Then it ends with every vertex deleted or marked as undeletable.

As shown in the appendix, Lemmas 13 and 14 imply Theorem 6.

5 Embedding and distance labeling

5.1 Circle embedding with bounded distortion
Proposition 5, stated in Section 3, is a consequence of Theorem 4 and the two following
propositions.

I Proposition 15. Any graph G having a circle embedding with distortion γ has a shortest
path or an isometric cycle with eccentricity bγ/2c at most.

I Proposition 16. Given a graph G and an isometric cycle with eccentricity k in G, an
embedding of G in a circle with distortion O(k · cd(G)) can be computed in polynomial time.

Proof sketch. The construction of the embedding is similar to that of [5] with Euler tours of
trees of depth k rooted in the cycle (see [5]). We then obtain an embedding of the graph in a
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cycle of length 2n at most that can be easily embedded in a circle with same length. The
distortion of an edge uv of G is then at most twice the size of the union S of trees rooted
on the shortest path of the cycle from the root u′ of the tree of u to the root v′ of the tree
of v. As we have d(u′, v′) ≤ 2k + 1, the diameter of S is at most 4k + 1. Now consider an
embedding of G in a circle C with distortion γ = cd(G). Two nodes of S are embedded at
distance at most γ(4k + 1) in the circle and different nodes are at distance 1 at least. We
thus have |S| ≤ γ(8k + 2), and our embedding has distortion O(γk). J

5.2 Distance labeling for general hub-laminar decomposition
A hub-laminar decomposition of a graph G allows to compute a compact representation
of distances in G with additive distortion. A distance labeling is said to be c-additive and
have s bit labels when the label Lu assigned to a node u contains at most s bits and for all
pairs of nodes u, v, a distance estimation d̂uv can be computed from Lu and Lv such that
d(u, v) ≤ d̂uv ≤ d(u, v) + c. Proposition 7 is a consequence of Theorem 6 and the following
proposition.

I Proposition 17. Given a (r, k)-hub-laminar decomposition (H,P) with λ laminars of a
graph G, a max(4k, 2r)-additive distance labeling with O(λ logn) bit labels can be computed
in polynomial time.

Acknowledgments. The authors thank Michel Habib for inspiring discussions about k-
laminar graphs, and Eric Bapteste, Philippe Lopez and Chloé Vigliotti for raising the
problem of identifying complex laminar structures in biological graphs.
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Abstract
The NP-complete problem Feedback Vertex Set is to decide if it is possible, for a given integer
k ≥ 0, to delete at most k vertices from a given graph so that what remains is a forest. The variant
in which the deleted vertices must form an independent set is called Independent Feedback
Vertex Set and is also NP-complete. In fact, even deciding if an independent feedback vertex
set exists is NP-complete and this problem is closely related to the 3-Colouring problem, or
equivalently, to the problem of deciding if a graph has an independent odd cycle transversal,
that is, an independent set of vertices whose deletion makes the graph bipartite. We initiate a
systematic study of the complexity of Independent Feedback Vertex Set for H-free graphs.
We prove that it is NP-complete if H contains a claw or cycle. Tamura, Ito and Zhou proved that
it is polynomial-time solvable for P4-free graphs. We show that it remains in P for P5-free graphs.
We prove analogous results for the Independent Odd Cycle Transversal problem, which
asks if a graph has an independent odd cycle transversal of size at most k for a given integer
k ≥ 0.
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1 Introduction

Many computational problems in the theory and application of graphs can be formulated
as modification problems: from a graph G, some other graph H with a desired property
must be obtained using certain permitted operations. The number of graph operations used
(or some other measure of cost) must be minimised. The computational complexity of a
graph modification problem depends on the desired property, the operations allowed and the
possible inputs; that is, we can prescribe the class of graphs to which G must belong.
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16:2 Independent Feedback Vertex Set for P5-free Graphs

A set S of vertices in a graph G is a feedback vertex set of G if removing the vertices of S

results in an acyclic graph, that is, the graph G−S is a forest. The Feedback Vertex Set
problem asks if a graph has a feedback vertex set of size at most k for some integer k ≥ 0
and is a well-known example of a graph modification problem: the desired property is that
the obtained graph is acyclic and the permitted operation is vertex deletion. The directed
variant was one of the original problems proven to be NP-complete by Karp. The proof of
this implies NP-completeness of the undirected version even for graphs of maximum degree 4.

In this paper, we consider the problem where we require the feedback vertex set to be an
independent set. We call such a set an independent feedback vertex set.

Independent Feedback Vertex Set
Instance: a graph G and an integer k ≥ 0.
Question: does G have an independent feedback vertex set of size at most k?

Many other graph problems have variants with an additional constraint that a set of vertices
must be independent. For example, see [6] for a survey on Independent Dominating Set,
and [10] for Independent Odd Cycle Transversal, also known as Stable Bipartiza-
tion. We survey results on Independent Feedback Vertex Set below.

Not every graph admits an independent feedback vertex set (consider complete graphs on
at least four vertices). Graphs that do admit an independent feedback vertex set are said to
be near-bipartite, and we can ask about recognising these graphs.

Near-Bipartiteness
Instance: a graph G.
Question: is G near-bipartite (that is, does G have an independent feedback vertex set)?

Near-Bipartiteness is NP-complete even for graphs of maximum degree 4 [15] or dia-
meter 3 [3]. Hence, by setting k = n, we find that Independent Feedback Vertex Set
is NP-complete for these two graph classes. The Independent Feedback Vertex Set
problem is even NP-complete for planar bipartite graphs of maximum degree 4 (see [14]).
As bipartite graphs are near-bipartite, this result shows that there are classes of graphs
where Independent Feedback Vertex Set is harder than Near-Bipartiteness. To
obtain tractability results for Independent Feedback Vertex Set, we need to make
some further assumptions.

One way is to consider the problem from a parameterized point of view; see [1, 11] for FPT
algorithms for Independent Feedback Vertex Set when parameterized by k. Another
way to obtain tractability results is to restrict the input to special graph classes in order
to determine graph properties that make the problem polynomial-time solvable. Tamura
et al. [14] showed that Independent Feedback Vertex Set is polynomial-time solvable
for chordal graphs, graphs of bounded treewidth and for cographs. The latter graphs are
also known as P4-free graphs (Pr denotes the path on r vertices and a graph is H-free if it
has no induced subgraph isomorphic to H), and this strengthened a result of Brandstädt et
al. [4], who proved that Near-Bipartiteness is in P for P4-free graphs.

Our Contribution. The Independent Feedback Vertex Set problem is equivalent to
asking for a (proper) 3-colouring of a graph such that one colour class has at most k vertices
and the union of the other two induces a forest. We wish to compare the behaviour of
Independent Feedback Vertex Set with that of 3-Colouring, which we observe is
equivalent to the problem of deciding if a graph has an independent odd cycle transversal,
that is, a set of vertices whose deletion makes the graph bipartite. However, so far very few
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graph classes are known for which Independent Feedback Vertex Set is tractable and
our goal is to find more of them. For this purpose, we consider H-free graphs and extend
the result [14] for P4-free graphs in a systematic way.

In Section 2, we consider the cases where H contains a cycle or a claw. We first prove that
Near-Bipartiteness, and thus Independent Feedback Vertex Set, is NP-complete
on line graphs, which form a subclass of the class of claw-free graphs. We then prove that
Independent Feedback Vertex Set is NP-complete for graphs of arbitrarily large girth.
Together, these results imply that Independent Feedback Vertex Set is NP-complete
for H-free graphs if H contains a cycle or claw. Hence, only the cases where H is a linear
forest, that is, a disjoint union of paths, remain open. In particular, the case where H is a
single path has not yet been resolved. Due to the result of [14] for P4-free graphs, the first
open case to consider is when H = P5.

The class of P5-free graphs is a well-studied graph class. For instance, Hoàng et al. [8]
proved that for every integer k, k-Colouring is polynomial-time solvable for P5-free graphs,
whereas Golovach and Heggernes [7] showed that Choosability is fixed-parameter tractable
for P5-free graphs when parameterized by the size of the lists of admissible colours. Lokshantov
et al. [9] solved a long-standing open problem by giving a polynomial-time algorithm for
Independent Set restricted to P5-free graphs.

Our main result is that Independent Feedback Vertex Set is polynomial-time
solvable for P5-free graphs and this is proved in Sections 3 and 4. In Section 3 we give a
polynomial-time algorithm for Near-Bipartiteness on P5-free graphs. Then in Section 4
we show how to extend this algorithm to solve Independent Feedback Vertex Set in
polynomial time for P5-free graphs. Our results for Independent Feedback Vertex Set
also hold for Independent Odd Cycle Transversal (see the arXiv version of our paper).

2 Hardness When H Contains a Cycle or Claw

The line graph L(G) of a graph G = (V, E) has the edge set E of G as its vertex set, and two
vertices e1 and e2 of L(G) are adjacent if and only if e1 and e2 share a common end-vertex
in G. The claw is the graph with vertices a, b, c, d and edges ab, ac, ad. It is well known
and easy to see that every line graph is claw-free. We omit the proof of Theorem 1.

I Theorem 1. Near-Bipartiteness is NP-complete for line graphs of planar subcubic
bipartite graphs.

Feedback Vertex Set is also NP-complete for line graphs of planar cubic bipartite
graphs [12]. Theorem 1 has the following immediate consequence (take k = n).

I Corollary 2. Independent Feedback Vertex Set is NP-complete for line graphs of
planar subcubic bipartite graphs.

The length of a cycle C is the number of edges of C. The girth g(G) of a graph G is the
length of a shortest cycle of G. Proposition 3 follows from known results; we omit the proof.

I Proposition 3. For every constant g ≥ 3, Independent Feedback Vertex Set is
NP-complete for graphs of maximum degree at most 4 and girth at least g.

Recall that every line graph is claw-free. We also observe that for a graph H with a
cycle C, the class of graphs of girth at least |C|+ 1 is a subclass of the class of H-free graphs.
Hence, we can combine Corollary 2 and Proposition 3 to obtain the following result.

I Corollary 4. Let H be a graph that contains a claw or a cycle. Then Independent
Feedback Vertex Set is NP-complete for H-free graphs of maximum degree at most 4.
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3 Near-Bipartiteness of P5-free Graphs

In this section, we show that Near-Bipartiteness is in P for P5-free graphs, i.e. we give a
polynomial-time algorithm for testing if a P5-free graph has an independent feedback vertex
set. To obtain a minimum feedback vertex set we need to first run this algorithm (apart
from the step where we encode an instance of Trouble-Free Colouring as an instance of
2-Satisfiability) and then do the additional work described in Section 4.

Our algorithm in this section solves a slightly more general problem, which is a special
variant of List 3-Colouring. In the List 3-Colouring problem each vertex v is assigned
a subset L(v) of colours from {1, 2, 3} and we must verify if a 3-colouring exists in which
each vertex v is coloured with a colour from L(v). We say that a 3-colouring of a graph G is
semi-acyclic if the vertices coloured 2 or 3 induce a forest, and we note that G has such a
colouring if and only if G is near-bipartite.

List Semi-Acyclic 3-Colouring
Instance: a graph G and a function L : V (G)→ {S | S ⊆ {1, 2, 3}}.
Question: does G have a semi-acyclic 3-colouring c such that c(v) ∈ L(v) for all v ∈ V (G)?

A graph G is near-bipartite if and only if (G, L), with L(v) = {1, 2, 3} for all v ∈ V (G),
is a yes-instance of List Semi-Acyclic 3-Colouring. To recognise near-bipartite P5-free
graphs in polynomial time, we will show the stronger statement that List Semi-Acyclic
3-Colouring is polynomial-time solvable for P5-free graphs. A set of vertices in a graph G

is dominating if every vertex of G is either in the set or has at least one neighbour in it. We
will use a lemma of Bacsó and Tuza.

I Lemma 5 ([2]). Every connected P5-free graph admits a dominating set that induces either
a clique or a P3.

Lemma 5 implies that every connected 3-colourable P5-free graph has a dominating set
of size at most 3 (since it has no clique on more than three vertices). This was used by
Randerath et al. [13] to show that 3-Colouring is polynomial-time solvable on P5-free
graphs. Their algorithm tries all possible 3-colourings of a dominating set of size at most 3.
It then adjusts the lists of the other vertices (which were originally set to {1, 2, 3}) to lists
of size at most 2. As shown by Edwards [5], 2-List Colouring can be translated to an
instance of 2-Satisfiability, which is solvable in linear time. Hence this approach results in
a polynomial (even constant) number of instances of the 2-Satisfiability problem. Our goal
is also to apply Lemma 5 on a connected P5-free graph G and to reduce an instance (G, L) of
List Semi-Acyclic 3-Colouring to a polynomial number of instances of 2-Satisfiability.
However, this is less straightforward than in the case of 3-Colouring restricted to P5-free
graphs: the restriction of List Semi-Acyclic 3-Colouring to lists of size 2 turns out to
be NP-complete for general graphs even if every list consists of either colours 1 and 3 or only
colour 2. We omit the proof of the next theorem.

I Theorem 6. List Semi-Acyclic 3-Colouring is NP-complete even if
L(v) ∈ {{1, 3}, {2}} for every vertex v in the input graph.

By Theorem 6, to prove that List Semi-Acyclic 3-Colouring is in P on P5-free graphs,
we need to refine our analysis and exploit P5-freeness beyond the use of Lemma 5. We adapt
the approach used by Hoàng et al. [8] to show that k-Colouring is in P on P5-free graphs
for all k ≥ 4 (extending the analogous result of Randerath et al. [13] for 3-Colouring). Let
us outline the proof of [8]. Lemma 5 implies that every k-colourable P5-free graph G has
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a dominating set D of size at most k (as the clique number is at most k). Fix an ordering
D = {v1, . . . , v|D|}. Then decompose the set of vertices not in D into |D| “layers” so that the
vertices in a layer i are adjacent to vi (and possibly to vj for j > i) but not to any vh with
h < i. Using the P5-freeness of G to analyse the adjacencies between different layers, it is
possible to branch in such a way that a polynomial number of instances of (k−1)-Colouring
are obtained. Hence, by repetition, a polynomial number of instances of 3-Colouring are
reached, which can be solved in polynomial time due to the result of [13].

The algorithm of [8] works by considering the more general List k-Colouring problem,
where each vertex v is assigned a list L(v) ⊆ {1, . . . , k} of permitted colours and the question
is whether there is a colouring in which each vertex is assigned a colour from its list. The
algorithm immediately removes any vertices whose lists have size 1 at any point (and then
adjusts the lists of admissible colours of all neighbours of such vertices). We will follow the
approach of [8], but cannot remove any vertices whose lists contain a singleton colour if this
colour is 2 or 3. To overcome this extra complication we carefully analyse the 4-vertex cycles
in the graph after observing that these cycles are the only obstacles that may prevent a
3-colouring of a P5-free graph from being semi-acyclic.

For a subset S ⊆ V (G) of a graph G, we let G[S] denote the subgraph of G induced by S.

I Theorem 7. List Semi-Acyclic 3-Colouring is solvable on P5-free graphs in O(n16)
time.

Proof. Consider an input (G, L) for the problem such that G is P5-free. Since the problem
can be solved component-wise, we may assume that G is connected. If G contains an
induced K4 then it is not 3-colourable and the input is a no-instance. As we can test
whether G contains an induced K4 in O(n4) time, we now assume that G is K4-free. We may
also assume that G contains at least three vertices, otherwise the problem can be trivially
solved.

For i ∈ {1, 2, 3} let Gi = G[{v ∈ V (G) | i /∈ L(v)}]. We apply the following propagation
rules exhaustively, and, later in the proof, every time we branch on possibilities, we assume
that these rules are again applied exhaustively immediately afterwards.

Rule 1. If u, v ∈ V (G) are adjacent and |L(u)| = 1, set L(v) := L(v) \ L(u).
Rule 2. If L(v) = ∅ for some v ∈ V (G), return no.
Rule 3. If Gi is not bipartite for some i ∈ {1, 2, 3}, return no.
Rule 4. If G1 contains an induced C4, return no.
Rule 5. If G contains an induced C4, and exactly one vertex v of this cycle has a list

containing the colour 1, set L(v) = {1}.

We must show that these rules are safe. That is, that when they modify the instance they
do not affect whether or not it is a yes-instance or a no-instance, and when they return the
answer no, this is correct and no semi-acyclic colouring that respects the lists can exist. This
is trivial for Rules 1 and 2. We may apply Rule 3 since in any 3-colouring of G every pair of
colour classes must induce a bipartite graph. We may apply Rules 4 and 5 since in every
solution, every induced C4 must contain at least one vertex coloured with colour 1. In fact,
if there is a 3-colouring of G with a cycle made of vertices coloured only 2 and 3, then this
cycle must be an even cycle. Since G is P5-free, such a cycle must in fact be isomorphic to C4.
Hence the problem, when restricted to P5-free graphs, is equivalent to testing whether G has
a 3-colouring respecting the lists such that every induced C4 contains at least one vertex
coloured with colour 1.
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By Lemma 5, G has a dominating set S that either is a clique or induces a P3. If it is a
clique, then it has at most three vertices, as G is K4-free, so we can find such a set in O(n4)
time. Thus, adding vertices arbitrarily if necessary, we may assume S = {a1, a2, a3}. We
consider all possible combinations of colours that can be assigned to the vertices in S, that
is, we branch into at most 33 cases, in which a1, a2 and a3 have each received a colour, or
equivalently, have had their list of permissible colours reduced to size exactly 1. In each case
we proceed as follows.

Assume that L(a1) = {c1}, L(a2) = {c2} and L(a3) = {c3} and again apply the
propagation rules above. Partition the vertices of V \ S into three parts V1, V2, V3: let V1 be
the set of neighbours of a1 in V \ S, let V2 be the set of neighbours of a2 in V \ S that are
not adjacent to a1, and let V3 = V (G) \ (S ∪ V1 ∪ V2). Each vertex in V3 is non-adjacent
to a1 and a2, so it is adjacent to a3, as S is dominating. For i ∈ {1, 2, 3}, if v ∈ Vi, then
L(v) ⊆ {1, 2, 3} \ {ci} by Rule 1, so each vertex has at most two colours in its list. For
i ∈ {1, 2, 3} let V ′i be the subset of vertices v in Vi with L(v) = {1, 2, 3} \ {ci}. Recall that
for i ∈ {1, 2, 3}, we defined Gi = G[{v ∈ V (G) | i /∈ L(v)}]. As for every i ∈ {1, 2, 3}, every
vertex of Vi belongs to Gci , V1, V2 and V3 each induce a bipartite graph in G by Rule 3.
Therefore, we may partition each V ′i into two (possibly empty) independent sets V ′′i and V ′′′i .

Our strategy is to reduce the instance (G, L) to a polynomial number of instances (G, L′),
in which there are no edges between any two distinct sets V ′i and V ′j (defined with respect
to L′). We will do this by branching on possible partial colourings in such a way that
afterwards there are no edges between V ′′i and V ′′′j , no edges between V ′′i and V ′′j and no
edges between V ′′′i and V ′′′j for every pair i, j ∈ {1, 2, 3} with i 6= j. As the branching
procedure is similar for each of these possible combinations, we pick an arbitrary pair,
namely V ′′1 and V ′′2 . As we shall see, we do not remove any edges between V ′′1 and V ′′2 .
Instead, we decrease the lists of some of their vertices to size 1, so that these vertices will
leave V ′1 ∪ V ′2 by definition of V ′1 , V ′2 (and thus leave V ′′1 and V ′′2 by definition of V ′′1 , V ′′2 ).

Suppose that G[V ′′1 ∪ V ′′2 ] contains an induced 2P2 with edges uu′ and vv′ for u, v ∈ V ′′1
and u′, v′ ∈ V ′′2 . Then G[{u′, u, a1, v, v′}] is a P5, a contradiction. It follows that G[V ′′1 ∪V ′′2 ]
is a 2P2-free bipartite graph, that is, the edges between V ′′1 and V ′′2 form a chain graph, which
means that the vertices of V ′′1 can be linearly ordered by inclusion of neighbourhood in V ′′2 .
In other words, we fix an ordering V ′′1 = {u1, . . . , uk} such that NV ′′

2
(u1) ⊇ · · · ⊇ NV ′′

2
(uk).

We choose an arbitrary colour c′ ∈ {1, 2, 3} \ {c1, c2}. Note that if c1 6= c2 then this
choice is unique and otherwise there are two choices (as we will show, it suffices to branch on
only one choice). Also note that every vertex in V ′′1 and V ′′2 has colour c′ in its list.

We now branch over k + 1 possibilities, namely the possibilities that vertex ui is the first
vertex coloured with colour c′ (so vertices u1, . . . , ui−1, if they exist, do not get colour c′) and
the remaining possibility that no vertex of V ′′1 is coloured with colour c′. To be more precise,
for branch i = 1 we set L(u1) = {c′}, for each branch 2 ≤ i ≤ k we remove colour c′ from
each of L(u1), . . . , L(ui−1) and set L(ui) = {c′} and for branch i = k + 1 we remove colour c′

from each of L(u1), . . . , L(uk). If i = k + 1, all vertices of V ′′1 will have a unique colour in
their list and thus leave V ′1 and thus V ′′1 by definition of V ′1 . Hence, V ′′1 becomes empty and
thus we no longer have edges between V ′′1 and V ′′2 . Otherwise, if i ≤ k, then all of u1, . . . , ui

will have a list containing exactly one colour, so they will leave V ′1 and therefore V ′′1 . By
Rule 1 all neighbours of ui in V ′′2 will have c′ removed from their lists, so they will leave V ′2
and therefore V ′′2 . By the ordering of neighbourhoods of vertices in V ′′1 , this means that no
vertex remaining in V ′′1 has a neighbour remaining in V ′′2 , so if i ≤ k, then it is also the case
that we no longer have edges between V ′′1 and V ′′2 .
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Note that removing all the edges between distinct sets V ′i and V ′j in the above way
involves branching into O(n12) cases. We consider each case separately, and for each case we
proceed as below.

Thus we may assume that there are no edges between any two distinct sets V ′i and V ′j .
We say that an induced C4 is tricky if there exists a (proper) colouring of it (not necessarily
extendable to all of G) using only the colours 2 and 3 such that every vertex receives a
colour from its list. We say that a vertex in an induced C4 is good for this C4 if its list
contains the colour 1. By definition of tricky, every good vertex for a tricky C4 must belong
to V ′1 ∪ V ′2 ∪ V ′3 . By Rules 4 and 5, every tricky C4 must contain at least two good vertices.
If a C4 contains two good vertices that are adjacent, then they must belong to the same
set V ′i (since there are no edges between any two distinct sets V ′i and V ′j ), so they must have
the same list. This means that in every colouring of this C4 that respects the lists, one of the
good vertices in this C4 will be coloured with colour 1, contradicting the definition of tricky.
We conclude that every tricky C4 must contain exactly two good vertices, which must be
non-adjacent.

Suppose G contains a tricky induced C4 on vertices v1, v2, v3, v4, in that order, such
that v1 and v3 are good. Since the C4 is tricky, we must either have:

2 ∈ L(v1), 3 ∈ L(v2), 2 ∈ L(v3) and 3 ∈ L(v4) or
3 ∈ L(v1), 2 ∈ L(v2), 3 ∈ L(v3) and 2 ∈ L(v4).

Since v2 and v4 are not good, and there are no edges between distinct sets of the form V ′i ,
the above implies that one of the following must hold:

L(v1) = {1, 2}, L(v2) = {3}, L(v3) = {1, 2} and L(v4) = {3} or
L(v1) = {1, 3}, L(v2) = {2}, L(v3) = {1, 3} and L(v4) = {2}.

We say that an induced C4 is strongly tricky if its vertices have lists of this form. Note that,
by the above arguments, we may assume that all tricky induced C4s in the instances we
consider are in fact strongly tricky. For S ( {1, 2, 3}, let LS denote the set of vertices v with
L(v) = S (to simplify notation, we will write Li instead of L{i} and Li,j instead of L{i,j}
wherever possible). Note that for distinct sets S, T ⊆ {1, 2, 3} with |S| = |T | = 2, no vertex
in LS can have a neighbour in LT , because such vertices would be in different sets V ′i ,
and therefore cannot be adjacent by our branching. By Rule 1, if S ( T ( {1, 2, 3} with
|S| = 1 and |T | = 2, then no vertex in LS can have a neighbour in LT . From the above two
arguments it follows that if a vertex is in L1,2, L2,3 or L1,3, then all its neighbours outside
this set must be in L3, L1 or L2, respectively.

Recall that every tricky induced C4 is strongly tricky, and is therefore entirely contained
in either G[L2∪L1,3] or G[L3∪L1,2]. By Rule 3, G1 and therefore G[L2,3] is bipartite. Hence
we can colour the vertices of L2,3 with colours from their lists such that no vertex in L2,3 is
adjacent to a vertex of the same colour in G and no induced C4s are coloured with colours
alternating between 2 and 3 (indeed, recall that induced C4s cannot exist in G(L2,3) by
Rule 4). It therefore remains to check whether the vertices of G[L2 ∪L1,3] (and G[L3 ∪L1,2])
can be coloured with colours from their lists so that no pair of adjacent vertices in L1,3
(respectively L1,2) receive the same colour and every strongly tricky C4 has at least one
vertex coloured 1. By symmetry, it is sufficient to show how to solve the G[L2 ∪ L1,3] case.
Hence we have reduced the original instance (G, L) to a polynomial number of instances of a
new problem, which we define below after first defining the instances.

I Definition 8. A graph G = (V, E) is troublesome if every vertex v in G has list either
L(v) = {2} or L(v) = {1, 3}, such that L2 is an independent set and L1,3 induces a bipartite
graph.

ISAAC 2017



16:8 Independent Feedback Vertex Set for P5-free Graphs

In particular, for each of our created instances the set L2 is independent due to Rule 1
and L1,3 induces a bipartite graph by Rule 3. Note that by definition of troublesome, all
tricky induced C4s in a troublesome graph are strongly tricky.

I Definition 9. Let G be a troublesome graph. A 3-colouring of the graph G is trouble-free
if each vertex receives a colour from its list, no two adjacent vertices of G are coloured alike
and at least one vertex of every strongly tricky induced C4 of G receives colour 1.

This leads to the following problem.

Trouble-Free Colouring
Instance: a troublesome P5-free graph G

Question: does G have a trouble-free colouring?

It is easy to verify that Trouble-Free Colouring can be encoded as an instance of
2-Satisfiability. So, by branching, we have reduced the original instance (G, L) of List
Semi-Acyclic 3-Colouring to a polynomial number of instances of 2-Satisfiability. If
we find that one of the instances of the latter problem is a yes-instance, then we obtain a
corresponding yes-instance of Trouble-Free Colouring. We therefore solve Trouble-
Free Colouring on G[L2 ∪ L1,3] and (after swapping colours 2 and 3) on G[L3 ∪ L1,2]. If
one of these two instances of Trouble-Free Colouring is a no-instance, then we return
no for this branch and try the next one. If both of these are yes-instances, then we return
yes and obtain a semi-acyclic 3-colouring by combining the colourings on G[L1 ∪ L2,3],
G[L2 ∪L1,3] and (after swapping colours 2 and 3 back) G[L3 ∪L1,2]. If every branch returns
no then the original graph has no semi-acyclic 3-colouring. This completes the proof of the
correctness of the algorithm. We omit the runtime analysis. J

We obtain the following corollary.

I Corollary 10. Near-Bipartiteness can be solved in O(n16) time for P5-free graphs.

Proof. Let G be a graph. Set L(v) = {1, 2, 3} for all v ∈ V (G). Then G is near-bipartite if
and only if (G, L) is a yes-instance of List Semi-acyclic 3-Colouring. In particular, the
vertices coloured 1 by a semi-acyclic colouring of G form an independent feedback vertex set
of G. The corollary follows by Theorem 7. J

4 Independent Feedback Vertex Sets of P5-free Graphs

In this section we prove that Independent Feedback Vertex Set is polynomial-time
solvable for P5-free graphs by extending the algorithm from Section 3. We omit the proof
of Lemma 11, which uses the proof of Theorem 7. As such, we heavily use Definitions 8
and 9. Let G = (V, E) be a troublesome P5-free graph. For a trouble-free colouring c of G,
let tc(G) = |{u ∈ V | c(u) = 1}| denote the number of vertices of G coloured 1 by c. Let t(G)
be the minimum value tc(G) over all trouble-free colourings c of G.

I Lemma 11. Let G be a near-bipartite P5-free graph. In O(n16) time it is possible to
reduce the problem of finding the smallest independent feedback vertex set of G to finding the
value t(G′) of O(n12) instances of Trouble-Free Colouring, all on induced subgraphs
of G.

By Lemma 11, it suffices to prove the following lemma (in its proof we again use the
terminology introduced in the proof of Theorem 7).
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I Lemma 12. Let G be a troublesome P5-free graph on n vertices. Determining t(G) can be
done in O(n4) time.

Proof. Let G = (V, E) be a troublesome P5-free graph. Note that in G, an induced C4 on
vertices v1, v2, v3, v4, in that order, is strongly tricky if v1, v3 ∈ L1,3 and v2, v4 ∈ L2.

We construct an auxiliary graph H as follows. We let V (H) = L1,3. Every edge of G[L1,3]
belongs to H. We say that such edges are red. For non-adjacent vertices v1, v3 ∈ L1,3, if
there is a strongly tricky induced C4 on vertices v1, v2, v3, v4 with v2, v4 ∈ L2, we add the
edge v1v3 to H. We say that such edges are blue. Note that H is a supergraph of G[L1,3]
and that there exists at most one edge, which is either blue or red, between any two vertices
of H. We call a colouring of H feasible if the following two conditions are met:
1. no red edge is monochromatic, that is, the two end-vertices of every red edge must be

coloured 1&3 respectively or 3&1 respectively;
2. the two end-vertices of every blue edge must be coloured, respectively, 1&3, 3&1 or

1&1 (the only forbidden combination is 3&3, as in this case we obtain a strongly tricky
induced C4 in G with colours 2 and 3).

We note that there is a one-to-one correspondence between the set of trouble-free colourings
of G and the set of feasible colourings of H. Hence, we need to find a feasible colouring
of H that minimises the number of vertices coloured 1. Let R1, . . . , Rp be the components
of G[L1,3], or equivalently, of the graph obtained from H after removing all blue edges. We
call these components red. As G[L1,3] is bipartite and P5-free, all red components of H are
bipartite and P5-free. We denote the bipartition classes of each Ri by Xi and Yi, arbitrarily
(note that these classes are unique, up to swapping their order). We apply the following five
rules on H exhaustively (we omit proofs of correctness for these rules)

Rule 1. If there is a blue edge in H between two vertices u, v ∈ Xi or two vertices u, v ∈ Yi,
then assign colour 1 to u and v.

Rule 2. If there is a blue edge e in H between a vertex u ∈ Xi and a vertex v ∈ Yi, then
delete e from H.

Rule 3. If there are blue edges uv and uv′ where u ∈ Xi ∪ Yi, v ∈ Xj and v′ ∈ Yj (j 6= i),
then assign colour 1 to u.

Rule 4. If an uncoloured vertex u is adjacent to a vertex with colour 3 via a blue edge, then
assign colour 1 to u.

Rule 5. If an uncoloured vertex u is adjacent to a coloured vertex v via a red edge, then
assign colour 1 to u if v has colour 3 and colour 3 to u otherwise.

Rule 6. If there is a red edge with end-vertices both coloured 1 or both coloured 3, or a blue
edge with end-vertices both coloured 3, then return no.

Rule 7. Remove all vertices that have received colour 1 or colour 3, keeping track of the
number of vertices coloured 1.

By Rules 1 and 2, if two vertices are in the same red component Ri, we may assume
that they are not connected by a blue edge. Hence, we may assume from now on that red
components contain no blue edges in H. By Rule 3, we may also assume that no vertex in
V (H) \ V (Rj) is joined via blue edges to both a vertex in Xj and a vertex in Yj .

From H we construct another auxiliary graph H∗ as follows. First, we replace each red
component Ri on more than two vertices by an edge xiyi, which we say is a red edge. Hence,
the set of red components of H is reduced to a set of red components in H∗ in such a way
that each red component of H∗ is either an edge or a single vertex. Next, for i 6= j we add
an edge, which we say is a blue edge, between two vertices xi and xj if and only if there is a
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blue edge between a vertex in Xi and a vertex in Xj . We add blue edges between vertices yi

and yj , and between vertices xi and yj in the same way.
Recall that, by Rules 1 and 2, no two vertices in any Ri are connected by a blue edge. So

every feasible colouring of H corresponds to a feasible colouring of H∗ and vice versa. To keep
track of the number of vertices coloured 1, we introduce a weight function w : V (H∗)→ Z+
by setting w(xi) = |Xi| and w(yi) = |Yi|. Our new goal is to find a feasible colouring c of H∗

that minimises the sum of the weights of the vertices coloured 1, which we denote by w(c).
Since for each i no vertex in V (H) \ V (Ri) is joined via blue edges to both a vertex in Xi

and a vertex in Yi, we find that H∗ contains no triangle consisting of one red edge and two
blue edges. As red edges induce a disjoint union of isolated edges, this means that the only
triangles in H∗ consist of only blue edges. Let B1, . . . , Bq be the components of the graph
obtained from H∗ after removing all red edges. We call these components blue (even in the
case where they are singletons). We need the following claim (we omit its proof).

I Claim 13. Each Bi is a complete graph.

By Claim 13, H∗ is the disjoint union of several blue complete graphs with red edges
between them. Recall that we allow the case where these blue complete graphs contain only
one vertex. On H∗ we apply the following rule exhaustively in combination with Rules 4–7.
While doing this we keep track of the weights of the vertices coloured 1.

Rule 8. If there exist (red) edges u1v1 and u2v2 for u1, u2 ∈ Bi and v1, v2 ∈ Bj (i 6= j), then
assign colour 1 to every vertex in (Bi ∪Bj) \ {u1, u2, v1, v2}.

Since Rules 4 and 5 can be safely applied on H, they can be safely applied on H∗. It
follows that Rules 6 and 7 can also be safely applied on H∗. We may also safely apply Rule 8:
the red edges u1v1 and u2v2 force ui and vi to have different colours for i ∈ {1, 2}, whereas
the blue components forbid u1, u2 both being coloured 3 and v1, v2 both being coloured 3.
Hence, exactly one of u1, u2 and exactly one of v1, v2 must be coloured 3. Because at
most one vertex in any blue component may be coloured 3, this implies that all vertices in
(Bi ∪Bj) \ {u1, u2, v1, v2} must be coloured 1.

As every vertex is incident with at most one red edge in H∗, we obtain a resulting graph
that is an induced subgraph of H∗ with the following property: if there exist (red) edges u1v1
and u2v2 for u1, u2 ∈ Bi and v1, v2 ∈ Bj , then {u1, u2, v1, v2} induces a connected component
of H∗. We can colour such a 4-vertex component in exactly two ways and we remember
the colouring with minimum weight (either w(u1) + w(v2) or w(u2) + w(v1) depending on
whether u1 gets colour 1 or 3, respectively). Hence, from now on we may assume that the
resulting graph, which we again denote by H∗, does not have such components. That is,
there is at most one red edge between any two blue components of H∗. As we can colour H∗

component-wise, we may assume without loss of generality that H∗ is connected.
For each Bi we define the subset B′i to consist of those vertices of Bi not incident with

a red edge, and we let B′′i = Bi \ B′i. We note the following. If we colour every vertex
of some B′′i with colour 1, then every neighbour of every vertex of B′′i in any other blue
component Bj must be coloured 3 by Rule 5 (recall that vertices in different blue components
are connected to each other only via red edges). As soon as one vertex u in some blue
component Bj has colour 3, all other vertices in Bj − u must get colour 1 by Rule 4. In this
way we can use Rule 4 and 5 exhaustively to propagate the colouring to other vertices of H∗

where we have no choice over what colour to use.
Recall that no vertex of H∗ is incident with more than one red edge. This is a crucial

fact: it implies that propagation to other blue components of H∗ happens only via red
edges vw between two blue components, one end-vertex of which, say v, is first coloured 1,
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which implies that the other end-vertex w of such an edge must get colour 3; this in turn
implies that all other vertices in the blue component containing w must get colour 1 and
so on. Hence, as H∗ was assumed to be connected, colouring every vertex of a set B′′i with
colour 1 propagates to all vertices of H∗ except for the vertices of B′i. Note that we may still
colour (at most) one vertex of B′i with colour 3.

Due to the above, we now do as follows for each i ∈ {1, . . . , q} in turn: We colour every
vertex of B′′i with colour 1 and propagate to all vertices of H∗ except for the vertices of B′i.
If we obtain a monochromatic red edge or a blue edge whose end-vertices are coloured 3,
we discard this option (by Rule 6). Otherwise, we assign colour 3 to a vertex u ∈ B′i with
maximum weight w(u) over all vertices in B′i (if B′i 6= ∅). We store the resulting colouring ci

that corresponds to this option.
After doing the above for all q options, it remains to consider the cases where every B′′i

contains (exactly) one vertex coloured 3. Before we can use another propagation argument
that tells us which vertices get colour 3, we first perform the following steps, only applying a
step when the previous ones have been applied exhaustively. These steps follow immediately
from the assumption that every B′′i contains a vertex coloured 3.
(i) Colour all vertices of every B′i with colour 1 (doing this does not cause any propagation).
(ii) If some B′′i consists of a single vertex, then colour this vertex with colour 3, and

afterwards propagate by using Rule 5 exhaustively.
(iii) Remove coloured vertices using Rule 7.
If due to (ii) we obtain a monochromatic red edge or a blue edge whose end-vertices are
coloured 3, we discard this option (using Rule 6). Otherwise, we may assume from now on
that B′i = ∅, so B′′i = Bi due to (i) and that |Bi| ≥ 2 due to (ii). Note that doing (iii) does
not disconnect the graph: the vertices in the vertices in B′i that are coloured in (i) only
have neighbours in the clique Bi (and these are via blue edges) and if a vertex of v ∈ B′′i is
coloured with colour 3 in (ii), then its only neighbour w (via a red edge) is in a set B′′j and
since (i) has been applied exhaustively, the only other neighbours of w are in B′′j (via blue
edges), so the propagation stops there and the graph does not become disconnected.

By our procedure, every vertex of every blue component Bi is incident with a red edge,
so the total number of outgoing red edges for each Bi is equal to |Bi| ≥ 2, and all outgoing
red edges go to |Bi| different blue components. Hence the graph H ′ obtained from H∗ by
contracting each blue component to a single vertex has minimum degree at least 2. As H ′

has minimum degree at least 2, we find that H ′ contains an edge that is not a bridge (a
bridge in a connected graph is an edge whose removal disconnects the graph). Let uv be the
corresponding red edge in H∗, say u belongs to Bi and v belongs to Bj .

We have two options to colour u and v, namely by 1, 3 or 3, 1. We try them both. Suppose
we first give colour 1 to u. Then we propagate in the same way as before. Because uv is not a
bridge in H ′, eventually we propagate back to Bi by giving colour 3 to an uncoloured vertex
of Bi. When that happens we have “identified” the colour-3 vertex of Bi and then need to
colour all other vertices of Bi with colour 1. This means that we can in fact propagate to
all blue components of H∗, just as before. If at some point we obtain a monochromatic red
edge or a blue edge with end-vertices coloured 3, then we discard this option (by Rule 6).
Next, we give colour 1 to v and proceed similarly.

At the end we have at most q + 2 different feasible colourings of H∗. We pick the one
with minimum weight and translate the colouring to a feasible colouring of H. Finally, we
translate the feasible colouring of H to a trouble-free colouring of the original graph G. We
omit the analysis of the runtime. J

I Theorem 14. The size of a minimum independent feedback vertex set of a P5-free graph
on n vertices can be computed in O(n16) time.

ISAAC 2017
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Proof. Let G be a P5-free graph on n vertices. As we can check in O(n16) time if G is
near-bipartite, we may assume without loss of generality that G is near-bipartite. Then,
by Lemma 11, in O(n16) time we can reduce the problem finding the value t(G′) of O(n12)
instances of Trouble-Free Colouring, all on induced subgraphs of G (which have at
most n vertices). By Lemma 12 we can compute t(G′) in O(n4) time for each such instance.
This gives a total runtime of O(n16). J

I Remark 15. From our proof, we can find in polynomial time not just the size of a minimum
independent feedback vertex set, but also the set itself. The corresponding algorithm can
also be adapted to find in polynomial time a maximum independent feedback vertex of a
P5-free graph, or an independent feedback vertex set of arbitrary fixed size (if one exists).
Our algorithm can also be adapted to solve Independent Odd Cycle Transversal in
O(n16) time.
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Abstract
We consider a system of nonlinear ordinary differential equations for the solution of linear pro-
gramming (LP) problems that was first proposed in the mathematical biology literature as a
model for the foraging behavior of acellular slime mold Physarum polycephalum, and more re-
cently considered as a method to solve LP instances. We study the convergence time of the
continuous Physarum dynamics in the context of the linear programming problem, and derive
a new time bound to approximate optimality that depends on the relative entropy between pro-
jected versions of the optimal point and of the initial point. The bound scales logarithmically
with the LP cost coefficients and linearly with the inverse of the relative accuracy, establishing
the efficiency of the dynamics for arbitrary LP instances with positive costs.
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1 Introduction

The theoretical analysis of natural systems has historically been the domain of mathematical
biology, dynamical systems theory, and physics, but certain natural processes are capable
of exhibiting remarkable information processing abilities which are often best understood
from an optimization perspective. Indeed, the application of a “computational lens” to such
processes has been advocated in different disciplines, and efforts are underway to identify,
classify and analyze these so-called natural algorithms [9, 15].

One such example can be found in the slime mold Physarum polycephalum. P. poly-
cephalum is an acellular, amoeboid slime mold in the Mycetozoa group. In controlled
experiments, the slime mold’s capabilities have been leveraged to determine the shortest
path between two locations in a network [14, 20] and, more generally, to adaptively form
efficient transport networks [22]. In fact, a dynamical model proposed by the mathematical
biologists to describe the time evolution of P. polycephalum’s network physiology [21] has
been rigorously proved to be algorithmically efficient for problems such as the single-source
single-sink shortest path problem [4,8] and the minimum-cost transshipment problem [11,18].

More recently, a variant of what we will call for short the Physarum dynamics has
been proposed for solving linear programming (LP) problems [12]. Such dynamics is a
direct mathematical extension of the one that has been studied for the shortest path and
transshipment problems. It was shown that, under very mild assumptions on the linear
program, the dynamics converges to an optimal LP solution [19]. However, the bound for
the time of convergence of a discretization of the dynamics to an approximate solution has
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only been proved to be polynomial when the LP cost coefficients are polynomially bounded
and the constraint matrix has bounded maximum subdeterminant.

The contribution of this paper is to study the convergence time of the continuous Physarum
dynamics in the context of the linear programming problem, and to derive a new time bound
to approximate optimality that does not depend on the maximum subdeterminant of the
constraint matrix, and depends only logarithmically on the LP costs, establishing efficiency
for any LP instance with positive costs. The proof is based on convex duality and on a
potential function that involves the relative entropy between the optimal and the current
LP solution. The main technical novelty is represented by two ingredients: the use of a
dimensionless potential function, and the explicit recognition of the crucial role played by
the relative entropy function. We leave the study of a discretized version of the dynamics
for future work, but it is natural to conjecture that some appropriate discretization should
behave similarly to the continuous time dynamics. Indeed, several convex optimization
methods can be interpreted as the discretization of an ordinary differential equation system,
the solutions of which are guaranteed to converge to the set of minimizers; a well-known
example is the interior point method [3, 13].

There is another compelling reason to study the convergence properties of the Physarum
dynamics. It has been showed that, at least when started from a feasible point, this dynamics
can be interpreted as a natural gradient descent algorithm in a space endowed with a non-
Euclidean metric obtained from an entropy-like function [19]. This is also the case for
certain incarnations of well-known meta-algorithms, such as Mirror Descent [5,16], which
are at the basis of very effective approximation algorithms for machine learning and convex
optimization problems [2]. One can show that when the feasible LP region is the unit simplex,
but independently of whether the initial point is feasible or not, the Physarum dynamics is
identical to the continuous Mirror Descent dynamics of Nemirovski and Yudin [16] in the
metric generated by the negative entropy function. Thus, when the feasible LP region is the
simplex, the dynamics can be interpreted as a Mirror Descent method in a non-Euclidean
metric [1,10]. However, a similar connection may not hold more generally, suggesting that
the Physarum dynamics is different from any known convex optimization method. A full
characterization of the meta-algorithm behind the dynamics remains open; we believe it
deserves to be investigated, due to its potential to suggest a novel iterative approach to linear
optimization problems.

1.1 Linear programming and the Physarum dynamics
Let N and E be two finite index sets. Given a real matrix A ∈ RN×E , a positive vector
c ∈ RE>0, and a vector b ∈ RN , we consider the linear programming problem

min cost(x) (1)
s.t. Ax = b

x ≥ 0,x ∈ RE

where cost(x) def= c>x. We assume that A has full rank and that a nonzero optimal solution
to (1) exists; uniqueness is not required. We denote by x∗ an arbitrary optimal solution to
(1), and denote by opt def= cost(x∗) its value.

We describe the (directed) Physarum dynamics [4, 7, 8, 11,18,19,21] that solves (1). Let
x ∈ RE>0 be a positive vector, and let C be the diagonal matrix with entries xj/cj , for j ∈ E.
Let L def= ACA>; the matrix L is nonsingular and positive definite. Let p ∈ RN be the
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unique solution to Lp = b, and let q def= CA>p. The Physarum dynamics for the linear
program (1) is

ẋj(t) = qj(t)− xj(t) for all j ∈ E (2)

over the domain Ω def= RE>0, where we used the notation ẋj(t)
def= (d/dt)xj(t). In vector

notation, and omitting the implicit dependency on time, the Physarum dynamics can be
written as

ẋ = CA>L−1b− x. (3)

The dynamical system has an initial condition of the form x(0) = s for some s ∈ RE>0.
Existence of a solution x(t) to (3) for t ∈ [0,∞) has been proved by Straszak and Vishnoi [19,
Theorem 1.1]. The system (3) is well-defined irrespective of whether the starting vector x(0)
satisfies Ax(0) = b or not; the case where it does is referred to as the feasible start case. In
the special case where A is derived from the signed incidence matrix of a graph, problem (1)
is a minimum-cost transshipment problem and several of the quantities defined above have
an intuitive interpretation; we refer to Section 2.2 for details.

1.2 Our contribution
From previous results, it is known that the solution to (3) exists, and that it converges
to a feasible and optimal solution of the linear program (1). The known bound on the
convergence time, however, depends on the largest absolute value of a subdeterminant of
the constraint matrix A. Our main contribution is to show that, in the case of feasible
start, this dependence is unnecessary, and that one can obtain a bound that only depends
logarithmically on the ratio between the starting cost and the optimal cost, and on the
relative entropy of the optimal solution with respect to the starting solution. More precisely,
we prove the following theorem.

I Theorem 1. For a feasible initial condition s ∈ RE>0, consider the solution x : [0,∞)→ Ω
to the Physarum dynamics (3) with x(0) = s. Then x(t) is a feasible solution to (1) for any
t ≥ 0, and for any ε > 0, it holds that cost(x(t)) ≤ (1 + ε)opt for all

t ≥ 6
ε

(
ln cost(x(0))

opt + KL(ξ∗, ξ(0))
)
,

where KL(·, ·) denotes the relative entropy (Kullback-Leibler divergence) between distributions,
and ξj(0) def= cjxj(0)/cost(x(0)), ξ∗j

def= cjx
∗
j/opt for j ∈ E. In particular, cost(x(t)) ≤

(1 + ε)opt for all

t ≥ 6
ε

(
2 ln cost(x(0))

opt + lnµ
)
,

where µ def= maxj∈E x∗j/xj(0).

We remark that our result applies to the continuous formulation of the dynamics, and not
necessarily to its Euler discretization that has been considered, together with the continuous
one, in previous papers. While we conjecture that some discretization may be similarly
efficient as the bound in Theorem 1 suggests, it may also be the case that a simple Euler
discretization is insufficient to obtain such a result and that a more accurate discretization
technique, such as a Runge-Kutta method, would help in this sense.
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The appearance of the relative entropy term in our potential function is not an accident:
it can be shown that when the feasible LP region is the unit simplex, independently of
whether the dynamics is initialized with a feasible point or not, its trajectories coincide with
those of the continuous Mirror Descent method of Nemirovski and Yudin [16] in a metric
with geometry dictated by the negative entropy function – also known as the information
geometry metric [1].

1.3 Related work
An undirected variant of the Physarum dynamics has been first proposed in the mathematical
biology literature by Tero, Kobayashi and Nakagaki [21] as a model for the foraging physiology
of the true slime mold Physarum polycephalum, an acellular organism that has been proved
capable of solving shortest path problems effectively in laboratory experiments [14]. The
convergence to optimality of the continuous dynamics for the shortest path problem and
for its close generalization – the minimum-cost transshipment problem – has been studied
analytically by Bonifaci, Mehlhorn and Varma [8] and by Ito et al. [11]. An analysis of the
convergence time of the Euler discretization of the dynamics was carried out by Becchetti et
al. [4] for the shortest path problem, and by Straszak and Vishnoi [18] for the minimum-cost
transshipment problem. In summary, these works proved that the Physarum dynamics
yields a polynomial-time approximation scheme to the shortest path problem and to the
transshipment problem, assuming that the costs associated to the edges of the network
are polynomially bounded. Observe that, in the statement of Theorem 1, the costs are
confined within logarithms, and thus a discrete version of the dynamics that achieved a
similar convergence time as in Theorem 1 would not require the costs to be polynomially
bounded to be efficient.

The generalization of the Physarum dynamics to linear programming problems that we
consider here has been first suggested by Johannson and Zou [12]. Most relevant to the
current paper is the work of Straszak and Vishnoi [19], who initiated the rigorous study of
the Physarum dynamics for LP problems of the form (1). Straszak and Vishnoi proved that
a solution to the dynamics exists over the entire time horizon [0,∞), and that a bound on
the convergence time of the continuous dynamics can be expressed in terms of the parameter
D, the largest absolute value of a subdeterminant of the constraint matrix A, as summarized
by their theorem that we quote here for comparison.

I Theorem 2. [19, Theorem 6.3] Suppose that x : [0,∞) → Ω is any solution to the
Physarum dynamics. Then, for some R, ν > 0 depending only on A, b, c, x(0), we have

|cost(x(t))− opt| ≤ R · exp(−νt),

where one can take ν = D−3 and R = exp(8D2 · ‖c‖1 · ‖b‖1) · (|E|+Mx)2. Here,

D def= max{
∣∣det(A′)

∣∣ : A′ a square submatrix of A},

and

Mx
def= max

(
max
j∈E

xj(0),max
j∈E

x−1
j (0)

)
.

Compared to this result of Straszak and Vishnoi, our contribution is to derive a bound that
avoids the dependency on D, thus showing that the dynamics are efficient –to the extent
made precise in the statement of Theorem 1– for all linear programs of the form (1), not just
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for those with special constraint matrices. Note that, in general, the bounds of Theorem 1
and 2 are incomparable: for a fixed relative error ε, the time for convergence guaranteed by
Theorem 1 scales polynomially in the input encoding length, while Theorem 2 only yields
an exponential dependence; on the other hand, for a fixed input, Theorem 2 achieves a
polynomial dependence on log(1/ε) (by taking t >> D3), while this is O(1/ε) in Theorem 1.
It is known that a simultaneous polynomial dependence on log(1/ε) and on the input length
cannot be achieved [18, Appendix B].

As mentioned in the introduction, several convex optimization methods can be interpreted
as discretizations of ordinary differential equation systems: for example, the Interior Point
method [3,13] and the Mirror Descent method [16, Chapter 3]. Straszak and Vishnoi [19]
proved that the Physarum dynamics with feasible start can be interpreted as natural gradient
descent in an appropriate information metric. Amari [1] gives an overview of natural gradient
methods in the context of information geometry; see also Raskutti and Mukherjee [17].

1.4 Organization of the paper
The remainder of the paper is organized as follows. In Section 2 we prove some basic facts
about the Physarum dynamics, including an alternative characterization of the vector q ∈ RE
defined in Section 1.1. In Section 3 we discuss the time of convergence to the feasible region
of the LP and prove that the set of feasible LP solutions is an invariant set for the dynamics.
In Section 4 we consider the time evolution of the cost of a feasible solution and prove our
main result, Theorem 1. We summarize and discuss our findings in Section 5.

2 Basic properties of the dynamics

2.1 Notation
In the paper we reserve boldface symbols for vectors or matrices and non-boldface symbols
for scalars or sets. We use the standard norms: for example, for v ∈ Rn: ‖v‖1

def=
∑n
i=1 |vi|,

‖v‖2
def= (

∑n
i=1 v

2
i )1/2. With the notation Diag((di)ni=1) we mean the n× n diagonal matrix

with di as the ith term on the main diagonal.
For the whole paper, the linear program (1) is fixed, in other words the triple (A,b, c) is

fixed. Whenever the matrices or vectors C = Diag((xj/cj)j∈E), L = ACA>, p = L−1b, or
q = CA>p appear, they should be understood as computed with respect to a point x ∈ RE>0.
As x = x(t) evolves in time with the dynamics (3), the former quantities are time-varying as
well. The quantity E def= q>Rq is called the energy of the vector q.

For a strictly convex and differentiable function ψ : Ω → R, the Bregman divergence
under ψ is the function

Dψ(x′,x) def= ψ(x′)− ψ(x)−∇ψ(x)> · (x′ − x),

where x′, x ∈ Ω. The Bregman divergence is in general not symmetric, but it is nonnegative
and satisfies Dψ(x′,x) = 0 if x′ = x. The Legendre dual of ψ is the function ψ? : RE → R
defined by

ψ?(y) def= sup
x∈RE

(x>y− ψ(x)),

Note that a vector x ∈ Ω is a maximizer of x>y− ψ(x) iff y = ∇ψ(x).
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2.2 Intuition: The network case
The interpretation of the dynamics defined in Section 1.1 in the case where the constraint
matrix is a network matrix is particularly appealing, as most of the statements below have
physical interpretations in that case. Indeed, when A is derived from the (signed) node-edge
incidence matrix of a graph with node set N and edge set E 1, the dynamics (3) have a
natural interpretation in terms of electrical networks: the vector b prescribes the external
in-flow of current at each node, the matrix L is the (reduced) graph Laplacian, the vector p
defines the Kirchhoff node potentials, the vector q is the electrical flow, and E is the energy
dissipation (per unit time) of the network. In this context, Lemma 3 below is nothing but the
principle of least action for electrical networks, also known as Thomson’s principle, stating
that the electrical flow is the feasible flow that minimizes energy dissipation [6, Theorem
IX.2]. The duality relation (5) becomes Ohm’s law. Proposition 4 is the conservation of
energy principle, stating that if one replaces a network with a current source s and a sink s̄
with a single wire whose resistance is the effective resistance of the network, then the total
energy in the system does not change [6, Theorem IX.3]. Proposition 5 is known as Tellegen’s
theorem. Of course, the difference with classical circuit theory is that the resistor values are
dynamically adjusted in response to the flow: the Physarum dynamics adjusts the edges’
resistances cj/xj , by updating the xj via (2). In the network case, the dynamics converges
to the solution of a minimum-cost transshipment problem with cost function prescribed by c
and node demands/supplies prescribed by b (see for example [18, Theorem 1.2]). However,
we remark that in the following statements we never require A to be derived from a network
matrix: our results hold for any full-rank matrix.

2.3 Extremal properties

We start by giving an alternative characterization of the vector q def= CA>L−1b.

I Lemma 3. The vector q ∈ RE defined in Section 1.1 equals the unique optimal solution to
the continuous quadratic optimization problem:

min f>Rf (4)
s.t. Af = b.

where R def= C−1 ∈ RE×E is the diagonal matrix with value rj
def= cj/xj for the j-th element

of the main diagonal. Moreover,

Rq = A>p. (5)

Proof. To establish (5), simply left-multiply with R the identity q = CA>p. It remains to
establish the first part of the claim. Since the objective function in (4) is strictly convex, the
problem has a unique optimal point. Consider any feasible point f , and define g = f − q.
Then Ag = b− b = 0 and hence

f>Rf = (q + g)>R(q + g) = q>Rq + 2g>Rq + g>Rg ≥ q>Rq,

since g>Rg ≥ 0 and g>Rq = g>A>p = (Ag)>p = 0>p = 0. Therefore, the objective
function value of any feasible point f is at least as large as the objective function value
of q. J

1 More precisely, since we stipulated that A should be full rank, we omit from N one of the nodes and
omit the corresponding row from A; this corresponds to “grounding” the potential value of this node to
zero.



V.Bonifaci 17:7

I Proposition 4. E = b>L−1b = p>Lp.

Proof. q>Rq = (b>L−1AC)R(CA>L−1b) = (b>L−1)(ACA>)(L−1b) =
= p>Lp. J

I Proposition 5. Let f satisfy Af = b. Then

f>A>p(t) = E(t). (6)

Proof. Since Af = b, we have p>Af = p>b = p>Lp = E . The last equality is due to
Proposition 4. J

3 Convergence to the feasible region

In this section we discuss the time of convergence to the feasible region Ax = b. In particular,
we aim to show that feasibility is invariant under the dynamics: a feasible starting point
remains feasible at all times. It turns out that a stronger property holds: the Euclidean
norm of the “infeasibility error” e def= Ax− b approaches zero exponentially fast (Lemma 7).

I Proposition 6. Aẋ = b−Ax.

Proof. Using the definition of the dynamics (3), Aẋ = ACA>L−1b−Ax = LL−1b−Ax =
b−Ax. J

I Lemma 7. Let e(t) def= Ax(t) − b. Then ‖e(t)‖2 = ‖e(0)‖2 exp (−t) for any t > 0. In
particular, if Ax(0) = b then Ax(t) = b for all t > 0.

Proof. We have

d

dt
‖e‖2

2 = d

dt
(Ax− b)>(Ax− b) = d

dt

(
x>A>Ax− 2b>Ax + b>b

)
=

= 2x>A>Aẋ− 2b>Aẋ = 2(x>A> − b>)Aẋ = −2 ‖e‖2
2 ,

where we used Proposition 6. Solution of the differential equation above yields ‖e(t)‖2
2 =

‖e(0)‖2
2 exp (−2t). Taking square roots yields the claim. J

4 Convergence in cost value

To analyze the convergence in cost values, and eventually prove Theorem 1, it will be useful
to consider normalized versions of the candidate solution x(t) and of the optimal vector
x∗. For any j ∈ E, let ξj(t)

def= cjxj(t)/cost(x(t)), ξ∗j
def= cjx

∗
j/opt. Then, by construction,

1>ξ∗ = 1>ξ(t) = 1, ξ(t) > 0 and ξ∗ ≥ 0, so ξ(t) and ξ∗ can be interpreted as probability
distributions over E. The relative entropy of ξ∗ with respect to ξ, or Kullback-Leibler
divergence KL(ξ∗, ξ(t)), is defined as:

KL(ξ∗, ξ(t)) def=
∑
j∈E

ξ∗j ln
ξ∗j
ξj(t)

.

The KL divergence is the Bregman divergence of the negative entropy function x 7→∑
j xj ln xj ; it is always nonnegative, and it is zero iff ξ∗ = ξ(t) (see for example [1, Chapter

1]).
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We can now define the potential function that is central to our analysis. Let

Φ(t) def= ln cost(x(t))
opt + KL(ξ∗, ξ(t)). (7)

Note that the first term is nonnegative whenever x(t) is feasible for the LP, and the second
term is always nonnegative. Similar to previous analysis of Physarum dynamics based on
potential functions [4, 18, 19], the potential function Φ contains a term that depends on the
cost of the candidate solution x, and an “entropic barrier” term that captures the geometry
of the feasible region: in particular, the second term penalizes distributions that get too
close to the boundary of the positive orthant whenever the corresponding coordinate of the
optimal solution is not on the boundary (that is, ξj(t) ≈ 0 but ξ∗j > 0). A difference with
respect to previous papers is that the potential function (7) is dimensionless, which is natural
since our aim is to bound the relative, rather than absolute, approximation error.

To proceed further, we study the evolution of the potential function over time. We start
by bounding the derivative of various terms that compose it.

I Lemma 8. For any x(t) ∈ RE>0,

d

dt
ln cost(x(t))

opt ≤
(

E(t)
cost(x(t))

)1/2
− 1. (8)

Proof.

d

dt
ln cost(x)

opt =
d
dtcost(x)
cost(x) = c>ẋ

cost(x)
(2)= c>(q − x)

cost(x) = c>q
cost(x) − 1

(∗)=
∑
j∈E rjqjxj

cost(x) − 1

(∗∗)
≤

(∑
j∈E rjq

2
j

)1/2 (∑
j∈E rjx

2
j

)1/2

cost(x) − 1

= (Ecost(x))1/2

cost(x) − 1,

where in the third equality we used the definition of the dynamics, in (*) we used rj = cj/xj ,
and in (**) we used the Cauchy-Schwarz inequality. For the last equality, we used the
definition of the energy E = q>Rq and (once more) the fact rj = cj/xj . J

The following lemma is instrumental in bounding the time derivative of the KL divergence
term in (7).

I Lemma 9. For any x(t) ∈ RE>0,

d

dt

∑
j∈E

cjx
∗
j

opt ln
x∗j
xj(t)

= 1− E(t)
opt . (9)

Proof. We start by computing∑
j

cj
optx

∗
j ln

x∗j
xj

= − 1
opt

∑
j

cjx
∗
j ln xj + 1

opt
∑
j

cjx
∗
j ln x∗j .
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The second term above is constant, so

d

dt

∑
j

cj
optx

∗
j ln

x∗j
xj

= − 1
opt

∑
j

cjx
∗
j

ẋj
xj

=

= − 1
opt

∑
j

cjx
∗
j

qj − xj
xj

=

= 1− 1
opt

∑
j

rjqjx
∗
j =

= 1− 1
optx∗>Rq =

(5)= 1− 1
optx∗>A>p =

(6)= 1− E
opt .

We used (5) (Lemma 3) and the alternative characterization of the energy (6) given by
Proposition 5. J

I Lemma 10. For any x(t) ∈ RE>0,

d

dt
KL(ξ∗, ξ(t)) ≤

(
E(t)

cost(x(t))

)1/2
− E(t)

opt .

Proof.

d

dt

∑
j

cjx
∗
j

opt ln
cjx
∗
j/opt

cjxj/cost(x) = d

dt

∑
j

cjx
∗
j

opt ln
x∗j
xj

+ d

dt

∑
j

cjx
∗
j

opt ln cost(x)
opt

(9)= 1− E
opt + d

dt
ln cost(x)

opt · 1

(8)
≤ 1− E

opt +
(

E
cost(x)

)1/2
− 1

=
(

E
cost(x)

)1/2
− E

opt .

In the second equality we used Lemma 9; for the inequality we applied Lemma 8. J

We are ready to prove that the more expensive a solution is, the more the potential
function has to decrease.

I Lemma 11. If cost(x(t)) ≥ (1 + ε)2opt for some ε ∈ (0, 1/2), then (d/dt)Φ(t) ≤ −ε/2.

Proof. Let γ def= E/opt and δ def= 1/(1 + ε). Combining Lemma 8 and Lemma 10 yields

d

dt
Φ(t) = 2

(
E

cost(x)

)1/2
− 1− E

opt
(∗)
≤ 2δγ1/2 − 1− γ =

= −2(1− δ)γ1/2 − (1− γ1/2)2,

ISAAC 2017
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where in (∗) we used the assumption cost(x) ≥ (1 + ε)2opt. Note that both summands in the
last expression are negative. We distinguish two cases. If (1− γ1/2)2 ≥ ε/2, then by ignoring
the first summand above we obtain

d

dt
Φ ≤ −(1− γ1/2)2 ≤ −ε/2,

which proves the claim. Otherwise, if (1 − γ1/2)2 < ε/2, then γ1/2 > 1 − (ε/2)1/2 and by
ignoring the second summand we obtain

d

dt
Φ ≤ −2(1− δ)(1− (ε/2)1/2) ≤ −2 · 1− (ε/2)1/2

1 + ε
ε ≤ −21/2

3/2ε < −ε/2. J

The next lemma ensures that, for feasible solutions, the energy is always a valid lower
bound on the cost.

I Lemma 12. Suppose x(t) ≥ 0, Ax(t) = b. Then E(t) ≤ cost(x(t)).

Proof. By the assumption, x(t) is a feasible LP solution. By Lemma 3, q(t) is a minimizer
of the quadratic form f>Rf among all vectors f satisfying Af = b. One possible such vector
is x. Thus,

E = q>Rq ≤ x>Rx =
∑
j∈E

cj
xj
x2
j = cost(x). (10)

J

As a corollary, by Lemma 8 the cost of a feasible solution does not increase over time.

I Corollary 13. Suppose x(t) ≥ 0, Ax(t) = b. Then (d/dt)cost(x(t)) ≤ 0.

Proof. Combine Lemma 12 and Lemma 8. J

All ingredients are now into place to derive our main claim, from which Theorem 1 will
directly follow.

I Theorem 14. Suppose x(0) > 0, Ax(0) = b. Then
(a) x(t) is feasible for LP (1) for any t ≥ 0;
(b) cost(x(t)) ≤ (1 + ε)opt for all

t ≥ Φ(0)
ε/6 = 6

ε

(
ln cost(x(0))

opt + KL(ξ∗, ξ(0))
)
.

Proof. By assumption, we start with a feasible initial solution x(0), thus by Lemma 7 the
solution x(t) stays feasible for all t ≥ 0; this proves point (a). By Corollary 13, the cost of
x(t) can only decrease as t increases. To prove point (b), assume, by contradiction, that
cost(x(t0)) is larger than (1 + ε)opt for some t0 that is larger than Φ(0)/(ε/6). By Lemma
11, (d/dt)Φ(t) ≤ −ε/6 for all t such that

cost(x(t)) ≥ (1 + ε)opt = (1 + 3ε′)opt ≥ (1 + ε′)2opt,

where ε′ def= ε/3. In particular, (d/dt)Φ(t) ≤ −ε/6 would hold for all t ∈ [0, t0]. This implies
the desired contradiction, since Φ(t0) = Φ(0) +

∫ t0
0

d
dtΦ(t) ≤ Φ(0)− (ε/6)t0 would have to be

negative. This is impossible since x(t) is feasible at all times and thus Φ(t) is nonnegative
for all t. J
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Proof of Theorem 1. Theorem 14 already proves the first part of Theorem 1. For the second
part, observe that if

µ
def= max

j∈E

x∗j
xj(0) ,

then

KL(ξ∗, ξ(t)) =
∑
j∈E

cjx
∗
j

opt ln
cjx
∗
j/opt

cjxj/cost(x)

=
∑
j

cjx
∗
j

opt ln
x∗j
xj

+
∑
j

cjx
∗
j

opt ln cost(x)
opt

≤ (lnµ) ·
∑
j

cjx
∗
j

opt +
(

ln cost(x)
opt

)
·
∑
j

cjx
∗
j

opt

= lnµ+ ln cost(x)
opt .

Substitution in the bound of Theorem 14 yields the claim. J

5 Discussion

We have shown that the Physarum dynamics converges fast for LP instances with positive
costs when starting from a feasible point. More precisely, the convergence is inversely
proportional in time and logarithmic on the ratio between the initial cost and the optimal
one, and the ratio between coordinates of the initial vector and the optimal solution. This
result avoids all dependence on the coefficients of the constraint matrix, as opposed to a
previous bound which was polynomial in the maximum subdeterminant of this matrix.

We were able to study only the continuous variant of the dynamics and did not derive
bounds for the discretized dynamics that could be deduced from it. However, the fact that
the continuous dynamics has desirable properties and converges fast is often a solid indication
that the resulting discrete algorithm might work well. Clearly, establishing this formally is
a nontrivial task and improving the bounds of Straszak and Vishnoi [19] for the discrete
variant remains an important open question in this setting. Moreover, our argument relied
on the assumption of a feasible starting point, which is most likely not required by the result.
The main obstacle, from this point of view, is to appropriately replace Lemma 12.

We also observe that the dependence of accuracy in time has been proved to be at most
of order t−1 in our analysis, whereas gradient methods for linear programming typically have
worse bounds, of the order of t−1/2. It would be interesting to know if such an improved rate
can be maintained when performing a time-discretization of the dynamics. From a broader
perspective, as pointed out in the introduction, a full characterization of the meta-algorithm
behind the Physarum dynamics remains open.

Acknowledgments. The author would like to thank Kurt Mehlhorn for suggesting a shorter
proof of Lemma 3.

References
1 S. Amari. Information Geometry and Its Applications. Springer, 2016.
2 S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-

algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

ISAAC 2017



17:12 Convergence Time of Natural LP Dynamics

3 D. A. Bayer and J. C. Lagarias. The nonlinear geometry of linear programming, I. Affine
and projective scaling trajectories. Trans. of the American Mathematical Society, 314:499–
526, 1989.

4 L. Becchetti, V. Bonifaci, M. Dirnberger, A. Karrenbauer, and K. Mehlhorn. Physarum
can compute shortest paths: Convergence proofs and complexity bounds. In Proc. of the
40th Int. Colloquium on Automata, Languages and Programming, volume 7966 of Lecture
Notes in Computer Science, pages 472–483. Springer, 2013.

5 A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Oper. Res. Lett., 31(3):167–175, 2003.

6 B. Bollobás. Modern Graph Theory. Springer, New York, 1998.
7 V. Bonifaci. Physarum can compute shortest paths: A short proof. Inf. Process. Lett.,

113(1-2):4–7, 2013.
8 V. Bonifaci, K. Mehlhorn, and G. Varma. Physarum can compute shortest paths. In Proc.

of the 23rd ACM-SIAM Symposium on Discrete Algorithms, pages 233–240. SIAM, 2012.
9 B. Chazelle. Natural algorithms and influence systems. Communications of the ACM,

55(12):101–110, 2012.
10 J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge

University Press, 1998.
11 K. Ito, A. Johansson, T. Nakagaki, and A. Tero. Convergence properties for the Physarum

solver. arXiv:1101.5249v1, Jan 2011.
12 A. Johannson and J. Y. Zou. A slime mold solver for linear programming problems. In How

the World Computes - Turing Centenary Conference and 8th Conference on Computability
in Europe, pages 344–354. Springer, 2012.

13 N. K. Karmarkar. Riemannian geometry underlying interior–point methods for linear pro-
gramming. In J. C. Lagarias and M. J. Todd, editors, Mathematical Developments Arising
from Linear Programming, volume 114 of Contemporary Mathematics, pages 51–75. Amer-
ican Mathematical Society, 1990.

14 T. Nakagaki, H. Yamada, and Á. Tóth. Maze-solving by an amoeboid organism. Nature,
407:470, 2000.

15 S. Navlakha and Z. Bar-Joseph. Algorithms in nature: the convergence of systems biology
and computational thinking. Molecular Systems Biology, 7:546, 2011.

16 A. S. Nemirovski and D. B. Yudin. Problem Complexity and Method Efficiency in Opti-
mization. John Wiley, 1983.

17 G. Raskutti and S. Mukherjee. The information geometry of mirror descent. IEEE Trans.
Information Theory, 61(3):1451–1457, 2015.

18 D. Straszak and N. K. Vishnoi. Natural algorithms for flow problems. In Proc. of the 27th
ACM-SIAM Symposium on Discrete Algorithms, pages 1868–1883. SIAM, 2016.

19 D. Straszak and N. K. Vishnoi. On a natural dynamics for linear programming. In Proc.
of the 2016 ACM Conf. on Innovations in Theoretical Computer Science, page 291. ACM,
2016.

20 A. Tero, R. Kobayashi, and T. Nakagaki. Physarum solver: A biologically inspired method
of road-network navigation. Physica A, 363:115–119, 2006.

21 A. Tero, R. Kobayashi, and T. Nakagaki. A mathematical model for adaptive transport
network in path finding by true slime mold. Journal of Theoretical Biology, 244:553–564,
2007.

22 A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D. Fricker, K. Yumiki, R. Kobayashi,
and T. Nakagaki. Rules for biologically inspired adaptive network design. Science, 327:439–
442, 2010.



Routing on the Visibility Graph
Prosenjit Bose∗1, Matias Korman†2, André van Renssen‡3, and
Sander Verdonschot§4

1 School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca

2 Tohoku University, Sendai, Japan
mati@dais.is.tohoku.ac.jp

3 National Institute of Informatics, Tokyo and JST, ERATO, Kawarabayashi
Large Graph Project, Japan
andre@nii.ac.jp

4 School of Computer Science, Carleton University, Ottawa, Canada
sander@cg.scs.carleton.ca

Abstract
We consider the problem of routing on a network in the presence of line segment constraints (i.e.,
obstacles that edges in our network are not allowed to cross). Let P be a set of n points in the
plane and let S be a set of non-crossing line segments whose endpoints are in P . We present two
deterministic 1-local O(1)-memory routing algorithms that are guaranteed to find a path of at
most linear size between any pair of vertices of the visibility graph of P with respect to a set of
constraints S (i.e., the algorithms never look beyond the direct neighbours of the current location
and store only a constant amount of information). Contrary to all existing deterministic local
routing algorithms, our routing algorithms do not route on a plane subgraph of the visibility
graph.
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1 Introduction

Routing is a fundamental problem in networking. The goal is to find a path from a source
vertex to a destination vertex in the network. When the whole network is known to the
routing algorithm, there exist many algorithms to find paths. The problem is more challenging
when the only information available is the location of the current vertex, its neighbours and a
constant amount of additional information (such as the source and destination vertex). This
is often referred to as local routing (or k-local for some constant k, when the k-neighbourhood
is considered). In our setting, we assume that the network is a graph embedded in the
plane, with edges being straight line segments connecting pairs of vertices, weighted by
the Euclidean distance between their endpoints. Algorithms routing on such networks are
referred to as geometric routing algorithms (see [7] and [8] for surveys of the area).
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Deterministic routing algorithms that guarantee delivery in these networks typically route
on plane subgraphs of the complete Euclidean graph. This means that of the potentially
quadratic number of edges available to the routing algorithm, only a linear number are ever
considered. This forces these algorithms to use paths that are much longer than necessary.
In this paper, we present the first deterministic local routing algorithm that considers more
edges by not restricting its choices to a plane subgraph.

Moreover, we study routing algorithms in a more general setting. In certain cases, some
edges of a network may not be usable if for example there is a large obstacle blocking direct
communication between two nodes. We model this impossibility via a set S of non-intersecting
line segment constraints whose endpoints are vertices of the network. Given a set P of n
points in the plane and a set S of non-intersecting line segment constraints, we say that
two vertices u and v can see each other provided that either the line segment uv does not
properly intersect any constraint in S or uv is itself a constraint in S. If two vertices u and v
can see each other, the line segment uv is referred to as a visibility edge. The visibility graph
of P with respect to a set of constraints S, denoted Vis(P, S), has P as vertex set and all
visibility edges as edge set. In other words, Vis(P, S) is the complete graph on P minus all
edges that properly intersect one or more constraints in S.

Although this setting has been studied extensively in the context of motion planning amid
obstacles ([5, 6, 1, 4]), there has not been much work on routing in this setting. Bose et al. [2]
showed that it is possible to route locally and 2-competitively between any two visible vertices
in the constrained Θ6-graph. Additionally, an 18-competitive routing algorithm between
any two visible vertices in the constrained half-Θ6-graph was provided. In the same paper
it was shown that no deterministic local routing algorithm is o(

√
n)-competitive between

all pairs of vertices of the constrained Θ6-graph, regardless of the amount of memory it
is allowed to use. Recently, the authors presented a non-competitive 1-local O(1)-memory
routing algorithm to route on the visibility graph by determining locally the edges of the
constrained half-Θ6-graph [3], a plane subgraph of Vis(P, S).

We present two deterministic 1-local O(1)-memory routing algorithms on Vis(P, S). The
first algorithm locally computes a non-plane subgraph of the visibility graph (the constrained
Θ6-graph) and routes on it. We then modify this algorithm to obtain a routing algorithm
that routes directly on the visibility graph. To the best of our knowledge, this is the first
local routing algorithm does not compute a plane subgraph of the visibility graph.

2 Preliminaries

The Θm-graph plays an important role in our routing strategy. We begin by defining it.
Define a cone C to be the region in the plane between two rays originating from a vertex
referred to as the apex of the cone. When constructing a (constrained) Θm-graph, for each
vertex u consider the rays originating from u with the angle between consecutive rays being
2π/m. Each pair of consecutive rays defines a cone. The cones are oriented such that the
bisector of some cone coincides with the vertical ray emanating from u that lies above u. Let
this cone be C0 of u and number the cones in clockwise order around u (see Fig. 1). The
cones around the other vertices have the same orientation as the ones around u. We write
Cu

i to indicate the i-th cone of a vertex u, or Ci if u is clear from the context. For ease
of exposition, we only consider point sets in general position: no two points lie on a line
parallel to one of the rays that define the cones, no two points lie on a line perpendicular
to the bisector of a cone, and no three points are collinear. The main implication of this
assumption is that no point lies on a cone boundary.
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Figure 1 The cones with apex u in the Θ6-graph. All points of S have exactly six cones.
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Figure 2 The subcones with apex u in the constrained Θ6-graph (constraints denoted as red
thick segments).

Let vertex u be an endpoint of a constraint c (if any) and let v be the other endpoint
and let cone Cu

i be the cone that contains it. The lines through all such constraints c split
Cu

i into several subcones (see Fig. 2). We use Cu
i,j to denote the j-th subcone of Cu

i (again,
numbered in clockwise order). When a constraint c = (u, v) splits a cone of u into two
subcones, we define v to lie in both of these subcones. We consider a cone that is not split
to be a single subcone.

We now introduce the constrained Θm-graph: for each subcone Ci,j of each vertex u,
add an edge from u to the closest vertex in that subcone that can see u, where distance is
measured along the bisector of the original cone (not the subcone). More formally, we add an
edge between two vertices u and v if v can see u, v ∈ Cu

i,j , and for all points w ∈ Cu
i,j that

can see u, |uv′| ≤ |uw′|, where v′ and w′ denote the projection of v and w on the bisector of
Cu

i and |xy| denotes the length of the line segment between two points x and y. Note that
our general position assumption implies that each vertex adds at most one edge per subcone.

We now define our routing model. Formally, a routing algorithm A is a deterministic
1-local, O(1)-memory routing algorithm, if the vertex to which a message is forwarded from
the current vertex s is a function of s, t, N(s), and M , where t is the destination vertex, N(s)
is the set of vertices adjacent to s and set of constraints incident to s and M is a memory of
constant size, stored with the message. We consider a unit of memory to consist of a log2 n

bit integer or a point in P . Our model assumes that the only information stored at each
vertex of the graph is N(s).

I Lemma 1. [1] Let u, v, and w be three arbitrary points in the plane such that uw and
vw are visibility edges and w is not the endpoint of a constraint intersecting the interior of
triangle uvw. Then there exists a convex chain of visibility edges from u to v in triangle uvw,
such that the polygon defined by uw, wv and the convex chain is empty and does not contain
any constraints.

If u and v do not see each other, the above lemma proves the existence of a convex path
between them. We use this property repeatedly in our routing algorithm.

ISAAC 2017
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Figure 3 (a) The situation in which Θ-routing follows an edge to v and ends up further away
from the destination. (b) The situation where the Θ-routing algorithm cannot follow any edges at u,
since the destination t lies behind a constraint. (c) The canonical triangle of u.

3 Routing in the Constrained Θ6-Graph

Prior to describing our routing strategy for the entire visibility graph, we first provide one for
the constrained Θ6-graph. Note that the Θ6-graph is not necessarily plane. In this section,
we assume that we are given the constrained Θ6-graph explicitly. In the next section, we
show how to use this algorithm to route on the visibility graph.

If there are no constraints, there exists a simple local routing algorithm that works on
all Θ-graphs with at least 4 cones. This routing algorithm, which we call Θ-routing, always
follows the edge to the closest vertex in the cone that contains the destination. In the
constrained setting, this algorithm follows the edge to the closest vertex in the subcone that
contains the destination. Unfortunately, this approach does not necessarily succeed in the
constrained setting due to two issues. First, a key factor of convergence in the unconstrained
Θ-routing algorithm is that each step gets us closer to the destination (as long as we have at
least 6 cones). Unfortunately, this property need not hold in the constrained setting (see
Figure 3a).

A second, more important problem is that the cone containing the destination need not
contain any visible vertices. This happens when a constraint is directly blocking visibility
(see Figure 3b). In this case, the Θ-routing algorithm will get stuck, since it cannot follow
any edge in that cone.

The first problem can be easily fixed: given a vertex u and the destination t, we define the
canonical triangle of u with respect to t, denoted 4ut, as the triangle with apex u, bounded
by the cone boundaries of the cone of u that contains t and the line through t perpendicular
to the bisector of the cone (see Figure 3c). If the edge of u that lies in that cone ends outside
the canonical triangle, we say it is invalid and we ignore it. By ignoring invalid edges we
make sure that any edge we follow leads to a vertex that is closer to t.

To solve the second problem, the routing algorithm needs to find a path even when an
obstacle is blocking visibility to the destination (either blocking all visibility from u in the
cone of t or because the edge in that cone is invalid). In this case the algorithm enters the
obstacle avoidance phase, routing differently until an endpoint of the blocking constraint is
reached.

Intuitively, our algorithm uses the Θ-routing algorithm until it gets stuck, at which point
it switches to the obstacle avoidance phase in order to get around the constraint blocking its
visibility to t. After this phase ends, the algorithm switches back to the Θ-routing algorithm.
This process is repeated until t is reached. A more precise description follows in Section 3.2.
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m m

Figure 4 Routing from a vertex m. (a) Follow the edge to v, since v lies in Cw
4 . (b) Follow the

edge to w, since m is the endpoint of a constraint that intersects mvw. (c) Follow the edge to w,
since v lies outside of Cw

4 .

3.1 Obstacle Avoidance Phase
We now describe the obstacle avoidance phase. The algorithm enters this phase when routing
from source s to destination t, and reaches a vertex u that does not have any valid edges
in the cone that contains t. This can only happen if a constraint Q is blocking visibility
(if many of them exist, let Q be the one whose intersection with segment ut is closest to
u). The goal of this phase is to reach the right endpoint of Q, which we denote as z. The
main difficulty with this phase is that the algorithm does not know where z is, since Q is not
incident on u. In order to overcome this difficulty, the algorithm exploits several geometric
properties arising from the unique symmetries present in the constrained Θ6-graph, some of
which are outlined in the proof of Lemma 2.

Without loss of generality, t lies in Cu
0 . We first describe the case where u has no edges

in C0. The general case, where u may have invalid edges in C0, will be considered afterwards.
In this first case, the algorithm proceeds as follows. At a current vertex m, the algorithm
considers one of two candidate edges to follow (see Figure 4). The first is the edge to the
closest visible vertex v in the subcone of Cm

2 that shares a boundary with Cm
1 . The second

edge is the edge from m to the vertex w in Cm
1 that minimizes the angle α between mw and

the right boundary of Cm
0 . If v lies in Cw

4 and m is not the endpoint of a constraint that
intersects the interior of triangle mvw, the algorithm follows the edge to v. Otherwise, it
follows the edge to w. In the proof of Lemma 2, we show that at least one of v or w exists. If
one of the two vertices v or w does not exist, the algorithm follows the edge that does exist.
The obstacle avoidance phase ends when the algorithm reaches the endpoint of a constraint
that intersects ut. In order to recognize this, the algorithm stores u when the phase begins.

I Lemma 2. When u has no edges in the cone containing the destination t, the obstacle
avoidance phase initiated by u reaches the right endpoint z of the closest constraint Q blocking
visibility to t.

Proof. Without loss of generality, let t lie in Cu
0 . Since u has no edges in C0, the closest

constraint Q must intersect both boundaries of Cu
0 . This implies that z is either in Cu

1 or
Cu

2 . We maintain the invariant that each intermediate vertex m has no edges in Cm
0 and

that the intersection of the right boundary of Cm
0 and Q is closer to z than in the previous

step. We first show that there always exists either a w in Cm
1 or a v in Cm

2 . This implies
that our algorithm eventually reaches z since there are a finite number of points in P .

As a consequence of our invariant, z must either lie in Cm
1 or Cm

2 . Since m has no edges
in C0, we have that Q is the closest constraint to m in Cm

0 . Thus, any point x on Q ∩Cm
0 is
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w

(a) (b)

m

w

(c)

Figure 5 (a) If m routes to v, the union of green and blue regions must be empty of points. (b)
An illustration of the proof: if the region is not empty, we find a point x that must have an edge
with m that we would have followed instead of v. (c) Routing from m to w.

visible from both m and z. Hence, we can apply Lemma 1 to the triangle mxz and obtain
a convex chain of visibility edges from m to z. In particular, this implies that m can see a
vertex in C1 ∪ C2, and therefore has an edge in C1 ∪ C2. What remains to be shown is that
the invariant is maintained after every step of the algorithm. We note that for any vertex in
Cm

1 ∪ Cm
2 the intersection of the right boundary of its cone C0 is closer to z than that of

m. Thus, it remains to show that C0 of this next vertex contains no edges. We consider the
following two cases.

The algorithm follows the edge to v. If the algorithm follows the edge to v, recall that v
lies in Cw

4 and m is not the endpoint of a constraint that intersects the interior of triangle
mvw. In particular, this means that w lies outside of Cv

0 . Since v is the closest visible
vertex in the subcone of Cm

2 that shares a boundary with Cm
1 , the part of Cv

0 below the
horizontal line through m must be empty of points visible to v (see Figure 5a).
By the invariant, Cm

0 ∩ Cv
0 is empty of visible points. What remains to be shown is that

there are no points visible to v in Cv
0 \ Cm

0 above the horizontal line through m. If this
region is not empty, we sweep the region using the right boundary of Cm

0 . Let x be the
first vertex hit by this sweep that is visible to m. This implies that the 4xm is empty of
points visible to x since it is contained in the union of Cm

0 (which is empty), the swept
part of Cm

1 , and a portion of Cm
2 that must also be empty by our choice of v. This implies

that there is an edge from x to m. This means that w must exist. By construction, mw
forms the smallest angle with the right boundary of Cm

0 . This means that x ∈ 4mw.
Furthermore, since mw and mv are visibility edges, Lemma 1 implies the existence of a
vertex visible to w in 4wm. This contradicts the existence of the edge mw. Thus, Cv

0 is
empty of vertices visible to m. Suppose that there was a vertex y visible to v in Cv

0 , then
since vy and vm are visibility edges, Lemma 1 implies the existence of a vertex visible to
m in Cv

0 , which is a contradiction.
The algorithm follows the edge to w. As in the previous case, we consider the part below

the horizontal line through w and the part above (solid green and dashed blue regions in
Figure 5c, respectively). The former region must be empty or the edge mw would not
be present: any point visible to m in this region prevents m from creating an edge to w
and vice versa. An argument similar to the one for v, showing that the region above the
horizontal boundary of C1 is empty, also proves that the region above the horizontal line
through w is empty. Thus, Cw

0 must be empty of points visible to w. J

We now consider the general case, where u may have invalid edges in C0 (see Figure 6a).
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Figure 6 (a) When Q does not fully block the visibility of C0, we maintain the invariant that
the visible portion of the canonical triangle (gray region) must be empty along our routing. (b) The
situation where we restart the obstacle avoidance algorithm at m.

In this case, when u initiates the obstacle avoidance phase, we either reach z or a vertex
m that has no edges in C1 and C2 (see Figure 6b). This latter case can only occur when z
lies in Cm

3 . Note that this implies that Q intersects both boundaries of Cm
1 . Therefore, we

initiate a new obstacle avoidance phase from m where C1 plays the role of C0. By Lemma 2,
the second invocation of the obstacle avoidance phase must reach z.

I Lemma 3. When u has no valid edges in the cone containing the destination t, the general
obstacle avoidance phase initiated by u reaches the right endpoint z of the closest constraint
Q blocking visibility to t.

We note that the above proof relies heavily on the fact that we have exactly 6 cones
(and thus we are in the constrained Θ6-graph). We have a specific example in which the
routing strategy described above would fail for 14 cones (for some node, no edge will keep
an invariant zone empty). Thus, a different obstacle avoidance method is needed when the
number of cones is not 6.

3.2 Global Routing Strategy
We now have all the pieces in place to describe our routing strategy. Our routing strategy
alternates between three phases: while not blocked by an obstacle, we use the classic Θ-routing
algorithm. If the current vertex has no valid edges in the cone containing the destination,
it must be blocked by a constraint Q. In this case, we enter the obstacle avoidance phase
to reach the right endpoint of Q. Once we reach this endpoint, we check which of the
two endpoints of Q is closer to the destination. If the closest point to destination is the
other endpoint of Q, we enter the alternative endpoint phase to reach it. Note that the
two endpoints of Q can see each other, so we can route between them using the strategy
introduced in [2]. Once we have reached the endpoint of Q that is closest to the destination,
we resume classic Θ-routing. We call this alternation between the three phases the constrained
Θ6-routing strategy.

3.3 Convergence
We now show that our routing algorithm always reaches the destination. First we give
a proof of convergence which greatly overestimates the number of steps needed to reach
the destination, but it turns out that first showing that the algorithm always reaches the
destination simplifies the proof of bounding the number of steps.
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I Lemma 4. The constrained Θ6-routing strategy always reaches the destination within a
finite number of steps.

Proof. By construction, each edge followed during the Θ-routing phase gets closer to the
destination. Hence, each Θ-routing phase can consist of at most n steps. Similarly, an
obstacle avoidance phase performs at most n steps, since each step brings the boundary of
cone C0 closer to the endpoint we are routing to. At the end of an obstacle avoidance phase,
we may need an alternative endpoint phase which visits each vertex at most once [2].

Thus, in order to show termination it remains to bound the number of alternations
between phases. Each invocation of an obstacle avoidance phase is tied to a single constraint
Q. We bound the number of times Q can trigger an obstacle avoidance phase. Let z be the
endpoint of Q that is closest to t. In order for Q to trigger another obstacle avoidance phase
the routing path needs to first reach a vertex v such that v and t are in different halfplanes
(with respect to the line containing Q). Since the routing path cannot cross the constraint Q
itself, in the routing path between z and v we reach a vertex that is further from t than z is.

Since Θ-routing only gets closer to t, we must perform at least one obstacle avoidance
phase with a different constraint Q′. Since an obstacle avoidance phase (together with the
possible alternative endpoint phase) always ends at the endpoint z′ of Q′ that is closest to
t, this implies that z′ is further away from t than z. Let Q1, . . . , Qk be all the constraints
sorted by decreasing distance of their closest endpoint to t. Let zi be the endpoint of Qi

closest to t. Notice that Q1 cannot invoke more than one obstacle avoidance phase since
there are no constraints whose closest endpoint zi is further from t than z1. In general,
this ordering implies that Qi cannot invoke an obstacle avoidance phase more than 2i−1

times. Therefore, when there are k constraints, there can be at most 2k − 1 invocations of
an obstacle avoidance phase. Since we take at most 3n steps between two obstacle avoidance
steps, the total number of steps is upper bounded by O(n · 2k). J

Note that the above reasoning shows that a single constraint could be visited many
times, however, a simple argument shows that each constraint invokes at most one obstacle
avoidance phase.

I Lemma 5. Let Q be a constraint and let z be the endpoint of Q that is closest to t. Vertex
z can be visited as the final vertex of at most one obstacle avoidance or alternative endpoint
phase.

Proof. When we reach z at the end of an obstacle avoidance or alternative endpoint phase,
since the constrained Θ6-routing strategy is memoryless at the end of this phase, it follows
the same edge from z every time we reach it. This implies that z cannot be visited twice
using an obstacle avoidance or alternative endpoint phase, since otherwise the path would
cycle indefinitely, contradicting Lemma 4. J

This immediately gives a linear bound on the number of phase changes, implying a
quadratic bound on the number of steps. We now use a more detailed analysis of the
circumstances in which a vertex may be visited to tighten this further to O(n).

I Lemma 6. The constrained Θ6-routing strategy always reaches the destination in O(n)
steps.

Proof. Consider any vertex v and consider how we reached it. We will show that overall, no
vertex is visited too many times.
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Figure 7 A vertex v can be visited Ω(n) times as the endpoint not closest to t. This implies that
v is the endpoint of many constraints and in all of them it is further away from t than the other
endpoint u2, ..., uk. For clarity, the disk centred at t passing through v is drawn (as solid black),
and a possible routing path that visits v multiple times is also shown (in dashed black).

1) v is reached during a Θ-routing phase. Since the routing strategy in this phase is mem-
oryless, we would make the same routing step from v every time we reach it. In particular,
this would imply that v cannot be visited twice using a Θ-routing phase (otherwise, the
path would cycle indefinitely, contradicting with Lemma 4). Hence, we conclude that v is
visited once during a Θ-routing phase during the whole routing algorithm.

2) v is reached during an avoidance phase of constraint Q. We consider two subcases:
2.1) v is not an endpoint of Q. Let u be the vertex that initiated the avoidance phase

and first consider the case in which Q completely blocks visibility of u in the cone
containing t (see Figure 3b). In this situation, the same cone remains empty for all
vertices along the path (including v). Note that there can be at most three constraints
that fully block visibility of v in some cone. Thus, if v is visited more than three times
as part of an obstacle avoidance path, two of them share the same cone. Both of these
times, the obstacle avoidance and alternative endpoint phases would end up at z, the
endpoint of Q closest to t, contradicting Lemma 5. Thus, we conclude that v can be
reached this way at most three times.
It is possible that Q did not block the visibility in the cone completely (i.e., we
initiated the obstacle avoidance phase because the edge was invalid, see Figure 3a).
This situation is very similar to the case in which visibility was completely blocked.
The only difference is that the choice of the edge we follow at v depends on the cone
that contained t when we started this obstacle avoidance phase as well as on whether
or not v has edges in the two adjacent cones. We again conclude that if v is visited
more than a constant number of times in this way, the algorithm would route to the
same neighbour of v, eventually ending at the same endpoint of Q and contradicting
Lemma 5.

2.2) v is an endpoint of Q. As argued in Lemma 5, v can only be visited once during
the whole execution of the algorithm if it is the endpoint that is closest to t. Similarly,
if v is the endpoint that is furthest away from t, we know the algorithm enters the
alternative endpoint phase and routes to the opposite endpoint of Q. Note that v
could be visited several times this way (see Figure 7). However, notice that v can
never be visited twice because of the same constraint Q, as this would imply that we
visit the same closest endpoint twice as well, contradicting Lemma 5. Thus, during the
entire execution of the algorithm, we can visit at most 3n− 6 vertices as the endpoint
of a constraint that is not closest to t.

3) v is reached during an alternate endpoint phase. Every time a vertex is part of a path
in the alternate endpoint phase, Lemma 3 of [2] shows that at least one of its cones is
empty.
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v

u

z y

p

q

Figure 8 The constrained canonical triangle of v (gray). Constraint uz is used to clip the triangle.
Constraint uy does not clip the triangle, since it does not cross the triangle boundary. Constraint
pq does not clip the triangle, since it has no endpoint at u.

Hence, excluding case 2.2, each vertex is visited a constant number times. Since case 2.2
adds at most 3n− 6 visited vertices during the entire execution of the algorithm, this implies
that a total of O(n) steps are executed as claimed. J

I Theorem 7. There exists a 1-local O(1)-memory routing algorithm for the constrained
Θ6-graph that reaches the destination in O(n) steps.

Proof. The algorithm is 1-local by construction, since we consider only information about
vertices the current vertex is connected to. The Θ-routing phase does not require any memory.
The obstacle avoidance phase and alternative endpoint phase store a single vertex each and
this information is discarded when the phase ends. Hence, the algorithm requires O(1)
memory. Lemma 6 shows that the algorithm terminates in O(n) steps. J

4 Routing on the Visibility Graph

We now return our attention to our main goal: routing on the visibility graph. Since in the
previous section we presented a routing algorithm for the constrained Θ6-graph, we first
show that we can use this algorithm to route on the visibility graph as well. Afterwards, we
also describe how to modify the constrained Θ6-routing algorithm to route on the visibility
graph directly without locally determining the edges of the constrained Θ6-graph.

We note that, unfortunately, the length of the paths resulting from these two approaches
need not be related to the length of the shortest path in the visibility graph. Since we cannot
determine locally which endpoint of a constraint is closest to t, the routing algorithms may
follow a path to an endpoint arbitrarily far away, preventing us from being competitive.

4.1 Using the Constrained Θ6-Graph
In order to use the constrained Θ6-routing algorithm from the previous section, we need to
determine locally at a vertex which of its visibility edges are part of the constrained Θ6-graph.
Since it is easy to locally determine at a vertex u if a vertex v is the closest vertex in one
of its subcones, we focus on the situation where this is not the case and we thus have to
determine at u if it is the closest vertex in one of the subcones of v. Let the constrained
canonical triangle of v be 4vu clipped using the constraints intersecting the boundary of the
canonical triangle with one endpoint at u (see Figure 8). Note that we can determine the
constrained canonical triangle of v locally at u.

I Lemma 8. Let u and v be two vertices such that v is not the closest vertex to u in any
subcone of u. Edge uv is part of the constrained Θ6-graph if and only if u does not have any
visible vertices in the constrained canonical triangle of v.
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Proof. We first note that we can consider the subcone of v that contains u to be the full cone:
If the constraint defining the subcone ends in the constrained canonical triangle, Lemma 1
implies that it also contains a vertex visible to u, correctly implying that uv is not an edge. If
the constraint does not end in the constrained canonical triangle, the part of the constrained
canonical triangle outside the subcone is not visible to u and hence it does not influence the
decision at u.

It is easy to see that if u has any visible vertices in the constrained canonical triangle
of v, uv is not an edge of the constrained Θ6-graph: Consider the vertex x such that the
smaller angle of ux and uv is minimized. Since the angle is minimized, u is not the endpoint
of any constraints intersecting triangle uvx, so we can apply Lemma 1 to uvx. This gives us
a vertex inside the constrained canonical triangle that is visible to v. Hence, u is not the
closest visible vertex to v and thus uv is not an edge of the constrained Θ6-graph.

Next we show that if u has no visible vertices in the constrained canonical triangle of v,
uv is an edge of the constrained Θ6-graph. We prove this by contradiction, so assume that
uv is not an edge of the constrained Θ6-graph. This implies that there exists a vertex x in
the subcone of v that contains u that is closer to v than u is. Hence, x lies in the constrained
canonical triangle. Applying Lemma 1 to uvx gives us a vertex inside the constrained
canonical triangle that is visible to u, contradicting that u has no visible vertices in this
region. J

4.2 Routing Directly on the Visibility Graph
In order to route directly on the visibility graph, instead of at each vertex computing the
local neighbourhood in the constrained Θ6-graph, the constrained Θ6-routing algorithm
needs to be modified. We do this in such a way that the vertices do not need to store any
fixed cone orientations.

When a vertex s wants to send a message, it picks an arbitrary cone orientation and stores
it in the message it sends. We note that a vertex can pick a different orientation of the cones
for each message that it sends and this only requires a constant amount of storage. Since the
orientation is stored in the message, vertices do not need to agree on a fixed orientation in
advance, as every vertex along the routing path can extract the orientation from the message
and use that for its decisions.

Like in the constrained Θ6-routing algorithm, routing directly on the visibility graph
works in three phases: Θ-routing, obstacle avoidance, and alternative endpoint. During the
Θ-routing phase a vertex u simply sends the message to the closest vertex in the cone that
contains t, again limiting the edges it is allowed to follow to the edges that end in 4ut.

During the obstacle avoidance phase, we start by routing to either endpoint of the
constraint blocking visibility to t. Since we are routing on the visibility graph, Lemma 1
tells us that there is a convex chain of visibility edges to these endpoints. Hence, in order
to reach an endpoint of the constraint, we follow one of these convex chains. In order to
determine the next edge on the chain at an intermediate vertex m, the message needs to
store the predecessor of m on the chain and whether the path should continue to the next
clockwise or counter-clockwise edge of m. The next edge along the convex chain at m is
the edge that minimizes the angle with the line through m and the predecessor of m in the
stored direction.

When we arrive at an endpoint of a constraint, we can determine the location of the
other endpoint, since they are connected in the visibility graph. Using this information,
we can determine if this constraint is the one that caused the obstacle avoidance phase by
checking if it blocks visibility of u to t. If this is the case, we also determine which of the two
endpoints is closer to t. If we are not yet at the endpoint closest to t, we start the alternative
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endpoint phase, which is now simplified to following the edge in the visibility graph to the
other endpoint of the constraint.

I Theorem 9. There exists a 1-local O(1)-memory routing algorithm for the visibility graph
that reaches the destination in O(n) steps.

Proof. We first note that locality follows from the fact that we only need to consider the
neighbours of the current vertex in each of the steps. The memory bound follows from the
fact that we need to store only the orientation of the cones in the message, as well as the
starting vertex of the obstacle avoidance phase.

It remains to bound the number of steps. This algorithm has properties similar to those
of the constrained Θ6-routing algorithm. First, the Θ-routing phase always gets closer to
the destination and thus cannot repeat vertices. This implies that Lemma 4 also holds for
this routing algorithm. This in turn implies that a vertex can be the closest endpoint of
an obstacle avoidance or alternative endpoint phase at most once. Next, since the obstacle
avoidance path is convex, this implies that this path visits a subset of the vertices visited by
the obstacle avoidance phase of the constrained Θ6-routing algorithm. Finally, the alternative
endpoint phase consists of at most a single edge, hence this phase too is a subpath of
its constrained Θ6-routing counterpart. Hence, when we compare the path of this routing
algorithm to the constrained Θ6-routing path that uses the same cone orientation, the routing
path on the visibility graph is a subpath of the constrained Θ6-routing path. Hence, it takes
at most O(n) steps. J

5 Conclusion

We presented the first 1-local O(1)-memory routing algorithms for the visibility graph that
do not require the computation of a planar subgraph. Unfortunately, our algorithms do not
give guarantees on the length of the routing path, only on the number of edges used. Hence,
designing an algorithm that is competitive with respect to the shortest path remains open.
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discussions.
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Abstract
In this paper we study the classical scheduling problem of minimizing the total weighted comple-
tion time on a single machine with the constraint that one specific job must be scheduled at a
specified position. We give dynamic programs with pseudo-polynomial running time, and a fully
polynomial-time approximation scheme (FPTAS).
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1 Introduction

In general, a major challenge of scheduling problems is the determination of a job sequence
for each machine involved. Especially in non-preemptive one machine settings without idle
times, this is usually the only task to be performed. In this context, scheduling problems
appear without restrictions on this sequence (e.g. 1||

∑
Tj , minimize total tardiness) or

with restrictions on the sequence (e.g. 1|rj , prec|
∑
Cj , minimize total completion time).

Restrictions on the sequence are commonly either time dependent or linked to job pairs.
Examples for time dependent restrictions are release dates, deadlines, or time dependent
maintenance activities. Precedence constraints are a typical restriction based on job pairs.
In this paper, we elaborate on a different restriction based on the position of a job in the
sequence. To be more precise, we force one job to have a fixed position within the sequence
of jobs.

The practical and theoretical motivation for such a scheduling problem is twofold. Firstly,
such a job that has a fixed position in the sequence could be considered as a maintenance
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© Gruia Cǎlinescu, Florian Jaehn, Minming Li, and Kai Wang;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 19; pp. 19:1–19:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.19
https://arxiv.org/abs/1710.10904
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


19:2 Single Machine Scheduling with Position Constraint

operation. Classically, maintenance is also considered to be time dependent, e.g. by modeling
predetermined machine unavailability intervals ([15, 1, 16]), by allowing a maximum time
between two maintenances, which is often referred to as “tool changes” ([6, 7]), or mainten-
ances may be inserted arbitrarily in order to reduce the processing times of the following
jobs ([14, 18]). However, just lately, position dependent maintenance operations have been
introduced by Drozdowski, Jaehn and Paszkowski [8]. Amongst others, they motivate position
dependent maintenance activities with wear and tear of jet engines or aircraft wheels, which
is rather caused by the number of flights (because of the climb flight and thrust reversal for
the engines) than by the length of the flight. So the problem considered here can be seen as
the special case in which exactly one position dependent maintenance activity is necessary.

Secondly, our problem is a special case of scheduling with non-negative inventory con-
straints, as was introduced by Briskorn et al. [2]. Here, each job either delivers or removes
items of a homogeneous good to or from an inventory. Jobs that remove items can only be
processed if the required number of items are available, i.e. only if the inventory level does
not become negative. This problem relates to ours, in which a job is fixed to position k, as
follows. The job fixed on position k can be considered as the only job removing items from
the inventory, and k − 1 jobs are required to deliver items before this job can be scheduled.
If the parameter settings of the fixed job are chosen such that this job is to be scheduled as
early as possible, it is forced to be on position k. Analogously, the fixed job can be modeled
as the only one delivering to the inventory so that it must be scheduled the latest on position
k. Parameter settings then need to ensure that it is not scheduled earlier.

In this paper we continue the work of [2] on problem 1|inv|
∑
wjCj . We consider one

machine with the above mentioned inventory constraint with the objective of minimizing total
weighted completion time. Briskorn et al. [2] show that this problem is strongly NP-hard
in the general case and they propose various special cases, which are easily solvable and
some which are still open. They especially differ between the sets of jobs that deliver to the
inventory and that remove goods from the inventory. As mentioned before, we consider a
special case in which one of the two sets only consists of one job. For this problem setting,
we propose a fully polynomial time approximation scheme (FPTAS).

Several special cases and generalizations of problem 1|inv|
∑
wjCj have been analyzed in

the literature. Briskorn and Pesch [5] consider the generalization with a maximum inventory
level. They show that even finding a feasible solution is NP-hard and they propose heuristics.
Another generalization is analyzed by Kononov and Lin [13]. Here, each job consumes some
items at the beginning of its processing time and it adds to the inventory a number of
items at its completion time. They show NP-hardness of several special cases and present
some approximation algorithms for further special cases. Morsy and Pesch [17] consider a
special case in which all jobs delivering to the inventory must be equal (concerning processing
time, weight, and inventory modification) and the remaining jobs must also share some
characteristics. For this setting, a 2-approximation is presented. Optimality criteria and an
exact branch-and-bound algorithm for the standard problem 1|inv|

∑
wjCj are proposed by

Briskorn et al. [3].
There are some problems discussed in the literature, which are closely related to

1|inv|
∑
wjCj . First of all, Briskorn and Leung [4] consider the problem with maximum

lateness objective function. They propose some optimality criteria, lower bounds, and
heuristics, which are then used in a branch-and-bound framework. There are various papers
([9, 10, 11, 12]) that analyze a “non-renewable resource constraint”, which means that each
job removes goods from the inventory, but the inventory is filled automatically at predeter-
mined points in time. So contrary to the above mentioned inventory constraint, which was
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exclusively based on the job sequence, here the constraint is partially time based. The papers
on this problem mostly focus on minimizing makespan. Only Kis [12] considers the same
objective function and presents a strong NP-hardness proof and an FPTAS for a special case.

We formulate the problem with the constraint that a fixed amount of jobs must be finished
when the special job (refer to as pivot job) starts. We present an FPTAS in this paper. First
we propose a dynamic programming whose running time depends on job processing times.
To obtain an FPTAS, we use rounding technique: we round the job processing times so that
they are polynomial in n and 1/ε, then we obtain the optimal schedule for the rounded jobs
via dynamic programming and apply that schedule to original jobs. However, the rounding
approach does not guarantee (1 + ε) - approximation. To make it work, we further discover
an important property when the rounding technique fails: the job with the largest weight
can not be scheduled after (or the same as) the job with the largest processing time. The
reason behind is that when this property breaks, the objective value of the optimal schedule
is large enough, which makes the dynamic programming solution good enough. With this
property, on one hand we apply the rounding technique and on the other hand we put these
two special jobs before or after the pivot job accordingly and solve the subproblem.

The remainder of the paper is organized as follows. The problem formulation is given
in Section 2. In Section 3 we propose two dynamic programs to solve the problem, with
running time polynomial in job processing times and job weights, respectively. Then we
use the dynamic programming to design an FPTAS in Section 4. In Section 5, we present
another FPTAS as a comparison. In Section 6 we conclude our work.

2 Formulation

The instance of the problem is a set of n jobs J = {1, 2, ..., n}, a specified job c ∈ J and an
integer k ∈ [1, n]. Each job j ∈ J is defined by its weight wj and its processing time sj (or
sometimes refereed to as workload, size). A schedule σ over instance J is an order of jobs, we
write i �σ j (resp. i �σ j) meaning that job i precedes (resp. succeeds) job j or jobs i, j are
the same in schedule σ. The completion time of a job in a feasible schedule is the time when
the job finishes. Assume that the machine is never idle unless there is no more job to be
processed, we define Cσj =

∑
i�σj si as the completion time for each job j ∈ J in schedule σ.

Also, we denote δj = wj
sj

as the density of job j. The objective is to minimize total weighted
completion time on a single machine such that there are exactly k − 1 jobs scheduled before
job c, i.e. minσ

∑
j∈J wjC

σ
j s.t. k = |{ j | j �σ c, j ∈ J }| where k is part of the input.

I Theorem 1. In the optimal solution, jobs that are scheduled before (or after) job c must
follow Smith’s order.

In classical Smith’s Rule [19] (or Smith’s order), jobs are executed in non-increasing order of
its density δj . Smith’s Rule has been proven to be optimal when there is no position constraint
of job c. However, Smith’r Rule does not work in this problem as in the special case where
wc approaches to infinity and the jobs that are placed before the pivot job in the optimal
solution should have the smallest processing times. In the sequel, we assume job c is indexed
as n, and the remaining jobs J \ {c} are sorted in Smith’s order, i.e. δ1 ≥ δ2 ≥ ... ≥ δn−1.

3 Dynamic Programming with Side Constraints

In this section, we propose pseudo-polynomial dynamic programs to solve this problem.
Given integer k, job c ∈ J and sets of jobs J , H ⊂ J \ {c}, B ⊂ J \ {c} such that H ∩B = ∅,
we aim to find the optimal schedule such that
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(i) jobs from H are scheduled before job c
(ii) jobs from B are scheduled after job c
(iii) there are exactly k − 1 jobs scheduled before job c.

We say that job j is assigned when the order of job j and job c is determined and
unassigned otherwise. Therefore, jobs H ∪ B are assigned and let U = J \ (B ∪H ∪ {c})
be the unassigned jobs. Let ŝj = dλ · sje be the rounded job processing time of job j ∈ J
with a given parameter λ. We would see later that λ is polynomial in n, 1/ε, and linear
in 1/smax where smax is the maximum job processing time among all unassigned jobs. In
other words, we make sure that for each unassigned job j, ŝj is polynomial in n and 1/ε.
Similarly, we could also round job weights with a different λ , i.e. ŵj = dλ · wje, ∀j ∈ J .
In the following part of this section, we give two dynamic programs to solve the rounded
jobs based on job processing time in Section 3.1 and based on job weight in Section 3.2, and
denote fs(k, c, J,H,B, λ) and fw(k, c, J,H,B, λ) as the optimal schedule (the order of jobs)
returned by the corresponding dynamic programming for the rounded jobs respectively.

3.1 Based On Job Processing Time
We propose a dynamic programming with pseudo-polynomial running time. That is, we
assume for each job that its processing time has already been rounded into integers, and the
running time of the dynamic program is polynomial in the number of jobs and the maximum
job processing time.

Given a set of jobs J∗ ⊆ J , we denote [J∗] =
∑
j∈J∗ ŝj as the total processing time of

jobs J∗. For a feasible schedule γ, let U(γ) = {i | i ∈ U, i ≺γ c} be the subset of jobs in U
which are scheduled before job c in schedule γ.

Let n = |J | and Ŝ = [U ]. A partial schedule of jobs J ′ ⊆ J assigns to each of these jobs
J ′ a valid completion time, making sure that each job could be finished within that valid
completion time (i.e. jobs do not overlap). First, we try every possibility of the completion
time of job c, i.e. we aim to find the optimal schedule σ such that [U(σ)] = L where we
test every possibility of L from {0, 1, . . . , Ŝ}. Hence, we denote Cc(L) = L + ŝc + [H] as
the completion time of job c when L is fixed. Afterwards, we consider jobs J ′ = {1, ..., j}
and focus on two parameters e, E in the optimal schedule σ where |J ′ ∩ U(σ)| = e and
[J ′ ∩ U(σ)] = E. Finally, we test every possibility of e, E in the dynamic programming.

I Definition 2. Let dp(e, E, j) be the total weighted completion time of jobs J ′ = {1, ..., j}
in an optimal partial schedule such that there are e jobs from J ′ ∩ U which are scheduled
before job c with total processing time E, where e ∈ {0, . . . , k − 1}, j ∈ {0, . . . , n − 1},
E ∈ {0, 1, . . . , L}. dp(e, E, j) is taken to be infinity if no such partial schedule exists.

To find the optimal schedule of jobs J ′ , we fix the schedule of job j and then solve the
subproblem. We show that the completion time of job j could be calculated once job j

is determined to be scheduled before or after job c. We put the proof of Lemma 3 in full
version.

I Lemma 3. For j = 0, we have dp(e, E, j) = 0 if e = 0, E = 0 and dp(e, E, j) = ∞
otherwise. For j > 0, we have dp(e, E, j) =

min


dp(e, E, j − 1) + wj

(
E + [H ∩ J ′ ]

)
, if j ∈ H

dp(e− 1, E − ŝj , j − 1) + wj

(
E + [H ∩ J ′ ]

)
, if j ∈ U, e > 0, E ≥ ŝj

dp(e, E, j − 1) + wj

(
Cc(L) + ([U ∩ J ′ ]− E) + [B ∩ J ′ ]

)
, if j ∈ B ∪ U

fs(k, c, J,H,B, λ) = minL∈[0,Ŝ] wc · Cc(L) + dp(k − 1− |H|, L, n− 1)
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Time Complexity. Note that the values [H∩J ′ ], [B∩J ′ ] and [U∩J ′ ] could be precomputed,
and they will not change the overall running time. In other words, the running time depends
on the unassigned jobs. The overall time complexity is O(n4ŝ2

max) where ŝmax = maxj∈U ŝj .
Indeed, the dynamic programming has a table size O(n2Ŝ), the computation of each value
dp(e, E, j) takes O(1) operations, and the dynamic programming needs O(Ŝ) time for
L ∈ {0, 1, ..., Ŝ}, thus in total the time complexity is O(n2Ŝ2) = O(n4ŝ2

max). It is important
that ŝmax only depends on the unassigned jobs U .

3.2 Based On Job Weight
In this section, the unassigned jobs U are required to have integer weight, as the running time
of the dynamic programming depends on the weights of the unassigned jobs. We assume for
each job that its weight is already rounded to integer. As this problem is highly symmetrical,
we show that the dynamic programming in Section 3.1 could be applied by Theorem 4. For
each job j ∈ J , we create a corresponding job j∗ with processing time wj , weight sj , and we
obtain a new instance J∗, i.e. ∀j∗ ∈ J∗, wj∗ = sj , sj∗ = wj .

I Theorem 4. The reverse order of fs(n+ 1− k, c∗, J∗, B∗, H∗, λ) is fw(k, c, J,H,B, λ).

Proof. We denote obj(I, k, σ) as the objective value of schedule σ for the jobs I with
parameter k (position constraint parameter). Let π be any feasible schedule for jobs J with
parameter k, and let π′ be the reverse of π, i.e. i �π j if and only if j �π′ i. We prove that

obj(J, k, π) = obj(J∗, n+ 1− k, π
′
)

Firstly, in schedule π there are k − 1 jobs which are scheduled before job c since π is
feasible for J with parameter k. Therefore, in schedule π′ for J∗ there are n− k jobs which
are scheduled before job c∗ by definition of π′ . Moreover, in schedule π jobs H are scheduled
before job c, then in schedule π′ jobs H∗ are scheduled after job c∗. Similar analysis can
be used for jobs B. Consequently, schedule π′ is a feasible schedule for J∗ with parameter
n+ 1− k. Then, we prove the theorem by the equation: obj(J, k, π) =

∑
j∈J wj

∑
i�πj si =∑

i∈J si
∑
i�πj wj =

∑
i∈J wi∗

∑
i�πj sj∗ =

∑
i∈J wi∗

∑
j�

π
′ i sj∗ = obj(J∗, n+ 1− k, π′). In

the first equality, we formulate the objective of schedule π for J . In the second equality, we
reorganize the summation. In the third equality, for each j ∈ J we substitute wj by sj∗ and
sj by wj∗ as they have equal value. In the fourth equality, we replace π by π′ .

Consequently, the reverse order of the optimal solution for jobs J∗ with parameter n+1−k
is optimal for jobs J with parameter k. J

4 Fully Polynomial-Time Approximation Scheme (FPTAS)

In this section, we present the FPTAS algorithm. Recall that the dynamic programming in
previous section gives the optimal solution while the running time depends on job processing
times (or job weights). The straightforward idea is to round the job processing times such that
they are polynomial in n and 1/ε and then solve the rounded jobs via dynamic programming.
However, this technique does not guarantee (1 + ε) - approximation where we will show an
example. Later, we extract information from this failure and design an FPTAS.

Rounding Technique

For each job j ∈ J , we round job processing time with parameter λ, i.e. ŝj = dλ · sje with
λ = h(n, 1

ε )
smax

where smax is the maximum processing time of all jobs J and h(n, 1
ε ) is a function
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which is polynomial in n and 1/ε. We obtain the optimal schedule (denote by σ) for the
rounded jobs via dynamic programming and analyze the performance of schedule σ for jobs
J . Let π be the optimal schedule for jobs J . The objective of σ could be bounded:∑

j∈J wj
∑
i�σj si ≤

∑
j∈J wj

∑
i�σj ŝi/λ ≤

∑
j∈J wj

∑
i�πj ŝi/λ

≤
∑
j∈J wj

∑
i�πj(λsi + 1)/λ = OPT(J) +

∑
j∈J wj

∑
i�πj 1/λ

≤ OPT(J) + (n/λ) ·
∑
j∈J wj

(1)

where in the first and third inequality we use λsj ≤ ŝj ≤ λsj +1, and in the second inequality
we apply the fact that σ is optimal for the rounded jobs. Similarly, when we round job
weights with a different parameter λ, i.e. ŵj = dλ · wje,∀j ∈ J , we would have∑

j∈J wj
∑
i�σj si ≤ OPT(J) + (n/λ) ·

∑
i∈J si (2)

The error (n/λ) ·
∑
j∈J wj in Equation (1) may not be bounded by ε ·OPT(J), where one

would see from the following example. In the example, we have 3 jobs where s1 = 1, s2 = 2,
s3 � 2h(n, 1

ε ) and w1 = s3, w2 = w1 + 1, w3 = 1. After rounding, ŝ1 = ŝ2 = 1 as smax = s3,
therefore the optimal schedule for the rounded jobs will be σ = (2 ≺ 1 ≺ 3), while the
optimal schedule for original jobs is π = (1 ≺ 2 ≺ 3). Therefore, the approximation ratio is
w2∗2+w1∗(1+2)+1∗(1+2+s3)
w1∗1+w2∗(1+2)+1∗(1+2+s3) ≥ 17/16, which is a constant.

Note that the error in Equation (1) is (n/λ) ·
∑
j∈J wj =

nsmax·
∑

j∈J
wj

h(n, 1
ε ) . This error may

not be bounded by ε ·OPT(J) if the objective value of optimal solution is small, comparing
to the product of maximum job processing time and maximum job weight. Therefore, we
focus on two such special jobs, job u = arg maxj∈J {sj} the job of largest processing time,
and job v = arg maxj∈J {wj} the job of largest weight. Note that smax = su and that
if job v is scheduled after job u or u = v in the optimal solution, i.e. v �π u, we will
have OPT(J) ≥ wvsu, then the error in Equation (1) could be bounded when we take
h(n, 1

ε ) = n2 · 1
ε :

(n/λ) ·
∑
j∈J

wj ≤ n2wv/λ = n2wv · su
h(n, 1

ε )
≤ n2

h(n, 1
ε )
·OPT(J) ≤ ε ·OPT(J)

Therefore, when the rounding technique fails, we would have v ≺π u, i.e. the job of largest
weight must be scheduled before the job of largest processing time. This property from the
failure of rounding technique plays an important role in designing the FPTAS algorithm.

FPTAS Algorithm

From the above analysis, the rounding technique could possibly fail to return a good solution,
which we never know. In case that the failure happens, we would assign some jobs based on
the property from such failure that the objective value of the optimal schedule is small (i.e. the
job of largest weight must be scheduled before the job of largest processing time). Afterwards
we run the rounding technique again, and still a good solution may not be returned. Indeed,
we could recursively assign jobs and apply the rounding technique. However, as more and
more jobs are assigned, the unassigned jobs will have small weight and processing time,
which will not reflect the objective value of the optimal schedule. In other words, the above
property will not hold any more. Instead, we would fix the position of one job when such case
happens, i.e. the job weight or job processing time of the unassigned job is small enough.

The FPTAS algorithm has many rounds. In each round, we aim to fix the position of one
job. More precisely, we make this job as the first job (or last job), then we take the remaining
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Algorithm 1 FPTAS Algorithm F 〈c, k,H,B,U〉
Input: Consisting of specified job c, specified value k, set of jobs H (resp. B) assigned to

be scheduled before (resp. after) c, and set of unassigned jobs U . Here, {c}, H,B,U are
pairwise disjoint, and H = ∅ if and only if B = ∅.

Output: A sequence χ of jobs U ∪H ∪ B ∪ {c} with exactly k − 1 jobs scheduled before
job c, or ∅ if no such sequence exists.

1: Jr ← U ∪H ∪B ∪ {c}, u← arg maxj∈U {sj}, v ← arg maxj∈U {wj}
2: χ← an arbitrary feasible schedule of Jr . best from following cases
3: call CheckFeasibility()
4: call FixJob()
5: call RepeatSize() . If v � c in the optimal schedule
6: call RepeatWeight() . If u ≺ c in the optimal schedule
7: if u 6= v then . If v ≺ c ≺ u in the optimal schedule
8: σ ← F 〈c, k,H ∪ {v}, B ∪ {u}, U \ {u, v}〉, Update χ← best{χ, σ}
9: end if

10: Return χ

11:
12: procedure CheckFeasibility . Check Feasibility
13: if |H| > k − 1 or |H|+ |U | < k − 1 then
14: Return ∅
15: else if |H| = k − 1 then . termination case
16: B ← B ∪ U
17: else if |H|+ |U | = k − 1 then . termination case
18: H ← H ∪ U
19: end if
20: Sort jobs H and B by Smith’s order respectively
21: χ← (H, c,B), Return χ.
22: end procedure

jobs as a new instance (update constraint parameter k accordingly) and start over. We
guarantee that the performance of the solution lose by a factor of (1 + ε/n) each time when
we fix one job. Let Jr be the remaining jobs in current round, i.e. jobs J \ Jr are already
fixed. We would take Jr as an instance, and let π be the optimal schedule of jobs Jr. In order
to find and fix one job from Jr, the algorithm will go into many iterations and assign jobs
into sets H ⊂ Jr, B ⊂ Jr such that either H = B = ∅ or H 6= ∅, B 6= ∅, where jobs H (resp.
B) are determined to be scheduled before (resp. after) job c. Let U = Jr \ (H ∪B ∪ {c}) be
the unassigned jobs. Let S =

∑
j∈Jr sj , W =

∑
j∈Jr wj and S

′ =
∑
j∈U sj , W

′ =
∑
j∈U wj .

The algorithm handles the problem separately according to the following inequalities.

S
′
≤ εS/n (3)

W
′
≤ εW/n (4)

I Lemma 5. Assume that the optimal schedule assign jobs H (resp. jobs B) before (resp.
after) job c, if inequality (3) or (4) holds, we are able to either
(i) obtain a feasible schedule with (1 + ε)-approximation, or
(ii) fix one job from Jr as the first job or last job by losing at most a factor of (1 + ε/n)

comparing to the optimal schedule of Jr.
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Algorithm 2 Algorithm 1 (continued)
23: procedure FixJob . Fix One Job
24: S ←

∑
j∈Jr sj , W ←

∑
j∈Jr wj , S

′ ←
∑
j∈U sj , W

′ ←
∑
j∈U wj

25: if S′ ≤ εS/n and B = ∅ then . termination case
26: H

′ ← the first k − 1 jobs from U by non-increasing order of job weight.
27: Return F 〈c, k,H ′ , U \H ′ , ∅〉
28: else if W ′ ≤ εW/n and H = ∅ then . termination case
29: H

′ ← the first k − 1 jobs from U by non-decreasing order of job processing time.
30: Return F 〈c, k,H ′ , U \H ′ , ∅〉
31: else if S′ ≤ εS/n and B 6= ∅ then . place job i as the last job, i.e. i � Jr
32: i← arg minj∈B{δj}, χ′ ← F 〈c, k, ∅, ∅, U ∪B ∪H \ {i}〉.
33: Return (χ′, i)
34: else if W ′ ≤ εW/n and H 6= ∅ then . place job i as the first job, i.e. i � Jr
35: i← arg maxj∈H{δj}, χ′ ← F 〈c, k − 1, ∅, ∅, U ∪B ∪H \ {i}〉.
36: Return (i, χ′)
37: end if
38: end procedure
39:
40: procedure RepeatSize . round job processing time
41: copy U,H,B . make copy of jobs
42: while |U |+ |H| ≥ k do
43: p← arg maxj∈U{sj}, λ← n3

ε2sp
,

44: σ ← fs(k, c, Jr, H,B, λ), Update χ← best{χ, σ}.
45: B ← B ∪ {p}, U ← U \ {p}.
46: end while
47: σ ← F 〈c, k,H ∪ U,B, ∅〉, Update χ← best{χ, σ}
48: end procedure
49:
50: procedure RepeatWeight . round job weight
51: copy U,H,B . make copy of jobs
52: while |H| < k − 1 do
53: q ← arg maxj∈U{wj}, λ← n3

ε2wq
,

54: σ ← fw(k, c, Jr, H,B, λ), Update χ← best{χ, σ}.
55: H ← H ∪ {q}, U ← U \ {q}.
56: end while
57: σ ← F 〈c, k,H,B ∪ U, ∅〉, Update χ← best{χ, σ}
58: end procedure

Proof. In the following cases, we claim that i) could be achieved if Case 1) or 2) happens
and ii) could be achieved if Case 3) or 4) happens (refer to Algorithm 1 procedure FixJob).
Case 1) If S′ ≤ εS/n and B = H = ∅, we assign jobs H ′ before job c, jobs U \H ′ after job

c and terminate the algorithm, where H ′ are the first k− 1 jobs from U by non-increasing
order of job weight. Let χ be the corresponding schedule. In the optimal schedule π,
let L ⊂ Jr (resp. R ⊂ Jr) be the set of jobs scheduled before (resp. after) job c. In
schedule χ, we use the corresponding notation L̃, R̃. Schedule ψ = (L ∩ L̃, R ∩ L̃, {c}, R̃)
is obtained based on schedule χ by advancing and rearranging jobs L ∩ L̃ as the order
in the optimal schedule, hence the completion time of jobs L ∩ L̃ in schedule ψ is at
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most that in the optimal schedule, i.e. Cψj ≤ Cπj , ∀j ∈ L ∩ L̃. Since jobs L̃ (resp. R̃) in
schedule χ are ordered by Smith Rule, the objective value of χ is at most that of ψ. Note
that S = S′ + sc as B = H = ∅, then we have Cψj ≤ S − sc ≤ εS/n, ∀j ∈ R ∩ L̃ because
these jobs are scheduled before job c, and Cψj ≤ S, ∀j ∈ R̃. Thus the objective value of
ψ is at most:∑

j∈L∩L̃ wjC
π
j +

∑
j∈R∩L̃ wj(εS/n) +

∑
j∈R̃∪{c} wjS

≤
∑
j∈L∩L̃ wjC

π
j + (1 + ε/n)S

∑
j∈R∪{c} wj

≤ 1+ε/n
1−ε/n

∑
j∈Jr wjC

π
j

where in the first inequality we apply
∑
j∈R̃ wj ≤

∑
j∈R wj as jobs L̃ are selected by job

weight from jobs U , and in the second inequality we apply Cπj ≥ sc ≥ S(1− ε/n), ∀j ∈
R ∪ {c}. As 1+ε/n

1−ε/n ≤ 1 + ε for n ≥ 3 (one would enumerate all possible solutions for
n ≤ 2). The claim follows.

Case 2) If W ′ ≤ εW/n and B = H = ∅, we assign jobs H ′ before job c, jobs U \H ′ after job
c and terminate the algorithm, where H ′ are the first k−1 jobs from U by non-decreasing
order of job processing time. A similar argument could be constructed as Case 1).

Case 3) If S′ ≤ εS/n and B 6= ∅, we place job i = arg minj∈B{δj} as the last job among Jr
and reduce to subproblem by taking the remaining jobs Jr \ {i} as a new instance. Let
χ be the schedule transformed from π by placing job i after jobs Jr \ {i}. Schedule χ
is feasible because job i must be scheduled after job c in the optimal schedule as i ∈ B.
Hence, after transformation the completion time of any job of Jr \ {i} in schedule χ is
at most that in schedule π. By assumption, in the optimal schedule π, job i must be
scheduled after all jobs in (H ∪B ∪ {c}) \ {i}, we have Cπi ≥

∑
j∈Jr\U sj = S − S′ and

Cχi = S. Therefore,

Cχi
Cπi
≤ S

S − S′
≤ 1 + ε

n− ε

Case 4) If W ′ ≤ εW/n and H 6= ∅, we place job i = arg maxj∈H{δj} as the first job among
Jr. A similar argument could be constructed as Case 3). J

I Lemma 6. Assume the rounding technique fails to return (1 + ε)-approximation solution
every time, then either inequality (3) or (4) will hold after at most n iterations.

Proof. Initially, we have H = B = ∅, U = Jr \{c}. Suppose S
′
> εS/n and W ′

> εW/n. Let
job u = arg maxj∈U {sj} be the job of largest processing time among unassigned jobs, and
let v = arg maxj∈U {wj}. In each iteration, we first apply the rounding technique (round
job processing time) with parameter λ = n3

ε2su
. Note that the time complexity of dynamic

programming in Section 3 only depends on unassigned jobs.
If v �π u, we claim that the rounding technique will return (1+ ε)-approximation solution

due to W ′
> εW/n, as the error in Equation (1) could be bounded

(n/λ) ·
∑
j∈Jr

wj = ε2su
n2 ·W <

εsu
n
·W

′
≤ ε · wvsu ≤ ε ·OPT(Jr)

Otherwise, v ≺π u, we solve by three cases.
Case 1) If c ≺π v ≺π u. We assign job u into set B (as the optimal does) and remove job u

from U , i.e. U ′ = U \ {u}. Then we apply the rounding technique (round job processing
time) again with λ′ = n3

ε2s
u
′
where u′ = arg maxj∈U ′ {sj}. Note that job v is still the job
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of largest weight among unassigned jobs U ′ . We claim that we would have v ≺π u
′ if the

rounding technique fails again. Similarly, if v �π u
′ , we have

(n/λ
′
) ·
∑
j∈Jr

wj = ε2su′

n2 ·W <
εsu′

n
·W

′
≤ ε · wvsu′ ≤ ε ·OPT(Jr)

That is, the rounding technique returns (1 + ε)-approximation solution and the claim
follows. Therefore, we have c ≺π v ≺π u

′ if the rounding technique fails again, which
implies that the algorithm will stay on Case 1). Hence, we continue assigning job u

′

into set B until at some moment v = u
′ (refer to Algorithm 1 procedure RepeatSize).

Consequently, at least one rounding technique will succeed.
Case 2) If v ≺π u ≺π c. We apply the rounding technique of rounding job weights by taking

λ = n3

ε2wv
(refer to Algorithm 1 procedure RepeatWeight). The error in Equation (2)

could be bounded due to S′ > εS/n:

(n/λ) ·
∑
j∈Jr

sj = ε2wv
n2 · S <

εwv
n
· S
′
≤ ε · wvsu

A similar argument could be constructed to show that once Case 2) is triggered, the
algorithm will stay on Case 2) and at least one rounding technique will succeed.

Case 3) If v ≺π c ≺π u. We assign job v into set H and job u into set B, and continue to
the next iteration (refer to Algorithm 1 line 8).

One would see that there will be at most n iterations to assign all jobs, i.e. the procedure
RepeatSize and RepeatWeight in Algorithm 1 will be called at most n times. J

I Lemma 7. Algorithm 1 is (1 + 3ε) - approximation with time complexity O(n13/ε4).

Proof. We first prove that the algorithm will give (1 + 3ε) - approximation solution. The
solution returned by the algorithm comes from either a successful rounding technique, or the
termination case in the procedure FixJob (Line 27 and 30), and before that the algorithm
may have already fixed some jobs J \Jr (Line 33 and 36). By Lemma 5, the termination case
will return (1 + ε)-approximation solution, also a successful rounding technique will return
(1 + ε)-approximation solution, comparing to OPT(Jr). When fixing one job, we would lose
a factor of (1 + ε/n) by Lemma 5, comparing OPT(Jr). One may think about transforming
the optimal solution of jobs J into our solution by fixing one job each time, then each time
we still lose a factor of (1 + ε/n) comparing to OPT(J). Therefore, the total approximation
of fixing jobs will increase exponentially, which is (1 + ε/n)n = 1 + ε+ o(ε2). Finally, the
overall approximation is (1 + ε+ o(ε2))(1 + ε) < 1 + 3ε.

We show the time complexity of the algorithm. After rounding, the largest job processing
time or job weight of unassigned jobs is at most O(n3/ε2) as we take λ = n3

ε2su
when rounding

job processing time or λ = n3

ε2wv
when rounding job weight. Therefore, each dynamic

programming has running time O(n10/ε4), In each iteration, the dynamic programming
procedure RepeatSize and RepeatWeight is called once, each procedure executing
dynamic programming at most n times. We need to try O(n) iterations to fix one job
(Line 33 and 36) or terminate the algorithm (Line 27 and 30) We need to fix at most n jobs.
Finally, the time complexity is O(n13/ε4). J

5 Different Approach

In this section, we show that a different FPTAS could be constructed based on the approach
by Woeginger [20]. Woeginger proposed some conditions to identify whether a dynamic
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programming could be transformed into an FPTAS, using the method of trimming state
space.

First, we present a different dynamic programming, and then show that the conditions
are satisfied. We assume that jobs have integer weights and integer processing times. Recall
that job c is indexed as n, and the remaining jobs J \ {c} are sorted by Smith’s order.
We start from the schedule which only contains job c, and then add remaining jobs into
the schedule one by one. The dynamic programming algorithm works with vector sets
VS1, ...,VSn−1 where in phase j (1 ≤ j ≤ n − 1) job j is considered and VSj is computed
from VSj−1. A state vector [i,X, Y, Z] in VSj encodes a partial schedule without idle time
for jobs {1, 2, ..., j} ∪ {c}: i is the number of jobs that are scheduled before job c, X (resp.
Y ) is the total processing time (resp. total weights) of jobs before (resp. after and include)
job c, and Z is the objective value for the partial schedule.

Initialization. Set VS0 = {[0, 0, wc, wcsc]}.

Phase j. For every vector [i, x, y, z] in VSj−1, put the vectors [i, x, y + wj , z + wj(sc +∑j
i=1 si)] and [i+ 1, x+ sj , y, z + wj(x+ sj) + ysj ] into VSj .

Output. return the vector [i, x, y, z] ∈ VSn−1 that minimizes the z value such that i = k−1.
Note that in phase j, by Smith’s rule job j can only be scheduled at the end or right

before job c. If job j is scheduled at the end, we just append job j into the schedule, then the
objective value only increases by the weighted completion time of job j, i.e. wj(sc +

∑j
i=1 si).

Otherwise job j is scheduled right before job c. When we insert job j right before job
c, besides the weighted completion time of job j, the completion time of those jobs that
are scheduled after job j will increase by sj , therefore the objective value will increase
by wj(x + sj) + ysj . Since the coordinates of all vectors in all sets VSj are integers, the
cardinality of every vector set VSj is bounded from above by O(nW 2S2), therefore the
dynamic programming algorithm has a pseudo-polynomial time complexity of O(n2W 2S2)
where W =

∑
j∈J wj and S =

∑
j∈J sj .

We show that an FPTAS exists from the conditions. For j = 1, ..., n we define the input
vector Xj = [wj , sj ]. Let F = {F1, F2} where

F1(wj , sj , i, x, y, z) = [i, x, y + wj , z + wj(sc +
∑j
i=1 si)]

F2(wj , sj , i, x, y, z) = [i+ 1, x+ sj , y, z + wj(x+ sj) + ysj ]

Let degree-vector D = [0, 1, 1, 1] and objective function G(i, x, y, z) = z if i = k − 1 and ∞
otherwise. Then according to the approach by Woeginger [20], this dynamic programming is
ex-benevolent and an FPTAS could be constructed. Especially, the time complexity of the
FPTAS is O(n2 log2

∆W log2
∆ S) = O(n6 log2W log2 S/ε4) where ∆ = 1 + ε/n.

6 Conclusion and Discussion

We study the classical scheduling problem where one specific job must be scheduled at a
specified position. We give pseudo-polynomial time dynamic programs to solve this problem,
which are polynomial in job processing time and job weight, respectively. Moreover, we
design a fully polynomial-time approximation scheme (FPTAS) of (1 + 3ε)-approximation
with running time O(n13/ε4). Our first method of using rounding technique based on pseudo-
polynomial dynamic programs and fixing items one at a time in case the rounding fails may
have further applications. For the new approach of FPTAS in Section 5, the running time
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depends on the job weight (logW ) and job processing time (logS), while our first FPTAS
algorithm does not.

It remains open whether this problem is NP-hard or not. It will also be interesting to
study the multiple position constraints, i.e. two or more jobs have fixed positions. In this
setting, our dynamic programming algorithm could be easily generalized and the rounding
technique will not change too much while it is difficult to design the FPTAS algorithm to
avoid exponential number of recursions.
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1 Introduction

Given a graph G = (V,E), an s-plex S ⊆ V is a vertex subset such that for v ∈ S the degree
of v in G[S] is at least |S| − s. The notion of s-plexes is a degree relaxed variant of cliques
and was defined to study the cohesiveness of subgroups in social networks [24]. It is NP-hard
to find an s-plex of maximum cardinality in general graphs [3, 19]. Variants algorithms
(e.g., [2, 3, 4, 6, 7]) were designed for finding an s-plex of maximum cardinality in a given
graph. Note that the maximum 1-plex problem is exactly the maximum clique problem. The
maximum s-plex is trivial when s = |V |. An s-plex bipartition P = (V1, V2) is a bipartition
of G = (V,E), V = V1 ] V2, satisfying that both V1 and V2 are s-plexes. Given an instance
G = (V,E) and a parameter k, the s-Plex Bipartition problem asks whether there exists
an s-plex bipartition of G such that min{|V1|, |V2|} ≤ k.

s-Plex Bipartition
Instance: A graph G = (V,E)
Parameter: An integer k ≥ 0
Question: Does there exist a bipartition P = (V1, V2) such that both V1 and V2 are

s-plexes and min{|V1|, |V2|} ≤ k?

Graph coloring is often used to model scheduling problems [18, 20]. Given a set of jobs
J , one can construct a conflict graph G = (V,E) where V = J and for two jobs u, v ∈ V
having schedule conflicts, there is an edge uv ∈ E. We say that G admits a proper p-coloring
if vertices in G can be colored with p colors and no two adjacent vertices in G are in the
same color class. If vertices (jobs) are in the same color class, then those jobs can be done
simultaneously without any conflict. However, the ordinary coloring may be too restricted to
model a real scheduling problem in which jobs could tolerate some threshold of conflicts. This
gives a more general coloring problem called defective (p, d)-coloring introduced in [1, 8, 16].
A vertex subset S ⊆ V is called a bounded-degree-d set if the maximum degree of G[S] is at
most d. A graph G = (V,E) is called (p, d)-colorable if it admits a vertex coloring with p
colors such that each color class in G is a bounded-degree-d set. Here d means defects and
the threshold of conflicts.

Defective (p, d)-Coloring
Input: A graph G = (V,E)
Question: Does there exist a (p, d)-coloring of G?

The notation χd(G) called the defective chromatic number of G is to denote the minimum
p such that G is (p, d)-colorable and χ0(G) is the usual chromatic number of the graph G.
We see that a defective (p, 0)-coloring is a proper coloring.

The s-Plex Bipartition problem is important because it is related to the Defective
(p, d)-Coloring. It is not hard to see that a graph G admits an s-plex bipartition if and
only if the complement graph of G, Ḡ, is defective (2, s − 1)-colorable. The problem to
determine whether an input graph is defective (2, 0)-colorable is equivalent to the recognition
of bipartite graphs and can be done in linear time. Surprisingly, the Defective (2, 1)-
coloring problem is NP-complete for general graphs [9] and even for planar graphs [10] and
for graphs of maximum degree 4 [10]. This generalizes that Defective (2, d)-coloring is
NP-complete for any d ≥ 1 in general graphs and planar graphs. Moreover, the Defective
(p, d)-Coloring is NP-complete for all p ≥ 3 and d ≥ 0 in general graphs [10]. To determine
whether a planar graph is defective (3, 1)-colorable is also NP-complete [10]. It was proved
that for any constant d, there exists an ε > 0 such that χd(G) can not be approximated
within a factor of nε unless P=NP [10].
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Lovász [21] showed that for any positive integer p, any graph G = (V,E) of maximum
degree ∆(G) admits a defective (p, b∆(G)/pc)-coloring and the coloring can be found in
time O(∆(G) · |E|). The defective chromatic number of planar graphs has been well-studied
in [8, 14, 15, 17, 23, 25]. It was proved that any planar graph admits a defective (3, 2)-coloring
and can be found in O(n2) time [8]. Poh [23] and Goddard [15] showed that any planar
graph admits a special defective (3, 2)-coloring in which each color class is the disjoint union
of paths.

A problem is fixed-parameter tractable (FPT) if given any instance of size n and a positive
integer k, one can give algorithms to solve it in time f(k) ·poly(n) where f(k) is a computable
function only depending on k. Those algorithms are called fixed-parameter algorithms. There
are many results about fixed-parameter algorithms introduced in [11, 12].

A fixed-parameter algorithm based on branch-and-reduce strategy consists of a collection
of reduction rules and branching rules. Given a problem instance (G, k) with the parameter k,
reduction rules are used to obtain a smaller problem instance (G′, k′) in polynomial time
such that |G′| < |G| or k′ < k. The branching rules are used to recursively solve the smaller
instances of the problem with smaller parameter. We analyze each branching rule and use the
worst-case time complexity over all branching rules as an upper bound of the running time.
Search trees are often used to illustrate the execution of a branching algorithm. The root of
a search tree represents the input of the problem, every child of the root represents a smaller
instance reached by applying a branching rule associated with the instance of the root. One
can recursively assign a child to a node in the search tree when applying a branching rule.
Notice that we do not assign a child to a node when applying a reduction rule. The running
time of a branching algorithm is usually measured by the maximum number of leaves in its
corresponding search tree.

Let b be any branching rule. When rule b is applied, the current instance (G, k) is branched
into r ≥ 2 instances (Gi, ki) where |Gi| ≤ |G| and ki = k − ti. Notice that fixed-parameter
algorithms return “No” when the parameter k ≤ 0. We call b = (t1, t2, . . . , tr) the branching
vector of branching rule b. This can be formulated in a linear recurrence

T (k) ≤ T (k − t1) + T (k − t2) + · · ·+ T (k − tr)

where T (k) is the number of leaves in the search tree depending on the parameter k. The
running time of the branching algorithm using only branching rule b is O(poly(n) · T (k)) =
O∗(ck)1, where c is the unique positive real root of xk − xk−t1 − xk−t2 − · · · − xk−tr = 0 [13].
The number c is called the branching number of the branching vector (t1, t2, . . . , tr).

To the best of our knowledge, whether s-Plex Bipartition admits a fixed-parameter
algorithm is an open problem. We first give a simple fixed-parameter algorithm to solve
the s-Plex Bipartition problem runs in time O∗((s + 1)k) by reducing the problem to
Minimum Ones (s+ 1)-SAT.

The following Bounded-Degree-d Set Bipartition problem is equivalent to the
Defective (2, d)-Coloring problem. Notice that G admits a s-plex bipartition if and only
if Ḡ has a bounded-degree-(s− 1) set bipartition. Moreover, G has a bounded-degree-d set
bipartition if and only if G is defective (2, d)-colorable and there exists one color class having
at most k vertices.

1 For functions f and g we write f(k, n) = O∗(g(k)) if f(k, n) = O(g(k) · poly(n)), where poly(n) is a
polynomial.
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Bounded-Degree-d Set Bipartition (BD-dSB)
Instance: A graph G = (V,E)
Parameter: An integer k ≥ 0
Question: Does there exist a vertex bipartition (B,W ) with V = B ]W such that

both B and W are bounded-degree-d sets and |B| ≤ k?

We first show that the BD d-SB problem can be reduced to the following Minimum Ones
(d+ 2)-SAT problem and can be solved in time O∗((d+ 2)k).

Minimum Ones (d+ 2)-SAT
Instance: A (d+ 2)-CNF formula F .
Parameter: An integer k ≥ 0
Question: Does there exist a 0/1 satisfying assignment for F such that the number of

ones is at most k?

The BD-dSB can be formulated with (d+ 2)-CNF formula F as follows.
For each vertex v in the input graph G, create a variable xv.
For each (d+ 2) star Sd+2 in G with center u and (d+ 1) leaves v1, v2, . . . , vd+1 being
(d+ 1) neighbors of u in G, create two clauses (xu ∨ xv1 ∨ · · · ∨ xvd

∨ xvd+1) and (x̄u ∨
x̄v1 ∨ . . . x̄vd

∨ x̄vd+1) in (d+ 2)-CNF formula which means all u, v1, . . . , vd+1 cannot be
colored all black or colored all white.

If the variable xu = 1 means that the vertex u is colored black and the variable xu = 0
means that the vertex u is colored white. It is not hard to see that F has a 0/1 satisfying
assignment such that the number of ones is at most k if and only if the input graph G of
the BD-dSB problem admits a vertex bipartition (B,W ) with V = B ]W such that both B
and W are bounded-degree-d sets and |B| ≤ k. Thus, to solve the BD-dSB problem can be
reduced to solve the Minimum One (d+ 2)-SAT problem.

The Minimum one (d + 2)-SAT problem can be solved in time O∗((d + 2)k) by the
following algorithm where k is the number of true variables.

For each clause (x1∨· · ·∨xd+2), the algorithm branches d+2 cases, i.e., for i = 1, . . . , d+2,
let xi = 1 and k := k − 1.

The above algorithm for Minimum Ones (d + 2)-SAT runs in time O∗((d + 2)k) which
shows that the s-plex bipartition problem considered in this paper can be solved in time
O∗((s+ 1)k), i.e., fixed-parameter tractable for constant s. For s = 2, this algorithm runs in
time O∗(3k).

In this paper, we design more customized fixed-parameter algorithm for 2-Plex Biparti-
tion and improve the running time to be O∗(2.4143k) where k = min{|V1|, |V2|}, (V1, V2) is a
bipartition of V satisfying that both V1 and V2 are 2-plexes. By applying this algorithm as a
subroutine, we give the first exact algorithm to find a Defective (2, 1)-Coloring with one
of the two colors of minimum cardinality for a given graph with running time O∗(1.5539n)
where n is the number of vertices in the input graph. In the following, we define a problem
related to Bounded-Degree-1 Set Bipartition.

Color Constrained Bounded-Degree-1 Set Bipartitioning (CCBD-1SB)
Instance: A graph G = (B ] U,E)
Parameter: An integer k ≥ 0
Question: Does there exist a vertex bipartition U = (B′,W ′) such that both B ∪B′

and W ′ are bounded-degree-1 sets and |B ∪B′| ≤ k?

Notice that if B = ∅, the CCBD-1SB problem is equivalent to the BD-1SB problem. In
the rest of the paper, we solve the CCBD-1SB problem.
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Figure 1 A partially black triple graph where grey nodes denote vertices in U and black nodes
denote vertces in B. We use thick lines to denote edges with both endvertices in U and thin lines to
denote edges with one endvertex in B and the other endvertex in U .

We close the section with some notation definitions. Let G = (V,E) be a simple graph.
For a vertex v in G, we use NG(v) to be the set of vertices adjacent to v. A path Ph in
G is a path consisting of h vertices. We use Ch to denote a cycle of h vertices. If we use
(v1, v2, . . . , vh) to denote a Ph, then it means that vivi+1 ∈ E for 1 ≤ i ≤ h− 1. If we use
(v1, v2, . . . , vh) to denote a Ch, then it means that vivi+1 ∈ E for 1 ≤ i ≤ h−1 and v1vh ∈ E.
For a vertex set X ⊆ V , let G[X] = (X,E(X)) where E(X) = {uv ∈ E | u, v ∈ X}. For
X,Y ⊆ V , use X ] Y to be X ∪ Y satisfying X ∩ Y = ∅.

2 A fixed-parameter algorithm for partially black triple graphs

In this section, we define a graph class called partial black triple graphs C and give a fixed-
parameter algorithm for the Color Constrained Bounded-Degree-1 Set Bipartition
problem in partial black triple graphs running in time O(2k).

I Definition 1. A graph G = (V = B ] U,E) is called a partially black triple graph if the
following conditions hold.
(i) Vertices in B are colored black and form an independent dominating set2 in G.
(ii) Vertices in U are uncolored. Each vertex v ∈ U is adjacent to exactly one black vertex

in B.
(iii) Each connected component in G[U ] is either a P3 or a C3.

Next we define the Color Constrained Bounded-Degree-1 Set Bipartition
problem in partially black triple graphs.

CCBD-1SB in Partially Black Triple Graphs
Instance: A partially black triple graph G = (B ] U,E)
Parameter: An integer k ≥ 0
Question: Does there exist a vertex bipartition U = B′ ]W ′ such that both B ∪ B′

and W ′ are both bounded-degree-1 sets and |B ∪B′| ≤ k?

Suppose that we use two colors black and white to color vertices U . A black-and-white
coloring of U is said to be feasible if all black vertices in G form a bounded-degree-1 set and
all white vertices in G form a bounded-degree-1 set.

2 A vertex set D ⊆ V is an independent dominating set in a graph G = (V, E) if no two vertices in D are
adjacent in G and each vertex v ∈ V \D is adjacent at least one vertex of D.
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I Lemma 2. Let G = (B ] U,E) be a partially black triple graph that admits a vertex
bipartition of U = B′ ]W ′ such that both B ∪ B′ and W ′ are both bounded-degree-1 sets
and |B ∪ B′| ≤ k. Then there exists S ⊆ U of minimum cardinality such that U \ S is a
bounded-degree-1 set and |S| ≤ k − |B|. Moreover, S can be found in polynomial time.

Proof. Since G admits a bounded-degree-1 bipartition (B ∪B′,W ′) such that |B′| ≤ k− |B|
and S is a subset of U of minimum cardinality such that U \ S is a bounded-degree-1 set, we
see that |S| ≤ |B′| ≤ k− |B|. According to the definition of partially black triple graph, each
connected components of G[U ] is either a P3 or a C3. The set S can be obtained by picking
exactly one vertex of degree one in each P3 and exactly one vertex in each C3 in G[U ]. Thus
the set S can found in polynomial time. This completes the proof. J

I Lemma 3. Let G = (B]U,E) be a partially black triple graph. To determine whether there
exists a vertex bipartition of U = B′ ]W ′ such that both B ∪B′ and W ′ are bounded-degree-1
sets and |B ∪B′| ≤ k can be done in time O∗(2k−|B|).

Proof. Let S ⊆ U of minimum cardinality such that G[U \S] is of maximum degree one. By
Lemma 2, if G admits a vertex bipartition of U = B′ ]W ′ such that both B ∪B′ and W ′
are both bounded-degree-1 sets and |B ∪B′| ≤ k, then |S| ≤ k − |B|. Thus, if |S| > k − |B|,
our algorithm can simply return that no such bipartition of U exists in polynomial time.

Suppose that |S| ≤ k − |B|. Our algorithm enumerates 2|S| ≤ 2k−|B| possibilities to
partition S = SB ] SW where SB ⊆ B′ and SW ⊆ W ′. Notice that S is an independent
set in G. This implies that SB and SW are both independent sets in G. If SB ∪ B is not
a bounded-degree-1 set, then the partition of S is not feasible. Assume that SB ∪ B is a
bounded-degre-1 set in G. We say vertices in B ∪ SB are colored black and vertices in SW
are colored white.

Notice that vertices in S are collected by picking exactly one vertex of degree one in each
P3 and exactly one vertex in each C3 in G[U ]. Let U ′ = U \ S. It is easy to see that G[U ′] is
a 1-regular graph.

In the rest of the proof, we call vertices in U ′ uncolored and we call U ′ the uncolored set.
Once an uncolored vertex is colored black or white, it is removed from the uncolored set U ′.
The rest of the problem is to color vertices U ′ black or white.

If the following cases exist, we can simply color a vertex white or black.
If v ∈ U ′ is adjacent to two black vertices, then v must be colored white. Remove v
from U ′.
If v ∈ U ′ is adjacent to two white vertices, then v must be colored black. Remove v
from U ′.
If v ∈ U ′ is adjacent to a black vertex x and x has a black neighbor, then v must be
colored white. Remove v from U ′.
If v ∈ U ′ is adjacent to a white vertex x and x has a white neighbor, then v must be
colored black. Remove v from U ′.
If there exists v ∈ U ′ of degree two in G, NG(v) = {x, y}, satisfying that x is black, y is
white, and vertices in NG(y) \ {v} are all black, then color v white. Remove v from U ′.

Suppose the above cases do not exist. We see that G[U ′] is a 1-regular graph and every
vertex v ∈ U ′ is either of degree two or three in G. Moreover, in G each uncolored vertex
v ∈ U ′ of degree two is adjacent to an uncolored vertex and a black vertex and each uncolored
vertex v ∈ U ′ of degree three is adjacent to an uncolored vertex, a black vertex, and a white
vertex.
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I Claim 4. If each uncolored vertex v ∈ U ′ of degree two is adjacent to an uncolored vertex
and a black vertex; and each uncolored vertex v ∈ U ′ of degree three is adjacent to an uncolored
vertex, a black vertex, and a white vertex, then any feasible coloring of U ′ = B′ ]W ′ must
satisfy |B′| = |W ′|.

Proof of Claim 4. Let u, v ∈ U ′ be two adjacent vertices in G. Note that both u, v are
adjacent to exactly one black vertex and at most one white vertex. If both u and v are
colored black, then there exists a P3 (u, v, x) such that all three vertices are colored black
where x is the white vertex adjacent to u, a contradiction to the fact that this is a feasible
coloring. Since at least one of u and v is adjacent to a white vertex, say u, if both u and
v are colored white, then there exists a P3 (u, v, x) such that all three vertices are colored
white where x is the white vertex adjacent to u, a contradiction to the fact that this is a
feasible coloring. Thus, one of u and v must be colored black and the other must be colored
white. This shows that any feasible coloring of U ′ = B′ ]W ′ must satisfy |B′| = |W ′|. This
completes the proof. J

Because any two adjacent vertices u, v ∈ U ′ must be colored different colors and any
feasible coloring of U ′ = B′ ]W ′ must satisfy |B′| = |W ′|, we can formulate the rest problem
as a 2-SAT problem. Here is the way to formulate the problem with a 2-CNF formula.

For each v ∈ U ′, create a variable xv.
For any two adjacent vertices u, v ∈ U ′, create two clauses (xu ∨ xv) and (x̄u ∨ x̄v) in the
2-CNF formula. The two clauses mean that xu and xv cannot be both true or both false.
We use xu = 1 to denote that u is colored black and xu = 0 to denote that u is colored
white.
For any black vertex z, if there exists u, v ∈ U ′ and (u, v, z) is a P3 in G, create a clause
(x̄u ∨ x̄v) in the 2-CNF formula. This means xu and xv cannot be both true. Both u and
v cannot be both colored black.
For any white vertex z, if there exists u, v ∈ U ′ and (u, v, z) is a P3 in G, create a clause
(xu ∨ xv) in the 2-CNF formula. This means xu and xv cannot be both false. Both u and
v cannot be both colored white.

It is not hard to see that the 2-SAT formula returns true if and only if U ′ admits a feasible
coloring with U ′ = B′ ]W ′ satisfying |B′| = |W ′|. Since 2-SAT can be solved in polynomial
time [22], to determine whether U admits a feasible 2-coloring can be done in polynomial
time.

Notice that the algorithm enumerates all 2|S| ≤ 2k−|B| possibilities of black and white
colorings of vertices in S. This produces at most 2k−|B| subproblems. From the above cases
analysis, all these coloring subproblems can be solved in polynomial time. This shows that
to determine whether there exists a vertex bipartition of U = B′ ]W ′ such that both B ∪B′
and W ′ are bounded-degree-1 sets and |B ∪B′| ≤ k can be done in time O∗(2k−|B|). This
completes the proof. J

3 A fixed-parameter algorithm for general graphs

In this section, we give a branch-and-reduce algorithm for the CCBD-1SB problem to solve
the CCBD-1SB problem running in time O∗(2.4143k) where k is the number of black vertices.
Given an input graph G = (B ] U,E), of the CCBD-1SB problem, the algorithm outputs a
vertex bipartition U = (B′,W ′) such that both B ∪B′ and W ′ are bounded-degree-1 sets, if
the bipartition exists. Note that U is called the set of uncolored vertices, vertices in U are
called uncolored, and vertices in B are called black. The algorithm consists of reduction rules
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and branching rules and repeats the execution of the first applicable rule in the sequence.
Thus, inside a given case, the hypotheses of all previous rules are assumed to be inapplicable.
Notice that if we say an uncolored vertex is colored black or white in the algorithm, then the
vertex will be removed from the uncolored set U but the vertex remains in the graph G. We
say a vertex is removed from G that means it is deleted from the input graph.

3.1 Reduction Rules
Let G = (B ] U,E) be the input graph of the CCBD-1SB problem and k be the input
parameter. We first give some reduction rules applied in the fixed-parameter algorithm.

Reduction Rules

Too many colored neighbor rule. If there exists an uncolored vertex having two
black and two white neighbors, then return “No.”
Same color P3 rule. If there exists a P3 with three vertices getting the same color,
then return “No.”
Two adjacent vertex rule. If black (white) vertices u, v are adjacent, then any vertex
x adjacent to u, v must be colored white (black). Remove x from U and remove u, v from
G if both u, v are white.
Isolated white rule. If a white vertex v only adjacent to black vertices, then remove v
from G.
Two same color neighbors rule. If there is an uncolored vertex v ∈ U with two black
(white) neighbors, then v must be colored white (black). Remove v from U .
One uncolored rule. If there is an uncolored vertex v ∈ U without uncolored neighbors
satisfying one of the following conditions,
1. v has no white neighbors, or
2. v has exactly one white neighbor u and at most one black neighbor, and all neighbors

of u are colored black.
Then v must be colored white. Remove v from U .
Two uncolored rule. If there are two adjacent uncolored vertices u, v ∈ U in G having
no white neighbors and no other uncolored neighbors, then u, v must be colored white.
Remove u, v from U . Notice that if G has no white vertices and the Two uncolored
rule is not applicable, there is no connected component which is a P2 in G[U ].
No black neighbor triple rule. If there exists three uncolored vertices x, y, z ∈ U
inducing a P3 or a C3 satisfying that x is not adjacent to any black vertex and x, y, z has
no uncolored neighbors other than x, y, z and x, y, z are not adjacent to any white vertex
in G, then color x black and color y, z white. When the No black neighbor triple
rule can not be applied, we see that each vertex in a connected component with exactly
three vertices in G[U ] has a black neighbor in G.

I Lemma 5. Two adjacent vertex rule is valid.

Proof. Suppose that both u and v are black. If a black vertex x is adjacent to u or v,
then there exists a P3 (u, v, x) or (v, u, x) such that all three vertices are colored black, a
contradiction to the fact that this is a feasible coloring. Thus, all vertices adjacent to u, v
must be colored white. Suppose that both u and v are white. If a white vertex x is adjacent
to u or v, then there exists a P3 (u, v, x) or (v, u, x) such that all three vertices are colored
white, a contradiction to the fact that this is a feasible coloring. Thus, all vertices adjacent
to u, v must be colored black. This completes the proof. J
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I Lemma 6. Isolated white rule is valid.

Proof. Let v be a white vertex only adjacent to black vertices and all its neighbors are
colored. Since the rest of uncolored vertices to be colored black or white are not affected by
the color of v, v can be removed from G safely. This completes the proof. J

I Lemma 7. Two same color neighbors rule is valid.

Proof. Suppose that v is an uncolored vertex having two black neighbors. If v is black, then
the set of black vertices is not a bounded-degree-1 set because the degree of v is two in
the induced subgraph of black vertices. Suppose that v is an uncolored vertex having two
white neighbors. If v is white, then the set of white vertices is not a bounded-degree-1 set
because the degree of v is two in the induced subgraph of white vertices. This completes the
proof. J

I Lemma 8. One uncolored rule is valid.

Proof. Let v be an uncolored vertex having no uncolored neighbors, i.e., v is an isolated
vertex in G[U ]. Notice that v is adjacent to at most one black vertex in G. Let P be an
optimal solution of CCBD-1SB with minimum number of black vertices and the number of
black vertices is at most k. Suppose that v is not adjacent to any white vertex and v is colored
black in P. We then obtain a solution P ′ from P by recoloring v white, a contradiction
to the assumption that P is an optimal solution with minimum number of black vertices.
Suppose that v is adjacent to exactly one white neighbor u and u is only adjacent to black
vertices. If v is colored black in P , we then obtain a solution P ′ from P by recoloring v white,
a contradiction to the assumption that P is an optimal solution with minimum number of
black vertices. This completes the proof. J

I Lemma 9. Two uncolored rule is valid.

Proof. Let x, y be two adjacent uncolored vertices having no white neighbors and no other
uncolored neighbors, i.e., {u, v} induces a P2 in G[U ] and forms a connected component in
G[U ]. Note that u and v are only adjacent to black vertices. Let P be an optimal solution of
CCBD-1SB with minimum number of black vertices and the number of black vertices is at
most k. If one of u, v is black, say u, a solution P ′ can be obtained from P by recoloring
u white, a contradiction to the assumption that P is an optimal solution with minimum
number of black vertices. This completes the proof. J

I Lemma 10. No black neighbor triple rule is valid.

Proof. Let {x, y, z} be a connected component in G[U ] satisfying that x is not adjacent to
any black vertex in G. Notice that {x, y, z} induces either a P3 or a C3 in G[U ] and y and z
are adjacent to at most one black neighbor and no white vertex is adjacent to x, y, z in G.
Suppose that there is a solution P of CCBD-1SB that x is white. Since {x, y, z} induce a P3
or a C3, at least one of y and z must be black in P , otherwise there is a degree-two vertex in
the induced subgraph of white vertices. We see that a feasible solution P ′ can be obtained
from P by recoloring x black and y and z white. Moreover, P ′ and P have same number of
black vertices. This completes the proof. J
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3.2 Branching Rules
Suppose all the reduction rules are not applicable. The algorithm then applies the following
branching rules.

One white neighbor rule. There is an uncolored vertex v having exactly one white
neighbor u and satisfying that v or u has an uncolored neighbor x. Then the algorithm
branches on each of the following cases:
v is black and k := k − 1; or
v is white and x is black and k := k − 1.

The branching vector of this rule is (1, 1) and the branching number is 2. Notice that
if One white neighbor rule is not applicable, no white vertices is adjacent to an
uncolored vertex. Moreover, if the One uncolored rule and One white neighbor
rule can not be applied, there is no isolated vertices in G[U ].
Standard branching rule. There is an uncolored vertex v with at least three uncolored
neighbors v1, v2, . . . , vh. Then the algorithm branches on each of the following cases:
v is black and k := k − 1;
v is white and v1, v2, . . . , vh are black and k := k − h; or
branch on each 1 ≤ i ≤ h, let v, vi be white and {v1, v2, . . . , vh} \ {vi} be black and
k := k − h+ 1.

The branching vector of this rule is (1, h, h− 1, . . . , h− 1) where the cardinality of the
branching vector is h + 2 and h ≥ 3. The worst cases happens when h = 3 and its
branching vector is (1, 3, 2, 2, 2) and the branching number is 2.4143. Note that if the
Standard branching rule is not applicable, the maximum degree of G[U ] is at most
two.
Four path end rule. There exists a P4 (v1, v2, v3, v4) in G[U ] satisfying that v1 has only
one uncolored vertex v2 and v2 has only two uncolored neighbors v1, v3. The algorithm
branches on each of the following cases:
v2 is black and k := k − 1;
v1, v2 are white and v3 is black and k := k − 1; or
v2, v3 are white and v1, v4 are black and k := k − 2.

The worst case branching vector of this rule is (1, 1, 2) and the branching number is 2.4143.
When all the reduction rules, One white neighbor rule, Standard branching rule,
and Four path end rule are not applicable, we see that any path in G[U ] has exactly
three vertices.
At least four cycle rule. There exists a Ch (v1, v2, v3, . . . , vh) in G[U ] where h ≥ 4.
Then the algorithm branches on each of the following cases:
v2 is black and k := k − 1;
v2 is white and v1, v3 are black and k := k − 2;
v2, v3 are white and v1, v4 are black and k := k − 2; or
v1, v2 are white and v3, vh are black and k := k − 2.

The worst case branching vector of this rule is (1, 2, 2, 2) and the branching number
is 2.3028. When the At least four cycle rule can not be applied, we see that any cycle
in G[U ] has at most three vertices.
When all reduction rules and all the above branching rules are not applicable, we see
that the maximum degree of G[U ] is two. Moreover, all connected components in G[U ]
are of three vertices, i.e., they are either P3 or C3. Since the reduction rule, No black
neighbor triple rule is not applicable, each of the uncolored vertex is adjacent to
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exactly one black vertex. By definition, the remaining graph is a partially black triple
graph.
Partially black triple rule. If G = (B ]U,E) is a partially black triple graph, use the
algorithm in Section 2 to solve the problem in time O∗(2k−|B|).

Now we prove the correctness of the branching rules.

I Lemma 11. One white neighbor rule is valid.

Proof. Let v be an uncolored vertex having exactly one white neighbor u. Let x be an
uncolored vertex adjacent to v or u. We see that v is either colored black or colored white in
any optimal solution. If v is colored white, then x cannot be colored white, otherwise the
set of white vertices in the optimal solution is not a bounded-degree-1 set, a contradiction.
Thus, if v is colored white, then x must be colored black. This completes the proof. J

I Lemma 12. Standard branching rule is valid.

Proof. For an uncolored vertex v having h uncolored neighbors, h ≥ 3, the Standard
branching rule branches all (h+ 2) possibilities to color v and all its uncolored neighbors. In
an optimal solution, either v is colored black or colored white. If v is white, either all its
neighbors are all colored black or exactly one of its neighbor is colored white. By Lemma 5,
if v and one of its neighbor are colored white, then all the uncolored neighbors of v must be
colored black. This completes the proof. J

I Lemma 13. Four path end rule is valid.

Proof. Notice that if all the reduction rules and One white neighbor rule and Standard
branching rule are not applicable, then G has no white vertices, each uncolored vertex
v in G has at most one black neighbor, and each vertex in G[U ] is of degree at most two.
Suppose that (v1, v2, v3, v4) is a P4 in G and all of them are uncolored. Let P be an optimal
solution of CCBD-1SB with minimum number of black vertices at most k. We see that v2 is
either colored black or white. Suppose that v2 is colored white in the optimal solution P. If
v1 is colored white in the optimal solution P , then v3 must be colored black. If v3 is colored
white in the optimal solution P, then both v1 and v4 must be colored black. Suppose that
v2 is colored white and both v1 and v3 are colored black in the optimal solution P . Since all
the neighbors of v2 are colored black and v2 has no white neighbors, we can always obtain a
solution P ′ from P by recoloring v1 white. We see that P ′ has less black vertices than P,
a contradiction to the assumption that P is an optimal solution with minimum number of
black vertices. This completes the proof. J

I Lemma 14. At least four cycle rule is valid.

Proof. Notice that if all the reduction rules and One white neighbor rule, Standard
branching rule, and Four path end rule are not applicable, then G has no white vertices,
each uncolored vertex v in G has at most one black neighbor, each vertex in G[U ] is of degree
at most two, and G[U ] consists of cycles and P3s. Suppose that {v1, v2, v3, . . . , vh} induces a
cycle in G such that (vi, vi+1), (v1, vh) ∈ E for 1 ≤ i ≤ h− 1, and all of them are uncolored.
Let P be an optimal solution of CCBD-1SB with minimum number of black vertices at
most k. We see that v2 is either colored black or white. Suppose that v2 is colored white
in P. Then either both v1 and v3 are black in P or one of v1 and v3 is colored white in P.
If v1 is colored white in the optimal solution P, then vh and v3 must be colored black. If
v3 is colored white in the optimal solution P, then v1 and v4 must be colored black. This
completes the proof. J

ISAAC 2017



20:12 An Efficient Fixed-Parameter Algorithm for the 2-Plex Bipartition Problem

Notice the worst branching number 2.4143 is obtained from Standard branching rule
and Four path end rule. We now conclude this section with the following theorem and
corollaries.

I Theorem 15. The CCBD-1SB problem can be solved in O∗(2.4143k) time.

I Corollary 16. The 2-plex bipartition problem and the Bounded-Degree-1 Set
Bipartition problem can be solved in O∗(2.4143k) time.

I Corollary 17. The 2-plex bipartition problem and the Bounded-Degree-1 Set
Bipartition problem can be solved in O∗(1.5539n) time where n is the number of vertices
in the input graph.

Proof. By Corollary 16, the 2-plex bipartition problem and the Bounded-Degree-1
Set Bipartition problem can be solved in O∗(2.4143k) time. According to the fact that
k ≤ n/2, we can design an exact algorithm by using the fixed-parameter algorithm for the
2-plex bipartition problem and the Bounded-Degree-1 Set Bipartition problem as a
subroutine. The running time of the exact algorithm is O∗(2.4143n/2) = O∗(1.5539n). This
completes the proof. J

4 Concluding remarks

In this paper, we give a fixed-parameter algorithm to solve the 2-plex bipartition problem in
time O∗(2.4143k) where k ≤ n/2 is an input parameter. It is of interesting to see whether
there exist more efficient fixed-parameter algorithms to solve the s-plex bipartition problem
for a constant s ≥ 2. Moreover, it is even more interesting to see whether there exist
fixed-parameter algorithms to solve the s-plex t-partition problem that asks whether the
vertices of input the graph can be partitioned into t parts such that each part is an s-plex.
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Abstract
Transaction system build on top of blockchain, especially smart contract, is becoming an im-
portant part of world economy. However, there is a lack of formal study on the behavior of
users in these systems, which leaves the correctness and security of such system without a solid
foundation. Unlike mining, in which the reward for mining a block is fixed, different execution
results of a smart contract may lead to significantly different payoffs of users, which gives more
incentives for some user to follow a branch that contains a wrong result, even if the branch is
shorter. It is thus important to understand the exact probability that a branch is being selected
by the system. We formulate this problem as the (+−)-Biased Ballot Problem as follows: there
are n voters one by one voting for either of the two candidates A and B. The probability of a
user voting for A or B depends on whether the difference between the current votes of A and B is
positive or negative. Our model takes into account the behavior of three different kinds of users
when a branch occurs in the system – users having preference over a certain branch based on
the history of their transactions, and users being indifferent and simply follow the longest chain.
We study two important probabilities that are closely related with a blockchain based system –
the probability that A wins at last, and the probability that A receives d votes first. We show
how to recursively calculate the two probabilities for any fixed n and d, and also discuss their
asymptotic values when n and d are sufficiently large.
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1 Introduction

Blockchain technology provides a decentralized way for bookkeeping and has been proved
to be a powerful tool in various areas, especially fintech applications [3]. Bitcoin [16], as
the first blockchain based cryptocurrency system, is now accepted by more than 100,000
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merchants worldwide [10], and the value of each bitcoin is more than $1,000. Besides
purely cryptocurrency transactions, blockchain is also used to build decentralized smart
contract platform, where the execution of contracts is enforced by all nodes participating the
blockchain system [5]. This greatly extends the range of application of blockchain technology
and could revolutionize world business [19].

Briefly speaking, a blockchain is a chain of blocks with each block containing some
information (e.g., the transactions, the execution result of a program and so on) and the
hash of the previous block. Users of the system keep appending blocks to the blockchain.
Smart contracts can be built upon a blockchain system. A smart contract is an event-driven
program which can be viewed as a contract in a decentralized system. In smart contract
supported blockchain systems (e.g., Ethereum), a user runs the contract locally, puts the
execution result of the smart contract in a block and then tries to append the block to the
blockchain. Further details of a blockchain system can be found in Section 1.1.

Ideally, a blockchain always remains as a chain. However, intentionally or not, a user
may append a new block after some other block instead of the one at the end of the current
blockchain, yielding a branch (or “fork”). There are several different criteria for eliminating
branches. One common criterion is the longest-chain rule [16], which ensures that the branch
that first receives d blocks afterwards will be selected as the “legal” branch, that is, blocks
in all the other branches will be neglected by the system.

Users of the system that are financially driven may behave strategically to maximize
their own profit. In a blockchain system where a user is paid by a fixed amount of coins
whenever he/she successfully appends a block (e.g., Bitcoin), it is natural that he/she will
append a block to a branch that is most likely to be selected by the system eventually, which
is essentially the current longest branch [16]. Things become much more complicated when
smart contracts are involved, since the execution result of the contract may involve a huge
gain or loss among users. Suppose there two branches A and B where different execution
results of some smart contract are stored. A user who is involved in the smart contract can
have strong pereference over these two branches. Indeed, let rA (rB) be the reward that the
user can get if eventually A (B) is selected by the system. If rA > 100rB , then even if A is
currently the shorter branch and will be selected by the system with the probability of 0.01,
the user may still append blocks to A, trying to maximize his/her expected reward. Such
a phenominon has been observed by Chen et al. [7]. To better understand and predict the
behavior of users in a blockchain system supporting smart contracts like Ethereum, it is thus
important to characterize the exact probability that certain branch gets selected, which is
the goal of this paper.

1.1 The Blockchain Based Transaction System
A blockchain is a public ledger that records transactions between users [16]. Typically, it is
a chain of blocks with each block containing some information (e.g., the transactions, the
execution result of a program and so on) and the hash of the previous block. Consequently,
the precedence order between blocks are fixed and it is possible to trace back from a recent
block to the very first block in the system. Users of the system append blocks to the
blockchain through a process called mining. They are called miners1.

As blockchain is a decentralized system, one of the critical requirements is that all users
have to reach consensus on the sequence and content of blocks. There are mainly two types
of techniques involved in this process: block construction and chain selection. For block
construction, the most common approach is proof-of-work [24], which is widely used in many
blockchain based transaction systems, e.g., Bitcoin [16] and Ethereum [25]. Proof-of-work

1 Throughout this paper, we are only concerned with such users, thus users and miners are used
interchangeably.
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requires the node to solve a hard problem to build a valid block, and the success probability
is determined by physical resources (e.g., CPU and storage) owned by the node [15]. Because
the amount of physical resources is relatively fixed, the probability for each node to produce
a valid block is stable. It is worth mentioning that besides proof-of-work, there are also
other protocols for block construction, e.g., proof-of-stake [4] and proof-of-elapsed-time [8].
However, as proof-of-work much more widely used than other protocols, we focus on proof-of-
work throughout this paper and consequently, we treat the probability of producing a valid
block as a fixed value. If more than one branches are generated, participating nodes have to
decide which branch to follow to add new blocks. Common chain selection criteria include
longest-chain rule [16] and GHOST (greedy heaviest-observed sub-tree) rule [14]. Byzantine
fault tolerant protocol is also proposed to eliminate disagreements on the chain [9, 11].
Throughout this paper, we focus on the longest-chain rule.

A fixed reward2 is paid to a user who successfully adds a block, thus giving incentive to
mining. However, when a miner adds a block, it is not guaranteed that he/she always appends
this block at the bottom of the chain. He/she may choose any previous block to append the
new block or sometimes two or more users simultaneously add blocks after the same block
yielding a branch. Eventually only one branch will be chosen as the “legal” branch and
all others will be discarded. The longest chain rule is a common branch selection method
used in Bitcoin and other blockchains. This rule chooses the branch that first accumulates d
blocks for some constant d. Note that when a branch is discarded, miners in that branch do
not receive any award, thus incentivizing users to follow the longest chain rule.

The strategic behavior of users may cause serious problems when a blockchain system
includes smart contracts. A smart contract is an event-driven program which can be viewed
as a contract in a decentralized system. In smart contract supported blockchain systems
(e.g., Ethereum [25]), a user runs the contract locally, then publishes the execution result
of the smart contract in a block. The user is rewarded for mining and contract execution.
However, since a smart contract defines the payoff among users involved in the contract,
different execution results may lead to significantly different payoffs of users involved in the
contract. If a miner is directly or indirectly involved, he/she may want to branch the chain
by adding a block containing a (right or wrong) result favorable to them. In this case, miners
benefiting from the result will work on different branches in their favor, while indifferent
users will simply work on the (temporarily) longer branch. Eventually, one branch will be
selected by the system.

This poses the question, what is the probability that a certain branch is selected? This
could be cast as a ballot problem: we view both branches as two candidates A and B. Every
block added to the system is viewed as a vote and voting for A or B represents which branch
the block is added to. As indifferent users choose the longer branch, the probability that a
voter votes for A or B is subject to variation on the current number of votes A and B get.
We give the formal definition of the ballot problem in the following subsection.

1.2 Problem Statement
We propose the following model to study the behavior of users in a blockchain based smart
contract system.

(+−)-Biased Ballot Problem. Suppose there are two candidates A and B. There are n
voters one by one making their votes. Each voter either votes for A or B. The probability
that the voter votes for A or B depends on the total number of votes received by A and
B at the time he votes. Specifically, let niA and niB be the number of votes received by A
and B when voter i votes, respectively. Voter i votes for A and B with probability p+ and

2 The reward may be adjusted after a significantly long time. In the short term, it is treated as fixed.
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q+ = 1 − p+, if niA − niB > 0; with probability p− and q− = 1 − p−, if niA − niB < 0; with
probability p0 and q0 = 1 − p0, if niA − niB = 0. We are interested in the following two
questions in this paper. First, what is the probability that A receives more votes than B at
last? Second, if there are infinite voters (indeed, n ≥ 2d suffices), what is the probability
that A first receives d votes.

An equivalent formulation of the problem under the framework of random walk is the
following:

1-Dimensional (+−)-Biased Random Walk. Suppose there is a ball located at the x-axis.
Let Li be the location of the ball after i-steps. Originally, L0 = 0.

P(Li+1 − Li = 1) =

 p+, if Li > 0
p−, if Li < 0
p0, if Li = 0

and P(Li+1 − Li = −1) = 1− P(Li+1 − Li = 1).
Note that Li+1 −Li = 1 implies that voter i+ 1 votes for A, and Li+1 −Li = −1 implies

that he votes for B. Therefore, the probability that A receives more votes than B at last is
exactly P(Ln > 0). We call it the ending probability. The event that A receives d votes first
is denoted as Hd. We call P(Hd) as the hitting probability.

We discuss the random walk that starts at the origin in Section 3. In general, the random
walk need not start at the origin, i.e., L0 could be an arbitrary integer. We provide the result
as Theorem 12. The reader may refer to the full version [6] of this paper for details.
I Remark. In our model, the two candidates A and B represent the two chains a blockchain
branches into. Users’ preferences over the two chains, based on the history of their transactions,
are indicated by the parameters p+, q+, p0, q0, p−, q−. Suppose the probability of users
favoring chain A is p, users favoring chain B is q, and users being indifferent is λ. Further,
we assume that users being indifferent will always add a block to the longer chain, and when
A and B have the same length, they add a block randomly. In this case, parameters will
take the following values.

p+ = p+ λ, p0 = p+ λ/2, p− = p

q+ = q, q0 = q + λ/2, q− = q + λ

The ending and hitting probabilities will indicate the chance that eventually A or B becomes
the chain that is accepted by the system. Weighing such probabilities against their potential
gain or loss (due to the history of their transactions recorded on A and B), users may decide
on whether to follow the chain they prefer, or to follow the other chain if the probability
that the chain they prefer has too low probability of being accepted by the system.

1.3 Related Work on Random Walk and the Ballot Problem
We give a brief overview of random walk and the ballot problem.

Bertrand’s Ballot Problem. In an election where candidate A receives p votes and candidate
B receives q votes with p > q, what is the probability that A will be strictly ahead of B
throughout the count?

The ballot problem is a classical problem in combinatorics whose study dates back to
1878 by Whitworth [13]. The answer of the problem is p−q

p+q , which is known as the Bertrand’s
ballot theorem and could be proved via various approaches, e.g., by a recursion relation [13]
or by Andre’s reflection method [17].

An equivalent problem is also studied in the context of random walk [1]. Consider the
1-dimensional symmetric simple random walk on Z, that is, let the random walk start at
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the origin L0 = 0 and Li+1 = Li ± 1, each with probability 1/2 and independent of other
steps. What is the probability that Li > 0 for all 1 ≤ i ≤ p+ q conditioned on Lp+q = p− q?
This probability is given precisely by the Bertrand’s ballot theorem. The number of all such
random walks is studied in [2]. Various generalizations of the ballot problem in the context
of random walk has been studied by Takacs [20, 21, 22].

Random walk, as a general subject, has been studied extensively in the literature. We
refer the readers to [23] as a nice survey on geometric random walk and [1] as a nice survey
on various ballot problem-related results when the ballot problem is viewed as a random
walk.

In recent years, research on the ballot problem and its extensions has found applications in
the study of the blockchain based transaction systems. In his seminal paper, Nakamoto [16]
introduces the Bitcoin system and uses the result from the ballot problem to study the
security of the system. Indeed, the security problem in Bitcoin could be cast as the following
modified ballot problem: suppose each voter votes independently with probability p to A
and probability q = 1− p to B, what is the probability that A is always strictly ahead of B?
Such a model is also adopted in a series of subsequent studies [18, 12].

1.4 Our Contribution

We study the strategic behavior of users in a blockchain based transaction system. Instead
of adopting the classical model that assumes attackers and honest users, in our model we
assume there are three groups of users when the blockchain branches into chain A and chain
B, with two groups favoring chain A and chain B respectively, and the third group being
indifferent and favoring the longer chain. We formulate our model as the (+−)-Biased Ballot
Problem where the two candidates A and B represent the two chains. In our model, we
do not necessarily require that chain A is always ahead of chain B. Indeed, we care about
the probability that A exceeds B after n blocks are generated, which we call the ending
probability, and the probability that A is extended by d blocks at first, which we call the
hitting probability. That means, we also take into account of the possibility that chain A
is temporarily behind chain B but takes over later on. However, once A is behind B, the
probability that the next block is added to A will be adjusted. In the extreme case when
p− = 0, i.e., when A is behind no blocks will be added to A, our model reduces to the
classical model in which we only consider the probability that A is always ahead of B.

We show how to calculate the ending and hitting probability for the (+−)-Biased Ballot
Problem and study their asymptotic values when n and d are sufficiently large. Applying our
results to blockchain, we show that, if the third group (i.e., users that are indifferent) has
much larger probability of generating the next block, then the probability that chain A wins
eventually is roughly 0.5 + θ∆, where ∆ is the difference in the probability of generating a
block between users favoring A and users favoring B, and θ ∈ [3/4, 3/2]. We further consider
the ballot problem starting at the situation that A is already ahead of B by s votes. Let µs
be the probability that A wins eventually, then for sufficiently large n the probability chain
B can win is no more than (1− µ0)(q+/p+)k when p+ > q+. In the classical ballot problem,
the probability that B can catch up by k blocks is (q+/p+)k, as is shown by Nakamoto [16]
in the Bitcoin system. In our model, however, this probability is further reduced by a factor
of 1− µ0.

2 Preliminaries

Bailey’s number [2]. Consider a sequence of numbers x1, x2, · · · , xn+r where xi ∈ {−1, 1}.
In total, the number of 1’s and −1’s in the sequence is n and r, respectively. Furthermore,∑j
i=1 xi ≥ 0 holds for any 1 ≤ j ≤ n+ r. The number of all such sequences is denoted as

ISAAC 2017
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σ(n, r) in this paper. It is shown by Bailey that

σ(n, r) = n+ 1− r
n+ 1 ·

(
n+ r

r

)
.

Similar as the binomial coefficient, the followings are true for the Bailey’s number [2]:

σ(n, r) = σ(n− 1, r) + σ(n, r − 1), 2 ≤ r ≤ n− 1 (1)

σ(n, n− 1) = σ(n, n). (2)

Specifically, if r = n, σ(n, r) becomes the same as the n-th Catalan number. We will make
use of the following generating function for the Catalan number:

∞∑
n=0

σ(n, n)xn = 2
1 +
√

1− 4x
. (3)

3 Solution for the (+−)-Biased Ballot Problem

In this section, we show how to calculate the ending and hitting probability for the (+−)-
Biased Ballot Problem for any fixed n and d. We also discuss their asymptotic values when
n and d are sufficiently large. We focus on the random walk version of the problem. We
consider the case that the random walk starts at the origin, i.e., L0 = 0. The reader may
refer to to the full version [6] oft this paper for the random walk that starts at an arbitrary
location.

Let Λk be the event that the random walk starts at L0 = 0, and returns to 0 for the first
time after 2k steps. Furthermore, we define

Λ+
k = Λk ∩ {Li > 0,∀ 1 ≤ i ≤ 2k}, Λ−k = Λk ∩ {Li < 0,∀ 1 ≤ i ≤ 2k}.

Consequently, Λk = Λ+
k ∪ Λ−k .

Consider the event Ln > 0. There are two possibilities, either the random walk starts at
0, goes right and never returns to 0 within n steps, or it returns to 0 for the first time after
n′ < n steps, implying that after n′ steps it re-starts at 0, and ends at some positive location
after n− n′ steps. Notice that n′ must be even. Let B+

n be the event that it goes right and
never returns to 0 within n steps, we have the following recursive calculation:

P(Ln > 0) = P(B+
n ) +

bn/2c∑
k=1

P(Λk) · P(Ln−2k > 0) (4)

Here P(Λk) · P(Ln−2k > 0) is the probability of the event that the random walk starts at 0,
goes right, returns to 0 for the first time after 2k steps, and then re-start at 0, ends at some
positive location after n− 2k additional steps.

We can apply similar arguments for the hitting probability. Let Hd = ∪dj=1{L2d−j = j}
denote the event that the random walk goes right for d steps and goes left for less than d
steps. There are two possibilities, either the random walk starts at 0, goes right and never
returns to 0, or it returns to 0 for the first time after 2k steps, and the event Hd−k happens
afterwards. Let D+

d denote the event that the random walk never goes back to 0, then we
have the following.

P(Hd) = P(D+
d ) +

d−1∑
k=1

P(Λk) · P(Hd−k) (5)

The recursive formulas (4) and (5) has a very similar structure. In the following we show
how to calculate P(B+

n ), P(D+
n ) and P(Λk), whereas for every fixed n and d we can always

calculate P(Ln > 0) and P(Hd) recursively.
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I Lemma 1.

P(B+
n ) = p0 ·

∑
0≤r≤(n−1)/2

σ(n− 1− r, r)pn−1−r
+ qr+,

where σ(n− 1− r, r) =
(
n−1
r

)
· n−2r
n−r .

Proof. The first step of the random walk should go right, which happens with probability
p0. We denote by xi = Li+1 − Li ∈ {−1, 1}. Consider the case that from the second step to
the n-th step, there are in total r steps that go left and n− 1− r steps go right. To make
sure that the random walk never goes back to 0, we have

h∑
j=1

xj ≥ 0, ∀ 1 ≤ h ≤ n− 1. (6)

Note that when h = n− 1, we have n− 1− r − r ≥ 0, whereas r ≤ (n− 1)/2.
According to the definition of the Bailey’s number, the number of integral solutions for

Inequality (6) is σ(n− 1− r, r), and the probability that each solution happens is pn−1−r
+ qr+.

Hence, the lemma is proved. J

For D+
d the argument is exactly the same.

I Lemma 2.

P(D+
d ) = p0 ·

∑
0≤r≤d−1

σ(d− 1, r)pd−1
+ qr+,

where φ(d, r) =
(
d+r
r

)
· d+1−r

d+1 .

Proof. The first step of the random walk should go right, which happens with probability
p0. Again let xi = Li+1 − Li ∈ {−1, 1}. Suppose starting from the second step, there are in
total r steps that go left. Notice that in total there are d− 1 steps go right (excluding the
first step) where 0 ≤ r ≤ d− 1, then we have

h∑
j=1

xj ≥ 0, ∀ 1 ≤ h ≤ d+ r − 1.

The number of integral solutions for the above is σ(d− 1, r), and the probability that each
solution happens is pd−1

+ qr+. Hence, the lemma is proved. J

Now we consider Λk.

I Lemma 3.

P(Λ+
k ) = p0 · σ(k − 1, k − 1)pk−1

+ qk+,

where σ(k − 1, k − 1) =
(2k−2
k−1

)
/k.

Proof. Consider Λ+
k . Starting at 0, the first step of the random walk must go right,

and the last step must go left (from 1 to 0). From step 2 to step 2k − 1, we consider
xi = Li+1 − Li ∈ {−1, 1}, then it is easy to see that

h∑
j=1

xj ≥ 0, ∀1 ≤ h ≤ 2k − 2.

Therefore, the number of all possible solutions is given by the Bailey’s number σ(k− 1, k− 1).
Each solution occurs with probability pk−1

+ qk−1
+ . Further multiplying the probability of the

first and last step p0q+, the lemma is proved. J
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Using the same argument, we have

I Lemma 4.

P(Λ−k ) = q0 · σ(k − 1, k − 1)pk−qk−1
− ,

where σ(k − 1, k − 1) =
(2k−2
k−1

)
/k.

With the above lemmas, for any fixed n and d we can always recursively calculate
P(Ln > 0) and P(Hd). In the following we discuss their values when n and d go to infinity,
which provide an estimation of the two probabilities when n and d are sufficiently large.

I Lemma 5. If p+ > q+,

lim
n→∞

P(B+
n ) = p0 ·

p+ − q+

p+
.

Otherwise, limn→∞ P(B+
n ) = 0.

To show the above lemma, we need the following.

I Lemma 6 ([13], pp.272). Consider a random walk starting at L0 = 0, P(Li+1−Li = 1) = p,
P(Li+1 − Li = −1) = q where p+ q = 1. If p > q, then

lim
n→∞

P(Li ≥ 0, ∀1 ≤ i ≤ n) = p− q
p

.

If p < q, the above limit is 0.

Proof of Lemma 5. This infinite summation could be calculated directly by plugging in
Lemma 1 and using generating functions. An easier way, however, is to apply Lemma 6.
Note that

B+
n = {L0 = 0, L1 = 1, L2 ≥ 1, L3 ≥ 1, · · · , Ln ≥ 1}.

From the second step to the n-th step, the event B+
n could be viewed as starting at 1

and always remaining at the rightside of 1 (including 1 itself). Note that in this case the
probability of going left is always q+ and going right is always p+, hence, if p+ > q+

lim
n→∞

P(B+
n ) = p0 ·

p+ − q+

p+
.

Otherwise, limn→∞ P(B+
n ) = 0. J

I Lemma 7. If p+ > q+,

lim
d→∞

P(D+
d ) = p0 ·

p+ − q+

p2
+

.

Otherwise, limd→∞ P(D+
d ) = 0.

The proof is a bit involved, the reader is referred to the full version [6] of this paper for
details.

Next we consider Λk.

I Lemma 8.
∞∑
k=1

P(Λ+
k ) = 2p0q+

1 +
√

1− 4p+q+
.
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Proof. Using the generating function (3), we know
∞∑
k=1

P(Λ+
k ) =

∞∑
k=1

p0σ(k − 1, k − 1)pk−1
+ qk+ = p0q+

∞∑
k=0

σ(k, k)pk+qk+ = 2p0q+

1 +
√

1− 4p+q+
.

J

Similarly, we have

I Lemma 9.
∞∑
k=1

P(Λ−k ) = 2q0p−
1 +
√

1− 4p−q−
.

I Theorem 10. If p+ ≤ q+, limn→∞ P(Ln > 0) = 0. Otherwise,

lim
n→∞

P(Ln > 0) =
p0 · p+−q+

p+

1− 2p0q+

1+
√

1−4p+q+
− 2q0p−

1+
√

1−4p−q−

Proof. The limit of P(Ln > 0) could be calculated in the following way. Given that

∞∑
k=1

P(Λk) =
∞∑
k=1

(P(Λ+
k ) + P(Λ−k )) = 2p0q+

1 +
√

1− 4p+q+
+ 2q0p−

1 +
√

1− 4p−q−
,

For N being sufficiently large, we know

0 ≤
∞∑
k=N

P(Λk) ≤ εN ,

whereas for n > 2N we have

P(B+
n ) +

N∑
k=1

P(Λk)P(Ln−2k > 0) ≤ P(Ln > 0) ≤ P(B+
n ) +

N∑
k=1

P(Λk)P(Ln−2k > 0) + εN .

Let n goes to infinity and let µ0 = limn→∞ P(Ln > 0), ν0 = limn→∞ P(B+
n ), the following

holds for any fixed integer N ,

ν0 +
N∑
k=1

P(Λk)µ0 ≤ µ0 ≤ ν0 +
N∑
k=1

P(Λk)µ0 + εN .

Let N goes to infinity, we know εN goes to 0, hence

µ0 = ν0 +
∞∑
k=1

P(Λk)µ0.

Plug in ν0, if p+ ≤ q+, limn→∞ P(Ln > 0) = 0, otherwise,

µ0 = lim
n→∞

P(Ln > 0) =
p0 · p+−q+

p+

1− 2p0q+

1+
√

1−4p+q+
− 2q0p−

1+
√

1−4p−q−

J

Using the same argument, we have the following theorem.
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I Theorem 11.

lim
d→∞

P(Hd) =
p0 · p+−q+

p2
+

1− 2p0q+

1+
√

1−4p+q+
− 2q0p−

1+
√

1−4p−q−

.

So far we have discussed the random walk starting at the origin. Indeed, if the random
walk starts at some point s > 0 (the case s < 0 could be handled in the same way), then its
ending probability µs satisfies the following (See the full version [6] of this paper for details).

I Theorem 12. For s ≥ 1, if p+ > q+

µs = 1− (1− µ0)( q+

p+
)s.

Otherwise, µs = 0.

3.1 Application to Blockchain
In this subsection we apply our results to the blockchain system. Specifically, we estimate
the value of ending probability when the parameters p+, q+, p0, q0, p−, q− are taking certain
fixed values. Note that these parameters are taken as fixed constants.

We first consider Theorem 12. Suppose A represents the main chain and B represents
some private chain of attackers. Users favoring the main chain A are the honest users in the
traditional studies of blockchain, users favoring chain B are the attackers, and users being
indifferent (the third group of users) are actually the majority of users in the system – they
do not really have a preference but will just follow the longer chain. Theorem 12 implies that
if the main chain on which the honest users keep working on is already k blocks ahead, then
the attackers can win with a probability no more than (1 − µ0)( q+

p+
)s as long as p+ > q+,

that is, as long as the honest users together with the third group of users can generate the
next block with the probability of more than 50%.

We now give a more detailed analysis. Suppose the probability of users favoring chain A
is p, users favoring chain B is q, and users being indifferent is λ. We assume that the third
group of users, i.e., users being indifferent will always add a block to the longer chain, and
when A and B have the same length, they add a block randomly since it makes no difference
to them. In this case, we have the following.

p+ = p+ λ, p0 = p+ λ/2, p− = p

q+ = q, q0 = q + λ/2, q− = q + λ

If users favoring A are so powerful that p ≥ q + λ, then µ0 could be simplified as

µ0 = lim
n→∞

P(Ln > 0) =
(p+ 1

2λ) · p−q+λ
p+λ

1− 2(p+ 1
2λ)q

1+p+λ−q −
2(q+ 1

2λ)p
1+p−q−λ

Simple calculations show that it becomes 1, that means A can always win. If q ≥ p + λ,
however, then the probability is 0.

In the following we assume that λ > |p− q|, whereas p+ > q+ and q− > p−. Under this
condition, we can simplify the formula in Theorem 10 as follows,

µ0 =
p0 · p+−q+

p+

1− p0q+
p+
− p−q0

q−

=
(p+λ/2)(p−q+λ)

p+λ

1− q(p+λ/2)
p+λ − p(q+λ/2)

q+λ

We can rewrite µ0 as

µ0 =
p+ 1

2λ−
1
2q −

1
2pq

p+λ

1− 1
2p−

1
2q −

1
2pq

p+λ −
1
2pq

q+λ
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If p and q are tiny compared with λ, say, p, q ≤ 0.1, then we can ignore pq/(p+ λ) and
pq/(q + λ) and derive the following

µ0 ≈
1
2 +

3
2p−

3
2q

1 + λ
.

That means, if A is more powerful in generating blocks than B but is still not as powerful as
the third party, then his probability of winning the game is larger than half by approximately

3
2(1+λ) (p− q) ∈ [ 3

4 (p− q), 3
2 (p− q)].

4 Conclusion

We study the behavior of users in a blockchain system supporting smart contracts. As
different execution results of a smart contract can lead to significantly different payoffs among
users, it becomes critical to know the exact probability that a certain branch is selected by
the system. We propose a generalized model called the (+−)-Biased Ballot Problem. In
our model, we classify users into three groups when the blockchain branches into two chains
A and B: the group of user favoring chain A, the group of users favoring chain B and the
third group of users that are indifferent and will simply follow the longer chain. Instead of
requiring one chain, say, chain A, to be always ahead of the other chain, we allow chain A to
be temporarily behind chain B by considering the probability that chain A exceeds B after
n blocks are generated (which we call the ending probability), and the probability that chain
A exceeds B and when it is extended by d blocks (which we call the hitting probability). We
provide recursive equations which allow us to compute the ending and hitting probabilities for
any fixed n and d, and discuss the asymptotic values of the ending and hitting probabilities
when n and d are sufficiently large.
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Abstract
In the Spy Game played on a graph G, a single spy travels the vertices of G at speed s, while
multiple slow guards strive to have, at all times, one of them within distance d of that spy. In
order to determine the smallest number of guards necessary for this task, we analyze the game
through a Linear Programming formulation and the fractional strategies it yields for the guards.
We then show the equivalence of fractional and integral strategies in trees. This allows us to
design a polynomial-time algorithm for computing an optimal strategy in this class of graphs.
Using duality in Linear Programming, we also provide non-trivial bounds on the fractional guard-
number of grids and torus. We believe that the approach using fractional relaxation and Linear
Programming is promising to obtain new results in the field of combinatorial games.
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1 Introduction

Turn-by-turn combinatorial games in graphs involve two players placing their pawns on
vertices of a graph and moving them along its edges in order to achieve some task. For
instance, in Cops and Robber games, Player 1 has a team of cops that must collaborate to
capture a robber moved by the second player [5, 21, 22]. In the surveillance game, Player 1
has no pawn but is allowed to cover vertices at each of its turns, while the goal of Player 2 is
to move its surfer to an uncovered vertex [12]. Another example is the Eternal Domination
Problem in which Player 2 has no pawn but is allowed to attack any vertex at each of
its turns, while the goal of Player 1 is to always be able to move at least one of its cops
to the attacked vertex [16]. Most of these games have been studied because they model
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natural problems involving mobile agents cooperating to perform some task (e.g., network
security, robot motion planning). Surprisingly, these games can also be used to provide a
novel understanding of problems arising in telecommunication networks: for instance, the
surveillance game was introduced for modelling resources prefetching [12].

In all these games, the goal is to minimize the amount of resources (e.g., the number of
cops) ensuring the victory of one of the players. These combinatorial problems are generally
“hard”: Cops and Robber games are EXPTIME-complete [18] and W[2]-hard [13] and the
Surveillance game is NP-hard and even PSPACE-complete in directed graphs [12]. Moreover,
many longstanding (probably difficult) open questions have not been solved yet for these
games. For instance, the celebrated Meyniel’s conjecture states that O(

√
n) cops are sufficient

to capture a robber in any n-node graph [24], Schröder asks whether g + 3 cops are sufficient
in any graph with genus at most g [23], the status of the complexity of Eternal Domination
is still unknown, etc. A classical approach to tackle these open problems has been to study
variants of these games in which one of the players often has some restrictions. For instance,
the robber may be faster than the cops [2, 13], the cops may capture at some distance [4], the
surveyed area may be forced to be connected [14], etc. Another approach may be to restrict
the games to particular graph classes such as trees [19], grids [17, 20], planar graphs [1], etc.

Recently, some of the authors of the present paper proposed a new framework that
considers a fractional variant of these games (roughly where pawns may be split into arbitrarily
small entities) and uses Linear Programming to obtain new bounds and algorithms [8, 15].
While this approach seems not to be successful to handle Cops and Robber games, it has been
fruitful in designing approximation algorithms for other combinatorial games. Precisely, it
allowed to design polynomial-time approximation algorithms for various (NP-hard) variants
of the surveillance game [15]. In this paper, we present a new successful application of this
approach. In particular, we consider the Spy-game [8, 10] and show that it can be solved in
polynomial-time in trees using this approach. We emphasize that, as far as we know, it is the
first exact algorithm for such combinatorial games using a Linear Programming approach
and that we were not able to solve it without this technique. We hope that our results will
encourage people to use this framework to study combinatorial games and we believe it will
enable progress toward solutions of the difficult open problems.

Spy-game. The Spy-game has been defined as it is closely related to the Cops and fast
robber game and it generalizes the Eternal Domination Problem [8, 10]. The Spy-game is a
turn-by-turn 2-Player game with perfect information. The first player has a spy which is
first placed at some vertex of a graph G. The second player has k ∈ N guards that are then
placed at some vertices of G. Turn-by-turn, the spy may move along at most s ≥ 1 edges
(s ∈ N∗ is the speed of the spy), and then each guard may move along one edge. Any number
of guards and the spy may occupy the same vertex. The goal of the game is to minimize the
number of guards, called guard-number and denoted by gns,d(G), ensuring that, at every
step after the guards’ turn, the spy is at distance at most d ∈ N from at least one guard
(we say that the spy is controlled at distance d). Note that, when d = 0 and s is large (at
least the diameter of G), the Spy-game is equivalent to the Eternal Domination Problem.
The guard-numbers of paths and cycles, and corresponding optimal guards’ strategies, have
been characterized in [8]. To tackle the more difficult case of trees, we consider the fractional
variant of the Spy-game, in which the rules are unchanged for the spy but the guards can be
split into arbitrarily small entities.
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Fractional Spy-game. Formally, the fractional Spy-game proceeds as follows in a graph
G = (V,E). Let s ≥ 2, d ≥ 0 be two integers and let k ∈ R such that k > 0. First, the spy is
placed at a vertex. Then, each vertex v receives some amount gv ∈ R+ (a non negative real)
of guards such that the total amount of guards is

∑
v∈V gv = k. Then, turn-by-turn, the spy

may first move at distance at most s from its current position. Then, the “fractional” guards
move following a flow constrained as follows. For any v ∈ V , and for any u ∈ N [v]1, there is a
flow f(v, u) ∈ R+ of guards going from v to u ∈ N [v], such that

∑
u∈N [v] f(v, u) = gv, i.e., the

amount of guards leaving v and staying at v is exactly what was at v. Finally, for any vertex
v ∈ V , the amount of guards occupying v at the end of the turn is g′v =

∑
u∈N [v] f(u, v). We

now need to rephrase the fact that the guards control the spy at distance d at every turn.
This is the case if, after every guards’ turn,

∑
w∈Nd[x] g

′
w ≥ 1, where x is the vertex occupied

by the spy. Let fgns,d(G) denote the minimum total amount of fractional guards needed to
always control at distance d a spy with speed s in a graph G. Note that, by definition, since
the fractional game is a relaxation of the “integral” Spy-game: for any graph G and any
s ≥ 2, d ≥ 0, fgns,d(G) ≤ gns,d(G). The fractional variant of the Spy-game has been used
to show the first non-trivial lower bound on the guard-number of grids [8]. In this paper, we
will give the first exact algorithm using the framework of fractional combinatorial games.

1.1 Our results
We study the Spy-game in the classes of trees and grids. We prove that the guard-number of
any tree can be computed in polynomial-time and give a non-trivial upper bound on the
fractional guard-number of grids. More precisely, for every s ≥ 2 and d ≥ 0:

We design a Linear Program that computes fgns,d(T ) and a corresponding strategy in
polynomial-time for any tree T . Then, we show that any fractional strategy (winning
for the guards) using k guards in a tree can be turned into a winning (integral) strategy
using bkc guards. The key argument is that we can restrict the study to what we call Spy-
positional strategies. Altogether, this shows that, in any tree T , fgns,d(T ) = gns,d(T ), and
that gns,d(T ) and a corresponding winning strategy can be computed in polynomial-time.
Then, we show that there exists a constant 0 < α ≤ log(3/2) such that fgns,d(Gn×n) =
O(n2−α). Note that the best known upper bound for gns,d(Gn×n) is O(n2). A similar
bound holds for the n× n torus.

We believe that the methods using Linear Programming used in this paper are a promising
way to better understand other combinatorial games in graphs.

1.2 Related Work
Spy-game. The Spy-game has been defined in [8, 10]. It has been shown that, for every
d ≥ 0 and s ≥ 2, computing gns,d(G) is NP-hard in a subclass of chordal graphs (precisely,
graphs obtained from a clique and some paths, where one end of each path is connected
to some vertices of the clique) [8, 10]. The guard-number of paths is also characterized
and almost tight lower and upper bounds are given in the case of cycles. More precisely,
gns,d(P ) =

⌈
n

2d+2+
⌊

2d
s−1

⌋⌉ for any n-node path P . Moreover, the strategy consists of

partitioning the path into gns,d(P ) subpaths with one guard assigned to each one [8, 10].
We show that such a strategy (assigning disjoint subtrees to each guard) is not necessarily

1 For any graph G, any integer ` and v ∈ V (G), let N`[v] be the set of vertices at distance at most ` from
v in G and let N [v] = N1[v].
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optimal in trees (see Section 4). Finally, it was proven using a fractional relaxation of the
game that there exists β > 0, such that Ω(n1+β) guards are necessary to win in an n×n-grid
Gn×n [8]. Precisely, it was proven that fgns,d(Gn×n) = Ω(n1+β) and the result follows from
the fact that fgns,d(G) ≤ gns,d(G) for any graph G. Note that no direct (without using the
fractional variant) proof is known. Note also that the best known upper bound in grids is
the trivial one: O(n2). The difficulty of finding the exact value of the guard-number of grids
can be related to the difficulty of finding the exact number of cops required to capture a fast
robber in a grid [2, 13]. We believe that obtaining results or tools in one case would lead to
further progress in the other case.

Eternal Domination. The Spy game generalizes the Eternal Domination Problem [16]. In
the latter game, a team of mobile agents (cops) occupy some vertices of a graph. At every
turn, the second player attacks some vertex v and then each of the cops is allowed to move
to one of its neighbors or may stay idle such that at least one cop occupies v (note that in
the original variant, only one agent was allowed to move at each turn [7]). In other words,
the agents must always occupy a dominating set D, such that for any vertex v /∈ D, the
agents can move to another dominating set containing v. The minimum number of agents
ensuring to win the game in a graph G is denoted by γm(G). It is easy to see that the
Eternal Domination Problem is equivalent to the Spy game when the spy is arbitrarily fast
and d = 0, i.e., γm(G) = gns,0(G) for any s which is at least the diameter of the graph.
Therefore, our results apply to the Eternal Domination Problem.

Eternal Domination has been investigated in several graph classes. In grids, only a few
cases are known: for instance, tight bounds are known in m × n grids for n ≤ 4 [3, 11]
and the case n = 5 is considered in [25]. The best known general upper bound in grids is⌈
nm

5

⌉
+ O(n + m) [20]. Note that the minimum size of a dominating set in any grid has

only been characterized recently [17]. In the class of trees T , γm(T ) can be computed in
polynomial-time [19]. The key property in this simple recursive algorithm is that an optimal
strategy consists of partitioning a tree into vertex-disjoint stars, each star being assigned to
at most 2 cops. As already mentioned, such a method does not extend for the Spy-game.

2 Representation of winning strategies and Spy-positional strategies

In this paper, all graphs are simple (without loops nor multi-edges), connected, and undirected.
For any vertex v ∈ V in a graph G = (V,E), let N(v) denote the set of neighbors of v and
N [v] = N(v)∪ {v}. Moreover, for any integer s ≥ 0 and vertex v ∈ V , let Ns[v] be the set of
vertices at distance at most s from v.

A strategy for the guards is a function describing the moves of the guards at every step.
A strategy is winning if it allows the guards to perpetually control the spy. It is easy to show
that there is always an optimal winning strategy (using the minimum number of guards)
which is positional, i.e. such that the next move is only determined by the current position
of both the spy and the guards, and not by the history of the game2. In other words, there
is always an optimal winning strategy which is a function that takes the current positions of
the spy and of the guards and returns the new positions of the guards (and so, their moves).

2 That can be easily shown by considering the configurations’ graph of the game.
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Representation of (fractional) guards’ strategies. Let G = (V,E) be an n-node graph,
s ≥ 2 and d ≥ 0 be two integers. Let V = {v1, · · · , vn}. A winning strategy σ using k ∈ R+

guards is defined as a set σ = {Cv}v∈V of sets of configurations. That is, for any v ∈ V
(a possible position for the spy), Cv is a non-empty set of functions, called configurations,
that represent the possible positions of the guards when the spy is at v. More precisely, any
ω ∈ Cv is a function ω : V → R+, where ω(u) ∈ R+ represents the amount of guards at vertex
u ∈ V when the spy occupies v, that must satisfy

∑
u∈V ω(u) = k and

∑
u∈Nd[v] ω(u) ≥ 1.

Finally, for any v ∈ V , any ω ∈ Cv, and any v′ ∈ Ns[v], there must exist ω′ ∈ Cv′ such
that the guards can go from ω to ω′ in one step. That is, for any possible move of the
spy (from v to v′), there must exist a valid flow from ω to ω′ (the guards must be able to
reach a configuration controlling the spy in v′). A strategy is integral if k ∈ N+, every of its
configurations is a function V → N, and every move is an integral flow. The size of a strategy
is the number of different configurations necessary to describe the strategy, i.e., the size of σ
is
∑
v∈V |Cv|. Note that, a same position for the spy may correspond to different positions of

the guards. Therefore, the size of an integral strategy using k guards in an n-node graph is
nO(k). Moreover, the size of a fractional strategy is a priori unbounded.

Spy-positional strategies. In this paper, we will also consider more constrained strategies.
A winning strategy is said to be Spy-positional if it depends only on the position of the
spy. That is, in a spy-positional strategy σ = {Cv}v∈V , the positions of the guards are only
determined by the position of the spy. In particular, every time the spy occupies some vertex
v, the set of vertices occupied by the guards is defined by a unique function σv : V (G)→ N
such that, for every u ∈ V , σv(u) is the number of guards occupying u when the spy is
occupying v. That is, Cv = {σv} and |Cv| = 1 for every v ∈ V . An important consequence
for our purpose is that any (fractional or integral) spy-positional strategy has size O(n).

Let us remark that, in a spy-positional strategy, it is not required that the same guards
occupy the same vertices when the spy is at some vertex. That is, assume that, at some step,
the spy occupies some vertex v, some Guard A occupies a vertex a and a guard B occupies a
vertex b. It may happen that, after some steps, the spy goes back to v and now Guard A is
at b and Guard B is at a (however, the set of vertices occupied by the guards is the same).

Second, there does not always exist an optimal strategy (using the minimum number
of guards) that is spy-positional. As an example, consider the cycle C5 with 5 vertices
{a, b, c, d, e}. It is easy to show that gn2,1(C5) = 1 but that every spy-positional strategy
needs 2 guards. One of our main results is to show that, in trees, there always exists an
optimal strategy which is spy-positional.

Let fgn∗s,d(G) be the minimum total amount of fractional guards needed to always control
at distance d a spy with speed s in a graph G, when the guards are constrained to play
spy-positional strategies. By definition, for any graph G and any s ≥ 2, d ≥ 0,

fgns,d(G) ≤ min{fgn∗s,d(G), gns,d(G)}.

3 Spy-positional fractional strategies in general graphs

This section is devoted to present a polynomial-time algorithm that computes optimal spy-
positional fractional strategies in general graphs. Here, optimal means using the minimum
total amount of guards with the extra constraint that guards are restricted to play spy-
positional strategies. In other words, we prove that, for any graph G, s ≥ 2, and d ≥ 0,
fgn∗s,d(G) and a corresponding strategy can be computed in polynomial time.
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We prove this result by describing a Linear Program with polynomial size that computes
such strategies. In Section 4, we will show that in any tree T , gns,d(T ) = fgn∗s,d(T ). More
precisely, we will show that in trees, the Linear Program below can be used to compute
optimal (integral) strategies in polynomial time.

We describe a Linear Program for computing an optimal fractional spy-positional strategy.

Variables. Let G = (V,E) be a connected n-node graph. Recall that a spy-positional
strategy is defined by, for each position of the spy, the amount of guards that must occupy
each vertex. Therefore, for any two vertices u, v ∈ V , let σv(u) ∈ R+ be the non negative
real variable representing the amount of guards occupying vertex u when the spy is at v.

Moreover, for any x ∈ V , y ∈ Ns[x] and for any u ∈ V and v ∈ N [u], let fx,y,u,v ∈ R+

be the non negative real variable representing the amount of guards going from vertex u to
v ∈ N [u] when the spy goes from x to y ∈ Ns[x]. Finally, a variable k will represent the
total amount of guards. Overall, there are O((|E|+ 1)n2) = O(n4) real variables.

These variables fully describe a strategy, since σ encodes a distribution of cops for every
position of the spy and f describes a feasible transition between two successive distributions.

Objective function. We aim at minimizing the total amount of guards.

Minimize k. (1)

Constraints. The first family of constraints states that, for every position v ∈ V of the
spy, the total amount of guards is at most k.
∀v ∈ V,

∑
u∈V

σv(u) ≤ k. (2)

The second family of constraints states that, for every position v ∈ V of the spy, the amount
of guards at distance at most d from the spy is at least 1, i.e., the guards always control the
spy at distance d.

∀v ∈ V,
∑

u∈Nd[v]

σv(u) ≥ 1. (3)

The third family of constraints states that, for any move of the spy (from x to y ∈ Ns[x]),
the corresponding moves of the guards ensure that the amount of guards leaving a vertex
v ∈ V plus what remains at v equals the amount of guards that was at v before the move.

∀x ∈ V , y ∈ Ns[x], v ∈ V ,
∑

w∈N [v]

fx,y,v,w = σx(v). (4)

The fourth family of constraints states that, for any move of the spy (from x to y ∈ Ns[x]),
the corresponding moves of the guards ensure that the amount of guards that are at a vertex
w ∈ V after the moves equals the amount of guards arriving in w plus what remains at w.

∀x ∈ V , y ∈ Ns[x], w ∈ V ,
∑

v∈N [w]

fx,y,v,w = σy(w). (5)

There are O(n4) constraints and the above Linear Program has polynomial size and
clearly computes an optimal spy-positional fractional strategy. Hence:

I Theorem 1. For any connected graph G, and any two integers s ≥ 2 and d ≥ 0, the
above Linear Program computes fgn∗s,d(G) and a corresponding spy-positional strategy in
polynomial time.
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4 Spy game is Polynomial in Trees

This section is devoted to the study of the Spy-game in trees (Theorem 4). Before going into
the details, we would like to emphasize one difficulty when dealing with guards’ strategies.

A natural idea would be to partition the tree into smaller subtrees (with bounded diameter)
with a constant number of guards assigned to each of them. That is, each guard would be
assigned (possibly with other guards) a subtree S and would move only when the spy is in
S (in particular, the guard would only occupy some vertices of S). As already mentioned,
there exist such strategies that are optimal in paths [8, 10] or in trees when d = 0 and s is
large (Eternal Domination) [19]. We cannot expect such strategies for the Spy-game (for
any s ≥ 2 and d > 0) in trees. Precisely, we can define a family of trees with unbounded
guard-number such that, for each of these trees, there is a strategy of the spy that forces
every guard to occupy every non-leaf vertex infinitely often (see [9]). Hence, optimal guards’
strategies seem difficult to be described in trees.

To overcome this difficulty, we use the power of Linear Programming. Precisely, we prove
that, in any tree T and for any s ≥ 2, d ≥ 0, gns,d(T ) = fgn∗s,d(T ). Therefore, using the
Linear Program of Section 3, it follows that computing gns,d(T ) can be done in polynomial
time in trees. The proof is twofold. First, we prove that gns,d(T ) = fgns,d(T ) for any s ≥ 2
and d ≥ 0 (i.e., the integrality gap is null in trees), and then that fgns,d(T ) = fgn∗s,d(T ).

I Theorem 2. For any tree T and for any s ≥ 2, d ≥ 0, gns,d(T ) = fgns,d(T ). More
precisely, any fractional winning strategy using a total amount of k ∈ R+ guards can be trans-
formed into an integral winning strategy using bkc guards. Moreover, such a transformation
can be done in polynomial time in the size of the fractional strategy.

Proof. Let σ = {Cv}v∈V be any fractional winning strategy using a total amount of k ∈ R+

guards to control a spy with speed s ≥ 2, at distance d ≥ 0, and in an n-node tree T = (V,E).
We build a winning integral strategy σr using bkc guards by “rounding” all configurations

of σ. For any configuration ω of σ, we will define an integral configuration ωr (which we call
a rounding of ω) using bkc guards (Claim 1), such that if the spy is controlled in ω then it is
also controlled in ωr (Claim 2). Moreover, for any two configurations ω1 and ω2 such that
there is a feasible flow from ω1 to ω2, we show that there is feasible integral flow from ωr1 to
ωr2 (Claim 3). Altogether, this shows that σr is a winning integral strategy using bkc guards,
which proves the theorem. The omitted proofs of the claims below can be found in [9].

From now on, let us consider T to be rooted at some vertex r ∈ V .

Notations. For any u ∈ V , let Tu be the subtree of T rooted in u (i.e., the subtree that
consists of u and all its descendants). For any configuration ω : V → R+, let ω(Tu) =∑
v∈V (Tu) ω(v) and let ω(T ) = ω(Tr). By definition, ω(Tu) ≥ ω(u) for every u ∈ V . Finally,

let cont(T, ω) = {u ∈ V :
∑
v∈Nd[u] ω(v) ≥ 1} (i.e., cont(T, ω) is the set of vertices u such

that the spy on u is controlled at distance d by the guards in the configuration ω).
Let us define the rounded configuration ωr : V 7→ N as, for every u ∈ V ,

ωr(u) =
⌊
ω(u) +

∑
v child of u

(ω(Tv)− bω(Tv)c)
⌋

Intuitively, the fractional part of guards that are in each of the subtrees rooted in the
children of u is “pushed” to u. Then u “keeps” only the integral part of the sum of what it
had plus what it received from its children.

We first prove that rounding a configuration using k guards provides an integral configur-
ation using bkc guards. A simple induction on n shows that:
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I Claim 1. For any configuration ω : V (T )→ R+, ωr(T ) = bω(T )c

Then, Claim 2 proves that every position of the spy that is controlled by the guards in
a configuration ω is also controlled by the guards in the configuration ωr. We prove that,
for every v ∈ V and ` ∈ N,

∑
x∈N`[v] ω

r(x) ≥ b
∑
x∈N`[v] ω(x)c. Hence, if u ∈ cont(T, ω), i.e.,

1 ≤
∑
x∈Nd[u] ω(x), then 1 ≤ b

∑
x∈Nd[u] ω(x)c ≤

∑
x∈Nd[u] ω

r(x) and so u ∈ cont(T, ωr).

I Claim 2. For any configuration ω : V (T )→ R+, cont(T, ω) ⊆ cont(T, ωr)

Claim 3 shows that the moves that were valid in σ still hold in the “rounded” strategy.
Its proof can be found in [9].

I Claim 3. Let ω1, ω2 : V (T ) 7→ R+ be two configurations such that the guards can go from
ω1 to ω2 in one step (there is feasible flow from ω1 to ω2). Then, the guards can go from ωr1
to ωr2 in one step (there is feasible integral flow from ωr1 to ωr2).

This concludes the proof of Theorem 2. J

The second step in this section is to show that there is always an optimal fractional
strategy which is spy-positional. For this purpose, we prove the following theorem.

I Theorem 3. For any tree T and for any s ≥ 2, d ≥ 0, fgn∗s,d(T ) = fgns,d(T ). More
precisely, any fractional winning strategy using a total amount of k ∈ R+ guards can be
transformed into a spy-positional winning strategy using k guards.

Proof. Let σ = {Cv}v∈V be any fractional winning strategy using a total amount of k ∈ R+

guards to control a spy with speed s ≥ 2, at distance d ≥ 0, and in an n-node tree T = (V,E).
Recall that, for any vertex v ∈ V , Cv is the set of possible configurations ω : V → R+ for the
guards when the spy is at v.

The proof consists in defining a spy-positional strategy σmin that is a winning strategy
using k guards. For any v ∈ V , we will define the function ωminv : V → R+ to be the (unique)
configuration of σmin when the spy is at v, i.e., σmin = {ωminv }v∈V . We first prove that
σmin is a strategy using k guards (Claims 4-5), then that the spy at v ∈ V is controlled at
distance d by the guards in the configuration ωminv (Claim 6). Finally, we prove that, for any
move of the spy from v to v′ ∈ V , the guards can move from ωminv to ωminv′ (Claim 7).

From now on, T is rooted in an arbitrary vertex r ∈ V .
Notations. For any weight function ω : V → R+, let ω+ : V → R+ be the cumulative

function of ω, defined by, for every u ∈ V , ω+(u) =
∑
v∈V (Tu) ω(v) = ω(Tu). Let v ∈ V

and Cv = {ω1, · · · , ωh} ∈ σ be the set of configurations of the guards, when the spy is
in v. Let αv : V → R+ be such that, for every u ∈ V , αv(u) = min1≤i≤h ω

+
i (u). Now,

ωminv is defined as the (unique) function such that αv is its cumulative function, i.e.,
αv = (ωminv )+. Formally, for every u ∈ V : ωminv (u) = αv(u)−

∑
x child of u αv(x).

Claim 4 proves that, for every v ∈ V , ωminv : V → R+ is a configuration.

I Claim 4. For every u ∈ V , ωminv (u) ≥ 0.

Proof of Claim 4. Let 1 ≤ i ≤ h be an integer such that αv(u) = min1≤j≤h ω
+
j (u) = ω+

i (u).
By definition of αv, for every x ∈ Children(u), αv(x) = min1≤j≤h ω

+
j (x) ≥ ω+

i (x). Hence,
ωminv (u) ≥ ω+

i (u)−
∑
x∈Children(u) ω

+
i (x) = ωi(u) ≥ 0. J

Claim 5 proves that, for every v ∈ V , the configuration ωminv uses k guards.

I Claim 5. For every v ∈ V ,
∑
u∈V ω

min
v (u) = k.
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Proof of Claim 5. For every 1 ≤ i ≤ h, ω+
i (r) = k. Hence, αv(r) = min1≤i≤h ω

+
i (r) = k.∑

u∈V ω
min
v (u) = (ωminv )+(r) = αv(r) = k (since αv is the cumulative function of ωminv ). J

Claim 6 proves that the guards in the configuration ωminv control a spy located at v.
Finally, Claim 7 shows that the moves that were valid in σ still hold for σmin (see [9]).

I Claim 6. For every v ∈ V ,
∑
u∈Nd[v] ω

min
v (u) ≥ 1.

I Claim 7. For every v ∈ V and v′ ∈ Ns[v], there is a feasible flow from ωminv to ωminv′ .

This concludes the proof of Theorem 3. J

I Theorem 4. Let s ≥ 2 and d ≥ 0 be two integers. There is a polynomial-time algorithm
that computes an integral winning strategy using gns,d(T ) guards to control a spy with speed s
at distance d in any tree T .

Proof. By Theorem 3, there exists an optimal (fractional) winning strategy that is spy-
positional. By Theorem 1, such a strategy can be computed in polynomial time. By
Theorem 2, an optimal integral winning strategy can be computed in polynomial time from
any optimal fractional winning strategy. J

5 Fractional Spy-game in Grid and Torus

In this section, we provide some progress toward the understanding of the Spy-game in
grids. Precisely, we provide the first fractional strategy using a sub-linear (in the number of
vertices) number of guards. It is clear that, for any n× n grid Gn×n, gns,d(Gn×n) = O(n2),
and it is known that fgns,d(Gn×n) is super-linear in n [8]. However, the exact order of
magnitude of gns,d(Gn×n) (and of fgns,d(Gn×n)) is not known. We prove that fgns,d(Gn×n)
is sub-quadratic in n.

Let n,m ≥ 2 be two integers. We consider the n×m toroidal grid TGn×m = (V,E), i.e.,
the graph with vertices vi,j = (i, j) and edges {(i, j), (i+ 1 mod n, j)} and {(i, j), (i, j + 1
mod m)}, for all 0 ≤ i < n and 0 ≤ j < m. The n×m grid Gn×m is obtained from TGn×m
by removing the edges {{(i,m− 1), (i, 0)}; {(n− 1, j), (0, j)} | ∀0 ≤ i < n, 0 ≤ j < m}.

First, we show that the number of fractional (resp., integral) guards required in the
grid and in the torus have the same order of magnitude. Informally, the proof consists in
considering a strategy S in a grid (resp., in a torus) and in applying in the torus (resp., in
the grid) four symmetric strategies, each one mimicking S (see [9]).

I Lemma 5. For every n,m ≥ 2, s ≥ 2, d ≥ 0, and for every f ∈ {gns,d, fgns,d, fgn∗s,d}:

f(TGn×m)/4 ≤ f(Gn×m) ≤ 4 · f(TGn×m).

The remaining part of this section is devoted to prove the following theorem.

I Theorem 6. There exists 0 < α ≤ log(3/2) ≈ 0.58 such that, for every s ≥ 2, d ≥ 0,

fgn∗s,d(TGn×n) = O(n2−α).

To prove Theorem 6, we make use of the Linear Program (LP) of Section 3. Recall that,
in a spy-positional strategy, the positions of the guards (configuration) only depend on the
position of the spy. In any vertex-transitive graph (so in TGn×n), there is actually a unique
configuration to be considered (where the spy is occupying the vertex (0, 0)). Therefore, the
LP of Section 3 can be reformulated as follows.
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We are looking for a function ω : {0, · · · , n− 1}2 → R+ such that ω(i, j) is the amount
of guards occupying the vertex (i, j) when the spy is occupying the vertex (0, 0). This
function must be defined such as to minimize the number of guards, i.e.,

∑
0≤i,j<n ω(i, j)

must be minimum, subject to the following constraints. The spy must be controlled, i.e.,∑
(i,j)∈Nd[(0,0)] ω(i, j) ≥ 1. Moreover, for any move of the spy from (0, 0) to (x, y) ∈

Ns[(0, 0)], there must be a feasible flow from the configuration (ω(i, j))(i,j)∈V (TGn×n) to
(ω(i − x, j − y))(i,j)∈V (TGn×n). Before going further, let us simplify the latter constraint.
Indeed, instead of considering every possible move of the spy in Ns[(0, 0)], we only consider
the extremal moves from (0, 0) to one of the vertices in {(0, s), (s, 0), (−s, 0), (0,−s)}, i.e.,
we weaken the spy by allowing it to move only “horizontally” or “vertically” at full speed.
We prove (see [9]) that it does not change the order of magnitude of an optimal solution.

The above LP, restricted to vertex-transitive graphs, is more efficient than the one
presented in Section 3 since there is only one configuration to be considered and less flow
constraints (and so, much less variables and constraints). In particular, it gives interesting
experimental results as presented in the conclusion. In what follows, we present and analyze
a function using a sub-quadratic (in n) number of guards that satisfies the above LP.

Precisely, let 0 < α < 1 and let d(v) (resp., d(i, j)) denote the distance between vertex v
(resp., (i, j)) and vertex (0, 0) in TGn×n.

I Definition 7 (Strategies ωα). Let us consider the spy-positional strategy ωα of the form
ωα(i, j) = B

(d(i,j)+1)α for every (i, j) ∈ V (TGn×n) and for some constant B defined later.

Note that ωα is symmetric, i.e., ωα(i, j) = ωα(n− i, j) = ωα(i, n− j mod n) = ωα(n−
i, n− j mod n). Therefore, by symmetry, we only need to check that there is a feasible flow
from the configuration (ωα(i, j))(i,j)∈V (TGn×n) to the one (ωα(i − s, j))(i,j)∈V (TGn×n), i.e.,
when the spy goes from (0, 0) to (s, 0).

Equivalently, the flow constraints can be defined as a flow problem in a transportation
bipartite auxiliary network H defined as follows (i.e., the constraints are satisfied if and only
if there is feasible flow in H). Let H = (V1 ∪V2, E(H)) be the graph such that V1 and V2 are
two copies of V (TGn×n). There is an arc from u ∈ V1 to v ∈ V2 if {u, v} ∈ E(TGn×n). Each
vertex (i, j) ∈ V1 has a supply ωα(i, j) and every vertex (i′, j′) ∈ V2 has a demand ωα(i−s, j).
By Hall’s Theorem [6], there is a feasible flow in H if and only if, for every A ⊆ V1, the total
supply in N [A] is at least the demand in A ⊆ V2, i.e., at least

∑
(i,j)∈A ωα(i− s, j).

To summarize, the flow constraints can be stated as:

∀A ⊆ V (TGn×n),
∑

(i,j)∈N [A]

ωα(i, j) ≥
∑

(i,j)∈A

ωα(i− s, j). (6)

We aim at deciding the range of α such that the function ωα satisfies constraint 6.
For this purpose, we first aim at finding a set Hs ⊆ V (TGn×n) such that κα(Hs) =∑

(i,j)∈N [Hs] ωα(i, j)−
∑

(i,j)∈Hs ωα(i− s, j) is minimum. For such a set Hs, if κα(Hs) ≥ 0,
it implies that ωα satisfies constraint 6.

Let Hs be the set of vertices (i, j) ∈ V (TGn×n) defined by:

Hs = {(i, j) | s/2 ≤ i ≤ (n+ s)/2 mod n, 0 ≤ j < n}.

The proof of the following technical lemma is available in [9].

I Lemma 8. Let α > 0 and s ≤ n/2. For every A ⊆ V (TGn×n), κα(A) ≥ κα(Hs).

Finally, we are ready to present a winning strategy in the n× n torus which proves Th. 6.
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density of guards on a plane 
representation of the 150*150  torus

Figure 1 Experimental results, s = 2 and d = 1. (Left) Density of guards on a plane representation
of the 150*150 torus in an optimal symmetrical Spy-positional configuration. (Right) Minimum
number of guards for symmetrical (red) and distance-invariant (blue) Spy-Positional strategies.

I Lemma 9. Let n, s ≥ 2, s ≤ n/2, d ≥ 0 and 0 < α ≤ log(3/2). There exists a
constant B > 0 (independent of n) such that the function ωα : V (TGn×n) → R+ where
ωα(v) = B

(d(v)+1)α for every v ∈ V (TGn×n) is a spy-positional winning fractional strategy
that uses O(n2−α) guards to control a spy with speed s at distance d in TGn×n.

Sketch of Proof. See [9] for full proof. To verify that ωα is a winning strategy, we need to
prove that it satisfies constraints 3 and 6. Let Bd be the set of vertices at distance at most
d from (0, 0) and let B = 1/

∑
v∈Bd

1
(d(v)+1)α . Constraint 3 is satisfied by the choice of B.

Some computations allow us to show that κα(Hs) ≥ 0 if 0 < α ≤ log(3/2) and therefore, by
Lemma 8, Constraint 6 is satisfied. Finally, a simple summation shows that the strategy
uses

∑
v∈V (TGn×n) ωα(v) = O(n2−α) guards. J

6 Conclusion

Concerning the Spy-game, the main open question is to determine the exact value of
gns,d(Gn×n) in any n × n grid Gn×n (or torus). A first step towards such a result would
be to prove that gns,d(Gn×n) = O(gns′,d′(Gn×n)) for any s, s′ ≥ 2 and d, d′ ≥ 0. To get
more intuition on optimal strategies for guards, we used Cplex to solve the LP described
in Section 3 with additional constraints of symmetry. The left drawing in Fig. 1 represents
the density of guards in the torus of side 150 (where the central vertex is the position
of the spy) for s = 2 and d = 1. It shows that optimal symmetric Spy-positional (SSP)
strategies may be much more intricate than the strategy ωα we studied. For instance, it is
not monotone when the distance to the spy’s position increases. On the right, we plotted
the number of guards used by optimal SSP (in red) which is much less than n2−log(3/2) for
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n ≤ 250 (it is difficult to extrapolate further intuition from such small values of n)3. Even
the optimal distance-invariant strategies (i.e., the density of guards is only a function of
the distance to the spy’s position) computed using the LP (plotted in blue) use much less
guards than n2−log(3/2) (we did not plot the function n2−log(3/2) for more readability, indeed,
502−log(3/2) > 500 and 2502−log(3/2) > 6600). In trees, it would be interesting to design a
combinatorial algorithm (i.e., not relying on the solution of a Linear Program) that computes
optimal strategies for controlling a spy with speed s at distance d.

More importantly, using the fractional framework to obtain new results in two-player
combinatorial games in graphs seems promising.
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Abstract
Finding communities in the form of cohesive subgraphs is a fundamental problem in network
analysis. In domains that model networks as undirected graphs, communities are generally
associated with dense subgraphs, and many community models have been proposed. Maximal
cliques are arguably the most widely studied among such models, with early works dating back to
the ’60s, and a continuous stream of research up to the present. In domains that model networks
as directed graphs, several approaches for community detection have been proposed, but there
seems to be no clear model of cohesive subgraph, i.e., of what a community should look like.
We extend the fundamental model of clique to directed graphs, adding the natural constraint of
strong connectivity within the clique. We characterize the problem by giving a tight bound for
the number of such cliques in a graph, and highlighting useful structural properties. We then
exploit these properties to produce the first algorithm with polynomial delay for enumerating
maximal strongly connected cliques.
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1 Introduction

The problem of community detection in graphs has been extensively studied. In undirected
graphs, dense subgraphs are often used to detect communities, with applications in areas
such as social network analysis [25, 28], biology [16], and more [13].

Several definitions of dense subgraph have been proposed to model communities [22, 28].
The earliest, and perhaps the most widely studied is that of the maximal clique: interest in
the problem of finding maximal cliques started several decades ago [1, 5, 21] and effort to
produce efficient algorithms can still be seen in recent works [8, 10, 12].
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As for directed graphs, there seems to be consensus in literature [18, 19, 23] on the fact
that ignoring edge directions and applying community detection techniques for undirected
graphs is not satisfactory. Several ad-hoc techniques for clustering and community discovery
have been proposed, mirroring the goals of algorithms for undirected graphs.

Awerbuch et al. [3] proposed a bounded-error scheme for aggregating vertices in directed
graphs as a hierarchical structure. Leicht et al. [19] adapted the concept of modularity
to account for edge directions, with the aim of extracting more meaningful clusters. The
LinkRank algorithm [18] aimed at partitioning a directed graph into communities using
random walks and the PageRank algorithm. More approaches can be found in [13].

Subgraph-based community models in undirected networks are thoroughly studied in
community detection (and network analysis in general), thus it would be natural to imagine
that similar models were object of study in the directed area. Surprisingly, this seems to
be a road less traveled.1 Charikar et al. [6] considered communities in directed graphs as
sets of vertices whose induced subgraphs have many edges, regardless of connectivity. The
well-known work by Kleinberg et al. [17] defined a community in the web graph with respect
to a topic as a special bipartite clique Ki,j , in which each of the i vertices has edges towards
each of the other j vertices, which represent authority pages on the topic. To the best of
our knowledge, there are no other community models for directed graphs that are widely
accepted and rigorous. This motivates our interest in combining the basic maximal clique
model with connectivity in directed graphs, that is strong connectivity. We call this model a
strongly connected clique (scq for short), and investigate both its properties and the problem
of efficiently finding all maximal scqs.

Generic enumeration techniques for maximal subgraphs have been proposed for strongly
accessible properties [2], i.e., such that every non-maximal subgraph A which verifies the
property is included in a subgraph B of size exactly |A|+ 1 that also verifies the property.
Cohen et al. [7] proposed an algorithmic framework for enumerating maximal subgraphs with
respect to subsets of strongly accessible properties, namely hereditary and connected-hereditary
graph properties. scqs, however, fit in neither of these classes.

Finding maximal subgraphs satisfying a non accessible property is a challenging task, as
their structure is unsystematic, and their enumeration requires new techniques and theoretical
insight. In this work, we show that scqs have a peculiar but rigorous structure, which
fits under a relaxed, more general notion of accessibility. We then exploit this structure
to design scq-enum, an efficient algorithm that enumerates scqs with delay bounded by
O(min(ω(G)d2∆2,m2)), where ω(G), d, ∆ and m are respectively the largest size of an scq,
degeneracy, maximum degree and number of edges of the input graph, and the delay is the
maximum time elapsed between two consecutive outputs. The value of scq-enum is two-fold:
on one hand, it constitutes a first step towards the characterization, and potentially towards
general enumeration techniques, for a wider range of problems that are not accessible. On the
other hand, scq-enum is also an efficient practical tool for discovering community structures
in directed networks. Finally, we complete the analysis of the model by giving a tight bound
for the number of maximal scqs in an n-vertex graph.

1 It should be mentioned that strongly connected components have been object of thorough study, however
these may be very large, sparse, and thus may not be significant indicators of community structures.
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Figure 1 A graph with 4 maximal scqs ({1,5,6},{2},{3,6,7},{4,8}) whose underlying undirected
graph has 3 maximal cliques ({1,2,5,6},{2,3,6,7},{4,7,8}).

2 Preliminaries

We refer to [11] for our graph terminology, and all (directed) graphs considered in this paper
are without multi-edges and loops (but may contain edges of opposite direction). The vertex
set of a graph G is denoted by V (G) and its edge set by E(G). A (directed) edge (or arc)
from x to y is denoted by (x, y) in which x is the tail and y the head; we will say that the
edge is from x and towards y. When E(G) is symmetric, i.e., (x, y) ∈ E(G) if and only if
(y, x) ∈ E(G), we call G undirected and denote each edge (x, y) of G by xy (equivalently yx).
For a graph G, we denote by u(G), called underlying (undirected) graph of G, the undirected
graph with vertex set V (G) and edge set {xy | (x, y) ∈ E(G) or (y, x) ∈ E(G)}. We use n
and m to denote the number of vertices and edges, respectively, in any graph.

For a vertex x in a graph G, NG(x) denotes its set of neighbours, which includes both
in-neighbours, i.e., {y ∈ V (G) | (y, x) ∈ E(G)}, and out-neighbours, i.e., {y ∈ V (G) | (x, y) ∈
E(G)}. |NG(x)| denotes the degree of x, and ∆(G) the maximum degree of a vertex in G.
Any vertex with degree |V (G)| − 1 is called a universal vertex. The subgraph of G induced
by X ⊆ V (G) is the graph G[X] = (X,E(G) ∩ (X ×X)). When the graph G is clear from
the context we will drop the subscripts from the notations NG(x) and similar ones, and also
write V (or similar notations E, ∆, . . . ) instead of V (G) (or E(G), ∆(G), . . . ).

The power-set of the set V is denoted by 2V . For two sets of vertices A and B we
denote by A \ B the set {x ∈ A | x /∈ B}. Given a total ordering on the vertices in V ,
represented by increasing labels v1, . . . , vn, the associated lexicographic ordering on 2V ,
denoted by ≤, is such that A ≤ B if A contains the smallest element not in common, i.e.,
min((A ∪B) \ (B ∩A)) ∈ A.

A clique of an undirected graph G is a subset C of V (G) that induces a complete graph,
and a maximal clique is a clique C of G such that C ∪{x} is not a clique for all x ∈ V (G)\C.
Let G = (V,E) be a (directed) graph. A strongly connected clique (or scq for short) is a set
C ⊆ V (G) such that G[C] is strongly connected, and u(G)[C] is a clique of u(G). We recall
that a directed graph (or subgraph) is strongly connected if and only if for each bipartition
(V1, V2) of V there is an edge from V2 to V1 (and symmetrically from V1 to V2) [9]. We
assume that a single vertex is an scq; we denote the maximum size of an scq in G by ω(G),
and the maximum size of a clique in u(G) by ω(u(G)). It is worth noticing that if G is
undirected, scqs and cliques coincide. An scq C is maximal if there is no scq C ′ such that
C ⊂ C ′. Given C ⊆ V , the set X ⊆ V \ C is addible to C if C ∪X is an scq, and Y ⊆ C is
removable from C if C \ Y is an scq. Furthermore, we say that a vertex x is a sink w.r.t. C
if there is no (x, y) ∈ E(G) with y ∈ C, and a source w.r.t. C if there is no (y, x) ∈ E(G)
with y ∈ C. A graph with its maximal scqs and cliques is shown in Figure 1.

A graph G is d-degenerate if each induced subgraph of G has a vertex of degree at most d.
The degeneracy of a graph G is the minimum d such that G is d-degenerate. A degeneracy
ordering of a graph G of degeneracy d is a sequence v1, v2, . . . , vn of its vertex set such
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that the degree of each vi in G[{vi, . . . , vn}] is at most d; we call N(vi) ∩ {vi+1, . . . , vn} the
forward neighbours of vi. We assume that any graph is given with a degeneracy ordering2.

3 Problem Characterization

Maximal scqs are a challenging problem as they do not satisfy the strong accessibility property.
However, we provide some related properties that will be the key of our enumeration algorithm.

3.1 Relaxed Accessibility of Strongly Connected Cliques
We recall that a set system (V, E ⊆ 2V ) is (weakly) accessible if for each X ∈ E , there is
x ∈ X such that X \ {x} ∈ E , and it is strongly accessible if in addition for each X,Y ∈ E
with Y ⊂ X, there is x ∈ X \ Y such that Y ∪ {x} ∈ E . In both cases it is assumed that
∅ ∈ E . The following two lemmas prove a relaxed notion of weak and strong accessibility.

I Lemma 1. Let C be a non-empty scq of G. There exists Z ⊆ C removable from C and
such that |Z| ≤ 2.

Proof. As a single vertex and the empty set are scqs, if |C| = 3 any Z ⊂ C with |Z| = 2
is removable, and if |C| = 1 or |C| = 2 any vertex in C is removable. Suppose then that
|C| ≥ 4 and let us prove that it has a removable vertex.

Let y be an arbitrary vertex of C and suppose that C ′ = C \ y is not strongly connected.
Then, there exists a bipartition (X,Y ) of C ′ such that E(G[C])∩(Y ×X) = ∅. As C = C ′∪{y}
is strongly connected, we must have w ∈ X and w′ ∈ Y such that (y, w), (w′, y) ∈ E(G[C]),
and y can reach every vertex in X, and also every vertex from Y can reach y. Since, |C| ≥ 4
and thus |C ′| ≥ 3, either |X| ≥ 2 or |Y | ≥ 2. Assume |X| ≥ 2: let z ∈ X be a leaf of a
traversal of X ∪ {y} starting from y (recall that y can reach all vertices in X). As z is a leaf,
if we remove it, y can still reach all vertices in X \ {z}. Furthermore, each vertex in X \ {z}
has an edge towards every vertex in Y , as C is an scq, and every vertex in Y can reach y.
Thus {y} ∪ (X \ {z}) ∪ Y = C \ {z} is an scq, i.e., Z = {z} is a removable set in C with
|Z| ≤ 2. If |X| = 1, then |Y | ≥ 2, and the proof is symmetrical by choosing z as a leaf vertex
in a traversal of G[Y ∪ {y}] with the edges reversed, starting from y. J

I Lemma 2. Given two scqs C and D such that D ⊂ C, there exists X ⊆ C \D addible to
D with |X| ≤ 2.

Proof. If |C \ D| ≤ 2 the lemma is trivially true, so assume |C \ D| ≥ 3. Any vertex in
C \D with edges both towards and from vertices in D is addible to D, so assume that no
such vertex exists. Hence, all the vertices in C \D are either sinks or sources w.r.t. D, that
we denote by K and R, respectively. Any set {k, r} with k ∈ K, r ∈ R and (k, r) ∈ E(G[C])
is an addible set to D. Assume then that no such set does exist: all the vertices in K

cannot reach R or D, and all the vertices in R cannot be reached from K or D. This is a
contradiction as C = D ∪K ∪R is strongly connected, thus an addible set {k, r} exists. J

And as any non-maximal scq is contained in a larger one, we obtain the following.

I Corollary 3. An scq C is maximal in G if and only if there is no X ⊆ V (G) \ C addible
to C with |X| ≤ 2.

2 Such an ordering can be computed in linear time by iteratively removing the smallest degree vertex.
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Thanks to Lemmas 1 and 2, we can say that the property of being an scq belongs to a
relaxed class of accessibility, since (i) for each X ∈ E , there is Z ⊆ X such that X \ Z ∈ E ,
and (ii) for each X,Y ∈ E with Y ⊆ X there is Z ∈ X \ Y such that Y ∪ Z ∈ E , where
the size of Z is at most 2. This is a generalization of the definitions of strong and weakly
accessible classes, which are obtained from the above by simply setting |Z| = 1.

3.2 Maximal Undirected and Strongly Connected Cliques
On top of the accessibility of the problem, we are interested in studying the relationship
between the scqs in G and the cliques in the underlying undirected graph u(G). Lemma 4
highlights the first basic, but important, relationship.

I Lemma 4. Given a directed (not necessarily strongly connected) clique D, the strongly
connected components of D are the maximal scqs in D.

Proof. Any scq C is contained in a strongly connected component of a directed clique by
definition, as C is strongly connected and u(G[C]) is a clique. Furthermore, an scq may not
contain vertices from different strongly connected components, as it would not be strongly
connected. Thus, a strongly connected component of D is a maximal scq in D. J

I Corollary 5. A directed clique D contains at most |D| maximal scqs, which are disjoint.

3.3 Bounding the Number of Maximal SCQs
For a graph G, let us denote by gc(G) and gc(u(G)) the number of maximal scqs in G and
maximal cliques in u(G) respectively, and for n, let us denote by g(n) the maximum number
of maximal scqs in an n-vertex graph. From Corollary 5, any maximal scq in a directed
graph G is contained in a maximal clique of u(G), i.e., gc(G) ≤ ω(u(G)) · gc(u(G)). But the
number of scqs in a graph can be much smaller than the number of cliques of its underlying
undirected graph: For instance, an n-vertex DAG has exactly n maximal scqs of size 1 while
the number of maximal cliques of its underlying undirected graph can be arbitrarily large.
As the maximum number of maximal cliques in an undirected n-vertex graph is 3 n

3 [21], we
can immediately conclude that 3 n

3 ≤ g(n) ≤ n× 3 n
3 . We can adapt the proof from [21] to

show that g(n) is indeed 3 n
3 .

Let G be an n-vertex graph, and x, y two vertices of G, and let G(x; y) be defined
similarly to [21], as the graph obtained by removing all edges incident to x, and replacing
them so that the neighbourhood of x is identical to that of y, i.e., (x, v) ∈ E(G(x; y)) iff
(y, v) ∈ E(G) and (v, x) ∈ E(G(x; y)) iff (v, y) ∈ E(G). Let χ(x) be the number of maximal
scqs containing x, let α(x) be the number of new maximal scqs created by removing x (i.e.,
subsets of scqs containing x which become now maximal), and β(x) the number of scqs
which are not maximal anymore after removing x3. It is straightforward to see that if x and
y are not adjacent, the number of scqs in G(x; y) is given by gc(G) + χ(y)− χ(x) + α(x).
Indeed all scqs containing x have been removed, and replaced by α(x) new maximal cliques;
furthermore, for each of the χ(y) maximal scqs containing y in G, we now have a new one
containing x instead of y. If x and y are adjacent, any maximal scq containing y in G(x; y)
will be simply incremented with x; as a result, the number of maximal scqs in G(x; y) will

3 Note that in the undirected case α(x) is bounded by χ(x), but in the directed case α(x) may be larger
than χ(x) by up to an n factor.
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be only gc(G)− χ(x) + α(x). We are now ready to characterize the graph with the highest
number of maximal scqs.

I Lemma 6. Let G be a graph on n > 4 vertices with gc(G) = g(n). There exists G∗, an
n-vertex graph such that gc(G∗) = g(n) and u(G∗) is a complete multipartite graph with no
universal vertices.

Proof. If u(G) is a clique, it has at most n maximal scqs by Lemma 4, so we can replace
G with any DAG and still have n maximal scqs. Thus we can assume that u(G) is not a
clique, and has at least 2 non-universal vertices (i.e., not connected to every other vertex).

For two non-adjacent vertices x and y, we know that G(x; y) and G(y;x) cannot have
more scqs than G. As α(x) ≥ 0, we have χ(x) = χ(y) for any pair of non-adjacent vertices.
This implies α(x) = 0 for every non-universal vertex x. Thus, if x and y are non-adjacent,
gc(G(x; y)) = gc(G) = g(n). From G, we can obtain the graph G∗ as follows: for each vertex
x, and for each vertex y non-adjacent to x, iteratively replace G with G(y;x).

Observe from the discussion above that gc(G∗) = gc(G) = g(n). Also, u(G∗) is a complete
multipartite graph. Indeed, as each pair of non-adjacent vertices has the same neighbours,
we can partition the graph into independent sets such that two vertices in two different
independent sets are adjacent. Again, if u(G∗) is a clique (this may be the case for n = 4),
we replace G∗ with any DAG without compromising the number of maximal scqs and thus
obtaining at least 2 non-universal vertices.

Assume G∗ has a universal vertex v. Removing v can decrease the number of maximal
scqs by at most 1. In fact, any scq C that is non maximal after removing v, is included in a
larger scq C ′, to which v can be added as it is in the same strongly connected component as
C (which is a subset of C ′) and it is connected to all vertices of C ′. Thus the only maximal
scq that can may be lost is the one made by only v, if it is a maximal scq.

Let A be the set of universal vertices of G∗. If |A| > 1 we can simply remove the edges
between two vertices of A and replace each edge (a, b), for a ∈ A and b ∈ V (G∗) \A, by (b, a).
If |A| = 1, i.e., A = {v} for some v, let us take any independent set I in G∗ of size at least 2
(which exists because v is the only universal vertex), and then remove all the edges between
v and vertices in I, and replace any edge (v, b), for b ∈ V (G∗) \ I ∪{v}, by (b, v). As a sink is
a maximal scq, we can conclude from the paragraph above that the number of scqs of the
obtained graph is still equal to gc(G) = g(n). Since, the underlying undirected graph of this
obtained graph is a complete multipartite graph with no universal vertices, we are done. J

Thanks to Lemma 6, we can link the number of maximal scqs in G∗ to the number of
maximal cliques in u(G∗). This relation will enable us to give a tight bound for g(n).

I Lemma 7. Let G = (V,E) be a graph such that u(G) is a complete multipartite graph with
no universal vertices. Then gc(G) ≤ gc(u(G)).

Proof. Let S = {S1 . . . Sk} be the set of maximal independent sets of u(G), which forms a
k-partition of V . Let s(v) be the size of the unique maximal independent set Si containing
v; as G and u(G) have no universal vertices, s(v) ≥ 2. By definition each maximal scq in
G is a subset of some maximal clique of u(G), and recall that each maximal clique of u(G)
(a complete multipartite graph) is obtained by selecting exactly one vertex from each of its
maximal independent sets.

Let the occurrence mc(C) of an scq C be the number of maximal cliques of u(G) that
contain C, and let the weight w(C) of C be 1

mc(C) , or 0 if C = ∅. For a maximal clique Q
of u(G), let the weight w(Q) of Q be instead

∑
X a maximal scq of G[Q] w(X). The sum of the

weights of all maximal cliques in u(G) will be at least equal to the number of maximal scqs in
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G: any maximal scq C will be considered mc(C) times, each time adding w(C) = 1/mc(C),
for a total contribution of 1. This sum may be larger, as it can include subsets of maximal
cliques which are not maximal scqs in G, but cannot be smaller.

Let C be a maximal scq and let T ⊆ S be the maximal independent sets that do not
contain any vertex of C. Then, the maximal cliques that contain C are all the ones obtained
by adding a single vertex from each independent set in T , thus mc(C) =

∏
Si∈T |Si|. This

means that adding a vertex v to C reduces mc(C) and increases w(C) by a factor s(v).
Let us now consider the highest possible weight of a maximal clique Q in u(G). Note

that, by Corollary 5, the maximal scqs within Q are at most |Q| and do not overlap. If
Q contains a single maximal scq X, we have |X| = |Q|, mc(X) = 1 and w(X) = 1, thus
w(Q) = 1. Otherwise, let X and Y be two maximal scqs in Q, X being the one with highest
weight. Note that w(X) + w(Y ) ≤ 2w(X). Assume that we could remove a vertex v from
Y and add it to X, obtaining X ′ and Y ′: we have w(X ′) = s(v) · w(X), and as s(v) ≥ 2,
w(X ′)+w(Y ′) = w(X) ·s(v)+w(Y ′) ≥ 2w(X) ≥ w(X)+w(Y ). This hypothetical operation
can increase the total weight of Q but not decrease it, i.e., for any distribution of maximal
scqs in Q, a different that has the size of the largest scq increased by one, and that of
another one reduced by one, has greater or equal weight. We can repeat this hypothetical
step, iteratively enlarging X until we will finally consider a distribution with a single maximal
scq X of size |X| = |Q|. As w(Q) in this case is at least as large as that obtained with any
other distribution of maximal scqs in Q, and as shown above w(Q) = 1 in this case, we have
w(Q) is always at most 1. Therefore, the number of maximal scqs in G, i.e., the sum of all
weights of the maximal cliques in u(G) cannot be larger than gc(u(G)). J

It is known that the undirected graph with the highest number of maximal cliques is the
Moon-Moser graph [21], which is a complete multipartite graph in which as many maximal
independent sets as possible have size 3, while the remaining ones may only have size 2.4
Clearly, such a graph does not have universal vertices, and thus is compatible with the
definition of G∗. We can thus say that the underlying graph u(G) of the graph G∗ with the
highest number of maximal scqs will be a Moon-Moser graph. Furthermore, by Lemma 7
we get the upper bound g(n) = gc(G∗) ≤ gc(u(G∗)).

It is now easy to prove that this is a tight bound: when G is symmetric (i.e., (x, y) ∈ E(G)
iff (y, x) ∈ E(G)) then the connectivity in G is the same as in u(G) and each maximal clique
in u(G) will be a maximal scq in G. Thus we have g(n) = gc(G∗) = gc(u(G∗)). By
combining this lower bound with Lemma 7 and the Moon-Moser bound [21], we can conclude
the following (the case 2 ≤ n ≤ 4, not covered by Lemma 6, is omitted for space reasons, but
can be trivially verified).

I Theorem 8. For every integer n > 1,

g(n) =


3 n

3 if n ≡ 0 (mod 3),
4
3 · 3

bn
3 c if n ≡ 1 (mod 3)

2 · 3bn
3 c if n ≡ 2 (mod 3).

Finally, the same result can be proven for oriented graphs, that are directed graphs where
each edge may only have one direction, as long as n is not 5 or 6 (this is omitted for space
reasons but also involves suitable orientations of Moon-Moser graphs).

4 Equivalently, the remaining ones may have size 4. However it is not necessary to consider this case.
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4 Listing Maximal SCQs

While the number of maximal scqs in a graph G is at most n times the number of maximal
cliques of its underlying (undirected) graph u(G), and each maximal scq of G is contained
in some maximal clique of u(G), one cannot efficiently use output-polynomial algorithms for
listing maximal cliques in undirected graphs in order to list the maximal scqs of a graph.
For example, any orientation of a Moon-Moser n-vertex graph into a DAG has exactly n
maximal scqs, while its underlying graph has Θ(3 n

3 ) maximal cliques. This strategy would
hence take exponential running time to find just a linear number of maximal scqs.

In this section we design an algorithm that enumerates all maximal scqs of a graph
G = (V,E) with polynomial delay.

Intuitively, given a maximal scq (called sometimes a solution) S, our algorithm uses the
vertices in V \ S to find other solutions similar to S; we refer to this process as visiting S.
By visiting these newly found solutions the algorithm eventually finds all solutions in G.

4.1 Algorithm Description

The algorithm, which we call scq-enum, is described in Algorithm 1. scq-enum uses a
result set, which will store all solutions found so far. The primitive contains(S,result)
is a subroutine that returns true if S ∈ result, i.e., S has already been found and does
not need to be visited again, and the primitive add(S,result) adds S to the result set.
Finally, scq-enum exploits the function complete(X,A), which will iteratively add the
lexicographically minimum addible vertex or pair of vertices from A to a scq X, until X is
maximal w.r.t. A, and return it. For brevity, complete(X) represents complete(X,V ).
Thanks to the accessibility proven in Lemma 2 and Corollary 3, complete(X) will surely
return a maximal scq. We recall that we assume the graph given with the degeneracy
ordering, and we consider that ordering and its associated lexicographic one in the algorithm
(see Section 2). The primitive min-lex(T ) finds the minimum in the collection T ⊆ 2V .

scq-enum is in the same spirit as the one for listing the maximal cliques in an undirected
graph [10]. It does a DFS traversal of the graph of solutions where (S, S′) is an edge if S′
can be obtained from S by adding a new vertex (or a pair of vertices), removing its (their)
non-neighbours and finally completing the obtained set into a maximal scq. Let us describe
the algorithm.

scq-enum consists in calling the function enum(S), with S a maximal scq. In turn,
enum(S) will find all solutions that have a non-empty overlap with S. The function will
consider all vertices x ∈ V \ S, and for each of them will try to generate a new maximal scq
containing x and some vertices of S: by calling X ← complete({x}, I) the algorithm will
get the scq containing x, maximal w.r.t. the induced subgraph G[S ∪ {x}]; note that there
is only one such scq, as G[S ∪ {x}] is a clique in u(G[S ∪ {x}]) (see Lemma 4). Then X is
extended with complete(X) so that it is maximal w.r.t. G, i.e., a solution. Then, in the
second for loop, the same process is repeated for pairs of vertices rather than single vertices.
Every time a solution S′ is found, we recur in enum(S′), which will visit S′, adding it to the
result set and finding more solutions starting from S′. If S′ is already in the result set,
however, it means it was already visited and all the relative solutions have been found, thus
we can ignore it and backtrack.
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Algorithm 1: scq-enum
Input :A graph G=(V,E)
Output :The set result containing all maximal scqs in G
Global : result set, initially empty

1 for v ∈ V do
2 enum(complete({v}))
3 Function enum(S)
4 if contains(S,result) then return
5 add(S,result)
6 foreach x ∈ V \ S do
7 I ← (S ∩N(x) ∪ {x})
8 X ← complete({x}, I)
9 if X = {x} then continue

10 enum(complete(X))
11 foreach {y, z} ⊆ V \ S do
12 I ← (S ∩N(y) ∩N(z) ∪ {y, z})
13 X ← complete({y, z}, I)
14 if X = {y, z} then continue
15 enum(complete(X))

4.2 Correctness
We will hereby prove the correctness of scq-enum. The principle of finding maximal solutions
from other solutions is used by many enumeration algorithms, but this has so far been
applied exclusively to properties with strong accessibility [2], such as hereditary [10, 14, 26],
or connected-hereditary [4, 7].

Thanks to the results obtained in Section 3, however, we will be able to prove the
correctness of our technique, despite scqs not being strongly (or even weakly) accessible,
similar to [7]. In the following, given two scqs S and T , let S ∩scq T be the largest scq in
S ∩ T ; we recall that this may be a single vertex, which is indeed an scq.

Proving that no solution is found twice by scq-enum is trivial, as duplication is removed
by the result set, and since every output is a maximal scq since it is the result of a
complete call, we only need to prove that every maximal scq is found:

I Theorem 9. scq-enum finds all and only maximal scqs exactly once.

Proof. Let T be any solution not yet found by the algorithm. Let S be the solution found
by scq-enum which maximizes |S ∩scq T |. Note that |S ∩scq T | ≥ 1: for any v ∈ T , the
algorithm will visit C = complete({v}), a maximal scq containing v, so |C ∩scq T | ≥ 1.
Now let Z = S ∩scq T . We have Z 6= T , otherwise T would not be maximal, and by Lemma 2
there exists Y ⊆ T \ Z with 1 ≤ |Y | ≤ 2 s.t. Z ∪ Y is an scq. Note that Y is not contained
in S, as otherwise Z ∪ Y would be a larger scq in S ∩scq T . Three cases are possible: (i)
Y = {x}, then x ∈ V \ S and x is considered in the first for loop. (ii) Y = {y, z} ⊆ V \ S,
then {y, z} is considered in the second for loop. (iii) |Y | = {y, z}, with y ∈ V \ S and z ∈ S,
then y is considered in the first for loop and we will have z ∈ S ∩N(y) ∪ {y}.

In all these cases, the scq X (maximal in I) that is found, will contain Z∪Y by Lemma 4.
When we execute complete(X), we will either find T , or a maximal scq S′ that contains
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Algorithm 2: complete(X,A)
Input :X, an scq, and A ⊆ V , a set of vertices
Output :X ′ ⊇ X, an scq maximal with respect to A

1 Function complete(X,A)
2 while EXT ← min-extension(X,A) 6= null do
3 X ← X ∪ EXT ;
4 return X;
5 Function min-extension(X,A)
6 ADD ← {Y ⊆ A \X : 1 ≤ |Y | ≤ 2 and X ∪ Y is an scq};
7 return min-lex(ADD)

Z ∪ Y . As |Z ∪ Y | > |Z|, we have |S′ ∩scq T | > |S ∩scq T |. By induction, when visiting S′
we will either find T , or S′′ such that |S′′ ∩scq T | > |S′ ∩scq T |, until eventually, in at most
|T | such steps, scq-enum will find T . J

5 Complexity Analysis

We now analyze the complexity of scq-enum, i.e., Algorithm 1, showing that it lists maximal
scqs with delay O(min(ω(G)d2∆2,m2)). Recall that m, n, ∆, d and ω(G) are respectively
the number of edges, number of vertices, maximum vertex degree, degeneracy and maximum
size of an scq in G, and that the vertices are v1, . . . , vn are given in a degeneracy ordering.
Firstly, we bound the complexity of the function complete:

I Lemma 10. complete(X,A) (Algorithm 2) can be executed in time O(min(d∆,m)).

Proof. Consider the vertices in A adjacent to all vertices of X, i.e.
⋂

x∈X(N(x)) ∩A, and
partition them in three sets, each stored in increasing lexicographical order: sink contains
all the sinks w.r.t. X; source the sources w.r.t. X, and both all vertices that have at least
one edge from and one towards some vertex in X (i.e., neither sinks nor sources w.r.t. to X).
The computing time is the sum of the degrees of vertices in X, i.e. min(ω(G)∆,m) and the
total size |sink|+ |source|+ |both| of the sets is bounded by ∆.

As each step adds either one or two vertices to X, and |X| is bounded by ω(G), we
will have at most ω(G) steps. Whenever we add a vertex a to X, we can update the sink,
source, both sets by only looking at N(a): any non neighbour of a is excluded from these
sets, any vertex in sink with an edge towards a, or vertex in source with an edge from a is
moved in both. This takes O(|N(a)|) time, thus O(min(ω(G)∆,m)) time for all updates.

If the both set is not empty, we can find the (lexicographically) smallest x in O(1) time.
Then, we need to find the smallest pair a ∈ sink, b ∈ source s.t. there is an edge from a

to b, if it exists. We do this by scanning vertices in sink ∪ source in order, and for each
scanning its forward neighbours, still in order; we stop at the first pair that verifies the
property. We never need to consider the same pair twice, as the condition (edge from a to b)
will stay false (although the vertices might be later moved to both and still enter X), thus
the total cost will be O(min(d∆,m)) for all steps. Finally, the smallest among x and {a, b}
corresponds to min-extension(X,A); we add it to X and update the sink, source, both
sets. The total cost is given by O(min(ω(G)∆,m) + min(d∆,m)) = O(min(d∆,m)) J

Finally, we are ready to give the time complexity of scq-enum:
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I Lemma 11. scq-enum (Algorithm 1) has O(min(ω(G)d2∆2,m2)) time delay.

Proof. Let us first focus on the amortized cost per solution, i.e., the cost of an execution
of enum(S) without considering children recursive calls (which lead to other solutions). To
compute contains(S,result) and add(S,result) we store result as a trie, whose depth
will be O(ω(G)), and degree will be bounded by ∆ as scqs are made of adjacent vertices.5
Checking the existence and adding a solution to this trie takes time O(min(ω(G) log(∆),m)).

In the for loops we only need to consider x and {y, z} s.t. I 6= {x} and I 6= {y, z}, thus
only vertices with a neighbour in S: for x we have |S|∆ ≤ min(ω(G)∆, n) choices; as for
{y, z} we have min(ω(G)∆, n) choices for y, and for each y up to d choices for z (we only
need to consider each pair once, e.g. when y < z, so we only scan the forward neighbours
of y), for a total of min(ω(G)d∆,m) choices. The cost of each loop is given by O(∆) for
computing I, and O(min(d∆,m)) to compute X and complete(X). If the recursive call
enum(complete(X)) will generate a new solution, the cost will be attributed to the child
solution; otherwise the recursive call will only perform the contains(S,result) call.

The total cost of an iteration of enum(S) is thus the cost of the contains/add proced-
ures, plus the number of execution of the loops times the cost of a loop iteration, i.e.,
O(min(ω(G) log(∆),m) + min(ω(G)d∆,m) · (min(ω(G) log(∆),m) + min(d∆,m))). Thus,
the cost per solution is bounded by both O(ω(G)d2∆2) and O(m2).

Finally, as each recursive call outputs a solution, we can exploit the alternative output
method by Uno [27], as done in [20, 10]: we output a solution at the beginning of a recursive
call when the depth of the recursion tree is even, and at the end when it is odd; this way the
delay of the algorithm will be equal to the amortized cost per solution. J

Calling α the number of solutions, this gives us a total time of α ·O(min(ω(G)d2∆2,m2)).
The space complexity is dominated by the size of the result set, that is O(α · ω(G)) as
it will contain α solutions of size bounded by ω(G) ≤ d + 1 ≤ n. While α is potentially
exponential, we remark that scq-enum can still be efficiently applied to analyze real world
networks: recalling Corollary 5 and the discussion in Section 3.3, we have that α will only be
up to a factor ω(u(G)) ≤ n larger than the number of maximal (undirected) cliques in u(G).
It is generally agreed upon that real-world networks are sparse [12, 15], and as such contain
an extremely small number of maximal cliques compared to the theoretical maximum [24].
Furthermore, the number of maximal cliques is actually polynomial when the degeneracy (or
arboricity) is bounded [12], which is the case in many sparse networks.

6 Conclusions and Future Work

In this work we proposed a model for communities in directed graphs, that of maximal
strongly connected cliques. We analyzed this model, giving tight bounds on the number of
such cliques in an n-vertex graph and proving some accessibility properties. We exploited
these properties to produce scq-enum, an algorithm that lists maximal strongly connected
cliques with polynomial delay, i.e., O(min(ω(G)d2∆2,m2)), that can be a valid tool for
analyzing the community structures of directed real-world networks.

Future work is focused in two directions: the first is using the proposed algorithm to
discover new community structures in directed networks, while the second is to further
investigate the generalized definition of accessibility given by the existence of an addible (or
removable) set of elements of bounded size to each non-maximal solution.

5 The root of the trie has degree up to n; we store this as a vector of size n, accessible in O(1) time.
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Abstract
A square-contact representation of a planar graph G = (V,E) maps vertices in V to interior-
disjoint axis-aligned squares in the plane and edges in E to adjacencies between the sides of the
corresponding squares. In this paper, we study proper square-contact representations of planar
graphs, in which any two squares are either disjoint or share infinitely many points.

We characterize the partial 2-trees and the triconnected cycle-trees allowing for such represen-
tations. For partial 2-trees our characterization uses a simple forbidden subgraph whose structure
forces a separating triangle in any embedding. For the triconnected cycle-trees, a subclass of the
triconnected simply-nested graphs, we use a new structural decomposition for the graphs in this
family, which may be of independent interest. Finally, we study square-contact representations
of general triconnected simply-nested graphs with respect to their outerplanarity index.
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1 Introduction

Contact representations of graphs, in which the vertices of a graph are represented by non-
overlapping or non-crossing geometric objects of a specific type, and edges are represented
by tangencies or other contacts between these objects, form an important line of research
in graph drawing and geometric graph theory. For instance, the Koebe–Andreev–Thurston
circle packing theorem states that every planar graph is a contact graph of circles [13]. Other
types of contact representations that have been studied include contacts of unit circles [2, 9],
line segments [10], circular arcs [1], triangles [8], L-shaped polylines [3], and cubes [7].
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Schramm’s monster packing theorem [11] implies that every planar graph can be rep-
resented by the tangencies of translated and scaled copies of any smooth convex body in
the plane. However, it is more difficult to use this theorem for non-smooth shapes, such as
polygons: when k bodies can meet at a point, the monster theorem may pack them in a
degenerate way in which separating k-cycles, and their interiors, shrink to a single point.

In this paper we study one of the simplest cases of contact representations that cannot be
adequately handled using the monster theorem: contact systems of axis-parallel squares. We
distinguish between proper and improper contacts: a proper contact representation disallows
squares that meet only at their corners, while an improper or weak contact representation
allows corner-corner contacts of squares. These weak contacts may represent edges of the
graph, but they are also allowed between squares that should be non-adjacent. The weak
contact representations by squares were shown by Schramm [12] to include all of the proper
induced subgraphs of maximal planar graphs that have no separating 3-cycles or 4-cycles.
However, a characterization of the graphs having proper contact representations by squares
remains elusive.

There is a simple necessary condition for the existence of a proper contact representation
by squares. No three properly-touching squares can surround a nonzero-area region of the
plane. Therefore, if every embedding of a planar graph G with four or more vertices has
a separating triangle or a triangle as the outer face, then G cannot have a proper contact
representation. Our main results show that this necessary condition is also sufficient for
two notable families of planar graphs: partial 2-trees (including series-parallel graphs) and
triconnected cycle-trees (including the Halin graphs). However, we show that this necessary
condition is not sufficient for the existence of weak and proper square-contact representations
of 3-outerplanar and 2-outerplanar triconnected simply-nested graphs.

Due to space limits, full versions of omitted or sketched proofs are provided in [5].

2 Preliminaries

For standard graph theory concepts and definitions related to planar graphs, their embeddings,
and connectivity we refer the reader, e.g., to [6] and to [5].

The graphs considered in this paper are planar, finite, simple, and connected. We denote
the vertex set V and the edge set E of a graphG = (V,E) by V (G) and E(G), respectively. Let
H and G be two graphs. We say that G is H-free if G does not contain a subgraph isomorphic
to H. The complete k-partite graph K|V1|,...,|Vk| is the graph (V =

⋃k
i=1 Vi, E =

⋃
i<j Vi×Vj).

Series-parallel graphs and partial 2-trees. A two-terminal series-parallel graph G with
source s and target t can be recursively defined as follows:
(i) Edge st is a two-terminal series-parallel graph. Let G1, . . . , Gk be two-terminal series-

parallel graphs and let si and ti be the source and the target of Gi, respectively, with
1 ≤ i ≤ k.

(ii) The series composition of G1, . . . , Gk obtained by identifying si with ti+1, for i =
1, . . . , k − 1, is a two-terminal series-parallel graph with source sk and target t1; and

(iii) the parallel composition of G1, . . . , Gk obtained by identifying si with s1 and ti with t1,
for i = 2, . . . , k, is a two-terminal series-parallel graph with source s1 and target t1.
A series-parallel graph is either a single edge or a two-terminal series-parallel graph with

the addition of an edge, called reference edge joining s and t. Clearly, series-parallel graphs
are 2-connected. A series-parallel graph G with reference edge e is naturally associated with
a rooted tree T , called the SPQ-tree of G. Each internal node of T , with the exception of the
one associated with e, corresponds to a two-terminal series-parallel graph. Nodes of T are of
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three types: S-, P-, and Q-nodes. Further, tree T is rooted to the Q-node corresponding to e.
Let µ be a node of T with terminals s and t and children µ1, . . . , µk, if any. Node µ has

an associated multigraph, called the skeleton of µ and denoted by skelµ, containing a virtual
edge ei = siti, for each child µi of µ. Skeleton skelµ shows how the children of µ, represented
by “virtual edges”, are arranged into µ. The skeleton skelµ of µ is:
(i) edge st, if µ is a leaf Q-node,
(ii) the multi-edge obtained by identifying the source si and the target ti of each virtual

edge ei, for i = 1, . . . , k, with a new source s and and new target t, respectively, or
(iii) the path e1, . . . , ek, where virtual edge ei and ei+1 share vertex si = ti+1, with 1 ≤ i < k.
If µ is an S-node, then we denote by `(µ) the length of skelµ, i.e., `(µ) = k.

For each virtual edge ei of skelµ, recursively replace ei with the skeleton skelµi of its
corresponding child µi. The two-terminal series-parallel subgraph of G that is obtained in
this way is the pertinent graph of µ and is denoted by Gµ. We have that Gµ is:
(i) edge st, if µ is a Q-node,
(ii) the series composition of the two-terminal series-parallel graphs Gµ1 , . . . , Gµk

, if µ is an
S-node, and

(iii) the parallel composition of the two-terminal series-parallel graphs Gµ1 , . . . , Gµk
, if µ is

a P-node.
We denote by G−µ the subgraph of Gµ obtained by removing from it terminals s and t together
with their incident edges.

A 2-tree is a graph that can be obtained from an edge by repeatedly adding a new vertex
connected to two adjacent vertices. Every 2-tree is planar and 2-connected. A partial 2-tree
is a subgraph of a 2-tree. Equivalently, partial 2-tree can be defined as the K4-minor-free
graphs. In particular, the series-parallel graphs are exactly the 2-connected partial 2-trees.

Simply-nested graphs. Let G be an embedded planar graph and let G1, . . . , Gk be the
sequence of embedded planar graphs such that G1 = G, graph Gi+1 is obtained from Gi
be removing all the vertices incident to the outer face of Gi together with their incident
edges, and Gk is outerplanar. We say that the embedding of G is k-outerplanar. A graph
is k-outerplanar if it admits a k-outerplanar embedding. The set Vi of vertices incident to
the outer face of Gi is the i-th level of G. A k-outerplanar graph is simply-nested [4] if, for
i = 1, . . . , k − 1, graphs G[Vi] are chordless cycles and G[Vk] is either a cycle or a tree.

We define cycle-trees and cycle-cycles the 2-outerplanar simply-nested graphs whose
internal level is a tree and a cycle, respectively. The 2-outerplanar 3-connected simply-
nested graphs have a nice geometric interpretation. Similarly to the Halin graphs, which
are the graphs of polyhedra containing a face that share an edge with all other faces, 3-
connected cycle-trees are the graphs of polyhedra containing a face touched by all other faces.
Analogously, the 3-connected cycle-cycle graphs with no chords on the inner cycle are the
graphs of polyhedra in which there exist two disjoint faces that are both touched by all other
faces.

Square-contact representations. Let G = (V,E) be a planar graph. A square-contact
representation Γ of G maps each vertex v ∈ V to an axis-aligned square SΓ(v) in the plane,
such that, for any two vertices u, v ∈ V , squares SΓ(u) and SΓ(v) are interior-disjoint, and
the sides of SΓ(u) and SΓ(v) touch if and only if uv ∈ E. A square-contact representation of
G is proper if any two touching squares share infinitely many points, i.e., they cannot share
only a corner point, and non-proper, otherwise. When the square-contact representation is
clear from the context, we may choose to drop the Γ subscript and just use S(v) to refer to
the square for vertex v. In the remainder of the paper, we only consider proper square-contact
representations and refer to such representations simply as square-contact representations.
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Geometric transformations. Let G be planar graph and let Γ be a square-contact repre-
sentation of G. Also, let p be any point in Γ. We define the ↗-, ↖-, ↙-, and ↘-quadrant
of p in Γ as the first, second, third, and fourth quadrant around p, respectively. Suppose
that the half-lines delimiting the ↙-quadrant of p in Γ do not intersect the interior of any
square in Γ. Also, let Γ′ be the part of Γ lying in the ↙-quadrant of p. Then, a ↙

p-scaling of Γ
by a factor α > 0 is a square-contact representation Γ∗ defined as follows; see, e.g., Fig. 3.
Initialize Γ∗ = Γ and remove from Γ∗ the drawing of the squares contained in the interior
of Γ′. Then, insert into Γ∗ a copy Γ′′ of Γ′ scaled by α such that the upper-right corner
of Γ′′ coincides with p. Clearly, depending on the scale factor α, drawing Γ∗ may or may
not be a square-contact representation of G (as adjacencies may be lost or gained). In the
following, we refer to the case in which α > 1 simply as a ↙

p-scaling of Γ and to the case
in which 0 < α < 1 as a negative ↙

p-scaling of Γ. The definitions of ◦p-scaling and negative
◦
p-scaling, with ◦ ∈ {↖,↘,↗}, are analogous. Finally, let v be a vertex of G and let x, y, z,
and w be the upper-left, lower-left, lower-right, and upper-left corner points of S(v) in Γ. A
↖

v-scaling, ↙

v-scaling, ↘

v-scaling, ↗

v-scaling of Γ is a ↖

x-scaling, ↙

y-scaling, ↘

z-scaling, ↗

w-scaling of
Γ, respectively.

3 Partial 2-Trees

In this section, we study square-contact representations of partial 2-trees and give the
following simple characterization for graphs in this family admitting such representations.

I Theorem 1. Let G be a partial 2-tree. Then, the following statements are equivalent:
(i) G is K1,1,3-free,
(ii) G admits an embedding without separating triangles, and
(iii) G admits a square-contact representation.

In order to prove Theorem 1, we first show that, without loss of generality, we can restrict
our attention to the biconnected partial 2-trees, i.e., the series-parallel graphs.

I Lemma 1. Let G be a K1,1,3-free partial 2-tree. Then, there exists a K1,1,3-free series-
parallel graph G∗ such that G ⊂ G∗ and G admits a square-contact representation if G∗ does.

Sketch. Let β(H) denote the number of blocks, i.e., the maximal biconnected components,
of a graph H. Adding to G a new vertex connected to two vertices in V (G) incident to the
same cut-vertex of G, belonging to different blocks, and sharing a common face yields a
graph G′ such that β(G′) = β(G)− 1. It is easy to see that G′ is K1,1,3-free and that G′ does
not contain K4 as a minor. Hence, repeating such an augmentation eventually yields a series-
parallel graph G∗ that is K1,1,3-free. Also, by construction, two vertices in V (G) are adjacent
in G∗ if and only if they are adjacent in G. Therefore, a square-contact representation of G
can be derived from a square-contact representation Γ∗ of G∗, by removing from Γ∗ all the
squares corresponding to vertices in V (G∗) \ V (G). J

As already observed in Section 1, an embedding without separating triangles is necessary
for the existence of a square-contact representation, and K1,1,3 has no embedding without
separating triangles. Thus, (iii) ⇒ (ii) ⇒ (i) are immediate. To complete the proof of
Theorem 1, we show how to construct a square-contact representation of any K1,1,3-free
series-parallel graph, proving that (i)⇒ (iii). We formalize this result in the next theorem.

I Theorem 2. Every K1,1,3-free series-parallel graph admits a square-contact representation.
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Figure 1 (a) A critical S-node, (b) an almost-bad P-node, (c) a bad P-node, (d) a forbidden
P-node, (e) an S-node of Type B, and (f) an S-node of Type C. Yellow, green, and blue regions
represent parallel compositions of any number of S-nodes, at most one critical S-node and any
number of non-critical S-nodes, and any number of non-critical S-nodes, respectively.

Let G be a series-parallel graph and let T be the SPQ-tree of G with respect to any
reference edge. We start with some definitions; refer to Fig. 1. Let µ be an S-node in T .
We say that µ is critical, if skelµ =s–x–t and the two children of µ both contain an edge
between their terminals, i.e., sx, xt ∈ E(Gµ), and non-critical, otherwise. Let µ be a P-node
in T containing an edge between its terminals. We say that µ is almost bad, if it has exactly
one critical child, bad, if it has exactly two critical children, and forbidden, if it has more
than two critical children. Finally, let µ be a P-node in T . We say that µ is good, if it is
neither bad, nor almost bad, nor forbidden.

We now assign one of three possible types to each S-node µ in T as follows (for each child
µi of µ, we denote the two terminals of Gµi as si and ti).

Type A Node µ is of Type A, if either `(µ) > 2 or `(µ) = 2 and at least one child of µ does
not contain an edge between its terminals, i.e., |{s1t1, s2t2} ∩ E(Gµ)| < 2.

Type B Node µ is of Type B, if `(µ) = 2, all its children contain an edge between their
terminals, and at least one of them is a bad P-node.

Type C Node µ is of Type C, if `(µ) = 2, and all its children contain an edge between their
terminals, and none of them is a bad P-node.

Observe that S-nodes of Type B and of Type C are also critical.
Let G be a K1,1,3-free series-parallel graph and let T be the SPQ-tree of G with respect

to any reference edge. We have the following simple observations regarding the P-nodes in T .

I Observation 1. SPQ-tree T contains no forbidden P-node; refer to Fig. 1(d).

I Observation 2. Let µ be a P-node in T with terminals s and t such that st ∈ E(Gµ).
Then, none of the children of µ is of Type B and at most two children of µ are of Type C.

We now consider special square-contact representations for the pertinent graphs of the
S-nodes in T . Let Γµ be a square-contact representation of Gµ. We say that Γµ is either a
rectangular, L-shape, or pipe drawing of Gµ, if it satisfies the following conditions; refer to
Fig. 2.

Rectangular drawing S(t) lies to the left and above S(s) and the drawing Γ−µ of G−µ in Γµ
lies to the right of S(t) and above S(s); also, all the squares of Γ−µ whose left side (bottom
side) is collinear with the right side of S(t) (with the top side of S(s)) are adjacent to
S(t) (to S(s)).
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x S(t)
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Figure 2 From left to right: pertinent Gµ of an S-node µ with terminals s and t, L-shape
and pipe drawings of Gµ, respectively, and a rectangular drawing of an S-node ν with pertinent
Gν = Gµ ∪ sx. The L-shape region and horizontal pipe enclosing G−

µ and the rectangle enclosing
G−
ν are shaded blue.

S(t)

S(s)

S(t)

S(s)

S(t)

S(s)

S(t)

S(s)

Figure 3 Transforming Γτ into Γρ.

L-shape drawing Γµ is a rectangular drawing in which there exists a rectangular region (red
region R∅ in Fig. 2) inside the bounding box of Γ−µ whose interior does not intersect
any square in Γ−µ and whose lower-left corner lies at the intersection point between the
vertical line passing through the right side of S(t) and the horizontal line passing through
the top side of S(s).

Pipe drawing S(t) lies to the left of S(s) and the drawing Γ−µ of G−µ in Γµ lies to the right
of S(t) and to the left of S(s); also, all the squares of Γ−µ whose left side (right side) is
collinear with the right side of S(t) (with the left side of S(s)) are adjacent to S(t) (to
S(s)).

In the following, we generally refer to a drawing of an S-node µ in T (of Gµ) which is
either an L-shape drawing, a pipe drawing, or a rectangular drawing as a valid drawing of µ
(of Gµ).

Let Γ−µ be the square-contact representation of G−µ contained in Γµ. Observe that Γ−µ lies
in the interior of an orthogonal hexagon with an internal angle equal to 270◦, i.e., an L-shape
polygon (or, simply, L-shape), if Γ−µ is an L-shape drawing. Also, Γ−µ lies in the interior of a
rectangle whose opposite vertical sides are adjacent to the right side of S(t) and to the left
side of S(s), i.e., a horizontal pipe, if Γ−µ is a pipe drawing. Finally, Γ−µ lies in the interior of
a rectangle whose left and bottom side are adjacent to the right side of S(t) and to the top
side of S(s), respectively, if Γ−µ is a rectangular drawing.

Proof of Theorem 2. In order to prove Theorem 2, we proceed as follows. Let G be a
K1,1,3-free series-parallel graph and let T be the SPQ-tree of G rooted at a Q-node ρ with
terminals s and t, whose unique child τ is an S-node. Observe that such a Q-node always
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exists, since G is simple, and that node τ is either of Type A or of Type C, since G is
K1,1,3-tree. We perform a bottom-up traversal in T to construct one or two valid drawings
of Gµ, for each S-node µ ∈ T . Namely, we compute:

an L-shape drawing, if µ is of Type A (Lemma 4),
a pipe drawing, if µ is of Type B (Lemma 5), and
both a pipe drawing and a rectangular drawing, if µ is of Type C (Lemma 6).

Thus, when node τ is considered, we can compute either an L-shape drawing of Gτ ,
if τ is of Type A, or a rectangular drawing of Gτ , if τ is of Type C. Further, both such
valid drawings Γτ of Gτ can be easily turned into a square-contact representation Γρ of
G = Gτ ∪ st, by performing a

↙

t-scaling and an ↙

s-scaling of Γτ in such a way that the right
side of S(t) and the left side of S(s) touch; refer to Fig. 3. This is possible since both in an
L-shape drawing and in a rectangular drawing of Gτ all the squares of G−τ whose left side
(bottom side) is collinear with the right side of S(t) (with the top side of S(s)) are adjacent
to S(t) (to S(s)).

Let µ be an S-node and let µ1, . . . , µk be the children of µ in T . If each child µi of µ is
a Q-node, then node µ is of Type A, if `(µ) > 2, and it is of Type C, otherwise. It is not
difficult to see that, in the former case, Gµ admits an L-shape drawing and that, in the latter
case, Gµ admits both a pipe drawing and a rectangular drawing. In the remainder of the
section, we consider the case in which µ has both Q-node and P-node children.

We first show how to construct special square-contact representations of Gµ, that we call
canonical drawings, for any P-node µ in T , assuming that valid drawings have been computed
for each S-node child of µ. We distinguish five possible canonical drawings, depending on

1. the number and type of the S-node children of µ and
2. the presence of edge st.
Each canonical drawing has three variants: vertical (V), horizontal (H), and diagonal
(D). We name such canonical representations XY drawings, where X ∈ {V,H,D} denotes
the variant of the representation and Y = 1, if st ∈ E(Gµ), and Y = 0, otherwise. Canonical
drawings share the following main property (which, in fact, also holds for valid drawings).

I Property 1. Let Γµ be a valid drawing or a canonical drawing of Gµ. Then, for each
vertex v in V (G−µ ), it holds that vs ∈ E(Gµ) (vt ∈ E(Gµ)) if:
1. S(v) has a side that is collinear with a side of S(s) (of S(t)) in Γµ and
2. S(v) is separated from S(s) (from S(t)) in Γµ by the line passing through such a side.

Property 1 allows us to modify canonical and valid drawings by appropriate ◦s-scaling and
◦
t-

scaling transformations, with ◦ ∈ {↖,↗,↘,↙}, preserving adjacencies between vertices in Gµ.
First, consider a P-node µ in T with terminals s and t such that st /∈ E(Gµ) and let

µ1, . . . , µk be the S-node children of µ. We say that a square-contact representation Γµ of
Gµ is an H0 drawing or a V0 drawing, if it satisfies the following conditions (in addition to
Property 1); refer to Fig. 4.

H0 drawing S(t) lies to the left of S(s), the bottom side of S(s) lies below the bottom side
of S(t), and the drawing of G−µ in Γµ lies to the right of S(t), below the top side of S(t),
above the bottom side of S(s), and to the left of the right side of S(s).

V0 drawing S(t) lies above S(s), the left side of S(s) lies to the right of the left side of S(t),
and the drawing of G−µ in Γµ lies above S(s), to the right of the left side of S(s), below
the top side of S(t), and to the left of the right side of S(s).
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Figure 4 Canonical drawings of a P-node µ. The striped regions correspond to L-shapes,
horizontal pipes, and rectangles enclosing the square-contact representations of graphs G−

µi
, for each

S-node child µi of µ. Labels A, B, and C indicate the type of each S-node.

Now, consider a P-node µ in T with terminals s and t such that st ∈ E(Gµ) and let
µ1, . . . , µk be the S-node children of µ. We say that a square-contact representation Γµ of
Gµ is an H1 drawing, an H1� drawing, a V1 drawing, a D1 drawing, or a D1� drawing, if it
satisfies the following conditions (in addition to Property 1); refer to Fig. 4.

H1 drawing S(t) lies to the left of S(s), the bottom side of S(s) lies above the bottom side
of S(t), and the drawing of G−µ in Γµ lies to the right of S(t), below the top side of S(t),
above the bottom side of S(t), and to the left of the right side of S(s).

H1� drawing S(t) lies to the left of S(s), the bottom side of S(s) lies below the bottom side
of S(t), and the drawing of G−µ in Γµ lies to the right of S(t), below the top side of S(t),
above the top side of S(s), and to the left of the right side of S(s).

V1 drawing S(t) lies above S(s) and the drawing of G−µ in Γµ lies above S(s), below the top
side of S(t), to the right of the left side of S(s), and to the left of the right side of S(s).

D1 drawing S(t) lies above S(s) and the left side of S(t) lies to the left of the left side of
S(s), and the drawing of G−µ in Γµ lies to the right of the left side of S(t), below the top
side of S(t), above the bottom side of S(s), and to the left of the right side of S(s).

D1� drawing Γµ is a D1 drawing of Gµ in which the drawing of G−µ lies to the right of S(t).

We now present two lemmata for the possible canonical drawings of each P-node µ in
T . Recall that, by Observation 1, we can assume that µ is not a forbidden P-node. Let
µ1, . . . , µk be the S-node children of µ. The general strategy in the proofs of both lemmata
consists of
1. computing appropriate valid drawings Γµ1 , . . . ,Γµk

for the pertinent graphs Gµ1 , . . . , Gµk

of µ1, . . . , µk, respectively,
2. modifying the square-contact representation of G−µi

contained in Γµi
, for i = 1, . . . , k, by

means of affine transformations, so that representations derived from S-nodes of the same
type lie in the interior of the same polygon, and finally

3. composing the resulting drawings into a canonical drawing of Gµ. Refer to [5] for details.
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We first consider the case in which µ does not contain an edge between its terminals. In
this case, by Lemmata 4, 5, and 6, we can assume that Γµi

is an L-shape drawing, if µi is of
Type A, and a pipe drawing, if µi is of Type B or of Type C, for i = 1, . . . , k.

I Lemma 2. Let µ be a P-node in T with terminals s and t such that st /∈ E(Gµ). Then,
graph Gµ admits an H0 drawing and a V0 drawing.

Then, we consider the case in which µ contains an edge between its terminals. Recall
that, by Observation 2, node µ has no child of Type B and at most two children of Type C.
In particular, node µ has two children of Type C, if it is bad, and one child of Type C, if
it is almost bad. In this case, by Lemmata 4 and 6, we can assume that Γµi

is an L-shape
drawing, if µi is of Type A, and a rectangular drawing, if µi is of Type C, for i = 1, . . . , k.

I Lemma 3. Let µ be a P-node in T with terminals s and t such that st ∈ E(Gµ). Then,
graph Gµ admits

an H1 drawing, a V1 drawing, and a D1 drawing, if µ is bad, or
an H1� drawing and a D1� drawing, if µ is good or almost bad.
We finally turn our attention to the valid drawings of the S-nodes in T . Let µ be an

S-node in T and let µ1, . . . , µk be the children of µ (where the virtual edge ei, corresponding
to node µi, precedes the virtual edge ei+1, corresponding to node µi+1, from t to s in skelµ).
The next three lemmata immediately imply Theorem 2. To simplify their proofs, we assume
that each child of µ is a P-node. In fact, the case in which a child of µ is a Q-node can
be treated analogously to that of a P-node containing an edge between its terminals. The
general strategy in the proofs of all three lemmata consists of
1. computing appropriate canonical drawings Γµ1 , . . . ,Γµk

for the pertinent graphs
Gµ1 , . . . , Gµk

of µ1, . . . , µk, respectively,
2. modifying these drawings, by means of affine transformations, so that the squares cor-

responding to terminals shared by different children of µ can be identified without
introducing any overlapping between squares corresponding to internal vertices of Gµi

and Gµj
, with i 6= j, and finally

3. composing the resulting drawings into a valid drawing of Gµ.

I Lemma 4. If µ is an S-node of Type A, then Gµ admits an L-shape drawing.

Proof. We first describe how to select a valid drawing of Γµi of Gµi , for i = 1, . . . , k, based
on whether (i) `(µ) > 2 or (ii) `(µ) = 2. Recall that, if `(µ) = 2, then at least one child of
µ does not contain an edge between its terminals, say µ1 (the case in which s1t1 ∈ E(Gµ1)
and s2t2 /∈ E(Gµ2) is analogous).
(i) By Lemma 2 and Lemma 3, we can construct a drawing Γµi

, for each µi, such that:
1. Γµ1 is an H0 drawing, if s1t1 /∈ E(Gµ1), and Γµ1 is an H1 drawing (H1� drawing), if

µ1 is bad (if µ1 is good or almost bad);
2. Γµ2 is a V0 drawing, if s2t2 /∈ E(Gµ2), and Γµ2 is a D1 drawing (D1� drawing), if µ2

is bad (if µ2 is good or almost bad); and
3. Γµi is a V0 drawing, if siti /∈ E(Gµi), and Γµi is a V1 drawing (D1� drawing), if µi

is bad (if µi is good or almost bad), for every i > 2.
(ii) By Lemma 2 and Lemma 3, we can construct an H0 drawing Γµ1 of Gµ1 and a V1

drawing (D1� drawing) Γµ2 of Gµ2 , if µ2 is bad (if µ2 is good or almost bad).
We show how to compose all such drawings into an L-shape drawing Γµ of Gµ as follows.

Refer to Fig. 5(a) for an example of how to compose drawings Γµi , with i = 1, . . . , k, in case
(i) and to Fig.5(b) for an example of how to compose drawings Γµ1 and Γµ2 in case (ii). First,
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Figure 5 Illustrations for the proofs of Lemmata 4, 5, and 6. Striped polygons of the same color
enclose different parts of the drawing of each graph G−

µi
(contained in the canonical drawing Γµi of

Gµi). (a) An H1 drawing of Gµ1 , a D1 drawing of Gµ2 , and a D1� drawing of Gµ3 are combined
into an L-shape drawing. (b) An H0 drawing of Gµ1 and a D1� drawing of Gµ2 are combined into
an L-shape drawing. (c) An H1� drawing of Gµ1 and a D1� drawing of Gµ2 are combined into a
rectangular drawing. (d) An H1 drawing of Gµ1 and a D1� drawing of Gµ2 are combined into a pipe
drawing. (e) An H1� drawing of Gµ1 and a D1� drawing of Gµ2 are combined into a pipe drawing.

we scale S(si) and S(ti) in Γµi
so that the bounding box of the drawing of each connected

component of Gµi
− {si, ti} in Γµi

, for i = 1, . . . , k, becomes arbitrarily small with respect
to the drawing of S(si) and S(ti). This avoids overlapping between internal vertices of Gµi

and Gµj
, with i 6= j, in the next phases of the construction. Then, we scale and translate

each drawing Γµi so that S(ti+1) = S(si), with i < k. It is easy to see that, by the choice of
the canonical drawings of each Gµi

, there exists a rectangular region in Γµ whose interior
does not intersect any square representing a vertex in G−µ and whose lower-left corner lies at
the intersection point between the vertical line passing through the right side of S(t) and the
horizontal line passing through the top side of S(s) in Γµ. J

The proof of the next two lemmata also exploits rotations of drawings Γµi
and can be

carried out in a fashion similar to the proof of Lemma 4. Refer to [5] for details.

I Lemma 5. If µ is an S-node of Type B, then Gµ admits a pipe drawing.

I Lemma 6. If µ is an S-node of Type C, then Gµ admits a pipe and a rectangular drawing.

4 Triconnected Simply-Nested Graphs

In this section, we devote our attention to 3-connected simply-nested graphs.
A cycle-tree with a single edge removed from the outer cycle is a path-tree (to avoid

special cases, we allow the outer cycle of the cycle-tree to be a 2-gon). In path-trees, we refer
to vertices in the tree as tree vertices and vertices in the external path as path vertices. A
tree vertex can see a path vertex if they share a face in the original cycle-tree. Define an
almost-triconnected path-tree with root ρ, leftmost path vertex `, and rightmost path vertex
r to be a path-tree containing in one of its faces a tree vertex ρ and path vertices ` and r
such that if the edges ρ`, ρr, and `r were added, the resulting graph would be a 3-connected
cycle-tree.
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`µ = `1 T1 T2 T3 T4

Figure 6 Path-trees associated with a Q-node (left), an S-node (middle), and a P-node (right).
Dashed edges may or may not exist. Striped triangles represent smaller path-trees Ti with root ρi.

SPQ-decomposition of path-trees. We now describe a recursive decomposition for almost-
triconnected path-trees. We call this an SPQ-decomposition, because it bears a striking
similarity to the SPQ-decomposition of series-parallel graphs. Let G be a 3-connected cycle-
tree, let `r be an edge incident to the outer cycle of G, and let ρ be a tree vertex incident to
the internal face of G edge `r is incident to. Also, let G′ = G− `r be the almost-triconnected
path-tree obtained from G by removing edge `r. Graph G′ defines a rooted decomposition
tree T whose nodes are of three different kinds: S-, P-, and Q-nodes. Each node µ of T is
associated with a path-tree Gµ with root ρµ, leftmost path vertex `µ, and rightmost path
vertex rµ obtained—except the Q-nodes—from smaller path-trees Ti with root ρi, leftmost
path vertex `i, and rightmost path vertex ri, for i = 1, . . . , k, as follows.

A Q-node µ is associated with a path-tree Gµ with three vertices: one tree vertex ρµ and
two path vertices `µ and rµ. The tree vertex ρµ is the root of Gµ, while path vertices `µ
and rµ are the leftmost and the rightmost path vertex of Gµ, respectively. Edge `µrµ
will always exist, but edges ρµ`µ and ρµrµ may or may not exist; see Fig. 6(left).
An S-node µ is associated with a path-tree Gµ obtained from path-tree T1 by adding
a new root ρµ connected to ρ1. Also, `µ = `1 and rµ = r1 are the leftmost and the
rightmost path vertex of Gµ, respectively. Edges ρµ`µ and ρµrµ may or may not exist;
see Fig. 6(midde).
A P-node µ is associated with a path-tree Gµ obtained from path-trees Ti by merging
T1, T2, . . . , Tk from left to right as follows. First, roots ρi are identified into a new root
ρµ. Then, the rightmost path vertex ri of Ti and the leftmost path vertex `i+1 of Ti+1
are identified, for i = 1, . . . , k − 1. Path vertices `µ = `1 and rµ = rk are the leftmost
and the rightmost path vertex of Gµ, respectively; see Fig. 6(right).

We have the following lemma.

I Lemma 7. Any almost-triconnected path-tree admits an SPQ-decomposition.

In [5] we show how to construct a square-contact representation of any almost-triconnected
path-tree G without separating triangles and whose outer face is not a triangle by inductively
maintaining the invariant depicted in Fig. 7 for the S- and P-nodes of an SPQ-decomposition
of G. We formalize this result in the next lemma.

I Lemma 8. Any almost-triconnected path-tree G without separating triangles and whose
outer face is not a triangle admits a square-contact representation.

To construct a square-contact representation for a 3-connected cycle-tree, it is natural
to remove an edge in the outer cycle to obtain a path-tree, use Lemma 8 to construct a
square-contact representation, and then attempt to reintroduce a contact for the removed
edge. However, because Lemma 8 places the leftmost and rightmost path vertices on the
left and right side of the drawing, it is unclear how to add a contact between them. Instead,
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S(ρ)

S(`) S(r)

S(ρ)

S(`) S(r)

S-node

P-node

Figure 7 Invariants for S- and P-nodes with more than two path vertices.

we split the cycle-tree into two overlapping almost-triconnected path-trees, obtain their
square-contact representations by Lemma 7, and overlay them to form a square-contact
representation for the entire cycle-tree.

I Theorem 3. Any 3-connected cycle-tree G without separating triangles and whose outer
face is not a triangle admits a square-contact representation.

As Halin graphs are 3-connected cycle-trees without separating triangles and have, except
for K4, a non-triangular outer face, we have the following.

I Corollary 4. Any Halin graph G 6' K4 admits a square-contact representation.

Next, we investigate square-contact representations of 2-outerplanar simply-nested graphs
that are not cycle-trees (Theorem 5) and 3-outerplanar simply nested graphs (Theorem 6).

I Theorem 5. There exists a 3-connected 2-outerplanar simply-nested graph that does not
admit any proper square-contact representation.

Proof. Consider the two nested quadrilaterals shown in Fig. 8(left). One of its two quadri-
lateral faces must be the outer one, giving the embedding shown. In any square-contact
representation, the inner polygon surrounded by the squares for the four outer vertices must
be a rectangle, as it has only four sides. Each of the four inner squares must touch one of
the four corners of this rectangle (the corner made by its two outer neighbors). For the four
inner squares to touch the four corners of the rectangle and each other, the only possibility
is that the rectangle is a square and each inner square fills one quarter of it, as shown in
Fig.8(middle). However, this representation is improper, as diagonally-opposite inner squares
meet at their corners. J

I Theorem 6. There exists a 3-connected 3-outerplanar simply-nested graph that does not
admit any square-contact representation.

Proof. Consider the graph shown in Fig.8(right). Its quadrilateral face must be the outer one,
giving the embedding shown. As in the proof of Theorem 5, the only possible representation
for its two outer quadrilaterals has the four outer squares surrounding a central square region,
divided into four quarters representing the four middle vertices, as shown in Fig. 8(middle).
However, this representation leaves no room for the inner vertex. J

We remark that the graph of Theorem 6 is actually 2-outerplanar simply-nested, but not
with its quadrilateral face as the outer face.
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Figure 8 Left: Two nested quadrilaterals form a graph with no proper square-contact representa-
tion. Middle: An improper square-contact representation for the same graph. Right: A graph with
no square-contact representation, even an improper one.

5 Conclusions

In this paper, we provided simple characterizations for two notable families of planar
graphs that admit proper square-contact representations. Moreover, we introduced a new
decomposition for an interesting family of polyhedral graphs that generalize the Halin
graphs, i.e., the 3-connected cycle-trees. Finally, we showed that the absence of separating
triangles and a non-triangular outer face do not guarantee the existence of weak and proper
square-contact representations of 3-outerplanar and 2-outerplanar simply-nested graphs,
respectively.

Acknowledgements. We thank Jawaherul M. Alam for useful discussions on this subject.
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Abstract
We present a new algorithm for the widely used density-based clustering method dbscan. Our
algorithm computes the dbscan-clustering in O(n logn) time in R2, irrespective of the scale
parameter ε, but assuming the second parameter MinPts is set to a fixed constant, as is the
case in practice. We also present an O(n logn) randomized algorithm for hdbscan in the plane –
hdbscan is a hierarchical version of dbscan introduced recently – and we show how to compute
an approximate version of hdbscan in near-linear time in any fixed dimension.
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1 Introduction

Clustering is one of the most fundamental tasks in data mining. Due to the wide variety of
applications where clustering is important, the clustering problem comes in many variants.
These variants differ for example in the dimensionality of the data set D and in the underlying
metric, but also in the objective of the clustering. Thus a multitude of clustering algorithms
has been developed [21], each with their own strengths and weaknesses. We are interested in
density-based clustering, where clusters are defined by areas in which the density of the data
points is high and clusters are separated from each other by areas of low density.

One of the most popular density-based clustering methods is dbscan; the paper by
Ester et al. [12] on dbscan has been cited over 8,800 times, and in 2014 dbscan received
the test-of-time award from KDD, a leading data-mining conference. dbscan has two
parameters, ε and MinPts, that together determine when the density around a point p ∈ D
is high enough for p to be part of a cluster as opposed to being noise; see Section 2 for a
precise definition of the dbscan clustering. Typically MinPts is a constant – in the original
article [12] it is concluded that MinPts = 4 works well – but finding the right value for ε
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is more difficult. The worst-case running time of the original dbscan algorithm is Θ(n2).
It is often stated that the running time is O(n logn) for Euclidean spaces when a suitable
indexing structure such as an R-tree is used to support the dbscan algorithm. While this
may be true in certain practical cases, it is not true from a theoretical point of view.

Several variants of dbscan algorithm have been proposed, often with the goal to speed up
the computation. Some (idbscan [5] and fdbscan [16]) do so at the expense of computing
a slightly different, and not clearly defined, clustering. Others (gridbscan [17]) compute the
same clustering as dbscan, but without speeding up the worst-case running time.

A fundamental bottleneck of the original dbscan algorithm is that it performs a query
with each point p ∈ D to find Nε(p,D), the set of points within distance ε of p. The
algorithms uses these points to continue expanding the cluster, hence, range counting would
not be sufficient. It follows that

∑
p∈D |Nε(p,D)| is a lower bound on the running time of the

dbscan algorithm. In the worst case
∑
p∈D |Nε(p,D)| = Θ(n2), so even with a fast indexing

structure the worst-case running time of the original dbscan algorithm is Ω(n2). (Apart
from this, the worst-case query time of R-trees and other standard indexing structures is not
logarithmic even if we disregard the time to report points.) In most practical instances the
dbscan algorithm is much faster than quadratic. The reason is that ε is typically small so
that the sets Nε(p,D) do not contain many points and the range queries can be answered
quickly. However, the fact that the algorithm always explicitly reports the sets Nε(p,D)
makes the running time sensitive to the choice of ε and the density of the point set D. For
example, suppose we have a disk-shaped cluster with a Gaussian distribution around the
disk center. Then a suitable value of ε will lead to large sets Nε(p,D) for points p near the
center of the cluster.

Chen et al. [9] overcame the quadratic bottleneck of the standard approach, and designed
an algorithm1 with O(n2− 2

d+2 polylog n) worst-case running time. They also present an
approximate algorithm. Note that for d = 2 the running time of the exact algorithm is
O(n1.5 polylog n). Chen et al. remark that their exact algorithm is mainly of theoretical
interest. The natural question is then whether or not it is possible to to compute the dbscan
clustering in subquadratic time in the worst case, irrespective of the value of ε, with a simple
and practical algorithm.

Although dbscan is used extensively and performs well in many situations, it has its
drawbacks. One is that it produces a flat, non-hierarchial clustering which heavily depends
on the choice of the scale parameter ε. Ankerst et al. [3] therefore introduced optics, which
can be seen as a hierarchical version of dbscan. Recently Campello et al. [8] proposed an
improved density-based hierarchical clustering method – similar to optics but cleaner –
together with a cluster-stability measure that can be used to automatically extract relevant
clusters. The new method, called hdbscan, only needs the parameter MinPts, which is
much easier to choose than ε. Campello et al. used MinPts=4 in all their experiments.
While hdbscan is very powerful, the algorithm to compute the hdbscan hierarchy runs
in quadratic time; not only in the worst-case, but actually also in the best-case. There
have been only few papers dealing with speeding up hdbscan or its predecessor optics. A
notable recent exception is Poptics [20], a parallel algorithm that computes a similar, but
not the same, hierarchy as optics. We do not know of any algorithm that computes the
hdbscan or optics hierarchy in subquadratic time. Thus the second question we study is:
is it possible to compute the hdbscan hierarchy in subquadratic time.

1 As described, the algorithm actually computes a variation of the dbscan clustering, but it is easily
adapted to compute the true dbscan clustering.
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Our results. We present an O(n logn) algorithm to compute the dbscan clustering for a
set D of n points in the plane, irrespective of the setting of the parameter ε used to define the
dbscan clustering. Here, and in our other results, we assume that the parameter MinPts
is a fixed constant. As mentioned this is the case in practice, where one typically uses
MinPts = 4. We remark that our algorithm is not only fast in theory, but a slightly
simplified version is also competitive in practice and much less sensitive to the choice of
ε than the original dbscan algorithm. In this submission we focus on our theoretical
contributions. Experimental results can be found in the full version [7].

We also present a new algorithm for planar hdbscan: we show how to compute the
hdbscan hierarchy in R2 in O(n logn) expected time, thus obtaining the first subquadratic
algorithm for the problem.

In higher dimensions exact algorithms are much slower and so we consider approximations
instead. We extend the concept of an approximate dbscan clustering as defined by Chen et
al. [9] and by Gan and Tao [13] (see below) to the hierarchical version. We thus obtain
δ-approximate hdbscan, an approximate version of the hdbscan hierarchy of Campello et
al. [8], where the parameter δ specifies the accuracy of the approximation. Intuitively, a
δ-approximate hdbscan hierarchy has the same clusters as the standard hdbscan hierarchy
at any level ε, except that clusters at distance (1− δ) · ε from each other may be merged, see
Section 5 for a precise definition. We show that a δ-approximate hdbscan hierarchy in Rd
can be computed in O((n/δ(d−1)/2) logd−1 n) time.

Further related work. Our paper is the conference paper corresponding to the so far
unpublished master’s thesis of the second author [15], which contained the results on dbscan,
extended with results on hdbscan. In the meantime, Gan and Tao [13] published a paper in
which they extend the work from the master’s thesis to Rd, resulting in an algorithm for
dbscan with a running time of O(n2− 2

dd/2e+1 +γ); we briefly comment on how this is done
at the end of Section 3. Gan and Tao also prove that computing the dbscan clustering in
Rd for d > 3 is at least as hard as the so-called unit-spherical emptiness problem, which
is believed to require Ω(n4/3) time [11]. Finally, Gan and Tao show that a δ-approximate
dbscan clustering can be computed in O(n/δd−1) expected time, using a modified version of
the exact algorithm. Their approximate clustering is the same as the approximate clustering
defined by Chen et al. [9], who already showed how to compute it in O(n logn + n/δd−1)
time deterministically. (Gan and Tao were unaware of the paper by Chen et al..) As we
remark in Section 5 our algorithm can also be used to obtain a deterministic algorithm with
O(n logn+ n/δd/3+c) running time for some constant c.

2 Preliminaries on DBScan and DBScan∗

Let D be a set of points in Rd. dbscan distinguishes three types of points: core points in
the “interior” of a cluster, border points on the boundary of a cluster, and noise points not
in any cluster. The distinction is based on two global parameters, ε and MinPts. Define
Nε(p,D) := {q ∈ D : |pq| 6 ε} to be the neighborhood of a point p, where |pq| denotes the
(Euclidean) distance between p and q; the point p itself is included in Nε(p,D). A point
p ∈ D is a core point if |Nε(p,D)| > MinPts, and a non-core point q in the neighborhood
of a core point is a border point. We denote the set of core points by Dcore, and the set of
border points by Dborder. The remaining points are noise. In dbscan∗ [8] border points are
not part of a cluster but are considered noise.

Ester et al. [12] define the dbscan clusters based on the concept of density-reachability.
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ε

Figure 1 A neighborhood graph with MinPts = 4 and ε as indicated. Solid disks are core points,
open circles are border points, and crosses are noise. Edges between core points are solid, other
edges are dotted. The solid disks and edges form the core graph.
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Figure 2 Example of a box graph.

Equivalently, we can define the clusters as the connected components of a certain graph.
To this end, define the neighborhood graph G(D,E) as the undirected graph with node

set D and edges connecting pairs of points within distance ε; see Fig. 1. Note that a point
p ∈ D is a core point if and only if its degree in G is at least MinPts − 1, since then its
neighborhood contains at least MinPts points, including p itself. Now consider the subgraph
Gcore(Dcore, Ecore) induced by the core points, that is, Gcore is the graph whose nodes are
the core points and whose edges connect two core points when they are within distance ε
from each other. We call Gcore the core graph. The connected components of Gcore are the
clusters in dbscan∗. The clusters in dbscan are the same, except that they also contain
border points. Formally, a border point q belongs to a cluster C if q has an edge in G to a
core point p ∈ C. Thus a border point can belong to multiple clusters. The original dbscan
algorithm construct clusters one by one and assigns a border point p to the first cluster that
finds p; we assign border points to the cluster of their nearest core point.

3 A fast algorithm for DBScan

The original dbscan algorithm reports, while generating and exploring the clusters, for
each point p ∈ D all its neighbors. In other words, it spends time on every edge in the
neighborhood graph. Our new algorithm avoids this by working with a smaller graph, the
box graph Gbox. Its nodes are disjoint rectangular boxes with a diameter of at most ε that
together contain all the points in D, and its edges connect pairs of boxes within distance ε;
see Fig. 2.

The boxes are generated such that (i) any two points in the same box are in each other’s
neighborhood, and (ii) the degree of any node in the box graph is O(1). Property (i) allows
us to immediately classify all points in a box as core points when it contains at least MinPts
points, and property (ii) allows us to quickly retrieve the neighbors of any given point in a
box. Next we describe the algorithm, which consists of four easy steps, in detail.
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Step 1: Compute the box graph Gbox. To compute Gbox, we first construct a collection
of vertical strips that together cover all the points. Let p1, . . . , pn be the points in D sorted
by x-coordinate, with ties broken arbitrarily. The first strip has p1 on its left boundary. We
continue from left to right, adding points to the first strip as we go, until we encounter a
point pi whose distance to the left strip boundary is more than ε/

√
2. We then start a new

strip with pi on its left boundary, and we add points to that strip until we encounter a point
whose distance to the left strip boundary is more than ε/

√
2, and so on, until we handled all

the points. Constructing the strips takes O(n) time, after sorting the points by x-coordinate.
Within each strip we perform a similar procedure, going over the points within the strip

in order of increasing y-coordinate and creating boxes instead of strips. Thus the first box in
the strip has the lowest point on its bottom edge, and we keep adding points to this box
(enlarging it so that the new point fits, ensuring a tight bounding box) until we encounter a
point whose vertical distance to the bottom edge is more than ε/

√
2. We then start a new

box, and so on, until we handled all points in the strip. If the number of points in the j-th
strip is nj , then the time needed to handle all the strips is

∑
j O(nj lognj) = O(n logn).

Let m be the number of strips and Bj the set of boxes in the j-th strip. We sometimes
refer to a set Bj as a strip, even though formally Bj is a set of boxes. Let B := B1 ∪ · · · ∪ Bm.
The nodes of the box graph Gbox are the boxes in B and there is an edge (b, b′) when
dist(b, b′) 6 ε, where dist(b, b′) denote the minimum distance between b and b′. Two boxes
b, b′ are neighbors when they are connected by an edge. Let Nε(b,B) be the neighbors of b.

I Lemma 1. Gbox has at most n nodes, each having O(1) neighbors.

The lemma above follows from the fact that any box b ∈ Bj can have neighbors only in
Bj−2, Bj−1, Bj , Bj+1, or Bj+2, and within any of these five strips, b can have at most five
neighbors. (A more precise proof giving a bound of 22 neighbors can be found in the full
version [7].) This also gives us an easy way to compute the edge set Ebox of the box graph,
because the edges between boxes in strips Bj and Bj′ with |j − j′| 6 2 can be computed in
O(|Bj |+ |Bj′ |) time in total by scanning the boxes in Bj and Bj′ in a coordinated manner.
The total time to compute all edges of the box graph is thus

O

 m∑
j=1

min(j+2,m)∑
j′=max(j−2,1)

(|Bj |+ |Bj′ |)

 = O

 m∑
j=1
|Bj |

 = O(n).

Adding the time to construct the strips and boxes, we see that Step 1 takes O(n logn) time
and we obtain the following lemma.

I Lemma 2. The box graph Gbox(B, Ebox) can be computed in O(n logn) time.

An alternative for Step 1. An alternative approach is to define the boxes as the non-empty
cells in a grid whose cells have height and width ε/

√
2. If we store the boxes in a hash-table

based on the coordinates of their lower left corners, then finding the neighbors of a box b can
be done by checking each potential neighbor cell for existence in the hash-table – we do not
need to store the box graph explicitly. Creating the boxes (with their corresponding point
sets) can be done in O(n) time if the floor function can be computed in O(1) time.

Step 2: Find the core points. The graph Gbox allows us to determine the core points in a
simple and efficient manner. The key observation is that the maximum distance between any
two points in the same box is at most ε. Hence, if a box contains more than MinPts points,
then all of them are core points. The following algorithm suffices to find the core points.

ISAAC 2017
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For a box b ∈ B, let D(b) := D ∩ b be the set of point inside b, and let nb := |D(b)|. If
nb > MinPts then label all points in b as core points. Otherwise, for each point p ∈ D(b),
count the number of points q in neighboring boxes of b for which |pq| 6 ε. If this number
is at least MinPts − nb, then label p as core point. The counting is done brute-force, by
checking all points in neighboring boxes. Hence, this takes O(

∑
b′∈Nε(b,B) nb′) time for each

point p ∈ b.

I Lemma 3. Given Gbox, we can find all core points in D in O(n) time.

Proof. The total time spent to handle boxes b with nb > MinPts is clearly O(n). The time
needed to handle a box b with nb < MinPts is

O

nb · ∑
b′∈Nε(b,B)

nb′

 = O

MinPts ·
∑

b′∈Nε(b,B)

nb′

 .

Now charge O(MinPts) = O(1) time to each point in every b′ ∈ Nε(b,B). Because any
box b′ is the neighbor of O(1) other boxes by Lemma 1, each point is charged O(1) times. J

Step 3: Compute the cluster cores. The core of a cluster is the set of core points in that
cluster. In Step 3 we assign to each core point a cluster-id so that core points in the same
cluster have the same cluster-id. Again, this can be done in an efficient manner using Gbox.
To this end, we first remove certain boxes and edges from Gbox to obtain a reduced box
graph G∗box. More precisely, we keep only the boxes with at least one core point, and we keep
only the edges (b, b′) for which there are core points p ∈ b, p′ ∈ b′ with |pp′| 6 ε. Because
any two core points in a given box b are connected in Gcore, we have the following lemma.

I Lemma 4. The connected components in G∗box correspond one-to-one to the connected
components in the core graph Gcore and, hence, to the dbscan∗ clusters.

Thus the cluster cores can be computed by computing the connected components in G∗box.
The latter can be done in O(n) time using DFS [10]. We then give every core point p a
cluster-id corresponding to the connected component of the box b that contains p.

To construct G∗box, we need to decide for two given boxes b, b′ whether there are core
points p ∈ D(b), p′ ∈ D(b′) with |pp′| 6 ε. For ease of discussion we call the points in D(b)
blue and those in D(b′) red. It is well known [2] that the bichromatic closest pair defines
an edge of the Delaunay triangulation of the points, so it suffices to compute the Delaunay
triangulation of D(b)∪D(b′) and find the shortest red-blue edge. If it is at most ε we connect
b and b′ in G∗box and otherwise we do not. This leads to the following lemma.

I Lemma 5. Computing the cluster cores can be done in O(n logn) time.

Proof. The most time consuming part of the construction of G∗box is to determine for each
pair of neighboring boxes in B whether there are core points p ∈ b, p′ ∈ b′ with |pp′| 6 ε. Let
B∗ be the set of boxes containing at least MinPts points. Then the total time spent on the
pairs of boxes from B∗ is∑

b∈B∗

∑
b′∈Nε(b,B∗)

O((nb + nb′) log(nb + nb′)),

which is O(n logn) because |Nε(b,B∗)| = O(1) for any box b and
∑
b∈B∗ nb 6 n. J
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I Remark. In practice, computing the Delaunay triangulation is not necessary. Instead we
can use a brute-force algorithm that checks every pair of points in b and b′ and stops when a
sufficiently close pair is found. The number of points in each box is expected to be small
and if it is large one may expect many pairs to have a short distance, hence, testing pairs in
random order should find such a pair fairly quickly.

Step 4: Assigning border points to clusters. It remains to decide for non-core points p
whether p is a border point or noise. If p is a border point, it has to be assigned to the
nearest cluster. Again, a brute-force method suffices: for each box b ∈ B and each non-core
point p ∈ b, we check all points in b and its neighboring boxes to find p’s nearest core point,
p′. If |pp′| 6 ε, then p is a border point in the same cluster as p′, otherwise p is noise. We
only need to consider boxes b with nb < MinPts – otherwise all points in b are core points –
so the argument from the proof of Lemma 3 shows that this takes O(n) time.

Putting it all together. Steps 1 and 3 take O(n logn) time and Steps 2 and 4 take O(n)
time. We thus obtain the following theorem.

I Theorem 6. Let D be a set of n points in R2, and ε and MinPts be given constants. Then
we can compute a dbscan clustering on D according to ε and MinPts for the Euclidean
metric in O(n logn) time.

I Remark (Extension to higher dimensions.). The algorithm just described can easily be
extended to Rd for d > 2, as already observed by Gan and Tao [13]. The resulting running
time is O(n2− 2

dd/2e+1 +γ).

4 A fast algorithm for HDBScan in the plane

Campello et al. [8] introduced hdbscan, a hierarchical version of dbscan∗ similar to
optics [3]. The algorithm described by Campello et al. to compute the hdbscan hierarchy
runs in quadratic time. We show that in R2 and under the Euclidean metric, the hdbscan
hierarchy can be computed in O(n logn) time.

Preliminaries on HBScan. Recall that dbscan∗ is the version of dbscan in which border
points are considered noise. The hdbscan hierarchy is a tree structure encoding the
clusterings of dbscan∗ that arise as ε increases from ε = 0 to ε = ∞ for a fixed MinPts.
Initially, when ε = 0, all points are noise. As ε increases, three types of events can happen
to the dbscan∗ clustering:

Type (i): the status of a point changes. In this event, a point changes from being noise to
being a core point. The value of ε at which this happens for a point p is called the core
distance of p; we denote it by dcore(p).
Type (ii): a new cluster starts. This event is triggered by a type (i) event, when a point
becoming a core point forms a new singleton cluster.
Type (iii): two clusters merge. This event can be triggered by a type (i) event or it can
happen when ε = |pq| for core points p, q from different clusters.

Note that all events happen at values of ε such that ε = |pq| for some pair of points p, q ∈ D.
This process can be modeled as a dendrogram: a tree whose leaves correspond to the points
in D and whose nodes correspond to clusters arising during the process. This dendrogram,
where each node stores the value of ε at which the corresponding cluster was created, is the
hdbscan hierarchy. Campello et al. compute the hdbscan hierarchy as follows.
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For two points p, q ∈ D, define dmr(p, q) := max (dcore(p), dcore(q), |pq|) to be the mutual
reachability distance of p and q. The mutual reachability graph Gmr is defined as the complete
graph with node set D in which each edge (p, q) has weight dmr(p, q). Campello et al. observe
that hdbscan hierarchy can easily be computed from a minimum spanning tree (mst) on
Gmr. (Indeed, the cluster-growing process corresponds to the the computation of an mst on
Gmr using Kruskal’s algorithm [10].) Hence, they compute the hdbscan hierarchy as follows.
1. Compute the core distances dcore(p) for all points p ∈ D.
2. Compute an mst T of the mutual reachability graph Gmr.
3. Convert T into a dendrogram where each internal node stores the value of ε at which the

corresponding cluster is formed.

Our planar algorithm. The most time-consuming parts in the algorithm above are Steps 1
and 2; Step 3 takes O(n) time after sorting the edges of T by weight.

For Step 1 we observe that dcore(p) is the distance of point p to its `-th nearest neighbor
for ` = MinPts−1. Hence, to compute all core distances it suffices to compute for each point
its k nearest neighbors. This can be done in any fixed dimension in O(n` logn) time [22].
Since ` = MinPts− 1 = O(1) this implies that Step 1 takes O(n logn) time.

Step 2 is more difficult to do in subquadratic time. The main problem is that we cannot
afford to look at all edges of Gmr when computing T . To overcome this problem we need the
following generalization of Delaunay triangulations, introduced by Gudmundsson et al. [14].
Recall that a pair of points p, q ∈ D forms an edge in the Delaunay triangulation of D if and
only if there is a circle with p and q on its boundary and no points from D in its interior [6].
We say that the pair p, q ∈ D forms a k-th order Delaunay edge, or k-OD edge for short, if
and only if there exists a circle with p and q on its boundary and at most k points from D in
its interior [14]. Thus the 0-OD edges are precisely the edges of the Delaunay triangulation.
The k-OD edges are useful for us because of the following lemma.

I Lemma 7. Let Gmr be the subgraph of Gmr that contains only the k-OD edges, where
k := max(MinPts− 3, 0). Then an mst of Gmr is also an mst of Gmr.

Proof. Imagine computing an mst T on Gmr using Kruskal’s algorithm [10]. This algorithm
treats the edges (p, q) of Gmr in order of increasing weight, that is, increasing values of
dmr(p, q). When it processes (p, q) it checks if p and q are already in the same connected
component – in our application this component corresponds to a cluster at the current value
of ε – and, if not, merges these components. We will argue that whenever we process an
edge (p, q) that is not in Gmr, that is, an edge that is not a k-OD edge, then p and q are
already in the same connected component. Hence, there is no need to process (p, q), which
proves that an mst of Gmr is also an mst of Gmr.

Let Cpq be the circle such that p and q form a diametrical pair of C, and let D(Cpq) ⊂ D
be the set of points lying in the interior of Cpq. If |D(Cpq)| 6 k, then (p, q) is a k-
OD edge, so assume |D(Cpq)| > k + 1. Note that dcore(r) < |pq| for all r ∈ D(Cpq).
Indeed, since r is an interior point in a disk with diameter |pq|, the distance from r to any
other point in Cpq, including p and q, is smaller than |pq|. Hence, for ε = |pq| we have
|Nε(r,D)| > |D(Cpq)| + 2 = k + 3 > MinPts. Thus all points r ∈ Cpq are core points
when we process (p, q). Moreover, for all edges (s, t) with s, t ∈ D(Cpq) ∪ {p, q} we have
dmr(s, t) 6 |pq|. Hence, it suffices to prove the following.

I Claim. Let C be a circle with two points p, q on its boundary and let D(C) ⊂ D be the set
of points from D in the interior of C. Then there is a path from p to q in Gmr that uses only
points in D(C) ∪ {p, q}.
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We prove this claim by induction on |D(C)|. If |D(C)| 6 k then (p, q) is a k-OD edge itself
and we are done. Otherwise, pick any point r ∈ D(C). Now shrink C, while keeping p in its
boundary, until we obtain a circle C1 that also has r on its boundary. By induction, there is
a path from p to r in Gmr that uses only points in D(C1)∪ {p, r} ⊂ D(C)∪ {p, q}. A similar
argument shows that there is a path from r to q that uses only points in D(C)∪ {p, q}. This
proves the claim and, hence, the lemma. J

Gudmundsson et al. showed that the number of k-OD edges is O(n(k + 1)) and that the set
of all k-OD edges can be computed in O(n(k + 1) logn) time with a randomized incremental
algorithm. Lemma 7 implies that after computing the core distances and the k-OD edges in
O(n logn) time with k = max(MinPts− 3, 0) = O(1) we can compute the mst for Gmr by
considering only O(n) edges. Thus computing the mst can be done in O(n logn) time [10].
Since the rest of the algorithm takes linear time, we obtain the following theorem.

I Theorem 8. Let D be a set of n points in R2 and MinPts be a given constant. We can
compute the hdbscan hierarchy on D for the Euclidean metric with a randomized algorithm
in O(n logn) expected time.

5 Approximate HDBScan

In this section we introduce an approximate version of hdbscan which can be computed in
near-linear time in any fixed dimension.

Approximate DBScan∗. Before we can define approximate hdbscan, we need to define
approximate dbscan∗. Our definition of approximate dbscan∗ is essentially the same as
the definitions of Chen et al. [9] and Gan and Tao [13]. The main difference is that we base
our definition on dbscan∗ instead of dbscan, which avoids some technical difficulties in the
definition.

Let MinPts be a fixed constant. Let Cε(D) denote the set of clusters in the dbscan∗
clustering for a given value of ε. We call a clustering C1 a refinement of a clustering C2,
denoted by C1 ≺ C2, when for every cluster C1 ∈ C1 there is a cluster C2 ∈ C2 with C1 ⊆ C2.
Recall that, as ε increases, the dbscan∗ clusters merge or expand and new singleton clusters
may appear, but clusters do not shrink or disappear. Hence, if ε < ε′ then2 Cε(D) ≺ Cε′(D).
An approximate dbscan∗ clustering is now defined as follows.

I Definition 9. A δ-approximate dbscan∗ clustering of a data set D, for given parameters
ε and MinPts, and a given error δ > 0, is defined as a clustering C∗ of D into clusters and
noise such that C(1−δ)ε(D) ≺ C∗ ≺ Cε(D).

Thus if we choose δ sufficiently small, then a δ-approximate dbscan∗ clustering is very
similar to the exact dbscan∗ clustering for the given parameter values.
I Remark. An approximate dbscan∗ clustering can be computed by using the approximate
bichromatic closest pair algorithm by Arya and Chan [4] as a subroutine in our exact
algorithm. The resulting algorithm finds a δ-approximate dbscan∗ clustering in Rd in
O(n logn + n/δd/3+c) time. This is similar to the running time of Chen et al. [9] and the
expected running time of Gan and Tao [13], but it has a better dependency on δ. Note,
however, that Gao and Tao are able to avoid the O(n logn) term. The easy details can be
found in the full version [7].

2 Here it is important that we consider dbscan∗ and not dbscan. Indeed, in dbscan border points can
“flip” between clusters as ε increases, and so we do not necessarily have Cε(D) ≺ Cε′(D).
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Approximate HDBScan. Our definition of an approximate hdbscan hierarchy is based
on the definition of δ-approximate dbscan∗ clusterings: we say that a hierarchy is a δ-
approximate hdbscan hierarchy if, for any value of ε, the clustering extracted from the
hierarchy is a δ-approximate dbscan∗ clustering for that value of ε. Next we show how to
compute a δ-approximate hdbscan hierarchy in O(n logn) time, in any fixed dimension d.

As in Section 4 we follow the algorithm by Campello et al. [8]. Steps 1 and 3 can still
be done in O(n logn) and O(n) time, respectively. We speed up Step 2 of the algorithm by
computing an mst on a subgraph of the mutual reachability graph Gmr rather than on the
whole graph. The difference with the exact algorithm of Section 4 is that we will select the
edges of the subgraph in a different manner, using ideas from so-called θ-graphs [19].

Let p ∈ D be a point. We partition Rd into simplicial cones with apex p and whose
angular diameter is θ, where θ will be specified later. (The angular diameter of a cone c
with apex p is the maximum angle between any two vectors emanating from p and inside c.)
Let Γp be the resulting collection of cones and consider a cone c ∈ Γp. Let D(c) ⊆ D denote
the set of points inside c. If a point lies on the boundaries of several cones we can assign
it to one of these cones arbitrarily. Pick a half-line `c with endpoint p that lies inside c. A
θ-graph would now be obtained by projecting all points from D(c) orthogonally onto `c, and
adding an edge from p to the point closest to p in this projection, with ties broken arbitrarily.
We do the same, except that we add edges to the k closest points for k := 2 ·MinPts− 3.
If c contains fewer than k points, we simply connect p to all points in D(c). Doing this
for all the cones c ∈ Γp gives us a set Ep of O(k/θd−1) = O(1/θd−1) edges for point p. Let
E(θ) :=

⋃
p∈D Ep. The set E(θ) can be computed by making a straightforward adaptation

to the algorithm to compute a θ-graph in Rd [19, Chapter 5], leading to the following result.

I Lemma 10. E(θ) has O(n/θd−1) edges and can be computed in O((n/θd−1) logd−1 n) time.

The set E(θ), where θ is chosen such that cos θ > 1 − δ, defines the subgraph Gmr(δ) on
which we compute the mst in Step 2. Since cos θ > 1− θ2/2, we have cos θ > 1− δ when
θ :=

√
2δ. Next we show that an mst on Gmr(δ) defines a δ-approximate hdbscan clustering.

I Lemma 11. Let T be an mst of Gmr(δ) and let ε > 0. Let C(T , ε) be the clustering induced
by T . Then C is a δ-approximate dbscan∗ clustering for the given ε.

Proof. For a weighted graph G and threshold weight τ , let G[τ ] denote the subgraph obtained
by removing all edges of weight greater than τ . In order to show that C(T , ε) ≺ Cε(D) we
must show that any connected component of T [ε] is contained in a connected component of
Gmr[ε]. Since T is a subgraph of Gmr this is obviously the case.

Next we prove that C(1−δ)ε(D) ≺ C(T , ε). For this we must prove that any connected
component of Gmr[(1− δ)ε] is contained in a connected component of T [ε]. Since T is an
mst of Gmr(δ), the connected components of T [ε] are the same as the connected components
of Gmr(δ)[ε]. It thus suffices to show the following: for any edge (p, q) ∈ Gmr[(1− δ)ε], there
is a path from p to q in Gmr(δ)[ε]. We show this by induction on |pq|, similarly to the way in
which it is shown that a θ-graph has a small dilation.

Let (p, q) be an edge in Gmr[(1 − δ)ε]. Consider the set Γp of cones with apex p that
was used to define the edge set Ep, and let c ∈ Γp be the cone containing q. Recall that
we added an edge from p to the k points in c that are closest to p when projected onto the
half-line `c, where k := 2 ·MinPts− 3. Hence, when q is one of these k closest points we
are done. Otherwise, let r ∈ D(c) be the (MinPts− 1)-th closest point.

I Claim. (i) dcore(r) 6 (1− δ)ε, (ii) |pr| 6 ε, and (iii) |rq| < |pq|.
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r
q

p

Both the dark and the light grey region contain at least
MinPts−2 points, not counting p, q, r. Depending on the
position of r, all points in the light region or all points in
the dark region have distance at most (1− δ)ε from r.

|pq| 6 (1− δ)ε

Figure 3 Illustration for the proof of Lemma 11.

Before we prove this claim, we first we argue that the claim allows us to finish our inductive
proof. Since (p, q) is an edge in Gmr[(1−δ)ε] we have dmr(p, q) 6 (1−δ)ε. Thus |pq| 6 (1−δ)ε
and dcore(q) 6 (1− δ)ε. Together with parts (i) and (iii) of the claim this implies that (r, q)
is an edge in Gmr[(1− δ)ε] with |rq| < |pq|.

In the base case of our inductive proof, where (p, q) is the shortest edge in Gmr[(1− δ)ε],
this cannot occur. Thus q must be one of the k closest points in the cone c, and we have an
edge between p and q in Gmr(δ)[ε] by construction.

If we are not in the base case, then we have a path from r to q in Gmr(δ)[ε] by the
induction hypothesis. Moreover, (p, r) is an edge in Gmr(δ) by construction. Since |pr| 6 ε

by part (ii) of the claim, we have a path from p to q in Gmr(δ)[ε].
It remains to prove the claim. For this we use the following fact [19, Lemma 4.1.4], which

is also used to prove that a θ-graph has small dilation. Note that although Lemma 4.1.4 in
[19] is stated in 2 dimensions, but the proof never assumes that the line on which is projected
lives in the same plane and clearly three points s, t, p live in a single plane.

I Fact. Let s, t be any two points in a cone c ∈ Γp such that, when projected onto the half-
line `c, the distance from p to s is smaller than the distance from p to t. Then |ps| 6 |pt|/ cos θ
and |st| < |pt| − (cos θ − sin θ)|ps| 6 |pt|, since we can assume θ is sufficiently small that
cos θ − sin θ > 0.

Part (iii) of the claim immediately follows from this fact by taking s := r and t := q. Part (ii)
follows again by taking s := r and t := q, using that |pq| 6 (1− δ)ε and that we have chosen
δ such that cos θ = 1 − δ. For part (i) we must prove that there are at least MinPts − 1
points within distance (1− δ)ε from r. Recall that r is the (MinPts− 1)-th closest point
to p in the cone c, measured in the projection onto the half-line `c. Let r1, . . . , rk be the k
closest points; thus r = ri for i = MinPts − 1. We distinguish two cases: |pr| 6 (1 − δ)ε
and |pr| > (1− δ)ε. See also Fig. 3.

In the former case we can conclude that |rir| 6 (1− δ)ε for all 1 6 i 6 MinPts− 2 by
setting s := ri and t := r and using |pr| 6 (1− δ)ε. Thus, including the point p, we know
that r has at least MinPts− 1 points within distance (1− δ)ε.

In the latter case we will argue that |rir| 6 (1− δ)ε for all MinPts 6 i 6 2 ·MinPts− 3.
Since by part (iii) of the claim we have |rq| 6 (1− δ)ε, we conclude that also in the latter
case r has at least MinPts− 1 points within distance (1− δ)ε. To argue that |rir| 6 (1− δ)ε
we first note that for any point s ∈ c we have |ss∗| 6 sin θ · |ps|, where s∗ denotes the
orthogonal projection of s onto `c. Thus

|rri| 6 |rr∗|+ |r∗r∗i |+ |rir∗i |

6 sin θ · |pr|+ |r∗q∗|+ sin θ · |pri|

6 2 sin θ · |pq|/ cos θ + |r∗q∗|

= 2 sin θ · |pq|/ cos θ + |pq∗| − |pr∗|

6 2 sin θ · |pq|/ cos θ + |pq| − |pr| cos θ

6
(
2 sin θ

cos θ + 1− cos θ
)
· (1− δ)ε
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where the last inequality uses |pq| 6 (1 − δ)ε and that we are now considering the case
|pr| > (1 − δ)ε. Since we can assume that θ is small enough to ensure 2 sin θ < cos2 θ, we
conclude that, indeed, |rri| 6 (1− δ)ε. This finishes the proof part (i) of the claim and hence,
of the lemma. J

Combining the previous two lemmas we obtain the following theorem.

I Theorem 12. Let D be a set of n points in Rd, and let ε and MinPts be given constants.
Then, for any given δ > 0, we can compute a δ-approximate hdbscan clustering on D with
respect to ε and MinPts for the Euclidean metric in O((n/δ(d−1)/2) logd−1 n) time.
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Abstract
We introduce the fully-dynamic conflict-free coloring problem for a set S of intervals in R1 with
respect to points, where the goal is to maintain a conflict-free coloring for S under insertions and
deletions. A coloring is conflict-free if for each point p contained in some interval, p is contained
in an interval whose color is not shared with any other interval containing p. We investigate
trade-offs between the number of colors used and the number of intervals that are recolored upon
insertion or deletion of an interval. Our results include:

a lower bound on the number of recolorings as a function of the number of colors, which implies
that with O(1) recolorings per update the worst-case number of colors is Ω(logn/ log logn),
and that any strategy using O(1/ε) colors needs Ω(εnε) recolorings;
a coloring strategy that uses O(logn) colors at the cost of O(logn) recolorings, and another
strategy that uses O(1/ε) colors at the cost of O(nε/ε) recolorings;
stronger upper and lower bounds for special cases.

We also consider the kinetic setting where the intervals move continuously (but there are no
insertions or deletions); here we show how to maintain a coloring with only four colors at the
cost of three recolorings per event and show this is tight.
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1 Introduction

Consider a set S of fixed base stations that can be used for communication by mobile clients.
Each base station has a transmission range, and a client can potentially communicate via
that base station when it lies within the transmission range. However, when a client is within
reach of several base stations that use the same frequency, the signals will interfere. Hence,
the frequencies of the base stations should be assigned in such a way that this problem does
not arise. Moreover, the number of used frequencies should not be too large. Even et al. [10]
and Smorodinsky [14] introduced conflict-free colorings to model this problem, as follows.
Let S be a set of disks in the plane, and for a point q ∈ R2 let S(q) ⊆ S denote the set of disks
containing the point q. A coloring of the disks in S is conflict-free if, for any point q ∈ R2

with non-empty S(q), the set S(q) has at least one disk with a color that is unique among
the disks in S(q). Even et al. [10] proved that any set of n disks in the plane admits a
conflict-free coloring with O(logn) colors, and this bound is tight in the worst case.

The concept of conflict-free colorings can be generalized and extended in several ways,
giving rise to a host of challenging problems. Below we mention some of them; for lack
of space we only discuss the papers most directly related to our work. A more extensive
overview is given by Smorodinsky [15]. One obvious generalization is to work with types of
regions other than disks. For instance, Even et al. [10] showed how to find a coloring with
O(logn) colors for a set of translations of any single centrally symmetric polygon. Har-Peled
and Smorodinsky [12] extended this result to regions with near-linear union complexity. One
can also consider the dual setting, where one wants to color a given set P of n points in the
plane, such that any disk – or rectangle, or other range from a given family – contains at
least one point with a unique color (if it contains any point at all). This too was studied by
Even et al. [10] and they show that this can be done with O(logn) colors when the ranges
are disks or scaled translations of a single centrally symmetric convex polygon.

The results mentioned above deal with the static setting, in which the set of objects to
be colored is known in advance. This may not always be the case, leading Fiat et al. [11]
to introduce the online version of the conflict-free coloring problem. Here the objects to be
colored arrive one at a time, and each object must be colored upon arrival. Fiat et al. show
that when coloring points in the plane with respect to disks, n colors may be needed in
the online version. Hence, they turn their attention to the 1-dimensional problem of online
coloring points with respect to intervals. They prove that this can be done deterministically
with O(log2 n) colors and randomized with O(logn log logn) colors with high probability.
Later Chen [8] gave a randomized algorithm that uses O(logn) colors with high probability.
In the same paper, similar results were obtained for conflict-free colorings of points with
respect to halfplanes, unit disks and axis-aligned rectangles of almost the same size. In
these cases the colorings use O(polylog n) colors with high probability. Bar-Noy, Cheilaris,
and Smorodinsky [3] discussed several versions of the deterministic one-dimensional variant.
Furthermore, Abam et al. [1] studied the dual version of coloring intervals on a line with
respect to points. Later, Bar-Noy et al. [2] considered the case where recolorings are allowed
for each insertion. They prove that for coloring points in the plane with respect to halfplanes,
one can obtain a coloring with O(logn) colors in an online setting at the cost of O(n)
recolorings in total. More recent variants include strong conflict-free colorings [7, 13], where
we require several unique colors, and conflict-free multicolorings [4], which allow assigning
multiple colors to a point. Even more variants of online conflict-free colorings can be found
in the survey [15].
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Our contributions. We introduce a variant of the conflict-free coloring problem where
the objects to be colored arrive and disappear over time. This fully-dynamic conflict-free
coloring problem models a scenario where new base stations may be deployed (to deal with
increased capacity demands, for example) and existing base stations may break down or be
taken out of service (either permanently or temporarily). We also define the semi-dynamic
conflict-free coloring problem as the online variant where recolorings are allowed (or the fully-
dynamic variant without deletions). Note that when we talk about the dynamic variant,
we mean fully-dynamic. These natural variants have, to the best of our knowledge, not
been considered so far. It is easy to see that, unless one maintains a coloring in which any
two intersecting objects have distinct colors, there is always a sequence of deletions that
invalidates a given conflict-free coloring. Hence, recolorings are needed to ensure that the
new coloring is conflict-free. This leads to the question: how many recolorings are needed to
maintain a coloring with a certain number of colors? We initiate the study of fully-dynamic
conflict-free colorings by considering the problem of coloring intervals with respect to points.
In this variant, we are given a (dynamic) set S of intervals in R1, which we want to color
such that for any point q ∈ R1 the set S(q) of intervals containing q contains an interval with
a unique color. This version of the problem can be used to model the case where the base
stations are located along a highway, for instance, and 1-dimensional range and frequency
assignment problems have already been studied in various settings [2, 7, 11]. Moreover, the
lower bounds that we prove hold for the 2-dimensional problem as well. In the static setting,
coloring intervals is rather easy: a simple procedure yields a conflict-free coloring with three
colors. The dynamic version turns out to be much more challenging.

In Section 2 we prove lower bounds on the possible tradeoffs between the number of
colors used and the worst-case number of recolorings per update: for any algorithm that
maintains a conflict-free coloring on a sequence of n insertions of intervals with at most c(n)
colors and at most r(n) recolorings per insertion, we must have r(n) > n1/(c(n)+1)/(8c(n)).
This implies that for O(1/ε) colors we need Ω(εnε) recolorings per updated, and with only
O(1) recolorings per update we must use Ω(logn/ log logn) colors.

In Section 3 we then present several algorithms that achieve bounds close to our lower
bound. All bounds are worst-case, unless specifically stated otherwise. First, we present
two algorithms for the case where the interval endpoints come from a universe of size U .
One algorithm uses O(logU) colors and two recolorings per update; the other uses O(logt U)
colors and O(t) recolorings per update in the worst case, where 2 6 t 6 U is a parameter.
We then extend the second algorithm to an unbounded universe, leading to two results: we
can use O(logt n) colors and perform at most O(t logt n) recolorings per update for any fixed
t > 2, or we can use O(1/ε) colors and O(nε/ε) recolorings, amortized, for any fixed ε > 0.

Finally, in Section 4 we turn our attention to kinetic conflict-free colorings. Here the
intervals do not appear or disappear, but their endpoints move continuously on the real line.
At each event where two endpoints of different intervals cross each other, the coloring may
need to be adapted so that it stays conflict-free. One way to handle this is to delete the two
intervals involved in the event, and re-insert them with the new endpoint order. We show
that a specialized approach is much more efficient: we show how to maintain a conflict-free
coloring with four colors at the cost of three recolorings per event. We also show that on
average Θ(1) recolorings per event are needed in the worst case when using only four colors.

Due to space constraints some proofs have been deferred to the full version [6].

ISAAC 2017
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2 Lower bounds for semi-dynamic conflict-free colorings

In this section we present lower bounds on the semi-dynamic (insertion only) conflict-free
coloring problem for intervals. More precisely, we present lower bounds on the number of
recolorings necessary to guarantee a given upper bound on the number of colors. We prove a
general lower bound and a stronger bound for so-called local algorithms. The general lower
bound uses a construction where the choice of segments to be added depends on the colors
of the segments already inserted. This adaptive construction is also valid for randomized
algorithms, but it does not give a lower bound on the expected behavior.

I Theorem 1. Let alg be a deterministic algorithm for the semi-dynamic conflict-free color-
ing of intervals. Suppose that on any sequence of n > 0 insertions, alg uses at most c(n) col-
ors and r(n) recolorings per insertion, where r(n) > 0. Then r(n) > n1/(c(n)+1)/(8c(n)).

Proof. We first fix a value for n and define c := c(n) and r := r(n). Our construction
will proceed in rounds. In the i-th round we insert a set Ri of ni disjoint intervals – which
intervals we insert depends on the current coloring provided by alg. After Ri has been
inserted (and colored by alg), we choose one of the colors used by alg for Ri to be the
designated color for the i-th round. We denote this designated color by ci. We will argue
that in each round we can pick a different designated color, so that the number of rounds,
ρ, is a lower bound on the number of colors used by alg. We then prove a lower bound on
ρ in terms of n, c, and r, and derive the theorem from the inequality ρ 6 c.

To describe our construction more precisely, we need to introduce some notation and
terminology. Let Ri := {I1, . . . , Ini

}, where the intervals are numbered from left to right.
(Recall that the intervals in Ri are disjoint.) To each interval I = Ij we associate the
set Ie := (a, b), where a is the right endpoint of I, and b is the left endpoint of Ij+1 if j < ni
and +∞ if j = ni, that is, Ie represents the empty space to the right of I. We call (I, Ie)
an i-brick. We define the color of a brick (I, Ie) to be the color of I, and we say a point or
an interval is contained in this brick if it is contained in I ∪ Ie. Recall that each round Ri
has a designated color ci. We say that an i-brick B := (I, Ie) is living if:

I has the designated color ci;
if i > 1 then both I and Ie contain living (i− 1)-bricks.

A brick that is not alive is called dead and an event such as a recoloring that causes a brick
to become dead is said to kill the brick. By recoloring an interval I, alg can kill the brick
B = (I, Ie) and the death of B may cause some bricks containing B to be killed as well.

We can now describe how we generate the set Ri of intervals we insert in the i-th round
and how we pick the designated colors. (Note that the designated color of a round is fixed
once it is picked; it is not updated when recolorings occur.) We denote by R∗i the subset of
intervals I ∈ Ri such that (I, Ie) is a living i-brick. Note that R∗i can be defined only after
the i-th round, when we have picked the designated color ci.
1. The set R1 contains the n

2 intervals [0, 1], [2, 3], . . . , [n − 2, n − 1], and the designated
color c1 of the first round is the color used most often in the coloring produced by alg
after insertion of the last interval in R1.

2. To generate Ri for i > 1, we proceed as follows. Partition R∗i−1 into groups of 4r
consecutive intervals. (If |R∗i−1| is not a multiple of 4r, the final group will be smaller
than 4r. This group will be ignored.) For each group G := I1, . . . , I4r we put an interval
IG into Ri, which starts at the left endpoint of I1 and ends slightly before the left
endpoint of I2r+1; see Fig. 1 for an illustration.
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group G of 4r intervals from living bricks first interval in next group G′

IG IG′

Figure 1 Example of how the intervals are created when r = 2. The designated color ci−1 is
blue, and the grey rectangles around them indicate living (i− 1)-bricks. The grey rectangle around
IG indicates the brick (IG, Ie

G). Note that IG′ extends further to the right.

The designated color ci is picked as follows. Consider the coloring after the last interval
of Ri has been inserted, and let C(i) be the set of colors assigned by alg to intervals
in Ri and that are not a designated color from a previous round – we argue below
that C(i) 6= ∅. Then we pick ci as the color from C(i) that maximizes the number of
living i-bricks.

We continue generating sets Ri in this manner until |R∗i | < 4r, at which point the construc-
tion finishes. Below we prove that in each round alg must introduce a new designated color,
and we prove a lower bound on the number of rounds in the construction.

I Claim. Let B = (I, Ie) be a living i-brick. Then for any j ∈ {1, . . . , i} there is a point qj ∈
I∪Ie that is contained in a single interval of color cj and in no other interval from

⋃i−1
`=1 R`.

Moreover, there is a point qj ∈ I ∪ Ie not contained in any interval from
⋃i−1
`=1 R`.

Proof of claim. We prove this by induction on i. For i = 1 the statement is trivially true,
so suppose i > 1. By definition, both I and Ie contain living (i − 1)-bricks, B and B

e.
Using the induction hypothesis we can now select a point qj with the desired properties: for
j = i we use that B contains a point that is not contained in any interval from

⋃i−1
`=1 R`,

for j < i we use that Be contains a point in an interval of color cj and in no other interval
from

⋃i−1
`=1 R`, and to find a point not contained in any interval from

⋃i−1
`=1 R` we can also

use Be. J

Now consider the situation after the i-th round, but before we have chosen the designated
color ci. We say that a color c is eligible (to become ci) if c 6= c1, . . . , ci−1, and we say that
an i-brick (I, Ie) is eligible if its color is eligible and (I, Ie) would be living if we were to
choose its color as the designated color ci. Note that due to some recolorings, some of the
newly inserted intervals might not contain any living brick and hence can never be living no
matter the designated color; the next claim shows that at most half intervals inserted this
round are eligible.

I Claim. Immediately after the i-th round, at least half of the i-bricks are eligible.

Proof of claim. Consider an i-brick (I, Ie). At the beginning of the i-th round, before we
have actually inserted the intervals from Ri, both the interval I and its empty space Ie
contain 2r living (i − 1)-bricks. As the intervals from Ri are inserted, alg may recolor
certain intervals from R1 ∪ . . . ∪ Ri−1, thereby killing some of these (i − 1)-bricks. Now
suppose that alg recolored at most 2r − 1 of the intervals from R1 ∪ . . . ∪ Ri−1 that are
contained in I ∪ Ie. Then both I and Ie still contain a living (i− 1)-brick. By the previous
claim and the definition of a conflict-free coloring, this implies alg cannot use any of the
colors cj with j < i for I. Hence, the color of I is eligible and the i-brick (I, Ie) is eligible
as well.

ISAAC 2017
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It remains to observe that alg can do at most rni recolorings during the i-th round.
We just argued that to prevent an i-brick from becoming eligible, alg must do at least
2r recolorings inside that brick. Hence, alg can prevent at most half of the i-bricks from
becoming eligible. J

Recall that after the i-th round we pick the designated color ci that maximizes the
number of living i-bricks. In other words, ci is chosen to maximize |R∗i |. Next we prove a
lower bound on this number. Recall that ρ denotes the number of rounds.

I Claim. For all 1 6 i 6 ρ we have |R∗i | > n1/(8rc)i − 1.

Proof of claim. Since alg can use at most c colors, we have |R∗1| > n1/c. Moreover, for
i > 1 the number of intervals we insert is

⌊
|R∗i−1|/4r

⌋
. By the previous claim at least half of

these are eligible. The eligible intervals have at most c different colors, so if we choose ci to
be the most common color among them we see that |R∗i | >

⌊
|R∗i−1|/4r

⌋
/2c. We thus obtain

the following recurrence:

|R∗i | >


⌊
|R∗i−1|/4r

⌋
2c if i > 1,

n1

c
if i = 1.

(1)

We can now prove the result using induction.

|R∗i | >

⌊
|R∗i−1|/4r

⌋
2c >

1
2c ·

((
n1

(8rc)i−1 − 1
)
/4r − 1

)
>

n1

(8rc)i − 1. J

Finally we can derive the desired relation between n, c, and r. Since n1 = n/2 and
ni+1 < ni/2 for all i = 1, . . . , ρ − 1, the total number of insertions is less than n. The
construction finishes when |R∗i | < 4r. Hence, ρ, the total number of rounds, must be such
that n/(2(8rc)ρ)− 1 6 |R∗ρ| < 4r, which implies ρ > log8rc(n/(8r + 2)) > log8rc n− 1. The
number of colors used by alg is at least ρ, since every round has a different designated
color. Thus c > log8rc n− 1 and so n 6 (8rc)c+1, from which the theorem follows. J

Two interesting special cases of the theorem are the following: with r = O(1) we will have
c = Ω (logn/ log logn), and for c = O(1/ε) (for some small fixed ε > 0) we need r = Ω (εnε).
Note that the theorem requires r > 0. Obviously the Ω (logn/ log logn) lower bound on c
that we get for r = 1 also holds for r = 0. For the special case of r = 0 – this is the standard
online version of the problem – we can prove a stronger result, however: here we need at
least blognc+ 1 colors. This bound even holds for a nested set of intervals, that is, a set S
such that I ⊂ I ′, I ′ ⊂ I, or I ∩ I ′ = ∅ for any two intervals I, I ′ ∈ S. We also show in the
full paper [6] that a greedy algorithm achieves this bound for nested intervals.

Local algorithms. We now prove a stronger lower bound for so-called local algorithms.
Intuitively, these are deterministic algorithms where the color assigned to a newly inserted
interval I only depends on the structure and the coloring of the connected component where I
is inserted – hence the name local. More precisely, local algorithms are defined as follows.

Suppose we insert an interval I into a set S of intervals that have already been colored.
The union of the set S ∪ {I} consists of one or more connected components. We define
S(I) ⊆ S to be the set of intervals from S that are in the same connected component as I.
(In other words, if we consider the interval graph induced by S ∪ {I} then the intervals
in S(I) form a connected component with I.) Order the intervals in S(I) ∪ {I} from left
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I
1 2 4 5

3

Figure 2 Example of a signature. The set S(I) contains the segments labeled 1,2,4,5. The
signature of I is 〈2, 1, 3, 4, 5, red, blue, nil,blue, green〉.

to right according to their left endpoint, and then assign to every interval its rank in this
ordering as its label. (Here we assume that all endpoints of the intervals in S(I) ⊆ S are
distinct. It suffices to prove our lower bound for this restricted case.) Based on this labeling
we define a signature for S(I)∪ {I} as follows. Let λ1, . . . , λk, where k := |S(I)|+ 1, be the
sequence of labels obtained by ordering the intervals from left to right according to their
right endpoint. Furthermore, let ci be the color of the interval labeled i, where ci = nil if
the interval labeled i has not yet been colored. Then we define the signature of S(I) ∪ I to
be the sequence sig(I) := 〈λ1, . . . , λk, c1, . . . , ck〉; see Fig. 2.

We now define a semi-dynamic algorithm alg to be local if upon insertion of an interval I
the following holds: (i) alg only performs recoloring in S(I), and (ii) the color assigned to
I and the recolorings in S(I) are uniquely determined by sig(I), that is, the algorithm is
deterministic with respect to sig(I). Note that randomized algorithms are not local.

To strengthen Theorem 1 for the case of local algorithms, it suffices to observe that the
intervals inserted in the same round must all receive the same color. Hence, the factors c
in the denominators of Inequality (1) disappear, leading to the theorem below. Note that
for r(n) = O(1), we now get the lower bound c(n) = Ω(logn).

I Theorem 2. Let alg be a local algorithm for the semi-dynamic conflict-free coloring of
intervals. Suppose that on any sequence of n > 0 insertions, alg uses at most c(n) colors
and r(n) recolorings per insertion, where r(n) > 0. Then r(n) > n1/(c(n)+2) − 2.

3 Upper bounds for fully-dynamic conflict-free colorings

Next we present algorithms to maintain a conflict-free coloring for a set S of intervals under
insertions and deletions. The algorithms use the same structure, which we describe first.
From now on, we use n to denote the current number of intervals in S.

Let P be the set of 2n endpoints of the intervals in S. (To simplify the presentation we
assume that all endpoints are distinct, but the solution is easily adapted to the general case.)
We will maintain a B-tree on the set P . A B-tree of minimum degree t on a set of points
in R1 is a multi-way search tree in which each internal node has between t and 2t children
(except the root, which may have fewer children) and all leaves are at the same level; see
the book by Cormen et al. [9, Chapter 18] for details. Thus each internal or leaf node stores
between t− 1 and 2t− 1 points from P (again, the root may store fewer points). We denote
the set of points stored in a node v by P (v) := {p1(v), . . . , pnv

(v)}, where nv := |P (v)| and
the points are numbered from left to right. For an internal node v we denote the i-th subtree
of v, where 1 6 i 6 nv + 1, by Ti(v). Note that the search-tree property guarantees that all
points in Ti(v) lie in the range (pi−1(v), pi(v)), where p0 = −∞ and pnv+1 =∞.

We now associate each interval I ∈ S to the highest node v such that I contains at
least one of the points in P (v), either in its interior or as one of its endpoints. Thus our
structure is essentially an interval tree [5, Chapter 10] but with a B-tree as underlying tree
structure. We denote the set of intervals associated to a node v by S(v). Note that if
level(v) = level(w) = `, for some nodes v 6= w, and I ∈ S(v) and I ′ ∈ S(w), then I and I ′
are separated by a point pi(z) of some node z at level m < `. Hence, I ∩ I ′ = ∅.

ISAAC 2017
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We partition S(v) into subsets S1(v), . . . , Snv
(v) such that Si(v) contains all intervals

I ∈ S(v) for which pi(v) is the leftmost point from P (v) contained in I. From each subset
Si(v) we pick at most two extreme intervals: the left-extreme interval Ii,left(v) is the interval
from Si(v) with the leftmost left endpoint, and the right-extreme interval Ii,right(v) is the
interval from Si(v) with the rightmost right endpoint. Since all intervals from Si(v) contain
the point pi(v), every interval from Si(v) is contained in Ii,left(v)∪Ii,right(v). Note that it may
happen that Ii,left(v) = Ii,right(v). Finally, we define Sextr(v) :=

⋃nv

i=1{Ii,left(v), Ii,right(v)}
to be the set of all extreme intervals at v.

Our two coloring algorithms both maintain a coloring with the following properties.
(A.1) For each level ` of the tree T , there is a set C(`) of colors such that the color sets of

different levels are disjoint.
(A.2) For each node v at level ` in T , the intervals from Sextr(v) are colored locally conflict-

free using colors from C(`). Here locally conflict-free means that the coloring of Sextr(v)
is conflict-free if we ignore all other intervals.

(A.3) All non-extreme intervals receive a universal dummy color, which is distinct from any
of the other colors used, that is, the dummy color is not in C(`) for any level `.

The two coloring algorithms that we present differ in the size of the sets C(`) and in which
local coloring algorithm is used for the sets Sextr(v). It is not hard to show that the properties
above guarantee a conflict-free coloring.

I Lemma 3. Any coloring with properties (A.1)–(A.3) is conflict free and uses at most
1 +

∑
` |C(`)| colors.

Next we describe two algorithms based on this general framework: one for the easy case
where the interval endpoints come from a finite universe, and one for the general case.

Solutions for a polynomially-bounded universe. The framework above uses a B-tree on
the interval endpoints. If the interval endpoints come from a universe of size U – for
concreteness, assume the endpoints are integers in the range 0, . . . , U − 1 – then we can use
a B-tree on the set {0, . . . , U − 1}. Thus the B-tree structure never has to be changed.

I Theorem 4. Let S be a dynamic set of intervals whose endpoints are integers in the
range 0, . . . , U − 1.
(i) We can maintain a conflict-free coloring on S that uses O(logU) colors and that per-

forms at most two recolorings per insertion and deletion.
(ii) For any t with 2 6 t 6 U , we can maintain a conflict-free coloring on S that uses

O(logt U) colors and performs O(t) recolorings per insertion and deletion.

When U is polynomially bounded in n – that is, U = O(nk) for some constant k – this gives
very efficient coloring schemes. In particular, we can then get O(logn) colors with at most
two recolorings using method (i), and we can get O(1/ε) colors with O(nε) recolorings (for
any fixed ε > 0) by setting t = Uε/k in method (ii).

Note finally that we do not need to explicitly store the whole tree as it is enough to
compute the location of any node when needed, yielding a linear space complexity.

A general solution. If the interval endpoints do not come from a bounded universe then we
cannot use a fixed tree structure. Next we explain how to deal with this when we apply the
method from Theorem 4(ii), which colors the sets Sextr(v) using the so-called chain method:
we take the interval with the leftmost left endpoint, and color it blue. Then, among all
intervals whose left endpoint lies in the blue interval, we pick the one with the rightmost
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right endpoint and color it red. We then repeat this process, alternating between blue and
red, until we reach the rightmost interval. Finally, we color all uncolored intervals grey.

Suppose we want to insert a new interval I into the set S. We first insert the two
endpoints of I into the B-tree T . Inserting an endpoint p can be done in a standard manner.
The basic operations for an insertion are (i) to split a full node and (ii) to insert a point
into a non-full leaf node.

Splitting a full node v (that is, a node with 2t− 1 points) is done by moving the median
point into the parent of v, creating a node containing the t − 1 points to the left of the
median and another node containing the t− 1 points to the right of the median. Note that
this means that some intervals from S(v) may have to be moved to S(parent(v)). Thus
splitting a node v involves recoloring intervals in S(v) and S(parent(v)). Observe that an
interval only needs to be recolored if it was extreme before or after the change. Hence, we
recolor O(t) intervals when we split a node v.

Since an insertion splits only nodes on a root-to-leaf path and the depth of T is O(logt n),
the total number of recolorings due to node splitting is O(t logt n). Moreover, inserting a
point into a non-full leaf node only takes O(t) recolorings. We conclude that an insertion per-
forms O(t logt n) recolorings in total. For deletions the argument is similar. Since recoloring
at a single node induces O(t) recolorings, the total number of recolorings is O(t logt n).

I Theorem 5. Let S be a dynamic set of intervals.
(i) For any fixed t > 2 we can maintain a conflict-free coloring on S that uses O(logt n)

colors and that performs O(t logt n) recolorings per insertion and deletion, where n is
the current number of intervals in S. In particular, we can maintain a conflict-free
coloring with O(logn) colors using O(logn) recolorings per update.

(ii) For any fixed ε > 0 we can maintain a conflict-free coloring on S that uses O(1/ε)
colors and that performs O(nε/ε) recolorings per insertion or deletion. The bound on
the number of recolorings is amortized.

The idea behind part (ii) is to use a t with nε/2 6 t 6 2nε. This causes the bound in (ii) to
be amortized, since now we need to change t when n has halved or doubled.

We have not been able to efficiently generalize the first method of Theorem 4 to an
unbounded universe. The problem is that splitting a node v may require many intervals
in Sextr(v) to be recolored, since many intervals may be moved to parent(v). Hence, the
method would use the same number of recolorings as the chain method, but more colors.

Bounded-length intervals. Next we present a simple method that allows us to improve
the bounds when the intervals have length between 1 and L for some constant L > 1.

I Theorem 6. Let S be a dynamic set of intervals with lengths in the range [1, L) for some
fixed L > 1. Suppose we have a dynamic conflict-free coloring algorithm for a general set
of intervals that uses at most c(n) colors and at most r(n) recolorings for any insertion or
deletion. Then we can obtain a dynamic conflict-free coloring algorithm on S that uses at
most 2 · c(2L) + 1 colors and at most 2 · r(2L) + 1 recolorings for any insertion or deletion.

For instance, by applying Theorem 5(i) we can maintain a coloring with O(logL) colors and
O(logL) recolorings. We can also plug in a trivial dynamic algorithm with c(n) = n and
r(n) = 0 to obtain 4L + 1 colors with only 1 recoloring per update; when L is sufficiently
small this gives a better result.
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Figure 3 Illustration of the different events in the KDS.

4 Kinetic conflict-free colorings

In this section we consider conflict-free colorings of a set of intervals in R1 whose endpoints
move continuously. Note that we allow the endpoints of an interval to move independently,
that is, we allow the intervals to expand or shrink over time. We show that by using only
three recolorings per event – an event is when two endpoints cross each other – we can
maintain a conflict-free coloring consisting of only four colors. Our recoloring strategy is
based on the chain method discussed in the proof of Theorem 4(ii). This method uses three
colors: two colors for the chain and one dummy color. To be able to maintain the coloring
in the kinetic setting without using many recolorings, we relax the chain properties and
we allow ourselves three colors for the chain. Next we describe the invariants we maintain
on the chain and its coloring, and we explain how to re-establish the invariants when two
endpoints cross each other. In the remainder we assume that the endpoints of the chains
are in general position except at events, and that events do not coincide (that is, we never
have three coinciding endpoints and we never have two events at the same time). These
conditions can be removed by using consistent tie-breaking.

The chain invariants. Let S be the set of intervals to be colored, where all interval en-
dpoints are distinct. (Recall that we assumed this to be the case except at event times.)
Consider a subset C ⊆ S and order the intervals in C according to their left endpoint. We
denote the predecessor of an interval I ∈ C in this order by predC(I), and we denote its
successor by succC(I). A chain (for S) is defined as a subset C with the following three
properties.
(C1) Any interval I ∈ C can intersect only two other intervals in C, namely predC(I) and

succC(I).
(C2) Any interval I ∈ S \ C is completely covered by the intervals in C.
(C3) No interval I ∈ C is fully contained in any other interval I ′ ∈ S.
Now consider a set S and a chain C for S. We maintain the following color invariant: each
interval I ∈ C has a non-dummy color and this color is different from the color of succ(I),
and each interval in S \ C has the dummy color.

I Lemma 7. Let S be a set of intervals and C be a chain for S. Then any coloring of S
satisfying the color invariant is conflict-free.

Handling events. Our kinetic coloring algorithm maintains a chain C for I and a coloring
with three colors (excluding the dummy color) satisfying the color invariant. Later we show
how to re-establish the color invariant at each event, but first we show how to update the
chain by adding at most one interval to the chain and removing at most two. We distinguish
several cases.
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Case A: The right endpoints of two intervals I and I ′ cross.
Assume without loss of generality that I is shorter than I ′. We have two subcases.

Subcase A.1: Interval I is contained in I ′ before the event. In this case I was not
a chain interval before the event. If after the event I is still fully covered by the
chain intervals, then there is nothing to do: we can keep the same chain. Otherwise,
property (C2) is violated after the event. We now proceed as follows. First we add I
to the chain. If I intersects predC(I ′) – note that I ′ must be a chain interval if (C2)
is violated – then we remove I ′ from the chain.
Subcase A.2: Interval I is contained in I ′ after the event. If I was not a chain interval,
there is nothing to do. Otherwise property (C3) no longer holds after the event, and
we have to remove I from the chain. If I ′ is also a chain interval then this suffices.
Otherwise we add I ′ to the chain, and remove predC(I) if predC(predC(I)) intersects I ′.

Case B: The left endpoints of two intervals I and I ′ cross.
This case is symmetric to Case A.
Case C: The right endpoint of an interval I crosses the left endpoint of an interval I ′.
Again we have two subcases.

Subcase C.1: Intervals I and I ′ start intersecting. Note that properties (C2) and (C3)
still hold after the event. The only possible violation is in property (C1), namely when
both I and I ′ are chain intervals and there is a chain interval I ′′ with predC(I ′′) = I

and succC(I ′′) = I ′. In this case we simply remove I ′′ from the chain.
Subcase C.2: Intervals I and I ′ stop intersecting. First note that this cannot violate
properties (C1) and (C3). The only possible violation is property (C2), namely when
both I and I ′ are chain intervals and there is at least one non-chain interval containing
the common endpoint of I and I ′ at the event. Of all such non-chain intervals, let I ′′
be the interval with the leftmost left endpoint. Note that I ′′ is not contained in any
other interval, so we can add I ′′ to the chain without violating (C3). After adding I ′′
we check if we have to remove I and/or I ′: if I ′′ intersects predC(I) then we remove
I from the chain, and if I ′′ intersects succC(I ′) then we remove I ′ from the chain.

It is easy to check that in each of these cases the new chain that we generate has the chain
properties (C1)–(C3). Next we show that each case requires at most three recolorings and
summarize the result.

I Lemma 8. In each of the above cases, the changes to the chain require at most three
recolorings to re-establish the color invariant.

I Theorem 9. Let S be a kinetic set of intervals in R1. We can maintain a conflict-free
coloring for S with four colors at the cost of at most three recolorings per event, where an
event is when two interval endpoints cross each other.

A lower bound. Now consider the simple scenario where the intervals are rigid – each
interval keeps the same length over time – and each interval is either stationary or moves
with unit speed to the right. Our coloring algorithm may perform recolorings whenever two
endpoints cross, which means that we do O(n2) recolorings in total. We show that even in
this simple setting, this bound is tight in the worst case if we use at most four colors.

Consider four intervals I1, I2, I3, I4 where Ii = (ai, bi), with ai < bi as shown in Figure 4.
Here I2 ⊂ I1, I4 ⊂ I3, the right endpoints of I1 and I2 are contained in I3 ∩ I4, and the
left endpoints of I3 and I4 are contained in I1 ∩ I2. The exact locations of the endpoints
with respect to each other is not important and we focus on the different overlap sets of the
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I1
I2

I3
I4

Figure 4 The gadget used to show the lower bound.

gadget. Specifically within a gadget there is a point contained in each of the following sets,

G1, . . . , G7 := {I1}, {I1, I2}, {I1, I2, I3, }, {I1, I2, I3, I4}, {I1, I3, I4}, {I3, I4}, {I3}.

Based on these sets we can show that no coloring for crossing gadgets exists that provides a
valid conflict-free coloring for each combination of intersection sets between the two gadgets.
The proof relies on the following lemma.

I Lemma 10. Let G = {I1, I2, I3, I4} and H = {J1, J2, J3, J4} be two gadgets, with overlap
sets G1, . . . , G7 and H1, . . . ,H7 as defined above. There is no 4-coloring for G and H such
that all sets {G1, . . . , G7} ∪ {H1, . . . ,H7} ∪ {1 6 i, j 6 7 | Gi ∪Hi} are conflict-free.

Proof. We can assume that not both I1, I2, I3, I4 and J1, J2, J3, J4 use all four colors, oth-
erwise G4 ∪ H4 = {I1, I2, I3, I4, J1, J2, J3, J4} is not conflict-free. It is also not possible to
use at most two colors, since each gadget by itself needs to be conflict-free. Hence, suppose
that there are exactly three colors among I1, I2, I3, I4 (the other case is symmetric), say
two are red, one is blue, and one is green. We define col(Gi), respectively col(Hi), to be
the multiset of the colors used by the intervals in Gi, respectively Hi. Then col(G4) =
{red, red, blue, green} and without loss of generality, col(G2) = {red, blue} and col(G6) =
{red, green}. We now have two cases.
1. One interval among J1, J2, J3, J4 uses the fourth color, say yellow. If J1 or J2 is yellow,

then either col(H6) = {red,blue}, implying that G2∪H6 is not conflict-free; or col(H6) =
{red, green} implying that G6 ∪ H6 is not conflict-free; or col(H6) = {blue, green} im-
plying that G4 ∪ H6 is not conflict-free. A similar argument holds when J3 or J4 is
yellow.

2. Two intervals among J1, J2, J3, J4 use yellow. It follows that H4 contains two yel-
low intervals and the remaining two intervals are colored either {red, blue}, implying
that G2 ∪H4 is not conflict-free; or {red, green}, implying that G6 ∪H4 is not conflict-
free; or {blue, green}, implying that G4 ∪H4 is not conflict-free. J

Now we place Ω(n) of these gadgets in two groups and for simplicity assume a gadget
has width of 1. The gadgets in the first group are spaced with distance 2 between them, so
a gadget from the second group can fit between any two consecutive gadgets. In the second
group the gadgets are spaced with distance 3n between them, so that all gadgets of the
first group fit between them. All gadgets of the first group then move at the same speed,
starting somewhere to the left of the second group and moving to the right. The gadgets of
the second group remain stationary. These motions ensure that each gadget of first group
will cross each gadget of the second group, generating Ω(n2) crossing events, each of which
results in at least one recoloring by Lemma 10.

I Theorem 11. For any n > 0, there is a set of 8n intervals, each of which is either
stationary or moves with unit speed to the right, so that when coloring the intervals using
four colors at least n2 recolorings are required to maintain a conflict-free coloring.
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Abstract
We study dynamic conflict-free colorings in the plane, where the goal is to maintain a conflict-free
coloring (CF-coloring for short) under insertions and deletions.

First we consider CF-colorings of a set S of unit squares with respect to points. Our method
maintains a CF-coloring that uses O(logn) colors at any time, where n is the current number
of squares in S, at the cost of only O(logn) recolorings per insertion or deletion We generalize
the method to rectangles whose sides have lengths in the range [1, c], where c is a fixed
constant. Here the number of used colors becomes O(log2 n). The method also extends
to arbitrary rectangles whose coordinates come from a fixed universe of size N , yielding
O(log2 N log2 n) colors. The number of recolorings for both methods stays in O(logn).
We then present a general framework to maintain a CF-coloring under insertions for sets of
objects that admit a unimax coloring with a small number of colors in the static case. As
an application we show how to maintain a CF-coloring with O(log3 n) colors for disks (or
other objects with linear union complexity) with respect to points at the cost of O(logn)
recolorings per insertion. We extend the framework to the fully-dynamic case when the static
unimax coloring admits weak deletions. As an application we show how to maintain a CF-
coloring with O(

√
n log2 n) colors for points with respect to rectangles, at the cost of O(logn)

recolorings per insertion and O(1) recolorings per deletion.
These are the first results on fully-dynamic CF-colorings in the plane, and the first results for
semi-dynamic CF-colorings for non-congruent objects.
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1 Introduction

Consider a set of base stations in the plane that can be used for mobile communication.
To ensure a good coverage, the base stations are typically positioned in such a way that
the communication ranges of different base stations overlap. However, if a user is within
range of several base stations using the same frequency, then interference occurs and the
communication is lost. Therefore, we want to assign frequencies to the base stations such
that any user within range of at least one base station, is also within range of at least one
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base station using an interference-free frequency. The easy solution would be to give all
stations a different frequency. However, this is undesirable as the set of available frequencies
is limited. The question then arises: how many different frequencies are needed to ensure
that any user that is within range of at least one base station has an interference-free base
station at his disposal? Motivated by this and other applications, Even et al. [14] and
Smorodinsky [17] introduced the notion of conflict-free colorings or CF-colorings for short.
Here the ranges of the base stations are modeled as regions (disks, or other objects) in the
plane, and frequencies are represented by colors. A CF-coloring is now defined as follows.

Let S be a set of objects in the plane. For a point q ∈ R2, let Sq := {S ∈ S|q ∈ S} be
the subset of objects containing q. A coloring col : S → N of the objects in S – here we
identify colors with non-negative integers – is said to be conflict-free (with respect to points)
if for each point q with Sq 6= ∅ there is an object S ∈ Sq whose color is unique among the
objects in Sq. A CF-coloring is called unimax when the maximum color in Sq is unique.

We can also consider a dual version of planar CF-colorings. Here we are given a set S
of points and a family F of geometric ranges, and the goal is to color the points in S such
that any range from F containing a least one point, contains a point with a unique color.

Conflict-free colorings have received a lot of attention since they were introduced by
Even et al. [14] and Smorodinsky [17]; see the overview paper by Smorodinsky [18], which
surveys the work up to 2010. We review the work most relevant to our results.

Even et al. proved that it is always possible to CF-color a set of disks in the plane
using O(logn) colors, and that Ω(logn) colors are needed in the worst case. The authors
extended the result to sets of translates of any given centrally symmetric polygon. Later,
Har-Peled and Smorodinsky [15] further generalized the result to regions with near-linear
union complexity. The dual version of the problem was also studied by Even et al. [14]; they
showed it is possible to CF-color points using O(logn) colors with respect to disks, or with
respect to scaled translations of a centrally symmetric convex polygon. Moreover, Ajwani
et al. [1] showed how to CF-color points with respect to using O(n0.382) colors.

Recall that CF-colorings correspond to interference-free frequency assignments in a cel-
lular network. When a node in the network fails, the resulting assignment may no longer
be interference-free. This leads to the study of k-fault-tolerant CF-colorings, where we want
min(k, |Sq|) objects from Sq to have a unique color. In other words, a k-fault-tolerant CF-
coloring allows the deletion of k objects without losing the conflict-free property. Cheilaris
et al. [5] studied the 1-dimensional case, and presented a polynomial-time algorithm with ap-
proximation ratio 5− 2

k for the problem of finding a CF-coloring with a minimum number of
colors. For k = 1 – that is, the regular CF-coloring – the algorithm gives a 2-approximation.
Horev et al. [16] studied the 2-dimensional case and proved a O(k logn) bound for disks
and, more generally, regions with near-linear union complexity.

To increase coverage or capacity in a cellular network it may be necessary to increase
the number of base stations. This led Fiat et al. [7] to study online CF-colorings. Here the
objects to be CF-colored arrive over time, and as soon as an object appears it must receive
a color which cannot be changed later on. For CF-coloring points with respect to intervals,
they proposed a deterministic algorithm using O(log2 n) colors as well as two randomized
algorithms, one of which is using at most O(logn log logn) colors in expectation and always
producing a valid coloring. Later, Chen et al. [6] improved the bound with an algorithm
using an expected O(logn) colors.

Chen et al. [8] considered the problem of online CF-coloring of points with respect to
geometric ranges. They showed that for ranges that are half-planes, unit disks, or bounded-
size rectangles – i.e. rectangles whose heights and widths all lie in the range [1, c], for some
fixed constant c – there is an online CF-coloring using O(logn) colors with high probability.
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For bounded-size rectangles they also presented a deterministic result using O(log3 n) colors.
Bar-Noy et al. [3] provided a general strategy for online CF-coloring of hypergraphs. Their
method uses O(k logn) colors with high probability, where k is the so-called degeneracy of
the hypergraph. Their method can for instance be applied for points with respect to half-
planes using O(logn) colors, which implies [8] the same result for unit disks with respect to
points. They also introduced a deterministic algorithm for points with respect to intervals
in R1 if recolorings are allowed. Their method uses at most n − logn recolorings in total;
they did not obtain a bound on the number of recolorings for an individual insertion. Note
that the results for online colorings in R2 are rather limited: for the primal version of the
problem – online CF-coloring objects with respect to points – there are essentially only
results for unit disks or unit squares (where the problem is equivalent to the dual version of
coloring points with respect to unit disks and unit squares, respectively). Moreover, most
of the results are randomized.

De Berg et al. [11] introduced the fully dynamic variant of the CF-coloring problem,
which generalizes and extends the fault-tolerant and online variants. Here the goal is to
maintain a CF-coloring under insertions and deletions. It is easy to see that if we allow
deletions and we do not recolor objects, we may need to give each object in S its own color.
Using n colors is clearly undesirable. On the other hand, recoloring all objects after each
update – using then the same number of colors as in the static case – is not desirable either.
Thus the main question is which trade-offs can we get between the number of colors and
the number of recolorings? De Berg et al. proved a lower bound on this trade-off for the
1-dimensional problem of CF-coloring intervals with respect to points. (For this case it
is straightforward to give a static CF-coloring with only three colors.) Their lower bound
implies that if we want O(1/ε) colors, we must sometimes re-color Ω(εnε) intervals, and that
if we allow only O(1) recolorings we must use Ω(logn/ log logn) colors in the worst case.
They also presented a strategy that uses O(logn) colors at the cost of O(logn) recolorings.
The main goal of our paper is to study fully dynamic CF-colorings for the 2-dimensional
version of the problem.

Our contributions. In Section 2 we give an algorithm for CF-coloring unit squares us-
ing O(logn) colors and O(logn) recolorings per update. Note that Ω(logn) is a lower bound
on the number of colors for a CF-coloring of unit squares even in the static case, so the
number of colors our fully dynamic method uses is asymptotically optimal. We also present
an adaptation for bounded-size rectangles which uses O(log2 n) colors. The method also
extends to arbitrary rectangles whose coordinates come from a fixed universe of size N ,
yielding O(log2 N log2 n) colors. Both methods still use O(logn) recolorings per update.
These constitute the first results on fully-dynamic CF-colorings in R2.

In Section 3, we give two general approaches that can be applied in many cases. The
first uses a static coloring to solve insertions-only instances.

It can be applied in settings where the static version of the problem admits a unimax
coloring with a small number of colors. The method can for example be used to maintain
a CF-coloring for pseudodisks with O(log3 n) colors and O(logn) recolorings per update, or
to maintain a CF-coloring for fat regions. This is the first result for the semi-dynamic CF-
coloring problem for such objects: previous online results for coloring objects with respect
to points in R2 only applied to unit disks or unit squares. We extend the method to
obtain a fully-dynamic solution, when the static solution allows what we call weak deletions.
We can apply this technique for instance to CF-coloring points with respect to rectangles,
using O(

√
n log2 n) colors and O(logn) recolorings per insertion and O(1) recolorings per

deletion.
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2 Dynamic CF-Colorings for Unit Squares and Rectangles

In this section we explain how to color unit squares with O(logn) colors and O(logn)
recolorings per update. We then generalise this coloring to bounded-size rectangles, and to
rectangles with coordinates from a fixed universe. We first explain our basic technique on
so-called anchored rectangles.

2.1 A Subroutine: Maintaining a CF-coloring for Anchored Rectangles
We say that a rectangle r is anchored if its bottom-left vertex lies at the origin. Let S be
a set of n anchored rectangles. We denote the x- and y-coordinate of the top-right vertex
of a rectangle r by rx and ry, respectively. Our CF-coloring of S is based on an augmented
red-black tree, as explained next.

To simplify the description we assume that the x-coordinates of the top-right vertices
(and, similarly, their y-coordinates) are all distinct – extending the results to degenerate
cases is straightforward. We store S in a red-black tree T where rx (the x-coordinate of the
top-right vertex of r) serves as the key of the rectangles r ∈ S. It is convenient to work
with a leaf-oriented red-black tree, where the keys are stored in the leaves of the tree and
the internal nodes store splitting values.1 We can assume without loss of generality that the
splitting values lie strictly in between the keys.

For a node v ∈ T , let Tv denote the subtree rooted at v and let S(v) denote the set of
rectangles stored in the leaves of Tv. We augment T by storing a rectangle rmax(v) at every
(leaf or internal) node of v, define as follows:

rmax(v) := the rectangle r ∈ S(v) that maximizes ry.

Let left(v) and right(v) denote the left and right child, respectively, of an internal node v.
Notice that rmax(v) is the rectangle whose top-right vertex has maximum y-value among
rmax(left(v)) and rmax(right(v)), so rmax(v) can be found in O(1) time from the information
at v’s children. Hence, we can maintain the extra information in O(logn) time per insertion
and deletion [9].

Next we define our coloring function. To this end we define for each rectangle r ∈ S a
set N(r) of nodes in T , as follows.

N(r) := {v ∈ T : v is the leaf storing r, or v is an internal node with rmax(right(v)) = r}.

Observe that N(r) only contains nodes on the search path to the leaf storing r and that
N(r) ∩ N(r′) = ∅ for any two rectangles r, r′ ∈ S. Let height(v) denote the height of Tv.
Thus height(v) = 0 when v is a leaf, and for non-leaf nodes v we have height(v) =
max(height(left(v)), height(right(v)) + 1. We now define the color of a rectangle r ∈ S

as col(r) := maxv∈N(r) height(v). Since N(r) always contains at least one node, namely the
leaf storing r, this is a well-defined coloring.

I Lemma 1. The coloring defined above is conflict-free.

I Theorem 2. Let S be a set of anchored rectangles in the plane. Then it is possible to
maintain a CF-coloring on S with O(logn) colors using O(logn) recolorings per insertions
and deletion, where n is the current number of rectangles in S.

1 Such a leaf-oriented red-black tree can be seen as a regular red-black tree on a set X ′(S) that contains
a splitting value between any two consecutive keys. Hence, all the normal operations can be done in
the standard way.



M. de Berg and A.Markovic 27:5

Proof. Consider the coloring method described above, which by Lemma 1 is conflict-free.
Since red-black trees have height O(logn), the number of colors used is O(logn) as well.

Now consider an update on S. The augmented red-black tree can be updated in O(logn)
time in a standard manner [9]. The color of a rectangle r ∈ S can only change when (i)
the set N(r) changes, or (ii) the height of a node in N(r) changes. We argue that this only
happens for O(logn) rectangles. Consider an insertion; the argument for deletions is similar.
In the first phase of the insertion algorithm for red-black trees [9] a new leaf is created for
the rectangle to be inserted. This may change height(v) or rmax(v) only for nodes v on
the path to this leaf, so it affects the color of O(logn) rectangles. In the second phase the
balance is restored using O(1) rotations. Each rotation changes height(v) or rmax(v) for
only O(logn) nodes, so also here only O(logn) rectangles are affected. J

2.2 Maintaining a CF-Coloring for Unit Squares
Let S be a set of unit squares. We first assume that all squares in S contain the origin.

A naive way to use the result from the previous section is to partition each square s ∈ S
into four rectangular parts by cutting it along the x-axis and the y-axis. Note that the set
of north-east rectangle parts (i.e., the parts to the north-east of the origin) are all anchored
rectangles, so we can use the method described above to maintain a CF-coloring on them.
The other part types (south-east, south-west, and north-west) can be treated similarly. Thus
every square s ∈ S receives four colors. If we now assign a final color to s that is the four-
tuple consisting of those four colors, then we obtain a CF-coloring with O(log4 n) colors.
(This trick of using a “product color” was also used by, among others, Ajwani et al. [1].)

It is possible to improve this by using the following fact: the ordering of the x-coordinates
of the top-right corners of the squares in S is the same as the ordering of their bottom-right
(or bottom-left, or top-left) corners. This implies that instead of working with four different
trees we can use the same tree structure for all part types. Moreover, even the extra
information stored in the internal nodes is the same for the north-east and north-west parts,
since the y-coordinates of the top-right and top-left vertices are the same. Similarly, the
extra information for the south-east and south-west parts are the same. Therefore, we can
modify the augmented red-black tree to store two squares per internal node instead of one:

smax(v) := the square s ∈ S(v) that maximizes sy,
smin(v) := the square s ∈ S(v) that minimizes sy.

Next we modify our coloring function. Therefore we first redefine the set N(s) of nodes for
each square s ∈ S:

N(s) := {the leaf storing s} ∪Nne(s) ∪Nse(s) ∪Nsw(s) ∪Nnw(s),

where
Nne(s) := {v ∈ T : v is an internal node with smax(right(v)) = s},
Nse(s) := {v ∈ T : v is an internal node with smin(right(v)) = s},
Nsw(s) := {v ∈ T : v is an internal node with smin(left(v)) = s},
Nnw(s) := {v ∈ T : v is an internal node with smax(left(v)) = s}.

The coloring is as follows. We now allow four colors per height-value, namely for height-
value h we give colors 4h + j for j ∈ {0, 1, 2, 3}. These colors essentially correspond to the
colors we would give out for the four part types. The color of a square s is now defined as

col(s) :=


0 if max

v∈N(s)
height(v) = 0 (s is only stored at a leaf),

4 · max
v∈N(s)

height(v) + j if max
v∈N(s)

height(v) > 0,
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where

j :=



0 if height(s) = max
v∈Nne(s)

height(v),

1 if the condition for j = 0 does not apply and height(s) = max
v∈Nse(s)

height(v),

2 if the conditions for j = 0, 1 do not apply and height(s) = max
v∈Nsw(s)

height(v),

3 otherwise (we now must have height(s) = max
v∈Nnw(s)

height(v)).

The following lemma can be proven in exactly the same was ay Lemma 1. The only addition
is that, when considering a set S(v), we need to make a distinction depending on in which
quadrant the query point q lies. If it lies in the north-east quadrant we can follow the proof
verbatim, and the other cases are symmetric.

I Lemma 3. The coloring defined above is conflict-free.

It remains to remove the restriction that all squares contain the origin. To this end we use a
grid-based method, similar to the one used by, e.g., Chen et al. [8]. Consider the integer grid,
and assign each square in S to the grid point it contains; if a square contains multiple grid
points, we assign it to the lexicographically smallest one. Thus we create for each grid point
(i, j) a set S(i, j) of squares that all contain the point (i, j). We maintain a CF-coloring
for each such set using the method described above. Note that a square in S(i, j) can only
intersect squares in S(i′, j′) when (i′, j′) is one of the eight neighboring grid points of (i, j).
Hence, when i′ = i mod 2 and j′ = j mod 2 we can re-use the same color set, and so we
only need four color sets of O(logn) colors each.

I Theorem 4. Let S be a set of unit squares in the plane. Then it is possible to maintain a
CF-coloring on S with O(logn) colors using O(logn) recolorings per insertions and deletion,
where n is the current number of squares in S.

2.3 Maintaining a CF-Coloring for Bounded-Size Rectangles
Let S be a set of bounded-size rectangles: rectangles whose widths and heights are between
1 and c for some fixed constant c. Note that in practice, two different base stations have
roughly the same coverage, hence it makes sense to assume the ratio is bounded by some
constant c.

First consider the case where all rectangles in S contain the origin. Here, the x-ordering
of the top-right corners of the rectangles may be different from the x-ordering of the top-left
corners as we no longer use unit squares. Therefore the trees for the east (that is, north-east
and south-east) parts no longer have the same structure. Note that the x-ordering of the
top-left and bottom-left corners are the same, hence only one tree suffices for the east parts,
and the same holds for the west parts. Hence, we build and maintain two separate trees,
one for the east parts of the rectangles and one for the west parts. In the east tree we only
work with the sets Nne(s) and Nse(s), and in the west tree we only work with Nsw(s) and
Nnw(s); for the rest the structures and colorings are defined in the same as before. We then
use the product coloring to obtain our bound: we give each rectangle a pair of colors – one
coming from the east tree, one coming from the west tree – resulting in O(log2 n) different
color pairs.

To remove the restriction that each rectangle contains the origin we use the same grid-
based approach as for unit squares. The only difference is that a rectangle in a set S(i, j) can
now intersect rectangles from up to (1 + 2c)2− 1 sets S(i′, j′), namely with i− c 6 i′ 6 i+ c

and j − c 6 j′ 6 j + c. Since c is a fixed constant, we still need only O(1) color sets.
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I Theorem 5. Let S be a set of bounded-size rectangles in the plane. Then it is possible to
maintain a CF-coloring on S with O(log2 n) colors using O(logn) recolorings per insertion
and deletion, where n is the current number of rectangles in S.

2.4 Maintaining a CF-Coloring for Rectangles with Coordinates from a
Fixed Universe

The solution can also be extended to rectangles of arbitrary sizes, if their coordinates come
from a fixed universe U := {0, . . . , N − 1} of size N . Again, from a practical point of view
it makes sense as in a city for instance, the places a base station can be created are limited.

To this end we construct a balanced tree Tx over the universe U , and we associate
each rectangle r = [rx,1, rx,2] × [ry,1, ry,2] to the highest node v in Tx whose x-value x(v)
is contained in [rx,1, rx,2]. Let S(v) be the set of objects associated to v. For each node
v ∈ Tx we construct a balanced tree Ty(v) over the universe, and we associate each rectangle
r ∈ S(v) to the highest node w in Ty(v) whose y-value y(w) is contained in [ry,1, ry,2]. (In
other words, we are constructing a 2-level interval tree [10] on the rectangles, using the
universe to provide the skeleton of the tree. The reason for using a skeleton tree is that
otherwise we have to maintain balance under insertions and deletions, which is hard to do
while ensuring worst-case bounds on the number of recolorings.) Let S(w) be the set of
objects associated to a node w in any second-level tree Ty(v). All rectangles in S(w) have
a point in common, namely the point (x(v), y(w)). Therefore we can proceed as in the
previous section, and maintain a CF-coloring on S(w) with a color set of size O(log2 n),
using O(logn) recolorings per insertions and deletion.

Note that for any two nodes w,w′ at the same level in a tree Ty(v), any two rectangles
r ∈ S(w) and r′ ∈ S(w′) are disjoint. Hence, over all nodes w ∈ Tx(v) we only need
O(logN) different color sets. Similarly, for any two nodes v, v′ of Tx at the same level, any
two rectangles r ∈ S(v) and r′ ∈ S(v′) are disjoint. Hence, the total number of color sets
we need is O(log2 N). This leads to the following result.

I Theorem 6. Let S be a set of rectangles in the plane, whose coordinates come from a fixed
universe of size N . Then it is possible to maintain a CF-coloring on S with O(log2 N log2 n)
colors using O(logn) recolorings per insertions and deletion, where n is the current number
of rectangles in S.

I Remark. Instead of assuming a skeleton tree and working with a fixed skeleton for our
2-level interval tree, we can also use randomized search trees. Then, assuming the adversary
doing the insertions and deletions is oblivious of our structure and coloring, the tree is expec-
ted to be balanced at any point in time. Hence, we obtain O(log4 n) colors in expectation,
at the cost of O(logn) recolorings (worst-case) per update.

3 A General Technique

In this section we present a general technique to obtain a dynamic CF-coloring scheme in
cases where there exists a static unimax coloring. (Recall that a unimax coloring is a CF-
coloring where for any point q the object from Sq with the maximum color is unique.) Our
technique results in a dynamic CF-coloring that uses O(γum(n) log2 n) colors, where γum(n)
is the number of colors used in the static unimax coloring, at the cost of O(logn) recolorings
per update. We first describe our technique for the case of insertions only. Then we extend
the technique to the fully-dynamic setting, for the case where the unimax coloring allows
for so-called weak deletions.
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We remark that even though we describe our technique in the geometric setting in the
plane, the techniques provided in this section can be applied in the abstract hypergraph
setting as well.

3.1 An Insertion-Only Solution

Let S be a set of objects in the plane and assume that S can be colored in a unimax fashion
using γum(n) colors, where γum is a non-decreasing function. Here it does not matter if S is
a set of geometric objects that we want to CF-color with respect to points, or a set of points
that we want to CF-color with respect to a family of geometric ranges. For concreteness we
refer to the elements from S as objects.

Our technique to maintain a CF-coloring under insertions of objects into S is based on the
logarithmic method [4], which is also used to make static data structures semi-dynamic. Thus
at any point in time we have dlogne+ 1 sets Si such that each set Si, for i = 0, . . . , dlogne,
is either empty or contains exactly 2i objects. The idea is to give each set Si its own color
set, consisting of γum(2i) colors. Maintaining a CF-coloring under insertions such that the
amortized number of recolorings is small, is easy (and it does not require the coloring to be
unimax): when inserting a new object we find the first empty set Si, and we put all objects in
S0∪· · ·∪Si−1 together with the new object into Si. The challenge is to achieve a worst-case
bound on the number of recolorings per insertion. Note that for the maintenance of data
structures, it is known how to achieve worst-case bounds using the logarithmic method. The
idea is to build the new data structure for Si “in the background” and switch to the new
structure when it is ready. For us this does not work, however, since we would still need
many recolorings when we switch. Hence, we need a more careful approach.

When moving all objects from S0 ∪ · · · ∪ Si−1 (together with the new object) into Si,
we do not recolor them all at once but we do so over the next 2i insertions. As long as we
still need to recolor objects from Si, we say that Si is in migration. We need to take care
that the coloring of a set that is in migration, where some objects still have the color from
the set Sj they came from and others have already received their new color in Si, is valid.
For this we need to recolor the objects in a specific order, which requires the static coloring
to be unimax as explained below. Another complication is that, because the objects in Sj

that are being moved to Si still have their own color, we have to be careful when we create
a new set Sj . To avoid any problems, we need several color sets per set. Next we describe
our scheme in detail.

As already mentioned, we have sets S0, . . . , S`, where ` := dlogne. Each set can be in
one of three states: empty, full, or in migration. For each i with 0 6 i 6 ` we have `− i+ 1
color sets of size γum(2i) available, denoted by C(i, t) for 0 6 t 6 `− i. The insertion of an
object s into S now proceeds as follows.
1. Let i be the smallest index such that Si is empty. Note that i might be `+ 1, in which

case we introduce a new set and redefine `. Note that this only happens when the number
of objects reaches a power of 2.

2. Set Si := {s}∪S0∪· · ·∪Si−1. Mark S0, . . . , Si−1 as empty, and mark Si as in migration.
3. Take an unused color set C(i, t) – we argue below that at least one color set C(i, t) with

0 6 t 6 `−i is currently unused – and compute a unimax coloring of Si using colors from
C(i, t). We refer to the color from C(i, t) that an object in Si receives as its final color
(for the current migration). Except for the newly inserted object s, we do not recolor
any objects to their final color in this step; they all keep their current colors.
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4. For each set Sk in migration – this includes the set we just created in Step 3 – we recolor
one object whose final color is different from its current color and whose final color is
maximal among such objects. When multiple objects share that property, we arbitrarily
choose one of them. If all objects in Sk now have their final color, we mark Sk as full.

I Lemma 7. Suppose that when we insert an object s into S, the first empty set is Si. Then
the sets S0, . . . , Si−1 are full.

Proof. Suppose for a contradiction that Sj , for some 0 6 j < i is in migration. Consider
the last time at which Sj was created – that is, the last time at which we inserted an object
s′ that caused the then-empty set Sj to be created and marked as in migration. Upon
insertion of s′, we already perform one recoloring in Sj . At that point all sets S0, . . . , Sj−1
were marked empty and it takes

∑j−1
t=0 2t = 2j − 1 additional insertions to fill them, giving

us as many recolorings in Sj . Thus before we create any set Si with i > j, we have already
marked Sj as full. Since s′ was the last object whose insertion created Sj , by the time we
create Si the set Sj must still be full – it cannot in the mean time have become empty and
later be re-created (and thus be in migration). J

Next we show that in Step 3 we always have an unused color set at our disposal.

I Lemma 8. When we create a new set Si in Step 3, at least one of the color sets C(i, t)
with 0 6 t 6 `− i is currently unused.

Proof. Consider a color set C(i, t). The reason we may not be able to use C(i, t) when we
create Si is that there is a set Si′ with i′ > i that is currently in migration: the objects from
a previous instance of Si (that were put into Si′ when we created Si′) may not all have been
recolored yet. By Lemma 7 this previous instance was full when it was put into Si′ and so
it only blocks a single color set, namely one for Si. Thus the number of color sets C(i, t)
currently in use is at most `− i. Since we have `− i+ 1 such colors sets at our disposal, one
must be unused. J

I Theorem 9. Let F be a family of objects such that any subset of n objects from F admits a
unimax coloring with γum(n) colors, where γum(n) is non-decreasing. Then we can maintain
a CF-coloring on a set S of objects from F under insertions, such that the number of used
colors is O(γum(n) log2 n) and the number of recolorings per insertion is at most dlogne,
where n is the current number of objects in S.

Proof. The number of colors used is
∑`

i=0(` − i + 1)γum(2i), where ` = dlogne. Since
γum(n) is non-decreasing, this is bounded by O(γum(n) log2 n). The number of recolorings
per insertion is at most one per set Si, so at most dlogne in total. (The total number of
sets is actually dlogne+ 1, but not all of them can be in migration.)

It remains to prove that the coloring is conflict-free. Consider a point q ∈ R2. (Here we
use terminology from CF-coloring of objects with respect to points. In the dual version, q
would be a range.) Let Si be a set containing an object s with q ∈ s; if no such set exists
there is nothing to prove.

If Si is full then it has a unimax coloring using a color set C(i, t) not used by any other
set Sj . Hence, there is an object containing q with a unique color.

Now suppose that Si is in migration. We have two cases: (i) q is contained in an object
from Si that has already received its final color, (ii) all objects in Si containing q still have
their old color.

In case (i) the object containing q with the highest final color must have a unique color,
because of the following easy-to-prove fact.
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I Fact. Consider any set A colored with a unimax coloring. Let z be an integer, and let
B ⊆ A be a subset that contains all objects of color greater than z, some objects of color z,
and at most one other object. Then the coloring of B is unimax.

This fact proves the statement above for case (i), because we recolor the objects in
decreasing order of their colors and the coloring we are migrating to is a unimax coloring.
(The “at most one other object” mentioned in the fact is needed because the object that
caused the migration immediately receives its color, and this color needs not be the highest
color.)

In case (ii), q is contained in an object from some old set Sj with j < i. At the time we
created Si this set Sj was CF-colored, and since we did not yet recolor any object from Sj

that contains q – otherwise we are in case (i) – we conclude that q is contained in an object
with a unique color. J

Application: Objects with Near-Linear Union Complexity. Har-Peled and Smorodin-
sky [15] proved that any family of objects with linear union complexity (for example disks,
or pseudodisks) can be colored in a unimax fashion using O(logn) colors. In fact, their
result is more general: if the union complexity is at most n · β(n) then the number of colors
is O(β(n) logn). Note that for disks and pseudodisks we have β(n) = O(1), for fat triangles
we have β(n) = O(log∗ n) [2] and for locally fat objects we have β(n) = O(2O(log∗ n)) [2].
This directly implies the following result.

I Corollary 10. Let F be a family of objects such that the union complexity of any subset
of n objects from F is at most nβ(n). Then we can maintain a CF-coloring on a set S of
objects from F under insertions, such that the number of used colors is O(β(n) log3 n) and
the number of recolorings per insertion is O(logn), where n is the current number of objects
in S.

3.2 A Fully-Dynamic Solution
We now present a generalisation of our method to the fully-dynamic case. For lack of space
we only give a brief sketch; details can be found in the full version [12]. As before, we assume
we have a family F of objects such that any set of n objects from F can be unimax-colored
with γum(n) colors. We further assume that such a coloring admits weak deletions: once we
have colored a given set S of n0 objects using γum(n0) colors, we can delete objects from it
using r(n0) recolorings per deletion such that the number of colors never exceeds γum(n0).
The functions γum(n) and r(n) are assumed to be non-decreasing.

The insertions in this method are similar to those in the semi-dynamic solution, except
that now a set Si can be in four states: empty, non-empty, in upwards migration, and in
downwards migration. It is worth pointing out that the upwards migrations are very similar
to the migrations of the previous section, and that only S` (i.e., the last set) can be in down-
wards migration. The deletion procedure makes use of the weak deletions. Furthermore,
since now a set Si can have less than 2i elements due to deletions, we need to make sure the
number of set stays logarithmic. To that purpose, we make sure that the last set is at least
half full. When this is no longer true, we combine the last three sets using a downwards
migration, which is similar to the upwards migration. The details are fairly intricate and
can be found in the full version [12]. We obtain the following theorem.

I Theorem 11. Let F be a family of objects such that any subset of n objects from F
admits a unimax coloring with γum(n) colors and that allows weak deletions at the cost of
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r(n) recolorings, where γum(n) and r(n) are non-decreasing. Then we can maintain a CF-
coloring on a set S of objects from F under insertions and deletions, such that the number
of used colors is O(

∑k
i=0 γum(2i) logn), where k = Θ(logn). The number of recolorings per

insertion is O(logn), and the number of recolorings per deletion is O(r(8n) + 1), where n is
the current number of objects in S.

Application: Points with Respect to Rectangles. We now make use of Theorem 11 to
maintain a CF-coloring of points with respect to rectangles. But first we present a simple
technique to color points with respect to intervals in R1, which we use as a subroutine.

I Lemma 12. We can maintain a unimax coloring of n points in R1 with respect to intervals
under deletions, using dlogn0e colors and at the cost of one recoloring per deletion. Here n0
is the initial number of points.

Proof. We start with a static unimax coloring of points with respect to intervals using
dlogn0e colors [18]. Recoloring after deleting a point p with color i is done as follows. If
both neighbors of p have a higher color then we do nothing, otherwise we pick a neighbor
with color smaller than i and recolor it to i. To prove the coloring stays unimax we only
need to consider intervals I containing a neighbor of p. Now consider I ∪ {p}. If before the
deletion the maximum color was larger than i then that color is still present and unique.
Otherwise i was the unique maximum color. Now either I contains a neighbor of p that
was recolored to i, or no point in I was recolored; in both cases the maximum color in I is
unique. J

Let now S be a set of points in the plane and F be the family of all rectangles in the plane.
The following lemma shows how to perform weak deletions.

I Lemma 13. There is a conflict free coloring of n points with respect to rectangles us-
ing O(

√
n logn) colors that allows weak deletions at the cost of one recoloring per deletion.

Proof. We first partition the point set into at most
√
n subsets such that each set is mono-

tone using Dilworth’s theorem [13]. Then, each point set behaves exactly as points with
respect to intervals in one dimension. We can then apply Lemma 12 to finish the proof. J

I Corollary 14. Let S be a set of points in the plane and F be a family of rectangles. Then
we can maintain a CF-coloring on S under insertions and deletions such that the number of
used colors is O(

√
n log2 n) and the number of recolorings per insertion is O(logn) and O(1)

per deletion, where n is the current number of objects in S.

4 Concluding Remarks

We studied the maintenance of a CF-coloring under insertions and deletions, presenting the
first fully-dynamic solution for objects in R2. We showed how to maintain a CF-coloring
for unit squares and for bounded-size rectangles, with O(logn) resp. O(log2 n) colors and
O(logn) recolorings per update. The method extends to arbitrary rectangles with coordin-
ates from a fixed universe of size N , yielding O(log2 N log2 n) colors and O(logn) recolorings
per update. We also presented general techniques for the semi-dynamic (insertions-only)
and the fully-dynamic case (insertions and deletions). Our insertions-only technique can
be applied to objects with near-linear union complexity, giving for instance a CF-coloring
of O(log3 n) colors for pseudodisks using O(logn) recolorings per update. Our fully-dynamic
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solution applies to any class of object on which weak deletions are possible, giving for in-
stanct a CF-coloring of O(

√
n log2 n) colors for points with respect to rectangles at the cost

of O(logn) recolorings per insertion and O(1) recolorings per deletion.
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Abstract
We study hierarchical clusterings of metric spaces that change over time. This is a natural geo-
metric primitive for the analysis of dynamic data sets. Specifically, we introduce and study the
problem of finding a temporally coherent sequence of hierarchical clusterings from a sequence of
unlabeled point sets. We encode the clustering objective by embedding each point set into an ul-
trametric space, which naturally induces a hierarchical clustering of the set of points. We enforce
temporal coherence among the embeddings by finding correspondences between successive pairs
of ultrametric spaces which exhibit small distortion in the Gromov-Hausdorff sense. We present
both upper and lower bounds on the approximability of the resulting optimization problems.
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1 Introduction

Clustering is a primitive in data analysis which simultaneously serves to summarize data
and elucidate its hidden structure. In its most common form a clustering problem consists of
a pair (P, k), where P is a metric space, and k indicates the desired number of clusters. The
goal of the problem is to try to find a partition of the points of P into k sets such that some
objective is minimized. Because of the fundamental nature of such a primitive, clustering
enjoys broad application in a variety of settings and an extensive body of work exists to
explain, refine, and adapt its methodology [3, 8, 12, 14, 18, 19].

Having to decide the number of clusters in advance can be a source of difficulty in practice.
When faced with this problem, one common approach is to use hierarchical clustering to
produce a parameter free summary of the input. That is, instead of producing a single
partition of the input points, the goal is to find a rooted tree (called a dendrogram) where
the leaves are the points of P and the internal nodes of the tree indicate the distance at
which its subtrees merge.
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a b c d e
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Figure 1 The dendrogram of an ultrametric, (U, µ), on points {a, b, c, d, e}. The points of µ are
the leaves of the dendrogram (height 0). The distance between two points x, y ∈ U is given by the
height of their lowest common ancestor, lca(x, y), that is at µ(x, y). The dashed cut at r induces
a natural clustering {{a}, {b, c}, {d, e}} of the points of U by grouping points which belong to the
same subtree. Each of these groups are contained in disjoint balls of radius r.

We aim to address the analogous question of how to avoid having to decide the number
of clusters in advance in the case of dynamic data. Here, we adopt the temporal clustering
framework of [9, 10]. In this framework, the input is a sequence of clustering problems, and
the goal is to ensure that the solutions of successive instances remain close according to
some objective. This differs from incremental [2, 7] and kinetic clustering [1, 4, 15, 17] in
that there is no constraint that the clustering instances in the input must be incrementally
related. Further, an optimal sequence of spatial clusterings is not automatically a low cost
solution to the temporal clustering instance.

In this paper we present a natural adaptation of hierarchical clustering to the temporal
setting. We study the problem of finding a temporally coherent sequence of hierarchical
clusterings from a sequence of unlabeled point sets. Our goal is to produce a sequence of
hierarchical clusterings (dendrograms) corresponding to each set of points in the input such
that successive pairs of clusterings have similar dendrograms. We show that the corresponding
optimization problem is NP-hard. However, a polynomial-time approximation algorithm
exists when the metric spaces in the input are taken from a common ambient metric space.
We explore the properties of this algorithm and find that it is unstable under perturbations
of the metric. We then show how to restore stability with only a slight loss in the guarantee.

Problem formulation
An idea used in this paper is that we may hierarchically cluster a metric space by trying to
find a low distortion embedding of it into an ultrametric. An ultrametric is a metric space
which satisfies a stronger version of the triangle inequality. Formally, an ultrametric space is
a metric space U = (X,µ) such that µ(x, z) ≤ max{µ(x, y), µ(y, z)}, for all x, y, z ∈ X.

Ultrametric spaces have interesting geometry. For instance, in an ultrametric all points
contained in a ball of radius r are centers of the ball. That is, for any q ∈ BU (p; r), we have
BU (q; r) = BU (p; r), where BM (p; r) denotes the ball of radius r about a point p in a metric
space M . Further, given any pair of balls B ⊆ U , B′ ⊆ U with non-empty intersection, one
has B ⊆ B′ or B′ ⊆ B. This simple fact implies that any ultrametric space has the structure
of a tree where items in a common subtree are close. That is, an ultrametric induces a
natural hierarchical clustering, commonly depicted as a dendrogram (see Figure 1).

Similarity of dendrograms. For dendrograms over sets of points with identical labelings
there is a natural dissimilarity measure given by comparing the merge heights for any pair of
corresponding points. Namely, maxu,u′∈P |h1(u, u′)− h2(u, u′)|, where h1, and h2 give the
merge heights for a respective pair of dendrograms.
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One immediate obstacle to adopting this formalization is that our model does not require
that the sets of points comprising the input have the same cardinality. For this reason, we
take the point of view that two dendrograms are similar if there exists a correspondence
between their leaves such that the merge heights of corresponding points are close. Formally,
a correspondence between U and V is a relation C ⊆ U ×V such that πU (C) = U , πV (C) = V .
Here, πU , πV denote the canonical projections of U × V to U and V (respectively). Further
we use the notation Corr(U, V ) to denote the set of correspondences between U , V . Given
a correspondence C between two sets of points P1, P2, we have the following dissimilarity
measure which accounts for differences in the merge heights of a pair of dendrograms under a
correspondence C. This measure is called the distortion [5], or the merge distortion distance
with respect to C [12], and is given by dis(h1, h2; C) := max(u,v),(u′,v′)∈C |h1(u, u′)−h2(v, v′)|.

Generalized version. Our goal, then, is not only to output a sequence of hierarchical
clusterings corresponding to the point sets of the input, but also to produce an interstitial
sequence of low distortion correspondences linking successive pairs of dendrograms. We
quantify the extent to which an ultrametric faithfully represents an input metric space under
the `∞ norm. Specifically, let U = (P, dU ), V = (P, dV ) be a pair of finite pseudometric
spaces on the same set of points. We define L∞(U, V ) = maxp,p′∈P |dU (p, p′)− dV (p, p′)|. In
other words, a pseudometric space V is a good fit for U (and vice-versa) whenever L∞(U, V )
is small.

Let M := (X, d) be a pseudometric space. If for any u, v, w ∈ X, we have d(u, v) ≤
max{d(u,w), d(w, v)} then we say that d is a pseudo-ultrametric andM is a pseudo-ultrametric
space. We now formally define this general version of the problem.

I Definition 1 (Temporal Hierarchical Clustering (Generalized Version)). LetM := {Mi}ti=1 be
a sequence of metric spaces, where for each i ∈ [t], Mi = (Pi, ·), and let χ, ρ ∈ R≥0. The goal
of the Generalized Temporal Hierarchical Clustering problem is to find a sequence
of pseudo-ultrametric spaces, {Ui := (Pi, µi)}ti=1 and a sequence of correspondences {Ci}t−1

i=1,
where for each i ∈ [t], we have L∞(Mi, Ui) ≤ χ, and for any i ∈ [t− 1], Ci ∈ Corr(Pi, Pi+1)
with dis(µi, µi+1; Ci) ≤ ρ. Such a clustering is called a Generalized (χ, ρ)-Clustering of
M.

We show in Section 4 that the Generalized Hierarchical Temporal Clustering
problem is NP-hard.

Local version. Absent the ambient metric space, the above notion of distortion would be
sufficient to capture the intuitive idea that consecutive hierarchical clusterings should be close.
However, it is easy to produce examples where symmetries in the input permit low-distortion
correspondences which are manifestly non-local in the ambient space. Thus it makes sense
to further require that any correspondence be local in the ambient metric. We say that a
correspondence C is δ-local provided that max(u,v)∈C d(u, v) ≤ δ, where d is the distance in
the ambient space.

We now formalize this version of the problem. Here, the input P := {Pi}ti=1, consists
of a sequence of unlabeled, finite, non-empty subsets of a metric space M . We call such
a sequence a temporal-sampling of M of length t, and refer to individual elements of the
sequence (Pi for some i ∈ [t]) as a level of P (see [9, 10]). The size of P is simply the sum
of the number of points in each level of P , that is

∑t
i=1 |Pi|. Let M = (X, d) be a metric

space. For any P ⊆ X we use the notation M [P ] to denote the restriction of M to P , that
is, M [P ] = (P, d

∣∣
P

). We have the following definition:
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Figure 2 A δ-contiguous 4-labeling of P1, P2 ⊂ R2, P1 = {u1, u2, u3}, P2 = {v1, v2, v3}. Balls of
radius δ are drawn about the points of P1. Note that the labels used by points of P2 “come from”
points of P1 which are δ-close, demonstrating condition 2 of Definition 3. The symmetric condition
also holds. Further note that there is no requirement that |P1| = |P2|.

I Definition 2 (Temporal Hierarchical Clustering (Local Version)). Let P := {Pi}ti=1 be a
temporal-sampling over a metric spaceM = (X, d), and let χ, δ ∈ R≥0. The goal of the Local
Temporal Hierarchical Clustering problem is to find a sequence of pseudo-ultrametric
spaces, {Ui}ti=1, where for each i ∈ [t], Ui = (Pi, ·), and L∞(M [Pi], Ui) ≤ χ, together with
a sequence of correspondences {Ci}t−1

i=1 where for any i ∈ [t − 1], Ci ∈ Corr(Pi, Pi+1) with
max(u,v)∈Ci

d(u, v) ≤ δ. Such a clustering is called a Local (χ, δ)-Clustering.

While the general version of the problem is NP-hard, the local version is trivial and
can be computed in O(n2)-time by computing a correspondence minimizing the Hausdorff
distance for each pair of successive levels. We highlight this problem for expository purposes
as well as a prelude to a labeled version of the problem.

This version of the problem is further of interest in that it can be used to approximate
the general version such that the resulting distortion is bounded in terms of χ, and δ. We
discuss this topic further in Section 4.

Labeled version. There are already several drawbacks with previous versions of the problem
in regard to making concrete cluster assignments. In particular it is unclear how to coherently
assign cluster labels to points given a correspondence. Moreover, we must account for the
fact that the number of points can vary across levels. Taking the point of view that a good
labeling is one in which labels in successive levels remain close, we opt to allow points to
be given multiple labels. Doing so affords us additional bookkeeping to help ensure that
labelings for near by levels remain local, even across levels which require relatively few labels.

To this end, given a set P , a k-labeling of P is a function L : P → 2[k] such that
{L(p) : p ∈ P} is a partition of [k]. Informally, we say two labelings are δ-contiguous if the
copies of the same label in a pair of assignments are no farther than δ. We have the following
definition:

I Definition 3. Given a pair of sets P1, P2 of points from a metric space M , and a pair
k-labelings L1, L2 of P1, P2 (respectively), we say that L1 and L2 are δ-contiguous in M if
1. for all u ∈ P1, L1(u) ⊆

⋃
v∈BM (u,δ)∩P2

L2(v),
2. for all v ∈ P2, L2(v) ⊆

⋃
u∈BM (v,δ)∩P1

L1(u).
See Figure 2 for an example.

Since points can be multi-labeled, we need a tie-breaking rule to determine which label
applies. By convention we take the label of any set of points to be the smallest label among
all labels of points in the set. Moreover, a good solution should never use more than n labels
on an input of size n. We are now ready to define the main version of the problem.
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I Definition 4 (Temporal Hierarchical Clustering). Let P := {Pi}ti=1 be a temporal-sampling
of size n over a metric space M with distance, d, and let χ, δ ∈ R≥0. The goal of the
Temporal Hierarchical Clustering problem is to find a sequence of pseudo-ultrametric
spaces, {Ui}ti=1, such that for any i ∈ [t], L∞(M [Pi], Ui) ≤ χ, and a sequence of k-labelings,
{Li}ti=1, for k ≤ n, such that for any i ∈ [t− 1], Li, Li+1 are δ-contiguous. Such a clustering
is called a Labeled (χ, δ)-Clustering.

Overview. In Section 2 we show how to find an optimal solution to the local version of the
problem in O(n2)-time. Then, in Section 3, we give an O(n3)-time algorithm which converts
any Local (χ, δ)-Clustering into a Labeled (χ, δ)-Clustering. This combined with
Section 2 implies an optimal solution for the labeled version of the problem. In Section 4
we show that the general version is NP-hard, but observe that the local version provides an
approximate solution in the special case where the inputs comes from a common metric space.
In Section 5 we show that the optimal algorithms are unstable with respect to perturbations
of the metric, and how to ensure stability by changing the ultrametric construction. Last,
Section 6 contains an experiment.

2 Local Version

In this section we present a straightforward solution to the local version of temporal hierar-
chical clustering in O(n2)-time. We are not directly interested in the solution of this problem.
Instead, this section serves as a prelude to solving the labeled version.

Algorithm. The algorithm is trivial. Let A be a scheme for finding the `∞-nearest ultra-
metric to a metric. For each set of points in the input we use A to find an ultrametric.
To compute correspondences between successive levels Pi, Pi+1, we add all pairs of points
(u, v) ∈ Pi × Pi+1 such that u and v are at a distance of at most the Hausdorff distance of
Pi, Pi+1. Formally, the algorithm takes a temporal-sampling P = {Pi}ti=1 of a metric space
M as input and consists of the following steps:
Step 1: Fitting by ultrametrics. For each i ∈ [t], find an ultrametric Ui = A(M [Pi])
near to M [Pi] via a chosen scheme.

Step 2: Build correspondences. For each i ∈ [t− 1], compute
Ci = {(u, v) ∈ Pi × Pi+1 : d(u, v) ≤ dMH (Pi, Pi+1)}. Here, dMH denotes the Hausdorff
distance in the ambient metric space.

Step 3: Return
(
{Ui}ti=1, {Ci}

t−1
i=1
)
.

Analysis. Let n denote the size of the temporal sampling. In this section we argue that the
above algorithm returns an optimal solution in O(n2) time, provided that it is equipped with
a scheme for finding the `∞-nearest ultrametric to an n-point metric space in O(n2)-time.
The following theorem ensures that one exists.

I Theorem 5 (Farach-Colton Kannan Warnow [13]). Let M be an n-point metric space and
let U(M) denote the set of ultrametrics on the points of M . There exists an O(n2)-time
algorithm which finds arg minU∈U(M) L

∞(U,M).

We are now ready to prove the main theorem of this section.

I Theorem 6. Let P be a temporal-sampling of size n which admits a Local (χ, δ)-
Clustering. There exists an O(n2)-time algorithm returning a Local (χ, δ)-Clustering.

ISAAC 2017
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Proof. Let t denote the length of P , and M the ambient metric space. Run the algorithm of
Section 2 where A is the algorithm of Farach-Colton, Kannan, and Warnow [13]. Let {Ui}ti=1
denote the pseudo-ultrametrics in the output. By Theorem 5, χ′ = maxi∈[t] L

∞(Ui,M [Pi]) ≤
χ, as otherwise χ > χ′ would imply that for some level i ∈ [t], the algorithm of Theorem 5
fails to return an `∞-nearest ultrametric to Pi.

Let δ′ = maxi∈[t−1] d
M
H (Pi, Pi+1). We now argue that δ′ is smallest possible in the

sense that P admits a Local (χ′, δ′)-Clustering, but does not admit an Local (χ, δ)-
Clustering for any χ, when δ < δ′. Let Γ := {δ : P admits a Local(·, δ)−Clustering}.
First we show δ′ ≤ inf Γ. Fix any Local (·, δ)-Clustering, and let {Ci}t−1

i=1 be the associated
sequence of δ-local correspondences. Fix some 1 ≤ i < t and some p ∈ Pi. Since Ci is a
correspondence, πPi(Ci) = Pi, and thus there exists q ∈ Pi+1 such that (p, q) ∈ Ci. Since
Ci is δ-local it holds that d(p, q) ≤ δ, and we conclude d(p, Pi+1) ≤ δ. An analogous
argument for q ∈ Pi+1 implies d(Pi, q) ≤ δ. Thus, for 1 ≤ i < t, δ′ ≤ dMH (Pi, Pi+1) =
max

(
maxp∈Pi

d(p, Pi+1),maxq∈Pi+1 d(Pi, q)
)
≤ δ. Now we argue that δ′ is feasible. Fix

1 ≤ i < t. Since dH(Pi, Pi+1) ≤ δ′ it holds that for every point p ∈ Pi there exists qp ∈ Pi+1
such that d(p, qp) ≤ δ′. Construct a set C+

i = {(p, qp) : p ∈ Pi, qp ∈ Pi+1, and d(p, qp) ≤ δ′}.
Analogously construct a set C−i = {(pq, q) : q ∈ Pi+1, pq ∈ Pi, and d(pq, q) ≤ δ′}. The set
Ci := C+

i ∪ C
−
i is thus a δ′-local correspondence between Pi, Pi+1. Thus, it follows that

δ′ ∈ Γ.
The preceding two paragraphs show that the result is a Local (χ, δ)-Clustering. It

only remains to show the algorithm runs in O(n2)-time. Let ni = |Pi| for i ∈ [t]. Step 1 takes
O(n2)-time as finding the `∞-nearest ultrametric for level i can be done in O(n2

i )-time by
Theorem 5. Computing the inter-level Hausdorff distance and building the correspondence
for level i in Step 2 can both be done in O(n2

i )-time, for a total of O(n2)-time over all. J

3 Labeled Version

In this section we show how to convert a Local (χ, δ)-Clustering into a Labeled (χ, δ)-
Clustering in O(n3)-time by transforming a sequence of δ-local correspondences into a
sequence of pairwise δ-contiguous labelings.

Network flow. Drawing upon an idea in [9, 10], we employ minimum cost feasible flow
to find a δ-contiguous labeling with few labels. Formally, we construct the flow instance
as follows: Let P = {Pi}ti=1 be a temporal-sampling. Given the δ-local correspondences
of a Local (·, δ)-Clustering, {Ci}t−1

i=1, the following construction transforms P into a
flow network, F := F ({Ci}t−1

i=1), such that corresponding points in successive levels are
connected by a directed edge which points to the higher indexed level. Moreover, a source, s,
connects to each of the points in the first level, while the sink s′ is the target of a directed
edge from each point in Pt. Formally, let Vi(P ) = {(i, v) : v ∈ Pi}. For i ∈ [t − 1], let
Ei(P ) ⊆ Vi(P )× Vi+1(P ) such that ((i, u), (i+ 1, v)) ∈ Ei(P ) if and only if (u, v) ∈ Ci. The
vertices of F consist of s, s′, and the contents of V1(P ), . . . , Vt(P ). The edges of F consist of
the union of {s} × V1(P ), Vt(P ) × {s′}, and

⋃t−1
i=1 Ei(P ). Specifically, we seek an integral

flow with minimum flow value such that the in-flow of each vertex of
⋃t
i=1 Vi(P ) is at least

one.

Algorithm. The main idea is to view each correspondence as a bipartite graph. We
concatenate the sequence of correspondences together by merging overlapping vertices. This
allows us to interpret the sequence of correspondences as a graph. Our goal is then to
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decompose this graph into a path cover of small size, which we do by solving a flow instance.
Since this graph only contains edges between points which are close, the resulting labeling
will be contiguous. Formally, we perform the following steps:
Step 1: Constructing a flow instance. Given a sequence of δ-local correspondences of
a Local (·, δ)-Clustering, construct the minimum flow instance F := F ({Ci}t−1

i=1) as
defined above.

Step 2: Solve the flow instance. Find a minimum cost integral flow f in F .
Step 3: Decompose the flow. Greedily extract unit flows from f to construct a list of

paths {τi}ki=1.
Step 4: Construct label functions. Build label functions L1, . . . , Lt by initializing each

to the empty set. Next, for each τj ∈ {τi}ki=1, denote τj as the t point sequence p1, . . . , pt.
Append label j to L1(p1), . . . , Lt(pt).

Step 5: Output. Return the labelings L1, . . . , Lt.

Analysis. In this section we show that the above algorithm finds an optimal solution in
O(n3)-time on temporal samplings of size n. To this end we now argue that the above
network flow instance is feasible.

I Lemma 7. Let P = {Pi}ti=1 be a temporal-sampling. Given the δ-local correspondences
of a Local (·, δ)-Clustering, {Ci}t−1

i=1, the flow instance F := F ({Ci}t−1
i=1) is feasible with

value at most n.

Proof. For any 1 ≤ i ≤ t, any point p ∈ Pi can be extended to a path from P1 to Pt, by
iteratively extending the ends of the path via the correspondences. Construct a feasible flow
f by initializing f to be zero everywhere. Greedily extend points receiving no flow to paths
from P1 to Pt in the described manner, and increase the flow value of f along the path by 1.
It follows that f remains integral and satisfies all lower bounds of F . Since we flow at most 1
unit of flow per point of P , the value of f is at most n. J

The next theorem shows that the algorithm outputs an optimal clustering.

I Theorem 8. Let P be a temporal-sampling of size n. There exists an O(n3)-time algorithm
which is guaranteed to output a Labeled (χ, δ)-Clustering of P , for any χ, δ such that P
admits a Labeled (χ, δ)-Clustering.

Proof. Let t be the length of P . Run the algorithm of Section 2 on P . Since P admits
a Labeled (χ, δ)-Clustering, it also admits a Local (χ, δ)-Clustering where for any
1 ≤ i < t, the i-th correspondence is given by Ci = {(u, v) : (u, v) ∈ Pi × Pi+1, Li(u) ∩
Li+1(v) 6= ∅}. Thus, by Theorem 6, we are guaranteed a Local (χ, δ)-Clustering in
O(n2)-time. Let {Ci}t−1

i=1 be its δ-local correspondences, and run the above algorithm on it.
By Lemma 7, the flow instance F := F ({Ci}t−1

i=1) is feasible with value at most n. Using an
algorithm of Gabow & Tarjan [16], we can solve F in O(n3)-time, yielding an integral flow f .
Again in O(n3)-time, we decompose f into a collection of unit flows {τj}kj=1, for some k ≤ n,
which we interpret as paths from P1 to Pt.

We now verify that the sequence of label functions output by the algorithm is indeed a
δ-contiguous k-labeling for some k ≤ n. For any i ∈ [t], and any j ∈ [k] let τj(i) denote the
i-th vertex in the j-th path. Recall that for each i ∈ [t], we assign each point u ∈ Pi the set
of labels Li(u) = {j : j ∈ [k], u = τj(i)}. Note that each label in [k] is used at most once
per level since for any j, i ∈ [t], τj(i) is the only place where τj intersects Pi. Also, since
each τj intersects all levels i ∈ [t], each label is used at least once per level. It follows that
{Li(u) : u ∈ Pi} is a partition of [k]. Finally, since the edges of F correspond to points that
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are separated by at most δ in the ambient space, any two uses of the label j ∈ [k] for some
i ∈ [t− 1] occur within d(τj(i), τj(i+ 1)) ≤ δ. Thus the corresponding sequence of k-labelings
is indeed pairwise δ-contiguous. J

4 Generalized Version

In this section we show that the generalized version problem is NP-hard. However, we argue
that for the special case where the points of the input share a (known) common ambient
metric, the algorithm of Section 2 gives an approximate solution. It remains an open question
as to how to find an approximate solution in polynomial-time when there is no ambient
metric (or it is unknown).

NP-hardness. Let G = (V,E) be an instance of 3-coloring. We construct an instance of
Generalized Temporal Hierarchical Clustering,M(G), consisting of two levels. For
the first level let P = {r, g, b} be a set of three points, and let dP be a metric on P such that
distinct p, p′ ∈ P have dP (p, p′) = 2. Denote the corresponding metric space MP := (P, dP ).
For the second level we construct a metric space MV := (V, dV ), where dV : V × V → R≥0,
such that

dV (u, v) =


2 if {u, v} ∈ E
1 if {u, v} 6∈ E and u 6= v,

0 otherwise.

I Lemma 9. If G admits a 3-coloring requiring 3 colors, thenM(G) admits a Generalized
(1, 0)-Clustering.

Proof. Fix a 3-coloring of G = (V,E). We will exhibit a pair of pseudometric spaces and
a 0-distortion correspondence between them. For the first space let UP = (P, µP ) be a
uniform metric space where distinct points are at a distance of 1. Note that L∞(MP , UP ) =
maxu,u′∈P |dP (u, u′)−µP (u, u′)| = 1, since for any distinct u, u′ ∈ P , |dP (u, u′)−µP (u, u′)| =
|2− 1| = 1.

We will use the points of P to denote the color class of v ∈ V . Fix c : V → P be such
that c(v) = c(v′) if and only if v, v′ share the same color class. Let UV = (V, µV ) be the
pseudometric space where for any v, v′ ∈ V , µV (v, v′) = 1 if and only if c(v) 6= c(v′), and
µV (v, v′) = 0 otherwise. We now bound L∞(MV , UV ) by considering |dV (v, v′)− µV (v, v′)|
for an arbitrary pair v, v′ ∈ V . Since µV (v, v) = dV (v, v) = 0 for any v ∈ V , only distinct
v, v′ can contribute to the distortion. Suppose {v, v′} ∈ E, then c(v) 6= c(v′) and thus
|dV (v, v′) − µV (v, v′)| = |2 − 1| = 1. Otherwise, {v, v′} 6∈ E, and dV (v, v′) = 1 while
µV (v, v′) ≤ 1 so that |dV (v, v′)− µV (v, v′)| ≤ 1. Thus L∞(MV , UV ) ≤ 1.

Last, let C = {(p, v) ∈ P × V : c(v) = p}. We now verify that C is a 0-distortion
correspondence. To see that C ∈ Corr(P, V ), note that πP (C) = P since G requires 3
colors, and πV (C) = V since every vertex v ∈ V belongs to a color class. Finally, to bound
dis(µP , µV ; C) note that for any (p, v), (p′, v′) ∈ C, either p = p′ and |µP (p, p′)− µV (v, v′)| =
|µV (v, v′)| = 0 (since c(v) = c(v′)), or p 6= p′ and |µP (p, p′)− µV (v, v′)| = |1− 1| = 0. J

I Lemma 10. If G does not admit a 3-coloring, thenM(G) does not admit a Generalized
(2, 0)-Clustering.

Proof. Let (V,E) = G. Fix a Generalized (χ, 0)-Clustering ofM(G) for some χ < 2
consisting of ultrametrics UP = (P, µP ), UV = (V, µV ), and a 0-distortion correspondence
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C ∈ Corr(P, V ). We first argue that the points of P are separated. Let p, p′ ∈ P , p 6= p′.
If µP (p, p′) = 0 then L∞(MP , UP ) ≥ |µP (p, p′) − dP (p, p′)| = |0 − 2| = 2. Thus χ ≥ 2, a
contradiction.

Now fix a map c : V → P , such that for any v ∈ V , c(v) = p such that (p, v) ∈ C.
First we argue that c is indeed a function by showing that for any v ∈ V , v corresponds
to exactly one point in P . To see why observe that given any (p, v), (p′, v) ∈ C with p 6= p′

it follows that 0 = dis(µP , µV ; C) ≥ |µP (p, p′) − µV (v, v)| = µP (p, p′) > 0. We now show
how to use c to construct a 3-coloring of G. Since χ < 2, for every {u, v} ∈ E, we have
µV (u, v) > 0, as otherwise χ ≥ L∞(MV , UV ) ≥ |dV (u, v) − µV (u, v)| = 2. Consider any
pair of corresponding points (c(u), u), (c(v), v) ∈ C. It must be the case that c(u) 6= c(v) as
otherwise dis(µP , µV ; C) ≥ |µP (c(u), c(v)) − µV (u, v)| = µV (u, v) > 0. Color the graph by
assigning each v ∈ V to a color class given by c(v). Since for adjacent u, v ∈ V , we have
µV (u, v) > 0, it follows that c(u) 6= c(v), and thus there is no edge between vertices of the
same color. We have exhibited a 3-coloring of G. J

Theorem 11 result follows directly from Lemma 9, and Lemma 10. The proof also implies
that for the Generalized Temporal Hierarchical Clustering problem, for some fixed
ρ, approximating χ within any factor smaller than 2 is NP -hard.

I Theorem 11. The Generalized Temporal Hierarchical Clustering problem is
NP -hard.

Approximation by local version. We now show that any Local (χ, δ)-Clustering is a
Generalized (χ, 2χ+ 2δ)-Clustering. That is, we can view the local version of the
problem as an approximation to the general version in the special case that the points of the
input come from the same metric space.

I Lemma 12. Let P be a temporal-sampling. Any Local (χ, δ)-Clustering of P is a
Generalized (χ, 2χ+ 2δ)-Clustering of P .

Proof. Suppose P has length t and ambient metric space M = (X, d). Fix a Local
(χ, δ)-Clustering of P with ultrametrics {Ui = (Pi, µi)}ti=1, and correspondences, {Ci}t−1

i=1,
induced by labelings of successive pairs of levels. Observe that maxi∈[t−1] dis(µi, µi+1, Ci) =
maxi∈[t−1] max(x,y),(x′,y′)∈Ci

|µi(x, x′) − µi+1(y, y′)|. Since χ ≥ maxi∈[t] L
∞(M [Pi], Ui), it

follows by definition of L∞ that χ ≥ |µi(x, x′)− d(x, x′)| for any i ∈ [t], x, x′ ∈ Pi. Fix an
arbitrary i ∈ [t−1] and let (x, y), (x′, y′) ∈ Ci. By triangle inequality |µi(x, x′)−µi+1(y, y′)| ≤
|d(x, x′) − d(y, y′)| + 2χ. Note that since (x, y), (x′, y′) ∈ Ci, we have d(x, y), d(x′, y′) ≤ δ.
Thus y, y′ ∈ X are contained in δ-balls of x, x′ in X (respectively). It follows that
|d(x, x′)− d(y, y′)| ≤ 2δ. We conclude that for any i ∈ [t− 1], (x, y), (x′, y′) ∈ Ci, |µi(x, x′)−
µi+1(y, y′)| ≤ 2χ+ 2δ, and thus maxi∈[t−1] dis(µi, µi+1; Ci) ≤ 2χ+ 2δ. J

5 Stability

In this section we show that the algorithm for finding an `∞-nearest ultrametric in [13] is
unstable under perturbations of the metric and, consequently, so are our algorithms. Stability,
naturally, is a desirable property; as otherwise if small changes in the input are allowed to
produce vastly different ultrametrics, then the observed temporal coherence of the output
is lost. Furthermore, this is the case even if the cost of fitting each level to an ultrametric
remains best possible. We resolve this issue in practice by instead finding the `∞-nearest
subdominant ultrametric.
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u

v

eM

1 + ε u

v

eM ′

1 + ε

Figure 3 Two metric graphs M , M ′ which differ by an ε-perturbation. Solid edges have length 1
and appear in their respective MSTs. Dashed edges have length 1+ε. InM , p(e) = 6, and the priority
of any edge along the bottom of M is diam(M) = 9. Let U , U ′ denote the result from running the
algorithm in [13] onM , andM ′, respectively. In computing U fromM the edge e is cut after all of the
edges along the base, and thus u, v are assigned distance of 6− 1

2L
∞(M,µS(M)) = 6− 1

2 (9− 1) = 2.
Compare with M ′, where the priority p of any edge of the MST is p = p(e) = diam(M ′) = 9 + ε.
Thus u, v are assigned distance of 9 + ε − 1

2L
∞(M ′, µS(M ′)) = 5 + ε/2. By considering n point

metric spaces with bases of length n−2, this example generalizes to show L∞(U,U ′) = Ω(diam(M)).

Subdominant ultrametrics. Let M = (X, d) be a metric space. We will consider M to be
a complete graph where the edges are weighted by distance, and use the notation TM to
refer to a minimum spanning tree on M . Further, for any x, y ∈ M , let TM (x, y) denote
the unique path joining x, y ∈ M . Let U(M) denote the set of ultrametrics on the points
of M . Let U≤(M) = {(X,µ) ∈ U(M) : µ(x, y) ≤ d(x, y) for all x, y ∈ M}. In other
words, U≤(M) is the set of ultrametrics on the points of M such that no distance is made
larger than its counterpart in M . We say that an ultrametric in U≤(M) is subdominant
to M . Let µS(M) = (U, µ) be a metric space on the points of M with distance function
µ(x, y) = max{u,v}∈TM (x,y) M(u, v). The distance function µ is independent of the choice of
minimum spanning tree, and easily verified to be ultrametric and subdominant to M . It can
further be shown that µS(M) is the unique, `∞-closest subdominant ultrametric to M . That
is, µS(M) = arg minU∈U≤(M) L

∞(U,M).

Instability. We now show that the algorithms of Section 2, Section 3 are unstable. To
elucidate why we now restate the algorithm in [13] in a slightly modified form which helps to
make our point. This procedure is equivalent to the following:
Step 1: Compute a minimum spanning tree. Given a metric space M = (X, d)
consider a weighted complete graph on X where the the weight of any edge {x, x′} is
d(x, x′). Find a minimum spanning tree of this graph, TM .

Step 2: Compute cut-weights for each edge. Let (X,µ) = µS(M). For each edge e =
{u, v} ∈ TM , compute and assign a priority p(e) to e such that p(e) = maxx,x′∈X{d(x, x′) :
e ∈ TM (x, x′), µ(x, x′) = d(u, v)},

Step 3: Assign distances. Edges are cut in order of descending priority. Any pair
of vertices u, v ∈ TM first separated by a cut at e are assigned a distance of p(e) −
1
2L
∞(M,µS(M)).

When an edge is cut, points first separated by the removal of that edge are assigned a distance
which depends on its largest supported distance in M . The issue is that small perturbations
in the metric can change the path structure of TM so that an edge becomes responsible for
linking a far pair of points. The only hope for stability is that the other term in the assigned
distance, 1

2L
∞(M,µS(M)), changes enough to offset this effect. However, Lemma 13 shows

that this term is stable, and thus is not large enough to compensate. It follows that the
above procedure is unstable. See Figure 3 for a concrete example.

Ensuring stability. In contrast, the `∞-nearest subdominant ultrametric is stable under
metric perturbations. We now give a simple, direct proof of this fact for our setting. See [6]
for extended discussion.
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(a) (b) (c)

Figure 4 Three levels of a temporal hierarchical clustering. The contours show the coarse cluster
structure which results from cutting the ultrametric at various offsets. Points which appear together
within a contour share a cluster at that height in the ultrametric tree. (4a) Yellow and brown
clusters are close. (4b) One level later, yellow and brown clusters merge. Note that the coarse
structure remains stable. (4c) Ten levels later, a blue point (now pink) splits from its cluster.

I Lemma 13. Let M , M ′ be metric spaces on the same points such that L∞(M,M ′) ≤ ε,
then L∞(µS(M), µS(M ′)) ≤ ε.

Proof. Let P denote the points of M . Fix a distance weighted MST of M , TM , and let
(P, µ) = µS(M), (P, µ′) = µS(M ′). For any pair of points x, y ∈ P let P(x, y) denote
the set of all simple paths x  y in M (when M is viewed as a complete graph). Let
w : P(x, y) → R≥0 be the function that sends each path in P(x, y) to the value of its
maximum weight edge. Observe that the maximum weight edge along TM (x, y) is equal to
minγ∈P(x,y) w(γ), as otherwise it is possible to construct a spanning tree with cost strictly
less than that of TM . Thus, µ(x, y) = minγ∈P(x,y) w(γ). Now since M , M ′ differ by an
ε-perturbation, the values individual edges of the paths (and therefore the values of the paths
in P(x, y) under w) change by at most ε. Thus, |µ(x, y)− µ′(x, y)| ≤ ε J

Such a choice for ultrametric embedding is suboptimal, but the next lemma shows that it
is within a factor of 2 of optimal. This fact essentially follows from arguments in [13].

I Lemma 14 ([13]). Let M be a finite metric space and U ∈ U(M), then L∞(µS(M),M) ≤
2L∞(U,M).

As one might expect, using the 2-approximate algorithm µS for A in the algorithm
of Section 2 results in a Local (2χ, δ)-Clustering whenever the input admits a Local
(χ, δ)-Clustering. Lemma 12 then implies that the result is a Generalized (2χ, 4χ+ 2δ)-
Clustering. However, since the error incurred by µS is one-sided, there is no additional
loss in the coupling distortion and the result is a Generalized (2χ, 2χ+ 2δ)-Clustering.

6 Example Output and Conclusion

In Figure 4, we present output based on synthetic data. For expository purposes we seek a
data source for which many levels can reasonably be described as hierarchical, yet changes
enough that the hierarchy evolves over time. We obtain such input by regularly saving
snapshots of actor positions from a flocking simulation. A labeled clustering is obtained
using the algorithm of Section 3 and fitting by subdominant ultrametrics.

We conclude by briefly mentioning some open questions. In Section 4 we show that
the general problem is NP-hard, though our proof uses an unnatural metric space. It is
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unknown if the general version admits an exact algorithm on “nice” metric spaces. Further,
it may still be possible to obtain optimal algorithms for the local and labeled versions of the
problem which are stable under perturbations. Last, while we believe that our adaptations of
hierarchical clustering are quite natural, one could consider alternative models where, say, the
distortion is replaced with a tree dissimilarity measure (e.g. nearest neighbor interchange).
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Abstract
Agnostic learning is an extremely hard task in computational learning theory. In this paper
we revisit the results in [Kalai et al. SIAM J. Comput. 2008] on agnostically learning boolean
functions with finite polynomial representation and those that can be approximated by the former.
An example of the former is the class of all boolean low-degree polynomials. For the former, [Kalai
et al. SIAM J. Comput. 2008] introduces the l1-polynomial regression method to learn them to
error opt+ ε. We present a simple instantiation for one step in the method and accordingly give
the analysis. Moreover, we show that even ignoring this step can bring a learning result of error
2opt + ε as well. Then we consider applying the result for learning concept classes that can be
approximated by the former to learn richer specific classes. Our result is that the class of s-term
DNF formulae can be agnostically learned to error opt+ ε with respect to arbitrary distributions
for any ε in time poly(nd, 1/ε), where d = O(

√
n · s · log s log2(1/ε)).
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1 Introduction

Learning various boolean function classes plays a central role in computational learning
theory. In the PAC learning model [18], a boolean function class C is learnable if there is an
efficient algorithm that, given parameters (ε, δ) and many labelled examples of form (x, f(x))
where x is chosen from some arbitrary distribution D and f ∈ C is an unknown, can with
probability 1− δ output a hypothesis h satisfying Prx←D[h(x) 6= f(x)] ≤ ε.

In this model, there are rich boolean function classes that can be learned, such as
conjunctions [18], s-term DNF formulas [14], intersections of halfspaces [13], polynomial
threshold functions [13, 9] etc. If the underlying distribution D is restricted to some
specific ones, some more classes can also be learned. For instance, if D is specified to be
the uniform distribution, [15] shows that the Fourier spectrum of any function in AC0 is
concentrated on low-degree coefficients and then introduced the Low Degree Algorithm to
learn the low-degree coefficients under the uniform distribution and thus generated a function
approximately identical to the concept function. Following [15], some works present various
Fourier concentration results for more expressive circuits augmented from AC0 [10, 2, 7],
monotone circuits [3] and boolean functions with small total influence or small noise sensitivity
[13] and thus gain corresponding learning results with the Low Degree Algorithm.
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29:2 Agnostically Learning Boolean Functions

Besides the PAC learning model, there is another much harder model, called the agnostic
learning model [12, 8]. In this model, a boolean function class C is learnable if there is
an efficient algorithm that, given many pairs of form (x, b) sampled from some arbitrary
distributionD, can output a hypothesis f satisfying letting erD(h) denote Pr(x,b)←D[h(x) 6= b],
erD(f) ≤ opt + ε, where opt = minh∈C(erD(h)). So far there have been a few successful
attempts to agnostically learning functions. For instance, [11] shows that concept classes
that can be approximated by low-degree polynomials can be agnostically learned. Some
other works present relaxed requirements for this model: that the output hypothesis f is
only required to satisfy erD(f) ≤ O(opt) + ε and even at the same time that the learning
algorithm only needs to deal with uniform distributions or other specific ones. For instance,
[11] shows that boolean function classes with Fourier concentration bounds and halfspaces
can be agnostically learned under uniform distributions. [1, 5] show that halfspaces can be
agnostically learned to error O(opt) + ε under isotopic log-concave distributions.

1.1 Our Results
In this paper we revisit the results in [11] on agnostically learning boolean functions with
finite polynomial representation and those that can be approximated by the former. By
finite polynomial representation, we mean (in an non-rigorous way) that each one in the class
admits a polynomial representation in which the number of monomials is much less than 2n.

More precisely, let S denote a collection of some subsets of [n]. Let Hn,S denote the class
of boolean functions in which each h(x) =

∑
S∈S gS

∏
j∈S xj : {0, 1}n → {0, 1} where xj

denotes the jth bit of x and gS ’s denote coefficients. Thus Hn,S is thought of as one with
finite polynomial representation if |S| is not large. For example, Hn,S is the class of boolean
low-degree polynomials if S consists of all S’s with |S| ≤ d for some small d.

Recall that [11] presents a result for learning such classes, in which the l1-polynomial
regression method is introduced. Let p(x) denote the polynomial generated by the method.
After obtaining p(x), the method outputs Sign(p(x)− t) for some t as the learned hypothesis.
Note that the choice of t is not specified in [11]. So we use a simple sampling technique to
determine t. That is, uniformly sample t ∈ [0, 1] many times and select the one such that
Sign(p(x)− t) is consistent with the most examples. We then show that the t selected this
way can indeed satisfy that Sign(p(x)− t) achieves the error opt + ε. Moreover, we will also
show that t = 1

2 is a universal constant such that for any distribution D, Sign(p(x) − 1
2 )

achieves the error 2opt + ε.
Then we consider the question of learning richer classes by applying the general result in

[11] for all concept classes admitting low-degree polynomial l1-approximation in expectation.
The concept class in our consideration consists of all s-term DNF formulae. To do this, we
show that each s-term DNF formula can be ε-uniformly approximated (i.e. l∞ approximation)
by a polynomial of degree O(

√
n·s·log s log2(1/ε)). Thus the degree is less than n if s = O(nκ)

for any κ < 1
2 . Then we have the following result.

I Theorem 1. Let D be any distribution over {−1, 1}n × {−1, 1}. For the class of s-term
DNF formulae, there is an algorithm that on input (ε, δ) and sufficiently many pairs sampled
from D can with probability 1− δ output a hypothesis f such that erD(f) ≤ opt + ε in time
poly(nd, 1/ε, log(1/δ)) where opt denotes the optimal error among all such DNF formulae
and d = O(

√
n · s · log s log2(1/ε)).

Our Techniques. We first outline the technique underlying the first part of this paper. The
l1-polynomial regression method in [11] converts the given examples to a l1-norm minimization
problem. Let f denote the one in Hn,S , achieving the optimal error. For each given pair
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(x, b) ← D, b may not equal f(x). So we introduce a variable e to denote b − f(x). Then
e ∈ {1,−1, 0}. Since f =

∑
S∈S gS

∏
j∈S xj , substituting the value of xj into f and letting

aS =
∏
j∈S xj , we obtain

∑
S∈S gSaS + e = b. Viewing all aS ’s as coefficients, this equality is

a linear equation of all gS ’s. We also use a to denote the (row) vector (aS1 , · · · , aSN ) (where
we assume there is an order for all sets in S and let N = |S|). Let g denote the (column)
vector (gS1 , · · · , gSN ). Thus the equation is a · g + e = b.

Thus when given m random pairs, we can construct m equations of form a · g + e = b.
Let A denote the m×N matrix consists of all such a as rows, e denote the (column) vector
consisting of all e’s, b denote the (column) vector consisting of all b’s. Thus m equalities can
be represented as A · g + e = b. Then the l1-polynomial regression method finds a solution
g such that A · g− b achieves the minimal l1-norm. Let p(x) denote the polynomial formed
using g. After obtaining p(x), the method outputs Sign(p(x)− t) for some t as the learned
hypothesis.

Note that the choice of t is not specified in [11]. So we consider using uniformly sampled
t. That is, uniformly sample t ∈ [0, 1] many times and select the one such that Sign(p(x)− t)
is consistent with the most examples. We then show that the t selected this way can indeed
satisfy that Sign(p(x) − t) achieves the error opt + ε. Moreover, we will show that due
to the l1-polynomial strategy, there is at most 2opt-fraction of the examples such that
|p(x)− b| ≥ 1

2 , which means that there is at least 1− 2opt fraction such that |p(x)− b| < 1
2 .

Thus Sign(p(x)− 1
2 ) is correct on this 1− 2opt fraction of the examples. This shows that

t = 1
2 is a universal constant such that Sign(p(x)− 1

2 ) achieves the error 2opt + ε.
Then we sketch the technique underlying the second part. By using the uniform approx-

imations for OR and AND operations in [17] twice, we show that each s-term DNF formula
f can be ε-uniformly approximated by a polynomial p of degree O(

√
n · s · log s log2(1/ε)).

This ensures that the expectation of |f − p| is less than ε. Then applying the general result
in [11], we obtain the learning result for s-term DNF formulae.

1.2 Organization

The rest of this paper is arranged as follows. Section 2 presents the preliminaries used
throughout the paper. Section 3 recalls the l1-polynomial regression method in [11] in which
we instantiate the choice of t and show the universality of 1

2 . Section 4 presents the result
for learning s-term DNF formulae.

2 Preliminaries

This section contains the notations and definitions used throughout this paper.

2.1 Basic Notions

Let [n] denote the integers in [1, n]. Let Z,Q,R denote integers, rational numbers and reals.
For any vector z = (z1, · · · , zm) ∈ Rm, ‖z‖1 denotes its l1-norm, defined as

∑m
i=1 |zi|. For a

vector v ∈ Rm and a set I ⊂ [m], we denote by vI the vector in Rm which coincides with
v on the indices in I and is extended to zero outside I. We say that a vector e ∈ Rm is
s-sparse if the number of non-zero entries of e is at most s.

Letb·e denote the operation of rounding to the nearest integer.
For any distribution D over {0, 1}n × {0, 1}, letting D’s output be of form (x, b), we will

use (xk, bk) to denote the output of D in the kth sampling, while we use xj to denote the
jth bit of x, 1 ≤ j ≤ n.
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Let (x1, b1), · · · , (xm, bm) denote m pairs drawn from D independently. We say a function
f is consistent with α fraction of the pairs if |{k ∈ [m] : f(xk) = bk}|/m = α. Following
literatures, we say f is consistent with the pairs if α = 1 and say it is approximate-consistent
if 0 < α < 1 which differs from 1 by a small quantity.

Let Sign(·) denote the function that on input y outputs 1 if y ≥ 0 and outputs 0 otherwise.
For a boolean function class H, and a set S of M points in the input space X, if the

restriction of H to the set S computes all 2M functions on S, we say that H shatters S. The
VC-dimension of H is the size of the largest shattered subset of X, also denoted VCdim(H).

2.2 Agnostic Learning
Informally, in the agnostic learning model [12, 8], there is a class of functions C which we wish
to learn. We consider each function of C is boolean. Each example-label pair is chosen from
a distribution D over X × {0, 1} (X denotes the input space). When given many pairs, the
learning algorithm is supposed to output a function f that can achieve almost the minimal
error among all functions in C with respect to D.

For any function f , let erD(f) denote Pr(x,b)←D[f(x) 6= b]. A training sample drawn
from D is of form ((x1, b1, · · · , (xm, bm)) where each (xk, bk) is drawn from D independently
1 ≤ k ≤ m.

I Definition 2. (Agnostic Learning). Let D be a distribution on X × {0, 1} and let C be a
class of boolean functions. We say that an algorithm L agnostically learns C if L is given
(ε, δ) and many random example-label pairs drawn from any D, then with probability 1− δ,
L outputs a hypothesis f such that erD(f) ≤ opt + ε, where opt denotes minh∈C(erD(h)).

If L can only work under some specific distribution D, we say L agnostically learns C
under D. We refer to ε as the accuracy parameter and δ as the confidence parameter.

We also consider a relaxation by only requiring that the f output by L is such that
erD(f) ≤ O(opt) + ε.

The learning algorithm sometimes needs some additional input parameters. For instance,
the Low Degree algorithm has as input the maximal Fourier degree. For our learning
algorithm for Hn,S in this paper, it needs to have as input some representation of S.

3 On Learning Boolean Polynomials

In this section we revisit the result of learning boolean polynomials in [11], in which the
l1-polynomial regression method is employed. We recall this method, instantiate one strategy
in it and accordingly present the analysis. Moreover, we show that even ignoring this strategy
can bring a learning result of error 2opt + ε as well. In Section 3.1 we demonstrate this
learning task and introduce the notations. In Section 3.2 we present the the instantiation
and analysis for the l1-polynomial regression method to find hypotheses consistent with given
examples. In Section 3.3 we follow the standard way to convert consistent-hypotheses to
learned hypotheses.

3.1 Goal and Notations
Let h : {0, 1}n → {0, 1} be any one in Hn,S , which can be represented as h(x) =∑
S∈S gS

∏
j∈S xj over x1, · · · , xn, where gS ’s denote the coefficients. So the task of learning

Hn,S is to output a boolean function f ′ (not necessarily in Hn,S) when given many pairs
of form (x, b) sampled from any distribution D over {0, 1}n × {0, 1}, such that f ′ achieves
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almost the optimal error among all ones in Hn,S . Typically, if S consists of all S’s with
|S| ≤ d, the task is actually the agnostic learning of boolean d-degree polynomials.

Precisely, let (x1, b1), · · · , (xm, bm) denote m pairs independently sampled from D. Then
the learning goal is, when given (ε, δ), with probability 1 − δ, to output a hypothesis f ′
satisfying Pr[f ′(x) 6= b] ≤ opt + ε for (x, b)← D, where opt = minh∈Hn,S (Pr(x,b)←D[h(x) 6=
b]).

Assume that f ∈ Hn,S is the one satisfying opt = erD(f). For each pair (xk, bk), we view
bk as the sum of f(xk) and an error ek. That is, bk = f(xk) + ek. Thus, each ek is of value
in {0,−1, 1}, in which ek = 0 indicates f(xk) = bk and ek = ±1 indicates f(xk) = 1 − bk.
Let xkj denote the jth bit of xk. For (xk, bk), we can generate an equality as follows.∑

S∈S
gS
∏
j∈S

xkj + ek = bk, k ∈ [1,m]

Let akS be the value of
∏
j∈S x

k
j . Then list the m equalities as follows.

∑
S∈S gSa

1
S + e1 = b1

· · · · · · · · · · · · · · ·∑
S∈S gSa

m
S + em = bm

(1)

In the above equalities, all gS ’s are unknown and the goal of learning is to recover them.
Viewing all akS as coefficients, the equalities are linear for the unknown variables gS ’s. For
convenience, for all S ∈ S, we use S1, · · · , SN denote all of them where N = |S|.

Let ak denote the (row) vector (akS1
, · · · , akSN ) ∈ ZN . Let g denote the (column) vector

(gS1 , · · · , gSN ) ∈ ZN . Then for the kth example, we have

ak · g + ek = bk

Let e denote the (column) vector (e1, · · · , em) ∈ Zm. Let A denote the m by N matrix
which rows consist of all ak’s. Let b denote the (column) vector (b1, · · · , bm) ∈ Zm. Then
the m linear equations can be written as

A · g + e = b

Then we can define the following problem: find a solution g∗ such that

‖A · g∗ − b‖1 = inf
g′
‖A · g′ − b‖1

where g′,g∗ should satisfy that each entry of A · g′ and A · g∗ is in [0, 1]. This problem can
be solved using linear programming.

When obtaining a solution g∗, let z denote b −Ag∗. Then we can run the remaining
strategy of the l1-polynomial regression to generate a consistent-hypothesis as well as a
learned one. In the rest of this section we will formalize these procedures.

3.2 Finding Consistent-Hypotheses
Recall that (x1, b1), · · · , (xm, bm) denote m pairs sampled from D independently, 1 ≤ k ≤ m,
and f is the function in Hn,S which achieves opt-error with respect to D. Refer to Section 3.1
for the definitions of notations A,b,g∗, e, z.
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Algorithm 1: The consistent-hypothesis-finder.
Input:

m pairs of form (x, b) drawn from D independently.
ε, δ and the knowledge of S.

Output: a hypothesis f0.
1. Run a l1-polynomial regression algorithm to find a solution g∗ such that

‖A · g∗ − b‖1 = inf
g′
‖A · g′ − b‖1

where g′,g∗ satisfy that each entry of A · g′,A · g∗ is in [0, 1].
Assume that g∗ consists of all g∗S ’s. Let p(x) =

∑
S∈S g

∗
S

∏
j∈S xj . (Thus p(xk) ∈

[0, 1] for 1 ≤ k ≤ m.)

2. Uniformly sample t ∈ (0, 1) O(1 + 1/ε) ln( 1
δ ) times. Select one t satisfying

f0(x) = Sign(p(x)− t) achieves the minimal empirical error on the m examples
and finally output f0.

End Algorithm

Let I denote the set of the indices k ∈ [m] on which ek 6= 0. Let µ = |I|/m. (It can be
seen that µ ≈ opt.)

First it can be seen that since e = b −Ag and g∗ achieves the minimal ‖b −Ag∗‖1
among all g′, ‖z‖1 ≤ ‖e‖1 = |I|. Then we follow the method of [11] to construct a consistent
hypothesis as shown in Algorithm 1, in which we instantiate the second step for determining t.

For distribution D, let erD(h) denote Pr[h(x) 6= b] for (x, b) ← D. Let Z denote pairs
(x1, b1), · · · , (xm, bm). Then let êrZ(h) denote 1

m |{k : h(xk) 6= bk}|.

I Proposition 3. With probability 1− δ, the hypothesis f0(x) in Algorithm 1 is such that
êrZ(f0) ≤ µ+ µε < µ+ ε.

Proof. Let h denote Sign(p(x)− t) for uniform t. First using the argument of [11] (the proof
of Theorem 5), we have the following claim.

Et[êrZ(h)] ≤ 1
m

m∑
k=1
|p(xk)− bk|

To see this, Et[êrZ(h)] equals the average sum of the probabilities of all events h(xk) 6= bk.
Thus for each (xk, bk), f0(xk) 6= bk if t lies between p(xk) and bk. Note that p(xk) ∈ [0, 1] and
bk ∈ {0, 1}. Hence, for uniform u ∈ (0, 1), for any k, the probability that t lies in between
the two numbers is |p(xk)− bk|. So the above inequality holds.

Then notice that
1
m

m∑
k=1
|p(xk)− bk)| = 1

m

m∑
k=1
|zk| =

1
m
· ‖z‖1 ≤

1
m
· ‖e‖1 = |I|

m
= µ

So Et[êrZ(h)] ≤ µ. Furthermore, by Markov’s inequality, Pr[êrZ(h) > (1+ε)µ] ≤ µ
(1+ε)µ =

1
1+ε = 1− ε

1+ε . Thus

Pr[êrZ(h) ≤ (1 + ε)µ] > ε

1 + ε

So forO(1+1/ε) ln( 1
δ ) times sampling of u, with probability 1−(1− ε

1+ε )
O(1+1/ε) ln 1

δ > 1−δ,
there is at least one u such that êrZ(h) ≤ (1+ ε)µ < µ+ ε. Then f0 is this h. The proposition
holds. J
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We remark that Proposition 3 can be extended to any concept class C that can be l1- (or
l2) approximated by Hn,S in expectation as shown [11].

In the following we show that t = 1
2 is a universal constant such that for any distribution

D, letting f0 = Sign(p(x)− 1
2 ) in Algorithm 1 (ignoring (ε, δ) and omitting the second step),

the following result holds.

I Proposition 4. The hypothesis f0(x) = Sign(p(x)− 1
2 ) is such that êrZ(f0) ≤ 2µ.

Proof. Notice that A · g∗ = b − z. First since ‖z‖1 ≤ ‖e‖1 = µm, there is at most 2µ
fraction of k ∈ [1,m] such that |zk| ≥ 1

2 . That is, there is at least 1− 2µ fraction of all k’s
satisfying |zk| < 1

2 . This means that for this 1− 2µ fraction of all k’s, p(xk) differs from bk

by a quantity less than 1
2 . This also means that bp(xk)e equals bk for this fraction. We now

show this rounding to the closest integers is identical to the sign operation to p(xk)− 1
2 for

this fraction. It can be seen that if bk = 1, p(xk) is more than 1
2 . Thus bp(x

k)e will output 1.
In this case Sign(p(xk)− 1

2 ) outputs 1 either. If bk = 0, p(xk) is less than 1
2 . Thus bp(x

k)e
will output 0. In this case Sign(p(xk)− 1

2 ) outputs 0 either. The proposition holds. J

3.3 The Learning Result
In the rest of this section we present the required sample complexity and state the learning
result. Let Fn,S denote the boolean function class, in which each one on input x ∈ {0, 1}n
first computes

∏
j∈S xj for all S ∈ S and compute a halfspace of all

∏
j∈S xj . Thus it can

be seen that Hn,S and the output hypotheses of Algorithm 1 are in Fn,S . In the following
let us estimate the VC-dimension of Fn,S .

I Proposition 5. Fn,S is contained in the class of 2-level threshold circuits of |S| · (n+ 1)
weights and thresholds and |S + 1| computation gates which is of VC-dimension O(n · |S| ·
log |S|).

Proof. First each monomial of form
∏
j∈S xj can be computed by an AND gate of j ≤ n

inputs and each AND gate of n inputs can be computed by a threshold gate of the n inputs
and n+ 1 weights and threshold. Thus f can be computed by a 2-level threshold circuits in
which the first level computes

∏
j∈S xj for all S ∈ S and the second computes the threshold

gate above. It can be seen that this circuit is of O(|S| · n) weights and thresholds and |S|+ 1
gates in total. Thus due to [4], the VC dimension of all such circuits is O(n · |S| · log |S|). J

Then recall the following result.

I Theorem 6. ([19]) Let D be any distribution over {0, 1}n × {0, 1}. Let Z denote m pairs
independently sampled from D. For 0 < ε < 1, it holds that for all h ∈ Fn,S ,

Pr[|erD(h)− êrZ(h)| ≥ ε] ≤ δ, if m ≥ 64
ε2

(2VCdim(Fn,S) ln(12
ε

) + ln(4
δ

))

Suppose that when given Z, f0 ∈ Fn,S is a hypothesis such that erZ(f0) ≤ c · opt + ε0
for some constant c (c = 1 in Proposition 3 and c = 2 in Proposition 4). Then we have the
following result.

I Claim 7. When m ≥ 64
ε2 (2VCdim(Fn,S) ln( 12

ε )+ln( 4
δ )) and let Z,D, f0 be defined as above,

with probability 1− δ, erD(f0) < c · opt + ε0 + ε.

Proof. Given the condition of m, by Theorem 6, we have that with probability 1 − δ,
|erD(h)− êrZ(h)| ≤ ε for all h ∈ Fn,S . Thus for f0 ∈ Fn,S , we have

erD(f0) ≤ êrZ(f0) + ε ≤ c · opt + ε0 + ε

The claim holds. J
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Combining Proposition 5 and Claim 7, we have the following proposition.

I Proposition 8. Choosing m ≥ O( 1
ε2 (n|S| log |S| ln( 12

ε ) + ln( 4
δ ))) and letting f0 ∈ Fn,S be

such that êrZ(f0) < c · opt + ε0 where Z denotes m pairs sampled from D, with probability
1− δ, erD(f0) < c · opt + ε0 + ε.

Then we estimate |I| as follows, which will be used in the proof of Proposition 10.

I Claim 9. For any 0 < δ < 1, with probability 1− δ, |I| ≤ (opt ·m+
√

3 ln 1
δ · opt ·m).

Proof. Let ξk = 1 if ek 6= 0 and ξk = 0 if ek = 0 for 1 ≤ k ≤ m. Let X =
∑m
k=1 ξk. Then

E[X] = opt ·m. Due to the Chernoff bound, for any 0 < λ < 1,

Pr[X < (1 + λ)E[X]] > 1− e−λ
2E[X]/3

So set λ =
√

3 ln 1
δ ·

1√
opt·m . Then the above probability formula is simplified to

Pr[X < (opt ·m+
√

3 log 1
δ
· opt ·m)] > 1− δ

The claim holds. J

Lastly, replace ε, δ in Algorithm 1 by ε
3 ,

δ
3 . We have the following result.

I Proposition 10. Algorithm 1 can with probability at least 1−δ output a hypothesis, denoted
f0 in time poly(|S|, n, 1

ε , log 1
δ ) satisfying erD(f0) ≤ c·opt+ε, where opt = minh∈Hn,S (erD(h))

(c = 1 when using Proposition 3 or c = 2 when using Proposition 4).

Proof. By Claim 9, except for probability δ
3 , µ = |I|/m ≤ opt +

√
3 ln 3

δ · opt ·m
− 1

2 . By
Proposition 3 (or Proposition 4), except for another δ/3 probability, êrZ(f0) ≤ cµ+ ε/3 =
c · opt + O(m−1/2) + ε/3, where Z denotes the sample consisting of the m pairs. So by
Proposition 8, erD(f0) ≤ c · opt + O(m−1/2) + 2ε/3 < c · opt + ε (where O(m−1/2) < ε/3),
and the total failure probability is at most δ.

Moreover, (A,b) can be generated in time polynomial in (|S|,m), and the l1-polynomial
regression algorithm runs in time polynomial in its input. Thus the time complexity holds. J

4 Learning DNF Formulae

In this section we present an agnostic learning result for DNF formulae, as an application of
the general result in [11] for all concept classes admitting l1-approximation with low-degree
polynomials in expectation. Recall that s-term DNF formulae can be PAC learned in time
nO(n1/3·log s) [13], and [6] combined with [16] presents a query algorithm to agnostically
learn DNFs in time nO(log(1/ε) log logn) under the uniform distribution. We will present an
agnostically learning algorithm for s-term DNF formulae (s <

√
n) by showing that such

DNF formulae have uniform approximation with low-degree polynomials. First, let us recall
the general result in [11] as follows.

I Theorem 11. ([11]) Let C denote a concept class, D be any distribution over {−1, 1}n ×
{−1, 1}. Assume for any hypothesis h ∈ C, there is a polynomial p of degree d such that
ED[|h(x) − p(x)|] < ε. Then there is an algorithm that on input parameters (ε, δ) and d,
sufficiently many pairs sampled from D independently can with probability 1 − δ output a
hypothesis f such that erD(f) ≤ opt+ε in time poly(nd, 1

ε , log 1
δ ) where opt = minh∈C(erD(h)).
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Let f be a boolean function mapping {−1, 1}n → {−1, 1}. Let p be a degree-dε′ n-
variate polynomial mapping Rn → R. We say that p(x) ε′-uniformly approximates f(x) if
|f(x)− p(x)| ≤ ε′ for any x ∈ {−1, 1}n.

In the following we show that each s-term DNF formula f can be 2ε′-uniformly ap-
proximated by a polynomial p of degree O(

√
n · s · log s log2(1/ε′)) for any ε′. This implies

ED[|f − p|] ≤ 2ε′. Thus by Theorem 11 we obtain the result of agnostically learning s-term
DNFs.

Now consider f as a DNF formula which is the OR of s conjunctions f1, · · · , fs. W.l.o.g.,
assume each fi is the AND of at most n literals in {x1, · · · , xn, x1, · · · , xn}. (If it connects
more than n literals, then there is an j such that xj , xj appear in it simultaneously, which
means it is always equal to false and thus can be got rid of from f .) In the following we show
that f admits a uniform approximation.

I Proposition 12. Each s-term DNF formula f can be 2ε′-uniformly approximated by a
polynomial p of degree O(

√
n · s · log s log2(1/ε′)) for any ε′.

Proof. By [17], for each AND of n variables, for any ε0, there is a multi-variate real
polynomial that can ε0-uniformly approximate it. That is, for each fi, there is a pi(x) of
degree O(

√
n log(1/ε0)) satisfying |pi(x) − fi(x)| ≤ ε0 for all x ∈ {−1, 1}n. It can be seen

that fi(x)/pi(x) ∈ [ 1
1+ε0

, 1
1−ε0

] for fi(x) = ±1 and for each i.
Notice that 1

1+ε0
> 1− ε0. Since (1− ε0)(1 + 2ε0) = 1 + ε0 − 2ε20, choosing ε0 < 1

n2 , we
have that

1
1− ε0

= 1 + 2ε0
1 + ε0 − 2ε20

< 1 + 2ε0

So fi(x)/pi(x) ∈ (1 − ε0, 1 + 2ε0) for all i’s. Let fi(x)/pi(x) = 1 + ∆i(x). Then
∆i ∈ (−ε0, 2ε0).

Since f is OR of f1, · · · , fs, using [17] again, we have that there exists an s-variate
multi-linear polynomial P (f1, · · · , fs) of degree O(

√
s log(1/ε′)) such that |f(f1, · · · , fs)−

P (f1, · · · , fs)| ≤ ε′ for any f1, · · · , fs. Denote the Fourier expansion of P (f1, · · · , fs) by∑
|S|≤O(

√
s log(1/ε′)) βS

∏
j∈S fj , where each S ⊂ [n] and βS ’s are coefficients each of which is

less than a constant. Thus we have

P (f1, · · · , fs) =
∑

|S|≤O(
√
s log(1/ε′))

βS
∏
j∈S

fj =
∑

|S|≤O(
√
s log(1/ε′))

βS
∏
j∈S

(pj · (1 + ∆j))

=
∑

|S|≤O(
√
s log(1/ε′))

βS
∏
j∈S

pj ·
∏
j∈S

(1 + ∆j)

=
∑

|S|≤O(
√
s log(1/ε′))

βS
∏
j∈S

pj · (1 +
|S|∑
j=1

∆j +O(max
j

(∆j)))

= P (p1, · · · , ps) +
∑

|S|≤O(
√
s log(1/ε′))

βS
∏
j∈S

pj(
|S|∑
j=1

∆j +O(max
j

(∆j)))

When ε0 ·n ·
(

s
O(
√
s log(1/ε′))

)
< ε′/n, the second addend in the right side of the last equality

is less than ε′. Thus in the beginning, we would choose

ε0 <
ε′

n2 · s
−O(
√
s) log(1/ε′)

Then each pi(x) is of degree O(
√
n log(1/ε0)) = O(

√
n · (logn +

√
s log s log(1/ε′))) =

O(
√
ns log s log(1/ε′)) (when

√
s > logn).
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More importantly, we have |P (f1, · · · , fs) − P (p1, · · · , ps)| < ε′, which shows that
|f(f1(x), · · · , fs(x))− P (p1(x), · · · , ps(x))| < 2ε′ for any x ∈ {−1, 1}n.

Notice that P (p1(x), · · · , ps(x)) is actually a multi-linear polynomial on x of degree
O(
√
ns log s log(1/ε′)) ·O(

√
s log(1/ε′)) = O(

√
n · s · log s log2(1/ε′)). The proposition holds.

J

Thus we have the following learning result.

I Proposition 13. For each s, for any (ε, δ), all s-term DNF formulae can be agnostically
learned to error opt + ε and confidence δ in time poly(nd, 1

ε , log 1
δ ), where d = O(

√
n · s ·

log s log2(1/ε)).

Proof. By Proposition 12, ED[|f(x) − P (p1(x), · · · , ps(x))|] ≤ 2ε′ for any ε′ > 0 where
P (p1(x), · · · , ps(x) is of degree O(

√
n · s · log s log2(1/ε′)). Thus, choosing ε = 2ε′, by

Theorem 11, the proposition holds. J
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Abstract
In this paper we study succinct data structures for one-dimensional color reporting and color
counting problems. We are given a set of n points with integer coordinates in the range [1,m]
and every point is assigned a color from the set { 1, . . . , σ }. A color reporting query asks for the
list of distinct colors that occur in a query interval [a, b] and a color counting query asks for the
number of distinct colors in [a, b].

We describe a succinct data structure that answers approximate color counting queries in
O(1) time and uses B(n,m) + O(n) + o(B(n,m)) bits, where B(n,m) is the minimum number
of bits required to represent an arbitrary set of size n from a universe of m elements. Thus we
show, somewhat counterintuitively, that it is not necessary to store colors of points in order to
answer approximate color counting queries. In the special case when points are in the rank space
(i.e., when n = m), our data structure needs only O(n) bits. Also, we show that Ω(n) bits are
necessary in that case.

Then we turn to succinct data structures for color reporting. We describe a data structure that
uses B(n,m)+nHd(S)+o(B(n,m))+o(n lg σ) bits and answers queries in O(k+1) time, where k
is the number of colors in the answer, and nHd(S) (d = logσ n) is the d-th order empirical entropy
of the color sequence. Finally, we consider succinct color reporting under restricted updates. Our
dynamic data structure uses nHd(S) + o(n lg σ) bits and supports queries in O(k + 1) time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Succinct Data Structures, Range Searching, Computational Geometry

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.30

1 Introduction and Motivation

Range search problems are problems where a point set is preprocessed so that certain
information about a query region can be efficiently computed. These problems are of
fundamental importance in computational geometry, both in the study of their optimality
with respect to space and query time, and as tools employed to provide efficient solutions
to various geometric problems. In this paper we focus on the following two problems. One
dimensional color range reporting (counting): Given a set of colored points P, preprocess P
into an efficient data structure so that for any range Q = [a, b] the distinct colors contained
in P ∩Q can be reported (counted).

We study both problems in the context of succinctness, where the goal is to achieve
the optimal space requirement plus a lower order term, while maintaining fast query time.
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30:2 Succinct Color Searching in One Dimension

Designing succinct data structures is an area of interest in theory and practice motivated by
the need of storing large amount of data using the smallest space possible. In recent years
there has been a surge of interest in succinct data structures for computational geometry
[5, 8, 15]. For further reading and more in-depth coverage of succinct data structures we
refer the reader to the survey by Munro and Rao [16].

Previous Work. If the input points are in the rank space, one-dimensional color reporting
queries can be answered in O(k+ 1) time using nHd(S) + o(n) lg σ+O(n lg lg σ) bits [2, 4, 6],
where d = o(logσ n) and Hd(S) is the d-th order empirical entropy of the given sequence of
colors S. In the general case, one-dimensional color reporting queries can be answered in
O(lgn+ k) time in the static and dynamic scenarios as shown by Janardan and Lopez [17]
and Gupta et al. [26]. Muthukrishnan [20] later described a static O(n) space data structure
that answers queries in O(k+1) time when all point coordinates are bounded by n. His result
implies an O(n)-words data structure that answer queries in O(min (lg lgm,

√
lgn/ lg lgn)+k)

time using the reduction-to-rank-space technique, where O(min (lg lgm,
√

lgn/ lg lgn)) is
the time needed to answer a predecessor query [27, 10]. A dynamic data structure of
Mortensen [18] supports queries and updates in O(lg lgn+k) and O(lg lgn) time respectively
if the values of all elements are bounded by n. Finally, Nekrich and Vitter [22] presented
an O(n)-words static data structure that answers queries in O(k + 1) time; their result is
valid even in the case when point are not in the rank space. They also presented a dynamic
version of their structure that uses the same space and achieves the same query time while
handling updates in O(lgε n) time.

One-dimensional color counting in the rank space was studied by Gagie et al. [11]. They
gave a data structure that answers queries in O(lg1+ε n) time for any constant ε > 0 and uses
nH0(S) +O(n) + o(nH0(S)) bits. Nekrich [21] described a data structure that uses O(n lgn)
bits and answers color counting queries in O(lg k/ lg lgn) time, where k is the number of
colors. A lower bound that follows from the predecessor problem [1, 3] holds for exact
one-dimensional color counting, and does not permit constant query time for a data structure
with space bounded by a polynomial function of n. We circumvent this lower bound by
focusing on approximate color counting. If we combine a reduction of one-dimensional color
counting to point counting in 2D with the result of Chan and Wilkinson [7], we obtain a data
structure that uses O(n lgn) bits and answer approximate color counting queries in O(lgε n)
time. The data structure of Nekrich [7] also uses O(n lgn) bits but answers approximate
color counting queries in O(1) time. In both [21] and [7] it is assumed that points are in the
rank space. In the general case, Saladi [24] presented a data structure that uses O(n) words
and answers queries in O(lg lgU) time.

Our Results. We focus on studying one-dimensional color reporting and counting in the
succinct scenario. In Section 2 we solve an open problem from [24] by presenting a data
structure that answers approximate color counting queries in optimal O(1) time. Our data
structure uses B(n,m) +O(n) +o(B(n,m)) bits, where B(n,m) = n lg (m/n) is the minimum
number of bits required to store a set of size n from a universe of m elements. Thus, we
demonstrate that is not necessary to store the colors of points in order to answer approximate
color counting queries. If points are in the rank space, our data structure needs only O(n)
bits and does not require access to the original data set. That is, similar to data structures
for answering range minimum queries [9] that can answer queries without storing the original
data set, we can construct a data structure for a colored set of points S and discard the
set S.
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Using our data structure, we are still able to obtain a constant factor approximation on
the number of colors in S ∩ [a, b] for an arbitrary query interval [a, b].

Then we turn to the problem of reporting colors using succinct space. We describe a
data structure that answers color reporting queries in O(k + 1) time while using B(n,m) +
nHd(S) + o(B(n,m) + n lg σ) bits in Section 4. This result is a succinct counterpart of the
data structure from [22] that also achieves optimal query time but uses O(n lgn) bits.

Finally we consider dynamic succinct color reporting in the rank space. We present a
succinct data structure that answers color reporting queries in optimal O(k + 1) time and
updates in O(lgn) time while using nHd(S) + o(n lg σ) bits. Our data structure supports an
update operation that changes the color of a point in O(lgn) time.

Applications. Color reporting and counting queries are related to problems that arise in
string processing and databases. Color searching queries are helpful when we are interested
in (the number of) distinct object categories in a query range or look for distinct documents
that contain a query substring. One prominent example is the document counting queries on
a collection of documents. We keep documents (strings) d1, . . ., dD in a data structure so
that for any query string P the number of documents that contain P can be calculated. This
problem can be solved by answering color counting queries on the so called document array;
see [20, 12] for a detailed description. The document array, however, needs O(n lgD) bits of
space in the worst case. If the number of documents is large and the alphabet size is small,
the space usage of the document array can be significantly larger than the space needed to
store the document collection. Using the result of Theorem 4, we can answer approximate
document counting queries using O(n) additional bits.

In this paper we assume that the reader is familiar with basic concepts of succinct data
structures and range reporting.

2 Approximate Color Range Counting

In this section we present a data structure that uses B(n,m)+O(n)+o(B(n,m)) bits of space
and answers approximate color counting queries in constant time. A color range counting
query for an interval returns the number of distinct colors contained within the interval. For
any constant ε > 0, our color range counting data structure returns in constant time an
approximate answer of at most (1 + ε) of the correct answer.

2.1 Approximate Color Range Counting in Rank Space
We begin by describing a data structure for the problem in the special case when the input
points are in the rank space. The input consists of a sequence S = s1, . . . , sn of n colors.
A query is a range [a, b] where a, b ∈ [n], and the answer is a (1 + ε)-approximation of the
number of distinct colors found in sa, . . . , sb.

2.1.1 Space Inefficient Solution
First we describe a space inefficient solution that requires O(n lg3 n) bits of space and answers
one-dimensional approximate color counting queries in constant time.

Consider the balanced binary tree T , where every leaf of T corresponds to an element
of S, and every internal node has two children. Given a node u ∈ T , ul(ur) denotes the
left(right) child of u, S(u) denotes the set of all elements stored in the leaf descendants of u,
and au(bu) denotes the rightmost(leftmost) element in S(ul)(S(ur)).

ISAAC 2017



30:4 Succinct Color Searching in One Dimension

Let δ = 1 + ε. For each node u ∈ T we store the unique values l1, . . . , llogδ n in a fusion
tree [10], where li (1 ≤ i ≤ logδ n) is the maximum value satisfying the condition that
sli , . . . , sau contains δi unique colors. Also, for each node u ∈ T and each i (1 ≤ i ≤ logδ n)
we store the unique values ri1, . . . , ri logδ n in a fusion tree [10], where rij (1 ≤ j ≤ logδ n) is
the minimum value satisfying the condition that sbu , . . . , srj contains δj unique colors that
are not present in sli , . . . , sau .

Query. Given a query [a, b] we find the lowest common ancestor u of a and b in T . We
query the fusion tree stored on l1, . . . , llogδ n to find the predecessor li of a, then we query
the fusion tree stored on ri1, . . . , ri logδ n and find the successor rij of b. Finally we return
δi + δj as an estimate for the number of distinct colors in [a, b].

I Lemma 1. The algorithm described above returns a (1 + ε)-approximation of the number
of distinct colors in sa, . . . , sb.

Proof. Denote by x the number of distinct colors in sa, . . . , sau and y the number of distinct
colors in sbu , . . . , sb that are not found in sa, . . . , sau . Let y′ denote the number of colors in
sbu , . . ., sb that do not occur in li, . . . , sau . By the definition of li and rij , x ≤ δi ≤ δ · x and
y′ ≤ δj ≤ δ · y′. Since y′ ≤ y, δj ≤ δ · y. Hence δi + δj ≤ δ(x+ y). There are at most δi − x
colors that occur in li, . . . , sau , but do not occur in sa, . . . , sau . Hence y − (δi − x) ≤ y′ and
y− (δi−x) ≤ δj . If we add δi to both parts of the latter inequality, we obtain y+x ≤ δj + δi.
Summing up

x+ y ≤ δi + δj ≤ δ(x+ y)

which completes the proof. J

I Theorem 2. There exists an O(n lg3 n)-bit data structure that supports one-dimensional
(1 + ε)-approximate color range counting queries in constant time when the input points are
in the rank space.

2.1.2 Lower Bound
Next, we show using a simple proof that Ω(n) bits are required for any data structure that
answers one-dimensional (1 + ε)-approximate color range counting queries in the rank space.

We assume without loss of generality that σ > b1 + εc, otherwise no data structure is
needed since returning σ for any query would be a correct (1 + ε)-approximation of the exact
answer. Moreover, denote by c1, c2, . . . , ck the first k = b1 + εc+ 1 colors. Divide a sequence
S of size n to n/k blocks each of size k. We say that S satisfies property (∗) if for each block
b in S one of the following two conditions hold:

either b consists of the color c1 repeated k times,
or b = c1, c2, . . . , ck.

Clearly, the number of sequences that satisfy (∗) is 2(n/k) since there exist n/k blocks in a
sequence of size n and each block can have one of two different values. Moreover for any
two distinct sequences S1 and S2 satisfying ∗ differing at block b, there exist at least one
(1 + ε)-approximate range counting query, namely the query that asks for the number of
different colors in b, that will return different values. Thus, the information theoretic lower
bound for storing a one-dimensional (1 + ε)-approximate range counting data structure is
Ω(lg 2(n/k)) = Ω(n/k) = Ω(n/ε) bits.

I Theorem 3. Any one-dimensional (1 + ε)-approximate range counting data structure
requires Ω(n/ε) bits.
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2.1.3 Compact Data Structure
In this subsection we show how to make the data structure of Theorem 2 compact by
bootstrapping. Let δ = 1 + ε. We define the functions f(n) = lg4 n, f (h)(n) = f (h−1)(f(n)).
The function f∗(n) is defined as f∗(n) = 1 + f∗(f(n)) for n > 216 and f∗(n) = 1 otherwise.
We start by modifying the tree T so that each leaf of T corresponds to a block of f(n)
consecutive elements of S (instead of a single element of S). Then, we define the family of
trees Tij where 1 ≤ i ≤ f∗(n) and 1 ≤ j ≤ n/f (i)(n) as follows. Tree Tij spans the ith block
of S of size f (i)(n) (i.e. s((i−1)f(i)(n)+1), . . . , s(if(i)(n))) and each leaf of Tij correspond to a
block of f (i+1)(n) consecutive elements. For each node u ∈ Tij we store in separate fusion
trees the sets of values: {lp|1 ≤ p ≤ logδ f (i)(n)}, and for each 1 ≤ p ≤ logδ f i(n) the set
{rpq|, 1 ≤ q ≤ logδ f (i)(n)} as defined in Section 2.1.1. Finally, for every two indices a and b
satisfying 1 ≤ a ≤ b ≤ f(n) we store in a table B the index i such that a and b are in the
same block of size f i(n) but in different blocks of size f i+1(n). In other words, i must satisfy
the following conditions ba/f (i)(n)c = bb/f (i)(n)c and ba/f (i+1)(n)c 6= bb/f (i+1)(n)c

Space Analysis. The number of nodes in T is reduced to n/f(n) and the space used
by T and fusion trees stored in its nodes is O(n/ lgn) bits. The number of nodes in
Tij is f (i)(n)/f (i+1)(n) and the space used by Tij and fusion trees stored in its nodes is
O(f (i)(n)/ lg (f (i)(n))) bits. Thus, the total space used by all such trees is:

f∗(n)∑
i=1

n/f(i)(n)∑
j=1

O
(
f (i)(n)/ lg(f (i)(n))

) =
f∗(n)∑
i=1

(
n/f (i)(n) ·O

(
f (i)(n)/ lg(f (i)(n))

))

=
f∗(n)∑
i=1

O
(
n/ lg(f (i)(n))

)

= n

f∗(n)∑
i=1

O
(

1/ lg(f (i)(n))
)

= O(n)

Finally, the table B uses o(n) bits. Thus, the total space used is O(n) bits.

Query. Given a query [a, b], if a and b are in two different blocks of size f(n), we can answer
queries using T in the same way as described in Subsection 2.1.1. Otherwise, we query B on
values (a mod f(n)) and (b mod f(n)) to find the index i satisfying the condition that a
and b are in the same block of size f (i)(n) but in different blocks of size f (i+1)(n). Finally,
we query Tiba/f(i)nc as we query T .

I Theorem 4. There exists a compact O(n)-bit data structure that supports one-dimensional
(1 + ε)-approximate color range counting queries in constant time when the input points are
in the rank space.

3 General Approximate Range Counting

In this section, we present a data structure that uses B(n,m) +O(n) + o(B(n,m)) bits of
space and answers (1 + ε)-approximate color counting queries in constant time.

Let δ = 1 + ε and let x1, . . . , xn be the coordinates of the n given colored points P in
sorted order. Denote by Pdlg3 ne the set of points whose x-coordinate rank is a multiple of

ISAAC 2017
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dlg3 ne. For each point p ∈ P denote by L (p) the set of points to the left of p, and by R (p)
the set of points to the right of p.

For each point p ∈ Pdlg3 ne we store in a fusion tree [10] the unique values l1, . . . , llogδ n
where li (i ∈ [logδ n]) is the maximum value satisfying the condition that sli , . . . , sp contains
δi unique colors. Also, for each point p ∈ Pdlg3 ne and each i ∈ [logδ n] we store in a fusion
tree [10] the unique values ri1, . . . , ri logδ n where rij (j ∈ [logδ n]) is the minimum value
satisfying the condition that sp+1, . . . , srj contains δj unique colors not present in sli , . . . , sp.
We also store a succinct point reporting structure [13] on Pdlg3 ne.

Next, we divide x1, . . . , xn into n/dlg3 ne blocks each of size dlg3 ne, except for the last
one. Using O(n lg4/5 m) bits [23] we store predecessor and successor data structures for each
block independently. Since the size of each block is at most dlg3 ne, answering predecessor
and successor queries within a block takes constant time. Finally, we store in O(n) bits the
compact data structure from Theorem 4 for answering queries in the rank space.

Query. Given a query [a, b] we check if a point p ∈ Pdlg3 ne is in [a, b]. If so, we query
the fusion tree stored on l1, . . . , llog1+ε n to find li the predecessor of a, then we query the
fusion tree stored on ri1, . . . , ri log1+ε n to find rij the successor of b, afterwards we return
(1 + ε)i + (1 + ε)j .

If such a point p does not exist, then both a and b are in one of the blocks whose size
is dlg3 ne. Using the reporting data structure stored on P we get the rank of an arbitrary
point in [a, b] then determine which block does a and b belong to. Afterwards, using the
predecessor and successor structures, we determine the rank of a and b. Since the query is
now reduced to the rank space, we can answer it in constant time.

I Theorem 5. There exists an (B(n,m) + O(n) + O(n lg4/5 m))-bit data structure that
supports one-dimensional (1 + ε)-approximate color range counting queries in constant time.

Next, we describe how to reduce the space of the predecessor and successor data structures.
We use a well known trick and split the universe [m] into n subranges r1, . . . , rn each of size
m/n. We also use succinct rank and select data structures that store a bit vector of size
n using n+ o(n) bits and answers rank and select queries in constant time [19]. For each
non-empty subrange ri we store a predecessor and successor structure for every block of lg2 n

consecutive elements and a point reporting structure Pi on all the points within ri. These
structures are stored consecutively in an array A. To locate the data structures for any range
ri within A, we count the number of points in the ranges rj for j < i then scale that number.
For that purpose, we construct a bit vector B of size 2n bits, with rank and select queries,
that stores a zero for each range ri followed by ni ones, where ni is the number of points in
the range ri. To count the number of points preceding ri, we use a select query to get the
position k of the ith zero in B, then with a rank query we count the number of ones before
position k.

Given a non-empty query range [a, b] such that there exist at most lg3 n points between
a and b, a belongs to ri where i = ba/(m/n)c and b belongs to rj where j = bb/(m/n)c,
we find the rank of a in the following manner. First, we map a to a′ = a− im/n and b to
b′ = b− jm/n. If the range [a′,m/n] is empty in Pi, we use rank and select queries to get s
the number of ones before the (i+ 1)th zero in B, the rank of a will be s+ 1. Otherwise, we
find a point p in Pi within the range [a′,m/n] if i and j are different or within the range
[a′, b′] if i and j are the same. If p’s rank within ri is k, we query the bk/lg3 nc successor
data structure to find the rank of a′ in ri. Then, we add the number of points occurring
in each range rl where l < i to this rank to get the rank of a. We obtain the rank of b in a
similar manner.
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The extra space used is o(B(n,m)) bits for the point reporting structures stored on the
ranges r1, . . . , rn, O(n lg4/5(m/n)) = o(B(n,m)) bits for the predecessor and successor data
structures, and O(n) bits for the bit vector B.

I Theorem 6. There exists an (B(n,m) +O(n) + o(B(n,m))-bit data structure that supports
one-dimensional (1 + ε)-approximate color range counting queries in constant time.

4 1D Color Range Reporting

Using similar techniques to those used in the previous section, we present in this section a
succinct data structure that uses B(n,m) + nHd(S) + o(B(n,m) + n lg σ) bits of space and
answers color reporting queries in optimal O(k + 1) time.

If the input points are in the rank space (i.e. the x-coordinates of the input points are
1,. . . ,n and the input consists of a sequence S = s1, . . . , sn of n colors, a query is a range [a, b]
where a, b ∈ [n], and the answer is the distinct colors found in sa, . . . , sb), one-dimensional
color range reporting can be solved in O(k + 1) time using nHd(S) + o(n) lg σ +O(n lg lg σ)
bits [2, 4, 6].

This solution can be extended to general one-dimensional range reporting by storing the
x-coordinates of the points in sorted order in an indexable dictionary that supports select
queries in constant time using B(n,m)+o(B(n,m)) bits [25] in addition to the data structure
described in [2, 4, 6]. We can find the predecessor or successor of any x-coordinate in O(lgn)
time by answering O(lgn) select queries. Hence, we can reduce any query [a, b] to the rank
space in O(lgn) additional time.

I Theorem 7. There exists an (B(n,m)+nHd(S)+o(B(n,m)+n lg σ))-space data structure
that supports one-dimensional color range reporting queries in O(lgn+ k)time.

4.1 Improved Data Structure
Next, we show how to improve the query time obtained from Theorem 7 to O(k + 1), while
using the same amount of space.

Let x1, . . . , xn be the coordinates in sorted order of the n given colored points P. We
denote by Pdlg2 ne the set of points whose x-coordinate rank is a multiple of dlg2 ne. For
each point p ∈ P we denote by L (p) the set of points to the left of p, and by R (p) the set
of points to the right of p. For every color z the set Min (p) contains the minimal element
e ∈ L (p) of color z, and the set Max (p) contains the maximal element e ∈ R (p) of color z.

Data Structure. For each point p ∈ Pdlg2 ne, we store the smallest dlgne elements of Min (p)
and the largest dlgne elements of Max (p). We also store two succinct one-dimensional point
reporting data structures [13], one on every point in P, and the other on every point in
Pdlg2 ne. Next, we store a data structure similar to the one used in subsection 3 that can find
in constant time the ranks of a query [a, b] if [a, b] is not empty, and a and b belong to the
same block of size lg2 n, Finally, we store the data structure from Theorem 7.

Answering Queries. We report all colors in a query range [a, b] as follows. Using the
reporting data structure stored on Pdlg2 ne, we search for some p ∈ Pdlg2 ne ∩ [a, b].

If such a point p exist, we traverse the list L (p) until an element p′ > b is found or the
end of L (p) is reached. We also traverse the list R (p) until an element p′ < a is found or
the end of R (p) is reached. If we reach neither the end of L (p) nor the end of R (p), then
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all distinct colors in [a, b] are reported. Otherwise, the range [a, b] contains more than lgn
distinct colors. In that case we use the data structure from Theorem 7.

If a and b belong to a continuous block of lg2 n points, we find their ranks in a similar
manner to subsection 3, then solve the problem in the rank space as described in the previous
subsection.

I Theorem 8. There exists a (B(n,m) + nHd(S) + O(n) + o(B(n,m) + n lg σ))-bit data
structure that supports one-dimensional color range reporting queries in O(k + 1) time.

Note that n = o(n lg σ) as long as σ is not a constant. If σ is a constant, we solve the
problem using a different approach. We store a separate succinct range emptiness data
structure [13] for every subset of points with a given color. To answer a query [a, b], for each
color c we query the range emptiness data structure associated with c to check if a point with
color c occurs in the range [a, b], if so we report c. The query runtime is a constant since
the number of colors is constant and range emptiness queries take constant time. Hence, we
obtain the following theorem.

I Theorem 9. There exists an (B(n,m)+nHd(S)+o(B(n,m)+n lg σ))-space data structure
that supports one-dimensional color range reporting queries in O(k + 1) time.

5 Dynamic Color Reporting in Rank Space

Finally, we describe a succinct data structure that uses nHd(S) + o(n lg σ) bits of space and
answers color reporting queries in optimal O(k + 1) time when the input points are in the
rank space, while supporting the following update operation in O(lgn) time: given an index
i and a color c, set the color of the ith element to c.

I Theorem 10. There exists an (nHd(S) + o(n lg σ) +O(n))-bit data structure that supports
one-dimensional color range reporting queries in O(k + 1) time and updates in O(lgn) time
when points are in the rank space.

Proof. Let the input sequence be S = s1, . . . , sn, and T be the complete balanced binary
tree where every leaf of T corresponds to an element of S and every internal node has
two children. For any node u ∈ T , S(u) denotes the set of all elements stored in the leaf
descendants of u. For i ∈ {1, . . . , n} denote by li(ri) the height of the highest ancestor u of
the node corresponding to i such that i is the leftmost(rightmost) element in S(u) with color
si.

We store S in a dynamic data structure using nHd(S) + o(n lg σ) bits that supports
access in O(1) time and Update, Rank, and Select in O(lgn/ lg lgn) time [14]. We divide S
into blocks of lgn elements each, then we subdivide each block to subblocks of size lg lgn
elements. For each subblock bij (0 ≤ i < n/ lgn and 0 ≤ j < lgn/ lg lgn) in block bi we
store:

The maximum value ml
ij of the sequence li lgn+j lg lgn, . . . , li lgn+(j+1) lg lgn and a succinct

range maximum data structure [9] T lij to answer range maximum queries on it.
The maximum value mr

ij of the sequence ri lgn+j lg lgn, . . . , ri lgn+(j+1) lg lgn and a succinct
range maximum data structure [9] T rij to answer range maximum queries on it.

The space used is O(lg lgn) bits per subblock, which sums to O(n) bits. For each block bi
we store:

The sequence ml
i0, . . . ,m

l
i lg lgn, its maximum value ml

i, and a succinct range maximum
data structure [9] T li to answer range maximum queries on it.
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The sequence mr
i0, . . . ,m

r
i lg lgn, its maximum value mr

i , and a succinct range maximum
data structure [9] T ri to answer range maximum queries on it.

The space used is O(lgn/ lg lgn) bits per block, which sums to O(n/ lg lgn) bits. Finally,
using Lemma 1 from a result by Nekrich et al. [22] we store using O(n) bits two-dimensional
point reporting structures T l and T r containing the set of points (i,ml

i) and (i,mr
i ) where

1 ≤ i ≤ n/ lgn. These structures support queries in O(k + 1) time and updates in O(lgε n)
time.

Answering Queries: Given a query [a, b], we find the lowest common ancestor u of a
and b. Let ul(ur) be the left(right) child of u, c be the rightmost child of ul, and let h denote
the height of ul and ur.

To get all distinct colors in [a, c] = [a, b] ∩ S(ul), it is sufficient to report all colors si in
that range with ri ≥ h. We maintain the invariant that each color is reported on its right
most occurrence.

If [a, c] was contained in a single subblock bij , we query T rij for all the distinct colors as
follows. We get the largest element rd in ra, . . . , rc, if sd was previously reported we return,
otherwise we report sd and recurse on the interval [d, c] followed by [a, d]. Note that it is
important to recurse on [d, c] before [a, d] to maintain the invariant mentioned above, which
guarantees that rd = min (ra, . . . , rc) will be smaller than h if the color sd was previously
reported.

Otherwise, if [a, c] spans several subblocks but is contained in a single block bi we proceed
as follows. We first query the rightmost subblock partially spanned by [a, c]. Then, we query
T ri to get all the subblocks bij spanned by [a, c] satisfying the condition that mr

ij ≥ h in
order from right to left. We query each one of them in that order, then we query the leftmost
subblock that is partially spanned by [a, c].

Finally, if [a, c] spans several blocks we first query the rightmost block partially spanned
by [a, c]. Then, we query T r to get all the blocks i spanned by [a, c] satisfying the condition
that mr

i ≥ h in order from right to left. We query each one of them in that order, then we
query the leftmost block that is partially spanned by [a, c].

Similarly, to report all the distinct colors in [c + 1, b] = [a, b] ∩ S(ur) it is sufficient to
report all colors si in that range with li ≥ h. We do this in a similar way to the method
used to query [a, c], while maintaining the invariant that each color is reported on its left
most occurrence.

Updating the Sequence: If the color of position i was updated from c to c′ the
following values could get modified: ri, ra where a is the first index before i with color c, rb
where b is the first index after i with color c′, li, ld where d is the first index after i with
color c, and le where e is the first index before i with color c′.

We can find the value ri of any index i in O(lgn/ lg lgn) time by using Rank and Select
queries to get the first index j before i with the same color as index i, then computing the
lowest common ancestor of i and j. Similarly, to get the value li, we use Rank and Select
queries to get the first index j after i with the same color as index i, then we compute the
lowest common ancestor of i and j.

Since we don’t store the values r1, . . . , rn and l1, . . . , ln explicitly, once one of them changes
(say ra where a is in subblock bij) we recompute all values rj where j ∈ bij and reconstruct
T rij . Recomputing all values rj where j ∈ bij takes O(lg lgn · lgn/ lg lgn) = O(lgn) time
and reconstructing T rij takes O(lg lgn) time. If mr

ij changed, we rebuild T ri in O(lgn) time.
Finally, if mi changed we update its value in T r in O(lgε n) time. Since only a constant
number of values get updated, the runtime is O(lgn). J

ISAAC 2017



30:10 Succinct Color Searching in One Dimension

If σ is a constant then the O(n) additional bits stored by the data structure are no
longer a lower order term, so we handle this case separately. We divide S into blocks of size
lgn/2 lg σ. We store a lookup table using O(

√
n lg2 n) bits to answer color range queries

over every possible block of this size. Also, we store the data structure from Theorem 10 on
the sequence S′ = s′1, . . . , s

′
2 lg σn/ lgn with alphabet σ′ = 2σ, where s′i denotes the subset of

colors found on the ith block of S. The total space used is nHd(S) + o(n lg σ) +O(n/ lgn)
bits. To answer a query Q, we use the lookup table to get the colors in the (two) blocks
which are not completely spanned by Q, then we use the data structure from Theorem 10 to
get the colors in the blocks that are fully spanned by Q. Each color will be reported at most
a constant number of times. The query time is O(k + 1) = O(1) and update time is O(lgn).

I Theorem 11. There exists an (nHd(S) + o(n lg σ))-bit data structure that supports one-
dimensional color range reporting queries in O(k+ 1) time and updates in O(lgn) time when
points are in the rank space.
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Rahul Saladi on the problem.
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Abstract
A conflict-free k-coloring of a graph G = (V,E) assigns one of k different colors to some of the
vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex
among v and v’s neighbors. Such colorings have applications in wireless networking, robotics,
and geometry, and are well studied in graph theory. Here we study the conflict-free coloring
of geometric intersection graphs. We demonstrate that the intersection graph of n geometric
objects without fatness properties and size restrictions may have conflict-free chromatic number
in Ω(logn/ log logn) and in Ω(

√
logn) for disks or squares of different sizes; it is known for general

graphs that the worst case is in Θ(log2 n). For unit-disk intersection graphs, we prove that it is
NP-complete to decide the existence of a conflict-free coloring with one color; we also show that
six colors always suffice, using an algorithm that colors unit disk graphs of restricted height with
two colors. We conjecture that four colors are sufficient, which we prove for unit squares instead
of unit disks. For interval graphs, we establish a tight worst-case bound of two.
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Keywords and phrases conflict-free coloring, intersection graphs, unit disk graphs, complexity,
worst-case bounds

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.31

1 Introduction

Coloring the vertices of a graph is one of the fundamental problems in graph theory, both
scientifically and historically. The notion of proper graph coloring can be generalized to
hypergraphs in several ways. One natural generalization is conflict-free coloring, which asks
to color the vertices of a hypergraph such that every hyperedge has at least one uniquely
colored vertex. This problem has applications in wireless communication, where “colors”
correspond to different frequencies.

The notion of conflict-free coloring can be brought back to simple graphs, e.g., by
considering as hyperedges the neighborhoods of the vertices of G. The resulting problem
arises in certain variants of frequency assignment problems if one is not interested in
achieving signal coverage for all points in a region, but only at certain points of interest.
For an illustration, consider a scenario in which one has a given set of nodes in the plane
and wants to establish a communication network between them. Moreover, assume that
constructing nodes at new locations is either very expensive or forbidden, and one can only
“upgrade” any existing node to a wireless base station.
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Conflict-free coloring also plays a role in robot navigation, where different beacons are
used for providing direction. To this end, it is vital that in any given location, a robot is
adjacent to a beacon with a frequency that is unique among the ones that can be received.

Both in the frequency assignment setting and in the robot navigation setting, one
typically wants to avoid placing unnecessary base stations or beacons. Abstractly speaking,
this corresponds to leaving some vertices uncolored, yielding the following formalization of
conflict-free coloring of graphs. For any vertex v ∈ V of a simple graph G = (V,E), the
neighborhood N [v] consists of all vertices adjacent to v and v itself. A conflict-free k-coloring
of G assigns one of k colors to a (possibly proper) subset S ⊆ V of vertices such that every
vertex v ∈ V has a uniquely colored neighbor. The conflict-free chromatic number χCF (G)
of G is the smallest k for which a conflict-free coloring exists. Depending on the situation it
may also be more natural to consider open neighborhood conflict-free coloring, where each
vertex v must have a uniquely colored neighbor in its open neighborhood N(v) not including
v.

Conflict-free coloring has received an increasing amount of attention. Because of the
motivation arising from frequency assignment, it is natural to investigate the conflict-free
coloring of intersection graphs, in particular, of simple shapes such as disks or squares. In
addition, previous work has considered either general graphs and hypergraphs (e.g., see
[21]) or other geometric scenarios in the presence of obstacles (e.g., see [14]); we give a
more detailed overview further down. This adds to the relevance of conflict-free coloring of
intersection graphs, which lie in the intersection of general graphs and geometry.

There is a spectrum of different scientific challenges when studying conflict-free coloring.
What are worst-case bounds on the necessary number of colors? When is it NP-hard to
determine the existence of a conflict-free k-coloring? We address these questions for the case
of intersection graphs.

Our contribution. We present the following results.
We demonstrate that n geometric objects without fatness properties and size restrictions
may induce intersection graphs with conflict-free chromatic number in Ω(logn/ log logn).
We prove that non-unit square and disk graphs may require Ω(

√
logn) colors. Deciding

conflict-free k-colorability is NP-hard for any k for these graph classes.
It is NP-complete for unit-disk intersection graphs to decide the existence of a conflict-free
coloring with one color. The same holds for intersection graphs of unit squares and other
shapes.
Six colors are always sufficient for conflict-free coloring of unit disks. This uses an
algorithm that colors unit disk graphs contained in a strip of restricted height with two
colors.
Using a similar argument, we prove that four colors are always sufficient for conflict-free
coloring of unit squares.
As a corollary, we get a tight worst-case bound of two on the conflict-free chromatic
number of interval graphs.

Related work. In the geometric context, motivated by frequency assignment problems,
the study of conflict-free coloring of hypergraphs was initiated by Even et al. [8] and
Smorodinsky [22]. For disk intersection hypergraphs, Even et al. [8] prove that O(logn) colors
suffice. For disk intersection hypergraphs with degree at most k, Alon and Smorodinsky [4]
show that O(log3 k) colors are sufficient. If every edge of a disk intersection hypergraph
must have k distinct unique colors, Horev et al. [15] prove that O(k logn) suffice. Moreover,
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for unit disks, Lev-Tov and Peleg [18] present an O(1)-approximation algorithm for the
conflict-free chromatic number. Abam et al. [1] consider the problem of making a conflict-free
coloring robust against removal of a certain number of vertices, and prove worst-case bounds
for the number of colors required.

The dual problem in which one has to color a given set of points such that each region
contains a uniquely colored point has also received some attention. Har-Peled and Smorodin-
sky [13] prove that for families of pseudo-disks, every set of points can be colored using
O(logn) colors. For rectangles, Ajwani et al. [3] show that O(n0.382) colors suffice, whereas
Elbassioni and Mustafa [7] show that it is possible to add a sublinear number of points
such that sublinearly many colors suffice. For coloring points on a line with respect to inter-
vals, Cheilaris et al. [6] present a 2-approximation algorithm, and a

(
5− 2

k

)
-approximation

algorithm when every interval must contain k uniquely colored points.
Conflict-free coloring also arises in the context of the conflict-free variant of the chromatic

Art Gallery Problem, which asks to guard a polygon using colored guards such that each
point sees a uniquely colored guard. Fekete et al. [9] prove that computing the chromatic
number is NP-hard in this context. On the positive side, Hoffman et al. [14] prove Θ(log logn)
colors are sometimes necessary and always sufficient for the conflict-free chromatic art gallery
problem under rectangular visibility in orthogonal polygons. For straight-line visibility,
Bärtschi et al. [5] prove that O(logn) colors are sufficient.

There also has been work regarding the scenario where the hypergraph is induced by the
neighborhoods of vertices of a simple graph. Except for the need to color all vertices, this
corresponds to the scenario considered in this work. This does not change the asymptotic
number of colors required, since it suffices to insert one additional color to color all vertices
that would otherwise remain uncolored. In this situation, Pach and Tardos [21] prove that
the conflict-free chromatic number of an n-vertex graph is in O(log2 n). Glebov et al. [12]
extend this result by proving that almost all G(n, ω(1/n))-graphs have conflict-free chromatic
number O(logn). Moreover, they show that the upper bound of Pach and Tardos [21] is
tight by giving a randomized construction for graphs having conflict-free chromatic number
Θ(log2 n). In more recent work, Gargano and Rescigno [11] show that finding the conflict-free
chromatic number for general graphs is NP-complete, and prove that the problem is FPT
w.r.t. vertex cover or neighborhood diversity number. In our work with Abel et al. [2], we
consider conflict-free coloring of general and planar graphs and proved a conflict-free variant
of Hadwiger’s conjecture, which implies that planar graphs have conflict-free chromatic
number at most three. Most recently, Keller and Smorodinsky [17] consider conflict-free
coloring on intersection graphs of geometric objects, in a scenario very similar to ours. Among
other results, they prove that O(logn) colors suffices to color a family F of pseudodisks
in a conflict-free manner. With respect to open neighborhoods (also known as pointed
neighborhoods), they prove that this is tight; for closed neighborhoods as studied in this
paper, the tightness of this bound is not proven and remains open. They also consider the
list coloring variant of the problem.

Conflict-free coloring is not the only type of coloring for which unit disk graphs have been
found to require a bounded number of colors. In their recent work, McDiarmid et al. [19]
consider clique coloring of unit disk graphs, in particular with regard to the asymptotic
behavior of the clique chromatic number of random unit disk graphs. They also prove that
every unit disk graph in the plane can be colored with nine colors, while three colors are
sometimes necessary. Similar to the present paper, they prove this by cutting the plane into
strips of height

√
3; for each of these strips it is then proven that three colors suffice.

For more details on related works, refer to the full version [10].
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2 Preliminaries

In the following, G = (V,E) denotes a graph on n := |V | vertices. For a vertex v, N(v)
denotes its open neighborhood and N [v] = N(v) ∪ {v} denotes its closed neighborhood. A
conflict-free k-coloring of a graph G = (V,E) is a coloring χ : V ′ → {1, . . . , k} of a subset
V ′ ⊆ V of the vertices of G, such that each vertex v has at least one conflict-free neighbor
u ∈ N [v], i.e., a neighbor u whose color χ(u) occurs only once in N [v]. The conflict-free
chromatic number χCF (G) is the minimum number of colors required for a conflict-free
coloring of G.

A graph G is a disk graph iff G is the intersection graph of disks in the plane. G is a unit
disk graph iff G is the intersection graph of disks with fixed radius r = 1 in the plane, and a
unit square graph iff G is the intersection graph of axis-aligned squares with side length 1 in
the plane. A unit disk (square) graph is of height h iff G can be modeled by the intersection
of unit disks (squares) with center points in (−∞,∞)× [0, h]. In the following, when dealing
with intersection graphs, we assume that we are given a geometric model. In the case of unit
disk and unit square graphs, we identify the vertices of the graph with the center points of
the corresponding geometric objects in this model.

3 General Objects

Intersection graphs of geometric objects can generally contain cliques of arbitrary size, so
their chromatic number may be unbounded. However, cliques do not require a large number
of colors in a conflict-free coloring, so it is not immediately clear whether the intersection
graphs for a family of geometric objects have bounded conflict-free chromatic number.

If the intersecting objects can be scaled down arbitrarily, i.e., if every representable graph
can be represented using arbitrarily small area, we can make use of the following lemma to
prove lower bounds on the number of colors required.

I Lemma 1. Let Gk be a graph with χCF (Gk) ≥ k, and let G be a graph containing two
disjoint copies J1

k and J2
k of Gk. Let v1, . . . , vl be vertices of G, not contained in J1

k or J2
k ,

and let each vertex vi be adjacent to every vertex of J1
k and J2

k . Moreover, let these vertices
be the only neighbors of J1

k and J2
k . Then in every conflict-free k-coloring of G, one of the

vertices v1, . . . , vl has a color that appears only once in v1, . . . , vl.

Proof. Assume there was a conflict-free k-coloring χ of G such that none of the vertices
v1, . . . , vl has a unique color. Therefore, each vertex in J1

k has a conflict-free neighbor in
J1

k , and restricting χ to V (J1
k ) yields a conflict-free k-coloring of J1

k . As χCF (Gk) ≥ k, each
color is used on V (J1

k ) at least once. The same holds for J2
k . Therefore, each vertex v1, . . . , vl

has at least two occurrences of each color in its neighborhood; this contradicts the fact that
χ is a conflict-free coloring of G. J

For general objects like freely scalable ellipses or rectangles, it is possible to model a
complete graph Kn of arbitrary size n, such that the following conditions hold: (1) For every
object v, there is some non-empty area of v not intersecting any other objects. (2) For every
pair of objects v, w, there is a non-empty area common to these objects not intersecting any
other objects. This can be seen by choosing n intersecting lines such that no three lines
intersect in a common point. These lines can then be approximated using sufficiently thin
objects to achieve the desired configuration.

In this case, the conflict-free chromatic number is unbounded, because we can inductively
build a family Gn of intersection graphs with χC(Gn) = n as follows. Starting with
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Figure 1 The graph G5, shown as an intersection graph of ellipses, requires 5 colors.

G1 = ({v}, ∅) and G2 = C4 (a four-vertex cycle), we construct Gn by starting with a Kn

modeled according to conditions (1) and (2). For every object v, we place two scaled-
down non-intersecting copies of Gn−1 into an area covered only by v; Figure 1 depicts the
construction of G5 for ellipses. According to Lemma 1, these gadgets enforce that every vertex
of the underlying Kn is colored. For every pair of objects v, w, we place two scaled-down
non-intersecting copies of Gn−2 into an area covered only by v and w. Using an argument
similar to that used in the proof of Lemma 1, these gadgets enforce that v and w have to
receive different colors. Thus the resulting graph requires n colors.

The number of vertices used by this construction satisfies the recurrence

|G1| = 1, |G2| = 4, |Gn| = n+ 2n|Gn−1|+ n(n− 1)|Gn−2|.

To estimate the growth of |Gn|, let Ḡn = |Gn| for n ≤ 2 and Ḡn = 3nḠn−1 + n(n− 1)Ḡn−2;
clearly, Ḡn ≥ |Gn| for all n. The recurrence Ḡn has the closed-form solution

Ḡn = n!
13 · 2n+1 ·

(
(5
√

13−13)(3+
√

13)n−(13+5
√

13)(3−
√

13)n
)

= O
(
n!
(

3 +
√

13
2

)n
)
,

implying that the number of colors required in geometric intersection graphs on n vertices
may be Ω( log n

log log n ).
We summarize.

I Theorem 2. The intersection graph of n convex objects in the plane may have conflict-free
chromatic number in Ω(logn/ log logn).

The best upper bound on the number of colors required in this scenario that we are aware
of is O(log2 n), which holds for general graphs and is due to Pach and Tardos [21].

4 Different-Sized Squares and Disks

Due to their fatness, squares and disks do not allow us to construct an arbitrarily big clique
Kn such that condition (2) of Section 3 holds. However, we can still prove that there is no
constant bound on their conflict-free chromatic number. The proof is based on Lemma 1,
which enables us to reduce the conflict-free coloring problem on intersection hypergraphs to
our problem.
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[1, 1] [1, 2] [1, 3] [1, 4] [2, 4] [3, 4] [4, 4]

[2, 3]

[3, 3][2, 2]
[1, 1]

[4, 4]

[1, 2]

[1, 3]

[1, 4]

[2, 4]

[3, 4]

[2, 2]

[3, 3]

[2, 3]

Figure 2 A chain of length 4 using either disks or squares, requiring 3 colors in every conflict-free
hypergraph coloring. Adding two copies of D2 to every interval yields a disk intersection graph that
requires 3 colors in any conflict-free coloring.

I Theorem 3. The conflict-free chromatic number of disk intersection graphs and square
intersection graphs can be Ω(

√
logn).

Proof. We begin our proof by inductively constructing, for any number of colors k, a disk
intersection graph Dk with conflict-free chromatic number χCF (Dk) = k and O(22k2) vertices.
The first level of the construction is D1, consisting of an isolated vertex. The remainder of
the construction is based on a lower-bound example due to Even et al. [8], requiring Ω(logn)
colors when each point in the union of all disks must lie in a uniquely colored disk. This
lower-bound example consists of chain disks 1, . . . , 2k−1 on a horizontal line segment, placed
such that all disks overlap in the center. For each interval [i, j], 1 ≤ i ≤ j ≤ 2k−1, there is
one region with non-zero area in which exactly the disks from this interval overlap. This
situation is depicted in Figure 2.

To construct Dk, for each such interval [i, j], we choose one such region and place two
scaled-down disjoint copies of Dk−1 in it. We prove that Dk requires k colors by induction on
k. That D1 requires one color is clear. Given that Dk−1 requires k− 1 colors for some k ≥ 2,
we can prove that Dk requires k colors as follows. Assume there was a conflict-free (k − 1)-
coloring χ of Dk. Due to Lemma 1, we know that, for every interval [i, j], 1 ≤ i ≤ j ≤ 2k−1,
at least one of the chain disks in [i, j] has a unique color. We now prove using induction that
any color assignment with this property has at least k colors. For a chain of length 20, one
color is required for the interval [1, 1]. For a chain of length 2l, we require one unique color
for the interval [1, 2l]. Let i be the chain disk colored using this color. At least one of the
intervals [1, i− 1], [i+ 1, 2l] has length at least 2l−1. By induction, this interval requires l
colors. These colors must all be distinct from the color used for i, therefore forcing us to
use l + 1 colors in total. This contradicts the fact that χ uses only k − 1 colors; therefore,
χCF (Dk) ≥ k. The number of vertices used by Dk satisfies the recurrence

|D1| = 1, |Dk| = 2k−1 + 2k−1(2k−1 + 1)
2 |Dk−1| = 2k−1 + (22k−3 + 2k−2)|Dk−1|,

which is in O(22k2). All our arguments can also be applied to squares instead of disks. J

In [8], Even et al. prove that Θ(logn) colors are always sufficient and sometimes necessary
to color a disk intersection hypergraph in a conflict-free manner. This implies that O(logn)
colors are sufficient in our case, leaving a gap of O(

√
logn).

I Theorem 4. For any fixed number of colors k, deciding whether a disk (or square)
intersection graph is conflict-free k-colorable is NP-complete.

Proof. The proof works inductively by reducing conflict-free (k − 1)-colorability to conflict-
free k-colorability; conflict-free 1-colorability is NP-hard by Theorem 5. For details, refer to
the full version [10]. J
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Figure 3 (Left) Clause gadget represented using unit disks and unit squares. The clause vertices
that are attached to the remainder of G(φ) are drawn with bold outline. Dashed objects depict where
the connections to the variables attach to the clause vertex. Orange vertices must be colored in
any conflict-free 1-coloring; therefore, the clause vertex must remain uncolored. (Right) A variable
gadget. True vertices, i.e., vertices that are colored if the variable is set to true are drawn with bold
outline. In a conflict-free coloring of a variable gadget, every third vertex along the cycle must be
colored. This implies that we must color either all true vertices or none of them.

5 Unit-Disk Graphs

The construction used in the previous section hinges on high aspect ratios of the intersecting
shapes. In the setting of frequency assignment for radio transmitters, it is natural to only
consider fat objects with bounded aspect ratio, such as unit disks and unit squares. As it
turns out, their intersection graphs have conflict-free chromatic number bounded by a small
constant; on the other hand, even deciding the existence of a conflict-free coloring with a
single color is NP-complete.

5.1 Complexity: One Color
While it is trivial to decide whether a graph has a regular chromatic number of 1 and
straightforward to check a chromatic number of 2, it is already NP-complete to decide
whether a conflict-free coloring with a single color exists, even for unit-disk intersection
graphs. This is a refinement of Theorem 4.1 in Abel et al. [2], which shows the same results
for general planar graphs.

I Theorem 5. It is NP-complete to decide whether a unit-disk intersection graph G = (V,E)
has a conflict-free coloring with one color.

Proof. Due to space constraints, we only sketch the proof of NP-hardness; for a detailed
proof, refer to the full version [10]. We prove NP-hardness by reduction from Positive
Planar 1-in-3-SAT, see Mulzer and Rote [20]. Given a Boolean formula φ in 3-CNF
with only positive literals and planar clause-variable incidence graph, we construct a unit
disk intersection graph G(φ) that has a conflict-free 1-coloring iff φ is 1-in-3-satisfiable. In
G(φ), variables are represented using variable gadgets (sufficiently long cycles with length
divisible by 3) and clauses are represented using clause gadgets; see Figure 3. The variable
gadgets have true and false vertices; coloring the true vertices corresponds to setting the
variable to true. The clause vertex of the clause gadget is connected to a true vertex of each
variable occurring in the clause by a path of length divisible by 3; see Figure 4. This enforces
that in any conflict-free 1-coloring of G(φ), each clause vertex is connected to exactly one
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t

f

c

. . .

. . .

dipi

Figure 4 Path connecting a variable to a clause vertex c (with dashed clause gadget). The
vertices marked t and f are true and false vertices of a variable. Blue vertices are colored if the
variable is set to true, red vertices are colored if the variable is set to false. Gray vertices cannot be
colored. For c, this is enforced directly by the clause gadget; for the other vertices along the path, it
follows from the fact that the clause vertex cannot be colored.

variable gadget where the true vertices are colored. Therefore a conflict-free 1-coloring of
G(φ) induces a 1-in-3-satisfying assignment and vice versa. J

5.2 A Worst-Case Upper Bound: Six Colors
On the positive side, we show that the conflict-free chromatic number of unit disk graphs is
bounded by six. We do not believe this result to be tight. In particular, we conjecture that
the number is bounded by four; in fact, we do not even know an example for which two colors
are insufficient. One of the major obstacles towards obtaining tighter bounds is the fact that
a simple graph-theoretic characterization of unit disk graphs is not available, as recognizing
unit disk graphs is complete for the existential theory of the reals [16]. This makes it hard to
find unit disk graphs with high conflict-free chromatic number, especially considering the size
that such a graph would require: The smallest graph with conflict-free chromatic number
three we know has 30 vertices, and by enumerating all graphs on 12 vertices one can show
that at least 13 vertices are necessary, even without the restriction to unit disk graphs.

One approach to conflict-free coloring of unit disk graphs is by subdividing the plane into
strips, coloring each strip independently. We conjecture the following.

I Conjecture 6. Unit disk graphs of height 2 are conflict-free 2-colorable.

If this conjecture holds, every unit disk graph is conflict-free 4-colorable. In this case,
one can subdivide the plane into strips of height 2, and then color the subgraphs in all even
strips using colors {1, 2} and the subgraphs in odd strips using colors {3, 4}. Instead of
Conjecture 6, we prove the following weaker result.

I Theorem 7. Unit disk graphs G of height
√

3 are conflict-free 2-colorable.

Proof. Given a realization of G consisting of unit disks with center points with y-coordinate
in [0,

√
3], we compute a conflict-free 2-coloring of G using the following simple greedy

approach. In an order corresponding to the lexicographic order of the points in R2 (denoted
by ≤), we build a set C of colored vertices to which we alternatingly assign colors 1 and
2. In each step, we add a new point to C until all points are covered, i.e., they are either
colored or have a colored neighbor. In order to select the next colored point, we find the
lexicographically maximal point c such that every point c′ < c is already colored or has
a colored neighbor in C ∪ {c}. We observe that this point c may already have a colored
neighbor, but then there must be an uncovered point between c and previously colored point.

In this procedure, every point v is assigned a colored neighbor w ∈ N [v]. It remains to
exclude the following three cases. (1) A colored point v is adjacent to another point w of the
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Figure 5 (Left) Every colored point c induces a vertical strip of width 2 (dashed lines); all points
v within this strip are adjacent to c. (Right) The configuration in case (2); there must be a point u
of color 2 adjacent to v.
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Figure 6 The configuration in case (3); the algorithm would have chosen v instead of u′.

same color, (2) an uncolored point is adjacent to two or more points of one color and none of
the other color, (3) an uncolored point is adjacent to two or more points of both colors.

To this end, we use the following observation. Each colored point c induces a closed
vertical strip of width 2 centered around c. As shown in Figure 5, every point v in this strip
is adjacent to c. Thus, the horizontal distance between two colored points must be greater
than 1. For case (1), assume there was a point v of color 1 adjacent to a point w > v of
color 1. This cannot occur, because between v and w, there must be a point x of color 2;
therefore, the horizontal distance between v and w must be greater than 2, a contradiction.

Regarding case (2), assume there was an uncolored point v adjacent to two points
w′ < v < w of color 1; see Figure 5. Between points w′ and w, there must be a point u of
color 2, and v must not be adjacent to u. There are two possible orderings: w′ < v < u < w

and w′ < u < v < w. W.l.o.g., let u < v; the other case is symmetric. In this situation,
the x-coordinates of the points have to satisfy x(u) < x(v)− 1, x(w′) < x(u)− 1, and thus
x(w′) < x(v)− 2 in contradiction to the assumption that v and w′ are adjacent.

Regarding case (3), assume there was an uncolored point v adjacent to two points w′ <
v < w of color 1 and two points u′ < v < u of color 2. W.l.o.g., assume w′ < u′ < v < w < u

as depicted in Figure 6; the case u′ < w′ is symmetric. Because w′ and v are adjacent, the
vertical strip induced by v intersects the strip induced by w′. Thus, there cannot be a point
y with w′ < y < v not adjacent to w′ or v. This is a contradiction to the choice of u′: The
algorithm would have chosen v, or a larger point, instead of u′. J

The following corollary follows by subdividing the plane into strips of height
√

3.

I Corollary 8. Unit disk graphs are conflict-free 6-colorable.

Unfortunately, the proof of Theorem 7 does not appear to have a straightforward general-
ization to strips of larger height. Further reducing the height to find strips that are colorable
with one color is also impossible, see Section 6.3.
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Figure 7 (Left) A vertex-minimal graph satisfying (1) and (2). (Right) In any unit disk graph
G embeddable in a 2 × 2-square with domination number γ(G) = 3, no points lie in the depicted
area.

5.3 Unit-Disk Graphs of Bounded Area
Proving Conjecture 6 is non-trivial, even when all center points lie in a 2× 2-square. In this
setting, a circle packing argument can be used to establish the sufficiency of three colors. If a
unit disk graph with conflict-free chromatic number 3 can be embedded into a 2× 2-square,
the following are necessary. (1) Every minimum dominating set D has size 3, and every pair
of dominating vertices must have a common neighbor not shared with the third dominating
vertex. Thus, every minimum dominating set lies on a 6-cycle without chords connecting a
vertex with the opposite vertex. (2) G has diameter 2; otherwise, one could assign the same
color to two vertices at distance 3.

Using the domination number, one can further restrict the position of the points in the
2× 2-square: There is an area in the center of the square, depicted in Figure 7, that cannot
contain the center of any disk because this would yield a dominating set of size 2.

The smallest graph satisfying constraints (1) and (2) has 11 vertices and is depicted
in Figure 7. It is not a unit disk graph and it is still conflict-free 2-colorable, but every
coloring requires at least four colored vertices, proving that coloring a minimum dominating
set can be insufficient. This implies that a simple algorithm like the one used in the proof of
Theorem 7 will most likely be insufficient for strips of greater height. We are not aware of
any unit disk graph satisfying these constraints.

6 Unit-Square and Interval Graphs

The constructions of the previous section can also be applied to the case of squares; for
interval graphs, we get a tight worst-case bound.

6.1 Complexity: One Color
It is straightforward to see that the construction of Theorem 5 can be applied for unit square
instead of unit disks.

I Corollary 9. It is NP-complete to decide whether a unit square graph G = (V,E) has a
conflict-free coloring with one color.

6.2 A Worst-Case Upper Bound: Four Colors
The proof of Theorem 7 can be applied to unit square graphs of height 2 instead of unit disk
graphs of height

√
3; see Figure 8.
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Figure 8 For unit square graphs of height 2, we have a similar situation to that depicted in
Figure 5: Centered around each colored vertex c, there is a vertical strip of width 4 such that all
vertices v with center points in this strip are adjacent to c. The remainder of the proof of Theorem 7
applies to unit square graphs analogously.

Figure 9 (Left) Realizing the Bull Graph as a unit interval graph. Conflict-free coloring requiring
two colors: there is no dominating vertex, the only pair of vertices at distance 3 is no dominating
set. (Right) A conflict-free 2-coloring of an interval graph as computed by the greedy coloring
algorithm sketched above.

I Corollary 10. Unit square graphs of height 2 are conflict-free 2-colorable. Unit square
graphs are conflict-free 4-colorable.

6.3 Interval Graphs: Two Colors
Unit interval graphs correspond to unit disk or unit square graphs with all centers lying on a
line. Even then, two colors in a conflict-free coloring may be required; the Bull Graph is
such an example, see Figure 9.

In this case, the bound of 2 is tight: By Theorem 7, unit interval graphs are conflict-free
2-colorable. By adapting the algorithm used in the proof to always choose the interval
extending as far as possible to the right without leaving a previous interval uncovered, this
can be extended to interval graphs with non-unit intervals. For an example of this procedure,
refer to Figure 9.

7 Conclusion

There are various directions for future work. In addition to closing the worst-case gap for
unit disks (and proving Conjecture 6), the worst-case conflict-free chromatic number for
unit square graphs also remains open. Other questions include a tight bound for disk (or
square) intersection graphs, and a necessary criterion for a family of geometric objects to
have intersection graphs with unbounded conflict-free chromatic number.
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Abstract
The Johnson-Lindenstrauss lemma is one of the corner stone results in dimensionality reduction.
It says that given N , for any set of N , vectors X ⊂ Rn, there exists a mapping f : X →
Rm such that f(X) preserves all pairwise distances between vectors in X to within (1 ± ε) if
m = O(ε−2 lgN). Much effort has gone into developing fast embedding algorithms, with the
Fast Johnson-Lindenstrauss transform of Ailon and Chazelle being one of the most well-known
techniques. The current fastest algorithm that yields the optimal m = O(ε−2 lgN) dimensions
has an embedding time of O(n lgn + ε−2 lg3N). An exciting approach towards improving this,
due to Hinrichs and Vybíral, is to use a random m×n Toeplitz matrix for the embedding. Using
Fast Fourier Transform, the embedding of a vector can then be computed in O(n lgm) time. The
big question is of course whether m = O(ε−2 lgN) dimensions suffice for this technique. If so,
this would end a decades long quest to obtain faster and faster Johnson-Lindenstrauss transforms.
The current best analysis of the embedding of Hinrichs and Vybíral shows that m = O(ε−2 lg2N)
dimensions suffice. The main result of this paper, is a proof that this analysis unfortunately
cannot be tightened any further, i.e., there exists a set of N vectors requiring m = Ω(ε−2 lg2N)
for the Toeplitz approach to work.
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1 Introduction

The performance of many geometric algorithms depends heavily on the dimension of the input
data. A widely used technique to combat this “curse of dimensionality”, is to preprocess
the input via dimensionality reduction while approximately preserving important geometric
properties. Running the algorithm on the lower dimensional data then uses less resources
(time, space, etc.) and an approximate result for the high dimensional data can be derived
from the low dimensional result.

Dimensionality reduction approximately preserving pairwise Euclidean distances has
found uses in a wide variety of applications, including: Nearest-neighbour search [2, 13],
clustering [6, 8], linear programming [23], streaming algorithms [20], compressed sensing

∗ This research is supported by a Villum Young Investigator Grant, an AUFF Starting Grant and
MADALGO, Center for Massive Data Algorithmics, a Center of the Danish National Research Founda-
tion, grant DNRF84.

† The full version of this paper is [12], https://arxiv.org/abs/1706.10110.

© Casper Benjamin Freksen and Kasper Green Larsen;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 32; pp. 32:1–32:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.32
https://arxiv.org/abs/1706.10110
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


32:2 On Using Toeplitz and Circulant Matrices for Johnson-Lindenstrauss Transforms

[7, 11], numerical linear algebra [26], graph sparsification [21], and differential privacy
[5]. See more applications in [22, 15]. The most fundamental result in this regime is the
Johnson-Lindenstrauss (JL) lemma [16], which says the following:

I Theorem 1 (Johnson-Lindenstrauss lemma). Let X ⊂ Rn be a set of N vectors, then for
any 0 < ε < 1/2, there exists a map f : X → Rm for some m = O(ε−2 lgN) such that

∀x, y ∈ X, (1− ε)‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1 + ε)‖x− y‖22.

This result dates back to 1984 and says that to preserve pairwise Euclidean distances
amongst a set of N points/vectors in Rn to within a factor (1 ± ε), it suffices to use just
m = O(ε−2 lgN) dimensions. The bound on m was very recently proven optimal [19].

The standard technique for constructing a map with the properties of Theorem 1 is the
following: Let A be an m× n matrix with entries independently sampled as either N (0, 1)
random variables (as in [10]) or Rademacher (uniform among {−1,+1}) random variables
(as in [1]). Once such entries have been drawn, let f : Rn → Rm be defined as:

f(x) = 1√
m
Ax.

To prove that the map f satisfies the guarantees in Theorem 1, it is first shown that for
any vector x, the probability that ‖f(x)‖22 is not within (1± ε)‖x‖22 is less than 1/N2. This
probability is called the error probability and denoted δ. Using linearity of f and a union
bound over all pairs x, y ∈ X, the probability that all pairwise distances (i.e. the norm of
the vector x− y) are preserved can be shown to be at least 1/2.

1.1 Time Complexity
Examining the classic Johnson-Lindenstrauss reduction above, we see that to embed a vector,
we need to multiply with a dense matrix and the embedding time becomes O(nm) (or
equivalently O(nε−2 lgN)). This may be prohibitively large for many applications (recall
one prime usage of dimensionality reduction is to speed up algorithms), and much research
has been devoted to obtaining faster embedding time.

Fast Johnson-Lindenstrauss Transform

Ailon and Chazelle [2] were the first to address the question of faster Johnson-Lindenstrauss
transforms. In their seminal paper, they introduced the so-called Fast Johnson-Lindenstrauss
transform for speeding up dimensionality reduction. The basic idea in their paper is to
first “precondition” the input data by multiplying with a diagonal matrix with random
signs, followed by multiplying with a Hadamard matrix. This has the effect of “spreading”
out the mass of the input vectors, allowing for the dense matrix A above to be replaced
with a sparse matrix. Since we can multiply with a Hadamard matrix using Fast Fourier
Transform, this gives an embedding time of O(n lgn + ε−2 lg3N) for embedding into the
optimal m = O(ε−2 lgN) dimensions. For m = ε−2 lgN ≤ n1/2−γ for any constant γ > 0,
the embedding complexity was improved even further down to O(n lgm) in [3].

Another approach to achieve the O(n lgm) embedding time, but without the restriction
on ε−2 lgN ≤ n1/2−γ , is to sacrifice the target dimension. This was done in [4] and later
improved in [18], where the embedding complexity was O(n lgm) at the cost of an increased
target dimension m = O(ε−2 lgN lg4 n).
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Sparse Vectors

Another approach to improve the performance of JL transforms, is to assume the input data
is sparse, i.e. has few non-zero coordinates. Designing an algorithm based on the work in [25],
Dasgupta et al. [9] achieved an embedding complexity of O(‖x‖0ε−1 lg2(mN) lgN), where
‖x‖0 = |{i | xi 6= 0}|. This was later improved to O(‖x‖0ε−1 lgN) in [17].

Toeplitz Matrices

Finally, another very exciting approach is to use Toeplitz matrices or partial circulant matrices
for the embedding. We first introduce the terminology.

An m× n Toeplitz matrix is an m× n matrix, where every entry on a diagonal has the
same value:

t0 t1 t2 · · · tn−1
t−1 t0 t1 · · · tn−2
t−2 t−1 t0 · · · tn−3
...

...
...

. . .
...

t−(m−1) t−(m−2) t−(m−3) · · · tn−m


A partial circulant matrix is a special kind of Toeplitz matrix, where every row, except the
first, is the previous row rotated once:

t0 t1 t2 · · · tn−1
tn−1 t0 t1 · · · tn−2
tn−2 tn−1 t0 · · · tn−3
...

...
...

. . .
...

tn−(m−1) tn−(m−2) tn−(m−3) · · · tn−m


Hinrichs and Vybíral [14] proposed the following algorithm for generating a JL embedding

based on a Toeplitz matrix1: Let t−(m−1), t−(m−2), . . . , tn−1 and d1, . . . , dn be
i.i.d. Rademacher2 random variables, and T be a Toeplitz matrix defined from
t−(m−1), t−(m−2), . . . , tn−1 such that entry (i, j) takes values tj−i for i = 1, . . . ,m and
j = 1, . . . , n. Let D be an n× n diagonal matrix with the random variable di giving the i’th
diagonal entry. Define the map f as

f(x) = 1√
m
TDx.

Multiplying with a Toeplitz matrix corresponds to computing a convolution and can be
done using Fast Fourier Transform. By appropriately blocking the input coordinates, the
complexity of embedding a vector x is just O(n lgm) for any target dimension m. The big
question is of course, how low can the target dimension m be, while preserving the distances
between vectors up to a factor of 1± ε?

In the original paper [14], the authors proved that setting the target dimension to
m = O(ε−2 lg3(1/δ)), the norm of any vector would be preserved to within (1 ± ε) with
probability at least 1−δ. Setting δ = 1/N2, a union bound over all pairwise difference vectors
(as in the classic construction) shows that dimension m = O(ε−2 lg3N) suffices. Later, the

1 [14] uses a partial circulant matrix but notes that a Toeplitz matrix could be used as well.
2 Note that in [14, 24] these variables are erroneously referred to as Bernoulli variables.
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Table 1 Comparison of the performances of various Johnson-Lindenstrauss transform algorithms.
N is the number of input vectors, n is the dimension of the input vectors, m is the dimension of the
output vectors, ε is the distortion.

Type Embedding time Target dimension (m) Ref. Notes

Random projection O(nm) O(ε−2 lg N) [10]
Sparse O(‖x‖0ε−1 lg2(mN) lg N) O(ε−2 lg N) [9]
Sparse O(‖x‖0ε−1 lg N) O(ε−2 lg N) [17]
FFT O(n lg n + m lg3 N) O(ε−2 lg N) [2]
FFT O(n lg m) O(ε−2 lg N) [3] m ≤ n1/2−γ

FFT O(n lg m) O(ε−2 lg N lg4 n) [18]
Toeplitz O(n lg m) O(ε−2 lg3 N) [14]
Toeplitz O(n lg m) O(ε−2 lg2 N) [24]

analysis was refined in [24], which lowered the target dimension to m = O(ε−2 lg2(1/δ)) for
preserving norms to within (1± ε) with probability 1− δ. Again, setting δ = 1/N2, this gives
m = O(ε−2 lg2N) target dimension. Now if the analysis could be tightened even further to
give the optimal m = O(ε−2 lgN) dimensions, this would end the decades long quest for
faster and faster embedding algorithms!

Our Contribution

Our main result unfortunately shows that the analysis of Vybíral [24] cannot be tightened to
give an even lower target dimensionality. More specifically, we prove that the upper bound
given in [24] is optimal:

I Theorem 2. Let T and D be the m×n Toeplitz and n×n diagonal matrix in the embedding
proposed by [14]. For all 0 < ε < C, where C is a universal constant, and any desired error
probability δ > 0, if the following holds for every unit vector x ∈ Rn:

Pr
[∣∣∣∣∣
∥∥∥∥ 1√

m
TDx

∥∥∥∥2

2
− 1

∣∣∣∣∣ < ε

]
> 1− δ,

then it must be the case that m = Ω(ε−2 lg2(1/δ)).

While Theorem 2 already shows that one cannot tighten the analysis of Vybíral for
preserving the norm of just one vector, Theorem 2 does leave open the possibility that
one would not need to union bound over all N2 pairs of difference vectors when trying to
preserve all pairwise distances amongst a set of N vectors. It could still be the case that
there somehow was a strong positive correlation between distances being preserved (though
this seems extremely unlikely, and would be something not seen in any previous approach to
JL). To complete the picture, we indeed show in the full version of this paper [12] that this
is not the case, at least for N somewhat smaller than the dimension n:

I Theorem 3. Let T and D be the m×n Toeplitz and n×n diagonal matrix in the embedding
proposed by [14]. For all 0 < ε < C, where C is a universal constant, if the following holds
for every set of N vectors X ⊂ Rn:

Pr
[
∀x, y ∈ X :

∣∣∣∣∣
∥∥∥∥ 1√

m
TDx− 1√

m
TDy

∥∥∥∥2

2
− ‖x− y‖22

∣∣∣∣∣ ≤ ε‖x− y‖22
]

= Ω(1),
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then it must be the case that either m = Ω(ε−2 lg2N) or m = Ω(n/N).

We remark that our proofs also work if we replace T be a partial circulant matrix (which
was also proposed in [14]). Furthermore, we expect that minor technical manipulations to
our proof would also show the above theorems when the entries of T and D are N (0, 1)
distributed rather than Rademacher (this was also proposed in [14]).

2 Lower Bound for One Vector

Let T be m× n Toeplitz matrix defined from random variables t−(m−1), t−(m−2), . . . , tn−1
such that entry (i, j) takes values tj−i for i = 1, . . . ,m and j = 1, . . . , n. Let D be an n× n
diagonal matrix with the random variable di giving the i’th diagonal entry. This section
shows the following:

I Theorem 4. Let T be m× n Toeplitz and D n× n diagonal. If t−(m−1), t−(m−2), . . . , tn−1
and d1, . . . , dn are independently distributed Rademacher random variables for i = −(m−
1), . . . , n− 1 and j = 1, . . . , n, then for all 0 < ε < C, where C is a universal constant, there
exists a unit vector x ∈ Rn such that

Pr
[∣∣∣∣∣
∥∥∥∥ 1√

m
TDx

∥∥∥∥2

2
− 1

∣∣∣∣∣ > ε

]
≥ 2−O(ε

√
m).

and furthermore, all but the first O(
√
m) coordinates of x are 0.

It follows from Theorem 4 that if we want to have probability at least 1− δ of preserving
the norm of any unit vector x to within (1± ε), it must be the case that ε

√
m = Ω(lg(1/δ)),

i.e. m = Ω(ε−2 lg2(1/δ)). This is precisely the statement of Theorem 2. Thus we set out to
prove Theorem 4.

To prove Theorem 4, we wish to invoke the Paley-Zygmund inequality, which states, that
if X is a non-negative random variable with finite variance and 0 ≤ θ ≤ 1, then

Pr[X > θE[X]] ≥ (1− θ)2E2[X]
E[X2] .

We carefully choose a unit vector x, and define the random variable for Paley-Zygmund
to be the k’th moment of the difference between the norm of x transformed and 1.

Proof. Let k be an even positive integer less than m/4 and define s := 4k. Note that s ≤ m.
Let x be an arbitrary n-dimensional unit vector such that the first s coordinates are in
{−1/

√
s,+1/

√
s}, while the remaining n− s coordinates are 0. Define the random variable

parameterized by k

Zk :=
(∥∥∥∥ 1√

m
TDx

∥∥∥∥2

2
− 1
)k

.

Since k is even, the random variable Zk is non-negative.
We wish to lower bound E[Zk] and upper bound E[Z2

k ] in order to invoke Paley-Zygmund.
The bounds we prove are as follows:

I Lemma 5. If k ≤
√
m, then the random variable Zk satisfies:

E[Zk] ≥ m−k/2kk2−O(k)

and E[Z2
k ] ≤ m−kk2k2O(k).

ISAAC 2017
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Before proving Lemma 5 we show how to use it together with Paley-Zygmund to complete
the proof of Theorem 4.

We start by invoking Paley-Zygmund and then rewriting the expectations according to
Lemma 5,

Pr[Zk > E[Zk]/2] ≥ (1/4)E
2[Zk]
E[Z2

k ] =⇒

Pr[Z1/k
k > (E[Zk]/2)1/k] ≥ (1/4)E

2[Zk]
E[Z2

k ] =⇒

Pr
[∣∣∣∣∣
∥∥∥∥ 1√

m
TDx

∥∥∥∥2

2
− 1

∣∣∣∣∣ > k

C0
√
m

]
≥ 2−O(k).

Here C0 is some constant greater than 0. For any 0 < ε < 1/C0, we can now set k such that
k/(C0

√
m) = ε, i.e. we choose k = εC0

√
m. This choice of k satisfies k ≤

√
m as required by

Lemma 5. We have thus shown that:

Pr
[∣∣∣∣∣
∥∥∥∥ 1√

m
TDx

∥∥∥∥2

2
− 1

∣∣∣∣∣ > ε

]
≥ 2−O(ε

√
m).

J

I Remark. Theorem 4 can easily be extended to partial circulant matrices. The difference
between partial circulant and Toeplitz matrices is the dependence between the values in
the first m and last m columns. However, as only the first s = 4k ≤ 4

√
m entries in x are

nonzero, the last m columns are ignored, and so partial circulant and Toeplitz matrices
behave identically in our proof.

Proof of Lemma 5. Before we prove the two bounds in Lemma 5 individually, we rewrite
E[Zk], as this benefits both proofs.

E[Zk] = E

(∥∥∥∥ 1√
m

T Dx

∥∥∥∥2

2

− 1

)k
= E

(( 1
m

m∑
i=1

(
n∑
j=1

tj−idjxj

)2)
− 1

)k
= E

(( 1
m

m∑
i=1

((
n∑
j=1

t2
j−id

2
jx

2
j

)
+

(
n∑
j=1

∑
h∈{1,...,n}\{j}

tj−ith−idjdhxjxh

)))
− 1

)k
= E

( 1
m

m∑
i=1

((
n∑
j=1

t2
j−id

2
jx

2
j − x2

j

)
+

(
n∑
j=1

∑
h∈{1,...,n}\{j}

tj−ith−idjdhxjxh

)))k
= E

( 1
m

m∑
i=1

n∑
j=1

∑
h∈{1,...,n}\{j}

tj−ith−idjdhxjxh

)k
= 1

mk

∑
S∈([m]×[n]×[n])k|∀(i,j,h)∈S:h6=j

E

[ ∏
(i,j,h)∈S

tj−ith−idjdhxjxh

]

Observe that for j > s or h > s the product becomes 0, as either xj or xh is 0. By removing
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all these terms, we simplify the sum to

E[Zk] = 1
mk

∑
S∈([m]×[s]×[s])k|∀(i,j,h)∈S:h6=j

E

 ∏
(i,j,h)∈S

tj−ith−idjdhxjxh


Observe for an S ∈ ([m]× [s]× [s])k, that the value E

[∏
(i,j,h)∈S tj−ith−idjdhxjxh

]
is 0

if one of the following two things are true:
A dj occurs an odd number of times in the product.
A variable ta occurs an odd number of times in the product.

To see this, note that by the independence of the random variables, we can write the
expectation of the product, as a product of expectations where each term in the product has
all the occurrences of the same random variable. Since the dj ’s and ta’s are Rademachers,
the expectation of any odd power of one of these random variables is 0. Thus if just a
single random variable amongst the dj ’s and ta’s occurs an odd number of times, we have
E
[∏

(i,j,h)∈S tj−ith−idjdhxjxh

]
= 0. Similarly, we observe that if every random variable

occurs an even number of times, then the expectation of the product is exactly 1/sk since each
xj also occurs an even number of times. If Γk denotes the number of tuples S ∈ ([m]×[s]×[s])k
such that ∀(i, j, h) ∈ S we have h 6= j and furthermore:

For all columns a ∈ [s], |{(i, j, h) ∈ S | j = a ∨ h = a}| mod 2 = 0.
For all diagonals a ∈ {−(m − 1), . . . , s − 1}, |{(i, j, h) ∈ S | j − i = a ∨ h − i = a}|
mod 2 = 0.

Then we conclude

E[Zk] = Γk
skmk

. (1)

Note that Z2
k = Z2k. Therefore,

E[Z2
k ] = E[Z2k] = Γ2k

s2km2k . (2)

To complete the proof of Lemma 5 we need lower and upper bounds for Γk and Γ2k. The
bounds we prove are

I Lemma 6. If k ≤
√
m, then Γk and Γ2k satisfy:

Γk = mk/2skkk2−O(k)

and Γ2k = mks2kk2k2O(k).

The proof of the lower bound is in Section 2.1, while the proof of the upper bound is in
the full version of this paper [12].

Substituting the bounds from Lemma 6 in (1) and (2) we get

E[Zk] = m−k/2kk2−O(k)

E[Z2
k ] = m−kk2k2−O(k),

which are the bounds we sought for Lemma 5. J

ISAAC 2017
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2.1 Lower Bounding Γk

We first recall that the definition of Γk is the number of tuples S ∈ ([m]× [s]× [s])k satisfying
that ∀(i, j, h) ∈ S we have h 6= j and furthermore:

For all columns a ∈ [s], |{(i, j, h) ∈ S | j = a ∨ h = a}| mod 2 = 0.
For all diagonals a ∈ {−(m − 1), . . . , s − 1}, |{(i, j, h) ∈ S | j − i = a ∨ h − i = a}|
mod 2 = 0.

We view a triple (i, j, h) ∈ ([m] × [s] × [s]) as two entries (i, j) and (i, h) in an m × s
matrix. Furthermore, when we say that a triple touches a column or diagonal, a matrix
entry of the triple lie on that column or diagonal, so (i, j, h) touches columns j and h and
diagonals j − i and h− i. Similarly, we say that a tuple S ∈ ([m]× [s]× [s])k touches a given
column or diagonal l times, if l triples in S touches that column or diagonal.

We intent to prove a lower bound for Γk by constructing a big family of tuples F ⊆
([m]× [s]× [s])k, where each tuple satisfies, that each column and diagonal touched by that
tuple is touched exactly twice. As each column and diagonal is touched an even number of
times, the number of tuples in the family is a lower bound for Γk.

Proof of Γk = mk/2skkk2−O(k). We describe how to construct a family of tuples F ⊆ ([m]×
[s]× [s])k satisfying that ∀S ∈ F ,∀(i, j, h) ∈ S we have h 6= j and furthermore:

For all columns a ∈ [s], |{(i, j, h) ∈ S | j = a ∨ h = a}| ∈ {0, 2}.
For all diagonals a ∈ {−(m−1), . . . , s−1}, |{(i, j, h) ∈ S | j− i = a∨h− i = a}| ∈ {0, 2}.

From this and the definition of Γk it is clear that |F| ≤ Γk.
When constructing an S ∈ F , we view S as consisting of two halves S1 and S2, such that

S1 touches exactly the same columns and diagonals as S2 and both S1 and S2 touches each
column and diagonal at most once. To capture this, we give the following definition, where S
is meant to be the family of such halves S1 and S2.

I Definition 7. Let S be the set of all tuples S ∈ ([m]× [s]× [s])k/2 such that
∀(i, j, h) ∈ S, j 6= h

For all columns a ∈ [s], |{(i, j, h) ∈ S | j = a ∨ h = a}| ≤ 1
For all diagonals a ∈ {−(m− 1), . . . , s− 1}, |{(i, j, h) ∈ S | j − i = a ∨ h− i = a}| ≤ 1

Definition 7 mimics the definition of Γk, and the first item in Definition 7 ensures that
the triples in a tuple in S are of the same form as in Γk. The final two items ensure that each
column and diagonal, respectively, is touched at most once. This is exactly the properties we
wanted of S1 and S2 individually.

We can now construct F as all pairs of (half) tuples S1, S2 ∈ S, such that S1 touches
exactly the same columns and diagonals as S2. To capture that S1 and S2 touch the same
columns and diagonals, we introduce the notion of a signature. A signature of Si is the set
of columns and diagonals touched by Si.

To have S1 and S2 touch exactly the same columns and diagonals, it is necessary and
sufficient that they have the same signature.

We introduce the following notation: B denotes the number of signatures with at least
one member, and by enumerating the signatures, we let bi denote the number of (half) tuples
in S with signature i.

We recall that a (half) tuple S1 ∈ S touches each column and diagonal at most once, and
if S1 and S2 share the same signature, they touch exactly the same columns and diagonals.
Therefore, using ◦ to mean concatenation, S = S1 ◦ S2 ∈ F , as each column and diagonal
touched is touched exactly twice. Therefore |F| is a lower bound for Γk. Note that for a
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given signature i, the number of choices of S1 and S2 with that signature is b2i . This gives
the following inequality,

Γk ≥ |F| =
B∑
i=1

b2i .

We now apply the Cauchy-Schwarz inequality:

B∑
i=1

b2i

B∑
i=1

12 ≥
( B∑
i=1

bi
)2 =⇒

B∑
i=1

b2i ≥
(∑B

i=1 bi
)2∑B

i=1 12
=⇒ Γk ≥

|S|2

B
. (3)

To get a lower bound on |S|2/B (and in turn Γk), we need a lower bound on |S| and an
upper bound on B. These bounds are stated in the following lemmas

I Lemma 8. |S| = Ω(mk/2sk2−k).

I Lemma 9. B = O
((
m+s
k/2
)
sk/2

(
s
k

))
Before proving any of these lemmas, we show that they together with (3) give the desired

lower bound on Γk:

Γk = Ω(mk/2sk2−k)2

O
((
m+s
k/2
)
sk/2

(
s
k

)) = Ω
(
mks2k2−2k(k/2)k/2kk

(m+ s)k/2sk/2sk

)
. (4)

Because s = 4k, we have (k/2)k/2

sk/2 = 2−Θ(k), and because s ≤ m: mk

(m+s)(k/2) = mk/22−Θ(k).
With this we can simplify (4),

Γk = mk/2skkk2−O(k).

which is the lower bound we sought. J

Proof of Lemma 8. Recall that S ⊆ ([m]× [s]× [s])k/2 is the set of (half) tuples that touch
each column and diagonal at most once, and, for each triple (i, j, h) in these (half) tuples,
we have j 6= h.

We prove Lemma 8 by analysing how we can create a large number of distinct S ∈ S by
choosing the triples in S iteratively.

For each triple, we choose a row and two distinct entries on this row. We choose the row
among any of the m rows.

However, because S ∈ S, when choosing entries on the row, we cannot choose entries that
lie on columns or diagonals touched by previously chosen triples. Instead we choose the two
entries among any of the other entries. Therefore, whenever we choose a triple, this triple
prevents at most four row entries from being chosen for every subsequent triple, as the two
diagonals and two columns touched by the chosen triple intersect with at most four entries
on the rows of the subsequent triples. This leads to the following recurrence, describing a
lower bound for the number of triples

F (r, c, t) =
{
r · c · (c− 1) · F (r, c− 4, t− 1) if t > 0
1 otherwise

(5)

where r is the number of rows to choose from, c is the minimum number of choosable entries
in any row, and t is the number of triples left to choose.
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Inspecting (5), we can see that F can equivalently be defined as

F (r, c, t) = rt
t−1∏
i=0

(c− 4i)(c− 1− 4i). (6)

If t ≤ c
8 then the terms inside the product in (6) are greater than c

2 , so we can bound F
from below:

F (r, c, t) ≥ rt
( c

2
)2t = rtc2t

1
4t .

We now insert the values for r, c and t to find a lower bound for |S|, noting that s = 4k
ensures that t ≤ c

8 :

|S| ≥ F
(
m, s,

k

2
)
≥ mk/2sk

1
4k/2

=⇒ |S| = Ω(mk/2sk2−k).

J

Proof of Lemma 9. Recall that for at triple S ∈ S we define the signature as the set of
columns and diagonals touched by S. Furthermore, viewing a triple (i, j, h) ∈ ([m]× [s]× [s])
as the two entries (i, j) and (i, h) in anm×smatrix, we define the left endpoint as (i,min{j, h}
and the right endpoint as (i,max{j, h}).

The claim to prove is

B = O
((

m+ s

k/2

)
sk/2

(
s

k

))
.

This is proven by first showing an upper bound on the number of choices for the diagonals of
left endpoints, then diagonals of right endpoints and finally for columns.

In an m× s matrix there are m+ s different diagonals and as the chosen diagonals have
to be distinct, there are

(
m+s
k/2
)
choices for the diagonals corresponding to left endpoints in a

triple.
As the right endpoint of a triple has to be in the same row as the left endpoint, there are

at most s choices for the diagonal corresponding to the right endpoint when the left endpoint
has been chosen (which it has in our case). This gives a total of sk/2 choices for diagonals
corresponding to right endpoints.

Finally, there are s columns to choose from and the chosen columns have to be distinct,
and so the total number of choices of columns is

(
s
k

)
.

The product of these number of choices gives the upper bound sought. J
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Abstract
We consider the problem of computing all maximal repetitions contained in a string that is given
in run-length encoding. Given a run-length encoding of a string, we show that the maximum
number of maximal repetitions contained in the string is at most m+k−1, where m is the size of
the run-length encoding, and k is the number of run-length factors whose exponent is at least 2.
We also show an algorithm for computing all maximal repetitions in O(mα(m)) time and O(m)
space, where α denotes the inverse Ackermann function.
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1 Introduction

Periodicity and repetitions in strings are one of the most important characteristic features
in strings. They have been one of the first objects of study in the field of combinatorics on
words [25] and have many theoretical, as well as practical applications, e.g., in bioinformat-
ics [14].

Maximal repetitions are periodically maximal substrings of a string where the smallest
period is at most half the length of the substring, i.e., there are at least two consecutive
occurrences of the same substring. An O(n logn) time algorithm for computing all of the
maximal repetitions contained in a string of length n, was shown by Main and Lorentz [24],
which is optimal for general unordered alphabets, i.e., when only equality comparisons
between the letters are allowed. Kolpakov and Kucherov [15] further showed that the
number of maximal repetitions is actually O(n), and gave a linear time algorithm for ordered
constant size alphabets (and essentially for integer alphabets), to compute all of them. The
algorithm was a modification of the algorithm by Main [23], which in turn relies on the
Lempel-Ziv 77 (LZ77) factorization [27] of the string, which can be computed in linear time
for ordered constant size or integer alphabets [8], but requires Ω(n log σ) time for general
ordered alphabets [16], where σ is the size of the alphabet. Recently, a new characterization
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of maximal repetitions using Lyndon words was proposed by Bannai et al. [2, 3], which lead
to a very simple proof to what was known as the “runs” conjecture, i.e., that the number of
maximal repetitions in a given string of length n is less than n [3]. The characterization also
lead to a new linear time algorithm for computing maximal repetitions on ordered constant
size and integer alphabets, which does not require the LZ77 factorization, but only on a
linear number of longest common extension queries. Furthermore, based on this algorithm,
the running time for computing all maximal repetitions for general ordered alphabets were
subsequently improved to O(n log2/3 n) by Kosolobov [17], O(n log logn) by Gawrychowski
et al. [12], and O(nα(n)) by Crochemore et al. [9], where α denotes the inverse Ackermann
function.

In this paper, we consider the problem of computing all maximal repetitions contained
in a string when given the run-length encoding (RLE) of the string, which is a well known
compressed representation where each maximal substring of the same character is encoded as
a pair consisting of the letter and the length of the substring. For example, the run-length
encoding of the string aaaabbbaaacc is (a, 4)(b, 3)(a, 3)(c, 2). The main contributions of the
paper are:

1. an upper bound m+ k − 1 on the number of maximal repetitions contained in a string,
where m is the size of its run-length encoding and k is the number of run-length factors
whose exponent is at least 2, and

2. an O(mα(m)) time and O(m) space algorithm to compute all maximal repetitions in a
string.

Our algorithm is at least as efficient as the non-RLE algorithms for general ordered alphabets.
Furthermore, when the input string is compressible via RLE, our algorithm can be faster
and more space efficient compared to the non-RLE algorithms. Although our algorithm
mimics those for non-RLE strings and is conceptually simple, its correctness is based on new
non-trivial observations on the occurrence of specific Lyndon words in run-length encoded
strings.

Efficient algorithm for string problems when the input is given in RLE has been considered
in various contexts, for example, edit distance [6], various Longest Common Subsequence
problems [20, 18], palindrome retrieval [7], computing Lempel Ziv factorization [26], etc. We
shall repeat below a claim made in [18] concerning the significance of RLE-based solutions:

“A common criticism against RLE based solutions is a claim that, although they are
theoretically interesting, since most strings “in the real world” are not compressible by
RLE, their applicability is limited and they are only useful in extreme artificial cases.
We believe that this is not entirely true. There can be cases where RLE is a natural
encoding of the data, for example, in music, a melody can be expressed as a string of
pitches and their duration. Furthermore, in the data mining community, there exist
popular preprocessing schemes for analyzing various types of time series data, which
convert the time series to strings over a fairly small alphabet as an approximation of
the original data, after which various analyses are conducted (e.g. SAX (Symbolic
Aggregate approXimation) [19], clipped bit representation [1], etc.). These conversions
are likely to produce strings which are compressible by RLE (and in fact, shown to
be effective in [1]), indicating that RLE based solutions may have a wider range of
application than commonly perceived.”
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2 Preliminaries

2.1 Strings

Let Σ denote the alphabet, i.e. the set of letters (or characters). An element of Σ∗ is called
a string. For any strings x, y ∈ Σ∗, xy represents their concatenation. If w = xyz for any
strings w, x, y, z ∈ Σ∗, x, y, z are respectively called a prefix, substring, suffix of w. A prefix
x and a suffix z of w are respectively called a proper prefix, and proper suffix of w, if x 6= w

and z 6= w. A string x is called a border of w, if it is a proper suffix as well as a prefix
of w. The length of a string w is denoted as |w|. The empty string is a string of length 0
and will be denoted by ε. For any 1 ≤ i ≤ j ≤ |w|, w[i] denotes the ith letter of w, and
w[i..j] = w[i] · · ·w[j]. For convenience, let w[i..j] = ε when i > j. For any integer k ≥ 0 and
string x ∈ Σ∗, x0 = ε, and xk = xk−1x.

We assume a general ordered alphabet, where a total order ≺ is defined on Σ, and the order
between two letters in the alphabet can be computed in constant time. A total order ≺ on the
alphabet induces a total order on the set of strings called the lexicographic order, which we also
denote by ≺, i.e., for any x, y ∈ Σ∗, x ≺ y ⇐⇒ x is a proper prefix of y, or, there exists 1 ≤
i ≤ min{|x|, |y|} s.t. x[1..i− 1] = y[1..i− 1] and x[i] ≺ y[i].

All previous linear time algorithms either assume a constant size ordered alphabet or
an integer alphabet, i.e., Σ = {1, . . . , nc} for some constant c. We will later see that this
assumption does not help in our case.

2.2 Maximal Repetitions

For any string w ∈ Σ∗, an integer 1 ≤ p < |w| is called a period of w if w[i] = w[i+ p] for all
1 ≤ i ≤ |w| − p. A string whose smallest period is at most half its length is called a repetition.
We are interested in occurrences of repetitions as a substring of a given string which are
periodically maximal. Specifically, a triplet r = (i, j, p) is called a maximal repetition of w, if
and only if all the following hold:
1. p is the smallest period of w[i..j] and |w[i..j]| ≥ 2p (repetition),
2. i = 1 or w[i− 1] 6= w[i− 1 + p] (left maximal), and
3. j = |w| or w[j + 1] 6= w[j + 1− p] (right maximal).
For any string w, we denote the set of maximal repetitions as MReps(w). Although maximal
repetitions are commonly referred to as “runs” in the literature, we use the term “maximal
repetitions” so as not to confuse it with “run” in “run-length encoding”.

For example, the string w = abaababaabaab contains seven maximal repetitions, i.e.,
MReps(w) = {(3, 4, 1), (8, 9, 1), (11, 12, 1), (4, 8, 2), (1, 6, 3), (6, 13, 3), (1, 11, 5)}.

2.3 Run Length Encoding

Let N denote the set of positive integers. For any string w ∈ Σ∗, let ai ∈ Σ and ei ∈ N ,
for 1 ≤ i ≤ m, be such that w = ae1

1 · · · aem
m and ai 6= ai+1 for all 1 ≤ i < m. The run-

length encoding RLE(w) of string w is a string over the alphabet Σ×N , and is defined as
RLE(w) = (a1, e1) · · · (am, em). For any 1 ≤ i ≤ m, each letter RLE(w)[i] = (ai, ei) and its
corresponding substring aei

i in w is called a run-length factor, and ei is called its exponent.
The set of starting (resp. ending) positions of run-length factors of w is denoted by Sw

(resp. Ew), i.e., Sw = {1 +
∑i−1
k=1 ek : 1 ≤ i ≤ m} and Ew = {

∑i
k=1 ek : 1 ≤ i ≤ m}. We will

also write Sw[i] = 1 +
∑i−1
k=1 ek and Ew[i] =

∑i
k=1 ek for any 1 ≤ i ≤ m.

ISAAC 2017
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2.4 Lyndon Words
A string w is a Lyndon word [22] with respect to lexicographic order ≺, if and only if
w ≺ w[i..|w|] for any 1 < i ≤ |w|, i.e., w is lexicographically smaller than any of its proper
suffixes with respect to ≺. It is easy to see that a Lyndon word w cannot have a non-empty
border, since a border would be a proper suffix of w that is lexicographically smaller than w,
since it is also a prefix of w. An equivalent definition for a Lyndon word, is a word which is
lexicographically smaller than any of its proper cyclic rotations.

For example, if a ≺ b, then, the string abaabb, baa, abab are not Lyndon words with
respect to ≺, while aabab is. The following is also well known.

I Lemma 1 (Proposition 1.3 [10]). For any Lyndon words u and v, uv is a Lyndon word iff
u ≺ v.

2.5 Longest Common Extension
For any string w of length n, the longest common extension query is, given two positions
1 ≤ i, j ≤ n, to answer

LCEw(i, j) = max{k | w[i..i+ k − 1] = w[j..j + k − 1], i+ k − 1, j + k − 1 ≤ n}.

We also define the longest common extension in the reverse direction, i.e.,

LCER
w(i, j) = max{k | w[i− k + 1..i] = w[j − k + 1..j], i− k + 1, j − k + 1 ≥ 1}.

Note that if there is a way to compute LCEw(i, j) given w, there is also a way to com-
pute LCER

w(i, j) by considering the reversed string wR = w[n] · · ·w[1], since LCER
w(i, j) =

LCEwR(n− i+ 1, n− j + 1).

3 The Maximum Number of Maximal Repetitions by RLE

The goal of this section is to prove the following Theorem.

I Theorem 2. For any string w, let m be the size of its run-length encoding, and k the
number of run-length factors of w whose exponent is at least 2. Then, |MReps(w)| ≤ m+k−1.

The proof basically follows the idea of [3] for normal strings, but it is extended to deal with
RLE strings.

For any maximal repetition r = (i, j, p) of string w and any lexicographic order ≺, there
exists a substring of length p in w[i..j] that is a Lyndon word with respect to ≺. This
is because the set {w[i′..i′ + p − 1] | i + 1 ≤ i′ ≤ i + p} contains all p cyclic rotations of
w[i+1..i+p] which are all distinct, since p is the smallest period of w, and a lexicographically
smallest rotation will always exist. Any length p subinterval [`, ` + p − 1] of a maximal
repetition r = (i, j, p) such that w[`..`+ p− 1] is a Lyndon word with respect to ≺, is called
an L-root of r with respect to ≺.

Theorem 2 is trivial when |Σ| = 1, so we can assume |Σ| ≥ 2, and thus, we are
able to consider two orderings denoted by ≺0 and ≺1, where ≺0=≺ and for any a, b ∈ Σ,
a ≺0 b ⇐⇒ b ≺1 a. We also use ≺0 and ≺1 to denote the lexicographic orders on Σ∗ induced
by the respective total orders. As in [3], we choose, for each maximal repetition r = (i, j, p),
a specific lexicographic order denoted by ≺r∈ {≺0,≺1} so that w[j + 1] ≺r w[j + 1− p]. We
note that either order can be chosen when j = n. The set Br is defined as the beginning
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positions of L-roots of r with respect to this order, but excludes a position if it coincides with
the beginning position of the maximal repetition, i.e., for any maximal repetition r = (i, j, p),

Br = {` | [`..`+ p− 1] is an L-root of r w.r.t. ≺r , and ` 6= i}.

Note that |Br| ≥ 1 since a maximal repetition always contains an L-root that does not start
at its beginning. One of the crucial results of [3] was the following lemma, which implies
that the number of maximal repetitions in a string w of length n is at most n − 1 since
∪r∈MReps(w)Br ⊆ [2..n] and thus |MReps(w)| ≤

∑
r∈MReps(w) |Br| ≤ n− 1.

I Lemma 3 (Lemma 8 of [3]). For any distinct maximal repetitions r, r′ of w, Br ∩Br′ = ∅.

The following lemma is an important new observation for L-roots of maximal repetitions
with respect to their run-length encoding.

I Lemma 4. For any maximal repetition r = (i, j, p) of string w with p ≥ 2, it holds that
Br ⊂ Sw, i.e., a position in Br must be the beginning of an RLE-factor.

Proof. Suppose to the contrary, that there is some ` ∈ Br that is not at the beginning of
an RLE-factor, i.e., ` 6∈ Sw, and let [`..`+ p− 1] be the corresponding L-root of r. By the
assumption, w[`− 1] = w[`]. Furthermore, by the definition of Br, we have that i < ` and
by the periodicity of r, w[`− 1] = w[`+ p − 1]. However, this implies that w[`..`+ p − 1]
has a border, contradicting that it is a Lyndon word. The lemma holds, since 1 ∈ Sw but
1 6∈ Br. J

Of course, a run-length factor can be a maximal repetition of period 1, and can be stated as
follows.

I Lemma 5. For any string w, let RLE(w) = (a1, e1) · · · (am, em). For any 1 ≤ i ≤ m,
(Sw[i],Ew[i], 1) is a maximal repetition of period 1 if and only if ei ≥ 2.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Recall that k is the number of run-length factors of w whose exponent
is at least 2. Due to Lemma 5, the number of maximal repetitions with period 1 is equal to
k. Note that for any maximal repetition r of period 1, any position i ∈ Br satisfies i 6∈ Sw.
Let MRepsp≥2 (w) be the set of maximal repetitions such that the period is at least 2. From
|Br| ≥ 1 and Lemmas 3 and 4,

|MRepsp≥2 (w)| ≤
∑

r∈MRepsp≥2 (w)

|Br| ≤ m− 1 < m = |Sw|

holds. Thus, the total number of maximal repetitions is at most m+ k − 1. J

If we consider the 2 cases w.r.t. m, we can get better bounds for each of 2 cases. Corollary 6
is the tight bound for smaller m. Corollary 7 is a improved bound for larger m.

I Corollary 6. For any string w, let m be the size of its run-length encoding. If m ≤ 3,
|MReps(w)| ≤ m.

If m = 3, it is easy to see that |MRepsp≥2 (w)| = 0. Obviously, |MReps(w)| = k also holds,
where k is the number of run-length factors of w whose exponent is at least 2.

I Corollary 7. For any string w, let m be the size of its run-length encoding, and k the number
of run-length factors of w whose exponent is at least 2. If m ≥ 4, |MReps(w)| ≤ m+ k − 3.
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Proof. Since an L-root of r ∈ MRepsp≥2 (w) must contain at least two different characters,
the beginning position Sw[m] of the last run-length factor (am, em) cannot be in Br for
any r ∈ MRepsp≥2 (w). If Sw[m − 1] ∈ Br for some r ∈ MRepsp≥2 (w), this implies that
[Sw[m− 1],Ew[m]] is an L-root of r. Thus, [Sw[m− 2],Ew[m− 1]] must also be an L-root
with respect to the lexicographically reversed order, and Sw[m − 2] /∈ Br. Since r ends
at position |w|, we can choose either Sw[m − 1] or Sw[m − 2] as an element of Br. This
implies that either Sw[m − 1] or Sw[m − 2] is not in Br for any r ∈ MRepsp≥2 (w). Thus
|MRepsp≥2 (w)| ≤ m− 3 also holds. Since 1 and Sw[m] are not contained in Br, and since
only one of Sw[m − 1] or Sw[m − 2] is contained in some Br, we have that the maximum
number of maximal repetitions in a string is at most m+ k − 3. J

4 Computing All Maximal Repetitions on RLE strings

In this section, we propose an algorithm to compute all maximal repetitions on RLE strings.
Our algorithm follows the new algorithm for normal strings proposed in [3], but is modified
to handle RLE strings. We first review the algorithm for non-RLE strings.

4.1 Overview of Algorithm for Non-RLE Strings
The crucial observation made in [3] (which was also required for the proof of Lemma 3 in the
previous section) is the following:

I Lemma 8 (Lemma 7 of [3]). For any maximal repetition r = (i, j, p) of string w, let
[`, `+ p− 1] be an L-root of r with respect to order ≺r. Then, w[`..`+ p− 1] is the longest
Lyndon word that is a prefix of w[`..|w|].

Based on this observation, the algorithm consists of two steps. Step 1: Compute all the
longest Lyndon words with respect to ≺0 and ≺1 that start at each position of the string
(the occurrences are candidates for L-roots). Step 2: For each such candidate λ = w[iλ..jλ],
compute `h = LCEw(iλ, jλ + 1) and `g = LCER

w(iλ − 1, jλ) to see how long the period
pλ = |w[iλ..jλ]| = jλ − iλ + 1 continues to the left and to the right. We see that [iλ, jλ] is
indeed an L-root of the maximal repetition r = (iλ− `g, jλ+ `h, pλ) if and only if `g + `h ≥ pλ.

Noticing that a Lyndon word can be created from any string by appending a unique
smallest letter to the front of the string, we can use the Lyndon tree of a Lyndon word for
Step 1. Given a Lyndon word w of length n > 1, (u, v) is the standard factorization [5, 21] of
w, if w = uv and v is the longest proper suffix of w that is a Lyndon word, or equivalently,
the lexicographically smallest proper suffix of w. It is well known that for the standard
factorization (u, v) of any Lyndon word w, the factors u and v are also Lyndon words (e.g.[4]).
The Lyndon tree of w is the full binary tree defined by recursive standard factorization of w;
w is the root of the Lyndon tree of w, its left child is the root of the Lyndon tree of u, and
its right child is the root of the Lyndon tree of v. The longest Lyndon word that starts at
each position can be obtained from the Lyndon tree, due to the following lemma.

I Lemma 9 (Lemma 22 of [3]). Let w be a Lyndon word with respect to ≺. w[i..j] corresponds
to a right node (or possibly the root) of the Lyndon tree with respect to ≺ if and only if w[i..j]
is the longest Lyndon word with respect to ≺ that starts from i.

The Lyndon tree of a normal string can be computed in O(nα(n)) time over general
ordered alphabet because of the following lemmas.

I Lemma 10 (Observation 4 of [9]). The Lyndon tree of a string of length n can be constructed
by using O(n) non-crossing LCE queries.
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I Lemma 11 (Theorem 12 of [9]). In a string of length n, a sequence of q non-crossing
LCE queries can be answered in time O(q + nα(n)), where α denotes the inverse Ackermann
function.

Here, a set of LCE queries is non-crossing if there are no two queries (i, j) and (i′, j′), such
that i < i′ < j < j′ or i′ < i < j′ < j. After computing the Lyndon tree, O(n) non-crossing
LCE queries are computed again for each right node in Step 2 as described above. Thus the
total time complexity for computing all maximal repetitions in non-RLE string is O(nα(n))
time over general ordered alphabet.

We note that the LCE queries and thus all maximal repetitions can be computed in total
O(n) time for integer alphabets (using e.g. [11]).

4.2 Extending Lyndon structures for RLE
We now consider computing maximal repetitions on RLE strings. By Theorem 2, the number
of maximal repetitions in an RLE string is O(m), and from Lemmas 4 and 8, we can limit
the candidate L-roots of maximal repetitions with period at least 2, to the longest Lyndon
words that start at beginning positions of a run-length factor. We propose the RLE-Lyndon
tree of a string which can be represented in O(m) space and contains this information. In the
RLE-Lyndon tree, we treat each run-length factor like a character. The idea of the extension
comes from the following lemma.

I Lemma 12. For any 1 ≤ i < j ≤ |w|, if w[i..j] is the longest Lyndon word with respect to
≺ that is a prefix of w[i..|w|], then j ∈ Ew, i.e., j is an end of a RLE-factor.

Proof. Suppose to the contrary, that there is some j /∈ Ew such that w[i..j] is the longest
Lyndon word with respect to ≺ that is a prefix of w[i..|w|]. Let RLE(w)[k] be the run-length
factor such that Sw[k] ≤ j < Ew[k]. Since w[i..j] is a Lyndon word of length at least 2 and
w[j] = ak = w[j + 1], w[i..j] ≺ w[j] = w[j + 1] holds. By Lemma 1, w[i..j + 1] is also a
Lyndon word. This contradicts that w[i..j] is the longest Lyndon word with respect to ≺
that is a prefix of w[i..|w|]. J

From Lemmas 4 and 12, we have that for any maximal repetition r, each L-root of r that
has a starting position in Br, starts at the beginning position of some run-length factor and
ends at the ending position of some run-length factor. We note that RLE-Lyndon substring
and RLE-Lyndon factorization which will be defined in this section were introduced in [13]
in a different context.

I Definition 13 (RLE-Lyndon substring). A string x is an RLE-Lyndon substring of w if x
is a Lyndon word that is a concatenation of consecutive run-length factors of w, or x is a
run-length factor.

I Definition 14 (RLE-standard factorization). A pair of strings (u, v) is an RLE-standard
factorization of w if w = uv and v is the longest proper suffix of w that is an RLE-Lyndon
substring.

I Definition 15 (RLE-Lyndon tree). The RLE-Lyndon tree of a Lyndon word w, denoted
LyndonTre2 (w), is an ordered full binary tree defined recursively as follows:

if |RLE(w)| = 1, then LyndonTre2 (w) consists of a single node labeled by (a1, e1);
if |RLE(w)| ≥ 2, then the root of LyndonTre2 (w), labeled by RLE(w), has left child
LyndonTre2 (u) and right child LyndonTre2 (v), where (u, v) is the RLE-standard factor-
ization of w.
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a!a!a!b!b!a!a!b!b!a!a! b! a! b!b!a!a!b!b!a!a!b!b!b!b! a! a!

Figure 1 The RLE-Lyndon tree for the Lyndon word a3b2a2b2a2b2a3b2a2b2a2b3 with respect to
order a ≺ b. The double-headed arrows shows the L-roots that start at a position in Br,for all 4
maximal repetitions with period at least 2.

Figure 1 shows the RLE-Lyndon tree of a string a3b2a2b2a2b2a3b2a2b2a2b3. Though the
above structures are simply extended to RLE, it is interesting to note that these structures
satisfy similar properties of the original structures. The most important property of the
RLE-Lyndon tree in this paper is stated in Lemma 16, which is an analogous to Lemma 9.
The lemma can be shown by similar arguments as in [3].

I Lemma 16. Let w be a Lyndon word with respect to ≺. For any i ∈ Sw, w[i..j] corresponds
to a right node (or possibly the root) of LyndonTre2 (w) with respect to ≺ if and only if w[i..j]
is the longest Lyndon word with respect to ≺ that starts from i.

From the above lemma, we can detect all maximal repetitions in MRepsp≥2 (w) if we have
LyndonTre2 (w) (maximal repetitions with period 1 correspond to run-length factor or leaves
of LyndonTre2 (w)). In the example of Figure 1, for each maximal repetition r, the L-roots
that start at a position in Br are drawn by double-headed arrows. For example, the 2 L-roots
[Sw[3]..Ew[4]] and [Sw[5]..Ew[6]] (corresponding to a Lyndon word aabb) with respect to the
same order ≺ as the Lyndon tree is represented by an internal node which is a right child.
Also, it can be observed that each L-root begins at the starting position of a run-length
factor and ends at the ending position of a run-length factor of w.

In Section 4.3, we show an algorithm to compute LyndonTre2 (w). For convenience, we
present the notion of RLE-Lyndon factorizations and show some properties of RLE-Lyndon
factorizations.

I Definition 17 (RLE-Lyndon factorization). A sequence w1, . . . , ws is the RLE-Lyndon
factorization of w if each wi is an RLE-Lyndon substring, w1 � . . . � ws, and w = w1 · · ·ws.

The difference between the original Lyndon factorization [5] and the RLE-Lyndon factoriza-
tion arises for Lyndon factors which are a single letter in the original
Lyndon factorization. For a string w = bbbabbaabbaa, the original Lyndon factorization
of w is b � b � b � abb � aabb � a � a, the RLE-Lyndon factorization of w is
b3 � abb � aabb � a2. Thus similar argument about the longest Lyndon word on Lyn-
don factorizations holds, as below.

I Lemma 18. Let w1, . . . , ws be the RLE-Lyndon factorization of w. Then, w1 is either
RLE(w)[1] or the longest Lyndon word that is a prefix of w.

This implies that wi is either RLE(wi · · ·ws)[1] or the longest Lyndon word that is a prefix
of wi · · ·ws.
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4.3 Algorithms
Finally, we show how to compute LyndonTre2 (w) in O(mα(m)) time and O(m) space. After
we compute LyndonTre2 (w), we can compute all maximal repetitions by using non-crossing
LCE queries. Note that the O(n) time and space solution for non-RLE strings over the
integer alphabet cannot be applied to RLE(w) to achieve an O(m) time and space solution,
since the alphabet for RLE(w) cannot be assumed to be an integer alphabet in terms of its
length m (m could be much smaller than n, while an exponent of a run-length factor could
be as large as n). However, the solution to non-crossing LCE queries for non-RLE strings
over a general ordered alphabet can be easily extended to LCE queries on an RLE string,
since the algorithm is based only on character comparisons.

I Corollary 19. For any RLE string RLE(w) of size m, a sequence of q non-crossing LCE
queries on RLE(w) can be answered in time O(q +mα(m)).

We use the above corollary in order to decide the lexicographic order between RLE
substrings in the construction of LyndonTre2 (w), and to compute maximal repetitions.

I Lemma 20. LyndonTre2 (w) can be computed in O(mα(m)) time and O(m) space.

Proof. Firstly, we show our algorithm. The algorithm constructs LyndonTre2 (w) in bottom-
up and from right to left. The main idea is that the right factor of RLE-standard factorization
is the longest proper suffix which is an RLE-Lyndon substring. We will find such a suffix by
concatenating two RLE-Lyndon substrings based on Lemma 1. Since each leaf corresponds to
a single run-length factor (i.e., RLE-Lyndon substring), we know that the tree has m leaves.
A stack is maintained so that at the beginning of k-th step, the stack contains the sequence of
subtrees of LyndonTre2 (w) such that the corresponding sequence of RLE-Lyndon substrings
is the RLE-Lyndon factorization of the suffix w[Sw[m− k + 2]..|w|]. In the k-th step, the
algorithm pushes the leaf corresponding to RLE(w)[m − k + 1] on the stack. Let (fb, fe)
(resp. (sb, se)) be pair of positions in RLE(w) such that the top (resp. second) subtree in the
stack corresponds to the RLE-Lyndon substring w[Sw[fb]..Ew[fe]] (resp. w[Sw[sb]..Ew[se]]).
Note that Ew[fe] + 1 = Sw[sb] always holds. After pushing the new leaf, the algorithm does
the following;

If w[Sw[fb]..Ew[fe]] ≺ w[Sw[sb]..Ew[se]], pop the two elements and push the subtree which
is the concatenation of the two popped subtrees, and repeat the process.
Otherwise, go to the next step.

We now prove that the above invariant condition of the stack holds before k + 1-th step.
We denote the RLE-Lyndon factorization of the suffix w[Sw[m− k + 2]..|w|] by W1, . . . ,Wj .
Because of the above operations, a factorization of the suffix w[Sw[m− k + 1]..|w|] can be
represented byW ′,Wi, . . . ,Wj for some 1 ≤ i ≤ j whereW ′ = RLE(w)[m−k+1]W1 · · ·Wi−1
(for convenience, W0 = ε). By the assumption, Wi, . . . ,Wj is the RLE-Lyndon factorization
of the suffix Wi · · ·Wj . By the algorithm and Lemma 1, W ′ is an RLE-Lyndon substring
and W ′ � Wi holds. Thus W ′,Wi, . . . ,Wj is the RLE-Lyndon factorization of the suffix
w[Sw[m− k + 1]..|w|] since W ′ �Wi � . . . �Wj holds. Since w is a Lyndon word, when all
leaves are pushed on the stack and the number of elements in the stack is one, the algorithm
stops and the RLE-Lyndon tree is completely constructed.

We can determine the lexicographic order by using LCE queries. More precisely, for
each lexicographic comparison described above, we compute LCERLE(w)(fb, sb) = k. Then,
w[Sw[fb]..Ew[fe]] ≺ w[Sw[sb]..Ew[se]] if and only if sb + k − 1 < se and, either
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1. afb+k ≺ asb+k or, afb+k = asb+k and
2. efb+k < esb+k and afb+k+1 ≺ asb+k or
3. efb+k > esb+k and asb+k+1 ≺ afb+k.
Thus, in the algorithm, we call O(m) non-crossing LCE queries such that each query positions
is the beginning position of some run-length factor and we can compute LyndonTre2 (w) in
O(mα(m)) time.

To compute all maximal repetitions, we need to compute another O(m) sets of LCE
queries on w (or wR) for each candidate L-root. The query positions are starting positions
of run-length factors in w (or wR). It is easy to see that this can also be achieved in
O(mα(m)) time by Corollary 19 since if k = LCERLE(w)(i, j), then LCEw(Sw[i],Sw[j]) =
Ew[i+ k − 1]− Sw[i] + 1 + e, where e = min{ei+k, ej+k} if ai+k = aj+k and 0 otherwise. It
is also clear that the algorithm requires O(m) space. J

Therefore, the following theorem holds.

I Theorem 21. Given a run-length encoding of a string w, all maximal repetitions in w can
be computed in O(mα(m)) time and O(m) space.

I Corollary 22. For any string w, let RLE(w) = (a1, e1) · · · (am, em). If for all 1 ≤ i ≤ m,
ai ∈ {1, . . . ,mc1}, and ei = O(mc2) for some constants c1 and c2, then all maximal repetitions
in w can be computed in O(m) time and O(m) space.

Proof. Under the assumption, any set of O(m) LCE queries on RLE(w) can be answered
in O(m) total time using the methods for integer alphabets (i.e., Σ = {1, . . . ,mc} for some
constant c), since aei

i = O(mc1+c2). J
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Abstract
A (possibly degenerate) drawing of a graph G in the plane is approximable by an embedding if
it can be turned into an embedding by an arbitrarily small perturbation. We show that testing,
whether a drawing of a planar graph G in the plane is approximable by an embedding, can be
carried out in polynomial time, if a desired embedding of G belongs to a fixed isotopy class, i.e.,
the rotation system (or equivalently the faces) of the embedding of G and the choice of outer face
are fixed. In other words, we show that c-planarity with embedded pipes is tractable for graphs
with fixed embeddings.

To the best of our knowledge an analogous result was previously known essentially only when
G is a cycle.
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1 Introduction

In the theory of graph visualization a drawing of a graph G = (V,E) in the plane is usually
assumed to be free of degeneracies, i.e., edge overlaps and edges passing through a vertex.
However, in practice degenerate drawings often arise and need to be dealt with.

Recent papers [1, 7] address a certain aspect of this problem for simple polygons which
can be thought of as straight-line (rectilinear) embeddings of graph cycles. Chang et al. [7]
gave an O(n2 logn)-time algorithm to detect if a given polygon with n vertices can be turned
into a simple (non self-intersecting) one by small perturbations of its vertices, or in other
words if the polygon is weakly simple. We mention that there exists an earlier closely
related definition of weakly simple polygons by Toussaint [6, 26], however, as pointed out
in [7] this notion is not well-defined for general polygons with “spurs”, see [7] for an overview
of attempts at combinatorial definitions of a polygon not crossing itself.

An O(n logn) improvement on the running time of the algorithm by Chang et al. was
announced very recently by Akitaya et al. [1]. The combinatorial formulation of this problem
corresponds to the setting of c-planarity with embedded pipes introduced by Cortese
et al. [10] well before the two aforementioned papers. Therein only an O(n3)-time algorithm
for the problem was given. Nevertheless, the algorithms in [1, 7] were built upon the ideas
from [10]. Moreover, to the best of our knowledge the complexity status of the c-planarity
with embedded pipes is essentially known only for cycles. Recently the problem was studied
for general planar graphs by Angelini and Da Lozzo [3], but they gave only an FPT algorithm.
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34:2 Embedding Graphs into Embedded Graphs

The introduction of this problem was motivated by a more general and well known problem
of c-planarity by Feng et al. [13, 14], whose tractability status was open since 1995 even
in much more restricted cases than the one that we consider. Biedl [4] gave a polynomial-
time algorithm for c-planarity with two clusters. Beyond two clusters a polynomial time
algorithm for c-planarity was obtained only in special cases, e.g., [9, 18, 19, 20, 21], and
most recently in [5, 8, 15].

There is, however, another tightly related line of research on approximability or realiza-
tions of maps pioneered by Sieklucki [24], Minc [22] and M. Skopenkov [25] that is completely
independent from the aforementioned developments, and that is also a major source of in-
spiration for our work. It can be easily seen that the result [25, Theorem 1.5] implies that
c-planarity is tractable for flat instances with three clusters or cyclic clustered graphs [17,
Section 6] with a fixed isotopy class of a desired embedding. An algorithm with a better
running time was given by the author in [15].

The aim of the present work is to show that c-planarity with embedded pipes is tractable
for planar graphs with a fixed isotopy class of embeddings, which extends results of [2, 3, 15].
Our work also implies the tractability of deciding whether a drawing is approximable by an
embedding in a fixed isotopy class, which extends results of [1, 7]. This also answers in the
affirmative a question posed in [7, Section 8.2] if the isotopy class of an embedding of G is
fixed.

Roughly, we are to decide if in the given isotopy of G an embedding approximating a
given (possibly degenerate) drawing of G class exists. The degenerate drawing of G is viewed
as a plane graph H and the degeneracies (if any) are captured by a simplicial map between
G and H. Let G and H be a pair of graphs such that H contains neither loops nor multiple
edges, i.e., H is simple. A map γ : V (G)→ V (H) is simplicial if for every edge uv ∈ E(G)
either γ(u) = γ(v) or γ(u)γ(v) is an edge of H. We partition V (G) into clusters Vν so that
γ(v) = ν if and only if v ∈ Vν . If it leads to no confusion, we do not distinguish between a
vertex or an edge and its representation in the drawing and we use the words “vertex” and
“edge” in both contexts. We are in the position to state our problem formally.

We are given an ordered triple (G,H, γ), where G is a planar graph (possibly with loops
and multiple edges) given by the isotopy class of an embedding of G in the plane, H is
a plane simple graph1, and γ : V (G) → V (H) is a simplicial map. We assume that the
drawing given by H is piece-wise linear. The feature size of H is the minimum of the set
consisting of the Euclidean non-zero distances between the endpoints of the line segments
defining the drawing of H, and the Euclidean distances between the line segments defining
the drawing of H. By treating a graph as a 1-dimensional topological space we extend the
definition of γ linearly to the edges of G. We want to decide if the given isotopy class of G
contains an embedding E such that ‖E(x)− γ(x)‖2 � ε, for all x ∈ G, where ε := ε(H) > 0
is smaller than half of the feature size of H. Thus, by the choice of ε a desired embedding of
G lies in a small neighborhood of H preserving the facial structure of the embedding of H.

However, to view the problem from a perspective that is more combinatorial, we put
further restrictions on a desired embedding of G, which lead to the equivalent problem of c-
planarity with embedded pipes, see Figure 1. To this end we need to introduce a couple
of notions. Let dist(p,q) denote the Euclidean distance between p,q ∈ R2. Let dist(p, S) =
minq∈S dist(p,q), where S ⊂ R2. Let Nε(S) for S ⊂ R2 denote the ε-neighborhood of S,
i.e., Nε(S) = {p ∈ R2| dist(p, S) ≤ ε}. Let ε′ > 0 be a small value as described later. The

1 In other words, a (planar) graph drawn in the plane without edge crossings.
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Figure 1 Instance of c-planarity with embedded pipes. The partition of the vertex set of G into
clusters is encoded by the shape of vertices. An H-compatible embedding of a subgraph of G that
cannot be extended to the whole G (left). An H-compatible embedding of G (right) inside H. The
valves of ρ = νµ at Nε(ν) and Nε(µ) are highlighted by bold arcs.

thickening H of H is the union of Nε(ν), for all ν ∈ V (H) and Nε′(ρ), for all ρ ∈ E(H)2.
Let the pipe of ρ ∈ E(H) be the closure of Nε′(ρ) \ (Nε(ν)∪Nε(µ)), where ρ = νµ. Let the
valve of ρ at ν be the curve obtained as the intersection of Nε(ν) and the pipe of ρ. We
put ε′ < ε = ε(H), where ε(H) is the same as in the previous paragraph, so that the valves
are pairwise disjoint in H.

In the combinatorial formulation of the problem, we are to decide if the given isotopy
class of G contains an embedding contained in H, where the vertices in Vν , for every ν,
are drawn in the interior of Nε(ν) and every edge crosses the boundary of Nε(ν), for every
ν ∈ V (H), at most once. This does not change the problem as observed in [7]. Such an
embedding of G is H-compatible. Let Eνµ = {uv ∈ E(G)| v ∈ Vν , u ∈ Vµ}. An H-
compatible embedding of G is encoded by G,H, and a set of total orders (Eνµ, <ω), for
every νµ ∈ E(H) and a valve ω of νµ, where (Eνµ, <ω) encodes the order of crossings of ω
with edges along ω. The isotopy class of G is encoded by a choice of the outer face, a set of
rotations at its vertices and a containment relation of its connected components as described
in Section 2. Since we are interested only in combinatorial aspects of the problem, H is also
given by the isotopy class of its embedding. Throughout the paper we assume that G and
H are given as above.

I Theorem 1. There exists an O(n2)-time algorithm that decides if the given isotopy class
of G contains an H-compatible embedding. An H-compatible embedding of G can be also
constructed in O(n2) time if it exists. In other words, c-planarity with embedded pipes is
tractable, when an isotopy class of a desired embedding of G is fixed.

As a corollary of our result we obtain that we can test in polynomial time if a piecewise
linear drawing of a graph in the plane is approximable by an embedding and construct such
an embedding if it exists. As we previously discussed, this extends results in [1, 7] and
also [25].

I Corollary 2. There exists an O(n4)-time algorithm that decides if a piecewise linear (pos-
sibly degenerate) drawing of a graph in the plane is approximable by an embedding, and
constructs such an embedding if it exists, where n is the size of the representation of the
drawing.

Extensions of our results. By [23, Theorem 3.1] and Fáry–Wagner theorem [12], our result
holds also in the setting of rectilinear, i.e., straight-line, drawings of graphs. To extend it
further in this setting by allowing “forks” seems to be just a little bit technical.

2 Throughout the paper we denote vertices and edges of H by Greek letters.

ISAAC 2017



34:4 Embedding Graphs into Embedded Graphs

In a recent manuscript [16], we verified a conjecture of M. Skopenkov [25, Conjecture 1.6]
implying that our problem is tractable, when we lift the restriction on the isotopy class G.
This does not imply that the problem with the restriction on the isotopy class G is tractable
except when G is connected. The running time of the algorithm, that is implied by [16], is
O(|V |2ω), where O(nω) is the running time of the fastest algorithm for multiplying a pair
of n by n matrices. Since ω > 2 due to the matrix size, this is much worse that the running
time claimed by Theorem 1. Furthermore, the algorithm is not constructive.

As noted by Chang et al. [7], the technique of Cortese et al. [10] extends directly from
the plane to any closed two-dimensional surface. The same holds for our method, but since
considering general two-dimensional surfaces does not bring anything substantially new to
our treatment of the problem, for the sake of simplicity we consider only the planar case.

Strategy of the proof of Theorem 1. Recall that the input of our algorithm is a triple
(G,H, γ), where the partition of the vertex set of G corresponds to the map γ from the set
of vertices of G to the set of vertices of H. Hence, for v ∈ Vν , where ν ∈ V (H), we have
γ(v) = ν. The input (G,H, γ) is positive if there exists an H-compatible embedding of G
in the given isotopy class of G, and negative otherwise.

Main troubles in constructing a polynomial time algorithm for our problem are caused
by so called “spurs” such as the red vertex in Figure 1 (left), i.e., connected components in
subgraphs of G induced by clusters, whose all adjacent vertices belong to the same cluster.
Due to the presence of spurs it is hard to see that our problem is tractable even in the case,
when G is a path.

The centerpiece of our method is an extension of the definition of the derivative of maps
of intervals/loops (corresponding to the case, when G is a path/cycle, in our terminology) in
the plane introduced by Minc [22]. We adapt this notion to the setting of c-planarity with
embedded pipes. The derivative is an operator that takes (G,H, γ), and either detects that
there exists no H-compatible embedding of G in the given isotopy class of G, or outputs
(G′, H ′, γ′), that is also a valid input for our algorithm, such that (G,H, γ) is positive if
and only if (G′, H ′, γ′) is positive (Lemma 5). Intuitively, H ′ is reminiscent of the line
graph of H and the subgraphs of G, that are mapped by γ to the edges of H, are turned
into subgraphs of G′ mapped by γ′ into vertices of H ′. This results in a shortening of
problematic spurs, and zooming into the structure of the map γ. We show that by iterating
the derivative |E(G)| times we either detect that there exists no H-compatible embedding
of G in the given isotopy class of G, or we arrive at an input without problematic spurs
(Lemma 6). Since it is fairly easy to solve the problem for the latter inputs; the derivative
at every iteration can be computed in linear time in |V (G)|; and by derivating the size of
the input is increased only by a little, the tractability follows.

The operation of node expansion and base contraction introduced by Cortese et al. [10]
resemble the derivative. The main difference is that these two operations affect only a single
cluster or a pair of clusters in (G,H, γ), and therefore they are local, whereas the derivative
changes the whole input. We are very positive that our method is applicable to other graph
drawing problems related to c-planarity whose tractability is open. This is documented by
our recent manuscript [16] in which a similar technique was applied.

The derivative is applied to an input (G,H, γ), in which every cluster Vν induces in G
an independent set. Such an input is in the normal form. The detailed description of the
algorithm proving Theorem 1 is in Section 3. We show in Section 3.1 that an input can be
assumed to be in the normal form. The definition of the derivative is given in Section 3.2,
and sufficiently simplified inputs are dealt with in Section 3.3.
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2 Preliminaries

Throughout the paper we tacitly use Jordan-Schönflies theorem for polygons.
Let G = (V,E) denote a planar graph possibly with multiple edges and loops. For

V ′ ⊆ V we denote by G[V ′] the sub-graph of G induced by V ′. A star St(v) of a vertex
v in a graph G is the subgraph of G consisting of all the edges incident to v. Throughout
the paper we use standard graph theoretical notions such as path, cycle, walk, vertex degree
deg(v) etc., see [11].

A drawing D(G) is a representation of G in the plane, where every vertex in V is
represented by a point and every edge e = uv in E is represented by a simple piecewise
linear curve joining the points that represent u and v. Thus, a drawing can be thought
of as a map from G understood as a topological space into the plane. In a drawing, we
additionally require every pair of distinct curves representing edges to meet only in finitely
many points each of which is a proper crossing or a common endpoint. In a degenerate
drawing, we allow a pair of distinct vertices to be represented by the same point and a
pair of edges to be represented by the same curve. Note that we do not allow an edge
to pass through a vertex by the definition of the drawing, or in other words, we do not
allow a drawing to contain forks [7]. A drawing in which every vertex is represented by a
unique point and every edge by a unique curve is non-degenerate. In a non-degenerate
drawing, multiple edges are mapped to distinct arcs meeting at their endpoints. In the
paper we consider non-degenerate drawings, except for Corollary 2. An embedding is a
non-degenerate drawing with no edge crossings. A graph given by an embedding in the
plane is a plane graph. If it leads to no confusion, we do not distinguish between a vertex
or an edge and its representation in the drawing and we use the words “vertex” and “edge”
in both contexts.

The following lemma is well known.

I Lemma 3. Let G be a plane graph with n vertices such that G does not contain a pair
of multiple edges joining the same pair of vertices that form a face of size two, i.e., a lens,
except for the outer face. The graph G has O(n) edges.

The rotation at a vertex in an embedding of G is the counterclockwise cyclic order of
the edges, that are incident to the vertex, which is defined by the order of their end pieces
at the vertex in the embedding. The rotation at a vertex is stored as a doubly linked list of
edges. Furthermore, we assume that for every edge of G we store a pointer to its preceding
and succeeding edge in the rotation at both of its end vertices. The interior and exterior
of a cycle in an embedded graph is the bounded and unbounded, respectively, connected
component of its complement in the plane. Similarly, the interior of an inner face and
outer face in an embedded connected graph is the bounded and unbounded, respectively,
connected component of the complement of its facial walk in the plane bounded by the walk.
An embedding of a connected graph G is up to an isotopy described by the rotations at its
vertices and the choice of its outer (unbounded) face. If G is not connected the isotopy class
of its embedding is described by isotopy classes of its connected components G1, . . . , Gl and
the containment relation Gi ⊂ f , for every Gi, where f is a face of Gj , j 6= i, such that Gi
is embedded in the interior of f .

3 Proof of Theorem 1

Let (G,H, γ) be the input of our algorithm. We naturally extend γ to edges: γ(vu) = ρ = νµ,
for v ∈ Vν and u ∈ Vµ, and to subgraphs G1 of G: γ(G1) = H1 = (V (H1), E(H1)) such that

ISAAC 2017



34:6 Embedding Graphs into Embedded Graphs

V (H1) = {ν ∈ V (H)|γ(v) = ν, v ∈ V (G1)} and E(H1) = {ρ ∈ E(H)| γ(e) = ρ, e ∈ E(G1)}.
A vertex ν ∈ V (H) of degree two is redundant if Vν ⊆ V (G) is an independent set

consisting of vertices of degree two such that for every v ∈ Vν we have γ(vu) 6= γ(vw), where
u and w are the two neighbors of v. We assume that every edge of H is used by at least one
edge of G, i.e., for every ρ ∈ E(H) there exists e ∈ E(G) such that γ(e) = ρ.

3.1 The normal form
Similarly as in [15], the input (G,H, γ) is in the normal form if
1. every cluster Vν ⊆ V (G), for ν ∈ V (H), is an independent set without isolated vertices;

and
2. H does not contain a pair of redundant vertices joined by an edge.

We remark that (2) is required only due to the running time analysis. We do not forbid
redundant vertices completely, since we do not allow H to contain multiple edges. Indeed,
suppressing all vertices of degree two in a graph can lead to multiple edges. In what follows
we show how to either detect that no H-compatible embedding in the given isotopy class of
G exists just by considering the subgraph of G induced by a single cluster Vν , or construct an
input (GN , HN , γN ) in the normal form, which is positive if and only if the input (G,H, γ)
is positive. Clearly, (2) can be assumed without loss of generality. Before establishing the
other condition we introduce a couple of definitions.

A contraction of an edge e = uv in an embedding of a graph is an operation that turns
e into a vertex by moving v along e towards u while dragging all the other edges incident
to v along e. By a contraction we can introduce multiple edges or loops at the vertices.
We will also use the following operation which can be thought of as the inverse operation
of the edge contraction in an embedding of a graph. A vertex split, see Figure 2 Left, in
an embedding of a graph G is an operation that replaces a vertex v by two vertices u and
w joined by a crossing-free edge so that the neighbors of v are partitioned into two parts
according to whether they are joined with u or w in the resulting drawing. The rotations at
u and w are inherited from the rotation at v. When applied to G, the operations are meant
to return a graph given by an isotopy class of its embedding; the same applies to vertex
multisplit defined later. Note that a contraction can be carried out in O(1) time, since it
amounts to merging a pair of doubly linked lists, and redirecting at most four pointers. The
same applies to the vertex split.

In order to satisfy (1), by a series of successive edge contractions we contract each
connected component of G[Vν ], for all ν ∈ V (H), to a vertex. Since rotations are stored as
doubly linked lists, contracting all such connected components can be carried out in linear
time. We delete any created loop and isolated vertices. If a loop at a vertex from Vν contains
a vertex from a different cluster Vµ, ν 6= µ, in its interior we know that the input is negative,
since for every µ all the vertices in Vµ must be contained in the outer face of G[Vν ] if the
input is positive. All this can be easily checked in time linear in |V (G)| by the breadth-first
or depth-first search algorithm. If a loop at a vertex from Vν does not contain a vertex from
a different cluster, deleting the loop preserves the existence of an H-compatible embedding
in the given isotopy class of G. Indeed, isolated vertices and deleted empty loops can be
reintroduced in an H-compatible embedding of the resulting graph, and contracted edges
recovered via vertex splits. Let (GN , HN , γN ) denote the resulting input in the normal form.
We proved the following.

I Lemma 4. If a loop at a vertex v of G obtained during the previously described procedure
contains in its interior a vertex u of G satisfying γ(v) 6= γ(u), then the input (G,H, γ) is
negative. Otherwise, the input (G,H, γ) is positive if and only if (GN , HN , γN ) is positive.



R. Fulek 34:7

v u w

v v
v1 v2

v3

(G′, H, γ)
(G′, H ′, γ′)

ν

Figure 2 Left: Operation of vertex split (top) and multisplit (bottom). Right: The derivative
of (G,H, γ) in the normal form. On the left the input after splitting vertices, and on the right the
obtained derivative; in the example we have H ′ = H ′

ν , since every other Hµ, for ν 6= µ, is a trivial
graph with one vertex.

3.2 Derivative

We present the operation of the derivative that simplifies the input, and whose iterating
results in an input that is easy to deal with. Such inputs are treated in Section 3.3. Before
we describe the derivative we give a couple of definitions.

A vertex multisplit, see Figure 2 Left, in an embedding of a graph G is an operation
producing an embedding of a graph obtained from G by replacing a vertex v and its adjacent
edges with a star ({v, v1, . . . , vl}, {vv1, . . . , vvl}), where l ≤ deg(v), so that the resulting
underlying graph has vertex set V (G)∪{v1, . . . , vl} and edge set (E(G)\{vu1, . . . , vudeg(v)})∪
{vijuj | j = 1, . . . , deg(v)}∪{vv1, . . . , vvl}, where u1, . . . , udeg(v) are neighbors of v in G and
1 ≤ ij ≤ l, for all j. The rotations at v1, . . . , vl are inherited from the rotation at v so that
by contracting all the edges of St(v) in the resulting graph we obtain the original embedding
of G. Note that a vertex multisplit can be carried out in O(deg(v)) time.

The rotation of ν ∈ V (H) is consistent with the rotation of v ∈ Vν if the rotation given
by (γ(vv1), . . . , γ(vvdeg(v))), where (vv1, . . . , vvdeg(v)) is the rotation at v in an embedding
of G in the given isotopy class, is the rotation at ν ∈ V (H) in the embedding of H.

The derivative of (G,H, γ) is the input (G′, H ′, γ′) obtained as follows, see Figure 2
Right.

First, we construct the graph G′ from G by applying the following procedure to every
vertex v ∈ V (G) such that the star γ(St(v)) has at least two edges, and thus, v is not a
“spur”. In fact, we construct an auxiliary input (G′, H, γ), where by slightly abusing the
notation we will extend γ to take values on the vertices of G′. (In the second step we use
(G′, H, γ) to construct (G′, H ′, γ′).) The input (G,H, γ) is clearly negative, if there exists
a vertex v in G with four incident edges vv1, . . . , vv4 ∈ E(G) such that vv1, vv2, vv3 and
vv4 appear in the rotation at v in the given order and γ(vv1) = γ(vv3) 6= γ(vv2), γ(vv4).
Otherwise, the following operations of vertex split and multisplit are applicable to G. Let
the valency of a vertex v ∈ V (G) be val(v) := |E(γ(St(v)))|. Thus, the valency count the
size of the set of edges of H that the edges incident to v are mapped to.

If val(v) = 2, we apply the operation of vertex split to v thereby turning it into an edge
uw as follows. Let E(γ(St(v))) = {ρ1, ρ2}. Let v1, . . . , vdeg(v) be the neighbors of v. Let
{v1 . . . vl} ∪ {vl+1 . . . vdeg(v)} be the partition of the neighbors of v such that γ(vv1) = . . . =
γ(vvl) = ρ1 and γ(vvl+1) = . . . = γ(vvdeg(v)) = ρ2. We put γ(u), γ(w) := γ(v), and join u
by an edge with the vertices in {v1 . . . vl} and w with the vertices in {vl+1 . . . vdeg(v)}.

If val(v) ≥ 3, we analogously apply the operation of vertex multisplit to v so that we
replace v with a star ({v, v1, . . . , vl}, {vv1, . . . , vvl}) with l := val(v) edges, in which the set
of incident edges of every leaf vertex vi is {vvi} ∪ {viu| vu ∈ γ−1[ρi]}, where E(γ(St(v))) =
{ρ1, . . . , ρl}, and for every such leaf γ(vi) := γ(v).

ISAAC 2017



34:8 Embedding Graphs into Embedded Graphs

Let V≥3 ⊂ V (G) denote the set of vertices in G consisting of the vertices v ∈ V (G) with
val(v) ≥ 3. Note that V≥3 can be treated also as a subset of V (G′). Let E2 ⊂ E(G′) denote
the set of edges in G′ consisting of every edge uw obtained by splitting v ∈ V (G) such that
val(v) = 2. Let C denote the set of connected components of G′ \E2 \V≥3. Note that every
connected component of C is mapped to an edge of H by γ.

Second, we construct H ′: V (H ′) := {ρ∗|ρ ∈ E(H)} ∪ {νv| v ∈ V≥3}, and E(H ′) :=
{νvρ∗| ρ ∈ E(γ(St(v)))}∪{γ(C)∗γ(D)∗| C,D ∈ C s.t. there exists e ∈ E2 joining C with D}.
We put γ′(v) := γ(C)∗, for v ∈ V (C) where C ∈ C; and γ(v) := νv, for v ∈ V≥3.

Finally, the embedding of H ′, if it exists, is constructed as follows. For ν ∈ V (H), let Cν
be the cycle with the vertex set {ρ∗| ρ = νµ ∈ E(H)} that captures the rotation at ν, i.e.,
a pair of vertices ρ∗0 and ρ∗1 is joined by an edge in Cν if ρ0 and ρ1 are consecutive in the
rotation at ν. Let H ′ν , for ν ∈ V (H), denote the subgraph of H ′ induced by {ρ∗| ρ = νµ ∈
E(H)}∪{νv|γ(v) = ν}. Let Ĥ ′ν be obtained from H ′ν by adding to H ′ν (1) the missing edges
of the cycle Cν ; and (2) a new vertex joined by the edges exactly with all the vertices of
Cν . Note that Ĥ ′ν is vertex three-connected, and hence, if Ĥ ′ν is planar, then the rotations
at vertices in its embedding are determined up to the choice of orientation.

Suppose that every Ĥ ′ν , for ν ∈ V (H), is a planar graph. Let us fix for every ν ∈ V (H) an
embedding ofH ′ν , in which the cycle Cν bounds the outer face and its orientation corresponds
to the rotation of ν. Such an embedding is obtained as a restriction of an embedding of Ĥ ′ν .
Note that for every ν the graph H ′ν does not have multiple edges. Since H also does not
have multiple edges, H ′ν and H ′µ, for ν 6= µ, are either disjoint (if νµ 6∈ E(H)) or intersect
in a single vertex (νµ)∗ (if νµ ∈ E(H)). It follows that H ′ does not have multiple edges.
The desired embedding of H ′ is obtained by combining embeddings of H ′ν , for ν ∈ V (H),
in the same isotopy class as the embeddings of H ′ν , that we fixed above, by identifying the
corresponding vertices so that the restriction of the obtained embedding of H ′ to every H ′ν
has the rest of H ′ in the interior of the outer face (of this restriction).

Note that the construction of (G′, H ′, γ′) can be carried out in O
(∑

v∈V (G′) deg(v)
)

=
O(|V (G)|) thanks to the doubly-linked lists that we use to store the rotations of the vertices
of G and H.

I Lemma 5. The input (G,H, γ) is negative if one of the following three conditions is
satisfied. (1) There exists a vertex v in G with four incident edges vv1, . . . , vv4 ∈ E(G)
such that vv1, vv2, vv3 and vv4 appear in the rotation at v in the given order and γ(vv1) =
γ(vv3) 6= γ(vv2), γ(vv4). (2) The graph Ĥ ′ν , for some ν ∈ V (H), is not planar. (3) The
rotation of a vertex νv ∈ V (H ′ν), for some ν ∈ V (H) and v ∈ V (G′), in the obtained
embedding of H ′ν is not consistent with the rotation of v in G′.

Otherwise, the input (G,H, γ) is positive if and only if the input (G′, H ′, γ′) is positive.

3.3 Locally injective inputs
Let the potential p(G,H, γ) = |E(G)| − |E(H)|. Obviously, p(G,H, γ) ≥ 0, and
p(G,H, γ) = 0 if G is isomorphic to H. The input in the normal form (G,H, γ) is loc-
ally injective if
(i) the restriction of γ to V (St(v)) is injective, for all v ∈ V (G); and
(ii) for every degree one vertex v in G its unique incident edge e satisfies the following. If

γ(e) = γ(f) then e = f for all f ∈ E(G).
Given an input (G,H, γ), the vertex v ∈ V (G) is fixed if the condition of property (i)

holds for v, and v is alone in its cluster, i.e., γ(u) = γ(v) implies u = v. If v is fixed then
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Figure 3 Constructing the normal form and derivating one more time the derivative from Figure 2
on the left, we obtain an input that is strongly locally injective in the normal form on the right.

we call γ(v) = ν ∈ V (H) also fixed. Note that the edges incident to fixed vertices do not
contribute to the potential.

For a non-locally injective (G,H, γ) in the normal form, by Lemma 5 we either easily
detect that there does not exist an H-compatible embedding of G in the given isotopy class,
or we construct the input (G′, H ′, γ′) having a smaller potential after being brought to
the normal form, such that (G′, H ′, γ′) is positive if and only if (G,H, γ) is positive. The
following lemma implies that by iterating the derivative at most |E(G)| = O(|V (G)|) many
times we obtain an input that is locally injective.

I Lemma 6. If (G,H, γ) is in the normal form then p((G′)N , (H ′)N , (γ′)N ) ≤ p(G,H, γ).
If additionally (G,H, γ) is not locally injective then the inequality is strict.

Given an input (G,H, γ) in the normal form. As in Section 3.2, let V≥3 ⊆ V (G) denote
the set of vertices in G consisting of the vertices v ∈ V (G) with val(v) ≥ 3. The input is
strongly locally injective if it is locally injective and
(iii) every vertex in V≥3 is fixed.

For convenience, we would like to work with strongly locally injective inputs, see Figure 3.
The following lemma shows that if the input (G,H, γ) is locally injective, but not strongly,
we just derivate it one more time in order to arrive at a strongly locally injective input.

I Lemma 7. Suppose that (G,H, γ) in the normal form is locally injective. Then in
((G′)N , (H ′)N , (γ′)N ), every vertex v ∈ V ((G′)N ), such that val(v) ≥ 3, is fixed. Moreover,
((G′)N , (H ′)N , (γ′)N ) is still locally injective.

Proof. The lemma follows directly from the definition of the derivative. J

Deciding in, roughly, quadratic time in p(G,H, γ), which is sufficient for us, whether the
strongly locally injective input (G,H, γ) is positive, is quite straightforward. The reason
is that in this case the order of crossings of a valve with edges, that are incident to the
same vertex v of G, along the valve in an H-compatible embedding of G is determined by
the rotation at v. In order to decide if a desired H-compatible embedding of G exists, we
just detect if for every valve ω such an order of all the edges crossing ω exists, such that
together the orders are compatible. To this end we consider relations between unordered
pairs of edges of G such that the edges in a pair are mapped by γ to the same edge of H,
and two pairs are related if they intersect in a pair of vertices. In the following we assume
that (G,H, γ) is strongly locally injective.

Let Ξ = {{e, f}| e, f ∈ E(G) s.t. e 6= f and γ(e) = γ(f)}. Two elements {e1, f1} ∈ Ξ
and {e2, f2} ∈ Ξ are neighboring if |e1 ∩ e2| = 1, |f1 ∩ f2| = 1 and γ(e1 ∩ e2) = γ(f1 ∩ f2);
we write {e1, f1} ∼ {e2, f2}. An element {e1, f1} ∈ Ξ is a boundary pair if there exists

ISAAC 2017
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at most one {e2, f2} ∈ Ξ such that {e1, f1} and {e2, f2} are neighboring. Let Ξ1, . . .Ξl be
equivalence classes of the transitive closure of the relation ∼. A boundary pair {e1, f1} ∈ Ξ
is determined if there exists a pair of edges e2 and f2 such that |e1 ∩ e2| = 1, |f1 ∩ f2| = 1,
γ(e1 ∩ e2) = γ(f1 ∩ f2) and γ(e2) 6= γ(f2). By properties (i) and (iii) of strong local
injectivity, the subgraph GΞ of G induced by

⋃
{e,f}∈Ξ{e, f} has maximum degree two.

First, we consider the case when a connected component of GΞ does not contain a vertex of
degree one.

I Lemma 8. If there exists an equivalence class Ξc, such that the subgraph GΞc
of G induced

by
⋃
{e,f}∈Ξc

{e, f} is a cycle, then (G,H, γ) is a negative input.

Note that Lemma 8 does not cover the case when GΞc
is a union of two cycles. By (ii), it

must be that if Ξc contains a boundary pair, then it, in fact, contains exactly two boundary
pairs, both of which are determined. Hence, in the following we assume that every Ξc
either gives rise to a pair of cycles, or contains exactly two determined boundary pairs.
We construct for every valve ω of ρ ∈ E(H) the relation (Eρ, <ω), where Eρ = {e ∈
E(H)| γ(e) = ρ}. We define relations (Eρ, <ω) by propagating relations enforced by the
determined boundary pairs, for every determined pair contained in Ξ. We assume that
(Eρ, <ω) encodes the increasing order of the crossing points of edges with ω as encountered
when traversing ω ⊂ Nε(ν) in the direction inherited from the counterclockwise orientation
of the boundary of Nε(ν).

Let {e1, f1} ∈ Ξc ⊆ Ξ be determined. Let Ξc = {{e1, f1}, . . . {em, fm}} such that
{ep, fp} ∼ {ep+1, fp+1}. Let γ(e1) = γ(f1) = νµ, γ(e0) = νµ′, γ(f0) = νµ′′, where µ′ 6= µ′′

and |e0 ∩ e1| = 1 and |f0 ∩ f1| = 1. W.l.o.g. we suppose that νµ, νµ′ and νµ′′ appear in
the rotation of ν in this order counterclockwise. Let ω1 be the valve of νµ at ν. Let ω2 be
the valve of νµ at µ. We put the relation f1 <ω1 e1 into (Eνµ, <ω1) and e1 <ω2 f1 into
(Eνµ, <ω2). Recursively, we put fp+1 <ω2p+1 ep+1 into (Eνµ, <ω2p+1) and ep+1 <ω2(p+1) fp+1
into (Eνµ, <ω2(p+1)), if fp <ω2p−1 ep and ep <ω2p

fp, and vice-versa, where ω2p and ω2p+1
are valves contained in the boundary of the same disc.

If GΞc
is a union of two disjoint cycles we add fp <ω2p

ep and ep <ω2p−1 fp, or fp >ω2p
ep

and ep >ω2p−1 fp for every p, in correspondence with the isotopy class of G.

I Lemma 9. Suppose that every equivalence class Ξc contains exactly two determined bound-
ary pairs, or GΞc

is a union of two disjoint cycles. We can test in O((p(G,H, γ))2 + |V (G)|)
time if (G,H, γ) is positive or negative.

3.4 Algorithm
We give a description of the decision algorithm proving the first part of the theorem. The
running time analysis using Lemmas 6, 7 and 9, and the constructive algorithm is omitted
in this extended abstract.

Decision Algorithm. Let (G,H, γ) = (G0, H0, γ0) be the input. We work with inputs in
which G contains multiple edges and loops. However, w.l.o.g. we assume that G does not
contain a pair of multiple edges joining the same pair of vertices that form a face of size two,
i.e., a lens, except for the outer face. Moreover, we assume that whenever a lens is created
during the execution of the algorithm, the lens is eliminated by deleting one of its edges.

An execution of the algorithm is divided into steps. During the s-th step we process
(Gs, Hs, γs) and output (Gs+1, Hs+1, γs+1) as follows.
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First, by following the procedure described in Section 3.1 we either construct an instance
((Gs)N , (Hs)N , (γs)N ) in the normal form that is positive if and only if (Gs, Hs, γs) is pos-
itive, or output that (G,H, γ) is negative, if the hypothesis of the first part of Lemma 4 is
satisfied.

Second, if ((Gs)N , (Hs)N , (γs)N ) is not strongly locally injective we proceed as follows. If
(Gs, Hs, γs) satisfies the hypothesis of the first part of Lemma 5 with ((Gs)N , (Hs)N , (γs)N )
playing the role of (G,H, γ) we output that (G,H, γ) is negative; otherwise we construct the
derivative ((GNs )′, (HN

s )′, (γNs )′) = (Gs+1, Hs+1, γs+1) defined in Section 3.2 and proceed to
the (s + 1)-st step. Otherwise, ((Gs)N , (Hs)N , (γs)N ) is strongly locally injective and we
construct equivalence classes Ξ1, . . .Ξl from Section 3.3 defined by ((Gs)N , (Hs)N , (γs)N )
and proceed as follows.

We check if there exists a class Ξc satisfying the hypothesis of Lemma 8. If this is the
case, then we output that (G,H, γ) is negative. Otherwise, we construct relations (Eρ, <ω),
for every ρ ∈ (Hs)N and its valve ω. If there exists (Eρ, <ω) that is not a total order we
output that (G,H, γ) is negative; otherwise we check if the isotopy class of an H-compatible
embedding of Gs enforced by relations (Eρ, <ω) is the same as the given one and output
that (G,H, γ) is positive if and only if this is the case.

The correctness of the algorithm follows directly from Lemma 4,5,8, and 9.
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Abstract
Let T be a text of length n containing characters from an alphabet Σ, which is the union of
two disjoint sets: Σs containing static characters (s-characters) and Σp containing parameterized
characters (p-characters). Each character in Σp has an associated complementary character from
Σp. A pattern P (also over Σ) matches an equal-length substring S of T iff the s-characters match
exactly, there exists a one-to-one function that renames the p-characters in S to the p-characters
in P , and if a p-character x is renamed to another p-character y then the complement of x is
renamed to the complement of y. The task is to find the starting positions (occurrences) of all
such substrings S. Previous indexing solution [Shibuya, SWAT 2000], known as Structural Suffix
Tree, requires Θ(n logn) bits of space, and can find all occ occurrences in time O(|P | log σ+occ),
where σ = |Σ|. In this paper, we present the first succinct index for this problem, which occupies
n log σ +O(n) bits and offers O(|P | log σ + occ · logn log σ) query time.

1998 ACM Subject Classification F.2.2 Pattern Matching

Keywords and phrases Parameterized Pattern Matching, Suffix tree, Burrows-Wheeler Trans-
form, Wavelet Tree, Fully-functional succinct tree

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.35

1 Introduction

Text Indexing is a classical problem defined as: pre-process a text T of length n containing
characters from an alphabet Σ of size σ ≤ n and then build a data structure, such that given
a pattern P (also over Σ) as a query, we can report all the occ starting positions (or simply,
occurrences) of P in T . Suffix Tree is the ubiquitous data structure for this purpose [14].
Unfortunately, it requires Θ(n logn) bits of space, which is too large for most practical
purposes (15-50 times the text). Grossi and Vitter [13], and Ferragina and Manzini [6]
addressed this problem by introducing space-efficient indexes, namely Compressed Suffix
Arrays (CSA) and FM-Index respectively. Subsequently, a lot of progress has been made
either in improving these initial breakthroughs [2, 7, 8, 18, 20], or to achieve space-efficient
indexes for other problems which require suffix trees as a component [16, 23].

The key concept behind the FM-Index and the CSA is the suffix link: the suffix link
of a node u points to a node v iff the string from root to v is the same as the string from
root to u with the first character truncated. Suffix links have the following so called rank-
preserving property: the leaves obtained by following suffix links from the leaves in u’s
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subtree appear in the same relative lexicographic order in the subtree of v. However, in
many important variants [1, 4, 5, 10, 15, 21, 22] of the suffix tree, such as the parameterized
suffix tree, the 2D suffix tree, and the structural suffix tree, this rank-preserving property
of suffix links does not hold. Consequently, there has been very little progress in designing
compressed representations of these suffix tree variants. Only recently, Ganguly et al. [9]
designed the first succinct index for parameterized pattern matching [1]. We consider its
generalization [21], which has applications in RNA structural matching.

Throughout this paper, we use the following terminologies: Σ is an alphabet of size σ ≥ 2,
which is the union of two disjoint sets – Σs having σs static characters (s-characters) and Σp
having σp parameterized characters (p-characters). For each p-character, we associate a p-
character, called the complement character. For a string S, |S| is its length, S[i], 1 ≤ i ≤ |S|,
is its ith character and S[i, j] is its substring from i to j. If i > j, S[i, j] denotes an empty
string. Also Si denotes the circular suffix starting at position i. Specifically, Si is S if i = 1
and is S[i, |S|] ◦ S[1, i− 1] otherwise, where ◦ denotes the concatenation.

I Definition 1. Two equal-length strings S and S′ are a structural-match (s-match) iff
S[i] ∈ Σs ⇐⇒ S′[i] ∈ Σs,
S[i] = S′[i] when S[i] ∈ Σs,
there exists a one-to-one matching-function f that renames the p-characters in S to the
p-characters in S′, i.e., S′[i] = f(S[i]) when S[i] ∈ Σp, and
if a p-character x in S is renamed to y in S′, then the complement (if exists) of x in S
is renamed to the complement of y in S′.

Consider the following examples. Let Σs = {A,B,C} and Σp = {w, x, y, z}, where
the complement pairs are w-x and y-z. Then AxByCx is an s-match with AyBxCy; in
this case, there are no complementary requirements. Also, AxBwCx is an s-match with
AzByCz; here, x is paired with z, and w (complement of x) is paired with y (complement
of z). However, AxBwCx is not an s-match with AzBxCz (even though the one-to-one
criterion is satisfied); this is because as x is paired with z, w should have been paired with
y. Lastly, AxBwCx is not an s-match with AzBxCy because x has to be renamed to both
z and y, which violates the one-to-one criterion.

We consider the following indexing problem introduced by Shibuya [21].

I Problem 2. Let T be a text of length n over Σ. We assume T terminates in a uniquely
appearing s-character $. Index T , such that given a pattern P (also over Σ), we can report
all starting positions (occurrences) of the substrings of T that are an s-match with P .

Shibuya presented a Θ(n logn)-bit and O(|P | log σ + occ)-time index for this problem.
We present the following new result.

I Theorem 3. By using an n log σ + O(n)-bit index of T , we can count the number of s-
matches of a pattern P in O(|P | log σ) time. Subsequently, each match can be reported in
O(log σ logn) time.

1.1 Overview of Techniques
We start with the closely related parameterized matching (p-matching) problem of Baker [1].
Two strings are a p-match if they satisfy the first three criteria in Definition 1. Thus if two
strings are an s-match, they are definitely also a p-match, but may not be true the other way
around. To create an index for the p-matching problem (i.e., replace s-match by p-match in
Problem 2), Baker [1] introduced an encoding scheme such that two strings are a p-match
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iff their encoded strings are the same. Using this encoding scheme, Baker obtained a linear
space index for the p-matching problem. Similarly, the key to obtain a linear-space index for
Problem 2 is an encoding scheme such that two strings are an s-match if their encoded strings
are the same. Luckily, we already have such an encoding scheme. Specifically, using the
encoding scheme of Shibuya [21], we can construct the structural suffix tree (s-suffix tree) as
follows: first encode each suffix of T and then create a compact trie of these encoded suffixes.
To report the occurrences of a pattern, we first find the highest node u in the s-suffix tree
such that the string obtained by concatenating the edge labels from root to u is prefixed
by the encoded pattern. Then, we report the starting positions of the encoded suffixes
corresponding to the leaves in the subtree of u. However, Shibuya’s encoding scheme (as
well as Baker’s scheme) has the following drawback: on prepending the preceding character
of a suffix, the encoding of the original suffix changes. Consequently, FM-Index [6] and
CSA [13] no longer work for these definitions of pattern matching.

Since the p-matching problem of Baker [1] is similar to Problem 2, one may be tempted
to think that we can simply re-use (with minor adjustments) the succinct data structure
of Ganguly et al. [9] for the p-matching problem. Although, this is true, the extension is
not trivial. This is because, in contrast to the encoding scheme [1] used for p-matching,
Shibuya’s encoding scheme has a caveat: when we prepend the previous character of a
suffix, the change in the encoding of the original suffix can occur at two positions. Hence,
the index of Ganguly et al. [9] will no longer directly work. The first step, therefore, is a
new encoding scheme which alleviates this problem, and a version of the s-suffix tree based
on this encoding scheme; Section 2 presents the details.

Since we have now restricted the number of points of change (on prepending) to at
most one, we use techniques similar to that employed by Ganguly et al. [9]. We store the
number of distinct p-characters up to this point of change (from the start of the suffix) in
≈ log σ bits per suffix. However, we make a distinction between the cases when the change
is due to the complement of the prepended p-character versus the change due to the same
p-character. This forms the backbone of our data structure, and we call it the Structural
Burrows-Wheeler Transform (sBWT); the details are in Section 3.

The next step is to compute the starting positions of the lexicographically arranged
encoded (with our new encoding scheme) suffixes. We implement the Structural LF mapping
(sLF mapping), using which we can decode the starting positions without explicitly storing
them. Summarizing our discussions thus far, we can see that the key is to compute sLF
mapping. To this end, we use the sBWT and the topology of the s-suffix tree; the crucial
insight is provided in Lemma 9. Based on this lemma, we implement sLF mapping in
Section 4; space and time complexities are described in Lemma 14.

The last piece of the puzzle is to compute the suffix range of the encoded pattern (i.e.,
find the range of leaves under the node u defined at the beginning of this section). We again
use sLF mapping, the s-suffix tree topology, and sBWT to implement a backward search
procedure (like that in the FM Index [6] and succinct index for the p-matching problem [9]).
The details of the backward search procedure for s-matching are in Section 5.

2 Linear-Space Index

We first consider the encoding scheme by Shibuya [21]. A string S is encoded into an equal-
length string sencode(S) by replacing the first occurrence of every p-character in S by 0 and
any other occurrence of a p-character by the difference in text position from its previous
occurrence. Specifically, for any i ∈ [1, |S|], sencode(S)[i] = S[i] if S[i] is an s-character;
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otherwise, sencode(S)[i] = (i − j), where j < i is the last occurrence of S[i] before i. If j
does not exist, then j = i.

Now, for every p-character S[i], where sencode(S)[i] = 0, we find the rightmost j <
i such S[j] is the complement of S[i]. If j exists, then replace sencode(S)[i] by −(i −
j). For e.g., sencode(AxBwAwCxAx) = A0B(−2)A2C6A2, where the first step yields the
string A0B0A2C6A2. Here, Σs = {A,B,C} and Σp = {w, x}; additionally, w and x are
complement of each other.

I Fact 4 ([21]). Two strings S and S′ are an s-match iff sencode(S) = sencode(S′). Also
S and a prefix of S′ are an s-match iff sencode(S) is a prefix of sencode(S′).

2.1 New Encoding Scheme
Unfortunately, for our purposes, the encoding scheme defined in the previous sub-section
suffers from a drawback. Specifically, let S be a string and x be a p-character. Then
sencode(xS)[2, |S| + 1] can differ from sencode(S) at two distinct positions. For example,
consider the string S = wAwBxAx. Here, Σs = {A,B} and Σp = {w, x}; additionally, w
and x are complement of each other. Then, sencode(S) = 0A2B(−2)A2 and sencode(xS) =
sencode(xwAwBxAx) = 0(−1)A2B5A2. We want to avoid such an encoding scheme as it
will prevent us from using the techniques of Ganguly et al. [9]. To this end, we present the
following new encoding scheme.

We encode a string S as Φ(S) as follows. If S[i] is static, then Φ(S)[i] = S[i]. Consider
a p-character S[i] and let j+ < i and j− < i be the rightmost occurrence of S[i] and
the complement of S[i] in S[1, i − 1]. If there is no occurrence j+ (resp. j−), we let
j+ = −1 (resp. j− = −1). If j+ = j− = −1, then replace S[i] by 0. Otherwise, if
j+ > j−, then Φ(S)[i] = (i − j+). Otherwise, if j− > j+, then Φ(S)[i] = −(i − j−). For
example, Φ(AxByCx) = A0B0C4 and Φ(AxBwAwCxAx) = A0B(−2)A2C(−2)A2. Here,
Σs = {A,B,C} and Σp = {w, x}; additionally, w and x are complement of each other.

Importantly, note that we alleviate the problem of Shibuya’s encoding. Specifically,
sencode(xS)[2, |S| + 1] can differ from sencode(S) at most at one position, which is easily
illustrated by choosing S = wAwBxAx. All we are left to do is show that our encoding
scheme still guarantees that two strings are an s-match iff the corresponding encoded strings
are the same, which is handled by the following lemma.

I Lemma 5. Two strings S and S′ are an s-match iff Φ(S) = Φ(S′). Also S and a prefix
of S′ are a p-match iff Φ(S) is a prefix of Φ(S′).

Proof. If S and S′ are an s-match, then Φ(S) = Φ(S′) as S can be renamed to S′ by applying
the necessary one-to-one function. Therefore, it suffices to show that Φ(S) = Φ(S′) implies
S and S′ are an s-match. We note that the ith zero in Φ(S) (resp. in Φ(S′)) corresponds to
the ith distinct p-character, say ci (resp. c′i), in S (resp. in S′) such that neither ci (resp.
c′i) nor its complement appear before. Thus, we establish the one-to-one mapping ci → c′i.
Let p be the position of an occurrence of ci in S. Let q > p be the minimum position (if
any) where ci (or, its complement) occurs in S[p+ 1, |S|]. Since Φ(S′) = Φ(S), q is also the
minimum position where c′i (or, its complement) occurs in S′[p + 1, |S′|]. Therefore, if any
position p is the occurrence of ci (resp. its complement) in S, then p is the occurrence of c′i
(resp. its complement) in S′. J

I Convention 6. The integer characters (corresponding to p-characters) are lexicographically
smaller than s-characters. An integer character i comes before another integer character j
iff i < j. Also, $ is the largest character.
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2.2 Structural Suffix Tree
Structural Suffix Tree (sST) is the compacted trie of all strings in P = {Φ(T [k, n]) | 1 ≤
k ≤ n}. Each edge is labeled with a string over Σ′ = Σs ∪ {0, 1, . . . n − 1}. We use str(u)
to denote the concatenation of edge labels on the path from root to node u. The path of
each leaf node corresponds to the encoding of a unique suffix of T , and leaves are ordered
in the lexicographic order of the corresponding encoded suffix. Clearly, sST consists of n
leaves (one per each encoded suffix) and at most n − 1 internal nodes. We also store the
structural suffix array sSA[1, n] i.e., sSA[i] = j and sSA−1[j] = i iff Φ(T [j, n]) is the ith
lexicographically smallest string in P. Note that str(`i) = Φ(T [sSA[i], n]), where `i is the
ith leftmost leaf in sST. The total space required is Θ(n logn) bits.

To find all occurrences of P , traverse sST from root by following the edges labels and
find the highest node u (called locus) such that str(u) is prefixed by Φ(P ). Then find
the range [sp, ep] (called suffix range of Φ(P )) of leaves in the subtree of u and report
{sSA[i] | sp ≤ i ≤ ep} as the output. The query time is O(|P | log σ + occ), where occ is the
number of occurrences of P in T .

We remark that the structural suffix tree described here varies from that by Shibuya [21].
Their tree is based on sencode and can be constructed in O(n log σ) time using Θ(n logn)
bits of working space. Based on Fact 4 and Lemma 5, we observe that the longest common
prefix (LCP) of any two encoded suffix is the same whether we use sencode or Φ as the
encoding function. Therefore, given Shibuya’s tree, we can easily create sST by relabeling
the edges, and then sorting them based on their first character and Convention 6. The
additional time needed is O(n) using any linear-time sorting algorithm. Summarizing, we
can create sST in O(n log σ) time using Θ(n logn) bits of working space.

3 Structural Burrows-Wheeler Transform

We use a similar transform to that of the Burrows and Wheeler [3], which we call as the
Structural Burrows-Wheeler Transform (sBWT). Sort the circular suffixes Tx, 1 ≤ x ≤ n,
based on their Φ(·) encoding, where character precedence is determined by Convention 6.
Then, obtain the last character L[i] of the ith lexicographically smallest circular suffix.
Denote by f+

i (resp. f−i ) the first occurrence of L[i] (resp. the complement of L[i]) in the
circular suffix Ti. In case, there is no occurrence of L[i]’s complement, we take f−i = n+ 1.

The sBWT is defined as sBWT[i] =
L[i], if L[i] ∈ Σs
number of distinct p-characters in TsSA[i][1, f+

i ], if L[i] ∈ Σp and f+
i < f−i

−number of distinct p-characters in TsSA[i][1, f−i ], if L[i] ∈ Σp and f+
i > f−i

I Observation 7. For any 1 ≤ i ≤ n, let c = sBWT[i]. Then, Φ(TsSA[i]−1) =
c ◦ Φ(TsSA[i])[1, n− 1], if c ∈ Σs
0 ◦ Φ(TsSA[i])[1, f+

i − 1] ◦ f+
i ◦ Φ(TsSA[i])[f+

i + 1, n− 1], if c ∈ [1, σp]
0 ◦ Φ(TsSA[i])[1, f−i − 1] ◦ −f−i ◦ Φ(TsSA[i])[f−i + 1, n− 1], if c ∈ [−σp,−1]

The structural last-to-first column (sLF) mapping of i is the position at which the char-
acter at L[i] lies in the first column of the sorted encoded suffixes. Specifically, sLF(i) =
sSA−1[sSA[i] − 1], where sSA−1[0] = sSA−1[n]. The following lemma is a straightforward
adaptation of Theorem 3 in [9].
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I Lemma 8. Assume sLF(·) can be computed in tsLF time. By using an additional O(n)-bit
data structure, we can compute sSA[·] in O(tsLF · logn) time.

4 Implementing Structural LF Mapping

As highlighted by Lemma 8, the objective is to compute sLF. In this section, we show that
sLF(i) can be computed in O(log σ) time using n log σ +O(n) bits.

I Lemma 9. Consider two suffixes i and j corresponding to the leaves `i and `j in sST.
(a) If L[i] is parameterized and L[j] is static, then sLF(i) < sLF(j).
(b) If both L[i] and L[j] are static, then sLF(i) < sLF(j) iff either sBWT[i] < sBWT[j], or

sBWT[i] = sBWT[j] and i < j.
(c) Assume i < j and both L[i] and L[j] are parameterized. Let u be the lowest common

ancestor of `i and `j in sST, and z be the number of 0’s in the string str(u). Then,
1. If |sBWT[i]|, |sBWT[j]| ≤ z, then sLF(i) < sLF(j) iff

either sBWT[i], sBWT[j] > 0 and sBWT[i] ≥ sBWT[j],
or sBWT[i] < 0 < sBWT[j],
or sBWT[i], sBWT[j] < 0 and |sBWT[i]| ≤ |sBWT[j]|

2. If |sBWT[i]| ≤ z < |sBWT[j]|, then sLF(i) < sLF(j) iff sBWT[i] < 0
3. If |sBWT[i]| > z ≥ |sBWT[j]|, then sLF(i) < sLF(j) iff sBWT[j] > 0
4. If |sBWT[i]|, |sBWT[j]| > z, then sLF(i) > sLF(j) iff

either sBWT[i] = z + 1, the first character on the u to `i path is 0, and the first
character on the u to `j path is not an s-character,
or sBWT[j] = −(z + 1), and the first character on the u to `j path is 0.

Proof. (a) and (b): Follows immediately from Convention 6 and Observation 7. (c) Let
d = |str(u)|. Define fi to be smaller of the two values f+

i or f−i . Similarly, fj is defined.
Clearly, the conditions (1)-(4) can be written as: (1) Both fi, fj ≤ d, (2) fi ≤ d and fj > d,
(3) fi > d and fj ≤ d, and (4) Both fi, fj > d. Then the claims (1)-(3) follow from
Observation 7 and Convention 6. To prove (4), observe that if the suffixes i and j swap
order on being prepended by their previous characters then at least either fi or fj equals
d+ 1. The claim follows from Observation 7 and Convention 6. J

4.1 Wavelet Tree (WT) over sBWT

Let A[1,m] be an array over an alphabet of size σ. There exists a data structure of size
m log σ+o(m) bits, using which the following queries can be answered in O(log σ/ log logm)
time [6, 11, 12, 17]:

A[i],
rankA(i, x) = the number of occurrences of x in A[1, i],
selectA(i, x) = the ith occurrence of x in A[1,m], and
countA(i, j, x, y) = number of elements in A[i, j] that are at least x and at most y.

We drop the subscript A when the context is clear. Recall that the sBWT is a string of
length n over the alphabet set Σs∪{1, 2, . . . , σp}∪{−1,−2, . . . ,−σp} of size σ′ = σs+2σp ≤
2σ. By using a WT over sBWT in n log σ′ + o(n) = n log σ +O(n) bits, we can support the
above operations over sBWT in time O(1 + log σ/ log logn).
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4.2 Succinct representation of sST
A tree having m nodes can be represented in 2m + o(m) bits, such that if each node is
labeled by its pre-order rank, the following operations can be supported in O(1) time (note
that m < 2n in our case) [19]:

pre-order(u)/post-order(u) = the pre/post-order rank of node u,
parent(u) = the parent of node u,
nodeDepth(u) = the number of edges on the path from root to u,
child(u, q) = the qth leftmost child of node u,
lca(u, v) = the lowest common ancestor (LCA) of two nodes u and v,
L(u)/R(u) = the leftmost/rightmost leaf of the subtree rooted at u, and
levelAncestor(u,D) = the ancestor of u such that nodeDepth(u) = D.

Additionally, we can find the pre-order rank of the ith leftmost leaf in O(1) time. Moving
forward, we use `i to denote the ith leftmost leaf in sST.

4.3 ZeroDepth and ZeroNode
For a node u, zeroDepth(u) is the number of 0’s in str(u). For a leaf `i, sBWT[i] ∈ [1, σp]
(resp. sBWT[i] < 0), we define zeroNode(`i) to be the locus (if exists) of str(`i)[1, f+

i ] (resp.
the locus of str(`i)[1, f−i ]). Equivalently, zeroNode(`i) is the highest node (if exists) z on the
root to `i path such that zeroDepth(w) ≥ |sBWT[i]|. Moving forward, whenever we refer to
zeroNode(`i), we assume sBWT[i] ∈ [−σp, σp]. We present the following lemma.

I Lemma 10. By using the Wavelet Tree over sBWT and an additional O(n)-bit data
structure, we can find zeroNode(`i) in O(log σ) time.

Proof. We begin with the following definitions. For any node x on the root to `i path π,
define α(x) = the number of leaves `j , j ∈ [L(x),R(x)] such that L[j] ∈ Σp and fj ≤ |str(x)|,
and β(x) = count(L(x),R(x),−c, c), where c = |sBWT[i]|. Consider a node uk on π. Now,
zeroNode(`i) is below uk iff β(uk) > α(uk). Therefore, zeroNode(`i) is the shallowest node
uk′ on this path that satisfies β(uk′) ≤ α(uk′). Equipped with this knowledge, now we can
binary search on π (using nodeDepth and levelAncestor operations) to find the exact location.
The first question is to compute α(x), which is handled by Lemma 11. A normal binary
search will have to consider n nodes on the path in the worst case. Lemma 12 shows how to
reduce this to dlog σe. Thus, the binary search has at most dlog log σe steps, and the total
time is log log σ × d logσ

log logne = O(log σ), as required. J

The following are our helper lemmas for proving Lemma 10. The proofs are similar to
those of Lemmas 4 and 5 in [9] respectively. We omit the proofs due to space limitations.

I Lemma 11. We can compute α(x) in O(1) time using an O(n)-bit data structure.

I Lemma 12. By using the Wavelet Tree over sBWT and an additional O(n)-bit data
structure, in O(log σ) time, we can find an ancestor wi of `i such that zeroDepth(wi) <
|sBWT[i]| and wi is at most dlog σe nodes above zeroNode(`i).

4.4 Additional Components
Define fj to be the smaller of f+

j and f−j , where L[j] ∈ Σp. Let leafLeadChar(j) be a boolean
variable, which is 0 iff fj = (|str(v)|+ 1), where v = parent(zeroNode(j)).

For a node u, pCount(v) is the rightmost child w of v such that the first character on
the edge (v, w) is a p-character. Since

∑
v pCount(v) = O(n), we can compute pCount(v)
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in O(1) by using an O(n)-bit data structure. Let fCount+(x) (resp. fCount−(x)) be the
number of leaves `j in x’s subtree, such that sBWT[j] ∈ [1, σp] (resp. sBWT[j] ∈ [−σp,−1])
and |str(y)| + 2 ≤ fj ≤ |str(x)| + 1, where y = parent(x). Additionally, for any leaf `j ,
assign fCount+(`j) = 1 (resp. fCount−(`j) = 1) if fj > |str(`j)| and sBWT[j] ∈ [1, σp] (resp.
sBWT[j] < 0). Let fSum+(x) be the sum of fCount+(y) of all nodes y which come before x
in pre-order and are not ancestors of x. Let

←−−−
fSum−(x) be the sum of fCount−(y) of all nodes

y which come after R(x) in pre-order. Let fAncestor+(x) be the number of leaves `j such
that pre-order(`j) < pre-order(x), f+

j = |str(lca(`j , x))| + 1, sBWT[j] ∈ [1, σp], and the first
character on the path from lca(`j , x) to x is an s-character.

We present the following important lemma (proof is similar to that of Lemma 3 in [9]
and is omitted due space restriction).

I Lemma 13. By using an O(n)-bit data structure, for any node x, we can compute the
following in O(1) time: fSum+(x),

←−−−
fSum−(x), and fAncestor+(x).

4.5 Computing sLF(i) when sBWT[i] ∈ [σp + 1, σ]
Using Lemma 9, sLF(i) > sLF(j) iff either j ∈ [1, n] and sBWT[j] < sBWT[i], or j ∈ [1, i−1]
and sBWT[i] = sBWT[j]. Then,

sLF(i) = 1 + count(1, n, 1, sBWT[i]− 1) + count(1, i− 1, sBWT[i], sBWT[i])

4.6 Computing sLF(i) when sBWT[i] ∈ [1, σp]
We first assume that zeroNode(`i) is defined, i.e., fi ≤ |str(`i)|. This can be easily checked
in O(1) time by maintaining a bit-vector. First find z = zeroNode(`i) and locate the node
v = parent(z). Depending on whether leafLeadChar(i) = 0, or not, we find the ranges S1,
S2, S3, and if required S4 and S5, as illustrated in Figure 1.

Sub-case 1 (fi = |str(v)| + 1). Let w be the parent of v. We partition the leaves into 4
sets: (a) S1: leaves to the left of v’s subtree, (b) S2: leaves in z’s subtree, (c) S3: leaves to
the right of v’s subtree, and (d) S4 (resp. S5): leaves in v’s subtree, and to the left (resp.
right) of that of z’s subtree. In case, v is the root node r, we take w = r; consequently,
S1 = S3 = ∅.

Sub-case 2 (fi > |str(v)| + 1). We partition the leaves into 3 sets: (a) S1 (resp. S3):
leaves to the left (resp. right) of z’s subtree. (b) S2: leaves in z’s subtree.

Let c = sBWT[i]. DefineNk to be the number of leaves `j in Sk such that sLF(j) ≤ sLF(i).
Then, sLF(i) = N1 +N2 +N3 +N4 +N5 is computed as follows.

Computing N1. For any `j ∈ S1, sLF(j) < sLF(i) iff one of the following holds: (1)
sBWT[j] ∈ [1, σp] and f+

j > 1 + |str(lca(`i, `j))|, or (2) sBWT[j] ∈ [1, σp], f+
j =

1 + |str(lca(`i, `j))|, and the leading character on the path from lca(`i, `j) to `i is an
s-character, or (3) sBWT[j] < 0. Then,

N1 =
{

fSum+(v) + fAncestor+(v) + count(1, L(v)− 1,−σp,−1), if leafLeadChar(i) = 0
fSum+(z) + fAncestor+(z) + count(1, L(z)− 1,−σp,−1), otherwise

Computing N2. If c > 0, then for any leaf `j ∈ S2, sLF(j) ≤ sLF(i) iff one of the following
holds: (1) either sBWT[j] > c or sBWT[j] = c and j ≤ i, (2) sBWT[j] < 0. If c < 0, then
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Figure 1 Illustration of various ranges when TsSA[i] is preceded by a p-character

for any leaf `j ∈ S2, sLF(j) ≤ sLF(i) iff one of the following holds: (1) −1 ≥ sBWT[j] > c,
(2) sBWT[j] = c and j ≤ i. Therefore,

N2 =


count(L(z),R(z), c+ 1, σp) + count(L(z), i, c, c)

+count(L(z),R(z),−σp,−1), if c ∈ [1, σp]
count(L(z),R(z), c+ 1,−1) + count(L(z), i, c, c), if c < 0

Computing N3. For any leaf `j ∈ S3, sLF(j) < sLF(i) iff sBWT[j] < 0 and f−j ≤ 1 +
|str(lca(z, `j))|. Therefore,

N3 =
{

count(R(v) + 1, n,−σp,−1)−
←−−−
fSum−(v), if leafLeadChar(i) = 0

count(R(z) + 1, n,−σp,−1)−
←−−−
fSum−(z), otherwise

Computing N4. Let u be the pCount(v)th child of v. For any leaf `j ∈ S4 such that
sBWT[j] ∈ [1, σp], f+

j 6= |str(v)| + 1; otherwise, the suffix j should not have deviated
from i at the node v. Likewise, if sBWT[j] < 0, then f−j 6= |str(v)|+ 1.
If c > 0, then N4 is the number of leaves `j in S4 such that j ≤ R(u) and either (1)
σp ≥ sBWT[j] ≥ c, or (2) sBWT[j] < 0. If c < 0, then N4 is the number of leaves `j in
S4 such that j ≤ R(u) and −1 ≥ sBWT[j] > c. Therefore,

N4 =
{

count(R(z) + 1,R(u), c, σp) + count(R(z) + 1,R(u),−σp,−1), if c ∈ [1, σp]
count(R(z) + 1,R(u), c+ 1,−1), if c < 0

Computing N5. Note that for any leaf `j ∈ S5 such that sBWT[j] ∈ [1, σp], f+
j 6= |str(v)|+1;

otherwise, the suffix j should not have deviated from i at the node v. Likewise, if
sBWT[j] < 0, then f−j 6= |str(v)| + 1. Also, the leading character of the path from v to
`j is negative.
If c > 0, then N5 is the number of leaves `j in S5 that satisfies one of the following: (1)
σp ≥ sBWT[j] ≥ c, or (2) sBWT[j] < 0. If c < 0, then N5 is the number of leaves `j in
S5 such that −1 ≥ sBWT[j] > c. Therefore,

N5 =
{

count(L(v), L(z)− 1, c, σp) + count(L(v), L(z)− 1,−σp,−1), if c ∈ [1, σp]
count(L(v), L(z)− 1, c+ 1,−1), if c < 0
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Algorithm 1 computes sLF(i)
1: c← sBWT[i]
2: if (c > σp) then
3: sLF(i)← 1 + count(1, n,−σp, c− 1) + count(1, i− 1, c, c)
4: else
5: z ← zeroNode(`i), Lz ← L(z), Rz ← R(z)
6: if (leafLeadChar(i) is 0) then
7: v ← parent(z), Lv ← L(v), Rv ← R(v)
8: u← child(v, pCount(v)), Ru ← R(u)
9: N1 ← fSum+(v) + count(1, Lv − 1,−σp,−1)

10: N3 ← count(Rv + 1, n,−σp,−1)−
←−−−
fSum−(v)

11: if (c > 0) then
12: N4 ← count(Rz + 1, Ru, c, σp) + count(Rz + 1, Ru,−σp,−1)
13: N5 ← count(Lv, Lz − 1, c, σp) + count(Lv, Lz − 1,−σp,−1)
14: else
15: N4 ← count(Rz + 1, Ru, c+ 1,−1)
16: N5 ← count(Lv, Lz − 1, c+ 1,−1)
17: else
18: N1 ← fSum+(z) + count(1, Lz − 1,−σp,−1)
19: N3 ← count(Rz + 1, n,−σp,−1)−

←−−−
fSum−(z)

20: if (c > 0) then
21: N2 ← count(Lz, Rz, c+ 1, σp) + count(Lz, i, c, c) + count(Lz, Rz,−σp,−1)
22: else
23: N2 ← count(Lz, Rz, c+ 1,−1) + count(Lz, i, c, c)
24: sLF(i)← N1 +N2 +N3 +N4 +N5

Now, we arrive at the scenario when zeroNode(`i) is not defined, i.e., fi > |str(`i)|.
Following the arguments in this section, it is easy to arrive at the following:

sLF(i) = 1 + fSum+(`i) + fAncestor+(`i) + count(1, i− 1,−σp,−1)
+ count(i+ 1, n,−σp,−1)− fSum−(`i), when fi > |str(`i)|

Summarizing the discussions in this section, we have proved the following.

I Lemma 14. We can compute sLF(i) in O(log σ) time using the Wavelet Tree over sBWT
and an additional O(n)-bit data structure.

5 Finding Suffix Range via Backward Search

We use an adaptation of the backward search algorithm in the FM-index [6]. In particular,
given a proper suffix Q of P , assume that we know the suffix range [sp1, ep1] of Φ(Q). Our
task is to find the suffix range [sp2, ep2] of Φ(c ◦Q), where c is the character previous to Q
in P . If c is a static character, then

sp2 = 1 + count(1, n,−σp, c− 1) + count(1, sp1 − 1, c, c)
ep2 = count(1, n,−σp, c− 1) + count(1, ep1, c, c)

Now, we consider the scenario when c is a p-character.
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5.1 Case 1 (Neither c nor its complement appears in Q)
Let d be the number of distinct p-characters in Q, which can be computed in O(1) time
after pre-processing P in O(|P | log σ) time. Note that sLF(i) ∈ [sp2, ep2] iff i ∈ [sp1, ep1],
sBWT[i] ∈ [−σp, σp] and fi > |Q|. Then,

(ep2 − sp2 + 1) = count(sp1, ep1, d+ 1, σp) + count(sp1, ep1,−σp,−d− 1)

Let u = lca(`sp1 , `ep1). For any i, sLF(i) < sp2 iff (1) i < sp1, sBWT[i] ∈ [1, σp] and
f+
i > 1 + |str(lca(u, `i))|, or (2) i < sp1, sBWT[i] ∈ [1, σp], f+

i = 1 + |str(lca(u, `i))|, and
the leading character on the path from lca(u, `i) to u is an s-character, or (3) i ∈ [sp1, ep1],
sBWT[i] < 0 and f−i ≤ |Q|, or (4) i < sp1 and sBWT[i] < 0, or (5) i > ep1, sBWT[i] < 0
and f−i ≤ 1 + |str(lca(u, `i))|. Therefore,

sp2 = 1 + fSum+(u) + fAncestor+(u) + count(sp1, ep1,−d,−1)

+ count(1, sp1 − 1,−σp,−1) + count(ep1 + 1, n,−σp,−1)−
←−−−
fSum−(u)

5.2 Case 2 (c or its complement appears in Q)
Assume that the number of characters until the first occurrence of c (resp. c’s complement)
in Q is f+ (resp. f−). If f+ or f− does not exist, we take it to be |Q| + 1. Let d+ and
d− be respectively the number of distinct p-characters in Q[1, f+] and Q[1, f−] respectively.
After an initial O(|P | log σ) time pre-processing, d+ and d− can retrieved in O(1) time.

Case when f+ < f−: Note that sLF(i) ∈ [sp2, ep2] iff i ∈ [sp1, ep1], sBWT[i] ∈ [1, σp] and
f+
i = f+. Consider any i, j ∈ [sp1, ep1] such that i < j, both sLF(i), sLF(j) ∈ [sp2, ep2],
and both sBWT[i], sBWT[j] ∈ [1, σp]. Now, f+

i = f+
j = f+, and sLF(i) < sLF(j).

Therefore,

(ep2 − sp2 + 1) = count(sp1, ep1, d
+, d+), and

sp2 = sLF(min{j | j ∈ [sp1, ep1] and sBWT[j] = d+})
= sLF(select(1 + rank(sp1 − 1, d+), d+))

Case when f+ > f−: Based on the above arguments, we can derive the following.

(ep2 − sp2 + 1) = count(sp1, ep1,−d−,−d−), and
sp2 = sLF(min{j | j ∈ [sp1, ep1] and sBWT[j] = −d−})

= sLF(select(1 + rank(sp1 − 1, d−), d−))

Thus, the suffix range of Φ(P ) is computed in O(|P | log σ) time. Applying Lemmas 8
and 14, we arrive at Theorem 3.
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Abstract
In this paper we revisit the classical Edge Disjoint Paths (EDP) problem, where one is given
an undirected graph G and a set of terminal pairs P and asks whether G contains a set of
pairwise edge-disjoint paths connecting every terminal pair in P . Our focus lies on structural
parameterizations for the problem that allow for efficient (polynomial-time or fpt) algorithms.
As our first result, we answer an open question stated in Fleszar, Mnich, and Spoerhase (2016),
by showing that the problem can be solved in polynomial time if the input graph has a feedback
vertex set of size one. We also show that EDP parameterized by the treewidth and the maximum
degree of the input graph is fixed-parameter tractable.

Having developed two novel algorithms for EDP using structural restrictions on the input
graph, we then turn our attention towards the augmented graph, i.e., the graph obtained from
the input graph after adding one edge between every terminal pair. In constrast to the input
graph, where EDP is known to remain NP-hard even for treewidth two, a result by Zhou et al.
(2000) shows that EDP can be solved in non-uniform polynomial time if the augmented graph has
constant treewidth; we note that the possible improvement of this result to an fpt-algorithm has
remained open since then. We show that this is highly unlikely by establishing the W[1]-hardness
of the problem parameterized by the treewidth (and even feedback vertex set) of the augmented
graph. Finally, we develop an fpt-algorithm for EDP by exploiting a novel structural parameter
of the augmented graph.
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1 Introduction

The Edge Disjoint Paths (EDP) and Node Disjoint Paths (NDP) are fundamental
routing graph problems. In the EDP (NDP) problem the input is a graph G, and a set P
containing k pairs of vertices and the objective is to decide whether there is a set of k pairwise
edge disjoint (respectively vertex disjoint) paths connecting each pair in P . These problems
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and their optimization versions – MaxEDP and MaxNDP – have been at the center of
numerous results in structural graph theory, approximation algorithms, and parameterized
algorithms [20, 15, 4, 17, 9, 22, 19, 12, 10].

When k is a part of the input, both EDP and NDP are known to be NP-complete [14].
Robertson and Seymour’s seminal work in the Graph Minors project [20] provides an O(n3)
time algorithm for both problems for every fixed value of k. In the realm of Parameterized
Complexity, their result can be interpreted as fpt-algorithms for EDP and NDP parameter-
ized by k. Here, one considers problems associated with a certain numerical parameter k
and the central question is whether the problem can be solved in time f(k) · nO(1) where f
is a computable function and n the input size; algorithms with running time of this form
are called fpt-algorithms [11, 7, 5].

While the aforementioned research considered the number of paths to be the parameter,
another line of research investigates the effect of structural parameters of the input graphs
on the complexity of these problems. Fleszar, Mnich, and Spoerhase [10] initiated the study
of NDP and EDP parameterized by the feedback vertex set number (the size of the smallest
feedback vertex set) of the input graph and showed that EDP remains NP-hard even on
graphs with feedback vertex set number two. Since EDP is known to be polynomial time
solvable on forests [12], this left only the case of feedback vertex set number one open, which
they conjectured to be polynomial time solvable. Our first result is a positive resolution of
their conjecture.

I Theorem 1. EDP can be solved in time O(|P ||V (G)| 52 ) on graphs with feedback vertex
set number one.

A key observation behind the polynomial-time algorithm is that an EDP instance with
a feedback vertex set {x} is a Yes-instance if and only if, for every tree T of G− {x}, it is
possible to connect all terminal pairs in T either to each other or to x through pairwise edge
disjoint paths in T . The main ingredient of the algorithm is then a dynamic programming
procedure that determines whether such a set exists for a tree T of G− {x}.

Continuing to explore structural parameterizations for the input graph of an EDP in-
stance, we then show that even though EDP is NP-complete when the input graph has
treewidth two, it becomes fixed-parameter tractable if we additionally parameterize by the
maximum degree.

I Theorem 2. EDP is fixed-parameter tractable parameterized by the treewidth and the
maximum degree of the input graph.

Having explored the algorithmic applications of structural restrictions on the input graph
for EDP, we then turn our attention towards similar restrictions on the augmented graph of
an EDP instance (G,P ), i.e., the graph obtained from G after adding an edge between every
pair of terminals in P . Whereas EDP is NP-complete even if the input graph has treewidth
at most two [19], it can be solved in non-uniform polynomial time if the treewidth of the
augmented graph is bounded [22]. It has remained open whether EDP is fixed-parameter
tractable parameterized by the treewidth of the augmented graph; interestingly, this has
turned out to be the case for the strongly related multicut problems [13]. Surprisingly, we
show that this is not the case for EDP, by establishing the W[1]-hardness of the problem
parameterized by not only the treewidth but also by the feedback vertex set number of the
augmented graph.

I Theorem 3. EDP is W[1]-hard parameterized by the feedback vertex set number of the
augmented graph.
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Motivated by this strong negative result, our next aim was to find natural structural
parameterizations for the augmented graph of an EDP instance for which the problem
becomes fixed-parameter tractable. Towards this aim, we introduce the fracture number,
which informally corresponds to the size of a minimum vertex set S such that the size of
every component in the graph minus S is small (has size at most |S|). We show that EDP
is fixed-parameter tractable parameterized by this new parameter.

I Theorem 4. EDP is fixed-parameter tractable parameterized by the fracture number of
the augmented graph.

We note that the reduction in [10, Theorem 6] excludes the applicability of the fracture
number of the input graph by showing that EDP is NP-complete even for instances with
fracture number at most three. Finally, we complement Theorem 4 by showing that bounding
the number of terminal pairs in each component instead of the its size is not sufficient to
obtain fixed-parameter tractability.

2 Preliminaries

2.1 Basic Notation
We use standard terminology for graph theory, see for instance [6]. Given a graph G, we
let V (G) denote its vertex set, E(G) its edge set and by V (E′) the set of vertices incident
with the edges in E′, where E′ ⊆ E(G). The (open) neighborhood of a vertex x ∈ V (G)
is the set {y ∈ V (G) : xy ∈ E(G)} and is denoted by NG(x). For a vertex subset X, the
neighborhood of X is defined as

⋃
x∈X NG(x) \X and denoted by NG(X). For a vertex set

A, we use G−A to denote the graph obtained from G by deleting all vertices in A, and we
use G[A] to denote the subgraph induced on A, i.e., G − (V (G) \ A). A forest is a graph
without cycles, and a vertex set X is a feedback vertex set (FVS) if G −X is a forest. We
use [i] to denote the set {0, 1, . . . , i}. The feedback vertex set number of a graph G, denoted
by fvs(G), is the smallest integer k such that G has a feedback vertex set of size k.

2.2 Edge Disjoint Path Problem
In the Edge Disjoint Paths (EDP) problem, one is given an undirected graph G a set P
of terminal pairs (i.e., subsets of V (G) of size two) and the question is whether there is there
a set of pairwise edge disjoint paths connecting every set of terminal pairs in P . Let (G,P )
be an instance of EDP; for brevity, we will sometimes denote a terminal pair {s, t} ∈ P

simply as st. For a subgraph H of G, we denote by P (H) the subset of P containing all
sets that have a non-empty intersection with V (H) and for P ′ ⊆ P , we denote by P̃ ′ the
set

⋃
p∈P ′ p. We will assume that, w.l.o.g., each vertex v ∈ V (G) occurs in at most one

terminal pair, each vertex in a terminal pair has degree 1 in G, and each terminal pair is not
adjacent to each other; indeed, for any instance without these properties, we can add a new
leaf vertex for terminal, attach it to the original terminal, and replace the original terminal
with the leaf vertex [22].

I Definition 5 ([22]). The augmented graph of (G,P ) is the graph GP obtained from G by
adding edges between each terminal pair, i.e., GP = (V (G), E(G) ∪ P ).

2.3 Parameterized Complexity
The parameterized complexity paradigm allows a finer analysis of the complexity of problems
by associating each problem instance L with a numerical parameter k; the pair (L, k) is
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then an instance of a parameterized problem. A parameterized problem is fixed-parameter
tractable (FPT in short) if a given instance (L, k) can be solved in time O(f(k) · |L|O(1)

where f is an arbitrary computable function; we call algorithms running in this time fpt-
algorithms. The complexity class W[1] is the analog of NP for parameterized complexity;
under established complexity assumptions, problems that are hard for W[1] do not admit
fpt-algorithms.

We refer the reader to the respective monographs [11, 7, 5] for an in-depth introduction
to parameterized complexity.

2.4 Treewidth
A tree-decomposition of a graph G = (V,E) is a pair (T, {Bt : t ∈ V (T )}) where Bt ⊆ V for
every t ∈ V (T ) and T is a tree such that:
1. for each edge (u, v) ∈ E, there is a t ∈ V (T ) such that {u, v} ⊆ Bt, and
2. for each vertex v ∈ V , T [{ t ∈ V (T ) | v ∈ Bt }] is a non-empty (connected) tree.
The width of a tree-decomposition is maxt∈V (T ) |Bt| − 1. The treewidth [16] of G is the
minimum width taken over all tree-decompositions of G and it is denoted by tw(G). We
call the elements of V (T ) nodes and Bt bags.

While it is possible to compute the treewidth exactly using an fpt-algorithm [1], the
asymptotically best running time is achieved by using the recent state-of-the-art 5-approxi-
mation algorithm of Bodlaender et al. [2].

I Fact 6 ([2]). There exists an algorithm which, given an n-vertex graph G and an integer k,
in time 2O(k) · n either outputs a tree-decomposition of G of width at most 5k+ 4 and O(n)
nodes, or correctly determines that tw(G) > k.

A tree-decomposition (T,Bt : t ∈ V (T )) of a graph G is nice if the following conditions
hold: (1) T is rooted at a node r such that |Br| = ∅, (2) every node of T has at most two
children, if a node t of T has two children t1 and t2, then Bt = Bt1 = Bt2 ; in that case
we call t a join node, (3) if a node t of T has exactly one child t′, then exactly one of the
following holds: (3A) Bt = Bt′ ∪ {v}, in which case we call t an introduce node or (3B)
Bt = Bt′ \ {v} in which case we call t a forget node, and (4) if a node t of T is a leaf, then
|Bt| = 1; we call these leaf nodes.

The main advantage of nice tree-decompositions is that they allow the design of much
more transparent dynamic programming algorithms, since one only needs to deal with four
specific types of nodes. It is well known (and easy to see) that for every fixed k, given a
tree-decomposition of a graph G = (V,E) of width at most k and with O(|V |) nodes, one
can construct in linear time a nice tree-decomposition of G with O(|V |) nodes and width at
most k [3]. Given a node t in T , we let Yt be the set of all vertices contained in the bags of
the subtree rooted at t, i.e., Yt = Bt ∪

⋃
p is separated from the root by tBp.

3 Closing the Gap on Graphs of Feedback Vertex Number One

In this section we develop a polynomial-time algorithm for EDP restricted to graphs with
feedback vertex set number one. We refer to this particular variant as Simple Edge Dis-
joint Paths (SEDP): given an EDP instance (G,P ) and a FVS X = {x}, solve (G,P ).

Additionally to our standard assumptions about EDP (given in Subsection 2.2), we will
assume that: (1) every neighbor of x in G is a leaf in G −X, (2) x is not a terminal, i.e.,
x /∈ P̃ , and (3) every tree T in G−X is rooted in a vertex r that is not a terminal. Property
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(1) can be ensured by an additional leaf vertex l to any non-leaf neighbor n of x, removing
the edge {n, x} and adding the edge {l, x} to G. Property (2) can be ensured by adding an
additional leaf vertex l to x and replacing x with l in P and finally (3) can be ensured by
adding a leaf vertex l to any non-terminal vertex r in T and replacing r with l in P .

A key observation behind our algorithm for SEDP is that whether or not an instance
I = (G,P,X) has a solution merely depends on the existence of certain sets of pairwise edge
disjoint paths in the trees T in G−X. In particular, as we will show in Lemma 8 later on,
I has a solution if and only if every tree T in G−X is ∅-connected (see Definition 7). The
main ingredient of the algorithm is then a bottom-up dynamic programming algorithm that
determines whether a tree T in G−X is ∅-connected. We now define the various connectivity
states of subtrees of T that we need to keep track of in the dynamic programming table.

I Definition 7. Let T be a tree in G − X rooted at r (recall that we can assume that r
is not in P̃ ), t ∈ V (T ), and let S be a set of pairwise edge disjoint paths in G[Tt ∪X] and
P ′ ⊆ P (Tt), where Tt is the subtree of T rooted at t.

We say that the set S γ∅-connects P ′ in G[Tt ∪ X] if for every a ∈ P̃ ′ ∩ Tt, the set
S either contains an a-x path disjoint from b, or it contains an a-b path disjoint from x,
where {a, b} ∈ P ′. Moreover, for ` ∈ {γX} ∪ P (Tt), we say that the set S `-connects Tt if S
γ∅-connects P (Tt) \ {`} and additionally the following conditions hold.

If ` = γX then S also contains a path from t to x.
If ` = p for some p ∈ P (Tt) then:

If p ∩ Tt = {a} then S contains a t-a path disjoint from x.
If p ∩ Tt = {a, b} then S contains a t-a path disjoint from x and a b-x path disjoint
from a or S contains a t-b path disjoint from x and an a-x path disjoint from b.

For ` ∈ {γ∅, γX} ∪ P (Tt), we say that Tt is `-connected if there is a set S which `-connects
P (Tt) in G[Tt ∪X].

Informally, a tree Tt is: (1) γ∅-connected if all its terminal pairs can be connected in G[Tt∪X]
either to themselves or to x, (2) γX -connected if it is γ∅-connected and additionally there
is a path from its root to x (which can later be used to connect some terminal not in Tt to
x via the root of Tt), and (3) γp-connected if all but one of its terminals, i.e., one of the
terminals in p, can be connected in G[Tt ∪X] either to themselves or to x, and additionally
one terminal in p can be connected to the root of Tt (from which it can later be connected
to x or the other terminal in p).

I Lemma 8. (G,X,P ) has a solution if and only if every tree T in G−X is γ∅-connected.

Due to Lemma 8, our algorithm to solve EDP only has to determine whether every tree
in G−X is γ∅-connected. For a tree T in G−X, our algorithm achieves this by computing
a set of labels L(t), where L(t) is the set of all labels ` ∈ {γ∅, γX} ∪ P (Tt) such that Tt is
`-connected, via a bottom-up dynamic programming procedure. We begin by arguing that
for a leaf vertex l, the value L(l) can be computed in constant time.

I Lemma 9. The set L(l) for a leaf vertex l of T can be computed in time O(1).

Proof. Since l is a leaf vertex, we conclude that Tl is γ∅-connected if and only if either
l /∈ P̃ or l ∈ P̃ and (l, x) ∈ E(G). Similarly, Tl is γX -connected if and only if l /∈ P̃ and
(l, x) ∈ E(G). Finally, Tl is `-connected for some ` ∈ P (Tl) if and only if l ∈ P̃ . Since all
these properties can be checked in constant time, the statement of the lemma follows. J

We will next show how to compute L(t) for a non-leaf vertex t ∈ V (T ) with children t1, . . . , tl.
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I Definition 10. We define the three sets V ¬γ∅
t = { ti | γ∅ /∈ L(ti) }, V γX

t = { ti | γX ∈
L(ti) }, and Vt = {t1, . . . , tl} \ (V ¬γ∅

t ∪ V γX

t ).

That is, V ¬γ∅
t is the set of those children ti such that Ti is not γ∅-connected, V γX

t is the set
of those children ti such that Ti is γX -connected and Vt is the set comprising the remaining
children. Observe that {Vt, V ¬γ∅

t , V γX

t } forms a partition of {t1, . . . , tl} and moreover γ∅ ∈
L(t) and γX /∈ L(t) for every t ∈ Vt. Let H(t) be the graph with vertex set Vt∪V ¬γ∅

t having
an edge between ti and tj (for i 6= j) if and only if L(ti) ∩ L(tj) 6= ∅ and not both ti and
tj are in Vt. The following lemma is crucial to our algorithm, because it provides us with a
simple characterization of L(t) for a non-leaf vertex t ∈ V (T ).

I Lemma 11. Let t be a non-leaf vertex of T with children t1, . . . , tl. Then Tt is:
γ∅-connected if and only if L(t′) 6= ∅ for every t′ ∈ {t1, . . . , tl} and H(t) has a matching
M such that |V ¬γ∅ \ V (M)| ≤ |V γX

t |,
γX-connected if and only if L(t′) 6= ∅ for every t′ ∈ {t1, . . . , tl} and H(t) has a matching
M such that |V ¬γ∅ \ V (M)| < |V γX

t |,
`-connected (for ` ∈ P (Tt)) if and only if L(t′) 6= ∅ for every t′ ∈ {t1, . . . , tl} and there is
a ti with ` ∈ L(ti) such that H(t)−{ti} has a matching M with |V ¬γ∅ \V (M)| ≤ |V γX

t |.
The following two lemmas show how the above characterization can be employed to compute
L(t) for a non-leaf vertex t of T . Since the matching employed in Lemma 11 needs to
maximize the number of vertices covered in V ¬γ∅ , we first show how such a matching can
be computed efficiently.

I Lemma 12. There is an algorithm that, given a graph G and a subset S of V (G), computes
a matching M maximizing |V (M) ∩ S| in time O(

√
|V ||E|).

I Lemma 13. Let t be a non-leaf vertex of T with children t1, . . . , tl. Then L(t) can be
computed from L(t1), . . . , L(tl) in time O(|P (Tt)|l2

√
l).

We are now ready to put everything together to decide whether a tree T is γ∅-connected.

I Lemma 14. Let T be a tree in G −X. There is an algorithm that decides whether T is
γ∅-connected in time O(|P (T )||V (T )| 52 ).

Proof. The algorithm computes the set of labels L(t) for every vertex t ∈ V (T ) using a
bottom-up dynamic programming approach. Starting from the leaves of T , for which the
set of labels can be computed due to Lemma 9 in constant time, it uses Lemma 13 to
compute L(t) for every inner node t of T in time O(|P (Tt)|l2

√
l). The total running time of

the algorithm is then the sum of the running time for any inner node of T plus the number
of leaves of T , i.e., O(|P (T )||V (T )| 52 ). J

I Theorem 1. EDP can be solved in time O(|P ||V (G)| 52 ) on graphs with feedback vertex
set number one.

Proof. We first employ Lemma 14 to determine whether every tree T of G − X is γ∅-
connected. If so we output Yes and otherwise No. Correctness follows from Lemma 8. J

4 Treewidth and Maximum Degree

The goal of this section is to obtain an fpt-algorithm for EDP parameterized by the treewidth
ω and maximum degree ∆ of the input graph.
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I Theorem 15. EDP can be solved in time 2O(∆ω2) ·n, where ω, ∆ and n are the treewidth,
maximum degree and number of vertices of the input graph G, respectively.

Proof Sketch. Let (G,P ) be an instance of EDP and let (T,B) be a nice tree-decomposition
of G of width at most k = 5ω + 4; recall that such (T,B) can be computed in time 2O(k)

by Fact 6. Consider the following leaf-to-root dynamic programming algorithm Å, executed
on T . At each bag Bt associated with a node t of T , Å will compute a tableMt of records,
which are tuples of the form {(used, give, single)} where:

used is a multiset of subsets of Bt of cardinality 2 with each subset occurring at most ∆
times,
give is a mapping from subsets of Bt of cardinality 2 to [∆], and
single is a mapping which maps each terminal ai ∈ Yt such that its counterpart bi 6∈ Yt
to an element of Bt.

Before we proceed to describe the steps of the algorithm itself, let us first introduce the
semantics of a record. For a fixed t, we will consider the graph Gt obtained from G[Yt] by
removing all edges with both endpoints in Bt (we note that this “pruned” definition of Gt
is not strictly necessary for the algorithm, but makes certain steps easier later on). Then
α = {(used, give, single)} ∈ Mt if and only if there exists a set of edge disjoint paths Q in
Gt and a surjective mapping τ from terminal pairs occurring in Yt to subsets of Bt of size
two with the following properties:

For each terminal pair ab that occurs in Yt:
Q either contains a path whose endpoints are a and b, or
Q contains an a-x1 path for some x1 ∈ Bt and a b-x2 path for some x2 ∈ Bt which is
distinct from x1, and furthermore τ(ab) = {x1, x2} ∈used;

for each terminal pair ab such that a ∈ Yt but b 6∈ Yt:
Q contains a path whose endpoints are a and x ∈ Bt, where (a, x) ∈ single;

for each distinct x1, x2 ∈ Bt, Q contains precisely give({x1, x2}) paths from x1 to x2.

In the above case, we say that Q witnesses α. It is important to note that the equivalence
between the existence of records and sets Q of pairwise edge disjoint paths only holds because
of the bound on the maximum degree. That is because every vertex of G has degree at
most ∆, it follows that any set Q of pairwise edge disjoint paths can contain at most ∆
paths containing a vertex in the boundary. Moreover, we note that by reversing the above
considerations, given a set of edge disjoint paths Q in Gt satisfying a certain set of conditions,
we can construct in time 3∆k a set of records in Mt that are witnessed by Q (one merely
needs to branch over all options of assigning paths in α which end in the boundary: they
may either contribute to give or to single or to used). These conditions are that each path
either (i) connects a terminal pair, (ii) connects a terminal pair to two vertices in Bt, (iii)
connects two vertices in Bt, or (iv) connects a terminal a ∈ Yt whose counterpart b /∈ Yt to
a vertex in Bt.

Å runs as follows: it begins by computing the records Mt for each leaf t of T . It then
proceeds to compute the records for all remaining nodes in T in a bottom-up fashion, until
it computes Mr. Since Br = ∅, it follows that (G,P ) is a Yes-instance if and only if
(∅, ∅, ∅) ∈ Mr. For each record α, it will keep (for convenience) a set Qα of edge disjoint
paths witnessing α. Observe that while for each specific α there may exist many possible
choices of Qα, all of these interact with Bt in the same way.

We make one last digression before giving the procedures used to compute Mt for the
four types of nodes in nice tree-decompositions. First, observe that the size of one particular
record is at most ∆k2 + ∆k2 + |single|. Since the number of edge disjoint paths in Gt ending
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in Bt is upper-bounded by ∆k, it follows that each record inMt satisfies |single| ≤ ∆k and
in particular each such record has size at most O(∆k2). As a consequence, |Mt| ≤ 2O(∆k2)

for each node t in T , which is crucial to obtain an upper-bound on the running time of Å.
It remains to formalize the computation of the records for the four types of nodes of a nice
tree decomposition.

Summary and running time

Algorithm Å begins by invoking Fact 6 to compute a tree-decomposition of width at most
k = 5ω + 4 and O(n) nodes, and then converts this into a nice tree-decomposition (T,B) of
the same width and also O(n) nodes. It then proceeds to compute the records Mt (along
with corresponding witnesses) for each node t of T in a leaves-to-root fashion, using the
procedures described above. The number of times any procedure is called is upper-bounded
by O(n), and the running time of every procedure is upper-bounded by the worst-case
running time of the procedure for forget nodes. There, for each record β in the data table
of the child of t, the algorithm takes its witness Qβ and uses branching to construct at
most kO(∆k) new witnesses (after the necessary conditions are checked). Each such witness
Qα gives rise to a set of records that can be computed in time 3∆k, which are then added
to Mt (unless they are already there). All in all, the running time of this procedure is
upper-bounded by 2O(∆k2) · kO(∆k) · 3∆k = 2O(∆k2), and the run-time of the algorithm
follows. J

5 Lower Bounds of EDP for Parameters of the Augmented Graph

This section is devoted to a proof of the following theorem.

I Theorem 3. EDP is W[1]-hard parameterized by the feedback vertex set number of the
augmented graph.

Note that since the feedback vertex set number upper-bounds the treewidth, Theorem 3
complements the result in [22] showing that EDP is solvable in polynomial time for bounded
treewidth.

As intermediate steps for the proof of Theorem 3 we establish the W[1]-hardness of
several interesting variants of a multidimensional version of the well-known Subset Sum
problem as well as several directed and undirected versions of EDP, which we believe are
interesting in their own right. Namely, the proof starts by showing W[1]-hardness for the
following problem using a reduction from the well-known Multi-Colored Clique (MCC)
problem [7].

Multidimensional Subset Sum (MSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with si ∈ Nk

for every i with 1 ≤ i ≤ n and a target vector t ∈ Nk.
Parameter: k

Question: Is there a subset S′ ⊆ S such that
∑

s∈S′ s = t?

Using a reduction from MSS, the proof then continues by establishing W[1]-hardness for
the following more relaxed version of MSS.
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Multidimensional Relaxed Subset Sum (MRSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with si ∈ Nk

for every i with 1 ≤ i ≤ n, a target vector t ∈ Nk, and an integer
k′.

Parameter: k + k′

Question: Is there a subset S′ ⊆ S with |S′| ≤ k′ such that
∑

s∈S′ s ≥ t?

Next, we reduce from MRSS to the following directed variant of EDP.

Multiple Directed Edge Disjoint Paths (MDEDP)

Input: A directed graph G, a set P of ` triples (si, ti, ni) with 1 ≤ i ≤ `,
si, ti ∈ V (G), and ni ∈ N.

Parameter: fvs(G) + |P |
Question: Is there a set of pairwise edge disjoint paths containing ni paths

from si to ti for every i with 1 ≤ i ≤ `?

In the above, G denotes the underlying undirected graph of a given directed graph G.
Using a known result that allows to reduce the directed EDP problem to the undirected

EDP problem given by Vygen [21], we then show that the undirected variant of the above
problem, which we refer to as MUEDP, of MDEDP is also W[1]-hard. The final step of the
proof is then a straightforward reduction from MUEDP to the EDP problem parameterized
by the feedback vertex set number of the augmented graph.

6 An fpt-Algorithm for EDP using the Augmented Graph

In light of Theorem 3, it is natural to ask whether there exist natural structural parameters
of the augmented graph which would give rise to fpt-algorithms for EDP but which cannot
be used on the input graph. In other words, does considering the augmented graph instead
of the input graph provide any sort of advantage in terms of fpt-algorithms? In this section
we answer this question affirmatively by showing that EDP is fixed-parameter tractable
parameterized by the so-called fracture number of the augmented graph. We note that a
parameter similar to the fracture number has recently been used to obtain fpt-algorithms
for Integer Linear Programming [8].

I Definition 16. A vertex subset X of a graph H is called a fracture modulator if each
connected component in H \ X contains at most |X| vertices. We denote the size of a
minimum-cardinality fracture modulator in H as frac(H) or the fracture number of H.

We begin by making a simple structural observation about fracture modulators.

I Lemma 17. Let (G,P ) be an instance of EDP and let k be the fracture number of its
augmented graph. Then there exists a fracture modulator X of GP of size at most 2k such
that X does not contain any terminal vertices. Furthermore, such a fracture modulator X
can be constructed from any fracture modulator of size at most k in linear time.

We note that the problem of computing a fracture modulator of size at most k has been
recently considered in the context of Integer Linear Programming [8].

I Lemma 18 ([8, Theorems 7 and 8]). There exists an algorithm which takes as input a
graph G and an integer k, runs in time at most O((k + 1)k|E(G)|), and outputs a fracture
modulator of cardinality at most k if such exists. Moreover, there is a polynomial-time
algorithm that either computes a fracture modulator of size at most (k + 1)k or outputs
correctly that no fracture modulator of size at most k exists.
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For the rest of this section, let us fix an instance (G,P ) of EDP with a fracture modulator
X of GP of cardinality k which does not contain any terminals. Furthermore, since the
subdivision of any edge (i.e., replacing an edge by a path of length 2) in (G,P ) does not
change the validity of the instance, we will assume without loss of generality that G[X] is
edgeless; in particular, any edges that may have had both endpoints in X will be subdivided,
creating a new connected component of size 1.

Our next step is the definition of configurations. These capture one specific way a
connected component C of GP − X may interact with the rest of the instance. It will
be useful to observe that for each terminal pair ab there exists precisely one connected
component C of GP −X which contains both of its terminals; we say that ab occurs in C.
For a connected component C, we let C+ denote the induced subgraph on GP [C ∪X].

A trace is a tuple (x1, . . . , x`) of elements of X. A configuration is a tuple (α, β) where
α is a multiset of at most k traces, and
β is a mapping from subsets of X of cardinality 2 to [k2].

A component C of GP admits a configuration (α, β) if there exists a set of edge disjoint
paths F in C+ and a surjective mapping τ (called the assignment) from α to the terminal
pairs that occur in C with the following properties.

For each terminal pair st that occurs in C:
F either contains a path whose endpoints are s and t, or
F contains an s-x1 path for some x1 ∈ X and a t-x2 path for some distinct x2 ∈ X
and there exists a trace L = (x1, . . . , x2) ∈ α such that τ(L) = st.

for each distinct a, b ∈ X, F contains precisely β({a, b}) paths from a to b.
F contains no other paths than the above.

Intuitively, α stores information about how one particular set of edge disjoint paths A
which originate in C is routed through the instance: they may either be routed only through
C+ (in which case they don’t contribute to α), or they may leave C+ (in which case α stores
the order in which these paths visit vertices of X, i.e., their trace). On the other hand, β
stores information about how paths that originate outside of C can potentially be routed
through C (in a way which does not interfere with A). Observe that for any particular
α there may exist several distinct configurations ((α, β1), (α, β2) and so forth); similarly,
for any particular β there may exist several distinct configurations ((α1, β), (α2, β) and so
forth).

If a set F of edge disjoint paths in C+ satisfies the conditions specified above for a
configuration (α, β), we say that F gives rise to (α, β). Clearly, given F and (α, β), it is
possible to determine whether F gives rise to (α, β) in time polynomial in |V (C)|.

While configurations capture information about how a component can interact with a set
of edge disjoint paths, our end goal is to have a way of capturing all important information
about a component irrespective of any particular selection of edge disjoint paths. To this
end, we introduce the notion of signatures. A signature of a component C, denoted sign(C),
is the set of all configurations which C admits. The set of all configurations is denoted by Λ.

I Lemma 19. Given a component C, it is possible to compute sign(C) in time at most
kO(k2). Furthermore, |sign(C)| ≤ |Λ| ≤ kO(k2).

Our next step is the formulation of a clear condition linking configurations of components
in GP −X and solving (G,P ). This condition will be of importance later, since it will be
checkable by an integer linear program. For a trace α, we say that a, b occur consecutively
in α if elements a and b occur consecutively in the sequence α (regardless of their order),
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i.e., α = (. . . , a, b, . . . ) or α = (. . . , b, a, . . . ). Let D be the set of connected components of
GP −X.

A configuration selector is a function which maps each connected component C in GP−X
to a configuration (α, β) ∈ sign(C). We say that a configuration selector S is valid if it
satisfies the condition that dem(ab) ≤ sup(ab) for every {a, b} ⊆ X, where dem (demand)
and sup (supply) are defined as follows: dem(ab) is the number of traces in

⋃
C∈D S(C)

where ab occur consecutively and sup(ab) is the sum of all the values β(a, b) in
⋃
C∈D S(C).

The next, crucial lemma links the existence of a valid configuration selector to the exis-
tence of a solution for EDP.

I Lemma 20. (G,P ) is a Yes-instance if and only if there is a valid configuration selector.

The problem whether there is a valid configuration selector can be easily translated into
an integer linear program with a number of variables that can be bounded in terms of k. It
then follows from [18] that the problem is fixed-parameter tractable parameterized by k.

I Lemma 21. There exists an algorithm which takes as input an EDP instance (G,P ) and
a fracture modulator X of GP and determines whether there exists a valid configuration
selector S in time at most 22kO(k2)

· |V (G)|.

I Theorem 4. EDP is fixed-parameter tractable parameterized by the fracture number of
the augmented graph.

Proof. We begin by computing a fracture modulator of the augmented graph by Lemma 18.
We then use Lemma 21 to determine whether a valid configuration selector S exists, which
by Lemma 20 allows us to solve EDP. J

Having established that EDP is fixed-parameter tractable parameterized by the fracture
number, let us briefly consider potential extensions of the parameter. In particular, one
might be tempted to think that tractability still applies if instead of bounding the size of
each component one only bounds the number of terminal pairs in each component. We
conclude this section by showing that this is not the case: even if both the deletion set and
the number of terminal pairs in each component are bounded by a constant, EDP remains
NP-complete.

I Theorem 22. EDP is NP-complete even if the augmented graph GP of the instance has
a deletion set D of size 6 such that each component of GP −D contains at most 1 terminal
pair.

The proof of Theorem 22 is based on a polynomial reduction from the Multiple Edge
Disjoint Paths (MEDP) problem, where given an undirected graph G, three pairs (s1, t1),
(s2, t2), and (s3, t3) of terminals and three integers n1, n2, and n3 one asks whether there is a
set of pairwise edge disjoint paths containing n1 paths between s1 and t1, n2 paths between
s2 and t2, and n3 paths between s3 and t3. MEDP is known to be strongly NP-complete [21,
Theorem 4].

7 Conclusion

Our results close a wide gap in the understanding of the complexity landscape of EDP pa-
rameterized by structural parameterizations. On the positive side we present three novel
algorithms for the classical EDP problem: a polynomial-time algorithm for instances with
a FVS of size one, an fpt-algorithm w.r.t. the treewidth and maximum degree of the input
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graph, and an fpt-algorithm for instances that have a small deletion set into small compo-
nents in the augmented graph. On the negative side we solve a long-standing open problem
concerning the complexity of EDP parameterized by the treewidth of the augmented graph:
unlike related multicut problems [13], EDP is W[1]-hard parameterized by the feedback
vertex set number of the augmented graph.
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Abstract
Given a line segment I = [0, L], the so-called barrier, and a set of n sensors with varying ranges
positioned on the line containing I, the barrier coverage problem is to move the sensors so that
they cover I, while minimising the total movement. In the case when all the sensors have the
same radius the problem can be solved in O(n logn) time (Andrews and Wang, Algorithmica
2017). If the sensors have different radii the problem is known to be NP-hard to approximate
within a constant factor (Czyzowicz et al., ADHOC-NOW 2009).

We strengthen this result and prove that no polynomial time ρ1−ε-approximation algorithm
exists unless P = NP, where ρ is the ratio between the largest radius and the smallest radius. Even
when we restrict the number of sensors that are allowed to move by a parameter k, the problem
turns out to be W[1]-hard. On the positive side we show that a ((2+ε)ρ+2/ε)-approximation can
be computed in O(n3/ε2) time and we prove fixed-parameter tractability when parameterized by
the total movement assuming all numbers in the input are integers.
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Figure 1 (left) Illustrating an instance with three sensors {1, 2, 3} and sensor intervals. (right)
The sensors have moved such that the sensor intervals cover the barrier [0, L].

In a general setting of the barrier coverage problem each sensor has a fixed sensor radius
and is initially placed in the plane and the cost of moving a sensor is proportional to the
Euclidean distance it is moved. In this paper we consider the special case where we have n
sensors on the real line. Each sensor i = 1, . . . , n has a location xi and a radius ri. When
located at yi, the i-th sensor covers the interval B(yi, ri) = [yi − ri, yi + ri]. The goal is to
move around the sensor intervals to cover the interval [0, L], the so-called barrier. In other
words, for each sensor, we need to decide its new location yi so that [0, L] ⊆

⋃
iB(yi, ri).

The cost of the solution is the sum of sensor movements: cost(y) =
∑
i |yi − xi|, and the

objective is to find a feasible solution of minimum cost.

1.1 Our Results and Related Work
Even though the barrier coverage problem, and many of its variants, has received a lot
of attention from the wireless sensor community, not much is known from a theoretical
point of view. In the literature three different optimisation criteria have been considered:
minimize the sum of movements (min-sum), minimize the maximum movement (min-max)
and, minimize the number of sensors that move (min-num).

Dobrev et al. [7] studied the min-sum and min-max version in the case when the sensors’
start position can be anywhere in the plane and k parallel barriers are required to be covered.
However, they restricted the movement of the sensors to be perpendicular to the barriers.
They showed an O(knk+1) time algorithm. If the barriers are allowed to be horizontal and
vertical then the problem is NP-complete, even for two barriers.

Most of the existing research has focussed on the special case when the barrier is a line
segment I and all the sensors are initially positioned on a line containing I.

The Min-Sum model

If all intervals have the same radius, it is not difficult to show that any solution can be
converted into one where xi < xj if and only if yi < yj without incurring any extra cost.
Czyzowicz et al. [6] showed an O(n2) time algorithm for this case which was later improved
to O(n logn) by Andrews and Wang [1]. Andrews and Wang also showed a matching
Ω(n logn) lower bound. When the radii are non-uniform, this is not the case anymore. In
fact, Czyzowicz et al. [6] showed that this variant of the problem is NP-hard, and remarked
that not even a 2-approximation is possible in polynomial time. In fact their hardness proof
can be modified to show (Theorem 7) that no approximation factor is possible. The catch is
that the instance used in the reduction needs to have some intervals that are very small and
some intervals that are very large. This is a scenario that is not likely to happen in practice,
so the question is whether there is an approximation algorithm whose factor depends on the
ratio of the largest radius to the smallest radius.

Let ρ be the ratio between the largest radius rmax = maxi ri and the smallest radius
rmin = mini ri. Theorem 7 states that no ρ1−ε approximation algorithm exists for any ε > 0
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unless P = NP. On the positive side we show an O(n3/ε2) time ((2+ε)ρ+2/ε)-approximation
algorithm for any given ε > 0. The general idea is to look at “order-preserving” solutions,
that is, solutions where the set of sensors covering the barrier maintains their individual
order from left to right. This will be described in more detail in Section 2.

We also study the problem from the perspective of parameterized complexity and show
that the problem is hard even if the number of intervals required to move is small, that is
W[1]-hardness with respect to parameter number of moved intervals. Complementary, we
provide a fixed-parameter tractable algorithm when the problem is parameterized by the
budget, i.e., the target sum of movements.

The Min-Max and Min-Num models

Czyzowicz et al. [6] also considered min-max version of the problem, where the aim is to
minimize the maximum movement. If the sensors have the same radius they gave an O(n2)
time algorithm. Chen et al. [5] improved the bound to O(n logn). In the same paper Chen
et al. presented an O(n2 logn) time algorithm for the case when the sensors have different
radius. For the min-num version Mehrandish et al. [11] showed that the problem can be solved
in polynomial time using dynamic programming if the sensor radii are uniform, otherwise
the problem is NP-hard.

2 Order-Preserving Approximations

Let y be a solution to the barrier problem. We say a subset of intervals S ⊆ {1, . . . , n} is
active for a solution y if the intervals in S alone are enough to cover the barrier. Additionally,
we say that S is a minimal active set if no proper subset of S is active. Notice that in an
optimal solution y if yi 6= xi then i must belong to a minimal active set. Without loss of
generality we assume that x1 ≤ x2 ≤ · · · ≤ xn. We say a solution y is order-preserving if it
has an active set S such that for any i, j ∈ S with i < j, we have yi < yj .

Our algorithm is based on finding a nearly optimal order-preserving solution. First we
show, in Section 2.1, that there always exists an order-preserving solution that is a good
approximation of the optimal unrestricted solution, and prove that our analysis is almost
tight. Then, in Section 2.2, we show how to compute a nearly optimal order-preserving
solution in polynomial time.

2.1 Quality of Order-Preserving Solutions
The high level idea to prove that there exists an order-preserving solution that approximates
the optimal solution is to start from an arbitrary optimal solution y and progressively modify
the positions of two overlapping active intervals so that they are in the right order and
together cover the exact same portion of the barrier, as shown in Fig. 2. We refer to this
process as the untangling process.

This untangling process continues until all overlapping active intervals are in order. Let
us denote the resulting solution with ŷ. Our goal is to charge the cost of ŷ to the intervals in
such a way that the total charge an interval can receive is comparable to its contribution to
the cost of y. More formally, we define an β-balanced cost sharing scheme to be a function
ξ : S → R+, where
1. cost(ŷ) ≤

∑
i∈S ξ(i), and

2. ξ(i) ≤ β |xi − yi| for all i ∈ S.

ISAAC 2017
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yj

yi

swap y′j

y′i

Figure 2 Two overlapping intervals i and j being swapped. After the swap the union of the
intervals cover the same section of the barrier but their centers swap order.

xi

yi

`(i)

h(i)

|xi − yi| ≤ |xi − yi|

Figure 3 An interval i and its relation to γ̃(i). In this case yi < xi, but a symmetric picture
holds when yi > xi.

It is easy to see that the existence of a well balanced cost sharing scheme implies a good
approximation guarantee.

I Lemma 1. Let ŷ be the result of untangling an optimal solution y. If ŷ admits an β-balanced
cost sharing scheme then ŷ is β-approximate.

Proof. We bound the cost of ŷ as follows: cost(ŷ) ≤
∑
i ξ(i) ≤

∑
i β|xi − yi| = β · cost(y) =

β · opt, where the first two inequalities follow from the definition of β-balancedness and the
last equality follows from the fact that y is optimal. J

To show the existence of a good cost sharing scheme, we will study the structure of an
optimal solution y and its untangling process leading to the order-preserving solution ŷ.

Let γ(i) ⊆ S be the set of indices that cross i, that is, i < j and yi > yj , or i >
j and yi < yj . Let γ̃(i) = {j ∈ γ(i) : |xi − yi| ≥ |xj − yj |}, that is, the set of sensors in γ(i)
that move at most as far as i. If yi < xi we define h(i) to be the y-rightmost sensor in γ̃(i),
and we let `(i) be the y-rightmost sensor in γ̃(i) to the left or equal of xi. See Figure 3.
Symmetrically, if yi ≥ xi we define h(i) to be the y-leftmost sensor in γ̃(i), and `(i) to be the
y-leftmost sensor in γ̃(i) to the right or equal of xi. For sake of brevity, when the interval i
is clear from context, we refer to h(i) as h and to `(i) as `. Note that `(i) is not well-defined
in the case when there are no intervals between xi and yi.

Let us make some observations about the intervals. Figure 3 sums up these observations
by depicting i together with γ̃(i) with ` and h highlighted.

I Observation 1. Every j ∈ γ̃(i) must have yj ∈ [xi − |xi − yi|, xi + |xi − yi|].

Proof. Note that if xi = yi then the claim is trivially true since γ̃(i) = ∅.
Without loss of generality assume xi > yi, since the case xi < yi is symmetric. Since

j ∈ γ̃(i) we have |xj − yj | ≤ |xi − yi|, and it follows that xj < xi and yj > yi. Therefore,
yj > yi = xi − |xi − yi| and yj < xj + |xi − yi| < xi + |xi − yi|. J

I Observation 2. Let y be an optimal solution and let S be a minimal active set of y. Every
point stabs (intersects) at most two intervals in S.
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⇒
xi

yj
yj′

xi

yj
yj′

Figure 4 Illustrating the proof of Observation 3, showing that the intervals of j and j′ cannot
overlap in y.

Proof. If three active intervals in S are stabbed by one point, then one of those intervals can
be removed without making the solution infeasible, thus contradicting minimality of S. J

I Observation 3. In an optimal solution y, if yi < xi then the intervals j ∈ γ̃(i) such that
yj > xi do not overlap; similarly, if yi > xi then the intervals j ∈ γ̃(i) such that yj < xi do
not overlap.

Proof. Without loss of generality assume xi > yi, since the case xi < yi is symmetric. If
there were two indices j, j′ ∈ γ̃(i) that overlap in y and yj > yj′ > xi, then we could reduce
yj′ by rj + rj′ − (yj − yj′) to get another feasible solution with lower cost, since xj , xj′ < xi.
See Figure 4 for an illustration. J

I Observation 4. If ` is well defined for i in an optimal solution y then∑
j∈γ̃(i)

2rj ≤ 3|xi − yi|+ r` + rh.

Proof. Note that if xi = yi then the claim is trivially true since γ̃(i) = ∅.
Without loss of generality assume xi > yi, since the case xi < yi is symmetric. By

Observation 2 every point in the interval [yi, xi] stabs at most two intervals from γ̃(i). By
Observation 3 every point in the interval [xi, yh] stabs at most one interval j ∈ γ̃(i) such that
yj > xi. This accounts for the term 3|xi − yi|. Additionally, we have to add rh to account
for the interval [yh, yh + rh] and r`, since `(i) might overlap interval [xi, xi + r`]. Let j be
the y-leftmost sensor in γ̃(i). We do not have to account for the fact that xj might end left
of yi, that is the interval [yj − rj , yi]. The reason is that |yi − yj + rj | < ri and counted
the interval [yi, yi + ri] already needlessly when considering that [yi, xi] stabs at most two
intervals from γ̃(i). It follows that

∑
j∈γ̃(i) 2rj ≤ 3|xi − yi|+ r` + rh. J

I Observation 5. If ` is well defined for i in an optimal solution y then

|γ̃(i)| ≤ 3 + 3 |xi − yi| − 2 ri − r` − rh
2 rmin

.

Proof. From Observation 4 we have
∑
j∈γ̃(i) 2rj ≤ 3 |xi − yi| + r` + rh. Notice that each

interval in γ̃(i) has length at least 2rmin, therefore the number of intervals in γ̃(i) is no more
than

∑
j∈γ̃(i) 2rj divided by 2rmin. To get a better bound we count three intervals explicitly:

`(i), h(i), and j, where j is the y-leftmost sensor if xi > yi or the rightmost otherwise.
Note that if xi = yi then the claim is trivially true since γ̃(i) = ∅. Without loss of

generality assume xi > yi, since the case xi < yi is symmetric. Ignoring j, we can adjust
the bound from Observation 4 as follows. Since by Observation 2 every point stabs at most
two intervals, only j might overlap with i in y. Hence, we only need to consider the interval
[yi + ri, xi] where every point stabs at most two intervals from γ̃(i). Hence, ignoring the
three explicitly counted intervals, the sum of the lengths of the remaining intervals of γ̃(i)
can be bounded by 2(|xi − yi| − ri) + |xi − yi| + r` + rh − 2r` − 2rh. Therefore, we have
|γ̃(i)| ≤ 3 + 3|xi−yi|−2ri−r`−rh

2rmin
. J

ISAAC 2017
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Now everything is in place to describe our cost sharing schemes. Our first scheme is
simpler to describe and is (3ρ + 4)-balanced. Our second scheme is a refinement and is(
(2 + ε)ρ+ 2/ε

)
-balanced for any ε > 0.

I Lemma 2. For an optimal solution y to the barrier problem there is an untangling ŷ of y
such that there is a (3ρ+ 4)-balanced cost sharing scheme.

Proof. The high level idea of our charging scheme is as follows: When i swaps places with
j ∈ γ̃(i), we charge i enough to pay for the movements of both i and j. In particular if
γ̃(i) = ∅ then we do not charge i at all, that is, ξ(i) = 0.

From now on we assume that γ̃(i) 6= ∅. For the analysis it will be useful to study how i

moves in the untangling process. If yi < xi then swapping i and j ∈ γ̃(i) always moves i to
the right; similarly, if yi > xi then swapping i and j ∈ γ̃(i) always moves i to the left. On the
other hand, when swapping i and j ∈ γ(i) \ γ̃(i), the interval i can move either left or right.

We consider two scenarios. If ŷi ends up on the same side of xi as yi then |xi − ŷi| ≤∑
j∈γ(i)\γ̃(i) 2rj + |xi − yi|, so we charge 2rj to each j ∈ γ(i) \ γ̃(i) and |xi − yi| to i. Thus,

under this scenario, the total amount charged to i is

ξ(i) ≤ 2ri|γ̃(i)|+ |xi − yi| (1)

The second scenario is when ŷi and yi end up on opposite sides of xi then |xi − ŷi| ≤∑
j∈γ(i) 2rj −|xi− yi|, so we charge

∑
j∈γ̃(i) 2rj −|xi− yi| to i and 2rj to each j ∈ γ(i)\ γ̃(i).

Thus, under this scenario, the total amount charged to i is

ξ(i) ≤ 2ri|γ̃(i)|+
∑
j∈γ̃(i)

2rj − |xi − yi|. (2)

The rest of the proof is broken up into four cases.

Case 1: Intervals i and h(i) overlap in y.
In this case γ̃(i) = {h(i)} and γ̃(h(i)) = ∅. Furthermore, if there is another interval i′
such that h(i′) = h(i) then i′ and h(i′) do not overlap. Indeed, if yi lies in between yi′
and yh(i) then i′ and h(i) cannot overlap otherwise there is a point covered by i, i′ and
h(i); if yi′ lies in between yi and yh(i) we get a similar contradiction, so it must be that
yh(i) lies in between yi and yi′ . See Fig. 5. This means that i and i′ cross, so either
i ∈ γ̃(i′) or i′ ∈ γ̃(i), which, together with h(i) = h(i′), yields a contradiction.
Therefore, we can run the untangling process so that all pairs i and h(i) that overlap in
y are swapped first. Let y′ be the solution after these initial swaps are carried out. Then,

|xi − y′i|+ |xh(i) − y′h(i)| ≤ |xi − yi|+ |xh(i) − yh(i)|+ 2|ri − rh(i)|

≤ 4(|xi − yi|+ |xh(i) − yh(i)|) ≤ 6|xi − yi|.

The first inequality is due to the fact that additional cost comes from swapping i and
h, where at most one them moves in a direction that increases the cost and they are
overlapping. Hence the additional cost is bounded by 2|ri − rh(i)|. The second inequality
is due to the fact that the movement |xi − yi| + |xh(i) − yh(i)| needs to be larger than
|ri − rh(i)| for i and h to swap positions and both be active.
Later on in the untangling process, i and h may be swapped with another interval, call it
j, causing them to move further and to increase their contribution towards cost(ŷ). If
this happens, we charge the movement of i, or h, to j. Therefore, setting ξ(i) = 6|xi− yi|
is enough to cover the contribution of i and h to the cost of y that is not covered by other
intervals. Obviously, the scheme so far is (3ρ+ 4)-balanced.
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xi

yh(i)
yi yi′

Figure 5 If h(i) = h(i′) then i and i′ must lie on opposite sides of h(i) in y.

The proof of Cases 2 and 3 are deferred to the long version [9] where it is shown that
when ` is not well-defined (Case 2) or ` is well-defined and intervals ` and i overlap in y
(Case 3), then ξ(i)

|xi−yi| ≤ 2ρ+ 1.
Case 4: ` is well-defined and intervals i and ` do not overlap in y.

The assumption implies |xi − yi| ≥ ri + r`. Since we will use Observation 4 to bound∑
j∈γ̃(i) 2rj , it follows that the sub-case when i is charged the most is when yi and ŷi are

on opposite sides of xi, so we start with the bound provided by (2):

ξ(i) ≤ 2ri|γ̃(i)|+
∑
j∈γ̃(i)

2rj − |xi − yi|

≤ ri
(

6 + 3|xi − yi| − 2ri − r` − rh
rmin

)
+ 2|xi − yi|+ r` + rh

=
(

3 ri
rmin

+ 2 + ri
6− 2ri/rmin − r`/rmin − rh/rmin + rh/ri + r`/ri

|xi − yi|

)
|xi − yi|

≤
(

3 ri
rmin

+ 2 + 4− 2ri/rmin + 2rmin/ri
1 + rmin/ri

)
|xi − yi| ≤

(
3 ri
rmin

+ 4
)
|xi − yi|

≤ (3ρ+ 4) |xi − yi|

where the second inequality follows from Observations 4 and 5, the third inequality follows
from |xi− yi| ≥ ri + r`, the forth inequality follows from the fact that the right hand side
of the previous line decreases with r` and rh, and so it is maximized when r` = rh = rmin,
and the fifth inequality follows from the fact that third term inside the parenthesis is a
decreasing function for ri ≥ rmin. This completes the proof of Lemma 2. J

I Lemma 3. For an optimal solution y to the barrier problem there is an untangling ŷ of y
such that there is a

(
(2 + ε)ρ+ 2/ε

)
-balanced charging scheme.

Proof sketch. The key insight to get this charging scheme is to realize that the intervals
j ∈ γ̃(i) such that yi and yj end up on opposite sides of xi must have |xj − yj | > 0, so we
can use some of this cost to pay for the distance it moves when swapping places with i. If
|xi − yj | ≥ ε|xi − yi| then swapping i and j causes j to move 2ri, we charge that to j instead
of i like before. In this modified charging scheme i gets charged (1 − ε) ri

rmin
|xi − yi| less

because it does not pay for the movement of j ∈ γ̃(i) with yj > xi(1 + ε). On the other hand,
it has to pay for its own movement when swapped with some j′ such that i ∈ γ̃(j′) and
|xi − yi| ≥ ε|xj′ − yj′ |. However, it can be shown that the total extra charge that an interval
i is given is at most 2

ε |xi − yi|. Therefore, the scheme is
(
(2 + ε)ρ+ 2/ε

)
-balanced. J

Selecting ε appropriately gives a minimum approximation of 2(ρ+
√

2ρ). We conclude
this sub-section by showing that our analysis is almost tight.

I Lemma 4. There is a family of instances where the ratio of the cost of the best order-
preserving solution to the cost of the unrestricted optimal solution tends to ρ.

ISAAC 2017
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One interval with radius ρ

0 L− 2ρ
L−2ρ

2
intervals with radius 1 L

Figure 6 A family of instances showing that order preserving solution cannot guarantee better
than ρ approximation.

One interval with radius ρ

0 L− 2ρ LL− 2ρ− 2 intervals
with radius 1

Figure 7 A family of instances showing that our untangling process can yield solutions that are
2ρ away from the optimum.

Proof. Consider the instance in Figure 6. There are L−2ρ
2 unit-radius intervals covering

[0, L− 2ρ] and one ρ-radius interval covering [−ρ, ρ]. The optimal solution moves the long
interval L−ρ distance to the right to cover [L− 2ρ, L], at a cost of L−ρ. On the other hand,
the order-preserving solution involves moving each small interval 2ρ units to the right, at a
cost of 2ρL−2ρ

2 . For large enough L the ratio of the cost of these solutions tends to ρ. J

As a closing note, we mention that our analysis of the current untangling procedure is
nearly tight. Indeed, consider the instance in Figure 7. The optimal solution moves the
long interval L − ρ distance to the right. If there is a small gap between two consecutive
small intervals, every interval will be active; therefore, in the untangled solution every small
interval is moved a distance of 2ρ to the right. This means that the ratio of the cost of the
untangled solution to opt tends to 2ρ as L grows.

2.2 Computing Good Order-Preserving Solutions
First we describe a pseudo-polynomial time algorithm for finding an optimal order-preserving
solution. Then we show how to get a (1 + ε)-approximate order-preserving solution in
strongly-polynomial time.

I Lemma 5. Assuming the coordinates defining the instance are integral, there is an O(opt2n)
time algorithm for computing an optimal order-preserving solution, where opt is the value
of said solution.

Proof. Consider the following dynamic programming formulation where we let T [i, b] be the
largest value such that there is an order-preserving solution using the intervals 1, . . . , i to
cover [0, T [i, b]] having cost at most b. For i = 0 there is no active set and so T [0, b] = 0
for all b. For i > 0, if i is not part of the active set of the solution that defines T [i, b] then
T [i, b] = T [i− 1, b]. For i > 0, if i is part of the active set in the optimal solution then we
can condition on how much i moves, say k units either to the left or to the right. The most
coverage that we can possibly get is to move i to yi = T [i− 1, b−k] + ri, which would allow a
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cover up to T [i− 1, b− k] + 2ri; however, this is only possible if |T [i− 1, b− k] + ri − xi| ≤ k.
On the other hand, if |T [i−1, b−k]+ri−xi| > k then it must be that xi < T [i−1, b−k]+ri
(otherwise k needs to be larger) and the best coverage we can get is then xi +k, which should
be larger than T [i− 1, b− k]. At this point it is straightforward to write a recurrence for
T [i, b] that can be computed in O(b) time given the values for T [i− 1, ∗]. There are n× opt
dynamic programming states and each takes O(opt) time to compute. J

I Lemma 6. There is an O(n3/ε2) time algorithm for computing a (1 + ε)-approximate
order-preserving solution.

Proof. For q = ε·opt
n we define the following objective function: cost′(y) =

∑
i

⌈
|yi−xi|

q

⌉
. This

new cost function is closely related to the original objective, namely: cost(y) ≤ q · cost′(y) ≤
cost(y) + qn. Using the same dynamic formulation as the one used in the pseudo-polynomial
time algorithm, we can optimize cost′ in O(n3/ε2) time. Furthermore, the value of this
solution under the original objective is at most (1 + ε)opt, so the claim follows. J

3 Inapproximability Results

The known NP-hardness proof for the barrier coverage problem [6] is a reduction from
3-Partition. The reduction takes an instance of 3-Partition and creates an instance of
the barrier coverage problem with integral values, n+ 1 different radii values, and ρ = cnd

for some constants c and d. Computing a 2-approximate solution in this instance is enough
to decide the 3-Partition instance. Therefore, there is no 2-approximation unless P = NP.
In fact, the same reduction can be used to obtain inapproximability results in terms of ρ.

I Theorem 7. There is no polynomial time ρ1−ε-approximation algorithm for any constant
ε > 0 unless P = NP.

Proof. As noted in [6], a similar reduction can be used to construct an instance with ρ = αcnd

for α > 1 such that an α-approximation is enough to decide the 3-Partition instance. If we
set α = (cnd) 1−ε

ε then we get that α = ρ1−ε and the claim follows. J

4 Parameterized Complexity

We show that the barrier coverage problem is hard, even if we only allow a small number
of sensors to move. Formally, we show that the following problem is W[1]-hard when
parameterized by k.

k-move-Barrier-Coverage
Instance: Sensors (x1, r1), . . . , (xn, rn), L ∈ R, B ∈ R, and k ∈ N.
Problem: Does there exist a barrier coverage y of interval [0, L] such that cost(y) ≤ B and

|{i | xi 6= yi}| ≤ k?

To show W[1]-hardness, we will reduce from Exact-Cover.

Exact-Cover
Instance: Universe U = {u1, . . . , um}, set of subsets S = {S1, . . . , Sn} ⊆ 2U , and k ∈ N.
Problem: Does there exist T = {T1, . . . , Tl} ⊆ S such that l ≤ k,

⋃l

i=1 Ti = U , and
Ti ∩ Tj = ∅ for 1 ≤ i < j ≤ l?
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A special case of Exact-Cover is the problem Perfect-Code, which was shown to
be W[1]-hard when parameterized by k [8] (W[1]-membership was proved later [3]). Hence,
Exact-Cover is W[1]-hard when parameterized by k. Actually, W[1]-hardness for Perfect-
Code was shown for the case where one asks for a solution of size exactly k and not, as
in our problem definition, a solution of size at most k. However, the proof can easily be
adapted to our problem variant.

I Theorem 8. k-move-Barrier-Coverage is W[1]-hard when parameterized by k.

Proof. We reduce from Exact-Cover. Let U = {u1, . . . , um}, S = {S1, . . . , Sn} ⊆ 2U , and
k be an instance of Exact-Cover. We construct an instance (x1, r1), . . . , (xn, rn), L and
B for k-move-Barrier-Coverage as follows. For 1 ≤ i ≤ n and 1 ≤ j ≤ m we define

ei,j =
{

(n+ 1)j−1 if uj ∈ Si,
0 otherwise.

di,j =
{

(n+ 1)j+m if uj ∈ Si,
0 otherwise.

Our instance consists of intervals having radius ri = 1
2
∑m
j=1 ei,j and initial position xi =

−ri −
∑m
j=1 di,j for 1 ≤ i ≤ n. Furthermore, we set L =

∑m
j=1(n + 1)j−1 and B =∑m

j=1(n+ 1)j+m + k
∑m
j=1(n+ 1)j−1. This reduction can be constructed in polynomial time.

Figure 8 shows part of the reduction for a small example instance.
For the correctness, first assume that the Exact-Cover instance is a yes-instance,

i.e., there exists T = {T1, . . . , Tl} ⊆ S such that l ≤ k,
⋃l
i=1 Ti = U , and Ti ∩ Tj = ∅ for

1 ≤ i < j ≤ l. Let I ⊆ {1, . . . , n} be the indices of the intervals corresponding to sets
{T1, . . . , Tl}. By construction, |I| ≤ k. We have to show that [0, L] can be covered by
moving only the intervals identified by I and that this solution has cost at most B. Since⋃l
i=1 Ti = U , for every uj ∈ U there exists exactly one i ∈ I such that uj ∈ Si. Hence,∑
i∈I ri = 1

2
∑
i∈I
∑m
j=1 ei,j = 1

2
∑m
j=1(n+ 1)j−1. Therefore, the total length of the selected

intervals is exactly L and we can cover [0, L].
Next, we consider the cost of this solution. Moving all the intervals identified by I

to the beginning of the barrier, that is, to position −ri for interval i ∈ I results in cost∑m
j=1(n + 1)j+m. Again, the argument is that for every uj ∈ U there exists exactly one

i ∈ I such that uj ∈ Si. Hence,
∑
i∈I |−ri − xi| =

∑
i∈I
∑m
j=1 di,j =

∑m
j=1(n + 1)j+m.

Additionally, the movement of these k intervals to the exact position on L can be bounded
by kL resulting in a total cost of at most

∑m
j=1(n+ 1)j+m + k

∑m
j=1(n+ 1)j−1 = B.

For the reverse direction, assume that there exists a barrier coverage y of interval [0, L]
such that cost(y) ≤ B and |{i | xi 6= yi}| ≤ k. Let I ⊆ {1, . . . , n} be the indices of the moved
intervals. We have to show that T = {Si | i ∈ I} is a solution for the Exact-Cover instance,
that is, every element u ∈ U is contained exactly once in the sets of T . Assume towards a
contradiction, that this is not true. Let uc ∈ U be the element with the highest index such
that uc is either not contained in T or it occurs more than once. Since elements uc+1, . . . , um
occur exactly once, they contribute the length

∑m
j=c+1(n + 1)j−1 towards covering [0, L].

Therefore,
∑c
j=1(n+ 1)j−1 remains to be covered. We have two cases:

uc is not contained in T . Then the maximum length we can cover is if every element
u1, . . . , uc−1 is contained in every moved interval. Since n ·

∑c−1
j=1(n+1)j−1 = (n+1)c−1−

1 <
∑c
j=1(n+ 1)j−1, this is not enough and contradicts our assumption that y is a barrier

coverage. Hence, uc is contained in T .
uc occurs in multiple moved intervals. Since elements uc+1, . . . , um occur exactly
once, they contribute

∑m
j=c+1(n+1)j+m to the total cost just for moving the corresponding

intervals to the beginning of the barrier. Since uc occurs at least twice, it will contribute
2 ·(n+1)c+m to the total cost just for moving the corresponding intervals to the beginning
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S2

2r2 = 40 + 42 + 43
0 L

40 + 41 + 42 + 43 + 44
. . .∑m

j=1
d2,j = 46 + 48 + 49

Figure 8 Part of the reduction from Exact-Cover to k-move-Barrier-Coverage for an
instance U = {u1, . . . , u5}, S = {S1, S2, S3}, with S2 = {u1, u3, u4}.

of the barrier. But 2(n+ 1)c+m +
∑m
j=c+1(n+ 1)j+m = (n+ 1)c+m +

∑m
j=c(n+ 1)j+m,

which is larger than our budget B, because B ≤
∑m
j=1(n+ 1)j+m + n

∑m
j=1(n+ 1)j−1 <∑m

j=0(n+1)j+m =
∑c−1
j=0(n+1)j+m+

∑m
j=c(n+1)j+m and

∑c−1
j=0(n+1)j+m < (n+1)c+m.

Hence, uc is contained exactly once in the sets of T , which contradicts our assumption.
Therefore, T is indeed a solution for the Exact-Cover instance. J

Complementary to this W[1]-hardness result, we will show next, that the problem is
fixed-parameter tractable when parameterized by the budget B. To this end we have to
change the problem to restrict the input to integers instead of real numbers.

Barrier-Coverage
Instance: Sensors (x1, r1), . . . , (xn, rn) with xi, ri ∈ N for each i ∈ {1, . . . , n}, L ∈ N, and

B ∈ N.
Problem: Does there exist a barrier coverage y of interval [0, L] such that cost(y) ≤ B?

I Theorem 9. The Barrier-Coverage problem can be solved in 22B2(B+1) · nO(1) time.

Proof. Our algorithm is a branching algorithm, which, for any candidate sensor branches
on which integer point in the gaps (empty intervals) to move this sensor to (or leave it at
its original position). The crucial observations will be that we can give a bound on the
number of candidate sensors we need to consider to move into the gaps as well as on the
positions where they end up in the final configuration, both in terms of the budget B. The
sum of the gaps on the barrier is at most B, otherwise we have a trivial no-instance. Given
a gap G, we only need to consider intervals that are distance ≤ B left and right of G, since
intervals further away cost too much to move them into G. Assume the interval of G is
[yl, yr]. We consider the range left of G, that is [yl −B, yl] (the right side is symmetrical).
At each point pi in [yl −B, yl], we consider all the intervals whose right end equals pi, that
is intervals (xj , rj) with xj + rj = pi. Let Si denote the set of these intervals. We would like
to branch on which intervals (if any) from Si move into the gap G, but |Si| is not necessarily
bounded by a function of B. Hence, we sort the intervals in Si by length and consider only
the B+ 1 longest ones. This is sound, since our budget allows us to move at most B intervals
and additionally, an interval from Si might need to remain stationary in order to cover pi.
Assume there exists an optimal solution in which interval (xj , rj) ∈ Si is moved to position
yj 6= xj and (xj , rj) is not among the top B + 1 longest ones. Then at most B − 1 of the
longest intervals in Si where moved. This leaves at least two remaining intervals among
the B + 1 many. Assume (xk, rk) is the shorter one of those two. Moving (xk, rk) the same
distance to the right as (xj , rj) was moved, covers everything (xj , rj) was covering and has
the same cost. Additionally, [xk − rk, xk + rk] is still covered by the longer interval which we
did not move. Hence, to conclude, we need to consider at most B + 1 intervals for each of
the B points left and right of a gap.

The only thing remaining, is to show that it suffices to consider integer points for the
solution. The proof of this is deferred to the long version [9]. Therefore, for our branching
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algorithm, the total number of intervals to consider is bounded by B and their possible new
positions is bounded by the budget B as well, which leads to fixed-parameter tractability in
B because B decreases by at least one in each recursive call. J

5 Conclusion

We showed a ((2 + ε)ρ+ 2/ε)-approximation for the barrier coverage problem for the case
when the sensors initially are on a line containing the barrier. This works well when the ratio
between the largest radius and the smallest radius is small, but in theory the difference could
be arbitrarily large. However, we also proved that no polynomial time ρ1−ε-approximation
algorithm exists unless P = NP. There are still several open problems for this special case
that would be interesting to pursue.

1. Improve the approximation ratio analysis of an order-preserving solution. Ideally, down
to ρ+O(1).

2. Determine if the problem is fixed-parameter tractable for parameter k when the interval
radii are 1, 2, . . . , k.

3. Approximate the weighted version where each interval has a weight and we want to
minimize

∑
i wi|xi − yi|.
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Abstract
We present a sorting algorithm for the case of recurrent random comparison errors. The algorithm
essentially achieves simultaneously good properties of previous algorithms for sorting n distinct
elements in this model. In particular, it runs in O(n2) time, the maximum dislocation of the
elements in the output is O(logn), while the total dislocation is O(n). These guarantees are the
best possible since we prove that even randomized algorithms cannot achieve o(logn) maximum
dislocation with high probability, or o(n) total dislocation in expectation, regardless of their
running time.
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1 Introdution

We study the problem of sorting n distinct elements under recurrent random comparison
errors. In this classical model, each comparison is wrong with some fixed probability p, and
correct with probability 1− p. The probability of errors are independent over all possible
pairs of elements, but errors are recurrent: If the same comparison is repeated at any time
during the computation, the result is always the same, i.e., always wrong or always correct.

In such a scenario not all sorting algorithms perform equally well in terms of the output,
as some of them are more likely to produce “nearly sorted” sequences than others. To
measure the quality of an output permutation in terms of sortedness, a common way is to
consider the dislocation of an element, which is the difference between its position in the
permutation and its true rank among all elements. Two criteria based on the dislocations of
the elements are the total dislocation of a permutation, i.e., the sum of the dislocations of all
n elements, and the maximum dislocation of any element in the permutation. Naturally, the
running time remains an important criteria for evaluating sorting algorithms.

To the best of our knowledge, for recurrent random comparison errors, the best results
with respect to running time, maximum, and total dislocation are achieved by the following
two different algorithms:
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Table 1 Our and previous results. The constant c in [2] depends on both the error probability p,
and the success probability of the algorithm. For example, for a success probability of 1 − 1/n, the
analysis in [2] yields c = 110525

(1/2−p)4 . The total dislocation in [12] follows trivially by the maximum
dislocation, and no further analysis is given.

Braverman and Mossel [2] Klein et al [12] Ours
# Steps O(n3+24c) O(n2) O(n2)
Maximal Dislocation w.h.p. O(log n) w.h.p. O(log n) w.h.p. O(log n)
Total Dislocation w.h.p. O(n) w.h.p. O(n log n) in exp. O(n)

Braverman and Mossel [2] give an algorithm which guarantees maximum dislocation
O(logn) and total dislocation O(n), both with high probability. The main drawback of
this algorithm seems to be its running time, as the constant exponent can be rather high;
Klein et al. [12] give a much faster O(n2)-time algorithm which guarantees maximum
dislocation O(logn), with high probability. They however do not provide any upper
bound on the total dislocation, which by the previous result is obviously O(n logn).

In this paper we investigate whether it is possible to guarantee all of these bounds together,
that is, if there is an algorithm with running time O(n2), maximum dislocation O(logn),
and total dislocation O(n).

1.1 Our contribution
We propose a new algorithm whose performance guarantees are essentially the best of the
two previous algorithms (see Table 1). Indeed, our algorithm Window Sort takes O(n2)
time and guarantees the maximum dislocation to be O(logn) with probability 1− 1/n and
the expected total dislocation to be O(n). The main idea is to iteratively sort n elements
by comparing each element with its neighbouring elements lying within a window and to
halve the window size after every iteration. In each iteration, each element is assigned a rank
based on the local comparisons, and then they are placed according to the computed ranks.

Our algorithm is inspired by Klein et al.’s algorithm [12] which distributes elements
into buckets according to their computed ranks, compares each element with elements in
neighboring buckets to obtain a new rank, and halves the range of a bucket iteratively.
Note however that the two algorithms operate in a different way, essentially because of the
following key difference between bucket and window. The number of elements in a bucket
is not fixed, since the computed rank of several elements could be the same. In a window,
instead, the number of elements is fixed. This property is essential in the analysis of the total
dislocation of Window Sort, but introduces a potential offset between the computed rank
and the computed position of an element. Our analysis consists in showing that such an
offset is sufficiently small, which we do by considering a number of “delicate” conditions that
the algorithm should maintain throughout its execution with sufficiently high probability.

We first describe a standard version of our algorithm which achieves the afore mentioned
bounds for any error probability p < 1/32. We then improve this result to p < 1/16 by using
the idea of shrinking the window size at a different rate. An experimental evaluation of our
algorithms –which, due to space limitations, can be found in the full version of the paper–
shows that the performance of the standard version is significantly better than the theoretical
guarantees. In particular, the experiments suggest that the expected total dislocation is O(n)
for p < 1/5, while the maximum dislocation is O(logn) for p < 1/4.
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In addition, we prove that no sorting algorithm can guarantee the maximum dislocation
to be o(logn) with high probability, and no sorting algorithm can guarantee the expected
total dislocation to be o(n).

1.2 Further Related Work on Sorting with Comparison Errors
Computing with errors is often considered in the framework of a two-person game called
Rényi-Ulam Game: The responder thinks of an object in the search space, and the questioner
has to find it by asking questions to which the responder provides answers. However, some
of the answers are incorrect on purpose; the responder is an adversarial lier. These games
have been extensively studied in the past on various kinds of search spaces, questions, and
errors; see Pelc’s survey [14] and Cicalese’s monograph [3].

Feige et al. [7] studied several comparison based algorithms with independent random
errors where the error probability of a comparison is less than half, the repetitions of an
comparison can obtain different outcomes, and all the comparisons are independent. They
required the reported solution to be correct with a probability 1 − q, where 0 < q < 1/2,
and proved that for sorting, O(n log(n/q)) comparisons suffice, which gives also the running
time. In the same model, sorting by random swaps represented as Markovian processes have
been studied under the question of the number of inversions (reversed pairs) [8, 9], which is
within a constant factor of the total dislocation [15]. Karp and Kleinberg [11] studied a noisy
version of the classic binary search problem, where elements cannot be compared directly.
Instead, each element is associated with a coin that has an unknown probability of observing
heads when tossing it and these probabilities increase when going through the sorted order.

For recurring errors, Coppersmith and Rurda [4] studied a simple algorithm that gives a 5-
approximation on the weighted feedback arc set in tournaments (FAST) problem if the weights
satisfy probability constraints. The algorithm consists of ordering the elements based on
computed ranks, which for unweighted FAST are identical to our computed ranks. Damaschke
[6] also gave a subquadratic time algorithm returning a sequence with O(k) inversions when
at most k errors can occur. Alonso et al. [1] and Hadjicostas and Lakshamanan [10] studied
Quicksort and recursive Mergesort, respectively, with random comparison errors.

Paper organization

The rest of this paper is organized as follows. We present the Window Sort algorithm in
Section 2 and analyze the maximum and total dislocation in Section 3 and Section 4, respect-
ively. Then, we explain how to modify Window Sort to allow larger error probabilities
in Section 5. Additionally, we provide a lower bounds on both the maximum and average
dislocation for any sorting algorithm (due to space limitations the corresponding proofs are
omitted and can be found in the full version of the paper).

2 Window Sort

Window Sort consists of multiple iterations of the same procedure: Starting with a
permutation σ and a window size w, we compare each element x in σ with its left 2w and
right 2w adjacent elements (if they exist) and count its wins, i.e., the number of times a
comparison outputs x as the larger element. Then, we obtain the computed rank for each
element based on its original position in σ and its wins: if σ(x) denotes the original position
of x in σ, the computed rank of x equals max{0, σ(x) − 2w} plus the number of its wins.
And we get a new permutation σ′ by placing the elements ordered by their computed ranks.
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Algorithm 1: Window Sort (on a permutation σ on n elements)
Initialization: The initial window size is w = n/2. Each element x has two
variables wins(x) and computed_rank(x) which are set to zero.
repeat

1. foreach x at position l = 1, 2, 3, . . . , n in σ do
foreach y whose position in σ is in [l − 2w, l − 1] or in [l + 1, l + 2w] do

if x > y then
wins(x) = wins(x) + 1

computed_rank(x) = max{l − 2w, 0}+ wins(x)
2. Place the elements into σ′ ordered by non-decreasing computed_rank,

break ties arbitrarily.
3. Set all wins to zero, σ = σ′, and w = w/2.

until w < 1;

Finally, we set w′ = w/2 and start a new iteration on σ′ with window size w′. In the very
first iteration, w = n/2. We formalize Window Sort in Algorithm 1.

In the following, w.l.o.g. we assume to sort elements {1, . . . , n}, i.e., we refer to both an
element x and its rank by x. Let σ denote the permutation of the elements at the beginning
of the current iteration of Window Sort and let σ′ denote the permutation obtained after
this iteration (i.e., the permutation on which the next iteration performs). Similarly, let w
and w′ = w/2 denote the window size of the current and the next iteration. Furthermore, let
π denote the sorted permutation. We define four important terms for an element x in σ:

Current/Original position: The position of x in σ: σ(x)
Computed rank: The current position of x minus 2w (zero if negative) plus its number of
wins: computed_rank(x)
Computed position: The position of x in σ′: σ′(x)

I Theorem 1. Window Sort takes O(n2) time.

Proof. Consider the three steps in Algorithm 1. The number of comparisons in an iteration
in the outer loop is 4w, for w the current size of the window. Therefore, the first step needs
O(nw) time. For the second step we could apply for instance Counting Sort (see e.g. [5]),
which takes O(n) time, since all computed ranks lie between zero and n. Thus, the total
running time is upper bounded by

∑∞
i=0 O( 4n2

2i ) = O(8n2). J

2.1 Preliminaries
We first introduce a condition on the errors in comparisons between an element x and a fixed
subset of elements which depends only on the window size w.

I Definition 2. We define ERRORS(x,w) as the set of errors among the comparisons
between x and every y ∈ [x− 4w, x+ 4w].

I Theorem 3. Window Sort returns a sequence of maximum dislocation at most 9w?
whenever the initial comparisons are such that

|ERRORS(x,w)| ≤ w/4 (1)

hold for all elements x and for all w = n/2, n/4, . . . , 2w?.
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The proof of this theorem follows in the end of this section. In the analysis, we shall prove
the following:

If the computed rank of each element is close to its (true) rank, then the dislocation of
each elements is small (Lemma 7).
The computed rank of each element is indeed close to its (true) rank if the number of
errors involving the element under consideration is small (Lemma 4).
The number of positions an element can move in further iterations is small (Lemma 8).

We now introduce a condition that implies Theorem 3: Throughout the execution of
Window Sort we would like every element x to satisfy the following condition:

(∗) For window size w, the dislocation of x is at most w.

We also introduce two further conditions, which essentially relax the requirement that all
elements satisfy (∗). The first condition justifies the first step of our algorithm, while the
second condition restricts the range of elements that get compared with x in some iteration:

(•) For window size w, element x is larger (smaller) than all the elements lying apart by
more than 2w positions left (right) of x’s original position.

(◦) For window size w, x and its left 2w and right 2w adjacent elements satisfy condition (∗).

Note that if (∗) holds for all elements, then (•) and (◦) also hold for all elements. For
elements that satisfy both (•) and (◦), the computed rank is close to the true rank if there
are few errors in the comparisons:

I Lemma 4. For every window size w, if an element x satisfies satisfy both (•) and (◦),
then the absolute difference between the computed rank and its true rank is bounded by

|computed_rank(x)− x| ≤ |ERRORS(x,w)| .

Proof. This follows immediately from condition (•). J

We now consider the difference between the computed rank and the computed position
of an element, which we define as the offset of this element. Afterwards, we consider the
difference between the original position and the computed position of an element.

I Fact 5. Observe that by Step 1 of the algorithm it holds that, for every permutation σ,
every window size w and every element x, the difference between σ(x) and the computed rank
of x is at most 2w, |computed_rank(x)− σ(x)| ≤ 2w.

I Lemma 6. For any permutation of n elements and for each element x, if the difference
between the computed rank and x is at most m for every element, then the difference between
the computed position and x is at most 2m for every element.

The proof of this lemma is analogue to the proof of Lemma 7 below.

I Lemma 7. For every permutation σ and window size w, the offset of every element x is
at most 2w, |computed_rank(x)− σ′(x)| ≤ 2w.

Proof. Let the computed rank of x be k. The computed position σ′(x) is larger than the
number of elements with computed rank smaller than k, and at most the number of elements
with computed ranks at most k. By Fact 5, every element y with σ(y) < k − 2w has a
computed rank smaller than k, and every element y with σ(y) > k + 2w has a computed
rank larger than k. J
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I Lemma 8. Consider a generic iteration of the algorithm with permutation σ and a window
size w. In this iteration, the position of each element changes by at most 4w. Moreover, the
position of each element changes by at most 8w until the algorithm terminates.

Proof. By Fact 5, Lemma 7 and triangle inequality,

|σ(x)−σ′(x)| ≤ |computed_rank(x)−σ(x)|+ |computed_rank(x)−σ′(x)| ≤ 2w+2w = 4w.

Since w is halved after every iteration, the final difference is at most
∑∞
i=0

4w
2i = 8w. J

Finally, we conclude Theorem 3 and show that the dislocation of an element is small if
the number of errors is small:

Proof of Theorem 3. Consider an iteration of the algorithm with current window size w.
We show that, if (∗) holds for all elements in the current iteration, then (1) implies that (∗)
also holds for all elements in the next iteration, i.e., when the window size becomes w/2. In
order for (∗) to hold for the next iteration, the computed position of each element should
differ from the true rank by at most w/2,

|σ′(x)− x| ≤ w/2 .

By Lemma 6, it is sufficient to require that the computed rank of each element differs from
its true rank by at most w/4,

|computed_rank(x)− x| ≤ w/4

By Lemma 4, the above inequality follows from the hypothesis |ERRORS(x,w)| ≤ w/4.
We have thus shown that after the iteration with window size 2w∗, all elements have

dislocation at most w∗. By Lemma 8, the subsequent iterations will move each element by
at most 8w∗ positions. J

I Remark. If we care only about the maximum dislocation, then we could obtain a better
bound of w by simply stopping the algorithm at the iteration where the window size is w
(for a w which guarantees the condition above with high probability). In order to bound
also the total dislocation, we let the algorithm continue all the way until window size w = 1.
This will allow us to show that the total dislocation is linear in expectation.

3 Maximum Dislocation

In this section we give a bound on the maximum dislocation of an element after running
Window Sort on n elements. We prove that it is a function of n and of the probability p
that a single comparison fails. Our main result is the following:

I Theorem 9. For a set of n elements, with probability 1− 1/n, the maximum dislocation
after running Window Sort is 9 · f(p) · logn where

f(p) =


400p

(1−32p)2 for 1/64 < p < 1/32,
4

ln( 1
32p )−(1−32p)

for 1/192 < p ≤ 1/64,

6 for p ≤ 1/192.

It is enough to prove that the condition in Theorem 3 holds for all w ≥ 2f(p) logn with
probability at least 1− 1/n.
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I Lemma 10. For every fixed element x and for every fixed window size w ≥ 2f(p) logn,
the probability that

|ERRORS(x,w)| > w/4 (2)

is at most 1/n3.

By the union bound, the probability that (2) holds for some x and for some w is at most
1/n. That is, the condition of Theorem 3 holds with probability at least 1 − 1/n for all
w ≥ 2w? = 2f(p) logn, which then implies Theorem 9.

3.1 Proof of Lemma 10
Since each comparison fails with probability p independently of the other comparisons,
the probability that the event in (2) happens is equal to the probability that at least w/4
errors occur in 8w comparisons. We denote such probability as Pr(w), and show that
Pr(w) ≤ 1/n3 .

We will make use of the following standard Chernoff Bounds (see for instance in [13]):

I Theorem 11 (Chernoff Bounds). Let X1, · · · , Xn be independent Poisson trials with
Pr(Xi) = pi. Let X =

∑n
i=1 Xi and µ = E[X]. Then the following bounds hold:

(i) For 0 < δ < 1, Pr(X ≥ (1 + δ)µ) ≤ e−
µδ2

3 , (3)

(ii) For any δ > 0, Pr(X ≥ (1 + δ)µ) <
(

eδ

(1 + δ)(1+δ)

)µ
, (4)

(iii) For R ≥ 6µ, Pr(X ≥ R) ≤ 2−R. (5)

I Lemma 12. The probability Pr(w) (at least w/4 errors occur in 8w comparisons) satisfies

Pr(w) ≤


e−

w(1−32p)2
384p for 1/64 < p < 1/32,(

e
1−32p

32p

( 1
32p )

1
32p

)8wp
for 1/192 < p ≤ 1/64,

2−w4 for p ≤ 1/192.

Proof. Let the random variable X denote the number of errors in the outcome of 8w
comparisons. Clearly, E[X] = 8wp, and

Pr(w) = Pr
[
X ≥ w

4

]
= Pr

[
X ≥ E[X]

32p

]
= Pr

[
X ≥

(
1 + 1− 32p

32p

)
E[X]

]
.

Let δ = 1−32p
32p . If 1/64 < p < 1/32, then 0 < δ < 1, and by Theorem 11, case (i), we have

Pr(w) ≤ e− 1
3 δ

2µ ≤ e−
w·(1−32p)2

384p .

Similarly, if p ≤ 1/64, then δ ≥ 1, and by Theorem 11, case (ii), we have

Pr(w) <
(

eδ

(1 + δ)(1+δ)

)µ
≤
(

e
1−32p

32p

( 1
32p )

1
32p

)8wp
.

If p ≤ 1/192, then w/4 ≥ 48wp = 6 E[X], and by Theorem 11 case (iii), Pr(w) ≤ 2−w4 . J

I Lemma 13. If w ≥ 2 f(p) logn, with n ≥ 1 and f(p) as in Theorem 9, then Pr(w) ≤ 1/n3.

Proof. We show the first case, the other two are similar. If 1/64 < p < 1/32, by Lemma 12,

Pr(w) ≤ e−
w·(1−32p)2

384p ≤ e− 800
384 logn ≤ e−3 lgn ≤ 1/n3. J
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4 Total Dislocation

In this section, we prove that Window Sort orders n elements such that their total
dislocation is linear in n times a factor which depends only on p:

I Theorem 14. For a set of n elements, the expected total dislocation after running Window
Sort is at most n · 60 f(p) log f(p).

The key idea is to show that for an element x, only O(w) elements adjacent to its (true)
rank matter in all upcoming iterations. If this holds, it is sufficient to keep the following
weak invariant for an element x throughout all iterations:

(♣) This invariant consists of three conditions that have to be satisfied:
(a) x satisfies condition (∗).
(b) All elements with original position in [x− 12w, x+ 12w] satisfy condition (∗).
(c) All elements with original position in [x− 10w, x+ 10w] satisfy condition (•).

Note that if x satisfies (♣), all elements lying in [x− 10w, x+ 10w] satisfy both (•) and
(◦).

The rest of this section is structured as follows: First we derive several properties of the
weak invariant, then we prove an n log logn bound on the expected total dislocation, and
finally we extend the proof to achieve the claimed linear bound.

4.1 Properties of the Weak Invariant
We start with the key property of the weak invariant (♣) for some element x.

I Lemma 15. Let σ be the permutation of n elements and w be the window size of some
iteration in Window Sort. If the weak invariant (♣) holds for an element x in σ and the
computed rank of every element y with σ(y) ∈ [x− 10w, x+ 10w] differs from y by at most
w/4, then (♣) still holds for x in the permutation σ′ of next iteration with window size w/2.

Proof. Consider the set X of all elements y with computed_rank(y) ∈ [x − 8w, x + 8w].
Their computed ranks differ from their original positions by at most 2w. Thus, all these
elements are in the set Y ⊇ X of all elements whose original positions are in [x−10w, x+10w].
By the assumption of the lemma, for each element y ∈ Y , |computed_rank(y)− y| ≤ w/4.
Using the same reasoning as in the proof of Lemma 7, we conclude that

for each element y ∈ X, |σ′(y)− y| ≤ w/2. (A)

Consider the set Z of all elements y with σ′(y) ∈ [x − 6w, x + 6w]. By Lemma 7, their
computed ranks lie in [x− 8w, x+ 8w], thus Z ⊆ X, and by (A), |σ′(y)− y| ≤ w/2 for each
y ∈ Z. Thus, the second condition of (♣) holds for the next iteration.

We continue with the third condition. Consider the set T ⊆ Z of all elements y with
σ′(y) ∈ [x− 5w, x+ 5w]. By the assumptions of the lemma, y ∈ [x− 5w−w/2, x+ 5w+w/2]
and σ(y) ∈ [x− 5w − 3w/2, x+ 5w + 3w/2] for all y ∈ T . It is sufficient to show that every
element in T is larger (or smaller) than all elements whose computed positions are smaller
than x− 6w (or larger than x+ 6w), the rest follows from the second condition. We show
the former case, the latter is symmetric. We distinguish three subcases: elements y ∈ T with
σ′(y) < x− 6w and with σ(y) (i) smaller than x− 12, (ii) between x− 12 and x− 10w − 1,
or (iii) between x− 10w and x− 4w − 1.
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(i) This case follows immediately from the third condition of (♣).
(ii) This case follows immediately from the second condition of (♣).
(iii) By the assumption of our lemma, |computed_rank(y)−y| ≤ w/4. Thus, if the computed

rank r of such an element y is smaller than x− 6w, then y < x− 6w + w/4. Otherwise,
if r ≥ kx− 6w, then by (A), |y − σ′(y)| ≤ w/2. Thus, y < x− 6w + w/2.

Since we assume (♣) for x, σ(x) ∈ [x−w, x+w] and computed_rank(x) ∈ [x−3w, x+3w].
By Lemma 7, σ′(x) ∈ [k− 5w, k+ 5w], and thus x ∈ Z, which implies that the first condition
of (♣) will still be satisfied for x for the next iteration. This concludes the proof. J

Next, we adopt Lemma 13 to analyze the probability of keeping the weak invariant for
an element x and an arbitrary window size through several iteration of Window Sort.

I Lemma 16. Consider an iteration of Window Sort on a permutation σ on n elements
such that the window size is w ≥ 2 f(p) logw, where f(p) is defined as in Theorem 9. If the
weak invariant (♣) for an element x holds, then with probability at least 1− 42/w2, (♣) still
holds for x when the window size is f(p) logw (after some iterations of Window Sort).

Proof. By Lemma 15, the probability that (♣) fails for x before the next iteration is
(20w + 1) · Pr(w). Let r = log( w

2 f(p)logw ), then the probability that (♣) fails for x during
the iterations from window size w to window size f(p) · logw is

r∑
i=0

(
20w
2i + 1

)
· Pr

(w
2i
)
≤

r∑
i=0

(
21w
2i

)
· Pr (2 f(p) logw) ≤ 42w · Pr (2 f(p) logw) ,

where the first inequality is by fact that Pr(w) increases when w decreases. By Lemma 13,
Pr(2 f(p) logw) ≤ 1/w3, leading to the statement. J

4.2 Double Logarithmic Factor (Main Idea)
Given that Window Sort guarantees maximum dislocation at most 9 f(p) logn with
probability at least (1 − 1/n) (Theorem 9), this trivially implies that the expected total
dislocation is at most O(f(p) logn). More precisely, the expected dislocation is at most

(1/n) · n · n+ (1− 1/n) · n · 9 f(p) logn ≤ n · (1 + 9 f(p) logn) ,

since a fraction 1/n of the elements is dislocated by at most n, while the others are dislocated
by at most 9 · f(p) logn.

We next describe how to improve this to O(f(p) log logn) by considering in the analysis
two phases during the execution of the algorithm:

Phase 1: The first phase consists of the iterations up to window size w = f(p) logn.
With probability at least (1− 1/n) all elements satisfy (∗) during this phase.
Phase 2: The second phase consists of the executions up to window size w′ = f(p) logw.
If all elements satisfied (∗) at the end of the previous phase, then the probability that a
fixed element violates (♣) during this second phase is at most 42/w2.

More precisely, by Theorem 9 and the proof of Theorem 3, the probability that (∗) holds for
all elements when the window size is f(p) logn is at least (1 − 1/n). We thus restart our
analysis with w = f(p) logn and the corresponding permutation σ. Assume an element x
satisfies (♣). By Lemma 16, the probability that (♣) fails for x before the window size is
f(p) logw is at most 42/w2. By Lemma 8, an element moves by at most 8w positions from
its original position, which is at most w apart from its true rank. Therefore, the expected
dislocation of an element x is at most

(1/n) · n+ 42/w2 · 9w + 9 f(p) logw = O(1) + 9 f(p) log(f(p) logn) ,

where the equality holds for sufficiently large n because w = f(p) logn.
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4.3 Linear Dislocation (Proof of Theorem 14)

In this section, we apply a simple idea to decrease the upper bound on the expected total
dislocation after running Window Sort on n elements to 60 f(p) log f(p). We recurse the
analysis from the previous Section 4.2 for several phases: Roughly speaking, an iteration in
Window Sort halves the window size, a phase of iterations logarithmizes the window size.

Phase 1: Iterations until the window size is f(p) logn.
Phase 2: Subsequent iterations until the window size is f(p) · log(f(p) logn).
Phase 3: Subsequent iterations until the window size is f(p) · log(f(p) · log(f(p) logn)).
. . .

We bound the expected dislocation of an element x, and let wi denote the window size
after the i-th phase. We have w0 = n, w1 = f(p) logn, w2 = f(p) log(f(p) logn), and

wi+1 = f(p) logwi, (6)

if i ≥ 1 and wi ≥ 2 f(p) logwi. Any further phase would just consist of a single iteration. In
the remaining of this section, we only consider phases i for which Equation (6) is true, and
we call them the valid phases.

By Lemma 16, if the weak invariant (♣) holds for x and window size wi−1, the probability
that it still holds for window size wi is at least 1− 42/w2

i−1. Similarly to the analysis in the
Section 4.2, we get that a valid phase i ≥ 1 contributes to the expected dislocation of x by

42/w2
i−1 · 9wi−1 = 378/wi−1 . (7)

If we stop our analysis after c valid phases, then by (7) and Lemma 8, the expected dislocation
of any element x is at most

c−1∑
i=0

378/wi + 9wc ≤ 378/wc + 9wc . (8)

The inequality holds since wi−1
wi
≤ 2 for 1 < i < c. We next define c such that phase c is valid

and wc only depends on f(p). The term wi−1
f(p) logwi−1

≥ 2 holds for every valid phase i and
decreases with increasing i. For instance for w = 6f(p) log f(p):

w

f(p) logw = 6 f(p) log f(p)
f(p) log(6 f(p) log f(p)) ≥

6 log f(p)
3 log f(p) ≥ 2 .

Therefore, if we choose c such that wc−1 ≥ 6 f(p) log f(p) > wc, we can use that f(p) ≥ 6
and upper bound wc by

wc = f(p) logwc−1 ≥ f(p) log(6 f(p) log f(p)) ≥ 6 log(36 log 6) ≥ 39 . (9)

Equations (8) and (9) and Lemma 8 imply the following:

I Lemma 17. The expected dislocation of each element x after running Window Sort is
at most 378/wc + 9wc < 10 + 9wc ≤ 10wc ≤ 60 f(p) log f(p).

This immediately implies Theorem 14.
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5 Extension

The reason why we require the error probability p to be smaller than 1/32 is to analyze the
probability that at most w/4 errors occur in 8w comparisons, for w ≥ 1. This bound on the
number of errors appears since we halve the window size in every iteration. If we let the
window size shrink by another rate 1/2 < α < 1, the limit of p will also change:

First, the running time of the adapted Window Sort will become O( 1
1−αn

2). Second,
for any permutation σ and window size w, in order to maintain condition (∗) for an element
x, its computed position should differ from x by at most αw, and thus computed_rank(x)
should differ from x by at most αw/2.

Our new issue is thus the probability that at most αw/2 errors occur in 8w comparisons:
Since the expected number of errors is 8wp, we have αw

2 = α
16p · 8wp = (1 + α−16p

16p ) · 8wp, and
by the reasoning of Lemma 12, we have α−16p

16p > 0, thus p < α/16. (Note that f(p) should
change accordingly.)

Finally, the number of windows for the weak invariant should also change accordingly.
Let m be the number of windows that matter for the weak invariant (m = 12 when α = 1/2).
According to the analysis in Section 4.1, we have m− 6 ≥ αm, implying that m ≥ 6

1−α . Of
course, the constant inside the linear expected total dislocation will also change accordingly.

I Theorem 18. For an error probability p < α/16, where 1/2 < α < 1, modified Window
Sort on n elements takes O( 1

1−αn
2) time, has maximum dislocation 9 g(p, α) logn with

probability 1− 1/n, and expected total dislocation n · (9 + 2
1−α ) · 6 g(p, α) log g(p, α), where

g(p, α) =


100p

(α−16p)2 for α/32 < p < α/16 ,
4

(ln(α/16p))−(α−16p) for α/96 < p ≤ α/32 ,
6 for p ≤ α/96 .

6 A lower bound on the maximum dislocation

In this section we prove a lower bound on both the maximum and the average dislocation
that can be achieved w.h.p. by any sorting algorithm.

The following lemma – whose proof is omitted – is a key ingredient in our lower bounds:

I Lemma 19. Let x, y ∈ S with x < y. Let A be any (possibly randomized) algorithm. On a
random instance, the probability that A returns a permutation in which elements x and y
appear the wrong relative order is at least 1

2

(
p

1−p

)2(y−x)−1
.

As a first consequence of the previous lemma, we obtain the following:

I Theorem 20. No (possibly randomized) algorithm can achieve maximum dislocation o(logn)
with high probability.

Proof. By Lemma 19, any algorithm, when invoked on a random instance, must return a
permutation ρ in which elements 1 and h =

⌊ logn
2 log 1−p/p

⌋
appear in the wrong order with a

probability larger than 1
n . When this happens, at least one of the following two conditions

holds: (i) the position of element 1 in ρ is at least dh2 e; or (ii) the position of element h in ρ
is at most bh2 c. In any case, the maximum dislocation must be at least h

2 − 1 = Ω(logn). J

Finally, we are also able to prove a lower bound to the total dislocation (proof omitted
due to space limitations).

I Theorem 21. No (possibly randomized) algorithm can achieve expected total dislocation
o(n).
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Abstract
Given a set S of n points in Rd, the Closest Pair problem is to find a pair of distinct points in S
at minimum distance. When d is constant, there are efficient algorithms that solve this problem,
and fast approximate solutions for general d. However, obtaining an exact solution in very high
dimensions seems to be much less understood. We consider the high-dimensional L∞ Closest Pair
problem, where d = nr for some r > 0, and the underlying metric is L∞.

We improve and simplify previous results for L∞ Closest Pair, showing that it can be solved
by a deterministic strongly-polynomial algorithm that runs in O(DP (n, d) logn) time, and by
a randomized algorithm that runs in O(DP (n, d)) expected time, where DP (n, d) is the time
bound for computing the dominance product for n points in Rd. That is a matrix D, such
that D[i, j] =

∣∣{k | pi[k] ≤ pj [k]}
∣∣; this is the number of coordinates at which pj dominates

pi. For integer coordinates from some interval [−M,M ], we obtain an algorithm that runs in
Õ
(
min{Mnω(1,r,1), DP (n, d)}

)
time1, where ω(1, r, 1) is the exponent of multiplying an n× nr

matrix by an nr × n matrix.
We also give slightly better bounds for DP (n, d), by using more recent rectangular matrix

multiplication bounds. Computing the dominance product itself is an important task, since it is
applied in many algorithms as a major black-box ingredient, such as algorithms for APBP (all
pairs bottleneck paths), and variants of APSP (all pairs shortest paths).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Closest Pair, Dominance Product, L∞, Matrix Multiplication

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.39

1 Introduction

Finding the closest pair among a set of n points in Rd was among the first studied algorithmic
geometric problems, considered at the origins of computational geometry; see [19,21]. The
distance between pairs of points is often measured by the Lτ metric, for some 1 ≤ τ ≤ ∞,
under which the distance between the points pi = (pi[1], . . . , pi[d]) and pj = (pj [1], . . . , pj [d])

is distτ (pi, pj) = ‖pi − pj‖τ =
(∑d

k=1
∣∣pi[k]− pj [k]

∣∣τ)1/τ
, for τ < ∞, and dist∞(pi, pj) =
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‖pi−pj‖∞ = maxk
∣∣pi[k]− pj [k]

∣∣, for τ =∞. The Closest Pair problem and its corresponding
decision variant, under the Lτ -metric, are defined as follows.

Closest Pair: Given a set S of n points in Rd, find a pair of distinct points pi, pj ∈ S such
that distτ (pi, pj) = min` 6=m{distτ (p`, pm) | p`, pm ∈ S}.

Closest Pair Decision: Given a set S of n points in Rd, and a parameter δ > 0, determine
whether there is a pair of distinct points pi, pj ∈ S such that distτ (pi, pj) ≤ δ.

Throughout the paper, the notation Lτ Closest Pair refers to the Closest Pair problem
under some specific metric Lτ , for 1 ≤ τ ≤ ∞ (and we will mostly consider the case τ =∞).

In the algebraic computation tree model (see [3]), the Closest Pair problem has a complexity
lower bound of Ω(n logn) (for any Lτ metric), even for the one-dimensional case d = 1, as
implied from a lower bound for the Element-Uniqueness problem [3].

As for upper bounds, Bentley and Shamos [4,5] were the first who gave a deterministic
algorithm for finding the closest pair under the L2 metric that runs in O(n logn) time for any
constant dimension d ≥ 1, which is optimal in the algebraic computation tree model, for any
fixed d. Their algorithm uses the divide-and-conquer paradigm, and became since, a classical
textbook example for this technique. In 1976 Rabin presented, in a seminal paper [20],
a randomized algorithm that finds the closest pair in O(n) expected time, using the floor
function (which is not included in the algebraic computation tree model). His algorithm uses
random sampling to decompose the problem into smaller subproblems, and uses the floor
function in solving them, for a total cost of O(n) expected time. Later, in 1979, Fortune
and Hopcroft [9] gave a deterministic algorithm that uses the floor function, and runs in
O(n log logn) time.

The bounds above hold as long as the dimension d is constant, as they involve factors
that are exponential in d. Thus, when d is large (e.g., d = n), the problem seems to be
much less understood. Shamos and Bentley [5] conjectured in 1976 that, for d = n, and
under the L2 metric, the problem can be solved in O(n2 logn) time; so far, their conjectured
bound is considerably far from the O(nω) state-of-the-art time bound for this case [14],
where ω < 2.373 denotes the exponent for matrix multiplication (see below). If one settles
on approximate solutions, many efficient algorithms were developed in the last two decades,
mostly based on LSH (locality sensitive hashing) schemes, and dimensionality reduction
via the Johnson-Lindenstrauss transform; see [1, 2] for examples of such algorithms. These
algorithms are often used for finding approximate nearest neighbors, which itself is of major
importance and in massive use in many practical fields of computer science. Nevertheless,
finding an exact solution seems to be a much harder task.

We consider the case where d depends on n, i.e., d = nr for some r > 0. Note that a
naive brute-force algorithm runs in O(n2d) time and works for any metric Lτ . For some Lτ
metrics, a much faster solution is known; see [14]. Specifically, the L2 Closest Pair problem
can be solved by one algebraic matrix multiplication, so for example when d = n, it can be
solved in O(nω) time (as already mentioned above). If τ ≥ 2 is an even integer, then Lτ
Closest Pair can be solved in O(τnω) time. However, for other Lτ metrics, such as when τ is
odd (or fractional), or the L∞ metric, the known solutions are significantly inferior.

For the L1 and L∞ metrics, Indyk et al. [14] obtained the first (and best known until
now) non-naive algorithms for the case d = n. For L1, they gave an algorithm that runs in
O
(
n
ω+3

2

)
= O(n2.687) time, and for L∞, one that runs in O

(
n
ω+3

2 logD
)

= O(n2.687 logD)
time, where D is the diameter of the given point-set. The bound for L∞ is weakly polynomial,
due to the dependence on D, and, for real data, only yields an approximation. Their paper
is perhaps the most related to our work.
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Our new approach is based on two main observations. The first is showing a reduction
from L∞ Closest Pair Decision to another well-studied problem, dominance product. The
second is by showing we can solve the optimization problem deterministically by executing
the decision procedure only O(logn) times.

We also give improved runtime analysis for the dominance product problem, defined as
follows.

Dominance Product: given a set S of n points p1, . . . , pn in Rd, compute a matrix D such
that for each i, j ∈ [n], D[i, j] =

∣∣∣{k | pi[k] ≤ pj [k]}
∣∣∣.

This matrix is called the dominance product or dominance matrix for S. For d = n, there
is a non-trivial strongly subcubic algorithm by Matoušek [18] (see Section 4), and a slightly
improved one by Yuster [24]. For d ≤ n, there are extensions of Matoušek’s algorithm by
Vassilevska-Williams, Williams, and Yuster [22]. All of them use fast matrix multiplications.

Dominance product computations were liberally used to improve some fundamental
algorithmic problems. For example, Vassilevska-Williams, Williams, and Yuster [22], give the
first strongly subcubic algorithm for the all pairs bottleneck paths (APBP) problem, using
dominance product computations. Duan and Pettie [8] later improved their algorithm, also
by using dominance product computations, in fact, their time bound for (max, min)-product
match the current time bound of computing the dominance product of n points in Rn.
Yuster [24] showed that APSP can be solved in strongly subcubic time if the number of
distinct weights of edges emanating from any fixed vertex is O(n0.338). In his algorithm, he
uses dominance product computation as a black box.

1.1 Preliminaries
We review some notations that we will use throughout the paper. We denote by [N ] =
{1, . . . , dNe} the set of the first dNe natural numbers succeeding zero, for any N ∈ R+. For
a point p ∈ Rd, we denote by p[k] the k-th coordinate of p, for k ∈ [d]. For a matrix A, we
denote the transpose of A by AT . The Õ(·) notation hides poly-logarithmic factors.

Most of the algorithms discussed in this paper heavily rely on fast matrix multiplication
algorithms. Throughout the paper, ω < 2.373 denotes the exponent of multiplying two n× n
matrices [15, 23], and ω(1, r, 1) refers to the exponent of multiplying an n × nr matrix by
an nr × n matrix, for any r > 0; see [12, 13, 17]. For more details on rectangular matrix
multiplication exponents, we refer the reader to the seminal work of Huang and Pan [13],
and to a more recent work of Le Gall [12, 16,17].

1.2 Our Results
Let DP (n, d) denote the runtime order for computing the dominance product (defined above)
of n points in Rd. We obtain the following results for the L∞ Closest Pair problem in Rd,
where d = nr, for some r > 0.

I Theorem 1. L∞ Closest Pair can be solved by a deterministic algorithm that runs in
O(DP (n, d) logn) time.

Theorem 1 improves the O(n2.687 logD) time bound of Indyk et al. [14] (see above) in two
aspects. First, the polynomial factor n2.687 goes slightly down to DP (n, n) = n2.684, which
we then improve further to n2.6598 in Theorem 4; this holds also for Theorem 2, stated below.
The second aspect is that the logD factor is replaced by a logn factor, which makes our
algorithm strongly-polynomial, independent of the diameter of the given point-set.
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For the proof of Theorem 1, we first show a reduction from L∞ Closest Pair Decision to
dominance product computation, then we show that the optimization problem can be solved
deterministically by executing the decision procedure only O(logn) times.

I Theorem 2. L∞ Closest Pair can be solved by a randomized algorithm that runs in
O(DP (n, d)) expected time.

I Theorem 3. For points with integer coordinates from [−M,M ], L∞ Closest Pair can be
solved by a deterministic algorithm that runs in Õ

(
min{Mnω(1,r,1), DP (n, d)}

)
time.

From Theorem 3 we obtain that for n points in Rn with small integer coordinates we can
solve the optimization problem in O(nω) time, which is a significant improvement compared
to the general case from Theorems 1 and 2.

Additionally, we give a coherent spelled-out runtime analysis for obtaining the best bounds
for DP (n, d), for the entire range d = nr, using rectangular matrix multiplications. We
demonstrate the use of our analysis by plugging into it the improved bounds for rectangular
matrix multiplication by Le Gall [12], resulting in the bounds given below. Right before
closing this version of the paper, Le Gall and Urrutia [17] reported further improvements
on the bounds given in [12]. Their new bounds can be plugged into our analysis to give
approximately 0.01 improvements on the exponents given below.

I Theorem 4. given a set S of n points p1, . . . , pn in Rd, the dominance product of S can
be computed in O(DP (n, d)) time, where

DP (n, d) ≤


d0.697n1.896 + n2+o(1) if d ≤ nω−1

2 ≤ n0.687

d0.909n1.75 if n0.687 ≤ d ≤ n0.87

d0.921n1.739 if n0.87 ≤ d ≤ n0.963

d0.931n1.73 if n0.963 ≤ d ≤ n1.056

In particular, we obtain that DP (n, n) = n2.6598 (using a more precise calculation), which
improves Yuster’s O(n2.684) time bound. As mentioned above, this bound can be slightly
improved, using the new rectangular matrix multiplication bounds of Le Gall and Urrutia [17].

2 L∞ Closest Pair

Recall that, given a set S of n points p1, . . . , pn in Rd, the L∞ Closest Pair problem is to
find a pair of points (pi, pj), such that i 6= j and ‖pi − pj‖∞ = min` 6=m∈[n] ‖p` − pm‖∞. The
corresponding decision version of this problem is to determine whether there is a pair of
distinct points (pi, pj) such that ‖pi − pj‖∞ ≤ δ, for a given δ > 0.

Naively, we can compute all the distances between every pair of points in O(n2d) time,
and choose the smallest one. However, as we see next, a significant improvement can be
achieved, for any d = nr, for any r > 0.

Specifically, we first obtain the following theorem.

I Theorem 5. Given a parameter δ > 0, and a set S of n points p1, . . . , pn in Rd, the set
of all pairs (pi, pj) with ‖pi − pj‖∞ ≤ δ, can be computed in O(DP (n, d)) time.

Proof. First, we note the following trivial but useful observation.

I Observation 6. For a pair of points pi, pj ∈ Rd, ‖pi − pj‖∞ ≤ δ ⇐⇒ pi[k] ≤ pj [k] + δ

and pj [k] ≤ pi[k] + δ, for every coordinate k ∈ [d].
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Indeed, a pair of points (pi, pj) satisfies ‖pi − pj‖∞ = maxk∈[d] |pi[k]− pj [k]| ≤ δ ⇐⇒
for every coordinate k ∈ [d], |pi[k]− pj [k]| ≤ δ. The last inequalities hold iff pi[k]− pj [k] ≤ δ
and pj [k] − pi[k] ≤ δ, or, equivalently, iff pi[k] ≤ pj [k] + δ and pj [k] ≤ pi[k] + δ, for each
k ∈ [d]. Although the rephrasing in the observation is trivial, it is crucial for our next step.
It can be regarded as a (simple) variant of what is usually referred to as “Fredman’s trick"
(see [11]).

For every i ∈ [n] we create a new point pn+i = pi + (δ, δ, . . . , δ). Thus in total, we now
have 2n points. Concretely, for every i ∈ [n], we have the points

pi =
(

pi[1], pi[2], . . . , pi[d]
)
,

pn+i =
(

pi[1] + δ, pi[2] + δ, . . . , pi[d] + δ
)
.

We compute the dominance matrix Dδ for these 2n points, using the algorithm from
Section 4.1. By Observation 6, a pair of points (pi, pj) satisfies

‖pi − pj‖∞ ≤ δ ⇐⇒ (Dδ[i, n+ j] = d) ∧ (Dδ[j, n+ i] = d) ,

so we can find all these pairs in O(n2) additional time. Clearly, the runtime is determined
by the time bound of computing the dominance matrix Dδ, that is, O(DP (n, d)). J

The proof of Theorem 5 shows that solving the L∞ Closest Pair Decision is not harder
than computing the dominance matrix for n points in Rd.

2.1 Solving the Optimization Problem
The algorithm from Theorem 5 solves the L∞ Closest Pair Decision problem. It actually gives
a stronger result, as it finds all pairs of points (pi, pj) such that ‖pi − pj‖∞ ≤ δ. We use this
algorithm in order to solve the optimization problem L∞ Closest Pair.

As a “quick and dirty" solution, one can solve the optimization problem by using the
algorithm from Theorem 5 to guide a binary search over the diameter D of the input point
set, which is at most twice the largest absolute value of the coordinates of the input points. If
the coordinates are integers then we need to invoke the algorithm from Theorem 5 O(logD)
times. If the coordinates are reals, we invoke it O(B) times for B bits of precision. However,
the dependence on D makes this method weakly polynomial, and, for real data, only yields an
approximation. As we show next, this naive approach can be replaced by strongly-polynomial
algorithms, A deterministic one that runs in O(DP (n, d) logn) time, and a randomized one
that runs in O(DP (n, d)) expected time.

Deterministic strongly-polynomial algorithm.

I Theorem 7. Given a set S of n points p1, . . . , pn in Rd, the L∞ Closest Pair problem can
be solved for S in O(DP (n, d) logn) time.

Proof. Since the distance between the closest pair of points, say pi, pj , is

δ0 = ‖pi − pj‖∞ = max
k∈[d]

∣∣pi[k]− pj [k]
∣∣,

it is one of the O(n2d) values p`[k]−pm[k], `,m ∈ [n], k ∈ [d]. Our goal is to somehow search
through these values, using the decision procedure (i.e., the algorithm from Theorem 5).
However, enumerating all these values takes Ω(n2d) time, which is too expensive, and
pointless anyway, since by having them, the closest pair can be found immediately. Instead,
we proceed in the following more efficient manner.
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For each k ∈ [d], we sort the points of S in increasing order of their k-th coordinate. This
takes O(nd logn) time in total. Let

(
p

(k)
1 , . . . , p

(k)
n

)
denote the sequence of the points of S

sorted in increasing order of their k-th coordinate. For each k, let M (k) be an n× n matrix,
so that for i, j ∈ [n], we have

M (k)[i, j] = p
(k)
i [k]− p(k)

j [k].

We are in fact interested only in the upper triangular portion of M (k), where its elements are
positive, but for simplicity of presentation, we ignore this issue. (We view the row indices
from bottom to top, i.e., the first row is the bottommost one, and the column indices from
left to right.)

Observe that each row of M (k) is sorted in decreasing order and each column is sorted
in increasing order. Under these conditions, the selection algorithm of Frederickson and
Johnson [10] can find the t-largest element of M (k), for any 1 ≤ t ≤ n2, in O(n) time.2 Note
that we do not need to explicitly construct the matrices M (k), this will be too expensive. The
bound of Frederickson-Johnson’s algorithm holds as long as each entry of M (k) is accessible
in O(1) time, like in our case.

We use this method to conduct a simultaneous binary search over all d matrices M (k) to
find δ0. At each step of the search we maintain two counters Lk ≤ Hk, for each k. Initially
Lk = 1 and Hk = n2. The invariant that we maintain is that, at each step, δ0 lies in between
the Lk-th and the Hk-th largest elements of M (k), for each k.

Each binary search step is performed as follows. We compute rk = b(Lk +Hk)/2c, for
each k, and apply the Frederickson-Johnson algorithm to retrieve the rk-th largest element
of M (k), which we denote as δk, in total time O(nd). We give δk the weight Hk − Lk + 1,
and compute the weighted median δmed of {δ1, . . . , δd}. We run the L∞ Closest Pair Decision
procedure of Theorem 5 on δmed. Suppose that it determines that δ0 ≤ δmed. Then for each
k for which δk ≥ δmed we know that δ0 ≤ δk, so we set Hk := rk and leave Lk unchanged.
Symmetric actions are taken if δ0 > δmed. In either case, we remove roughly one quarter
of the candidate differences; that is, the sum

∑
k∈[d] (Hk − Lk + 1) decreases by roughly a

factor of 3/4. Hence, after O(logn) steps, the sum becomes O(d), and a straightforward
binary search through the remaining values finds δ0. The overall running time is

O(nd logn+DP (n, d)(logn+ log d)).

Since in our setting d is polynomial in n, and nd � DP (n, d), we obtain that the overall
runtime is O(DP (n, d) logn). This completes the proof of Theorem 1. J

Randomized algorithm. Using randomization, we can improve the time bound of the
preceding deterministic algorithm to equal the time bound of computing the dominance
product O(DP (n, d)) in expectation. This can be done by using a randomized optimization
technique by Chan [6]. Among the problems for which this technique can be applied, Chan
specifically addresses the Closest Pair problem.

I Theorem 8 (Chan [6]). Let U be a collection of objects. If the Closest Pair Decision problem
can be solved in O(T (n)) time, for an arbitrary distance function d : U × U → R, then
the Closest Pair problem can be solved in O(T (n)) expected time, assuming that T (n)/n is
monotone increasing.

2 Simpler algorithms can select the t-largest element in such cases in O(n logn) time, which is also
sufficient for our approach.
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We refer the reader to [6], for the proof of Theorem 8. By Theorem 5, L∞ Closest Pair
Decision can be solved in O(DP (n, d)) time. Clearly, DP (n, d)/n is monotone increasing in
n. Hence, by Theorem 8, we obtain a randomized algorithm for L∞ Closest Pair that runs in
O(DP (n, d)) expected time, as stated in Theorem 2.

3 L∞ Closest Pair with Integer Coordinates

A considerable part of the algorithm from the previous section is the reduction to computing
a suitable dominance matrix. The algorithms for computing dominance matrices given in
Section 4 do not make any assumptions on the coordinates of the points, and support real
numbers. When the coordinates are bounded integers, we can improve the algorithms. In
particular, for n points in Rn with small integer coordinates we can solve the optimization
problem in O(nω) time, which is a significant improvement compared to the O(n2.6598) time
bound of our previous algorithm for this case3. Our improvement is based on techniques for
computing (min,+)-matrix multiplication over integer-valued matrices.

I Theorem 9. Let S be a set of n points p1, . . . , pn in Rd such that d = nr for some r > 0,
and for all i ∈ [n], k ∈ [d], pi[k] is an integer in [−M,M ]. Then the L∞ closest pair can be
computed in

Õ
(

min
{
Mnω(1,r,1), DP (n, d)

})
time.

We first define (max,+)-product and (min,+)-product over matrices.

I Definition 10 (Distance products of matrices). Let A be an n ×m matrix and B be an
m× n matrix. The (max,+)-product of A and B, denoted by A ? B, is the n× n matrix C
whose elements are given by

cij = max
1≤k≤m

{aik + bkj}, for i, j ∈ [n].

Similarly, the (min,+)-product of A and B denoted by A ∗B is the n× n matrix C ′ whose
elements are given by

c′ij = min
1≤k≤m

{aik + bkj}, for i, j ∈ [n].

We refer to either of the (min,+)-product or the (max,+)-product as a distance product.

The distance product of an n×m matrix by an m× n matrix can be computed naively
in O(n2m) time. When m = n, the problem is equivalent to APSP (all pairs shortest paths)
problem in a directed graph with real edge weights, and the fastest algorithm known is a
recent one by Chan and Williams [7] that runs in O

(
n3/2

√
Ω(logn)

)
time. It is a prominent

long-standing open problem whether a truly subcubic algorithm for this problem exists.
However, when the entries of the matrices are integers, we can convert distance products of
matrices into standard algebraic products. We use a technique by Zwick [25].

I Lemma 11 (Zwick [25]). Given an n×m matrix A = {aij} and an m×n matrix B = {bij}
such that m = nr for some r > 0, and all the elements of both matrices are integers from
[−M,M ], their (min,+)-product C = A ∗B can be computed in Õ(Mnω(1,r,1)) time.

3 For integer coordinates that are bounded by a constant, the L∞-diameter of the points is also a constant
(bounded by twice the largest coordinate), hence, one can use the decision procedure to (naively) guide
a binary search over the diameter in constant time.

ISAAC 2017



39:8 Dominance Product and High-Dimensional Closest Pair under L∞

With minor appropriate modifications, the (max,+)-product of matrices A and B can be
computed within the same time as in Lemma 11.

We now give an algorithm for computing all-pairs L∞ distances, by using the fast
algorithm for computing (max,+)-product over bounded integers.

I Lemma 12. Let S be a set of n points p1, . . . , pn in Rd such that d = nr for some r > 0,
and for all i ∈ [n], pi[k] is an integer from the interval [−M,M ], for all k ∈ [d]. Then the
L∞ distances between all pairs of points (pi, pj) from S can be computed in Õ(Mnω(1,r,1))
time.

Proof. We create the n × d matrix A = {aik} and the d × n matrix B = (−A)T = {bki},
where

aik = pi[k], for i ∈ [n], k ∈ [d],
bki = −pi[k], for i ∈ [n], k ∈ [d].

Now we compute the (max,+)-product C = A?B. The matrix L of all-pairs L∞-distances
is then easily seen to be

L[i, j] = max
{
C[i, j], C[j, i]

}
= ‖pi − pj‖∞ ,

for every pair i, j ∈ [n].
Clearly, the runtime is determined by computing the (max,+)-product C = A ? B. This

is done as explained earlier, and achieves the required running time. J

Consequently, by taking the minimum from the algorithm above, and the (say, determ-
inistic) algorithm from Section 2, we obtain that for points in Rd with integer coordinates
from [−M,M ], where d = nr for some r > 0, we can find the L∞ closest pair in

Õ
(

min
{
Mnω(1,r,1), DP (n, d)

})
time,

as stated in Theorem 3.

4 Dominance Products

We recall the dominance product problem: given n points p1, . . . , pn in Rd, we want to
compute a matrix D such that for each i, j ∈ [n],

D[i, j] =
∣∣∣{k | pi[k] ≤ pj [k]}

∣∣∣.
It is easy to see that the matrix D can be computed naively in O(dn2) time. Note that, in
terms of decision tree complexity, it is straightforward to show that O(dn logn) pairwise
comparisons suffice for computing the dominance product of n points in Rd. However, the
actual best known time bound to solve this problem is significantly larger than its decision
tree complexity bound.

The first who gave a truly subcubic algorithm to compute the dominance product of n
points in Rn is Matoušek [18]. We first outline his algorithm, and then present our extension
and improved runtime analysis.

I Theorem 13 (Matoušek [18]). Given a set S of n points in Rn, the dominance matrix for
S can be computed in O(n 3+ω

2 ) = O(n2.687) time.
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Proof. For each j ∈ [n], sort the n points by their j-th coordinate. This takes a total of
O(n2 logn) time. Define the j-th rank of point pi, denoted as rj(pi), to be the position of pi
in the sorted list for coordinate j. Let s ∈ [logn, n] be a parameter to be determined later.
Define n/s pairs (assuming for simplicity that n/s is an integer) of n× n Boolean matrices
(A1, B1), . . . , (An/s, Bn/s) as follows:

Ak[i, j] =
{

1 if rj(pi) ∈ [ks, ks+ s)
0 otherwise,

Bk[i, j] =
{

1 if rj(pi) ≥ ks+ s

0 otherwise,

for i, j ∈ [n]. Put Ck = Ak ·BTk . Then Ck[i, j] equals the number of coordinates t such that
rt(pi) ∈ [ks, ks+ s), and rt(pj) ≥ ks+ s.

Thus, by letting C =
∑n/s
k=1 Ck, we have that C[i, j] is the number of coordinates t such

that pi[t] ≤ pj [t] and brt(pi)/sc < brt(pj)/sc.
Next, we compute a matrix E such that E[i, j] is the number of coordinates t such that

pi[t] ≤ pj [t] and brt(pi)/sc = brt(pj)/sc. Then D := C +E is the desired dominance matrix.
To compute E, we use the n sorted lists we computed earlier. For each pair (i, j) ∈ [n]×[n],

we retrieve q := rj(pi). By reading off the adjacent points that precede pi in the j-th sorted
list in reverse order (i.e., the points at positions q − 1, q − 2, etc.), and stopping as soon as
we reach a point pk such that brj(pk)/sc < brj(pi)/sc, we obtain the list pi1 , . . . , pil of l ≤ s
points such that pix [j] ≤ pi[j] and brj(pi)/sc = brj(pix)/sc. For each x = 1, . . . , l, we add a
1 to E[ix, i]. Assuming constant time lookups and constant time probes into a matrix (as is
standard in the real RAM model), this entire process takes only O(n2s) time. The runtime
of the above procedure is therefore O(n2s+ n

s · n
ω). Choosing s = n

ω−1
2 , the time bound

becomes O(n 3+ω
2 ). J

Yuster [24] has slightly improved this algorithm to run in O(n2.684) time, by using
rectangular matrix multiplication.

4.1 Generalized and Improved Bounds
We extend Yuster’s idea to obtain bounds for dimension d = nr, for the entire range r > 0,
and, at the same time, give an improved time analysis, using the recent bounds for rectangular
matrix multiplications of Le Gall [12, 16] coupled with an interpolation technique. This
analysis is not trivial, as Le Gall’s bounds for ω(1, r, 1) are obtained by solving a nonlinear
optimization problem, and are only provided for a few selected values of r (see Table 1 in [16]
and [12]). Combining Le Gall’s exponents with an interpolation technique, similar to the one
used by Huang and Pan [13], we obtain improved bounds for all values d = nr, for any r > 0.

Note that the matrices Ak and Bk, defined above, are now n × d matrices. Thus, the
sum C defined earlier, can be viewed as a product of block matrices

C =
[
A1 A2 · · · An/s

]
·


BT1

BT2
...

BTn/s

 .

Thus, to compute C we need to multiply an n × (dn/s) matrix by a (dn/s) × n matrix.
Computing E in this case can be done exactly as in Matoušek’s algorithm, in O(nds) time.

Consider first the case where d is small; concretely, d ≤ nω−1
2 . In this case we compute C

using the following result by Huang and Pan.

ISAAC 2017
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Table 1 The relevant entries from Le Gall’s table (Table 1 in [16]), the value for ω0 is taken
from [15]. The dominance product can be computed in O(nωi) time, for dimension di = nζi .

r ω ζ

r0 = 1.0 ω0 = 2.372864 ζ0 = 0.6865
r1 = 1.1 ω1 = 2.456151 ζ1 = 0.7781
r2 = 1.2 ω2 = 2.539392 ζ2 = 0.8697
r3 = 1.3 ω3 = 2.624703 ζ3 = 0.9624
r4 = 1.4 ω4 = 2.711707 ζ4 = 1.0559

I Lemma 14 (Huang and Pan [13]). Let α = sup
{

0 ≤ r ≤ 1 | w(1, r, 1) = 2 + o(1)
}
. Then

for all nα ≤ m ≤ n, one can multiply an n × m matrix with an m × n matrix in time
O
(
m

ω−2
1−αn

2−ωα
1−α

)
.

Huang and Pan [13] showed that α > 0.294. Recently, Le Gall [12, 16] improved the bound
on α to α > 0.302. By plugging this into Lemma 14, we obtain that multiplying an n×m
matrix with an m× n matrix, where nα ≤ m ≤ n, can be done in time O(m0.535n1.839).

From the above, computing C and E can be done in O
(
(dn/s)0.535n1.839 + dns

)
time.

By choosing s = n0.896/d0.303, the runtime is asymptotically minimized, and we obtain the
time bound O(d0.697n1.896). This time bound holds only when nα < n0.302 ≤ dn/s ≤ n,
which yields the time bound

O(d0.697n1.896 + n2+o(1)), for d ≤ n(ω−1)/2 ≤ n0.687.

We now handle the case d > n(ω−1)/2. Note that in this case, dn/s > n (for s as above),
thus, we cannot use the bound from Lemma 14. Le Gall [12, 16] gives a table (Table 1
in [16] and [12]) of values r (he refers to them as k), including values of r > 1 (which are
those we need), with various respective exponents ω(1, r, 1). We will confine ourselves to
the given bounds for the values r1 = 1.1, r2 = 1.2, r3 = 1.3, and r4 = 1.4. We denote their
corresponding exponents ω(1, ri, 1) by ω1 ≤ 2.456151, ω2 ≤ 2.539392, ω3 ≤ 2.624703, and
ω4 ≤ 2.711707 respectively. The exponent for r0 = 1 is ω0 = ω ≤ 2.372864 (see [15,23]).

The algorithm consists of two parts. For a parameter s, that we will fix shortly, the
cost of computing C = A · BT is O (nωr ), where ωr is a shorthand notation for ω(1, r, 1),
and where nr = dn/s, and the cost of computing E is O(nds) = O

(
s2nr

)
. Dropping the

constants of proportionality, and equating the two expressions, we choose

s = n(ωr−r)/2, that is, d = snr−1 = n(ωr+r)/2−1 = nζr ,

for ζr = (ωr + r)/2− 1. Put ζi = ζri , for the values r0, . . . , r4 mentioned earlier; see Table 1.
Now if we are lucky and d = nζi , for i = 0, 1, 2, 3, 4, then the overall cost of the algorithm

is O(nωi). For in-between values of d, we need to interpolate, using the following bound,
which is derived in the earlier studies (see, e.g., Huang and Pan [13]), and which asserts that,
for a ≤ r ≤ b, we have

ωr ≤
(b− r)ωa + (r − a)ωb

b− a
. (1)

That is, given d = nζ , where ζi ≤ ζ ≤ ζi+1, for some i ∈ {0, 1, 2, 3}, the cost of the algorithm
will be O (nωr ), where r satisfies

ζ = ζr = ωr + r

2 − 1.
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Table 2 The time bound for computing dominance product for n points in dimension nζmin ≤
d ≤ nζmax is O (dunv).

ζmin ζmax u v

0.687 0.87 0.909 1.75
0.87 0.963 0.921 1.739
0.963 1.056 0.931 1.73

Substituting the bound for ωr from (1), with a = ri and b = ri+1, we have

(ri+1 − r)ωi + (r − ri)ωi+1
ri+1 − ri

+ r = 2(ζ + 1).

Eliminating r, we get

r = 2(ζ + 1)(ri+1 − ri)− ri+1wi + riwi+1
wi+1 + ri+1 − wi − ri

, (2)

and the cost of the algorithm will be O (nωr ), where

ωr ≤
(ri+1 − r)ωi + (r − ri)ωi+1

ri+1 − ri
. (3)

Note that r is a linear function of ζ, and so is ωr. Writing ωr = uζ + v, the cost is

O (nωr ) = O
(
nuζ+v

)
= O (dunv) .

The values of u and v for each of our intervals are given in Table 2. (The first row covers
the two intervals 1.0 ≤ r ≤ 1.1 and 1.1 ≤ r ≤ 1.2, as the bounds happen to coincide there.)
See also Theorem 4 in Section 1.2. We have provided explicit expressions for DP (n, d) only
for d ≤ nζ4 = n1.056, which includes the range d ≤ n, which is the range one expects in
practice. Nevertheless, the recipe that we provide can also be applied to larger values of
d, using larger entries from Le Gall’s table [12, 16]. As mentioned earlier, the exponents
we obtained for DP (n, d) can be even slightly further improved by approximately 0.01, by
plugging into our analysis the very recent new bounds for rectangular matrix multiplication
of Le Gall and Urrutia [17] (see Table 3 in [17]).

References
1 Nir Ailon and Bernard Chazelle. The fast Johnson-Lindenstrauss transform and approxim-

ate nearest neighbors. SIAM J. Comput., 39(1):302–322, 2009.
2 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008.
3 Michael Ben-Or. Lower bounds for algebraic computation trees. In Proc. of the 15th Annu.

ACM Sympos. on Theory of Computing (STOC), pages 80–86, 1983.
4 Jon Louis Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23(4):214–229,

1980.
5 Jon Louis Bentley and Michael Ian Shamos. Divide-and-conquer in multidimensional space.

In Proc. of the 8th Annu. ACM Sympos. on Theory of Computing (STOC), pages 220–230,
1976.

6 Timothy M. Chan. Geometric applications of a randomized optimization technique. Dis-
crete & Computational Geometry, 22(4):547–567, 1999.

7 Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. In Proc. of the 27th Annu. ACM-SIAM Sym-
pos. on Discrete Algorithms (SODA), pages 1246–1255, 2016.

ISAAC 2017



39:12 Dominance Product and High-Dimensional Closest Pair under L∞

8 Ran Duan and Seth Pettie. Fast algorithms for (max, min)-matrix multiplication and
bottleneck shortest paths. In Proc. of the 20th Annu. ACM-SIAM Sympos. on Discrete
Algorithms (SODA), pages 384–391, 2009.

9 Steve Fortune and John Hopcroft. A note on Rabin’s nearest-neighbor algorithm. Inform.
Process. Lett., 8(1):20–23, 1979.

10 Greg N. Frederickson and Donald B. Johnson. The complexity of selection and ranking
in x + y and matrices with sorted columns. Journal of Computer and System Sciences,
24(2):197 – 208, 1982.

11 Michael L. Fredman. How good is the information theory bound in sorting? Theoret.
Comput. Sci, 1(4):355–361, 1976.

12 François Le Gall. Faster algorithms for rectangular matrix multiplication. In 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ,
USA, October 20-23, 2012, pages 514–523. IEEE Computer Society, 2012. doi:10.1109/
FOCS.2012.80.

13 Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix multiplication and applications.
J. Complexity, 14(2):257–299, 1998.

14 Piotr Indyk, Moshe Lewenstein, Ohad Lipsky, and Ely Porat. Closest pair problems in very
high dimensions. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella,
editors, Automata, Languages and Programming: 31st International Colloquium, ICALP
2004, Turku, Finland, July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes in
Computer Science, pages 782–792. Springer, 2004. doi:10.1007/978-3-540-27836-8_66.

15 François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. 39th Interna-
tional Sympos. on Symbolic and Algebraic Computation (ISSAC), pages 296–303, 2014.

16 François Le Gall. Faster algorithms for rectangular matrix multiplication. CoRR,
abs/1204.1111, 2012.

17 François Le Gall and Florent Urrutia. Improved Rectangular Matrix Multiplication using
Powers of the Coppersmith-Winograd Tensor. ArXiv e-prints, August 2017. arXiv:1708.
05622.

18 Jiří Matoušek. Computing dominances in En. Inform. Process. Lett., 38(5):277–278, 1991.
19 Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduction.

Springer-Verlag New York, NY, 1985.
20 Michael Rabin. Probabilistic algorithms. In Algorithms and Complexity, Recent Results

and New Directions, Academic Press, pages 21–39, 1976.
21 Michael Ian Shamos. Geometric complexity. In Proc. of 7th Annu. ACM Sympos. on Theory

of Computing (STOC), pages 224–233, 1975.
22 Virginia Vassilevska, Ryan Williams, and Raphael Yuster. All pairs bottleneck paths and

max-min matrix products in truly subcubic time. Theory of Computing, 5(1):173–189,
2009.

23 Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012,
pages 887–898. ACM, 2012. doi:10.1145/2213977.2214056.

24 Raphael Yuster. Efficient algorithms on sets of permutations, dominance, and real-weighted
APSP. In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6,
2009, pages 950–957. SIAM, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.
1496873.

25 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplica-
tion. J. ACM, 49(3):289–317, 2002.

http://dx.doi.org/10.1109/FOCS.2012.80
http://dx.doi.org/10.1109/FOCS.2012.80
http://dx.doi.org/10.1007/978-3-540-27836-8_66
http://arxiv.org/abs/1708.05622
http://arxiv.org/abs/1708.05622
http://dx.doi.org/10.1145/2213977.2214056
http://dl.acm.org/citation.cfm?id=1496770.1496873
http://dl.acm.org/citation.cfm?id=1496770.1496873


Orthogonal Vectors Indexing∗

Isaac Goldstein†1, Moshe Lewenstein‡2, and Ely Porat§3

1 Bar-Ilan University, Ramat Gan, Israel
goldshi@cs.biu.ac.il

2 Bar-Ilan University, Ramat Gan, Israel
moshe@cs.biu.ac.il

3 Bar-Ilan University, Ramat Gan, Israel
porately@cs.biu.ac.il

Abstract
In the recent years, intensive research work has been dedicated to prove conditional lower bounds
in order to reveal the inner structure of the class P. These conditional lower bounds are based on
many popular conjectures on well-studied problems. One of the most heavily used conjectures
is the celebrated Strong Exponential Time Hypothesis (SETH). It turns out that conditional
hardness proved based on SETH goes, in many cases, through an intermediate problem - the
Orthogonal Vectors (OV) problem.

Almost all research work regarding conditional lower bound was concentrated on time com-
plexity. Very little attention was directed toward space complexity. In a recent work, Goldstein
et al. [17] set the stage for proving conditional lower bounds regarding space and its interplay
with time. In this spirit, it is tempting to investigate the space complexity of a data structure
variant of OV which is called OV indexing. In this problem n boolean vectors of size c logn are
given for preprocessing. As a query, a vector v is given and we are required to verify if there is
an input vector that is orthogonal to it or not.

This OV indexing problem is interesting in its own, but it also likely to have strong implic-
ations on problems known to be conditionally hard, in terms of time complexity, based on OV.
Having this in mind, we study OV indexing in this paper from many aspects. We give some
space-efficient algorithms for the problem, show a tradeoff between space and query time, de-
scribe how to solve its reporting variant, shed light on an interesting connection between this
problem and the well-studied SetDisjointness problem and demonstrate how it can be solved
more efficiently on random input.
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1 Introduction

Recently, there is an intensive research work aimed at understanding the complexity within
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These lower bounds are based on some conjectures on well-studied problems, especially
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notable are 3SUM, APSP and SETH. The Strong Exponential Time Hypothesis (SETH) [18,
19] states the following:

I Conjecture 1 (Strong Exponential Time Hypothesis). There is no ε > 0 such that kSAT
can be solved in O(2(1−ε)n) for all k.

Many conditional lower bounds for both polynomial and exponential time solvable prob-
lems are based on this conjecture. A partial list includes [25, 21, 14, 28, 4, 6, 8, 16, 7, 2, 9,
1, 5, 22]. For polynomial time solvable problems many of the conditional lower bounds are
proven through the use of an intermediate problem called Orthogonal Vectors (OV) which
is defined as follows.

I Definition 1 (Orthogonal Vectors). Given a set S of n input vectors from {0, 1}d, decide
if there are u, v ∈ S such that u is orthogonal to v.

If SETH is true then there is no O(n2−ε) solution for OV for any ε > 0 (see [29, 30]). This
conditional lower bound on OV was heavily used to obtain conditional lower bounds on the
time complexity of a long list of algorithmic problems. This includes graph problems [28, 22],
dynamic problems [4], string problems [6, 7, 2, 9] and many other important problems from
a variety of research fields.

A recent work by Goldstein et al. [17] set the stage for proving conditional lower bounds
on space-time tradeoffs. Specifically, it was suggested that we can achieve space lower bounds
by considering a data structure variant of SAT. Given a formula φ in a CNF format and
a list of variables L from φ, we need to preprocess φ and L and create a data structure to
support the following queries. Given an assignment to all variables not in L we are required
to answer if this assignment can be completed to a full assignment that satisfies φ. A closely
related problem is Orthogonal Vectors Indexing (OV Indexing) that is defined as follows.

I Definition 2 (Orthogonal Vectors Indexing). Given a set S that contains n d-length boolean
vectors, preprocess S and answer queries of the following form: given d-length boolean vector
v, is there a vector in S which is orthogonal to v.

SETH can be reduced to OV indexing (see the details in the full version of this paper).
As a consequence of this reduction there is no polynomial time preprocessing algorithm for
OV indexing that achieves truly sublinear query time.

The main question that we consider is what the space requirements of OV indexing
are. In this paper we examine this question in detail from various aspects for the case that
d = c logn for some constant c > 1 (if c is non-constant its seems hard to achieve any
improvement due to the connection to SETH). On one hand, solving OV indexing for input
vectors of length c logn can be done easily using a lookup table of size nc. Using this table,
queries can be answered in constant time. On the other hand, without any preprocessing
queries can be answered in linear time. It is interesting to figure out what can be done
in between these two extremes. Can we achieve truly sublinear query time with less than
nc space? Is there a clear tradeoff between time and space? What can we say about the
reporting version of this problem? In this paper we investigate all these questions and more.

Understanding the space requirements of OV indexing is interesting in its own right, but
it can have many implications on other problems. Along the lines of Goldstein et al. [17] OV
indexing can serve as a basis for proving conditional hardness in terms of space for other
algorithmic problems. Specifically, as OV is a standard tool in demonstrating conditional
hardness of problems in terms of time it is likely that understanding the space hardness of
its data structure variant - OV indexing - can be applied to many problems shown to be hard
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based on OV. In the work by Goldstein et al. [17] there was an attempt to state a general
hardness conjecture for OV indexing. However, as no solution to neither OV indexing nor
the data structure variant of SAT was suggested in [17] (other than the trivial ones), a
more fine grained conjecture was out of reach. One major motivation for this paper is to
state such a conjecture based on improved upper bounds for OV indexing (see more detailed
discussion in the last section of this paper).

Related Work. The Partial Match problem and its variants were extensively studied for
decades. These problems are related to our OV indexing problem (see, for example, [3]).
One of the first works regarding Partial Match is by Rivest [26, 27]. However, his work
focused on the average case analysis of several solutions for the problem that in the worst
case do not achieve an improvement over the trivial solution, unless the number of "don’t
cares" symbols (corresponding to the zeroes in the OV indexing problem) in the query is not
too large. Many works on the Partial Match problem and its variants focus on improving the
time complexity rather than the space complexity which is the main concern of this paper.
Other works that do consider space complexity deal with the case of very large dimension
d that can be even linear in n [10, 13, 20]. This case admits very different behaviour from
the case we handle in this paper in which d = Θ(logn).

Our Results. In this paper we present the following results regarding OV indexing. We
suggest 3 algorithms that solve OV indexing with truly less that nc space and truly sublinear
query time. We show how to use the second and third algorithms we present to get a tradeoff
between space and query time. A variant of the first algorithm is used to prove the connection
between OV indexing and SetDisjointness, a problem which was considered by several papers
as the basis for showing space conditional hardness. We also solve the reporting variant of
OV indexing in which we need to report all input vectors that are orthogonal to our query
vector. Finally, we show that, on random input vectors, OV indexing can be solved more
efficiently in terms of space.

2 DivideByOnes: First Space-Efficient Solution for OV indexing

Our goal is to achieve an algorithm that has truly sublinear query time and requires O(nc−ε)
space for some ε > 0. This is an improvement over the trivial algorithm that uses nc space.
We note that in this solution and throughout this paper the notations Õ and Ω̃ (almost
always) suppress not just polylogarithmic factors as usual, but also all factors that are
smaller than nε for any ε > 0.

2.1 DivideByOnes Algorithm

Preprocessing. The first step is to save a set S1 of all vectors from S with at most c1 logn
ones for some constant 0 < c1 ≤ c/2. There are at most

∑c1 logn
k=0

(
c logn
k

)
≤ c1 logn

(
c logn
c1 logn

)
vectors in S1. We have that

(
c logn
c1 logn

)
≈ nc log c−c1 log c1−(c−c1) log (c−c1). We choose the largest

c1 such that the number of vectors in S1 will be Õ(n1−ε) for some ε > 0.
Let S2 be the set of vectors from S with more than c1 logn ones. Assume that c is an

integer. We split each vector in S2 into c parts each of length logn bits. As all the vectors
in S2 have at least c1 logn ones, we are guaranteed that at least one of the c parts of each
vector has at least c1

c logn ones.

ISAAC 2017
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We have n possible vectors of size logn, so we create c arrays A1, A2, ..., Ac of length n
each, such that the ith entry in each array represents the logn-length boolean vector that
its numerical value is i. In the ith entry of an array Aj we create a list that contains each
vector v ∈ S2 such that: (i) The number of ones it has in its jth part is the maximum
among all its parts (ties are broken arbitrarily). (ii) The value of its bits in its jth part is
orthogonal to the value of the logn-length vector whose numerical value is i (the numerical
value of an m-length vector is the value of this boolean vector that is parsed as an m-length
boolean number).

To analyse the space consumed by these arrays one should notice that each vector v ∈ S2
appears only in one array. Moreover, as v appears only in the array that represents the part
in which v has the maximum number of ones, the number of lists in this array that contain
v is at most n

2
c1
c

logn
= n1− c1

c . Therefore, the total size of all arrays is no more than

n · n1− c1
c = n2− c1

c which is truly subquadratic.

Query. When we get a query vector u we first check in S1 if there is a vector that is
orthogonal to u. Then, we partition u to c equal parts. For each part j if the numerical
value of all bits in this part is i we check all the vectors in the ith list of Aj and verify if
one of them is indeed orthogonal to u. The problem with this process is that the length of
the list we check may be Ω̃(n), so our query time will be O(n) which is trivial. To overcome
this and obtain a constant query time for long lists, we need to treat lists whose length is
Ω̃(n) differently in the preprocessing phase.

Additional Preprocessing. For each entry i in some array that the length of the vectors
list in it is not truly sublinear, we store a bitmap that tells for all possible values of the other
(c− 1) logn bits whether there is a vector in S that is orthogonal to these bits and the logn
bits represented by i. The size of the bitmap is 2(c−1) logn = nc−1. As calculated before, the
total number of vectors in all lists of the array is n2− c1

c . Consequently, the number of lists
that have Ω̃(n) vectors in them is no more than n1− c1

c . Therefore, the space needed for all
bitmaps is nc−

c1
c .

2.1.1 Generalization to klogn
We can generalize the above solution by partitioning the vectors to parts whose size is k logn
for some k > 0. First we consider the case that k divides c. In this case, the algorithm
continues in same way as for the case that k = 1. The number of lists in each array is
nk. Each input vector v has at least c1

c k ones in the part with the largest number of
ones. Consequently, each input vector v occurs in nk−

c1
c k lists in the array corresponding

to the part with most ones in v. The total size of all arrays and lists is O(nk+1− c1
c k). The

number of long lists is at most O(nk−
c1
c k). Each bitmap has size nc−k. Therefore, the

space usage for handling long lists is O(nc−
c1
c k). The total space of the data structure is

O(nk+1− c1
c k + nc−

c1
c k). By setting k = c− 1 (if possible, otherwise see the next paragraph)

we get the lowest space complexity, which is O(nc−c1(1− 1
c )).

In case k does not divide c, we can partition each vector to b ck c parts of length k logn.
However, we are left with one part P whose length is smaller than k logn. It can be the
case that for some input vector v the number of ones in each of the parts of length k logn is
smaller than c1

c k, as there can be many ones in P . In order to solve this problem we can do
the following. Let c′1 = c1 − ε for any ε > 0. We define k′ = bkε cε and c

′ = b cεcε. It is clear
that k′ > k − ε and c′ > c − ε. Each input vector v can be partitioned to m1 = b cεc parts



I. Goldstein, M. Lewenstein and E. Porat 40:5

P1, P2, ..., Pm1 whose length is ε and another optional part P whose length is less than ε. If
we ignore the bits of any vector in P , we are still guaranteed that there are at least c′1 ones in
the rest of the vector. We can choosem2 = bkε c parts from them1 parts P1, P2, ..., Pm1 . This
will give us exactly k′ logn bits. There are m3 =

(
m1
m2

)
options of how to choose m2 parts out

of the m1 parts. The number m3 is constant as k, c and ε are all constants. Therefore, we
can create m3 arrays A1, A2, ..., Am3 each one of them represents some k′ logn bits from our
input vectors. We handle these arrays as in the regular case explained above. The crucial
point one should observe is that for each input vector v there must be k′ logn bits among
these m3 options that contains at least c

′
1
c k of the ones in v. Let Ai be the array representing

k′ logn bits out of the m3 options that contains the maximum number of ones in v. We are
guaranteed that v will appear in at most nk′−

c′1
c k
′ lists in Ai. We continue the solution as

in the regular case. Following the analysis of the regular case, we have that the total space
of the data structure will be O(nk′+1−

c′1
c k
′ +nc−

c′1
c k
′). As k− ε < k′ ≤ k and c′1 = c1− ε, we

get that the total space is O(nk+1− c1−ε
c (k−ε) + nc−

c1−ε
c (k−ε)). Setting k = c − 1 as before,

we get that the space is O(nc−
c1−ε
c (c−1−ε)). We can make this space complexity as close as

we wish to the space complexity for the case k divides c by choosing ε whose value is very
close to 0. Consequently, we have the following result (c1 is the largest number that satisfies(
c logn
c1 logn

)
= Õ(n1−δ) for some δ > 0):

I Theorem 3. For every ε > 0 the DivideByOnes algorithm solves OV indexing with truly
sublinear query time using O(nc−

c1−ε
c (c−1−ε)) space.

3 TopLevelsQueryGraph: Second Space-Efficient Solution for OV
indexing

There are two problems with the previous solution. The first one is the sharp separation
between long lists (having Õ(n) vectors) and short lists. For long lists we use a large amount
of space and answer queries very quickly in constant time, while for short lists we just save
the vectors in the lists and spend time in the query stage. The second problem is that each
input vector is saved many times in different lists.

3.1 Query Graph
In order to improve the space requirements for sublinear query time we introduce the notion
of a query graph. The idea of the query graph is to create a tradeoff between query time
and space and save each vector just once. We are now ready to define the query graph. A
query graph is a directed acyclic graph G = (V,E) such that each vertex vi in V represents
a boolean vector αi of length k logn. There is an edge (vi, vj) ∈ E if the vectors αi and
αj differ on exactly one element which is 0 in αi and 1 in αj . Following this definition the
query graph can be viewed as a layered graph with k logn layers. The jth layer in this graph
contains all the nodes vi such that the number of ones in αi is exactly j. All the edges from
the vertices in the jth layer are directed to vertices in the (j+ 1)th layer. We call the layers
for small values of j top layers and the layers with high values of j bottom layers.

Let W be a set of indices such that W ⊆ [c logn] and |W | = k logn. We want each
vertex vi that represents a vector αi to contain a list Li of input vectors such that their
elements in the indices specified by W are orthogonal to αi. This is the same as we did
in the previous construction as each entry in an array contains all input vectors that are
orthogonal to the value of this entry in indices of the relevant part. However, instead of
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saving all input vectors that are orthogonal to αi in the indices specified by W , we just
pick all the input vectors that their elements in the indices specified by W are exactly the
complements of the elements in αi. All these vectors are saved in the list Li in vertex vi.
Using these lists, we have the following easy observation:

I Observation 1. Given a set W ⊆ [c logn] such that |W | = k logn, the complete list of
input vectors such that their values in the indices specified by W are orthogonal to some αi
can be recovered by concatenating all lists of vectors in the vertices that are reachable from
vertex vi in the query graph G.

3.2 TopLevelsQueryGraph Algorithm
We start the preprocessing phase by constructing a query graph G. Now, following the
last observation, instead of saving each vector many times in all the lists that their index
is orthogonal to our query in the relevant indices (as suggested by the previous solution),
we can save each vector in just one list and recover the original list by traversing G. We
start the traversal from the vertex vi such that the values of the query vector in the indices
specified byW are equal to αi. We can use any standard graph traversal algorithm to obtain
all the input vectors that are orthogonal to the query vector in the indices specified by W .
The number of vertices that we visit in the traversal of the query graph for a query vector
q that have k′ logn ones in the indices specified by W is 2k logn−k′ logn = nk−k

′ .
We can identify two types of nodes in the query graph. A node vi that has an empty

list Li is considered a black node, otherwise it is considered a white node. We note that the
number of white nodes is at most n and it can be O(n) if the input vectors are split between
many lists. In order to achieve a truly sublinear query time we would like the number of
nodes we visit during the traversal in the query graph to be truly sublinear. Moreover, as
the number of white nodes can be Θ(n) we need to make sure that the total number of white
nodes we visit is truly sublinear even if we know how to avoid black nodes. As mentioned
before, the number of nodes we visit during our traversal is nk−k′ which is truly sublinear
if we set k − k′ < 1. This means that we need to handle queries that match some vertex vi
in the top levels of the query graph differently. For all vertices vi in the x top levels of the
graph we create a list L′i of all input vectors that are orthogonal to αi. Then, for each list
L′i we create a bitmap to quickly identify if there is a vector in the list that is orthogonal
to our query. The size of each bitmap is nc−k. The total number of bitmaps we create
is Õ(

(
k logn
x logn

)
) for x ≤ k/2 as the number of vectors in the jth level of the query graph is(

k logn
j logn

)
(we choose j logn positions for the ones in αi out of k logn positions). Moreover,

the number of layers is logarithmic in n. Thus, the total required space for handling the
top layers of the query graph is Õ(nc−k

(
k logn
x logn

)
). The binomial coefficient

(
k logn
x logn

)
can be

approximated by nk log k−x log x−(k−x) log (k−x) using Stirling’s approximation. So, the total
space for the top layers is approximately Õ(nc−k+k log k−x log x−(k−x) log (k−x)).

Now, a query vector q that matches a vertex vi in the x top levels can be answered
in constant time by just looking at the proper entry in the bitmap of vi. Otherwise, the
number of vertices we need to traverse in the query graph will be at most nk−x which is
truly sublinear if k − x < 1. The problem is that the total number of vectors in the lists
of these vertices can be θ(n). To overcome this problem, we change the way we handle any
list Li in the (k − x) logn bottom levels according to the number of elements in it. If the
number of elements in the list is O(n1−k+x) we do nothing - the elements are kept in the
list with no special treatment. Otherwise, we save a bitmap over all the possibilities of the
other bits in the query vector. The size of the bitmap, as before, is nc−k. The number of
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lists that have more than O(n1−k+x) elements is at most nk−x. Therefore, the space for all
the bitmaps of the long lists is nc−x. We have that the total space of our data structure
is Õ(nc−k+k log k−x log x−(k−x) log (k−x) + nc−x). To obtain the best space complexity (while
preserving the truly sublinear query time), we set k very close to 1.3 and x to 0.3. The space
complexity of this solution using these values is approximately Õ(nc−0.3). To conclude, we
obtain the following result:

I Theorem 4. The TopLevelsQueryGraph algorithm solves OV indexing with truly sublinear
query time using approximately Õ(nc−0.3) space.

4 BottomLevelsQueryGraph: Third Space-Efficient Solution for OV
indexing

We can use the query graph to obtain another solution to the OV indexing problem. This
time we focus on the x bottom levels of the query graph. For each vertex vi in the x bottom
levels of the query graph we save a bitmap to quickly identify if there is an input vector
such that (a) Its bits in the indices specified by W are the complements of αi and (b) It is
orthogonal to our query vector. The space we invest in these bitmaps is Õ(nc−k

(
k logn
x logn

)
).

Then, for every vertex vi which is not in the x bottom levels of the query graph we save in
its list Li all the input vectors that are orthogonal to αi, but do not appear in the any of the
lists of the vertices in the x bottom. For every list Li that its length is θ̃(n) we save a bitmap
to get the answer in Õ(1) time. Because we do not include in any list Li vectors from the
lists in the x bottom levels, we are guaranteed that each input vector appears in at most
nk−x lists. In our view of the query graph, this means that if an input vector appears in the
list Li of some vertex vi it will be duplicated in the lists of all vertices that vi is reachable
from them. Consequently, the total number of vectors in all lists above the x bottom levels
is at most n1+k−x. Therefore, the number of bitmaps we will save for lists of size θ̃(n) is at
most nk−x. Each bitmap is of nc−k space, so the size of all bitmaps is nc−x. The total size
of the data structure is again Õ(nc−k+k log k−x log x−(k−x) log (k−x) + nc−x).

Upon receiving a query vector q, if it matches a vertex in one of the x bottom levels,
we immediately get the answer by looking at the right entry in the bitmap in that vertex.
Otherwise, we need to look not just at the bitmap of the vertex that matches our query,
but rather we have to go over all the vertices vi in the (k − x) logn level (the top level of
the x bottom levels) such that αi is orthogonal to q in the positions specified by W . In all
these vertices we check in their bitmap if there is an input vector that is orthogonal to q. If
k − x < 1 we ensure that the query time is sublinear in n. All in all, we obtain a solution
that has the same query time and space complexities as the previous one using a different
approach, as summarized in the following theorem:

I Theorem 5. The BottomLevelsQueryGraph algorithm solves OV indexing with truly sub-
linear query time using approximately Õ(nc−0.3) space.

5 Space and Query Time Tradeoff for Solving OV indexing

In all the solutions we presented so far we tried to minimize the space usage and still achieve
a sublinear query time. However, obtaining a tradeoff between the space and query time
would be of utmost interest. We know how to obtain constant query time by using nc space.
But can we obtain, for example, O(

√
n) query time using just nc−ε space for some ε > 0? In

the first method we have suggested there is an inherent problem to achieve this as all lists
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can have more than O(
√
n) vectors. In the second and third solutions we can improve the

query time by choosing larger x. However, as x becomes k/2 the space of the data structure
becomes Õ(nc). The following theorem demonstrates how to obtain any polynomial query
time while consuming O(nc−γ) space for some γ > 0.

I Theorem 6. For any ε > 0 there is a solution to OV indexing that its query time is O(nε)
and the space complexity is O(nc−γ) for γ > 0.

Proof. The idea is to combine the second and third solutions. We can save bitmaps for both
the x top levels and the x bottom levels of the query graph using Õ(nc−k

(
k logn
x logn

)
) space.

Then, for every vertex that is not in the x top or bottom levels we do the same as in the second
solution - save a bitmap for every node whose list is of length θ(nδ) or more for some δ > 0.
The total cost of these bitmaps is Õ(nc−k+1−δ). When we get a query vector q that matches
a vertex vi in our query graph. If vi is on the x top or bottom levels, we just check the right
entry in the bitmap of vi. Otherwise, we start a traversal from vi to all the vertices that are
reachable from it except those in the x bottom levels. The number of vertices we visit is at
most

((k−x) logn
x logn

)
if k/3 < x. This is approximately Õ(n(k−x) log k−x−x log x−(k−2x) log (k−2x)).

It is easy to verify that as x gets close to k/2 the exponent of this expression is very close
to 0. Therefore, the total query time is Õ(nδ+(k−x) log (k−x)−x log x−(k−2x) log (k−2x)) as the
query time in each vertex we visit is at most nδ. By choosing suitable value of k ≥ 1,
x < k/2 and δ > 0, we can obtain a query time of Õ(nε) for any ε > 0 using a data structure
that consumes Õ(nc−γ) space for some constant γ > 0. J

6 The Reporting Version of OV indexing

In the reporting version of OV indexing, given a query vector q we are required not just to
decide if there is a vector in S that is orthogonal to q, but rather we are required to report
all input vectors in S that are orthogonal to q.

To solve this version we can use the same methods as we have described for the decision
version. However, the only part of these solutions that does not support reporting is the use
of bitmaps. Using a bitmap we can answer the query quickly if there is an input vector that
is orthogonal to our query vector, but we are unable to discover the list of input vectors that
are orthogonal to the query if there are such vectors. The following lemma demonstrates
how to construct a data structure that uses almost the same space as a bitmap, but supports
efficient reporting.

I Lemma 7. Given n c logn-length boolean vectors, there is a data structure that uses Õ(nc)
preprocessing time and upon receiving a query vector v report on all t input vectors that are
orthogonal to v in time O(t logn)

6.1 Improving The Query Time
We can remove the dependency on n in the query time as shown by the following theorem1.

I Theorem 8. Given n c logn-length boolean vectors, there is a data structure that uses
Õ(nc) space and upon receiving a query vector v report on all t input vectors that are ortho-
gonal to v in O(t) time.

1 All missing proofs appear in: https://arxiv.org/abs/1710.00586
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We can plug in the data structure from the previous theorem into any of the three
solutions for OV indexing and get solutions for the reporting version of OV indexing that
have the same space usage (up to logarithmic factors) and just an additive O(t) to the query
time.

7 Reducing OV indexing to SetDisjointness

In this section we present a connection between OV indexing and the problem of SetDis-
jointness. In the problem of SetDisjointness we are given m sets S1, S2, ..., Sm such that the
total number of elements in all sets is N and after preprocessing them we need to answer
queries of the following form: given a pair of indices (i, j), decide whether Si∩Sj is empty or
not. The problem can be generalized to k-SetDisjointness in which we are given as a query
a k-tuple (i1, i2, ..., ik) and we are required to answer if the intersection Si1 ∩Si2 ∩ ...∩Sik is
empty or not. The SetDisjointness problem was the first problem used to show conditional
lower bounds on space complexity(see [12, 24, 15, 23]). Therefore, it should be interesting
to see the connection between our OV indexing problem and the fundamental problem of
SetDisjointness. Other problems connected to SetDisjointness are discussed in [17]. Cur-
rently, the best known space-query time tradeoff for k-SetDisjointness is S × T k = O(Nk),
where S is the space complexity and T is the query time [11, 17].

We begin by presenting a simple reduction from OV indexing to k-SetDisjointness for
k = c logn. Given an instance of OV indexing with n c logn-length boolean input vectors
we can create an instance of k-SetDisjointness in the following way. We create c logn sets.
The set Si contains all the vectors that have 0 in their ith element. Then, given a query
vector q that has ones in the elements whose indices are (i1, i2, ..., ik) all that we need in
order to answer this query is to verify if the intersection Si1 ∩Si2 ∩ ...∩Sik is empty or not.
If it is empty then we know that there is no input vector that has zeroes in all the position
of the ones in q, which means that no input vector is orthogonal to q. Otherwise, there is
an input vector which is orthogonal to q.

We would like to show this reduction to other values of k, especially small and constant.
The idea is to use the first solution that we have suggested to obtain the following result:

I Theorem 9. There is a reduction from OV indexing to k-SetDisjointness that can be used
to solve OV indexing with truly sublinear query time and O(nc−γ) space for some 0 < γ < 1.

8 OV indexing for Random Input

The solution to OV indexing that we have described in Section 3 is limited by the tradeoff
between the bitmaps for the lists in the top levels of the query graphs (lists in vertices vi
such that αi has a small number of ones) and the bitmaps for long lists in the bottom levels
of the query graph. Therefore, we may improve the solution by making the lists in the
bottom levels short, as for short lists we only save the elements themselves. We also note
that we can also benefit from making the lists in the bottom levels very long, since their
number is small. Consequently, the costly lists are those that are not too short and not too
long.

In the solution we have presented in Section 3, we pick a set W of the indices for the
query graph. Our solution works for any choice of W , but the question is whether there is a
choice of W that will make the list shorter or longer, so we can utilize it for a more compact
solution to OV indexing. In the following lemma we show that for random input vectors
that are uniformly distributed the probability for choosing W such that there are lists that
are not short is small.

ISAAC 2017



40:10 Orthogonal Vectors Indexing

I Lemma 10. The size of every list Li in the query graph of the second solution of OV
indexing is at most logarithmic w.h.p. for any choice of W (the set of k logn indices) on
random input vectors, where k ≥ 1.

The last lemma guarantees that on random input vectors for any choice of W the length
of all lists in the query graph are supposed to be of length at most 4c logn w.h.p. Therefore,
instead of saving bitmaps for both lists in the top levels of the query graph and long lists in
the bottom levels of the query graph, we need to save bitmaps just for the former as the latter
do not exist. Consequently, for c logn-length input vectors we just create the query graph
with nodes representing logn-length vectors and save bitmaps for the top δ logn levels, for
some δ > 0. The space required by these bitmaps is nc−1+ε, for some ε > 0 that can be as
small as possible by choosing appropriate small value for δ. To conclude, we have obtained
the following result:

I Theorem 11. OV indexing on random input vectors can be solved in expected truly sub-
linear query time using O(nc−1+ε) space, for any ε > 0.

This improved space complexity for random input makes it tempting to think that the
same property holds even for worst case input. More specifically, it is enough to have just
one W that will map all input vectors to short or long lists. It turns out that for worst case
input this cannot be achieved. In the following lemma we show how to create a worst case
input vectors such that many lists in the query graph are neither too short nor too long.

I Lemma 12. There exist n c logn-length input vectors such that for all W ⊆ [k logn] there
are Θ(n) vectors that are mapped by hW to lists of size between n1/6 and n2/3

In the last lemma we can obtain values other than n1/6 and n2/3 by changing the basic
block size from 0.5 logn to some other r logn for r > 0.

This demonstrates that for worst-case input vectors, as opposed to random input vectors,
there can be O(n) vectors that are mapped to lists that are neither too short nor too long.
The exact size can be controlled by proper choices of block and group size.

9 Further Research

In this paper we presented several algorithms to solve OV indexing that obtain truly sub-
linear query time and require O(nc−γ) space for some constant 0 < γ < 1. For random
input vectors we demonstrated in Section 8 how to obtain sublinear query time solution to
OV indexing using O(nc−γ) for any 0 < γ < 1. We note that the preprocessing time of all
algorithms is polynomial in n.

The main question regarding OV indexing, following this paper, is can one obtain a sub-
linear query time solution to OV indexing that requires only O(nc−1) space. This question
is interesting even if we allow an unlimited preprocessing time. We conjecture that there is
no such solution to OV indexing:

I Conjecture 2. There is no truly sublinear query time solution to OV indexing that requires
only O(nc−1) space.

Even if that conjecture is false, it is of utmost interest to find the exact lower bound
on the space requirements of OV indexing for both unlimited and polynomial preprocessing
time. Finding the exact space requirements can be used to obtain conditional lower bounds
on the space complexity of many problems known to be conditionally hard in terms of time
based on OV.
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Dynamic Flows were introduced by Ford and Fulkerson in 1958 to model flows over time. They
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41:2 Non-approximability and Polylogarithmic Approximations of Dynamic Flows

1 Introduction

Note: Due to space considerations, this extended abstract is missing many of the proofs of
the theorems and lemmas stated. For complete proofs and accompanying diagrams, please see
the full version of this paper at [7].

Network Flow problems are very well known. Their input is a graph network with
capacities c(e) on its edges. c(e) is the maximum flow that can be pushed through e. The
problem is usually to maximize the amount of flow that can be pushed through the network.
By contrast, Dynamic network flows, introduced by Ford and Fulkerson [5] in 1958, around
the same time as regular network flows, are not as well known. In Dynamic Flows, c(e)
becomes the amount of flow that can enter e in one time unit while edge length `(e) is the
time that it takes for a unit of flow to traverse e. Dynamic Flow problems need to consider
the additional problem of congestion, which may arise while flow waits to enter an edge.

Dynamic flows have been used to model problems as diverse as traffic movement, evac-
uation protocols and hop-routing of packets. The (Dynamic) Maximum Flow Over Time
problem is to find the maximum amount of flow that can be pushed from sources to sinks
in a given amount of time. The (Dynamic) Quickest Flow problem is to find the minimum
time in which a fixed amount of flow can be pushed from sources to sinks. In addition,
there are multicommodity-flow versions which require specific amounts of flow between given
source-sink pairs and transshipment problems versions which do not restrict which source’s
demands are pushed to which sinks. It is known that the Quickest Multicommodity Flow
Over Time problem is NP-Hard [9] while the Quickest Transshipment problem can be solved
in polynomial time [11, 12]. Good surveys on Dynamic Flow problems and an introduction
to its basic literature can be found in [15, 19, 23].

In basic (static) network flow problems, splittable flow is permitted, i.e., flow between a
source and sink can be divided into multiple parts with each being routed over a different
path. Unsplittable flows require that all flow between a particular source and sink be routed
over only one path. Confluent flows require that all flow passing through a vertex must leave
that vertex on the same edge1 [2, 22]. Very recent work [21] has shown that, for the static
single-sink case, unless P = NP , optimal unsplittable flows and optimal confluent flows do
not have polynomial time constant-factor approximation2 algorithms and, in fact, confluent
flows can not be approximated to within a factor of O(m1/2−ε).

Confluent flows were introduced by [3], with applications including Internet routing [1],
evacuation problems [17], and traffic coordination [15]. Several works have studied confluent
flows that minimize the maximum congestion in routing networks e.g., [3, 2, 22]. However,
these works usually do not take into consideration the transit time (or edge length) required
for a packet to traverse a single link, though this parameter is usually considered in general
network analyses (see, e.g., [10]). This immediately raises the Confluent Quickest Flow
problem: Does there exists any routing scheme that minimizes the total time for sending all
packets via a feasible (congestion bounded) confluent flow?

Another scenario in which confluent dynamic flows arise naturally is in modelling evacu-
ation protocols. Let vertices represent locations to be evacuated and edges represent paths
between vertices. A vertex’s original supply is the number of people to be evacuated from it
and a sink corresponds to an emergency exit. `(e) is the time required to traverse path e;
c(e) is the number of people that can enter e in parallel, i.e., its width. The Confluent Flow

1 Thus, confluent flows partition flows into edge disjoint in-trees, with the root of each tree being a sink.
2 The objectives studied in [21] are the total amount of flow that can be confluently routed or the number

of demands that can be confluently satisfied in the static flow.
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restriction states that all people passing through a vertex must leave by the same edge, i.e.,
following a sign pointing “This way out”. The Quickest Flow problem corresponds to placing
the exit signs so as to minimize the time required to evacuate all people. The Maximum
Flow Over Time problem corresponds to placing the signs so as to maximize the number of
people that can be evacuated in a given amount of time.

The single-source single-sink version of the Confluent Quickest Flow problem is the
polynomial-time solvable [19] Quickest-Path Problem. The Confluent Flow version of the
multiple-source multiple-sink Quickest Transshipment problem was known to be polynomial-
time solvable when G is a tree [17]. It was also known that, for general graphs, the single-
sink Confluent Quickest Transshipment problem is NP-Hard [13]. But no other hardness
complexity results, and in particular, non-approximability results, were known for general G.

Our first results are that Confluent Dynamic Flow problems on directed graphs, both
the Quickest Flow and Max Flow Over Time versions, cannot be approximated to within
O(logn) (n being the number of vertices in G) unless P = NP . Our results hold even when
the graph has a single sink. Since, Multicommodity Flow and Transshipment are equivalent
in the single-sink case we write “Quickest Flow” instead of “Quickest Multicommodity Flow”
or “Quickest Transshipment”.

In the other direction, we present polylogarithmic bicriteria approximation algorithms
for both the single-sink Confluent Quickest Flow and Confluent Maximum Flow Over Time
problems, in both directed and undirected networks. Note that known approximation
algorithms for confluent flows are restricted to static networks in [3, 2, 22], and known
optimal algorithms for dynamic confluent flows are restricted to special graphs, e.g., trees [17].
To the best of our knowledge, our algorithm is the first polylogarithmic approximation for
these problems in general networks. These results are presented in Tables 1-2.

1.1 Single-Sink Dynamic Unsplittable/Confluent Flow Problems
The input to the problems is a dynamic flow network, i.e., a graph G = (V,E) with n nodes
and m edges, where edge e has capacity c(e) and length `(e). Also specified are a collection
of sources {s1, ..., sk} ⊂ V and a sink t ∈ V . The problems studied are:

Quickest Flow Problem: Provides additional inputs {d1, ..., dκ}. di is the supply at
source si. The problem is to find a flow minimizing the time it takes to send all of the di
units of supply to sink t.
Maximum Flow Over Time Problem: Provides additional input of time horizon T.
The problem is to find a flow maximizing the amount of supply sent to the sink t within
time horizon T . Supply at the si is unlimited.

We treat two different types of flow restrictions:
Unsplittable Flow: All flow from si to t must pass along the same path Pi from si to t.
Confluent Flow: Any two supplies that meet at a node must traverse an identical path to
the sink t. In particular, at most one edge out of each node v is allowed to carry flow.
Consequently, the support of the flow is a tree with all paths in the tree terminating at t.

1.2 Our Results
Section 3.1 presents a simple proof that, unless P = NP , ∀ε > 0, it is impossible to construct
a polynomial-time 3/2− ε approximation algorithm for the single-sink Quickest Flow problem
when flows are restricted to be either unsplittable or confluent. This result holds for both
directed and undirected graphs and even when the graph is restricted to have only one sink.
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Table 1 Hardness or lower bounds on approx. ratio for the single-sink Quickest Flow problem.

Flow Dynamic Network Hardness or LB on Approx. Ratio

Confluent Trees Polynomial-Time Solvable [17]

Confluent Directed/Undirected NP-Hard [13]

Unsplittable Directed/Undirected 3/2− ε (Thm. 6)

Confluent Directed Ω(logn) (Thm. 7)*

Unsplittable/Confluent Directed/Undirected No ( 15
14 − ε, 1 + α)-Approx. (Thm. 10)*

* Corresponding results also hold for the single-sink Maximum Flow Over Time problem
(Thms 8, 9, 11).

Table 2 Upper bounds on approximation ratio for variations of the Fixed-Sink Confluent Flow
problem. The first three items are for uncapacitated problems but are included here because they
serve as the internal building blocks for the approximation algorithms for the capacitated problems.

Network Capacity Objective Sources Sinks UB on Approx. Ratio

Static Uncapacitated Min Congestion* n k (k ≤ n) O(log3 n) [3]†

Static Uncapacitated Min Congestion* n k (k ≤ n) 1 + ln k [2]

Static Uncapacitated Min Congestion* κ (κ ≤ n) k (k ≤ n) O(log3 κ) (Thm. 13)†

Static Node Max Demand n 1 O(log6 n) with NBA4 [22]

Static Edge/Node Max Demand κ (κ ≤ n) 1 O(log10 κ) with NBA4 (Thm. 22)†

Dynamic Edge Max Flow Over Time κ (κ ≤ n) 1 (O(log2 κ), O(log8 n)) (Thm. 21)†

Dynamic Edge Quickest Flow κ (κ ≤ n) 1 (O(log8 n), O(log2 κ)) (Thm. 20)†

* Minimize the maximum node congestion in a network that admits a feasible splittable flow
satisfying all supplies.
† These results hold with high probability, or more precisely, with probability 1− n−c, where c is a
constant.

Section 3.2 proves, for the confluent directed graph case, the much stronger result that
unless P = NP , it is impossible to construct a polynomial-time O(logn) approximation
algorithm for the single-sink Quickest Flow problem. The major tool used is a modification
of a grid graph construction from [21] which was an extension of one pioneered by [8]. We
note that our reduction is not the same as that in [21]. There, the objective function was
the maximum amount of static flow that could be pushed. Here, the objective function is
the minimum amount of time required to push the supplies. Our proof works by deriving
new properties of the grid-graph. Section 3.3 extends the analysis to the Maximum Flow
Over Time problem with our lower bounds on the approximation ratio being summarized in
Table 1.

We also note that it might seem intuitive that, because confluent flows are “harder”
than static flows, the non-approximability of confluent static flows, e.g., the result from [21],
should immediately imply the non-approximability of confluent dynamic flows. This is not
true, though. The two problems are trying to optimize very different things, making them
incomparable. More specifically, in the static case, the goal is Demand Maximization, i.e., to
find a subset of the demands of maximum total value that can be confluently routed. In the
dynamic case, the goal is to find a confluent routing of ALL demands in minimal time. To
appreciate the distinction it is instructive to examine confluent routing on trees where the
static problem is NP-Hard [4] but the dynamic case is polynomial-time solvable [17].
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Despite the non-approximability shown above for confluent dynamic flows, one might
hope to create bicriteria (α, β) approximations3. However, in Section 4, we demonstrate
that, for both directed and undirected graphs, there exists a constant α > 0 such that, for
any ε > 0, there is no polynomial-time ( 15

14 − ε, 1 + α)-approximation for the Unsplittable/
Confluent Quickest Flow problem, unless P = NP . Similar results are obtained for the
Unsplittable/Confluent Max Flow Over Time problem. Our proof utilizes a reduction from
the Bounded Occurrence 3-Dimensional Matching problem.

In contrast to the above we show, in Section 5, how to construct a (O(log8 n), O(log2 κ))-
approximation for the Confluent Quickest Flow problem, where κ is now the number of
sources, in polynomial time. To this end, we use the idea of routing a confluent flow in a
static monotonic network, i.e., one in which each vertex is given an additional vertex capacity
that satisfies that all edges go from a low-capacity node to a high-capacity one, which was
introduced in [22]. Recall that in our original confluent flow problem the support of the flow
is a tree. In that tree, a parent node never supports less flow than its child. So, intuitively, a
feasible confluent flow requires its tree support to be monotonic. We develop new techniques
(Theorem 16) that permit constructing, in polynomial time, a confluent flow that routes all
supplies in a given monotonic network, while bounding both node congestion and flow length.

Via this monotonic technique, we build a novel multi-layer monotonic network and
construct a confluent static flow on it which is finally re-routed to produce a confluent
dynamic flow for our original graph problem. Our method guarantees that a dynamic
flow can be found such that the total transit time is at most polylogarithmic factor times
the optimal. Similarly, this also lets us develop a polynomial-time (O(log2 κ), O(log8 n))-
approximation of the Confluent Maximum Flow Over Time problem.

Our technique mainly differs from that in [22] in constructing length-bounded confluent
flows in static networks (which might be of independent interest). It also permits us to
improve their approximation algorithms when not all vertices are sources. More specifically,
recall that [22] gives an O(log6 n) approximation algorithm for the demand maximization
confluent flow problem, with the no-bottleneck assumption (NBA)4. If restricted to static
networks, our technique can give an O(log10 κ) approximation for the same problem. If κ is
bounded, for example, this gives a constant approximation, which is nearly optimal.

Our improvement to the approximation ratio comes through a combination of (i) a novel
construction of the multi-layer network, and (ii) a new building block inside our monotonic
network technique—a better routing approach for uncapacitated networks (Theorem 13).
This will be discussed in more detail in Section 5.

Our Theorem 13 enables us to route confluent flows in uncapacitated monotonic sub-
networks with congestion bounded by poly(log κ) instead of poly(logn). While this might
look weak compared to the 1 + ln k (k being the number of sinks) bound from [2] this is
only used as a subroutine. In fact, the internal constructions of both [22] and our proofs
for approximating the capacitated static problem build uncapacitated sub-networks which
can have Θ(n) induced sources and sinks. Plugging in the bound of [2] would give a
poly(logn) bound. We develop a new combinatorial argument that, combined with our new
poly(log κ) bounds for uncapacitated monotonic sub-networks, gives a poly(log κ) bound for
the capacitated one as well, yielding our Theorem 17. This leads us to the final improvement.

A chart presenting previously known results and our new ones is given in Table 2.

3 These will be formally introduced in Definition 1.
4 In node-/edge-capacitated networks, the NBA is that maxv∈V d(v) ≤ minv∈V c(v), and maxv∈V d(v) ≤

mine∈E c(e), respectively.
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2 Preliminaries: Definitions and NP-Hard Problems

Let I be some input to an optimization problem, OPT (I) be the optimum value to the given
problem on I and |I| be its size. As examples, I could be a dynamic flow problem on a graph
with n vertices and m edges. We could have just as easily defined |I| = m+ n.

We now define bicriteria approximations for the two-objective optimization problem.

I Definition 1 (Bicriteria Approximation). For any α, β > 0, an (α, β)-approximation al-
gorithm A for the two-objective optimization problem is a function that takes as input any
parameter k and any instance I, and outputs a solution x such that
1. αf(x) ≥ f(x∗), g(x) ≤ βk, if the optimization problem is to find a solution x maximizing

the cost function f(x) subject to another cost function g(x) ≤ k,
2. f(x) ≤ αf(x∗), βg(x) ≥ k, if the optimization problem is to find a solution x minimizing

the cost function f(x) subject to another cost function g(x) ≥ k,
where x∗ is the optimal solution for the input I and k.

We can actually define two different types of confluent flows:

I Definition 2. A flow in G is node-confluent if, for every vertex v, all flow leaving v leaves
along the same edge. A flow in G is edge-confluent if, for every edge e = (u, v) if all flow
that passes through e must leave v through the same edge (v, w).

In this paper the term “confluent”, when used alone, will denote node-confluence. When
edge-confluence is needed (in some proofs) it will be explicitly specified.

Finally we will use the following NP-hard problems in our reductions:

I Definition 3 (The Two-Disjoint Paths (Uncapacitated) Problem). Given a graph G and
node pairs {x1, y1} and {x2, y2}, decide if G contains paths P1 from x1 to y1 and P2 from
x2 to y2 such that they are disjoint.

In undirected graphs the Two-Disjoint Paths (Uncapacitated) problem, for both edge-disjoint
and node-disjoint paths, is polynomial-time solvable [20]. However, in directed graphs, the
problem is NP-hard for both edge-disjoint and node-disjoint paths [6].

I Definition 4 (The Two-Disjoint Paths (Capacitated) Problem). Let G be a (static) graph
whose edges are labelled either α or β with β ≥ α. These labels are the capacities of the
edges. Given node pairs {x1, y1} and {x2, y2}, decide whether G contains paths P1 from x1
to y1 and P2 from x2 to y2 such that:
i. P1 and P2 are disjoint (node-disjoint or edge-disjoint);
ii. P2 may only use edges of capacity β (P1 may use both capacity α and capacity β edges).
The version of node-disjoint paths was proven to be NP-hard for undirected graphs by [8].
The version of edge-disjoint paths was proven to be NP-hard by [18].

I Definition 5 (The Bounded Occurrence 3-Dimensional Matching Problem (BO3DM)). Sup-
pose there are three disjoint sets A = {a1, ..., an}, B = {b1, ..., bn} and C = {c1, .., cn}, and
a set T = {Tµ ∈ A×B × C : µ ∈ [m]} such that each element of A,B,C occurs in the same
constant number M of triples in T . The goal is to find the largest subset T ′ ⊂ T such that
all triples in T ′ are disjoint, i.e., no two elements of T ′ contain the same element of A,B,C.

As shown in [14], there exists an ε0 > 0 such that it is NP-hard to decide whether there exist
n disjoint triples in T (satisfiable instance) or there exist at most (1− ε0)n disjoint triples in
T (ε0-unsatisfied instance).
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Dynamic Flows. We first describe the mechanics of flow over one edge e = (u, v) with
capacity c and length `. Suppose there are d units of supply on node u. Assume the discrete
case in which d, c, ` are all integral and all d need to be moved from u to v. Items move
in groups of size at most c, with one group entering e each time unit. Thus, the items are
transported in dd/ce groups. It takes ` time units for the first group to arrive at v. Since the
groups left u at consecutive time units they arrive at v in consecutive time units. Thus, it
requires dd/ce − 1 + ` time to move all items from u to v over e. Also, in both cases, if other
items arrived at u wanting to enter e they would have to wait until all items already at u
had departed before entering e.

Finally, we introduce some notations. A flow f is feasible if ∀e ∈ E, f(e) ≤ c(e). For any
e ∈ E, we define its edge congestion as EC(e) := f(e)/c(e). Under certain circumstance, we
may introduce the node capacity c(v) of v ∈ V , and define its node congestion NC(v) :=
fout(v)/c(v), where fout(v) is the total flow out of v. For a flow f , we let its edge congestion
EC(f) := maxe∈E EC(e) and node congestion NC(f) := maxv∈V \{t1,...,tk}NC(v), where
t1, ..., tk are sinks.

A static flow f can be specified by a collection of source-sink paths P = (P1, ..., PK) and
corresponding flow values f1, ..., fK . We define the length of flow f as L(f) := maxi∈[k] L(Pi),
where L(Pi) :=

∑
e∈Pi `(e) is the length of Pi. f is called as L-length-bounded for some

L ∈ R+ if L(f) ≤ L, i.e., no path in P has path length longer than L. Also, if all fi’s are
identical, we call f as uniform.

3 Approximation Hardness for Unsplittable/Confluent Dynamic Flows

3.1 Constant Approximation Hardness of the Quickest Flows Problem
This section gives a simple proof that a polynomial-time constant approximation algorithm
for the single-sink Unsplittable/Confluent Quickest Flow problem would imply P = NP .

I Theorem 6. The single-sink Unsplittable/Confluent Quickest Flow problem in both directed
and undirected graphs cannot be approximated to within a factor 3/2− ε, for any ε > 0, unless
P = NP .

3.2 Logarithmic Approximation Hardness of Confluent Quickest Flows
For the single-sink directed Confluent Quickest Flow problem we now derive a much stronger
result than in the previous section. That is, it is NP-hard to even get a O(logn) approximation
to the optimal solution.

To prove the logarithmic approximation hardness, we construct the following instance.

Hard instance. Before building the desired hard instance, we describe the dynamic half-grid
network GN . It can be viewed as an extension of the static half-grid graph in [21]. There
are N rows (numbered from bottom to top) and N columns (numbered from right to left).
All the edges in the i-th row and all the edges in the i-th column have capacity 1/i. The i-th
row extends as far as the i-th column and vice versa. The sink t, located at the bottom of
the half-grid, is connected with the bottom node ti of the i-th column by an edge of capacity
1/i. Also, at the leftmost node of the i-th row, there is a source si with supply M2/i, where
M is a sufficiently large constant. We set all edge lengths as 1, and always enforce edge
directions to be downwards and to the right.

Suppose we are now given an instance I of the directed node-disjoint version of the
Two-Disjoint Paths (Uncapacitated) problem. We replace each 4-degree node in the half-grid
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by a copy of I. Inside the copy, all edges have length 1. Consider the copy of I at the
intersection of the i-th column and j-th row (with j > i) in GN . That instance is incident to
two edges of capacity 1/i and two edges of capacity 1/j. Inside that I, we let the edges of
capacity 1/j be incident to x1 and y1, and the edges of capacity 1/i be incident to x2 and
y2; we set all edge capacities to 1/i. This completes the hard instance of directed confluent
dynamic flows. Denote the constructed network as G.

Utilizing G, we obtain the logarithmic approximation hardness for the Confluent Quickest
Flow problem. The proof works by showing that if we could get a logarithmic approximation,
we could solve I.

I Theorem 7. The single-sink Confluent Quickest Flow problem in directed graphs cannot
be approximated to a factor within O(logn), unless P = NP .

3.3 Approximation Hardness of the Max Flow Over Time Problem

This section discusses the approximation hardness of the single-sink Unsplittable and Conflu-
ent Maximum Flow Over Time problem.

To derive the approximation hardness of the Unsplittable Maximum Flow Over Time
problem, we will again reduce from the directed/undirected edge-disjoint version of Two-
Disjoint Paths (Capacitated) problem. We construct the same network as in Section 3.1 and
utilizing this constructed network, we show

I Theorem 8. The single-sink Unsplittable Maximum Flow Over Time problem in both
directed and undirected graphs cannot be approximated to a factor within 3/2− ε, for any
ε > 0, unless P = NP .

Although the above hard instance applies to the confluent flow, we present a stronger
lower bound for the Confluent Maximum Flow Over Time in directed graphs.

I Theorem 9. The single-sink Confluent Maximum Flow Over Time problem in directed
graphs cannot be approximated to a factor within O(logn), unless P = NP .

4 Constant Bicriteria Approximation Hardness of Dynamic Flows

This section first proves the NP-hardness of constant bicriteria approximations for the
Unsplittable and Confluent Maximum Flow Over Time problems.

Our proof uses reductions from the BO3DM problem. Inspired by the reduction5 presented
in [8, 16], given an instance of BO3DM, we construct the following corresponding hard instance
for the Unsplittable/Confluent Maximum Flow Over Time problem in undirected graphs.
Note that the directed case is similar, except that we enforce all edge directions to point
right. Suppose we are given an instance I of Bounded Occurrence 3-Dimensional Matching
problem. Denote the µ-th triple Tµ as (apµ , bqµ , crµ), where pµ, qµ, rµ ∈ [n]. We build an

5 Even though we are reducing to the same problem note that our goal differs from [8], which aims at
finding a maximum number of length-bounded edge-disjoint paths. For technical reasons, this requires
us to develop a totally different bounding technique.
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undirected graph G = (V,E) where

V = {s, t} ∪ {ail : i ∈ [n], l ∈ [M − 1]} ∪ {si, bi, ci : i ∈ [n]} ∪ {s′µ, xµ, yµ : µ ∈ [m]},
E = {(si, s), (s, bi), (ci, t), (ail, t) : i ∈ [n], l ∈ [M − 1]}

∪{(s′µ, s), (s, xµ), (yµ, apµl) : µ ∈ [m], l ∈ [M − 1]}
∪{(bqµ , xµ), (xµ, yµ), (yµ, crµ) : µ ∈ [m]}.

Hereby, G contains a vertex representing each element in the sets B and C, and (M − 1)
copies of each element in A. Also, G contains a sink t, and sources si (i ∈ [n]), s′µ (µ ∈ [m])
as well as one more node s (s is removed when considering confluent flows). Meanwhile, for
each triple Tµ in T , there are two vertices xµ, yµ to represent it. We connect si with s, and s
with bi for each i ∈ [n]; we also connect s′µ with s, and s with xµ for each µ ∈ [m]. Similarly,
we connect t with ail, ci for each i ∈ [n] and l ∈ [M − 1]. For each tuple, Tµ = (apµ , bqµ , crµ),
we connect xµ with bqµ , and yµ with crµ as well as (M − 1) copies of apµ .

Edge capacities and lengths. All edge capacities are set as 1. Let each (s′µ, xµ) have length
5 (red edges), and each (yµ, crµ) have length 4 (green edges), and each (ail, t) have length 3
(blue edges), and all other edges have length 2 (black edges). Finally, we set the time horizon
T = 14 in the constructed graphs for the Unsplittable/Confluent Maximum Flow Over Time
problems. Based on the constructed instance, we have

I Theorem 10. There exists a constant α > 0 such that, for any ε > 0, there is no
polynomial-time (1 +α, 15

14 − ε)-approximation for the Unsplittable/Confluent Maximum Flow
Over Time problem in both directed and undirected graphs, unless P = NP .

To show the hardness of the Unsplittable/Confluent Quickest Flow problem, we construct an
instance similar to Theorem 10, except that we let each source have supply 1, and have

I Theorem 11. There exists a constant α > 0 such that, for any ε > 0, there is no
polynomial-time ( 15

14 − ε, 1 + α)-approximation for the Unsplittable/Confluent Quickest Flow
problem in both directed and undirected graphs, unless P = NP .

5 Polylogarithmic Approximation for Confluent Dynamic Flows

5.1 Static Confluent Flows in Uncapacitated Networks with κ Sources
We now develop techniques for routing confluent flows in uncapacitated networks with κ ≤ n
sources. Through Section 5.3, unless otherwise specified, the flow discussed is static.

I Definition 12 (β-Satisfiable). For any β ∈ [0, 1], a supply di is β-satisfiable in flow f if at
least a β faction of di can be sent to the sink via f . A flow f is β-satisfiable if all supplies
are β-satisfiable in f .

Again, suppose G = (V,A) is a static directed graph with supply d(v) located at each
v ∈ V . There exists a collection of sinks {t1, ..., tk} ⊂ V . We let κ be the number of non-zero
supplies, and let all edge and node capacities be 1. We present

I Theorem 13. In the directed uncapacitated network with κ uniform non-zero supplies,
given a (splittable) 1-satisfiable flow f , there exists a randomized algorithm for finding a
multi-sink confluent flow f ′ with the node congestion bounded by O((NC(f))2 log3 κ) whp6.

6 Throughout the paper, we use whp to mean with high probability, or more precisely, with probability
1− n−c, where n is the number of nodes in the network and c is a constant.
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Note that if κ is bounded and f is feasible, Theorem 13 can provide confluent flows with
constant congestion.

Also, the support of the resulting flow is a collection of trees rooting at those sinks
t1, ..., tk. We guarantee that the height of those trees can be bounded as below.

I Lemma 14. Whp, the height of any tree constructed in the randomized algorithm is at
most O(NC(f) logn).

5.2 Static Length-Bounded Confluent Flows in Monotonic Networks
This section gives an algorithm for constructing a length-bounded confluent flow in monotonic
networks, utilizing techniques developed in Section 5.1. A monotonic network is a special
(static) directed graph with vertex capacities and no edges pointing in the direction of
decreasing capacity. Formally,

I Definition 15 (Monotonic Network). A directed graph G = (V,A) with node capacity c(v)
for each v ∈ V is a monotonic network iff c(u) ≤ c(v) for every arc (u, v).

The network G = (V,A) is the same as Section 5.1 except that here each node has
capacity c(v) and each edge has capacity 1. Our first step is to prove

I Theorem 16. Let G = (V,A) be a monotone network. Given a 1-satisfiable flow f with
node congestion at most 1, one can, in polynomial time, construct a confluent 1-satisfiable
flow with node congestion O(log8 n) and flow length O (L(f) logn log cmax/ log logn) whp,
even without the no-bottleneck assumption.

The idea is to first decompose the monotonic network into several sub-networks, and in
each, construct length-bounded confluent flows with small node congestion. Connecting all
confluent flows in those sub-networks, we can construct a confluent flow in the original network
as desired. Our monotonic network technique incorporates a new parameter, namely the
edge length, and, more importantly, our objective is to construct a bicriteria confluent flow,
namely bounding both node congestion and length (note that in [22], only node congestion
can be bounded). The main difference from [22] lies in that we embed our new algorithms
for uncapacitated networks into the monotonic network routing.

Our technique can be further improved if we remove the length-bounded constraint.
The key observation is that the sources in each sub-network are only induced by the given
(splittable) flow that we would like to re-route into a confluent one. We can guarantee that, if
the given flow is unsplittable, at most κ flow paths pass between two sequential sub-networks,
inducing at most O(κ) sources. This, combined with our new technique for uncapacitated
networks, gives the improvement of the congestion from poly(logn) to poly(log κ).

I Theorem 17. Let G = (V,A) be a monotone network with a single sink. If there is
1-satisfiable flow f with node congestion at most 1, one can, in polynomial time, construct a
confluent 1-satisfiable flow with node congestion O(log8 κ) whp, under the NBA.

5.3 Static Length-Bounded Confluent Flows in General Networks
Via the techniques developed above for monotonic networks, this section develops a poly-
nomial-time algorithm for determining a length-bounded confluent static flow in general
networks.

Suppose we are given a directed/undirected edge-capacitated network G(V,E) (Section
5.2 dealt with node capacitated networks). Each node v ∈ V has a supply d(v) to be sent to
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the unique sink t. Our goal is to find a subset of supplies of maximum total value that can
be routed via a confluent flow, whose flow length and edge congestion are both bounded.

To this end, we need to pre-process the network as follows. First, we ignore those demands
of size at most dmax/2κ, as they contribute at most half of the value of the optimal flow.
Meanwhile, we round each supply up to the nearest power of 2, and group those with the
same value together, producing O(log κ) groups of distinct supply sizes. To compute an
approximation, we will separately route each supply group in G, and output the flow of
the maximum value among all groups. Note that, this will lose a O(log κ) factor in the
approximation ratio. Hence, we reduce the original problem to the uniform-supply case.
Without loss of generality, by scaling, we can assume every supply is 1.

Second, we round each capacity up to the nearest power of 2, and assume all edges
have capacity at most κdmax, i.e., cmax ≤ κdmax as the extra capacity above this value
is superfluous. Furthermore, when considering the uniform-supply case, those edges with
capacity less than the supply size would never be used, as the supply should be routed
confluently. Accordingly, we can assume each edge capacity is in [1, κ] as dmax = 1 in
unit-supply case, and then there exist O(log κ) distinct capacity sizes.

Given a directed/undirected edge-capacitated network G(V,A) with a single sink t, letting
k := blog cmaxc+ 1, we construct the directed k-layer (monotonic) network H.
k layers. Create k layers and k node sets V (H0), V (H1), ..., V (Hk−1), where V (Hi) :=
V (G) \ {t} and the i-th layer contains V (Hi).
Induced node capacities. For the i-th node set V (Hi) (i = 0, ..., k − 1), denote by ui
the i-th copy of node u, and let ui have capacity 2i.
Vertical arcs. For each edge (u, v) ∈ A(G), connect two vertical arcs (ui, vi) (and
(vi, ui) if G is undirected) with capacity of 2i in H, iff the capacity of (u, v) is at least 2i
(i = 0, ..., k − 1).
Horizontal arcs. For 0 ≤ i ≤ k − 2, ∀u ∈ V , connect a horizontal arc (ui, ui+1) with
capacity 2i.
Arc lengths. Let vertical arcs have the same length as arcs in G, and horizontal arcs
have length 0.
H := (V (H), A(H)). Set V (H) as the union of V (H0), V (H1), ..., V (Hk−1), {t} plus
those dummy sinks, and set A(H) as the collection of those vertical and horizontal arcs.
Supplies. Place the supply of v at its copy v0 in Layer 0.
Dummy sinks. If there exists an edge (u, t) with capacity of 2i, then create a copy tju
of t in Layer j and let the capacity of tju be 2j , for each j = i, ..., k − 1. Connect the
vertical arc (u, tiu) with capacity of 2i, and the horizontal arc (tju, tj+1

u ) with capacity of
2j , for each j = i, ..., k − 2. Finally, connect the arc (tk−1

u , t) with capacity of 2k−1.

Our multi-layer network can be viewed as a new construction enabling our length-bounded
routing technique to work in edge-capacitated networks. Applying Theorem 16 yields:

I Theorem 18. In the layered network H, given a (splittable) flow f for routing all
unit supplies with node congestion at most 1, there exists a polynomial-time algorithm
for constructing a 1-satisfiable confluent flow with node congestion O(log8 n) and flow length
O
(
L log2 n/ log logn

)
whp.

Thus, via Theorem 18, we can obtain a confluent flow h in the k-layer network H with
both node congestion and length being bounded. Nevertheless, since H is constructed
from logarithmic copies of nodes in G, the constructed confluent flow h in H may induce a
non-confluent flow in G, because some vertices v might contain logarithmic out-flow edges.
We then show that there is a polynomial-time scheme for re-routing h into a confluent flow
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in the original network G. Also, although we bound node congestion in H, the original
network G is in fact edge-capacitated and we are actually interested in the edge congestion.
Fortunately, our construction of multi-layer networks can be patched. With the help of the
monotonic structure and dummy sinks, we can bound the edge congestion.

Combining everything, we conclude that

I Theorem 19. Suppose G is a directed/undirected edge-capacitated network with one sink.
If there is an L-length-bounded confluent flow for routing all supplies with edge congestion
at most 1 in G, then, there exists a polynomial-time algorithm for finding a confluent flow
for routing a subset of supplies with value at least

∑
i∈[κ] di/O(log2 κ), with edge congestion

O(log8 n) and flow length O(L · log3 n/ log logn) whp.

5.4 Polylogarithmic Approximation for the Confluent Dynamic Flows
With the techniques developed the polylogarithmic approximation for the confluent dynamic
problem can be shown to immediately follow. We do not use any storage at intermediate
nodes.

I Theorem 20. In directed/undirected, edge-capacitated dynamic networks, there is a
polynomial-time algorithm that constructs an (O(log8 n), O(log2 κ))-approximation for the
single-sink Confluent Quickest Flow problem whp.

I Theorem 21. In directed/undirected, edge-capacitated dynamic networks, there is a
polynomial-time algorithm that constructs an (O(log2 κ), O(log8 n))-approximation for the
single-sink Confluent Maximum Flow Over Time problem whp.

Our technique can be restricted to static flows, yielding

I Theorem 22. In directed/undirected, edge-/node-capacitated static networks that satisfy the
no-bottleneck assumption, there is a polynomial-time algorithm that constructs an O(log10 κ)-
approximation for the single-sink Demand Maximization Confluent Flow problem whp.
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Abstract
Locality-sensitive hashing (LSH) is a fundamental technique for similarity search and similarity
estimation in high-dimensional spaces. The basic idea is that similar objects should produce hash
collisions with probability significantly larger than objects with low similarity. We consider LSH
for objects that can be represented as point sets in either one or two dimensions. To make the
point sets finite size we consider the subset of points on a grid. Directly applying LSH (e.g. min-
wise hashing) to these point sets would require time proportional to the number of points. We
seek to achieve time that is much lower than direct approaches.

Technically, we introduce new primitives for range-efficient consistent sampling (of indepen-
dent interest), and show how to turn such samples into LSH values. Another application of our
technique is a data structure for quickly estimating the size of the intersection or union of a set
of preprocessed polygons. Curiously, our consistent sampling method uses transformation to a
geometric problem.
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1 Introduction

Suppose that you would like to search a collection of polygons for a shape resembling a
particular query polygon. Or that you have a collection of discrete probability distributions,
and would like to search for a distribution that resembles a given query distribution. A
framework for addressing this kind of question is locality-sensitive hashing (LSH), which seeks
to achieve hash collisions between similar objects, while keeping the collision probability low
for objects that are not very similar. Arguably the most practically important LSH method
is min-wise hashing, which works on any type of data where similarity can be expressed in
terms of Jaccard similarity of sets, i.e., the ratio between the size of the intersection and
the size of the union of the sets. Indeed, the seminal papers of Broder et al. introducing
min-wise hashing [5, 6] have more than 1000 citations. Independently, Cohen [10] developed
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Figure 1 Left: Two probability distributions represented as histogram point sets. Right: The
statistical distance can be computed from the Jaccard similarity.

estimation algorithms based on similar ideas (see also [11]). The basic idea behind min-wise
hashing is to map a set S to argminx∈S h(x), which for a strong enough hash function h

gives collision probability equal (or close) to the Jaccard similarity.
If we represent discrete probability distributions by histograms there is a one-to-one

relationship between the Jaccard similarity of two histograms and the statistical distance
between the corresponding distributions. So a search for close distributions in terms of
Jaccard similarity will translate into a search for distributions that are close in statistical
distance, see Figure 1.

To make min-wise hashing well-defined on infinite point sets in the plane we may shift
to an approximation by considering only those points contained in a finite grid of points.
However, for a good approximation these sets must be very large, which means that computing
a hash value h(x) for each point x ∈ S, in order to do min-wise hashing, is not attractive.

1.1 Our results
We consider efficient locality-sensitive hashing for objects that can be represented as point sets
in either one or two dimensions, and whose similarity is measured as the Jaccard similarity
of these point sets. The model of computation considered is a Word RAM with word size at
least log p, where p is a prime number. We use integers in U = {0, . . . , p− 1} (or equivalently
elements in the field Fp of size p) to represent coordinates of points on the grid. Our first
result concerns histograms with n values in U .

I Theorem 1. For every constant ε > 0 and every integer N it is possible to choose an
explicit hash function H : Un → N that has constant description size, can be evaluated in
time O(n log p), and for which Pr[H(x) = H(y)] ∈ [J − ε; J + ε], where J =

∑
i

min(xi,yi)∑
i

max(xi,yi)

is the weighted Jaccard similarity of vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) of weight∑
i xi =

∑
yi = N .

Our construction gives an explicit alternative to existing results on weighted min-wise hashing
(see [14, 17]) whose analysis relies on hash functions that are fully random and cannot be
described in small space. It was previously shown that a form of priority sampling based on
2-independence can be used to estimate Jaccard similarity of histograms [21], but similarity
estimation is less general than locality-sensitive hashing methods such as weighted min-wise
hashing.

We proceed to show the generality of our technique by presenting an LSH method for
geometric objects. We will use approximation to achieve high performance even for “hard”
shapes, and adopt the so-called fuzzy model [1]. In a fuzzy polygon, points that are “close”
to the boundary (relative to the polygon’s diameter) may or may not be included in the
polygon. That is, given a polygon P and real value 0 < φ ≤ 1, define the outer range
P+ = P+(w) to be the locus of points whose distance from a point interior to P is at most
w = φ · d(P ), where d(P ) is the diameter of P . The inner range P− = P−(w) of P is defined
symmetrically.
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Using the fuzzy model a valid answer to the Jaccard similarity of two polygons P1 and
P2 w.r.t. φ is any value X∩

X∪
such that A(P−1 ∩P

−
2 ) ≤ X∩ ≤ A(P+

1 ∩P
+
2 ) and A(P−1 ∪P

−
2 ) ≤

X∪ ≤ A(P+
1 ∪ P

+
2 ), where A(·) denotes the area of the region. To simplify the statement

of the theorem we say that a polygon is α-dense in a rectangle I if for some value α > 0
its area is at least a fraction α of the area of I. We use this to bound the time it takes to
generate the sample points.

I Theorem 2. For every choice of constants ε > 0, φ > 0 and square I ⊆ R2 it is possible
to choose an explicit random hash function H whose description size is constant, that can
be evaluated in time O((t log p)/α), where t is the time to test if a given point lies inside a
polygon, and with the following guarantee on collision probability: Let P1, P2 ⊆ I be polygons
such that P+

1 and P+
2 are α-dense in I. Then Pr[H(P1) = H(P2)] ∈ [J − ε; J + ε], where J

is some valid Jaccard similarity of P1 and P2 in the fuzzy model with parameter φ.

It is an interesting problem whether the additive error in Theorems 1 and 2 can be
improved to a multiplicative 1 + ε error.

In Section 5 we present further applications of our technique and show how a small
summary can be constructed for a set P of polygons such that for any subset Q of P, an
estimate of the area of ∩Q and ∪Q can be computed efficiently in the fuzzy model with
respect to φ.

Techniques. Our main technical contribution lies in methods for range-efficient min-wise
hashing in one and two dimensions, efficiently implementing min-wise hashing for intervals
and rectangles. More specifically, we consider intervals in U and rectangles in U×U . The new
technique can be related to earlier methods for sampling items with small hash values in one
or more dimensions [20, 22]. (In fact, en route we obtain new hash-based sampling algorithms
with improved speed, which may be of independent interest.) However, using [20, 22] to
sample a single item is not likely to yield a good locality-sensitive hash function. The reason
is that the hash functions used in these methods are taken from simple, 2-independent
families and, as explained by Thorup [21], min-wise hashing using 2-independence does not
in general yield collision probability that is close to (or even a function of) the Jaccard
similarity. Instead we use a 2-phase approach: First produce a sample of k elements having
the smallest hash values, and then perform standard min-wise hashing on a carefully selected
subset of the sample using a different hash function.

We can combine and filter the samples to handle a variety of point sets that are not
intervals or rectangles. To create a sample for a subset of a rectangle we can generate a
sample of the rectangle, and then filter away those sample points that are not in the subset.
This is efficient if the subset is suitably dense in the rectangle (which we ensure by working
in the fuzzy model). To create a sample from the union of two sets, simply take the union
of the samples. Theorems 1 and 2 are obtained in this way, and it would be possible to
instantiate many other applications.

At the heart of our range-efficient sampling algorithms for one and two dimensions lies a
reduction to the problem of finding an integer point (or integer points) in a given interval
with small vertical distance to a given line. Such a point can effectively be found by traversing
the integer convex hull of the line. Using a result of Charrier and Buzer [9] this can be done
in logarithmic time. Thus, geometry shows up in an unexpected way in the solution.
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1.2 Comparison with related work
We are not aware of previous work dealing with range-efficient locality-sensitive hashing. The
most closely related work is on range-efficient consistent (or coordinated) sampling, which is
a technique for constructing summaries and sketches of large data sets. The technique comes
in two flavors: bottom-k (or min-wise) sampling, which fixes the sample size, and consistent
sampling (or sub-sampling), which fixes the sampling probability. In both cases the idea is
to choose as a sample those elements from a set S ⊆ U that have small hash values under
a random hash function h : U → [0; 1]. If the sample size is fixed and some hash values
are identical then an arbitrary tie-breaking rule can be used, e.g., selecting the minimum
element. To make argmin uniquely defined, which is convenient, we take argminx∈I h(x)
to be the smallest value y ∈ I for which h(y) = minx∈I h(x). To denote the set of the k
elements having the smallest hash values (with ties broken in the same way) we use the
notation argmink. We focus on settings in which U is large and it is infeasible to store a
table of all hash values.

In one dimension. Pavan and Tirthapura [20] consider the 2-independent family of linear
hash functions in the field of size p, i.e., functions of the form h(x) = (ax+ b) mod p. They
show how to find hash values h(x) below a given threshold ∆, where x is restricted to an
interval I. (See also [2] for another application of this primitive.) The algorithm of Pavan and
Tirthapura uses time O(log p+ k), where k is the number of elements x ∈ I with h(x) ≤ ∆.
Using this in connection with doubling search leads to an algorithm finding the minimum
hash value in time O(log2 p). In this paper we show how to improve the time complexity:

I Lemma 3. Let h(x) = (ax+b) mod p, where p is prime and 0 ≤ a, b < p. Given i2 > i1 > 0
consider the interval I = {i1, . . . , i2}. It is possible to compute argminx∈I h(x) (the min-hash
of I) in time O(log |I|).

We will argue in Section 2 that Lemma 3 can be applied repeatedly to subintervals to output
the k smallest hash values (and corresponding inputs) in time O(k log |I|). The possibility of
choosing a = 0 is included for mathematical convenience (to ensure 2-independence), though
in most applications it will be better to choose a > 0 (which in addition makes argmin
uniquely defined without a tie-breaking rule).

In more than one dimension. Tirthapura and Woodruff [22] consider another class of
2-independent functions, namely linear transformations on vectors over the field F2. Integers
naturally correspond to such vectors, and for a dyadic interval I containing all integers that
share a certain prefix, the problem of finding elements in I that map to zero is equivalent to
solving a linear system of equations. Since an arbitrary interval can be split into a logarithmic
number of dyadic intervals they are able to compute all the integers that map to zero in
polylogarithmic time. The sampling probability can be chosen as an arbitrary integer power
of two. This method generalizes to rectangles in dimension d ≥ 2.

In this paper we instead consider linear, 2-independent hash functions of the form
(x, y) 7→ (ax + by + c) mod p . We do not know of a method for efficiently computing
a min-hash over a rectangle for such functions, but we are able to efficiently implement
consistent sampling with sampling probability 1/p.

I Lemma 4. Let h(x, y) = (ax + by + c) mod p, where p is prime and 0 ≤ a, b, c < p.
Given i1 < i2 and j1 < j2 consider I = {i1, . . . , i2} × {j1, . . . , j2}. It is possible to compute
I ′ = {(x, y) ∈ I | h(x, y) = 0} in time O((|I ′|+ 1) log(min(i2 − i1, j2 − j1))).
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For random a, b, c the expected size of the sample I ′ is |I|/p, and because of 2-independence
the distribution of |I ′| is concentrated around this value. Compared to the method of [22]
ours is faster, but has the disadvantage that the sampling probability cannot be chosen freely.
However, as we will see this restriction is not a real limitation to our applications to locality
sensitive hashing and size estimation.

From consistent sampling to LSH. Our technique for transforming a consistent sample
to an LSH value is of independent interest. Thorup [21] shows that min-wise hashing using
2-independence does not in general yield collision probability that is close to (or even a
function of) the Jaccard similarity. On the positive side he shows that bottom-k samples
of two sets made using a 2-independent hash function can be used to estimate the Jaccard
similarity J of the sets with arbitrarily good precision. However, this does not yield a
locality-sensitive hash function with collision probability (close to) J , and obvious approaches
such as min-wise hashing applied to the samples fails to have the right collision probability.
Instead, we use consistent sampling (using a 2-independent family) followed by a stronger
hash function for which min-wise hashing has the desired collision probability up to an
additive error ε. This transformation yields the first LSH family for Jaccard similarity (with
proven guarantees on collision probability) where the function can be:

evaluated in O(n+ poly(1/ε)) time on a set of size n, and
described and computed in a constant number of machine words (independent of n).

Previous such functions have used either time per element that grows as ε approaches
zero [16], or required description space that is a root of n (see [12]).

1.3 Preliminaries
We will make extensive use of 2-independence:

I Definition 5. A family of hash functions H mapping U to U is called 2-independent if
∀x1, x2, a1, a2 ∈ U with x1 6= x2 and h ∈ H chosen uniformly we have

Pr[h(x1) = a1 ∧ h(x2) = a2] = 1/|U |2 .

It will be convenient to use the notation x±∆ for a number in the interval [x−∆;x+ ∆].
Carter and Wegman [7] showed that the family H1 = {x 7→ (ax+ b) mod p | a, b ∈ U}

is 2-independent on the set U = {0, . . . , p− 1} when p is a prime. Finally, we make use of
ε-minwise independent families:

I Definition 6. A family of hash functionsH mapping U to N is called ε-minwise independent
if for every set S ⊂ U , every y ∈ S, and random h ∈ H: Pr[h(y) = min h(S)] = (1± ε)/|S|.

Indyk [16] showed that an efficient ε-minwise independent family mapping to a range of
size O(p/ε) can be constructed by using an O(log(1/ε))-independent family of functions
(e.g. polynomial hash functions). Dahlgaard and Thorup [12] showed that the evaluation
time can be made constant, independent of ε, by using space |U |Ω(1). If we only care about
sets of size up to some number n̂, this space usage can be improved to (n̂/ε)Ω(1).

2 Range-efficient bottom-k sampling in one dimension

The aim of this section is to show Lemma 3 and how it can be used to efficiently compute
consistent as well as bottom-k samples. Together with the general transformation presented
in Section 4 this will lead to Theorem 1.
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Figure 2 Illustration of reduction to integer convex hull.

Without loss of generality suppose 0 < i1 < i2 < p, consider I = {i1, . . . , i2} ⊆ U , and
let h ∈ H1 = {x 7→ (ax + b) mod p | a, b ∈ U}. To show Lemma 3 we must prove that
argminx∈I h(x) can be computed in time O(log |I|). In case a = 0 this is trivial (just output
i1), so we focus on the case a > 0. We will show how the problem can be reduced to the
problem of finding the integer point at the smallest (vertical) distance below the line segment

` = {(x, (ax+ b)/p) | x ∈ [i1; i2]}. (1)

To see this observe that for x ∈ N we have vertical distance (ax + b)/p − b(ax+ b)/pc
between the line and the nearest integer point. Using the equality

(ax+ b)/p− b(ax+ b)/pc = ((ax+ b) mod p)/p

we see that minimizing (ax+ b mod p) is equivalent to minimizing (ax+ b)/p−b(ax+ b)/pc,
as claimed. Therefore it suffices to search for the point (x, y) ∈ D = I × N below ` that is
closest to `. Since ` is a line, the point (x, y) must lie on the convex hull CH(`) of the set of
points in D that lie below `, referred to as the “integer convex hull”, see Figure 2. Clearly,
the closest point will always be on the upper part of the hull, denoted CHL(`). Zolotykh [24]
showed that CH(`) consists of O(log(i2 − i1)) line segments. To find a point on the integer
convex hull with the smallest vertical distance to ` we will use a result by Charrier and
Buzer [9].

I Theorem 7. (Charrier and Buzer [9]) Given a line segment `, the upper integer convex
hull CHL(`) can be computed in O(log(i2 − i1)) time, where i1 and i2 are the x-coordinates
of the end points of `.

Charrier and Buzer initially assume that ` passes through the origin. However, they note
(Section 7 in [9]) that this requirement is not needed. Thus, using their result on the line `
defined in (1) we obtain Lemma 3.

We now discuss how to use Lemma 3 to output the k smallest hash values (and corre-
sponding inputs, i.e., the bottom-k sample) in time O(k log p). First compute CHL(`) and
find the point (x1, y1) ∈ CHL(`) with the smallest vertical distance to `. Next, split the
problem into two subintervals; one for the part of ` in the x-interval [i1, x1 − 1] and one for
the part of ` in the x-interval [x1 + 1, i2]. Using a heap to find the integer point with smallest
vertical distance in the intervals considered, we can repeat this process until k points have
been found. To compute a consistent sample rather than the bottom-k sample we simply
stop the procedure whenever we see an element with a hash value larger than the threshold.

I Corollary 8. Let h(x) = (ax + b) mod p, where p is prime and 0 ≤ a, b < p. Given
0 ≤ i1 < i2 < p consider I = {i1, . . . , i2}. It is possible to compute the bottom-k sample (or
the consistent sample of expected size k) from the interval I with respect to h in (expected)
time O(k log |I|).

It is an interesting problem whether it is possible to improve this bound to O(k + log |I|).
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3 Rectangle-efficient consistent sampling

The aim and structure of this section are similar to those of Section 2, but now addressing the
case where we want to do hashing-based sampling in a rectangle I = {i1 . . . , i2}×{j1 . . . , j2}.
Specifically, we prove Lemma 4 and show how one can use it to perform consistent sampling.
This will be used in Section 4 to prove Theorem 2 and in Section 5 to construct an efficient
data structure for estimating the size of intersections and unions of polygons. Assume without
loss of generality that 0 ≤ i1 < i2 < p, 0 ≤ j1 < j2 < p and i2 − i1 ≤ j2 − j1. Consider the
2-independent family H2 = {(x, y) 7→ (ax+ by + c) mod p | a, b, c ∈ U} and choose h ∈ H2.
To prove Lemma 4 we have to argue that

I ′ = {(x, y) ∈ I | h(x, y) = 0} (2)

can be computed in time O((|I ′|+ 1) log(i2 − i1)). Similar to the previous section we will
show how the problem can be reduced to the problem of finding all integer points below a
line segment ` with a small vertical distance to `.

To find all (x, y) ∈ I for which h(x, y) = (ax + by + c) mod p = 0, as a first step
we translate the function h such that we can consider input y ∈ [0, y′2]. Specifically, we
replace h with h′ : (x, y) 7→ (ax + by + c′) mod p, where c′ = c + bj1, and consider inputs
with (x, y) ∈ [i1, i2] × [0, j′2], j′2 = j2 − j1. This is equivalent to the original task since
h(x, y) = h′(x, y − j1). Next note that for x ∈ [i1, i2] and y ∈ [0, j′2]:

(ax+ by + c′) mod p = 0 ⇔ y ≡ (−b−1ax− b−1c′) mod p,

To simplify the expression set q = −b−1a and s = −b−1c′. Then we have a zero hash
value when y = (qx + s) mod p = (qx + s) − kp for some positive integer k. Dividing by
p and substituting α = q/p and β = s/p we get y

p = αx + β − k, where x ∈ [i1, i2] and
y/p ∈ [0, j′2/p]. Now we can express the original problem as finding all (x, k) ∈ [i1, i2]× N
such that αx+ β − k ∈ [0, j′2/p]. Consider the line segment `′ = {(x, αx+ β) | x ∈ [i1; i2]}.
An integer point (x′, y′) below `′ with x′ ∈ [i1, i2] and vertical distance at most j′2/p to `′
corresponds to a point (x′, y′) such that h′(x′, y′) = 0.

To find all the points (x′, y′) that fulfill the restrictions we can apply the same technique
as in Section 2. That is, compute the integer convex hull CHL(`′) using the algorithm by
Charrier and Buzer [9]. One difference from the setting of Section 2 is that we are interested
in all integer points close to `′, but CHL(`′) is guaranteed only to include one such point if
it exists. This is handled by recursing on subintervals in which no points have been reported
until we find an interval where the integer convex hull does not contain a point close to
`′. Recall that the time to output the integer convex hull is O(log(i2 − i1)) by the result
of Zolotykh [24], so the cost per point reported is logarithmic. This concludes the proof of
Lemma 4.

3.1 Concentration bound
I Definition 9. An (ε, δ)-estimator for a quantity µ is a randomized procedure that, given
parameters 0 < ε < 1 and 0 < δ < 1, computes an estimate X of µ such that Pr[|X − µ| >
εµ] < δ.

For some α > 0 consider an arbitrary set S ⊆ I, and the sample S′ = S ∩ I ′ where I ′ is
defined in (2). Let 1/p be the sampling probability. We now show that p |S′| is concentrated
around its expectation |S| when p is not too large.
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I Lemma 10. For ε > 0, p |S′| is an (ε, p/(ε2µ))-estimator for µ = |S|.

Proof. The proof is a standard application of the second moment bound for 2-independent
indicator variables. For each point q ∈ S let Xq be the indicator variable that equals 1
if q ∈ I ′ and 0 otherwise. Clearly we have |S′| = X where X =

∑
q∈S Xi, so E[pX] =

p
∑
q∈S E[Xi] = µ. By definition of I ′ the variables are 2-independent, and so Var(pX) =

p2Var[X] ≤ p2E[X] = pµ. Now Chebyshev’s inequality implies Pr[|pX − µ| > εµ] <
Var(pX)/(εµ)2 ≤ p/(ε2µ). J

To get an (ε, δ)-estimator we thus need p ≤ δε2µ. The expected time for computing I ′ in
Lemma 4 is upper bounded by O(E[|I ′|+ 1] log p) which is O((|I|/p+ 1) log p). If we choose
p = Ω(δε2|S|), to get an (ε, δ)-estimator, and let α = |S|/|I| be the fraction of points of I
that are also in S, then the expected time simplifies to O(log(p)/(αδε2)). That is, the bound
independent of the size of S, has logarithmic dependence on p, and linear dependence on
1/α, 1/δ, and 1/ε.

4 From consistent sampling to locality-sensitive hashing

We now present a general transformation of methods for 2-independent consistent sampling
to locality-sensitive hashing for Jaccard similarity. Together with the consistent sampling
methods in Sections 2 and 3 this will yield Theorems 1 and 2.

Thorup [21] observed that min-wise hashing based on a 2-independent family does not
give collision probability that is close to (or a function of) Jaccard similarity. He observes
a bias for a 2-independent family of hash functions based on multiplication, similar to the
ones used in this paper. Thus we take a different route: First produce a consistent sample
using 2-independence, and then apply min-wise hashing to the sample using a stronger hash
function. The expected time per element is constant if we make sure that the sample has
expected constant size.

Let constants ε > 0 and α > 0 be given. For a point set S ⊆ I with |S| ≥ α|I| we produce
a 2-independent sample I ′ ∩ S with sampling probability 1/p∗, where p∗ = Θ(ε3α|I|) is a
prime number. This is possible assuming |I| > 1/(ε3α) because there exists a prime pi in
every interval {2i, . . . , 2i+1− 1}, i = 1, 2, 3, . . .. Now select f at random from an ε/4-minwise
independent family and define the hash value

H∗(S) = argmin
x∈I′∩S

f(x) . (3)

I Lemma 11. For S, T ⊆ I with |S|, |T | ≥ α|I| and |I| > 12 p/(ε3α) we have Pr[H∗(S) =
H∗(T )] = |S∩T |

|S∪T | ± ε, where the probability is over the choice of I ′ and f .

Proof. Consider the Jaccard similarity of samples S′ = S ∩ I ′ and T ′ = T ∩ I ′:

J ′ = |S
′ ∩ T ′|
|S′ ∪ T ′|

= |S
′|+ |T ′| − |S′ ∪ T ′|
|S′ ∪ T ′|

.

Conditioned on a fixed I ′, the collision probability of H∗(S) is J ′ ± ε/4 by the choice of f .
Thus it suffices to show that J ′ differs from J by at most ε/2 with probability at least 1− ε/4

By Lemma 10, p · |S′ ∪ T ′| is an (ε/8, ε/12)-estimator for |S ∪ T | since |S ∪ T | ≥ α|I|.
Similarly, p · |S′| is an (ε/8, ε/12)-estimator for |S| and p · |T ′| is an (ε/8, ε/12)-estimator for
|T |. The probability that all estimators are good is at least 1− ε/4, and in that case

J − ε/2 < |S ∩ T | − (3ε/8)|S ∪ T |
|S ∪ T |+ (ε/8)|S ∪ T | ≤ J

′ ≤ |S ∩ T |+ (3ε/8)|S ∪ T |
|S ∪ T | − (ε/8)|S ∪ T | < J + ε/2

as desired. J
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We have not specified f . The most obvious choice is to use an O(log(1/ε))-independent
hash function [16]. Another appealing choice is twisted tabulation hashing [12] that yields
constant evaluation time, independent of ε. The expected size of S ∩ I ′ is bounded by a
function of ε and α. This means that we can combine twisted tabulation with an injective
universe reduction step to reduce the domain of twisted tabulation to a (large) constant
depending on ε and α.

Proof of Theorem 1. Consider a vector x = (x1, . . . , xn) ∈ Un. We follow the folklore
approach [14] of conceptually mapping each vector x to a set Px, such that the Jaccard
similarity of Px and Py exactly equals the weighted Jaccard similarity of x and y. In particular,
it is easy to verify that this is the case if we let Px = {(i, j) | i = 1, . . . , n; j = 1, . . . , xi}.
Note that Px and Py both have size N . We will use the following class of hash functions
from U × U to U :

H2 = {(x, y) 7→ (ax+ by + c) mod p | a, b, c ∈ U} . (4)

The 2-independence of H2 follows from the arguments of Carter and Wegman [7]. A
proof can be found in the full version of this paper [13]. When restricted to points of the
form (i, ·) for a fixed i, each function h ∈ H2 has a form suitable for Corollary 8 in Section 2.
This means we can find the minimum for Px restricted to a given column i in time O(log xi).
Using a heap to keep track of the smallest hash value from each column of Px not (yet)
reported in the sample, we can output all elements of Px with a hash value smaller than
any given threshold τ in time O(log p) per element. The threshold τ is chosen to match the
desired sampling probability p∗.

Lemma 11 then says that we get the desired collision probability up to an additive error
of ε. The expected time to hash is O(n log p) (to populate the priority queue) plus O(log p)
times the expected number of samples. The expected number of samples |S|/p is constant
for every constant ε > 0, which gives the desired time bound in expectation.

It is possible to turn the expected bound into a worst case bound by stopping the
computation if the running time exceeds 1/δ times the expectation, which happens with
probability at most δ. If we simply output a constant in this case the collision probability
changes by at most δ (which we can compensate for by decreasing ε). J

Proof of Theorem 2. The proof is similar to the proof of Theorem 1 but with some added
geometric observations. Let P1 and P2 be two polygons contained in I. As mentioned in the
introduction, a valid answer to the Jaccard similarity of polygons P1 and P2 with respect
to φ is any value X∩

X∪
such that A(P−1 (w1) ∩ P−2 (w2)) ≤ X∩ ≤ A(P+

1 (w1) ∩ P+
2 (w2)) and

A(P−1 (w1) ∩ P−2 (w2)) ≤ X∪ ≤ A(P+
1 (w1) ∩ P+

2 (w2)), where wi = φ · d(Pi) for i ∈ {1, 2}.
We now switch to considering the restrictions of P+

1 (w1/2) and P+
2 (w1/2) to a p-by-p

grid of points whose enclosing rectangle contains I. See [15] for a survey on snapping points
to a grid.

The grid points are identified in the natural way with integer coordinates in [p] × [p].
We choose p such that the number of points inside I is Θ(p/α) times the desired number of
samples required for Lemma 11 to hold.

Let L+ = [i1, i2]×[j1, j2] be the minimum bounding box of I∩P+
1 (w1/2) and I∩P+

2 (w2/2).
The consistent sampling will be made on P+

i (wi/2), i ∈ {1, 2}. The reason for this is that

|P+
1 (w1/2) ∩ P+

2 (w2/2)|/|P+
1 (w1/2) ∪ P+

2 (w2/2)|
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is a valid answer to the Jaccard similarity of P1 and P2 in the fuzzy model with respect to
φ, which follows immediately from the below two inequalities that are proven in Lemma 13
(Section 5):

A(P1 ∪ P2) ≤ |(P+
1 (w1/2) ∪ P+

2 (w2/2)) ∩ I| ≤ A(P+
1 (w1/2) ∪ P+

2 (w2/2)), and
A(P1 ∩ P2) ≤ |(P+

1 (w1/2) ∩ P+
2 (w2/2)) ∩ I| ≤ A(P+

1 (w1/2) ∩ P+
2 (w2/2)) .

Lemma 11 gives us the desired collision probability up to an additive error of ε. The
expected time to hash is O(log p) plus O(t log p) times the expected number of samples, where
t is the time to test if a given grid point lies inside a polygon. If we assume that P1 and P2
are α-dense in I, that is, there exists an α > 0 such that |P+

1 (w1/2)|, |P+
2 (w2/2)| > α · |L+|,

then the expected number of samples is |L+|/(αp) for any constants ε and φ, which gives the
desired time bound in expectation. In many natural settings α is a constant, which implies
that the expected number of samples is also constant.

5 Estimating union and intersection of polygons

In this section we consider the question: Given a set P = {P1, . . . , Pn} of n preprocessed
polygons in the plane, how efficiently can we compute the area of the union or the intersection
of a given subset Q ⊆ P? In contrast to elementary approaches based on global, fully random
sampling, our solution allows polygons to be independently preprocessed based on a small
amount of shared randomness that specifies a pseudorandom sample.

Computing the area of the union of a set of geometric objects is a well-studied problem
in computational geometry. One example is the Klee’s Measure Problem (KMP). Given n
axis-parallel boxes in the d-dimensional space, the problem asks for the measure of their union.
In 1977, Victor Klee [18] showed that it can be solved in O(n logn) time for d = 1. This was
generalized to d > 1 dimensions by Bentley [3] in the same year, and later improved by van
Leeuwen and Wood [23], Overmars and Yap [19] and, Chan [8]. In 2010, Bringmann and
Friedrich [4] gave an O(dnε2 ) Monte Carlo (1 + ε)-approximation algorithm for the problem.

A related question is the computation of the area of the intersection of n polygons in d-
dimensional space. Bringmann and Friedrich [4] showed that there cannot be a (deterministic
or randomized) multiplicative (2d1−ε)-approximation algorithm in general, unless NP=BPP.
They therefore gave an additive ε-approximation for a large class of geometric bodies, with
a running time of O(ndε2 ) assuming that the following three queries can be approximately
answered efficiently: point inside body, volume of body and sample point within a body.

In this section we will approach the problem slightly differently. The approach we suggest
is to produce a small summary of the set P , such that given any subset Q of P the union and
intersection of Q can be estimated efficiently. Unfortunately, the lower bound arguments by
Bringmann and Friedrich [4] defeat any reasonable hope of achieving polynomial running time
for arbitrary polygons. To get around the lower bounds we again adopt the approximation
model proposed by Arya and Mount [1] (stated in Section 1.1).

Similar to the approach by Bringmann and Friedrich [4] we will also use sampling of the
polygons to estimate the size of the union and intersection. However, compared to earlier
attempts, the main advantage of our approach is that we generate the sample points (a
summary of the input) in a preprocessing step and after that we may discard the polygons.
Union and intersection queries are answered using only the summary. Also, we do not impose
any restrictions on the input polygons. The drawbacks are that we only consider the case
when d = 2 and the approximation model [1] we use is somewhat more “forgiving” than
previously used models.
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For each polygon Pi in P , 1 ≤ i ≤ n, let wi = φ · d(Pi), where d(Pi) is the diameter of Pi
and 0 ≤ φ ≤ 1 is a given constant. Let Q be the input to a union or intersection query, that
is, Q is a subset of P. To simplify the notations we will write ∪Q+(w) = ∪Pi∈QPi(wi) and
∪Q−(w) = ∪Pi∈QPi(wi). Define ∩Q+(w) and ∩Q−(w) symmetrically.

Following the above discussion, given a legal answer to a set intersection query X = ∩Q
is any X ′ such that ∩Q−(w) ⊆ X ′ ⊆ ∩Q+(w) and for a union query X = ∪Q a legal answer
is any X ′ such that ∪Q−(w) ⊆ X ′ ⊆ ∪Q+(w). It is immediate from the above definitions
that for any polygon P and any w ≥

√
2 we have: P−(w) ⊂ P ⊂ P+(w). We will use the

number of integer coordinates, denoted |P |, within a polygon P to estimate the area of the
polygon, denoted A(P ). Proofs of Lemmas 12, 13 and 15 can be found in the full version of
this paper [13].

I Lemma 12. For a polygon P having integer coordinates we have A(P ) ≤ |P |.

To make the queries more efficient we will not estimate the number of integer coordinates in
the intersection/union X of a query, instead we will estimate an approximation of |X|. We
show:

I Lemma 13. For any polygon P and w ≥
√

8: A(P ) ≤ A(P+(w/2)) ≤ |P+(w/2)| ≤
A(P+(w)).

As an immediate consequence of Lemma 13 we can use the consistent samples in P+
i (wi/2),

1 ≤ i ≤ n, for our estimates of the intersection and union, provided that wi ≥
√

8. It remains
to show how a summary of P can be computed and how the summary can be used to answer
union and intersection queries.

Constructing a summary. For a given query Q containing k ≤ n polygons, let Pmin =
argminPi∈Q |P

+
i (wi/2)|, Pmax = argmaxPi∈Q |P

+
i (wi/2)| and let dmin = argminPi∈Q d(Pi).

If Pi = Pmax and Pj = Pmin then we will write P+
max(w) = P+

i (wi) and P+
min(w) = P+

j (wi),
respectively. Before giving the construction of summary and query algorithms we state two
lemmas:

I Lemma 14. |P+
max(w/2)| ≤ | ∪ Q+(w/2)| ≤ k · |P+

max(w/2)|.

I Lemma 15. If ∩Q−(w) 6= ∅ and φ · dmin >
√

8 then φ2

2 · |P
+
min(w/2)| ≤ | ∩ Q+(w/2)| ≤

|P+
min(w/2)|.

We will use the rectangle-efficient consistent sampling technique described in Section 3 to
generate a summary of P to estimate the area of ∩Q or ∪Q, where Q is a given subset of P .

The idea of the construction algorithm for the summary is simple. Let X = ∩Q+(w/2) or
X = ∪Q+(w/2) depending on the query and, assume that φ · dmin >

√
8. In a preprocessing

step construct a summary of P , denoted S. The summary S will contain consistent samples
for a number of different sampling rates. To answer a query, pick a minimum sampling
rate 1/p that guarantees that the expected number of consistent samples in X is small but
sufficient to guarantee an (ε, δ)-estimate of |X|. If X contains enough unique consistent
samples then the algorithm reports an estimate of X, otherwise it iteratively increases the
sampling rate with a constant factor until X contains sufficiently many unique consistent
samples. From Section 3.1 we know that an (ε, δ)-estimator of X requires the sampling rate
to be approximately 1/(δ · ε2 · |X|).

From Lemmas 14 and 15 we have that the smallest area that will ever be considered in
a query Q has size at least fmin = φ2

2 |P
+
min(w/2)| and the largest area is at most fmax =

n · |P+
max(w/2)|. To get an (ε, δ)-estimate of |X| at least 1/δ2ε unique consistent samples are

required to lie within X. As output from the above algorithm we get two data structures:
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p[`]: Returns a prime number between [2`−1, 2`].
S[Pi, `]: Returns the set of consistent samples within P+

i (wi/2), i.e., points satisfying
the equation (ax+ by + c) mod p[j] = 0. If the set is empty it returns False.

Complexity. Consider the total number of consistent samples generated for a polygon
Pi. The number of consistent samples is expected to increase with a factor of two in each
iteration of the algorithm, that is, the expected total number of consistent samples form an
exponentially growing geometric series which sums to O( 1

φ2δ2ε ·
|Pi|
|Pmin| ). Summing up over all

the polygons, the total number of consistent samples is bounded by O( n
φ2δ2ε ·

|Pmax|
|Pmin| ), which

is also the expected size of the summary.
For the time complexity we first note that the above procedure can be implemented

such that iterations where no consistent samples are expected to be generated are omitted
without consideration. Since at least a fraction of φ/2 of all consistent samples in the minimal
bounding box of P+

i (wi/2) is expected to lie within P+
i (wi/2) (can be shown using a similar

argument as in the proof of Lemma 15) the total number of generated consistent samples is
expected to be at most a factor of 2/φ greater than the number of consistent samples in the
summary. Each consistent sample requires at most O(log |Pi|) time to generate, according to
Theorem 4. If we assume that testing if a consistent sample lies inside a polygon can be done
in time t then the expected time to build a summary of P is O( n

φ2δ2ε ·
|Pmax|
|Pmin| · (t+ log |Pmax|)).

A description of union and intersection queries can be found in the full version of this
paper [13]. We can now summarize the results in this section:

I Theorem 16. . Given a set P = {P1, . . . , Pn} of polygons and three constants ε, δ > 0
and 0 < φ ≤ 1. If φ · d(Pi) ≥

√
8 for all Pi ∈ P then, in the fuzzy model with respect to φ,

there exists a summary of size O( n
φ2δ2ε ·

|Pmax|
|Pmin| · (t+ log |Pmax|)) such that for any subset Q of

P containing k ≤ n polygons an (ε, δ)-estimate of ∪Q can be computed in O(k/δε2) expected
time and an (ε, δ)-estimate of ∩Q can be computed in O( k

φ2δε2 ) expected time.
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Abstract
We study the maximum induced matching problem on a graph G. Induced matchings correspond
to independent sets in L2(G), the square of the line graph of G. The problem is NP-complete
on bipartite graphs. In this work, we show that for a number of graph families with forbidden
vertex orderings, almost all forbidden patterns on three vertices are preserved when taking the
square of the line graph. These orderings can be computed in linear time in the size of the
input graph. In particular, given a graph class G characterized by a vertex ordering, and a
graph G = (V,E) ∈ G with a corresponding vertex ordering σ of V , one can produce (in linear
time in the size of G) an ordering on the vertices of L2(G), that shows that L2(G) ∈ G - for a
number of graph classes G - without computing the line graph or the square of the line graph of G.
These results generalize and unify previous ones on showing closure under L2(·) for various graph
families. Furthermore, these orderings on L2(G) can be exploited algorithmically to compute a
maximum induced matching on G faster. We illustrate this latter fact in the second half of
the paper where we focus on cocomparability graphs, a large graph class that includes interval,
permutation, trapezoid graphs, and co-graphs, and we present the first O(mn) time algorithm
to compute a maximum weighted induced matching on cocomparability graphs; an improvement
from the best known O(n4) time algorithm for the unweighted case.
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1 Introduction

A matching in a graph G(V,E) is a subset of edges M ⊆ E where no two edges in M have a
common endpoint, i.e. every pair of edges in M is at distance at least one in G. An induced
matching in G is a matching that forms an induced subgraph of G, i.e. every pair of edges in
the induced matching is at distance at least two in G. Induced matching was introduced in
[33] by Stockmeyer and Vazirani, as an extension of the matching problem (known as the
marriage problem) to the “risk-free” marriage problem. Stockmeyer and Vazirani showed that
maximum induced matching is NP-complete on bipartite graphs. The same result was also
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proven by Cameron in [5]. Since its introduction, the problem has been studied extensively.
Induced matchings appear in many real-world applications. For instance, the problem can
be used to model uninterrupted communications between broadcasters and receivers [17].
In [1], it was used to model the maximum number of concurrent transmissions in wireless
ad hoc networks. In [26], it was used to extract and discover storylines from search results.
Induced matchings have also been used to capture a number of network problems, see for
instance [21, 2, 14] for network scheduling, gathering, and testing.

The problem is NP-complete even on bipartite graphs of degree three, and planar
bipartite graphs [27]. It is also hard to approximate to within a factor of n1−ε and ∆1−ε

G

unless P = NP [13], where ∆G is the maximum degree of the graph G. In [31], it was shown
that the problem is W[1]-hard in general, but planar graphs admit a linear size kernel.

On the tractable side, induced matching is polynomially solvable for a number of graph
classes, including trees, weakly chordal, asteroidal-triple free, and circular arc graphs, as
well as graphs of bounded clique width [5, 6, 7, 16, 17, 8, 22]. We refer the reader to [13], a
survey by Duckworth et al. that contains most of the references and complexity results.

Most of the graph classes for which the problem is tractable have well defined intersection
models. One of the main techniques used to show the problem is tractable for a graph
class G, is to show that given an intersection representation of a graph G ∈ G, there exists
an intersection representation of a graph H ∈ G, such that L2(G) = H, where L2(G) is
the square of the line graph of G. In other words, one can show that these graph classes
are closed under the operation of “taking the square of the line graph” (L2(·) operation).
Since computing a matching (resp. an induced matching) on a graph G ∈ G is equivalent to
computing an independent set on L(G), the line graph of G, (resp. on L2(G), the square of
L(G)), by showing closure under L2(·), the induced matching problem is tractable on G if
and only if computing an independent set is tractable on G.

A vertex ordering characterization is an ordering on the vertices of a graph that satisfies
certain properties. A graph class G has a vertex ordering characterization if every G ∈ G has a
total ordering of its vertices that satisfies said properties. In this work, we use vertex ordering
characterizations to show that certain graph classes are closed under L2(·). In particular,
one can observe that lexicographic orderings on the edges of a given vertex ordering of G
produces an ordering on the vertices of L2(G). Since many graph classes are characterized
by vertex orderings, and are closed under the square of the line graph operation, it is natural
to ask what these orderings on the edges produce as vertex orderings on L2(G). In [3],
Brandstädt and Hoàng showed how to compute perfect elimination orderings of L2(G) when
G is chordal.

In this work we show that almost all forbidden patterns on three vertices are “preserved"
under the L2(·) operation, under two algorithms that compute orderings on L2(G). This
general theorem shows that graph families with certain vertex ordering characterizations are
closed under the L2(·) operation; and these orderings of L2(G) can be computed in linear
time in the size of G. This property gives, in our opinion, the most natural way to approach
this closure operation, and unfies the results on structural graph classes that have relied on
geometric intersection models to show closure. Furthermore, being able to compute vertex
orderings directly can be exploited algorithmically, since algorithms on the graph classes
covered often rely on their vertex ordering characterizations.

Using two different rules (? and •) to compute these orderings on L2(G), we show that
both the ? and the • rules preserve forbidden patterns in the square of the line graph. As a
corollary, we get that threshold, interval, and cocomparability graphs – among other classes
– are all closed under L2(·), and their corresponding vertex ordering characterizations are
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all preserved under L2(·). One of the classes we focus on is cocomparability graphs, a large
graph class that includes interval, permutation, and trapezoid graphs.

In the second half of this work, we present a faster algorithm to compute a maximum
weight induced matching for cocomparability graphs. Induced matching on cocomparability
graphs has been studied first by Golumbic and Lewenstein in [17], then by Cameron in [6],
where they both gave different proofs to show that cocomparability graphs are closed under
the L2(·) operation. In [17], they showed that this closure holds for k-trapezoid graphs
using the intersection representation of k-trapezoid graphs; since cocomparability graphs
are the union over all k-trapezoid graphs, the result holds for cocomparability graphs as
well. Whereas in [6], Cameron used the intersection model of cocomparability graphs (the
intersection of continuous curves between two parallel lines [18]) to conclude the result directly.
Cocomparability graphs are characterized by a vertex ordering known as a cocomparability
or umbrella-free ordering [25]. We use cocomparability orderings and the L2(·) closure to
present a O(mn) time algorithm to compute a maximum weighted induced matching for this
graph class, which is an improvement over the O(n4) time algorithm for the unweighted case
– a bound one can achieve by computing L2(G) and running the algorithm in [11] on it.

The paper is organized as follows: In Section 2, we give the necessary background and
definitions. In Section 3, we give the general theorem for a number of graph classes closed
under the L2(·) operation. In Section 4, we present the maximum weight induced matching
algorithm and its analysis on cocomparability graphs. We conclude with a discussion on
methods that fail, as well as future directions in Section 5.

2 Definitions & Preliminaries

We follow standard graph notation in this paper, see for instance [15]. G = (V,E) denotes
a simple graph (no loops, no multiple edges) on n = |V | vertices and m = |E| edges. N(v)
is the open neighbourhood of a vertex v. The degree of a vertex v is deg(v) = |N(v)|. ∆G

denotes the maximum vertex degree in G. We often refer to an edge (u, v) as uv. The
distance between a pair of vertices u and v, distG(u, v), is the length of the shortest path
between u and v in G. The distance between a pair of edges e1, e2, denoted edistG(e1, e2), is
the minimum distance over all shortest paths connecting an endpoint of e1 to an endpoint of
e2. The square of a graph G = (V,E) is the graph G2 = (V,E2) where uv ∈ E2 if and only
if distG(u, v) ≤ 2. The chromatic number of a graph G, χ(G), is the minimum number of
colours required to properly colour G, i.e, to assign colours to V such that adjacent vertices
receive different colours. An induced subgraph H of G is a graph H = (VH , EH) where
VH ⊆ V and for all u, v ∈ VH , uv ∈ E if and only if uv ∈ EH . A matching M ⊆ E is a subset
of edges no two of which share an endpoint. An induced matching M∗ ⊆ E is a matching in
G where every pair of edges in M∗ forms an induced 2K2, or alternatively every pair of edges
in M∗ is at distance at least two in G. An independent set S ⊆ V is a subset of pairwise
nonadjacent vertices.

Given a graph G = (V,E), the line graph of G, denoted L(G) = (E,L(E)), is the graph
on m vertices, where every vertex in L(G) represents an edge in G, and two vertices in
L(G) are adjacent if and only if their corresponding edges share an endpoint in G. We write
L2(G) = (E,L2(E)) to denote the square of the line graph of G.

It is a well known fact that a matching in G is equivalent to an independent set in
L(G) [4]. An induced matching on the other hand is equivalent to an independent set in
L2(G) [5]. Two vertices ei, ej in L2(G) are adjacent, i.e. eiej ∈ L2(E), if and only if they
have one of the configurations in G and L(G) as shown in Fig. 1. In particular, one can see
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a b = c d

ei ej →
ei ej

and
a b c d

ei ek ej →
ei ek ej

Figure 1 Configurations of ei, ej ∈ E such that eiej ∈ L2(E), and their representation in L(G).

that two vertices are not adjacent in L2(G) if their corresponding edges induce a 2K2 in G.
Let [n] = {1, 2, . . . , n}. An ordering σ of V is a bijection σ : V → [n]. We write

σ = v1, v2, . . . , vn. For a pair of vertices vi, vj , where i, j ∈ [n] and i < j, we write vi ≺σ vj
or vi ≺ vj if σ is clear in the context.

A comparability graph is a graph G(V,E) which admits a transitive orientation of its
edges. That is, if two edges ab, bc ∈ E are oriented a→ b and b→ c, then there must exist an
edge ac ∈ E oriented a→ c. A cocomparability graph is the complement of a comparability
graph. Cocomparability graphs are a well studied graph family, see for instance [15]. Given
a graph G = (V,E), an ordering σ of G is a cocomparability ordering if and only if for every
triple a ≺ b ≺ c, if ac ∈ E then either ab ∈ E or bc ∈ E, or both. If both ab, bc /∈ E, we say
that the edge ac forms an umbrella over vertex b. It is easy to see that a cocomparability
ordering is just a transitive orientation in the complement. We have the following fact:

I Fact 1. [25] G is a cocomparability graph iff it admits a cocomparability ordering.

3 Vertex Orderings in the Square of the Line Graph

Many well-known classes of graphs can be characterized by vertex orderings avoiding some
forbidden patterns, see for example the classification studied in [12] and further studied in
[20]. Chordal, interval, split, threshold, proper interval, and cocomparability graphs are
a few examples of such graph families. In this section, we show that graphs with certain
forbidden induced orderings are closed under the L2(·) operation. In particular, we show
that almost all patterns on three vertices are preserved under L2(·).

To do so, we construct an ordering on the vertices of L2(G), and thus on the edges of the
original graph G, by collecting one edge at a time using different rules; either the ? rule or
the • rule. Formally, for a given graph G = (V,E), let σ = v1, . . . , vn be a total ordering of
V . Using σ, we construct a new ordering π = e1, . . . , em on E as follows: For any two edges
ei = ab and ej = uv where a ≺σ b and u ≺σ v, we place ei ≺π ej if:

Rule (•): ei ≺π ej ⇐⇒ a �σ u and b �σ v

Rule (?): ei ≺π ej ⇐⇒

{
a ≺σ u if a 6= u

a = u and b ≺σ v o.w.

We write π∗(σ) (resp. π•(σ)) to denote the ordering constructed using the ? (resp. •) rule
on σ. The ordering π∗(σ) is the lexicographic ordering of E induced by σ, similar to the one
used on chordal graphs in [3]. We will use φ∗ (resp. φ•) to denote the ordering π∗(σ) (resp.
π•(σ)) on L(G), including the edges L(E); and use σ∗ (resp. σ•) to denote the ordering
π∗(σ) (resp. π•(σ)) on L2(G), including the edges L2(E).

I Theorem 2. Given a graph G = (V,E), its corresponding L2(G) = (E,L2(E)), and σ an
ordering of V , if σ is pi-free for a pattern pi in Fig. 2, then σ• is pi-free as well.

I Theorem 3. Given a graph G = (V,E), its corresponding L2(G) = (E,L2(E)), and σ an
ordering of V , if σ is pi-free for a pattern pi in Fig. 2, then σ∗ is pi-free as well.
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p1 p2 p3 p4 p5

Figure 2 A list of forbidden patterns on three vertices.

Notice that the pattern p4 forms an umbrella over the middle vertex. Thus the p4-free
orderings are precisely cocomparability orderings. Due to space constraints, and the fact
that the ? rule can easily be implemented in linear time, we will provide here the proof of
Theorem 3 for the pattern p4 only, since we will use this result on the second half of the
paper. This partial proof of the theorem also gives a bit of intuition as to how the proofs for
other patterns go. We refer the reader to [19] for full proofs of both Theorems 2 and 3.

Proof Of Theorem 3 for p4. The proof is by contradiction, where we show if σ∗ has an
induced triple that satisfies a given pattern, then σ must also contain such a pattern. Call
such a triple e1 ≺σ∗ e2 ≺σ∗ e3. Let e1 = ab, e2 = cd, and e3 = ef . Without loss of generality,
suppose a ≺σ b, c ≺σ d, and e ≺σ f . Thus a �σ c �σ e.

When a triple of vertices x, y, z induces a pattern pi, we write x, y, z ≡ pi. For the
ordering ≺σ associated with σ, we drop the subscript and use ≺ instead, whereas we write
≺∗ to refer to the ordering ≺σ∗ . Recall that two vertices in σ∗ are not adjacent iff they
induce a 2K2 in G, and similarly, adjacent vertices in σ∗ must have edistG ≤ 1 (Fig. 1).

Let σ be a p4-free ordering and suppose σ∗ is not, i.e. there exist e1 ≺∗ e2 ≺∗ e3 such
that e1e3 ∈ L2(E) and e1e2, e2e3 /∈ L2(E). This p4 configuration in σ∗ implies the following
adjacencies in G:

ac, ad /∈ E and bc, bd /∈ E (1)
ce, de /∈ E and cf, df /∈ E (2)
edistG(e1, e3) ≤ 1 =⇒ ae ∨ af ∨ be ∨ bf ∈ E (3)
a ≺ c ≺ e (4)

e1e3 ∈ L2(E) implies either e1 and e3 are incident edges in G or their distance is at most
two in L(G), i.e, edistG(e1, e3) ≤ 1. Suppose first that e1, e3 are incident edges in G. This
can happen if e = b or b = f since a ≺ c ≺ e.

If e = b, we have: a ≺ c ≺ e = b ≺ f ; and using (1), this implies a, c, b ≡ p4.
If b = f , we have: a ≺ c ≺ e ≺ b = f , and once again, a, c, b ≡ p4. Thus, edistG(e1, e3) ≤ 1.
That is, there exists α ∈ {a, b}, β ∈ {e, f} such that (α, β) ∈ E.

In an attempt to satisfy (3), let’s first suppose that ae ∈ E. By (4), a ≺ c ≺ e. By (1,2),
ae ∈ E would create an umbrella over c. Therefore ae /∈ E. Suppose next that af ∈ E. Since
a ≺ c ≺ e ≺ f , it follows (using (1, 2)) that af ∈ E would imply a, c, f ≡ p4. Thus af /∈ E.
Suppose now that be ∈ E. Given that a ≺ b and d ≺ e, we try to place b with respect to e.
If e ≺ b then a ≺ c ≺ e ≺ b and a, c, b ≡ p4 by (1). If b ≺ e then either c ≺ b or b ≺ c. If
c ≺ b then a, c, b ≡ p4. If b ≺ c then b ≺ c ≺ e and by assumption be ∈ E. Thus using (1, 2)
b, c, e ≡ p4. In all cases, we produce a p4 if be ∈ E. Therefore be /∈ E, and to satisfy (3), it
remains that bf ∈ E. We place b with respect to f . By the same argument above, it must
be that b ≺ f . In fact, a ≺ b ≺ c ≺ f otherwise a, c, b ≡ p4. But b ≺ c ≺ f and (1, 2) imply
b, c, f ≡ p4. Thus bf /∈ E. We just showed that in all scenarios, condition (3) cannot be
satisfied without creating a p4 in σ. Therefore if σ∗ has a p4 pattern, then σ must have a p4
pattern. J
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Table 1 G ∈ G iff ∃σ of G that does not have any corresponding induced pattern [12].

G Forbidden Patterns
Threshold p1 and p2

Interval p1 and p4

Split p1 and p3

Cocomparability p4

Chordal p1

Implementation: Since the ? rule is just a lexicographic ordering on the edges, it is much
easier to compute and to store than the • ordering. For this reason, we focus on the ? rule
in the remaining of this paper. We begin with the following observation:

I Observation 4. π∗(σ) as computed by the ? rule can be constructed in O(m+ n) time.

Proof. Since the (?) rule is just a lexicographic ordering on the edges, it suffices to scan the
ordering appropriately recording the endpoints of each edge. Formally, suppose G is given as
adjacency lists, and let σ = v1, v2, . . . , vn be a total ordering of G. For every w ∈ V , we sort
the adjacency list of w according to σ. That is for every pair vi, vj ∈ N(w), if vi ≺σ vj then
vi appears before vj in N(w). This can be done in O(m+ n) time using standard techniques
(see for instance [23]). We next construct the ordering π∗(σ) on the edges of G as follows:
Initially π∗(σ) is empty. We scan σ from left to right, for every vi in σ, and every neighbour
vj of vi such that i < j, we append ek = vivj to π∗(σ). Adding these edges requires scanning
N(w) for every w ∈ V . Thus this process takes O(m+ n) time. It is easy to see that this
construction satisfies the (?) rule. We only append vivj for i < j to avoid inserting the
same edge twice. The ordering π∗(σ) we produce at the end of this process is precisely the
ordering of the vertices of π∗(σ), φ∗, and σ∗. Recall that these three orderings differ only in
their edge sets and not on the ordering of their vertices. J

Therefore if a graph family G is characterized by the absence of patterns listed in Fig. 2,
then if computing an independent set on G ∈ G is tractable, and uses the vertex ordering
characterization of G, it follows that computing a maximum induced matching is also tractable
and reduces to computing an independent set on L2(G) ∈ G using σ∗.

In this paper, we focus on graph families with forbidden patterns on three vertices (as
shown in Fig. 2). To illustrate the consequences of Theorem 3, we list in Table 1 a number of
graph families characterized by the absence of the patterns listed in Fig. 2 [4], and Corollary 5
follows immediately. For chordal graphs, Brandstädt and Hoàng gave a stronger result where
they showed that not only is σ∗ a p2-free ordering, but that it is also a lexicographic breadth
first search ordering [3].

I Corollary 5. Vertex ordering characterizations of threshold, interval, split, cocomparability,
and chordal graphs are all closed under the L2(·) operation, and computing these orderings
of L2(·) can be done in linear time in the size of G.

4 Application: Maximum Weight Induced Matching on
Cocomparability Graphs

In this section, we focus on cocomparability graphs. We show how to compute a maximum
weight induced matching on cocomparability graphs in O(mn) time, an improvement over
O(n4) time algorithm for the unweighted case. To do so, we use a result we presented in [24],
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where we give a linear time robust algorithm to compute a maximum weight independent set
on cocomparability graphs in linear time. We begin by giving an overview of this algorithm,
denoted CCWMIS (Cocomparability Maximum Weighted Independent Set), then present
the maximum weight induced matching algorithm and its analysis to achieve the O(mn)
runtime. Thus in the remaining of this section, G is a cocomparability graph and σ a
cocomparability ordering. By [28], σ can be computed in linear time. By Theorem 3 and
Observation 4, cocomparability orderings are closed under L2(·) and can be computed in
O(m+ n) time. In particular, notice that the pattern p4 is Fig. 2 is precisely the umbrella
forbidden in cocomparability orderings. For clarity purposes, we refer the reader to [19] for a
full illustration of the algorithm through an example.

4.1 Overview of the CCWMIS Algorithm
Let G = (V,E,w) be a vertex weighted cocomparability graph, where w : V → R>0. We
compute a cocomparability ordering of G, σ = v1, v2, . . . , vn. For every vertex vi in σ, we
assign a set Svi

of vertices. Initially Svi
is empty for all i ∈ [n]. We write w(Svi

) to denote
the sum of the weights of the vertices in Svi

: w(Svi
) =

∑
z∈Svi

w(z). We use σ to compute a
new ordering τ = u1, u2, . . . , un of G, by scanning σ from left to right processing one vertex
of σ at a time. Initially τ1 = v1, and Sv1 = {v1}, w(Sv1) = w(v1). In general, at iteration
i, when processing a given vertex vi in σ, we scan τi−1 from right to left looking for the
rightmost nonneighbour of vi in τi−1. Let u be such a vertex, if it exists. We construct
Svi = Su ∪ {vi} with w(Svi) = w(Su) + w(vi). If no such u exists, then Svi = {vi}, and
w(Svi

) = w(vi). We show in [24] that the sets {Svi
}ni=1 are independent sets.

We proceed to construct τi by inserting vi into τi−1. Vertex vi is inserted into τi−1 so as
to maintain an increasing ordering of the weighted sets {Svk

}ik=1. That is, the vertices are
ordered in τ = u1, . . . , un such that w(Sui

) ≤ w(Suj
),∀i < j. When all the vertices of σ have

been processed, τn = τ is constructed, we return Sun as a maximum weight independent set.
In [24], we prove the following theorem:

I Theorem 6. Let G = (V,E) be a cocomparability graph. Algorithm CCWMIS computes a
maximum weight independent set of G in O(m+ n) time.

4.2 The Weighted Maximum Induced Matching Algorithm (CCWMIM)
Now let G = (V,E,w) be an edge weighted cocomparability graph where w : E → R>0. Thus
L2(G) = (E,L2(E), w) is a vertex weighted cocomparability graph by Theorem 3 and [17, 6].
We compute a maximum weight independent set of L2(G) as shown in Algorithm 2.

By Theorem 6, Algorithm CCWMIS takes O(m + n) time. Thus, CCWMIS will take
O(|E|+ |L2(E)|) time on L2(G). When G is dense, CCWMIS on L2(G) takes O(n4) time.
We give a careful implementation and analysis to achieve O(mn) runtime.

4.3 Implementation & Analysis of CCWMIM
Suppose the graph G = (V,E,w), where w : E → R>0, is given as adjacency lists. We
compute σ = v1, . . . , vn in O(m+ n) time using the algorithm in [28]. We construct π∗(σ)
in O(m+ n) time using Observation 4.

Notice that we cannot use φ as input for the CCWMIS algorithm, since φ is not necessarily
a cocomparability ordering. In fact, L(G) is not necessarily a cocomparability graph; just
consider the line graph of any large clique Kp>4. Notice also that the square edges in σ∗ are
necessary for Step 7 of the algorithm, when looking for a rightmost nonneighbour in τi−1.
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Algorithm 1 CCWMIS
Input: G = (V,E,w) a weighted cocomparability graph where w : V → R>0
Output: A maximum weight independent set together with its weight
1: Compute σ = v1, v2, . . . , vn a cocomparability ordering of G [28].
2: for i→ 1 to n do
3: Svi ← {vi} and w(Svi)← w(vi)
4: end for
5: τ1 ← (v1) . Constructing τi
6: for i→ 2 to n do
7: Choose u to be the rightmost non-neighbour of vi with respect to τi−1
8: if u exists then
9: Svi

← {vi} ∪ Su and w(Svi
)← w(vi) + w(Su)

10: end if
11: τi ← insert(vi, τi−1) . Insert vi into τi−1 s.t. τi remains ordered w.r.t. w(S·)
12: end for
13: z ← the rightmost vertex in τn
14: return Sz and w(Sz)

Algorithm 2 Cocomparability Weighted Maximum Induced Matching (CCWMIM)
Input: G = (V,E,w) an edge weighted cocomparability graph where w : E → R>0
Output: A maximum weight induced matching of G
1: Compute σ = v1, v2, . . . , vn a cocomparability ordering of G
2: Compute π∗(σ) = e1, e2, . . . , em a cocomparability ordering of L2(G) using the (?) rule.
. The ordering only, not the square edges

3: Use Algorithm 1 and π∗(σ) to compute a maximum weight independent set of L2(G)

We begin by looking at forbidden configurations of induced 2K2s in cocomparability
orderings. Let σ = v1, . . . , vn be a cocomparability ordering. Let ei = ab and ej = uv be two
edges that induce a 2K2 in G. Without loss of generality, suppose a ≺σ b and u ≺σ v. Since
σ is a cocomparability ordering, the configurations of ei, ej that have either a ≺ u ≺ b ≺ v
or a ≺ u ≺ v ≺ b as orderings cannot occur in σ, for otherwise σ would have an umbrella.
This leaves the following configurations of the edges without umbrellas: a ≺ b ≺ u ≺ v or
u ≺ v ≺ a ≺ b.

Without loss of generality, suppose a ≺σ b ≺σ u ≺σ v. Using the (?) rule, this configura-
tion always forces ei ≺π ej , i.e. ab ≺π uv. Therefore, when we run Algorithm CCWMIS on
π∗ = e1, . . . , em, we process elements of π∗ from right to left, and thus we process ei = ab

before processing ej = uv.
Let τ = f1, . . . , fm be the new ordering being constructed by the algorithm CCWMIS

using π∗ as the ordering computed in Step 1. Initially, as per the algorithm, τ1 = e1. In
general, at iteration i, let τi−1 = f1, . . . , fi−1 be the ordering constructed thus far. Suppose ei
is the edge being processed. In Step 7 of Algorithm 1, looking for the rightmost nonneighbour
of ei in τi−1 is equivalent to looking for an edge e that forms an induced 2K2 with ei in σ,
such that e is to the left of ei in σ. When processing vertex ei in π∗, we scan τi−1 to find
the rightmost nonneighbour of ei in τi−1. Suppose such a vertex exists, and call it fj . Since
we are working in L2(G), to check if two vertices in L2(G) are adjacent, we need to check
whether these edges are incident in G, or are at distance at most two in L(G), as shown in
Fig. 1. We proceed as follows.
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Both σ and π∗ are implemented using doubly linked lists. We construct three arrays A,
B and F of sizes n, n,m respectively. All three arrays are initialized to zero; A[t] = B[t] =
0,∀t ∈ [n] and F [i] = 0,∀i ∈ [m].

Every vertex vt in σ has a pointer to A[t] and B[t]. Similarly, every vertex ei in π∗ has a
pointer to F [i]. We sometimes abuse notation and talk about A[w] to mean the position in
array A that vertex w in σ points to. Furthermore, when we talk about vertex ei = uv in π∗,
we always assume that u ≺σ v.

For every vertex ei = vtvk in π, its corresponding entry F [i] has four pointers pti, pki , qti , qki
that point respectively to A[t], A[k] and B[t], B[k]. When processing vertex ei, where ei = ab,
we update A as follows: For every neighbour z of vertex a, we set A[z] = i. Similarly, for
every neighbour z of vertex b, we set B[z] = i. These updates to arrays A and B guarantee
that every nonneighbour w of a has A[w] 6= i and every nonneighbour w of b has B[w] 6= i.
Therefore, for every edge vtvk in G that forms an induced 2K2 with ab, the following (†)
condition holds: A[t] 6= i ∧A[k] 6= i ∧B[t] 6= i ∧B[k] 6= i (†).

Thus, in order to find the rightmost nonneighbour of ei in τi−1, we scan τi−1 from right
to left, and for every vertex we encounter fj = vtvk, we check if one of A[t], A[k], B[t], B[k]
is equal to i. We return the first vertex in τi−1 we encounter whose endpoints in G satisfy
condition (†) above as the rightmost nonneighbour of ei in τi−1. Updating arrays A and B
requires O(deg(a) + deg(b)) time. When scanning τi−1, for every vertex fj = vtvk in τi−1,
we use the pointers ptj , pkj , qtj , qkj in F [j] to access A[t], A[k], B[t], B[k]. Checking these four
entries takes constant time using the pointers provided.

It remains to analyze the number of constant checks we do, i.e. how many fj vertices we
check. In particular, this reduces to bounding the degree of ei in L2(G).

Let deg1(ei) denote the degree of ei in L(G), and deg2(ei) denote the degree of ei in
L2(G). We have the following:

I Claim 7. for a given edge ei = ab, we have: deg2(ei) ≤
∑
v:av∈E
v 6=b

deg(v) +
∑
v:bv∈E
v 6=a

deg(v).

Proof. It is clear that for a given edge ei = ab, deg1(ei) = deg(a) + deg(b)− 2. On the other
hand, when computing deg2(ei), we take into account the degree of any vertex at distance at
most two from either a, or b in G. In particular, the following holds:

deg2(ei) ≤ deg1(ei) +
∑

v:av∈E
v 6=b

(deg(v)− 1) +
∑

v:bv∈E
v 6=a

(deg(v)− 1)

≤ deg(a) + deg(b)− 2 +
[ ∑

v:av∈E
v 6=b

deg(v)
]
− deg(a) + 1 +

[ ∑
v:bv∈E

v 6=a

deg(v)
]
− deg(b) + 1

≤
∑

v:av∈E
v 6=b

deg(v) +
∑

v:bv∈E
v 6=a

deg(v)

The first inequality avoids counting edges twice, in particular if a, b, and v form a triangle.
The -1s in the first equality is to avoid counting the edge av in deg(v), for every v ∈ N(a),
similarly for b. The +1s in the second equality is for not counting edge ab for both a and b
in deg(a) and deg(b). J

When scanning τi−1 to find the rightmost nonneighbour of ei, we check O(deg2(ei))
vertices, each check takes constant time using arrays A,B, and F . Since the weights are
positive, w(S(ei)) = w(S(fj)) + w(ei) > w(S(fj)) if such an fj exists, and thus fj ≺τ ei.
Therefore, inserting ei into τi−1 to create τi will also take O(deg2(ei)) time.
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Summing over all vertices in π, of which there are m = |E|, we have O(m+
∑
ei

deg2(ei)).
It remains to bound

∑
ei

deg2(ei).

I Claim 8.
∑
ei

deg2(ei) ≤ O(mn).

Proof. By Claim 7, we have:∑
ei

deg2(ei) ≤
∑

ei=(a,b)

[ ∑
v:av∈E
v 6=b

deg(v) +
∑

v:bv∈E
v 6=a

deg(v)
]

For a given vertex v, deg(v) is used deg(v) time, one for every edge incident to v, thus∑
ei

deg2(ei) =
∑

ei=(a,b)

[ ∑
v:av∈E
v 6=b

deg(v) +
∑

v:bv∈E
v 6=a

deg(v)
]

≤ deg(v1) · deg(v1) + . . .+ deg(vn) · deg(vn)
≤ deg(v1) ·∆G + . . .+ deg(vn) ·∆G ≤ 2m ·∆G ≤ O(mn) J

Therefore, the total running time is O(m+mn) = O(mn). The correctness and robustness
of the algorithm follows from Theorem 3 as well as the correctness and robustness of
Algorithm 1, which we give in [24]. We conclude with the following theorem:

I Theorem 9. Let G = (V,E,w) be an edge weighted cocomparability graph, where w : E →
R>0. A maximum weight induced matching on G can be computed in O(mn) time.

5 Conclusions and perspectives

In this paper, we give a general theorem that shows that a number of vertex ordering
characterizations are closed under the operation of taking the square of the line graph. Using
the ? and • rules, we get that chordal, threshold, interval, split, and cocomparability graphs
all have vertex orderings closed under the L2(·) operation. This gives in our opinion a natural
way to approach this closure under L2(·); and unifies the results on structural graph classes
that have relied on geometric intersection models to show such closure. Furthermore, being
able to compute vertex orderings directly can be exploited algorithmically, since algorithms
on the graph classes covered often rely on their vertex ordering characterizations. We also
show structural results and properties on cocomparability graphs that allow us to compute a
maximum weighted induced matching on this graph class in O(mn) time, an improvement
over the best O(n4) time algorithm for the unweighted case. A natural question however is
whether one can use the vertex orderings σ∗ of the L2(G) to compute an induced matching
more efficiently for other graph classes, similarly to how we did for cocomparability graphs.
We note that the graph classes covered in this work are not necessarily the only ones for
which the ?, • rules work, thus it’s natural to ask what other graph families have this property.
In particular, we illustrate our result on graph families with forbidden patterns on three
vertices and therefore raise the question of what can be said about forbidden patterns on
four or more vertices, but also if other rules exist that preserve orderings in L2(G).

Another natural question one can raise is whether computing a maximum cardinality
induced matching on cocomparability graphs can be done faster than O(mn) time, especially
since computing a maximum cardinality independent set on cocomparability graphs is done
with a simple greedy LexDFS based algorithm [11]. LexDFS and LexBFS are graph searching
algorithms that have proven powerful on a number of graph families, cocomparability being
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one of them. We refer the reader to [32, 11, 9, 30, 10, 29] for more on this topic. Unfortunately,
one can show that LexDFS cocomparability orderings are not preserved under the ? and •
rules, and thus computing such a solution would require computing a LexDFS ordering on
σ∗, σ•. Such an algorithm exists and runs in linear time [23], but it would be linear in the
size of L2(G), thus not in O(m+ n) time. Similarly, LexBFS cocomparability orderings are
not preserved under the ? and • rules. We ask the question whether one can come up with a
different rule that preserves LexDFS and/or LexBFS cocomparability orderings on L2(G)
without computing the square edges. Such a technique was successfully used with LexBFS
on chordal graph in [3].

Lastly, we raise the question of whether σ∗, σ• can lead to efficient algorithms to compute
a strong edge colouring for these graph classes. Recall that a strong edge colouring is the
partitioning of G into induced matchings, and thus the partitioning of L2(G) into independent
sets. The strong chromatic number of G is the size of a minimum strong edge colouring of
G. It is thus easy to see that the strong chromatic number of G is just χ(L2(G)). Since
the graph families we presented are perfect, their chromatic number can be computed in
polynomial time. In fact for many graph families, it is done in linear time, and it often relies
on the vertex ordering characterization of the graph class. Since a vertex ordering of L2(G)
can be computed in linear time given σ, we ask whether σ∗, σ• can be used to compute
χ(L2(G)), without computing the edges of L2(G).
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Abstract
We show that for all given n, t, w ∈ {1, 2, . . .} with n < 2w, an array of n entries of w bits each can
be represented on a word RAM with a word length of w bits in at most nw + dn(t/(2w))te bits
of uninitialized memory to support constant-time initialization of the whole array and O(t)-time
reading and writing of individual array entries. At one end of this tradeoff, we achieve initializa-
tion and access (i.e., reading and writing) in constant time with nw + dn/wte bits for arbitrary
fixed t, to be compared with nw + Θ(n) bits for the best previous solution, and at the opposite
end, still with constant-time initialization, we support O(log n)-time access with just nw +1 bits,
which is optimal for arbitrary access times if the initialization executes fewer than n steps.
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1 Introduction

Whereas the space used by an algorithm (measured in “memory units” such as words) is
usually bounded by its running time, there may be exceptions if the memory offers random
access, and it is occasionally useful to employ large arrays of which only a small part will ever
be accessed. A case in point are adjacency matrices, which are a convenient representation
of graphs if the algorithms to be executed issue adjacency queries (e.g., “does G contain an
edge from u to v?”) in an irregular pattern that cannot be served efficiently using adjacency
lists. Even if one can afford the space needed by an adjacency matrix, it may be prohibitively
expensive to clear all those entries in the matrix that do not correspond to edges in the
graph. The problem does not occur if the memory cells allocated to hold the adjacency
matrix can be assumed to be already initialized to some particular value (that can be taken
to signify “no edge”), but in general this is not a realistic assumption. Therefore the problem
of simulating an initialized array in an uninitialized memory has been considered since the
early days of computing.

Additional motivation for our work comes from the fact that certain modern programming
languages such as Java, VHDL and D stipulate that memory be initialized (e.g., cleared
to zero) before it is allocated to application programs [8, 12] or have this as the default
behavior [2]. The initialization is carried out for security reasons and to ease debugging by
making faulty programs more deterministic. If it can be ensured that application programs
access memory only through a well-defined interface, one may hope to let the interface provide
conceptually cleared memory while avoiding the overhead of clearing the memory physically.

∗ A fuller version of this paper is available as [11], https://arxiv.org/abs/1709.10477.
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For some w ∈ N = {1, 2, . . .}, our model of computation is a word RAM [3, 9] with a
word length of w bits, where we assume that w is large enough to allow all memory words
in use to be addressed. As part of ensuring this, in the context of an array of size n we
always assume that n < 2w. The word RAM has constant-time operations for addition,
subtraction and multiplication modulo 2w, division with truncation ((x, y) 7→ bx/yc for
y > 0), left shift modulo 2w ((x, y) 7→ (x � y) mod 2w, where x � y = x · 2y), right shift
((x, y) 7→ x � y = bx/2yc), and bitwise Boolean operations (and, or and xor (exclusive
or)). We also assume a constant-time operation to load an integer that deviates from

√
w

by at most a constant factor – this enables the proof of Lemma 3. The problem of central
concern to us is to realize a clearable word array, defined as follows:

I Definition 1. A clearable word array is a data structure that can be initialized with an
integer n ∈ N and subsequently maintains an element of {0, . . . , 2w − 1}n, called its client
sequence and initially (0, 0, . . . , 0), under the following operations:
read(`) (` ∈ {0, . . . , n− 1}): If the client sequence before the call is (x0, . . . , xn−1), returns

x` without changing the client sequence.
write(`, x) (` ∈ {0, . . . , n − 1} and x ∈ {0, . . . , 2w − 1}): If the client sequence before the

call is (x0, . . . , xn−1), changes the client sequence to be (x0, . . . , x`−1, x, x`+1, . . . , xn−1).

The clearable word array is a special case of the initializable array of Navarro [15].
There are two differences. First, the data structure of Navarro is more general in that the
initialization, in addition to n, receives a second parameter v that is taken to be the initial
value of the array entries, i.e., the initial value of the client sequence is (v, v, . . . , v) rather
than (0, 0, . . . , 0). As is easy to see and will be discussed in Section 3, however, the more
general data structure reduces easily to the more restricted one. Second, Navarro does not
specify the nature of the array entries, which is of no relevance to his approach, whereas we
fix the array entries to be words, i.e., elements of {0, . . . , 2w − 1}. Again, this will turn out
to be a restriction of little consequence.

Following the initialization of a clearable word array with an integer n, we call n the
universe size of the data structure. We shall have occasion to consider restricted clearable
word arrays that can be initialized only for certain specific universe sizes. Because the
connection between the client sequence of an initializable array and an array used to hold
it is often very close, it is easy to confuse the two. We may view the client sequence as an
array, but then use the letter ‘a’ to denote this abstract array (which is initialized) and ‘A’
to denote the corresponding physical array (which is not initialized).

2 Previous Work

Fredriksson and Kilpeläinen [7] give a detailed overview of the known approaches to array
initialization and compare them experimentally. In the discussion of their work, we assume
that the task is to realize an initializable array of n entries of b ≤ w bits each. Define the
redundancy of a data structure that solves this problem and occupies N bits to be N−nb, i.e.,
the number of bits used beyond the minimum of nb bits needed even without the requirement
of initializability.

A number of the methods described by Fredriksson and Kilpeläinen can be viewed
as special cases of a general trie method. Ignoring rounding issues, the trie method is
parameterized by an integer h ∈ N and a degree sequence (d1, d2, . . . , dh) of h positive
integers with

∏h
i=1 di = nb. It uses a tree T of height h in which all nodes of height i have

di children, for i = 1, . . . , h. Each node in T has an associated bit, the bits of each maximal
group of siblings are stored compactly, w bits to a word, and the nb bits at the leaves are
identified with the nb bits of the abstract array a.
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Let processing an inner node u in T be the following: If the bit associated with u has the
value 0 (informally, u has been initialized, but its children have not), initialize the bits of
all children of u, to 0 if the children are inner nodes and to the prescribed initial value v –
within groups of b siblings in the obvious manner – if they are leaves. If u has d children,
this can be done in O(dd/we) time. Finally set the bit associated with u to 1. If the value of
that bit is 1 already prior to the processing of u, the processing of u terminates immediately
after discovering this fact.

To initialize T , set the bit at its root to 0. In addition, it is permissible, as part of the
initialization, to process the inner nodes in an upper part of T in a top-down fashion, i.e.,
so that no nonroot node is processed before its parent. We will say that such nodes are
preprocessed. To read the `th entry of a, descend in T towards the `th group of b leaves. If
an inner node is encountered whose associated bit has the value 0, return v. If not, return
the value found in the `th group of b leaves. To write the `th entry of a, descend in the
same manner towards the `th group of b leaves, process every inner node encountered on
the way, and finally store the appropriate value in the bits of the `th group of b leaves. The
total number of bits used by the data structure is the number of nodes in T that are not
preprocessed, the initialization takes constant time plus time proportional to the sum of
dd/we over all degrees d of preprocessed nodes, the worst-case time of read is Θ(h), and the
worst-case time of write is the maximum over all leaves v in T of Θ(h +

∑
iddi/we), where

the sum ranges over those values of i ∈ {1, . . . , h} for which the ancestor of v of height i is
not preprocessed.

Fredriksson and Kilpeläinen consider the following special cases of the trie method:
Degree sequence (nb), preprocess the root (Plain); degree sequence (b, n), preprocess the
root (Simple); degree sequence (b, w, w, . . . , w) (Hierarchic); degree sequence (b, n/w, w)
(Simple-H); and degree sequence (b, w, n/w), preprocess the root (SHV). The redundancy is
0 for Plain and close to n (i.e., the number of nodes in T of height 1) for the other methods.
The initialization time is Θ(1 +nb/w) for Plain, Θ(1 +n/w) for Simple, Θ(1 +n/w2) for SHV
and Θ(1) for the other methods. The worst-case time for read is Θ(1 + logw n) for Hierarchic
and Θ(1) for the other methods. The worst-case time for write, finally, is Θ(1 + logw n) for
Hierarchic, Θ(1 + n/w2) for Simple-H and Θ(1) for the other methods.

None of the methods discussed above combines constant initialization time with constant
access time, and it is easy to see that this is true of every instance of the trie method.
Constant time for every operation is achieved by a folklore method that goes back at least to
the early 1970s (see [1, Exercise 2.12]). The folklore method uses a physical array A with the
index set {0, . . . , n− 1} and assigns the codes 0, 1, . . . to the indices of the abstract array a in
the order in which the indices are first used in calls of write, x` is stored in A[f(`)], where f(`)
is the code of `, two tables are used to keep track of the encoding function f and its inverse
f−1, and finally the data structure remembers the number k of codes assigned. To access x`,
first f(`) is looked up in the table of f . Because the table is not initialized, the purported
code j may not be correct, but j is the code of ` exactly if 0 ≤ j < k and the entry of j in the
table of f−1 is `. If not, the default initial value v is returned in the case of a read operation,
and the next available code is assigned to ` in the case of a write operation. The remainder
of the access is simply a reading or writing of A[f(`)]. The structure is initialized by setting
k to 0. In addition to the space needed to hold the actual data in A, it needs space for the
tables of f and f−1 and the counter k, so that its redundancy is 2ndlog2 ne+ dlog2(n + 1)e.

A family of methods due to Navarro [15] combines the Hierarchic method above with the
folklore method. The idea is, starting from Hierarchic, to replace the nodes of height ≥ h + 2,
for some h ≥ 0, by an instance of the folklore data structure. This achieves the same effect
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as processing the nodes that were removed and obviates the need to descend through these
nodes during an access. The initialization time is constant, the worst-case access time is
Θ(h + 1), and the redundancy is approximately 3n for h = 0 and approximately n for h ≥ 1.

3 Our Contribution

We give an upper-bound tradeoff that spans the entire range from minimal time to minimal
space. Our main result is the following:

I Theorem 2. There is a clearable word array that, for all given n, t ∈ N, can be initialized
for universe size n in constant time and subsequently occupies at most nw + dn(t/(2w))te
bits and supports read and write in O(t) time.

If w and hence (by assumption) n are bounded by constants, it is trivial to realize a
clearable word array with constant initialization and access times and zero redundancy
(initialize the array explicitly, i.e., use the Plain method of Fredriksson and Kilpeläinen).
Given a constant t ∈ N, we can therefore assume without loss of generality that w ≥ t2. Then
(t/w)2 ≤ 1/w and hence (2t/(2w))2t ≤ 1/wt. Theorem 2 (used with t doubled) thus implies
that for all constant t ∈ N, there is a clearable word array that can be initialized in constant
time, executes accesses in constant time and has redundancy dn/wte. The best previous
constant-time solution, due to Navarro [15] and discussed above, has redundancy n + o(n).

At the other end of the time-space tradeoff, for t = dlog2 ne, the redundancy of Theorem 2
is 1, i.e., the constant-time initialization costs only a single bit and accesses are still supported
in logarithmic time. If an initialization time of Θ(n) is acceptable, a clearable word array
with constant-time access can obviously be realized with zero redundancy – this is again the
Plain method of Fredriksson and Kilpeläinen. On the other hand, the redundancy cannot be
reduced below our bound of 1 for any access times unless the initialization writes to at least
n words, which needs at least n steps. To see this, assume that a clearable word array with
universe size n is represented in N bits for some N ∈ N. Because the client sequence can be
in any one of 2nw states, any two of which can be distinguished through read operations,
whereas its representation can be in only 2N states, we must have N ≥ nw, irrespectively of
all operation times. Moreover, if N = nw, every state of the client sequence is represented
by exactly one bit pattern of its representation. Since the client sequence is in a well-defined
state immediately after the initialization, this is impossible unless each of the nw bits of
its representation is forced to one specific value during the initialization, i.e., unless the
initialization writes to at least n words.

Note that it is a responsibility of the user of a clearable word array initialized for universe
size n to ensure that ` < n in all calls of the form read(`) or write(`, x) issued to the data
structure. Whereas the data structure can easily check the conditions ` ≥ 0 and 0 ≤ x < 2w,
when operated close to its minimum space it cannot afford to store the integer n. Thus illegal
calls of its operations may go undetected and may lead to attempted accesses to memory
words outside of the area assigned to the data structure.

Our result can be seen as a second application of the light-path technique, which was
introduced (but not named) in [10] and used there to construct space-efficient nonsystematic
choice dictionaries. From a technical perspective, the situation is simpler here, as there is no
need to store data in a particular compact representation and to provide conversion to and
from the compact representation. This gives us an opportunity to illustrate the light-path
technique in a purer setting. At a more abstract level, the fundamental idea is to upset the
structure of a simple table slightly in order to accommodate additional information in the
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table. Whereas this principle has been used before [4, 5, 14], curiously, it has not so far
been employed in the setting of initializable arrays even though it seems particularly natural
there. It may be noted that the c-color choice dictionaries of [10] could be used directly as
initializable arrays, but efficiently so only for arrays whose elements are drawn from a very
small range {0, . . . , 2b − 1}. This is because each element of that range would be considered
a separate color, i.e., we would have c = 2b.

Given the clearable word array of Theorem 2, it is easy to derive a more general data
structure that, for some integer b with 1 ≤ b ≤ w, maintains a client sequence in {0, . . . , 2b −
1}n, initially (0, 0, . . . , 0), under reading and writing of individual elements of the sequence.
Simply pack the n elements of the client sequence tightly in dnb/we words of w bits each,
initialize the used part of the last word to 0, maintain the other words in a clearable word
array, inspect a b-bit element of the client sequence by reading the at most two words over
which the b bits spread, picking out the relevant pieces of the words and concatenating the
pieces, and update a b-bit element of the client sequence correspondingly by splitting the
new value into at most two pieces and storing each piece appropriately in a word without
disturbing the rest of the word. The execution times are within a constant factor of those of
the clearable word array, and the number of bits needed is at most nb + dn(t/(2w))te.

We can also easily derive a data structure more general than that of Theorem 2 in that the
client sequence is initialized to (g(0), . . . , g(n−1)), where g : {0, . . . , n−1} → {0, . . . , 2w−1}
is some function, rather than to (0, 0, . . . , 0). The simple idea is to swap the representations
of the “internal” and “external” initial values. Both read(`) and write(`, x) then begin by
evaluating g(`). If reading the value associated with ` in a normal clearable word array yields
the value 0, read(`) returns g(`). If the value read is g(`), read(`) returns 0, and every other
value read is returned as it is. Similarly, if x = g(`), write(`, x) actually writes the value 0 to
the normal clearable word array, x = 0 causes the value g(`) to be written, and every other
value of x is written as it is. The initialization and access times are those of Theorem 2 plus
whatever time is needed to initialize g and to evaluate it on one argument, respectively, and
the space requirements are those of Theorem 2 plus those of g. It is easy to see that the
generalizations described in this and the previous paragraph can be combined.

Very recently, giving a clever twist to the folklore method, Katoh and Goto [13] devised a
clearable word array that executes every operation in constant time but, when the universe
size is n, uses just nw + 1 bits.

4 The Construction

In this section we prove Theorem 2. At a very low and technical level, we need the following
staple of word-RAM computing.

I Lemma 3 ([6, 10]). Given a nonzero integer
∑w−1

i=0 2ibi, where bi ∈ {0, 1} for i =
0, . . . , w− 1, constant time suffices to compute max I and min I, where I = {i | 0 ≤ i ≤ w− 1
and bi = 1}.

Let a colored tree be an ordered outtree, each of whose leaves is either white or black.
Given a colored tree T , we extend the colors at the leaves of T to its inner nodes as follows:
If the leaf descendants of an inner node u all have the same color (white or black), then u

has that same color. If u has both a white and a black leaf descendant, u is gray. Clearly
every ancestor of a node v has the same color as v or is gray. In particular, every ancestor of
a gray node is gray. Define the navigation vector of an inner node to be the sequence of the
colors of its children in the order from left to right.
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Figure 1 Example light paths (drawn thicker). Top nodes, historians and proxies are labeled “t”,
“h” and “p”, respectively, and a subscript identifies the associated light path.

Recall that the left spine of a rooted ordered tree T is the maximal path in T that starts
at the root of T and, whenever it contains an inner node u, also contains the leftmost child
of u. Define the preferred child of a white or gray inner node in a colored tree T to be its
leftmost gray child if it has at least one gray child, and its leftmost white child otherwise.
Call an edge in T light if it leads from a gray inner node to its preferred child or lies on
the left spine of a subtree of T whose root is white and has a gray parent of which it is the
preferred child. In other words, every gray inner node picks the edge to its preferred child to
be light, whereas a white inner node does so only if “prompted” by its parent. The light
edges induce a collection of node-disjoint paths called light paths, each of which ends at a
leaf in T . When P is a light path that starts at a (gray) node u and ends at a (white) leaf v,
we call u the top node, v the proxy and the leftmost leaf descendant of u (that may coincide
with v) the historian of P and of every node on P . These concepts are illustrated in Fig. 1.
A gray node that is not the root of T is a top node exactly if it is not the preferred child of
its parent, i.e., if it has at least one gray left sibling. No proper ancestor of a top node u can
have a descendant of u as its leftmost leaf descendant, so a leaf is the historian of at most one
light path. If h is the historian of a light path P , the top node and the proxy of P are also
said to be the top node and the proxy, respectively, of h. A leaf ` cannot be the historian of
one light path and the proxy of another, since otherwise the two corresponding top nodes
would both be ancestors of ` and the path between them would contain only gray nodes and
be part of a light path, a contradiction. A similar argument shows that in the left-to-right
order of the leaves of T , no historian or proxy lies strictly between a historian and its proxy.
Define the history of a light path that contains the nodes u1, . . . , uk, in that order, to be the
sequence (q1, . . . , qk−1), where qi is the navigation vector of ui, for i = 1, . . . , k − 1 (uk, as a
leaf, has no navigation vector).

The following lemma describes the work-horse of our data structure.

I Lemma 4. Let d and t be given positive integers with 2dt ≤ w such that d is a power
of 2. Then there is a clearable word array that can be initialized for universe size n = dt in
constant time and subsequently occupies nw + 2 bits and, if given access to the parameters d

and t, supports read and write in O(t) time.

Proof. Without loss of generality assume that d ≥ 2. We use a conceptual colored tree T

that is a complete d-ary tree of height t and identify the n leaves of T , in the order from
left to right, with the integers 0, . . . , n− 1. Let r be the root of T and, for each node u in
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T , let Tu be the maximal subtree of T rooted at u. We represent a node u of height j in T

through the pair (j, k), where k is the number of nodes in T of the same height as u and
strictly to its left (in other words, the nodes on each level in T are numbered consecutively
in the order from left to right, starting at 0). Then navigating in T is easy: If u is not the
root r, its parent is (represented through) (j + 1, bk/dc), if u is not a leaf, its children are
(j − 1, kd), . . . , (j − 1, kd + (d− 1)), u’s leftmost leaf descendant is (0, kdj) (identified with
the integer kdj), and if u is not a leaf and ` is a leaf descendant of u, then viachild(u, `), the
child of u that is an ancestor of `, is (j − 1, b`/dj−1c). The assumption that d is a power
of 2 ensures that we can compute the necessary powers of d in constant time by means of
multiplication and left shift. This requires the availability of log2 d, which can be computed
from d in constant time according to Lemma 3.

The actual data is stored in a word array A with index set {0, . . . , n − 1} and in two
additional root bits. The three colors white, gray and black are encoded in two bits, the
navigation vector of an inner node in T is represented by the 2d-bit concatenation of the
representations of its d (color) elements, and the history of a k-node light path is represented
by the 2d(k − 1)-bit concatenation of the representations of its k − 1 (navigation-vector)
elements. The relation 2dt ≤ w ensures that every history fits in a w-bit word. Assume that
a history of fewer than w bits is “right-justified” in the word so that the position in the word
of the navigation vector of a node depends only on the height of the node.

With the aid of an algorithm of Lemma 3, the preferred child of a given white or gray
inner node u in T can be computed in constant time from the navigation vector of u or a
history that contains that navigation vector. This may need a couple of bit masks (informally,
ones that correspond to all nodes having the same color) that can easily be obtained via
multiplication with the integer 1dt,2 = (22dt − 1)/3, whose (2dt)-bit binary representation is
0101 · · · 0101. Because 22dt may not be representable in a w-bit word (namely if 2dt = w),
the computation of 1dt,2 needs a little care, but is still easy to do in constant time.

The client sequence (x0, . . . , xn−1) is represented in A[0], . . . , A[n− 1] and the two root
bits according to the following storage invariants: First, the two root bits indicate the color
of the root r of T . Second, for ` = 0, . . . , n− 1,

if ` is a historian, A[`] stores the history of the proxy of ` (hence the term “historian”),
if ` is black and not a historian, A[`] stores x`,
if ` is a proxy whose historian h is black, A[`] stores xh (as a “proxy” for h), and
if ` is white and neither a historian nor a proxy whose historian is black, the value of
A[`] may be arbitrary.

Note that because every proxy is white, for each ` ∈ {0, . . . , n − 1} exactly one of the
four cases above applies. In particular, although a proxy may coincide with its historian,
this is not the case if the historian is black. The data structure is initialized by coloring r

white (i.e., by setting the root bits accordingly).
In terms of the abstract array a, the leaf colors white and black signify “not yet written to,

and therefore still containing the initial value 0” and “written to at least once”, respectively.
For the actual array A, this translates approximately into white and black meaning “not
initialized” and “initialized to a meaningful value”, respectively.

The data structure does not explicitly store the color of any node except r. Instead node
colors must be deduced from histories. It turns out that the colors of all nodes other than r

are implied by the histories of the light paths. A white leaf ` offers potential for storing
a history (namely in its associated word A[`]), but we cannot know in advance where to
find a white leaf. This motivates the introduction of historians and proxies. We actually
need the history of a light path P when, during a descent in T from r to a leaf, we reach

ISAAC 2017



44:8 On-the-Fly Array Initialization in Less Space

the top node of P . The historian of P provides a fixed place (namely at the leftmost leaf
descendant) at which to look for the history, but if the historian is black, then its own data
must be accommodated somewhere else – this is the role of the (white) proxy. How this
works is perhaps best illustrated by the following detailed description of the realization of
the operation read, which basically carries out a descent in T . The call leftmostleaf (u) is
assumed to return (the integer identified with) the leftmost leaf descendant of the node u.

read(`):
u := r; (∗ start at the root ∗)
while u is gray do

if u is a top node then (∗ switch to a new history ∗)
h := leftmostleaf (u); (∗ u’s historian ∗)
H := A[h]; (∗ u’s history ∗)

u := viachild(u, `); (∗ continue towards ` ∗)
if u is white then return 0; (∗ the initial value ∗)
(∗ now ` is black ∗)
if u = r or ` 6= h then return A[`]; (∗ ` is neither a historian nor a proxy ∗)
(∗ now ` is a black historian ∗)
return A[p], where p is the leaf at the end of the light path that contains u’s parent;

The procedure discovers a white ancestor of ` and returns 0, determines that ` is black
and not a historian and returns A[`], or identifies ` as a black historian and returns A[p],
where p is the proxy of `. In all cases, the return value is correct.

Whenever the color of a node u is queried, either u = r, in which case the color of u is
given by the root bits, or the color of u can be deduced in constant time from the history
stored in H, one of whose elements is the navigation vector of the parent of u. Similarly, if
u 6= r, we can decide in constant time whether u is a top node by looking at the navigation
vector of its parent. The light path that contains u’s parent can be followed in constant time
per node, again by inspection of H. Thus read can be executed in O(t) time.

To execute write(`, x), we carry out two phases. The purpose of the first phase is to take
the data structure to a legal state in which ` is black and all values of the client sequence
(x0, . . . , xn−1) except possibly x` are correct, i.e., unchanged. The second phase concludes
the writing by setting x` to x. In the description of the two phases, we leave to the reader
details such as how to determine the color of a given node; in all cases, one can proceed
similarly as in the implementation of read.

The first phase begins by following the path P in T from r to ` until encountering a node
that is not gray. This can be done similarly as in the implementation of read: Each node
visited is tested for being a top node, and at each top node a new history is fetched and
subsequently used. This computation, in particular, can determine the color of `. If ` is
already black, the first phase terminates without modifying the data structure. Assume in
the remaining discussion of the first phase that ` is white and consider the consequences of
an update that changes the color of ` from white to black. We will use the terms “old” and
“new” to describe the situation before and after the update, respectively.

Because the color of an inner node in T is a function of the colors of its children, only
nodes on P can change their color as a result of the update. The first phase proceeds to find
the first node v on P (i.e., the node on P of minimal depth) that changes its color. The
following observations show that this can be done in a single traversal of P and characterizes
the possible scenarios in a useful way. If some proper ancestor of ` is white (before the
update), all proper ancestors of the first white node ṽ on P are gray both before and after
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Figure 2 Left: The situation of Case 1 and, after a swap of the labels “pu” and “p′
u”, also of

Case 2. Right: The situation of Cases 4 and 5.

the update, and all descendants of ṽ on P other than ` are white before and gray after the
update. Thus v = ṽ. In the opposite case, namely if all proper ancestors of ` are gray, let v

be the last node on P that has a white or gray sibling if there is at least one such node, and
take v = r otherwise. It is easy to see that all proper ancestors of v are gray both before and
after the update and, by backwards induction on P , that all descendants of v, including v

itself, are black after the update. In this case, therefore, v = v.
As can be seen from the observations above, no descendant of v has more than one gray

child before or after the update under consideration. Therefore the only node in Tv that
can be a top node before or after the update is v itself, the only node in Tv that can be a
historian before or after the update is the leftmost leaf descendant hv of v, and before as
well as after the update at most one node in Tv is a proxy. Moreover, at most one node in T

other than v can become or stop being a top node as a result of the update, and this node, if
it exists, must be the leftmost gray sibling of v and to the right of v.

If v = r, change the root bits to reflect the new color of the root. Otherwise compute u

as the top node of the light path that contains the (gray) parent of v, let hu be the historian
of u (before and after the update) and let pu and p′u be the proxies of u before and after the
update, respectively, which can be found by following the old and new light paths that start
at u. Store the new history of p′u in A[hu]. In particular, this registers the new color of v. To
compute the history, it suffices to record the new navigation vectors encountered on the path
in T from u to p′u. Now consider five cases that together cover all possible situations and do
not overlap. Even though every color change is irreversible, Cases 1 and 2 show some aspects
of being reverses of each other, and so do Cases 4 and 5. These four cases are illustrated in
Fig. 2.

Case 1: v has a parent z and is the preferred child of z after the update. Thus v changes
its color from white to gray without becoming a top node. If hu is black before the update,
then execute A[p′u] := A[pu], which moves xhu

from the old to the new proxy of hu. This
overwrites no relevant information, as p′u is white and neither a historian nor a proxy before
the update unless p′u coincides with hu or pu, in which case the assignment is not carried
out or has no effect. Let v∗ be the preferred child of z before the update and let h∗ be the
leftmost leaf descendant of v∗. If v∗ is white before the update (this includes the case v∗ = v),
nothing more needs to be done. If v∗ is gray (before and after the update), it is a right
sibling of v, and it becomes a new top node whose historian h∗ and proxy pu must have their
associated information updated accordingly. To this end first execute A[pu] := A[h∗] and
subsequently store in A[h∗] the history of the new light path that starts at v∗ and ends at pu.
If pu = h∗, the two assignments write to the same word, but then any relevant information
present in A[h∗] before the update was already copied to A[p′u].
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Case 2: v has a parent z and is the preferred child of z before, but not after the update.
After the update, v is black and no descendant of v is a historian or a proxy, except that
hv may coincide with hu. Let v∗ be the preferred child of z after the update and let h∗ be
the leftmost leaf descendant of v∗. If v∗ is gray, it is a right sibling of v and a top node
with historian h∗ and proxy p′u before the update, whereas after the update p′u is the proxy
of u and h∗ is neither a historian nor a proxy unless h∗ = p′u. If h∗ is black, then execute
A[h∗] := A[p′u], which moves xh∗ to the correct place and overwrites a history that is no
longer useful. Finally, independently of the color of v∗ and as in Case 1, if hu is black, then
execute A[p′u] := A[pu].

In the remaining cases 3–5 v is a preferred child neither before nor after the update, so
there are no changes to light paths outside of Tv (i.e., the set of light edges outside of Tv

remains the same). In particular, p′u = pu. Moreover, v is not a leftmost child.
Case 3: v is a leaf with at least one white left sibling. There are no changes to light

paths, so nothing needs to be done.
Case 4: v is a top node after the update. Before the update, v is white, so no descendant

of v is a historian or a proxy at that time (informally, no information is stored below v).
Compute the proxy pv of v after the update and store the new history of pv in A[hv]. This
involves following the new light path that starts at v and recording the new navigation
vectors encountered on the way.

Case 5: v is a top node before the update. Because v is black after the update, no
descendant of v is a historian or a proxy at that time. Before the update, since ` is the only
white descendant of v, it is its proxy. If hv is black (i.e., if hv 6= `), then copy the value of
A[`], namely xhv

, to A[hv]. This overwrites an old history that is no longer useful.
The second phase of the execution of write(`, x) simulates the execution of read(`) until

the point when the routine is ready to return as its answer the value of A[i] for some i (that
is either ` or the proxy of `). Instead of returning A[i], it finishes by storing x in A[i]. Since
i is not a historian, it is easy to see that a subsequent call of read(`) will return x and that
the update of A[i] leaves the data structure in a legal state and does not change the value of
any elements of the client sequence (x0, . . . , xn−1) except x`. J

The next lemma and its proof show how to handle the case of an “incomplete tree”
elegantly and, following the initialization, without any overhead to test for special cases.

I Lemma 5. There is a clearable word array that, for all given n, d, t ∈ N with 2dt ≤ w and
n ≤ dt such that d is a power of 2, can be initialized for universe size n in constant time and
subsequently occupies nw + 2 bits and, if given access to d and t, supports read and write in
O(t) time.

Proof. We use the construction of the previous proof for universe size dt, but provide for its
storage only a word array A with index set {0, . . . , n − 1} in addition to two root bits. If
n = dt, nothing more needs to be said. If n < dt, before executing any true write operation,
we change the color of the root from white to gray (of course, by modifying the root bits) and
store in A[0] a history that corresponds to the leaves 0, . . . , n−1 being white and n, . . . , dt−1
being black. Provided that only legal accesses are subsequently attempted, this prevents
the data structure from ever choosing a proxy larger than n − 1, and it will process the
operations correctly without ever attempting to access one of the nonexisting array elements
A[n], . . . , A[dt − 1].

The computational steps just described are conceptually part of the initialization of the
data structure, but the computation of the history to be stored in A[0] may take more than
constant time. In order to guarantee a constant initialization time, we postpone the steps



T. Hagerup and F. Kammer 44:11

and execute them as an initial part of the first and only execution of a write operation that
begins with a white root, until which point we remember n in A[0]. Since the steps are easily
carried out in O(t) time, the bound of O(t) for the execution time of write remains valid. J

We now take the step to values of n larger than dt.

I Lemma 6. There is a clearable word array that, for all given n, t ∈ N, can be initialized
for universe size n in constant time and subsequently occupies at most nw + dn(t/(2w))te
bits and, if given access to n and t, supports read and write in O(t) time.

Proof. When c ∈ N is an arbitrary constant, we can assume without loss of generality that
n is a multiple of c. This is because we can initialize up to c− 1 “left-over” words in constant
time. Moreover, a word RAM with a word length of w bits can simulate one with a word
length of cw bits with constant slowdown, i.e., every instruction can be simulated in constant
time. By these observations, we can essentially pretend to be working on a word RAM with
a word length of cw bits (of course, the values communicated to and from a user of the data
structure are still w-bit quantities). In particular, we view A as consisting of n/c large words
of cw bits each, and the condition 2dt ≤ w of Lemma 5 can be relaxed to 2dt ≤ cw. We use
this with c = 16, for which choice the condition becomes d ≤ 8w/t.

Assume that t ≤ w. This entails no loss of generality because reducing larger values of t

to w does not increase the space bound of the lemma (recall that w ≥ dlog2 ne). Compute
d as the largest power of 2 no larger than 8w/t and note that d ≥ 4w/t ≥ 2. Dividing the
universe {0, . . . , n/c− 1} into ranges of dt consecutive elements each, except that the last
range may be smaller, we store each subsequence of the client sequence corresponding to a
range in an instance of the data structure of Lemma 5, called a tree, except that the root
bits are handled slightly differently. Altogether we have N = dn/(cdt)e ≤ dn(t/(2w))te trees.

If N = 1, i.e., if there is only a single tree, we use a single root bit to distinguish between
black and nonblack (i.e., white or gray). In order to indicate a white root, in addition to
initializing the root bit to the value that denotes a nonblack color, we store in A[0] a value
that cannot be the history of a gray root, such as one in which all colors in the navigation
vector of the root are white. The total redundancy is 1 = N ≤ dn(t/(2w))te.

If N > 1, we solve the problem of initializing the N trees differently. Each tree has
two root bits, and we must set these to indicate a white root. Assume, for convenience,
that the root color white is represented through two bits with a value of zero. Then the
task is to clear the 2N root bits, i.e., to set them to zero. Pack the 2N root bits tightly
in M = b2N/wc fully occupied words and at most one partially occupied word. If there
is an only partially occupied word, clear it explicitly. As for the M fully occupied words,
maintain these, if M ≥ 1, in a clearable word array implemented with the folklore method
discussed near the end of Section 2. In addition to the M words, this needs space for two
tables with altogether 2M entries and one counter that takes values in {0, . . . , M}. Each
table entry fits in a w-bit word, and except in the trivial case w = 1, the counter can be
stored in N bits, so the redundancy is at most 3Mw + N ≤ 7N . Since N > 1, we even
have 8N ≤ 16(n/c)(t/(4w))t = n(t/(4w))t ≤ dn(t/(2w))te. This slightly stronger bound is
irrelevant here, but useful in a proof of Theorem 2. J

In order to derive Theorem 2 from Lemma 6 and its proof, we show in [11] how to “hide”
the parameters n and t in the data structure essentially without additional space or how to
make do without them.

It is interesting to note that we can add an additional operation to our clearable word
array, namely an iteration that enumerates all first arguments of past write operations
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(informally, the positions to which writing took place). For this we would iterate over the
codes handed out by the folklore method and the associated trees, which is easy, enumerate
all leaves of each tree whose root is black, and for each tree whose root is gray carry out a
depth-first search (say) of its gray nodes and enumerate all leaf descendants of their black
children. The time needed is proportional to the number k of leaves enumerated plus the
total number of gray nodes, a quantity that is clearly bounded by (t + 1)k and never larger
than 2n. The iteration must be called with an argument that indicates n.
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Abstract
In this paper, we study covering and domination problems on directed graphs. Although undir-
ected Vertex Cover and Edge Dominating Set are well-studied classical graph problems,
the directed versions have not been studied much due to the lack of clear definitions.

We give natural definitions for Directed r-In (Out) Vertex Cover and Directed (p, q)-
Edge Dominating Set as directed generations of Vertex Cover and Edge Dominating
Set. For these problems, we show that (1) Directed r-In (Out) Vertex Cover and Dir-
ected (p, q)-Edge Dominating Set are NP-complete on planar directed acyclic graphs except
when r = 1 or (p, q) = (0, 0), (2) if r ≥ 2, Directed r-In (Out) Vertex Cover is W [2]-
hard and c ln k-inapproximable on directed acyclic graphs, (3) if either p or q is greater than 1,
Directed (p, q)-Edge Dominating Set is W [2]-hard and c ln k-inapproximable on directed
acyclic graphs, (4) all problems can be solved in polynomial time on trees, and (5) Directed
(0, 1), (1, 0), (1, 1)-Edge Dominating Set are fixed-parameter tractable in general graphs.

The first result implies that (directed) r-Dominating Set on directed line graphs is NP-
complete even if r = 1.
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Keywords and phrases directed graph, vertex cover, dominating set, edge dominating set, fixed-
parameter algorithms
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1 Introduction

Covering and domination problems are well-studied problems in theory and in applications
of graph algorithms, for example, Vertex Cover [16], Dominating Set [16] and Edge
Dominating Set [24]. However, almost all of these problems are studied on undirected
graphs. In particular, Vertex Cover and Edge Dominating Set on directed graphs have
not been studied although there are some results on directed Dominating Set [11, 7, 21, 15].
This seems surprising, but maybe one reason might be that it is difficult to expand the
definition naturally to directed graphs due to the unclear relationship between “direction”
and “domination”.

In this paper, we study directed versions of Vertex Cover and Edge Dominating
Set. First, we give formal definitions of directed Vertex Cover and directed Edge
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Dominating Set. In the definitions, we consider several scenarios that reflect how the
selected set influences edges via directed edges. It should be noted that the definition follows
from r-Dominating Set [8, 12, 21]. These definitions are also motivated by economic
network analysis. We mention applications of these problems in Section 1.2.

In a directed graph, vertex v is said to in-cover every incoming edge (u, v) and out-cover
every outgoing edge (v, u) for some u. A vertex v is also said to r-in-cover all edges in the
directed path to v of length at most r. Similarly, v is said to r-out-cover all edges in the
directed path from v. Here, for a path v1, v2, . . . , v`, the length of the path is defined as the
number of edges, that is, ` − 1. In particular, if r = 0, a vertex is not considered to cover
any edge. Then Directed r-In (Out) Vertex Cover is the following problem.

I Definition 1. Directed r-In (Out) Vertex Cover (r-In (Out) VC) is the problem
that given a directed graph G = (V, E) and two positive integers k and r, determines
whether there exists a vertex subset S ⊆ V of size at most k such that every edge in E is
r-in (out)-covered by S. Such S is called an r-in (out)-vertex cover.

Furthermore, we define Directed (p, q)-Edge Dominating Set. An edge e = (u, v)
is said to (p, q)-dominate itself and all edges that vertex u p-in-covers and vertex v q-out-
covers. In particular, edge (u, v) is said to (p, 0)-dominate (resp., (0, q)-dominate) itself and
all edges p-in-covered by u (resp., q-out-covered by v).

Then Directed (p, q)-Edge Dominating Set is defined as follows.

I Definition 2. Directed (p, q)-Edge Dominating Set ((p, q)-EDS) is the problem that
given a directed graph G = (V, E), one positive integer k, and two non-negative integers
p, q, determines whether there exists an edge subset K ⊆ E of size at most k such that every
edge is (p, q)-dominated by K. Such K is called a (p, q)-edge dominating set.

The undirected Edge Dominating Set problem is Dominating Set on (undirected)
line graphs. We can see the same relationship between Directed (0, 1)-Edge Dominating
Set and Dominating Set on directed line graphs. For a directed graph, a directed line
graph is defined as follows:

I Definition 3 ([18]). A directed line graph of G = (V, E) is L(G) = (E, E2) such that

E2 = {((x, y), (z, w))|(x, y), (z, w) ∈ E ∧ y = z}.

It is obvious that a directed (0, 1)-edge dominating set on a directed graph G corresponds
to a (directed) dominating set on the line graph of G. Furthermore, Directed (1, 1)-Edge
Dominating Set corresponds to undirected Dominating Set on an underlying undirected
graph of a directed line graph. These relations imply that our definition of Directed (p, q)-
Edge Dominating Set is quite natural from the viewpoint of the line graph operation.

One interesting aspect of directed versions, but not undirected versions, is the asymmetry
of the problem structures. For Directed r-In Vertex Cover, a vertex v in-covers only
(u, v) when r = 1. Thus, a 1-in vertex cover is the set of all vertices whose in-degree is at
least one. Therefore, it is trivial that Directed 1-In (Out) Vertex Cover is solvable
in linear time, while undirected Vertex Cover is NP-complete. On the other hand,
Directed (1, 1)-Edge Dominating Set, in a sense, corresponds to (undirected) Edge
Dominating Set. For the optimization version, Edge Dominating Set is equivalent to
Minimum Maximal Matching [24]. However, Directed (1, 1)-Edge Dominating Set
does not necessarily correspond to matching on the undirected graphs underlying directed
graphs due to the asymmetry of domination.
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Table 1 Our results for graph classes. NP-c and W [2]-h stand for NP-complete and W [2]-hard,
respectively.

Graph class Tree Planar DAG of bounded degree DAG General

1-In (Out) VC - - - O(n)
r-In (Out) VC (r ≥ 2) O(n4) NP-c W [2]-h W [2]-h
(0, 1), (1, 0)-EDS O(n4) NP-c NP-c 2O(k)n

(1, 1)-EDS O(n4) NP-c NP-c 2O(k)n

(p, q)-EDS (p or q ≥ 2) O(n4) NP-c W [2]-h W [2]-h

For Directed (p, q)-Edge Dominating Set, there exists another source of asymmetry.
That is, we can consider the case in which p and q are different. In the case in which
(p, q) = (0, 1), edge (u, v) dominates itself and edges out-covered by v. Although Directed
(0, 1)-Edge Dominating Set is similar to Directed 1-Out Vertex Cover, surprisingly,
it is NP-complete on directed acyclic graphs.

1.1 Our Contributions

Table 1 shows our results. In this paper, we first give hardness results for Directed r-In
(Out) Vertex Cover and Directed (p, q)-Edge Dominating Set on restricted graphs,
even on directed acyclic planar graphs of bounded degree. The hardness on directed acyc-
lic graphs implies that we cannot design parameterized algorithms with respect to directed
treewidth [19] and DAG-width [2] unless P=NP. The fact that Directed (0, q)-Edge Dom-
inating Set is NP-complete even if q = 1 implies that r-Dominating Set on directed line
graphs is NP-complete even if r = 1. Moreover, we prove that Directed r-In (Out) Ver-
tex Cover is W [2]-hard and c ln k-inapproximable on directed acyclic graphs when r ≥ 2,
and Directed (p, q)-Edge Dominating Set is W [2]-hard and c ln k-inapproximable on
directed acyclic graphs when either p or q is greater than 1. These results hold even if there
are no multiple edges or loops.

On the other hand, we obtain algorithms for certain cases, including algorithms for all
problems when restricted to trees, for any values of p, q, and r. The interplay among
distance, direction, and domination results in a complex dynamic programming solution,
running in O(n4) time. Because an edge can either dominate or be dominated by edges
outside of a subtree depending on how it is directed, at each step of the algorithm we need
to maintain extensive information not only about the subtree itself but also potential outside
influence.

We show that Directed (0, 1), (1, 0), (1, 1)-Edge Dominating Set is fixed-parameter
tractable with respect to k. In particular, we give 2O(k)n-time algorithms. We emphasize
that the running time of these algorithms is single exponential in k and linear in n. Moreover,
our fixed-parameter algorithms are based on dynamic programming on a tree decomposition.
Thus, we also show that Directed (0, 1), (1, 0), (1, 1)-Edge Dominating Set can be solved
in linear time on graphs whose underlying undirected graphs have bounded treewidth. Note
that given a directed graph G and its underlying undirected graph G∗, the directed treewidth
of G is no greater than its DAG-width which, in turn, is no greater than the treewidth of
G∗[2].
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1.2 Motivation and Application
As practical motivation, a number of network models employ directed graphs. For example,
directed graphs are used to represent economic networks in which vertices correspond to
industries and edges correspond to transactions of money or materials between industries [22,
17].

Recently, economists have used graph algorithms to analyze these economic networks
in terms of graph structures in order to find critical industries and transactions [20, 23].
Based on the analyses, they discuss which kinds of economic policies should be adopted,
and so on. However, there are some problems. Such analyses in economics are based
on undirected graph algorithms instead of directed graph algorithms; they first transform
directed graphs to undirected graphs, and then apply undirected graph algorithms to the
graphs thus obtained. This is because there are many more results on graph optimization
on undirected graphs than on directed graphs. Of course, such substitute algorithms might
extract some information from the processed graph, but some important information is
definitely lost. For example, when we would like to find a critical transaction in an economic
network, the edge direction is clearly essential.

The theoretical motivation is a relationship between directed Dominating Set and
Directed (p, q)-Edge Dominating Set. As we mentioned above, Directed (0, 1)-Edge
Dominating Set is directed Dominating Set on directed line graphs and Directed
(1, 1)-Edge Dominating Set is undirected Dominating Set on an underlying undirected
graph of a directed line graph. Directed line graphs are well-studied for DNA sequencing
and have some useful properties and characterizations [18, 3]. As for combinatorial problems
on graphs, (directed) Hamiltonian Path on directed line graphs can be solved in time
O(n2 + m2) [4] while Hamiltonian Path on undirected line graphs is NP-complete [1].
Therefore, some directed problems could be easier than the undirected versions on line
graphs. Unfortunately, however, our results show that directed Dominating Set and the
distance version, that is, directed r-Dominating Set, remain NP-complete even on directed
line graphs.

1.3 Related problems
One of the most famous covering problems is Vertex Cover. This is a classical NP-
complete problem on undirected graphs, but known to be fixed-parameter tractable [6]. In
terms of graph parameters, the size of the minimum vertex cover of G is called the vertex
cover number of G. For any graph, it is easily seen that vertex cover number is greater than
or equal to the treewidth [14].

Edge Dominating Set is the problem that given an undirected graph G = (V, E)
and an integer k, determines whether there exists a set of edges X of size at most k such
that any edge in E \X has at least one incident edge in X. This problem is NP-complete
even on bipartite, planar, and bounded degree graphs [24], but fixed-parameter tractable
in general [13]. As we have seen, the Edge Dominating Set problem is equivalent to
Dominating Set on line graphs. Moreover, the (optimization) Edge Dominating Set
problem is equivalent to Minimum Maximal Matching [24].

Dominating Set is a classical domination problem. This problem is known to be
Ω(log n)-inapproximable, but O(log n)-approximable by a simple greedy algorithm on gen-
eral graphs [9]. With respect to parameterized complexity, Dominating Set is W [2]-
complete, unlike Vertex Cover and Edge Dominating Set [10]. Therefore, this prob-
lem is well-studied on restricted graphs. Recently, Dawar et al. [8] and Drange et al. [12]
considered fixed-parameter tractability and the existence of problem kernels for some sparse
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graph classes. Their results include the distance version, that is, r-Dominating Set. This
approach was generalized to directed graphs because the directed Dominating Set problem
is also W [2]-complete [21].

The remainder of this paper is organized as follows. In Section 2, we first give basic
terminology, notions, and definitions. In Section 3, we show the hardness results of the
problems. In Section 4, we give polynomial-time algorithms on trees and fixed-parameter
algorithms on general graphs. We prove many theorems (including lemmas) in this paper,
but several of the proofs are omitted due to space limitations.

2 Preliminaries

In this section, we give notation and definitions. Let G = (V, E) be a directed graph where
|V | = n and |E| = m. A vertex u is called an in-neighbor of v if there exists an edge (u, v)
and a vertex w is called an out-neighbor of v if there exists an edge (v, w). Moreover, the
sets of in (out)-neighbors of v are denoted by N in(v) (resp., Nout(v)). The number of in
(out)-neighbor vertices of v is called the in (out)-degree and denoted by indeg(v) := |N in(v)|
(resp., outdeg(v) := |Nout(v)|).

For two vertices u, v, the distance from u to v is defined as the number of edges in the
shortest path from u to v, denoted by dist(u, v). A vertex u such that dist(u, v) is at most
r is called an r-in-neighbor of v and a vertex w such that dist(v, w) is at most r is called
an r-out-neighbor of v. The sets of r-in (out)-neighbors of v are denoted by N in

r (v) (resp.,
Nout

r (v)). Note that N in
r (v) = N in(v) and Nout

r (v) = Nout(v) when r = 1.
In an undirected graph G∗, a set of edges such that no edges share an endpoint is called a

matching. Furthermore, a matching is maximal if no proper superset is a matching. An edge
dominating set is the edge set E′ such that every edge in E \ E′ is adjacent to at least one
edge in E′. Therefore, a maximal matching is an edge dominating set. As a typical design
tool of parameterized algorithms, we make use of the tree decomposition and treewidth in
this paper. We denote the treewidth of G∗ by tw(G∗). For formal definitions of treewidth
and tree decomposition, see [5], for example.

A directed graph G is called a directed acyclic graph (DAG) if G has no directed cycle
and a planar graph if it can be embedded in the plane without any edges crossing. We
mention results on such restricted graphs.

3 Hardness results

In this section, we discuss the hardness of Directed r-In (Out) Vertex Cover and
Directed (p, q)-Edge Dominating Set.

3.1 Directed (0, 1), (1, 0)-Edge Dominating Set
We first show that Directed (0, 1), (1, 0)-Edge Dominating Set is NP-complete. Al-
though Directed (0, 1)-Edge Dominating Set is very similar to 1-Out Vertex Cover,
there is a large gap in terms of time complexity.

To show this, we introduce a variant of the SAT problem. Let (X, C) be an instance I

of SAT, where X = {x1, x2, . . . , n} is the set of variables and C = {C1, C2, . . . , Cm} is the
set of clauses. We consider a bipartite graph GI = (X ∪ C, E), where E = {{x, C} | x ∈
X, C ∈ C such that x ∈ C or x̄ ∈ C}. An instance I of SAT is called planar if GI is planar.
Much is known concerning the planar version of SAT. For example, 3SAT is known to be
NP-complete even if the instance is restricted to being planar. The restricted version of
3SAT is called Planar 3SAT.
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Figure 1 Constructed graph of the reduc-
tion from 3SAT to (0, 1)-EDS

Figure 2 Replacing a cycle by a directed
path for a variable’s gadget

Here, we consider another restriction of Planar 3SAT. In the restricted instances, each
literal appears at most twice, that is, ∀y ∈ X ∪ X̄ : |{C ∈ C | y ∈ C}| ≤ 2. Instead, the
size of each clause is relaxed to be not exactly three but at most three. We call this version
Planar At-Most3SAT(L2).

I Lemma 4. Planar At-Most3SAT(L2) is NP-complete.

By using Lemma 4, we can obtain Theorem 5.

I Theorem 5. Directed (0, 1), (1, 0)-Edge Dominating Set is NP-complete on directed
planar graphs such that indeg(v) + outdeg(v) ≤ 3 holds for any vertex.

Proof. We only consider Directed (0, 1)-Edge Dominating Set as the other proof is
similar. This problem is clearly in NP. Thus, we show the hardness. The reduction is from
Planar At-Most3SAT(L2).

Let n be the number of variables, m be the number of clauses, and l be the number of
literals in an input Φ for Planar At-Most3SAT(L2). Then, we construct a graph as in
Figure 1. First, we create n cycles of length four corresponding to the variables in Φ and
m paths of length five corresponding to the clauses in Φ. For a variable’s gadget, if we
include the two horizontal edges in the (0, 1)-edge dominating set, it corresponds to setting
the variable to true in Φ. Otherwise, we include the two vertical edges, which corresponds
to setting the variable to false. Note that the size of a minimum (0, 1)-edge dominating set
for a cycle of length four is two. In Figure 1, thick lines represent that they are included in
the solution (we use the same convention in the other figures).

We connect each clause gadget to the variable gadgets corresponding to the literals in the
clause, as follows. For v1, v2, . . . , v6 the vertices in the clause gadget, each of v1, v3, and v5
is connected by a path of length two, called a linking path, to one of the vertices in a variable
gadget. We can observe that there are l linking paths in the constructed graph. For each
variable, there are at most two occurrences of true literals and at most two of false literals.
Because the variable gadget has four vertices corresponding to literals, by connecting each
vertex in the variable gadget to a clause gadget, for any vertex v in the constructed graph,
indeg(v) + outdeg(v) ≤ 3.

Finally, we conclude this proof by obtaining the following lemma.

I Lemma 6. An input Φ for Planar At-Most3SAT(L2) has a satisfying truth assignment
if and only if there exists a (0, 1)-edge dominating set of size 2n + l + 2m in a constructed
graph. J
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Figure 3 Vertex gadgets for source and
sink in the reduction to (1, 1)-EDS

Figure 4 Vertex gadgets for other vertices
in the reduction to (1, 1)-EDS

By replacing each variable gadget by a path v1, v2, v3, v4 of length three and connecting
vertex v3 and true literals in a clause, and vertex v4 and false literals (see Figure 2), we
can also show that Directed (0, 1)-Edge Dominating Set is NP-complete on directed
acyclic planar graphs of bounded degree. Note that edge (v1, v2) is contained in any (0, 1)-
edge dominating set. Moreover, including edge (v2, v3) in the (0, 1)-edge dominating set
corresponds to setting the variable to true and including edge (v3, v4) corresponds to setting
the variable to false.

I Corollary 7. Directed (0, 1), (1, 0)-Edge Dominating Set is NP-complete on directed
acyclic planar graphs such that indeg(v) + outdeg(v) ≤ 4 holds for any vertex.

3.2 Directed (1, 1)-Edge Dominating Set
As for Directed (1, 1)-Edge Dominating Set, we obtain a stronger result in terms of
a degree constraint. To show this, we first introduce a variant of planar graphs. A graph
is planar almost cubic if it is planar, there are exactly two vertices of degree two, and the
degree of all other vertices is three. We show that Vertex Cover remains NP-complete
on planar almost cubic graphs.

I Lemma 8. Vertex Cover on planar almost cubic graphs is NP-complete.

By using Lemma 8, we show the following theorem.

I Theorem 9. Directed (1, 1)-Edge Dominating Set is NP-complete on directed acyclic
planar graphs such that indeg(v) + outdeg(v) ≤ 3 holds for any vertex.

Proof. Since Directed (1, 1)-Edge Dominating Set clearly belongs to NP, we prove
the hardness. We show a reduction from Vertex Cover on planar almost cubic graphs.
Suppose that we are given an instance (G, k) of Vertex Cover. For an undirected planar
almost cubic graph G, we choose two vertices with degree two in G as source and sink
vertices. We then arrange each vertex in a horizontal line such that the two vertices of
degree two become ends of the line and orient every edge from left to right. Note that there
exist exactly one source vertex such that the in-degree is zero and out-degree is two and
exactly one sink vertex such that the in-degree is two and out-degree is zero. For other
vertices v, it holds that indeg(v) = 1 and outdeg(v) = 2 or indeg(v) = 2 and outdeg(v) = 1.
Each oriented edge corresponding to an edge in G is called an original edge.
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Next, we attach paths of length three to the source vertex and the sink vertex as a
vertex gadget as in Figure 3. Moreover, we replace any other vertex by a path of length
three consisting of ev, e1, e2 as in Figure 4. An edge ev in G′ corresponds to vertex v in G.
Let G′ be the constructed graph. Since we only replace vertices in G by paths, G′ remains
planar and acyclic and for any vertex v in G′, indeg(v) + outdeg(v) ≤ 3. Then the following
lemma completes the proof.

I Lemma 10. An instance (G, k) of Vertex Cover is a yes-instance if and only if an
instance (G′, n + k) of Directed (1, 1)-Edge Dominating Set is a yes-instance. J

We also obtain the following result on the distance-generalized version.

I Corollary 11. Directed (p, q)-Edge Dominating Set is NP-complete on directed acyc-
lic planar graphs such that indeg(v) + outdeg(v) ≤ 3 holds for any vertex when p, q ≥ 1.

3.3 Distance generalization
In this subsection, we consider the distance-generalized versions as with Corollary 11. We
first show that Directed r-In (Out) Vertex Cover and Directed (0, q), (p, 0)-Edge
Dominating Set are NP-complete on directed acyclic planar graphs of bounded degree.

I Theorem 12. When r, p and q are greater than 1, Directed r-In (Out) Vertex
Cover and Directed (0, q), (p, 0)-Edge Dominating Set are NP-complete on directed
acyclic planar graphs such that indeg(v) + outdeg(v) ≤ 4 holds for any vertex v.

From Theorems 5 and 12, we can conclude directed r-Dominating Set on directed line
graphs is NP-complete.

I Corollary 13. The (directed) r-Dominating Set problem is NP-complete on directed line
graphs even if r = 1.

Finally, we show that Directed r-In (Out) Vertex Cover and Directed (p, q)-
Edge Dominating Set are W [2]-hard on directed acyclic graphs by a reduction from Set
Cover, which is W [2]-complete and Ω(log n)-inapproximable [10, 9].

I Theorem 14. Directed r-In (Out) Vertex Cover is W [2]-hard on directed acyclic
graphs when r ≥ 2. Directed (p, q)-Edge Dominating Set is W [2]-hard on directed
acyclic graphs when p ≥ 2 or q ≥ 2. For these problems, there is no polynomial-time
c ln k-approximation algorithm for any constant c < 1 unless P=NP, where k is the size
of an optimal solution, though they can be approximated within ratio O(log n) by a greedy
algorithm.

4 Algorithms

In this section, we give polynomial-time algorithms for Directed r-In (Out) Vertex
Cover and Directed (p, q)-Edge Dominating Set on trees and fixed-parameter al-
gorithms for Directed (0, 1), (1, 0), (1, 1)-Edge Dominating Set on general graphs.

4.1 Algorithms on Trees
We solve Directed (p, q)-Edge Dominating Set by dynamic programming on a graph
G for which the underlying undirected graph is a tree, which we can root at an arbitrary
vertex; henceforth we use Ĝ to denote such a rooted tree. When we use the terms parent,
child, ancestor, and descendant, we are referring to the relationships between vertices in Ĝ.
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We first extend the definition of distance to specify distances between vertices and edges.
For an edge e = (u, v) and vertices w and x, we define dist(w, e) to be dist(w, u) and
dist(e, x) to be dist(v, x). Moreover, for two edges e = (u, v) and f = (x, y), we define
dist(e, f) to be dist(v, x). An edge e i-in-dominates (or just in-dominates) all edges f such
that dist(f, e) ≤ i and an edge e j-out-dominates (or just out-dominates) all edges f such
that dist(e, f) ≤ j. In a directed path containing edges e and f , the edges (not including e

and f) traversed along the path are between e and f . If there are k edges between e and f ,
then e (k + 1)-out-dominates f and f (k + 1)-in-dominates e.

In Ĝ, we use Tv to denote the subtree rooted at the vertex v, and G[Tv] to denote the
subgraph of (the directed graph) G induced on the vertices in Tv. We call G[Tv] the subtree
of G rooted at v and use conn(v) to denote the edge connecting v to its parent, if it has
one. We refer to a vertex v as an out-vertex if conn(v) is directed from v to its parent and a
in-vertex if conn(v) is directed from v’s parent to v. If v is the root of Ĝ, it is neither an out-
vertex nor an in-vertex. We use same(v) and diff(v) to denote the sets of children of v that
are out-vertices and in-vertices, respectively, if v is an out-vertex and that are in-vertices
and out-vertices, respectively, if v is an in-vertex. Furthermore, we use ST (v) to denote the
set of subtrees rooted at vertices in same(v) and DT (v) to denote the set of subtrees rooted
at vertices in diff(v); these are considered to be two different types of subtrees. In addition,
we use Cs to denote the set of edges between v and vertices in same(v), and Cd to denote
the set of edges between v and vertices in diff(v); just as there are two types of subtrees,
we consider these set to constitute two types of connecting edges.

Our dynamic-programming algorithm processes vertices in an order such that a vertex
v is processed after all its descendants, where we use information about the subtrees rooted
at the children of v to determine how to dominate edges in G[Tv]. We store not only the
sizes of edge dominating sets, but also the sizes of edge dominating sets defined in terms of
their reach and deficit, which are measures of the impact of edges inside a subtree in the
domination of edges outside the subtree and the impact of edges outside a subtree in the
domination of edges inside the subtree.

To see how edges in subtrees rooted at children of v can have an impact on each other,
suppose v has two children w and x such that w is an out-vertex and x is a in-vertex.
Furthermore, consider an edge ew in G[Tw] such that dist(ew, w) = i and an edge ex in
G[Tx] such that dist(x, ex) = j. We can form a directed path that starts at ew and traverses
the edges (w, v) and (v, x) to end at ex. The number of edges between ew and ex is i+ j +2,
which means that ew (i + j + 3)-out-dominates ex and that ex (i + j + 3)-in-dominates e.

To determine the reach of a set of edges K in G[Tv], we first determine the shortest
distance i from an edge in K to v, if v is an out-vertex, or the shortest distance i from v to
an edge in K, if v is an in-vertex. When v is an endpoint of an edge in K (that is, i = 0),
that edge will be able to q-out-dominate an edge outside of G[Tv], if v is an out-vertex, or
p-in-dominate an edge outside of G[Tv], if v is an in-vertex. We thus define maxreach(v) = q

for each out-vertex v and maxreach(v) = p for each in-vertex v. More generally, we define
the reach of K beyond G[Tv] to be maxreach(v)− i.

To measure which edges depend on outside edges for domination, we define the deficit
of K within G[Tv] to be maximum over dist(e, v) (resp., dist(v, e)) over all edges e in G[Tv]
not (p, q)-dominated by any edge in K, for v an out-vertex (resp., in-vertex). Since the
edge between v and its parent is the outside edge that can cover the largest deficit, we set
maxdeficit(v) = p for v an out-vertex and maxdeficit(v) = q for v a in-vertex. We refer to
all edges e with dist(e, v) ≤ d (resp., dist(v, e) ≤ d) to be edges of deficit of most d in G[Tv],
for v an out-vertex (resp., an in-vertex). Should an edge outside a subtree have sufficient
reach to dominate all edges of deficit at most d, we will say that the edge covers the deficit.
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Using these concepts, we say that a set of edges K is a reach-r-deficit-d edge dominating
set for G[Tv] if the reach of K beyond G[Tv] is r, and K (p, q)-dominates G[Tv\J ] where J

is the set of edges of deficit at most d in G[Tv]. In our algorithm, we use D[v, r, d] to store
the minimum number of edges in a reach-r-deficit-d edge dominating set for G[Tv].

When processing a vertex v, we determine D[v, r, d] for values of r and d in the ranges
0 ≤ r ≤ maxreach(v) and 0 ≤ d ≤ maxdeficit(v). For the base cases, for each leaf v

in Ĝ, we set D[v, r, d] = 0 for all values of r and d. To determine the value of D[v, r, d],
we will consider all possible options for adding edges between v and its children to K, a
reach-r-deficit-d edge dominating set for G[Tv], as the choice of edges of K in the subtrees
rooted at the children of v will be represented by already-computed table entries.

The computation of the table entries depends on the following lemmas.

I Lemma 15. The reach of K beyond G[Tv] is maxreach(v) if and only if K ∩ Cs 6= ∅.

I Lemma 16. If K ∩ Cs = ∅, the reach of K beyond G[Tv] is one less than the maximum
over all vertices u ∈ same(v) of the reach of K restricted to G[Tu].

I Lemma 17. For any child u of v, conn(u) covers a deficit of maxdeficit(u) in G[Tu].

I Lemma 18. For any child u of v, if conn(u) is not included in K, then the maximum
possible deficit within G[Tv] that can be covered by K is maxdeficit(u)− 1.

I Lemma 19. For any child u of v, if conn(u) is not included in K, the deficit in G[Tv] will
be covered by any single connecting edge of the opposite type. Thus, if K ∩ Cd 6= ∅, d = 0.

The complete proofs of Theorems 20 and 21 are omitted.

I Theorem 20. There is an algorithm that solves Directed (p, q)-Edge Dominating
Set on trees in O(n4)-time.

I Theorem 21. There is an algorithm that solves Directed r-In (Out) Vertex Cover
on trees in O(n4)-time.

4.2 Fixed-Parameter Algorithm for Directed Edge Dominating Set
In this subsection, we give a 2O(k)n-time algorithm for Directed (1, 1)-Edge Dominating
Set. First, we obtain the following lemmas and theorem.

I Lemma 22. Given a directed graph G, let G∗ be the underlying undirected graph of G

and s be the minimum size of Directed (1, 1)-Edge Dominating Set on G. Then the
following inequality holds: tw(G∗) ≤ 2s.

Proof. Let G∗ be an undirected graph, tw(G∗) be the treewidth of G∗, and vc(G∗) be the
size of minimum vertex cover. Then we have tw(G∗) ≤ vc(G∗) [14]. Let M∗ be a minimum
maximal matching in G∗. A minimum (1, 1)-edge dominating set in G is an (not necessarily
minimum) edge dominating set in G∗. If not, there is an edge not dominated by the (1, 1)-
edge dominating set in G. Moreover, for any edge dominating set D in undirected graphs,
|D| ≥ |M∗| holds because a minimum maximal matching is a minimum edge dominating
set [24]. Therefore, s ≥ |M∗| holds. On the other hand, we have a well-known result
that for any maximal matching M , vc(G∗) ≤ 2|M | [16]. Moreover, we already know that
tw(G∗) ≤ vc(G∗) holds. Finally, we can obtain tw(G∗) ≤ 2s. J

I Lemma 23. Given a directed graph G, let G∗ be the underlying undirected graph of G.
Then given a tree decomposition of G∗ of width at most `, there exists an algorithm that
solves Directed (1, 1)-Edge Dominating Set in 25``O(1)n-time.
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I Theorem 24 ([5]). There exists an algorithm that, given an n-vertex graph G and an
integer `, in time 2O(`)n either outputs that the treewidth of G is larger than `, or constructs
a tree decomposition of G of width at most 5` + 4.

Finally, Directed (1, 1)-Edge Dominating Set can be solved in the following time.

I Theorem 25. Given an instance (G, k) of Directed (1, 1)-Edge Dominating Set, it
can be solved in 2O(k)n-time.

Proof. Given an instance (G, k), we first determine whether the treewidth of G∗ is at most
2k in 2O(k)n-time by using Theorem 24. If tw(G∗) > 2k, we conclude that it is a no-
instance by Lemma 22. Otherwise, we use the 25``O(1)n-time algorithm based on a tree
decomposition of width at most 10k + 4 obtained by Theorem 24. Therefore, the total
running time is 2O(k)n + 2510k+4(10k + 4)O(1)

n = 2O(k)n. J

Thus, Directed (1, 1)-Edge Dominating Set is fixed-parameter tractable with re-
spect to k. We emphasize that the running time of this algorithm is single exponential in k

and linear in n. In the same way, we can prove Directed (0, 1), (1, 0)-Edge Dominating
Set is fixed-parameter tractable with respect to k.

I Theorem 26. Given an instance (G, k) of Directed (0, 1), (1, 0)-Edge Dominating
Set, it can be solved in 2O(k)n-time.
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Abstract
In the economic activities, the central bank has an important role to cover payments of banks,
when they are short of funds to clear their debts. For this purpose, the central bank timely puts
funds so that the economic activities go smooth. Since payments in this mechanism are processed
sequentially, the total amount of funds put by the central bank critically depends on the order
of the payments. Then an interest goes to the amount to prepare if the order of the payments
can be controlled by the central bank, or if it is determined under the worst case scenario. This
motivates us to introduce a brand-new problem, which we call the settlement fund circulation
problem. The problems are formulated as follows: Let G = (V,A) be a directed multigraph with
a vertex set V and an arc set A. Each arc a ∈ A is endowed debt d(a) ≥ 0, and the debts are
settled sequentially under a sequence π of arcs. Each vertex v ∈ V is put fund in the amount
of pπ(v) ≥ 0 under the sequence. The minimum/maximum settlement fund circulation problem
(Min-SFC/Max-SFC) in a given graph G with debts d : A→ R+ ∪ {0} asks to find a bijection
π : A→ {1, 2,. . . , |A|} that minimizes/maximizes the total funds

∑
v∈V pπ(v). In this paper, we

show that both Min-SFC and Max-SFC are NP-hard; in particular, Min-SFC is (I) strongly
NP-hard even if G is (i) a multigraph with |V | = 2 or (ii) a simple graph with treewidth at most
two, and is (II) (not necessarily strongly) NP-hard for simple trees of diameter four, while it is
solvable in polynomial time for stars. Also, we identify several polynomial time solvable cases
for both problems.
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1 Introduction

Background

In the economic activities, when a company borrows money, it owes a debt and the debt
is not cleared until the debtor pays its amount. If the debtor fails to prepare cash for the
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payment until the deadline, it will go bankrupt. Such bankruptcy should be avoided when
it could cause significant damage to the economy, and it is particularly true for the case of
banks since their debts are highly interconnected each other and bankruptcy of a bank may
cause chain reaction of bankruptcy. It is one of the reasons that debts among banks are
cleared in a special system, called interbank settlement system, in which the central bank
supports cash management of the banks.

In the system, cash held by the central bank is used as the fund for the payments. When
a bank does not have enough funds for clearing its debts, the central bank will lend the
necessary amount. Suppose, for example, that there are three banks, say A, B, and C, and
they form debts such that A owes 50 to B, and B owes 30 to C, and A and B currently have
10 each on its own. Now if A pays for its debt, then A is short of 40. Therefore, the central
bank is requested to put 40 in order to fill the shortage. Once 40 is put on A, it can clear its
debt 50 to B, and then B can also clear its debt 30 by using its own funds 10 and a part of
the received funds 50. Note that we assume each debt has to be cleared independently and
“sequentially”, that is, it is not allowed to cancel out payments; A pays 30 directly to C, and
the rest 20 to B, for example.1

Objective

Now, suppose that B pays before A does. Then, the central bank has to put 20 to B, and in
addition, 40 to A. This illustrates, in general, that the total amount of funds put to clear all
debts depends on the order of the payments. Since funds in an interbank settlement system
is scarce resource in the public interest, the efficient usage is socially desirable. Accordingly,
one of the important roles of the central bank is to minimize the total funds put to clear the
debts. Then we can consider a problem that finds the minimum total funds put to clear all
debts by deciding a sequence of the payments, which we formulate as Min-SFC.

In a different perspective, another role of the central bank is to prepare for the worst case
scenario such that it could hardly control the sequence of the payments. It is typical at the
time of financial disruption and is crucially important. These observations again motivate
us to define a corresponding maximization version of the problem, that is, to estimate the
maximum funds that have to be put to clear all given debts, which we formulate as Max-SFC.
It is quite significant to obtain insights concerning the desirable sequence of the payments in
order to argue relevant policies.

Technically, both problems are formulated as optimization problems on networks. However,
the nature of our problems is essentially different from the classic flow problems in the sense
that the amount of each “debt” (flow) cannot be split at the time of the payment. On the
contrary, such unsplittable flows come to have a feature that once some debt is cleared,
then the transferred funds are accumulated in the bank’s “account” and they can be split
arbitrarily for the subsequent payments.

History and Perspective in Economics

Historically, we can find a primitive concern of fund circulation in the renowned Quesnay’s
“Economic Table” [10]. Only recently, Rotemberg explicitly discusses the amount of required
funds in the context of interbank settlements [12], though he does not give its general
formulation. A general formulation to derive each of the minimum and maximum amount of

1 Sequential clearing is standard in the modern interbank settlement systems, as World Bank documents
that 116 of 139 surveyed countries have adopted sequential clearing based systems up to 2010 [14].
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required funds is then given by Hayakawa [5] for the purpose of economic analysis.2 This
paper now gives, from the computational aspect, detailed mathematical formulations for these
problems as Min-SFC and Max-SFC, and presents a series of algorithmic or complexity
results based on solid observations for the first time.

In the wake of the recent world-wide financial crisis, analyzing “dominos” of default comes
to have critical importance. Seminal studies in the literature effectively assume “simultaneous”
clearing that makes payments cancel out whenever possible, not only bilaterally but also
multilaterally, though “sequential” clearing, which we assume, is standard in the modern
interbank settlement systems. The assumption of simultaneous clearing lets the relevant
analyses be highly tractable [1, 2], however, it could considerably underestimate the amount
of funds required to prevent “dominos” of default. In the light of these, we believe that
the study in this paper serves as fundamental tools of the estimation and suggests a new
methodology in the analyses that is applicable to complex economic situations in reality.

This paper is organized as follows. In Section 2, after giving several terminologies, we
formalize our problem of interests and show some examples. Sections 3 and 4 discuss the
minimization version of the problem, and show tractable and intractable cases, respectively.
Section 5 deals with the maximization version. Finally in Section 6, future work is described.

2 Preliminaries

2.1 Definitions and Terminology
For a positive integer n, let [n] = {1, 2, . . . , n}. For a finite set V , a family X of subsets in V
is a partition of V if

⋃
X∈X X = V holds and every two distinct sets in X are disjoint.

A directed graph (digraph) D is an ordered pair of its vertex set V (D) and arc set A(D)
and is denoted by D = (V (D), A(D)), or simply D = (V,A). An arc, an element of A(D), is
an ordered pair of vertices, and is denoted by a = (u, v); this is distinct from (v, u). For an
arc a = (u, v), u is its start vertex and v is end vertex; they are denoted by s(a) and t(a),
respectively. A digraph D is multiple when A(D) is a multiple set; otherwise it is simple.

The underlying graph of a digraph D is an undirected graph GD whose vertex set is
V (D) and edge set E(GD) has an edge {u, v} as its element if and only if (u, v) ∈ A(D) or
(v, u) ∈ A(D). A digraph D is weakly connected if its underlying graph GD is connected. We
assume throughout the paper that all digraphs are weakly connected. We usually use n and
m to denote the number of vertices and arcs (edges), respectively, of a graph.

The degree of v is the number of arcs incident on v. We use ∆(D) to denote the maximum
degree of a digraph D. Let ND(v) denote the set of vertices u with (u, v) ∈ A(D) or
(v, u) ∈ A(D). Let D[V ′] (resp., D[A′]) denote the subgraph of D induced by a subset
V ′ ⊆ V (D) of vertices (resp., a subset A′ ⊆ A(D) of arcs). For a digraph D and a subset
A′ ⊆ A(D) of arcs, we denote by D \A′ the subgraph of D obtained from D by deleting A′.

2.2 Models and Problem Description
In the paper, we describe our problem by a digraph whose nodes are banks and arcs are loan
relationship from one bank to another together with debts as arc weights.

Given a digraph D = (V,A), debt of arcs is a function d : A→ R+ ∪{0}. For convenience,
we sometimes introduce a (virtual) arc a = (u, v) with d(a) = 0 if (v, u) ∈ A and (u, v) 6∈ A.

2 The relevant chapter of the paper [5] is reorganized as an independent article [6] with additional results.
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A debt function d is uniform if d(a) = c (constant) for all a ∈ A, otherwise non-uniform;
it is unit if d is uniform and c = 1. Debts on a vertex v is balanced if

∑
(u,v)∈A d(u, v) =∑

(v,w)∈A d(v, w), and debts on a pair of vertices u and v is symmetric if d(u, v) = d(v, u).
In our model, debts on arcs are settled individually in a single installment and sequentially.

We say that a debt on an arc is cleared when it is settled (or, simply clear the arc), and we
put funds on vertices to clear debts on their out-going arcs. When an arc is cleared, the
amount for it is accumulated on the end vertex of the arc and can be reused for subsequent
settlements. The amount of funds existing on a vertex is called its residual. A sequence of
arcs, which corresponds to the order of selecting arcs to be cleared, can be represented as a
permutation π : A→ {1, 2, . . . , |A|}. We sometimes refer to this permutation as a sequence
of A. We denote by pπ(u, i) the fund put on u and by rπ(u, i) the residual of u, immediately
before putting fund pπ(u, i) to clear arc π−1(i) for all u ∈ V and for i = 1, . . . , |A|. Then
we can clear the debt on arc (u, v) if rπ(u, π(u, v)) + pπ(u, π(u, v)) ≥ d(u, v). We assume
that we always put the minimum amount of funds to clear an arc, that is, pπ(s(a), π(a)) =
max{0, d(a)− rπ(s(a), π(a))}.

Now we define the minimum settlement fund circulation problem (Min-SFC) and the
corresponding maximization problem (Max-SFC), which are introduced in [5] in the context
of the interbank fund settlement systems, as follows.

Min-SFC (Max-SFC)
Instance: a digraph D = (V,A) and debt d : A→ R+ ∪ {0}.
Question: minimize (maximize)

∑
v∈V pπ(v) (, pπ(V ))

subject to permutation π : A→ {1, . . . , |A|}
and pπ(s(a), π(a)) + rπ(s(a), π(a)) ≥ d(a) for all a ∈ A, where
pπ(u, 0) = 0, rπ(u, 0) = 0 for all u ∈ V,

rπ(u, i) =


rπ(u, i− 1), π−1(i− 1) is not incident on u,
rπ(u, i− 1) + d(π−1(i− 1)), π−1(i− 1) is incident to u,
max{0, rπ(u, i− 1)− d(π−1(i− 1))}, π−1(i− 1) is incident from u.

Here, we define pπ(v) =
∑|A|
i=1 p(v, i), and for notational convenience, we often let pπ(X) =∑

v∈X pπ(v) for a subset X of V (D) in a digraph D and a sequence π of A(D).
We show examples of Min-SFC and Max-SFC in Figure 1, and see how debts are cleared

in detail. In the sequence π1, 20 funds are put on v5 to clear the debt d(v5, v6) = 20 for the
first arc π−1

1 (1) = (v5, v6); pπ1(v5, 1) = 20. The 20 funds are transferred to and accumulated
in v6; rπ1(v6, 2) = 20. The second arc π−1

1 (2) = (v3, v6) is cleared by putting 10 funds on v3;
pπ1(v3, 2) = 10. The 10 funds are transferred to v6, and it turns out that the residual on v6
becomes 20 + 10 = 30; rπ1(v6, 3) = 30. Now, the residual are used for clearing the third arc
π−1

1 (3) = (v6, v1) and no additional fund needs to be put on v6; rπ1(v1, 4) = 30. We remark
here again that a debt can only be cleared by a single installment. Also a residual can be
split. Next, therefore, a part 20 of the residual 30 of v1 is used for clearing π−1

1 (4) = (v1, v2),
where d(v1, v2) = 20, and so on.

2.3 Summary of the Results

The results of this paper are summarized in Table 1. To explain the table and for the use
throughout the paper, we introduce some additional definitions. For a digraph D, if the
underlying graph GD of D belongs to some class C of graphs, then we may simply say that
D belongs to C if no confusion occurs. A digraph is called balanced if debts on each vertex is
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Figure 1 [Left] An instance of both Min-SFC and Max-SFC; a digraph D = (V,A) with the
debts d(a) beside each arc a. [Middle, Right] Sequences π1 and π2 of A, respectively. The number
beside each arc a ∈ A indicates πi(a) and the number in the square attached to s(a) indicates the
amount of funds put on s(a) for clearing the debt of a in πi, i.e., pπi (s(a), πi(a)) (i = 1, 2). In
fact, π1 and π2 are optimal solutions of Min-SFC and Max-SFC for D, with pπ1 (V ) = 40 and
pπ2 (V ) = 140, respectively.

balanced. A digraph D is called symmetric if debts on each pair of vertices u and v with
{u, v} ∈ E(GD) is symmetric. A digraph is called uniform if its debt function is uniform.

We emphasize here that all the results are new. Especially, we can see that those for
general and simple graphs show sharp border with respect to the complexity in the sense
that it is tractable for stars, but is intractable for trees.

3 Min-SFC: Intractable Cases

In the subsequent two sections (Sections 3 and 4), we discuss about Min-SFC, which is our
main interest in the context of analyzing settlements of debts. We first observe in this section
that the problem is hard in general, but later in Section 4 we will see that it is tractable in
some practical cases. Throughout these two sections, for an instance (D, d) of Min-SFC, we
denote by opt(D, d) the minimum amount of funds put on V (D) for clearing all arcs in D,
i.e., opt(D, d) = min{pπ(V (D)) | π is a sequence of A(D)}.

Now let D = (V,A) be a multiple digraph. We show that even if |V | = 2 or D is balanced,
Min-Sfc with D is strongly NP-hard by a reduction from 3-Partition, which is known to
be strongly NP-hard [4, p.224].

3-Partition
Instance: ({x1, x2, . . . , x3m}, B) : A set of 3m positive integers x1, x2, . . . , x3m and an
integer B such that

∑
i∈[3m] xi = mB and B/4 < xi < B/2 for each i ∈ [3m].

Question: Is there a partition {X1, X2, . . . , Xm} of [3m] such that
∑
i∈Xj

xi = B for
each j ∈ [m]?

I Theorem 1. For a multiple digraph D, Min-SFC is strongly NP-hard even if |V (D)| = 2
or D is balanced.

Proof. Take an instance I3PART = ({x1, x2, . . . , x3m}, B) of 3-Partition. From the I3PART,
we construct an instance ISFC = (D = (V,A), d) of Min-SFC as follows. Let V = {u, v} and
A be the set of arcs consisting of 3m multiple arcs from u to v and m multiple arcs from v

to u; denote an arc from u to v by ai, i ∈ [3m], and an arc from v to u by bj , j ∈ [m]. Let
d(ai) = xi for i ∈ [3m] and d(bj) = B for j ∈ [m]. Note that D is balanced.
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Table 1 Summary of our results in this paper together with their corresponding theorem/lemma
numbers; Linear and P stand for linear and polynomial time solvable, respectively, and T, C and L
in brackets stand for Theorem, Corollary and Lemma, respectively.

arcs graphs
debt multiplicity dag path star tree larger classes

Min-SFC
uniform multiple Linear [T4]

symmetric simple — P [T7]
balanced multiple — strongly NP-hard for two vertices [T1]

simple — P P P strongly NP-hard for
[C8] bipartite or tw≤ 2 [T2]

general simple Linear [T6] P [T10] NP-hard [T3]
P [C12] FPT wrt. ∆ [T11]

multiple Linear [T6]
Max-SFC
uniform NP-hard [T17]
general multiple Linear [T16]

We claim that the instance I3PART is a yes-instance of 3-Partition if and only if there
exists a sequence π of A with pπ(V ) ≤ B. Notice that since ISFC can be constructed from
I3PART in polynomial time, this claim proves the theorem.

First, we show “only-if” part. Assume that I3PART is a yes-instance of 3-Partition;
there exists a partition {X1, X2, . . . , Xm} of [3m] such that

∑
i∈Xj

xi = B for each j ∈ [m].
Without loss of generality, let Xj = {3j − 2, 3j − 1, 3j} for j ∈ [m] (note that |Xj | = 3 holds
since B/4 < xi < B/2 for each i ∈ [3m]). Then the sequence π of A defined as (b1, a1, a2, a3,
b2, a4, a5, a6, b3, . . . , bm, a3m−2, a3m−1, a3m) satisfies pπ(V ) = B. Notice that pπ(v, 1) = B,
pπ(v, `) = 0 for all ` ≥ 2, and pπ(u) = 0.

Next we show “if” part. Assume that there exists a sequence π of A with pπ(V ) ≤ B.
Since d(bj) = B, we have opt(D, d) ≥ B and hence pπ(V ) = B. Without loss of generality,
assume that π(b1) < π(b2) < · · · < π(bm). For j ∈ [m − 1], let Xj be the set of indices
i ∈ [3m] such that π(bj) < π(ai) < π(bj+1). Since we need funds with amount B for
clearing b1 and pπ(V ) = B holds, no additional fund is put on V when any arc a′ ∈ A

with π(a′) > π(b1) is cleared. Hence, the total debts of arcs cleared between bj and bj+1
is exactly B, i.e.,

∑
i∈Xj

xi = B for each j ∈ [m− 1]. Furthermore, since B/4 < xi < B/2
for i ∈ [3m], we have |Xj | = 3 for each j ∈ [m − 1]. Let Xm = [3m] \ (

⋃m−1
i=1 Xj). Note

that |Xm| = 3m−
∑m−1
j=1 |Xj | = 3 and

∑
i∈Xm

xi = mB −
∑m−1
j=1

∑
i∈Xj

xi = B. Thus, the
partition {X1, X2, . . . , Xm} of [3m] shows that I3PART is a yes-instance of 3-Partition. J

Let D1 be the graph obtained from the graph D = (V,A) of ISFC in the proof of Theorem 1
by introducing new vertices wi, i ∈ [3m], and w′j , j ∈ [m], replacing each arc ai with two
arcs (u,wi) and (wi, v) with d(u,wi) = d(wi, v) = xi, and replacing each arc bj with two arcs
(v, w′j) and (w′j , u) with d(v, w′j) = d(w′j , u) = B. Notice that D1 is a simple and balanced
graph, and the underlying graph GD1 of D1 is bipartite and series-parallel. Also we can
prove that I3PART is a yes-instance of 3-Partition if and only if there exists a sequence π
of A(D1) with pπ(V (D1)) ≤ B, in a similar way to the proof of Theorem 1.



H. Hayakawa et al. 46:7

I Theorem 2. For a simple digraph D, Min-Sfc is strongly NP-hard even if D is balanced,
GD is bipartite, or series-parallel (i.e., the treewidth of GD is at most two).

Furthermore, we can show that the problem Min-SFC is NP-hard even in the case of
trees, while it is open whether it is strongly NP-hard. The proof is given later in Section 4.3.

I Theorem 3. For a simple digraph D, Min-Sfc is NP-hard even if GD is a tree of diameter
at most four.

4 Min-SFC: Tractable Cases

In this section, we show that in some practical cases the problem Min-SFC becomes tractable.
We assume in this section that D is a simple digraph, unless otherwise mentioned.

4.1 Uniform Digraphs, Acyclic Digraphs, and Symmetric Graphs
In the case of uniform debt, Min-SFC is equivalent to the problem which asks to partition a
given graph into a minimum number of directed paths, which is known to be linearly solvable
(e.g., see [3, Lemma 2]).

I Theorem 4. If each debt is uniform, Min-SFC can be solved in linear time.

Let D = (V,A) be a digraph and comp(D) be the number of components in D. Let Aδ
denote the set of arcs a in A with d(a) ≤ δ. We denote {d(a) | a ∈ A} by {δ1, δ2, . . . , δq} with
δ1 < δ2 < · · · < δq. Then, we have the following lemma about lower bounds on opt(D, d).

I Lemma 5.
(i) For a digraph D = (V,A), opt(D, d) ≥

∑
v∈V max{0,

∑
a∈A+

D
(v) d(a)−

∑
a∈A−

D
(v) d(a)},

where A+
D(v) (resp., A−D(v)) denotes the set of all arcs incident from v (resp., to v) in

D.
(ii) For a digraph D = (V,A), we have opt(D, d) ≥

∑q
i=1 comp(D[A \ Aδi−1 ])(δi − δi−1),

where we let δ0 = 0.

Assume that D is an acyclic digraph and let τ : V → [n] be a topological ordering of V . It
is not difficult to see that a sequence π of A such that π(a1) < π(a2) if and only if τ(s(a1)) ≤
τ(s(a2)) for each a1, a2 ∈ A satisfies pπ(V ) =

∑
v∈V max{0,

∑
a∈A+

D
(v) d(a)−

∑
a∈A−

D
(v) d(a)};

Min-SFC is linearly solvable by Lemma 5(i).

I Theorem 6. For an acyclic digraph D, Min-SFC can be solved in linear time.

Assume that D is a symmetric digraph. Then, we can show that a sequence π of A with
pπ(V ) =

∑q
i=1 comp(D[A \Aδi−1 ])(δi − δi−1) which composes an Eulerian cycle of D can be

found in O(m2) time.

I Theorem 7. For a symmetric digraph D, Min-SFC can be solved in O(m2) time.

For a tree D, if debts on each vertex is balanced, then debts on each pair of two vertices
u and v with {u, v} ∈ E(GD) become symmetric. Therefore, as a corollary of Theorem 7, we
can show that Min-SFC with a tree D is polynomially solvable if D is balanced.

I Corollary 8. For a balanced tree, Min-Sfc can be solved in O(n2) time.
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4.2 Stars with General Debts
We next consider the case where the underlying graph of D = (V,A) is a star with arbitrary
debts. We remark that the interbank network system in Japan was a kind of star structures
before 1997 [7]. Throughout this subsection, we assume that for each pair of vertices v
and v′ in V with {v, v′} ∈ E(GD), both of (v, v′) and (v′, v) belong to A; otherwise (say,
(v, v′) /∈ A), then we add an arc (v, v′) with debt 0 to D and redenote the resulting graph by
D (note that the existence of arcs with debt 0 does not affect to opt(G, d)).

Now let D = (V,A) be a star with center u. Then, E(GD) = {{u, v} | v ∈ V \ {u}} holds.
Let V + = {v ∈ V \ {u} | d(v, u) ≥ d(u, v)} and V − = {v ∈ V \ {u} | d(v, u) < d(u, v)}. We
have the following theorem about an optimal solution.

I Theorem 9. Let D = (V,A) be a star with center u. There exists an optimal sequence π
of A for Min-SFC satisfying the following (i)–(iv):
(i) π(u, v) = π(v, u)− 1 for all v ∈ V \ {u}.
(ii) π(u, v) < π(u, v′) for all v ∈ V + and v′ ∈ V −.
(iii) π(u, v) < π(u, v′) if and only if d(u, v) ≤ d(u, v′) for all v, v′ ∈ V +.
(iv) π(u, v) < π(u, v′) if and only if d(v, u) ≥ d(v′, u) for all v, v′ ∈ V −.

This theorem shows that we can obtain an optimal solution of Min-SFC by the following
algorithm MinStar(D, d).

Algorithm MinStar(D, d)
Input: A star D = (V,A) with center u and a debt function d.
Output: A sequence π of A such that pπ(V ) is minimized.
Step 1: Order vertices of V + such that d(u, v1) ≤ d(u, v2) ≤ · · · ≤ d(u, v|V +|) and let
π(u, vi) = 2i− 1 and π(vi, u) = 2i for i = 1, 2, . . . , |V +|.
Step 2: Order vertices of V − such that d(v|V +|+1, u) ≥ d(v|V +|+2, u) ≥ · · · ≥ d(v|V +|+|V −|, u)
and let π(u, vi) = 2i− 1 and π(vi, u) = 2i for i = |V +|+ 1, |V +|+ 2, . . . , |V +|+ |V −|.

It is fairly straightforward to see that the time complexity of this algorithm is O(n logn),
since it is dominated by that of sorting O(n) arcs.

I Theorem 10. For a star, Min-SFC can be solved in O(n logn) time.

4.3 Trees with General Debts
We consider the case where the underlying graph of D is a tree. As shown in Theorem 3
and Corollary 8, the problem is NP-hard even for trees, while it is polynomially solvable if a
given tree is balanced. In this subsection, we will show that Min-SFC is fixed-parameter
tractable with respect to the maximum degree ∆, and give a hardness proof of Theorem 3.

Throughout this subsection, we assume that for each pair of vertices v and v′ in V with
{v, v′} ∈ E(GD), both of (v, v′) and (v′, v) belong to A.

A Fixed-parameter Algorithm
We first show the following theorem.

I Theorem 11. For a tree D, Min-SFC can be solved in O(2∆(D)n logn) time.

As a corollary of this theorem, we can see that Min-SFC with paths is polynomially solvable.

I Corollary 12. For a path, Min-SFC can be solved in O(n logn) time.
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Before proving Theorem 11, we prepare some auxiliary lemmas. For a digraph D, a vertex
is called a leaf if its degree is one in GD. For a leaf v, splitting v is to introduce a new vertex
v′ and to replace the arc (u, v) ∈ A(D) incident to v with an arc (u, v′) with debt d(u, v).
We denote the resulting digraph and its debt function by Dv,v′ and dv,v′ , respectively.

I Lemma 13. Assume that a digraph D = (V,A) has a leaf v; denote the two arcs incident on
v by (u, v) and (v, u). Let π be a sequence of A with π(u, v) > π(v, u) and π′ be the sequence
of A(Dv,v′) such that π′(u, v′) = π(u, v) and π′(a) = π(a) for all other arcs a ∈ A \ {(u, v)}.
Then, π′ is an optimal sequence of Min-SFC for Dv,v′ if and only if π is an optimal sequence
for D under the assumption that (v, u) is cleared before (u, v).

For a vertex u in D, let D0 be the star induced by {u} ∪ND(u), and D1, D2, . . . , Dq be
subtrees in the graph obtained from D by deleting u, where q = |ND(u)|. We denote two
arcs connecting u and Di by (u, vi) and (vi, u), where vi ∈ V (Di). The following lemma
shows that if we know in advance whether (u, vi) is cleared after (vi, u) or not for each
vi ∈ ND(u), then the minimum amount opt(D, d) of funds for clearing A(D) follows from
optimal solutions for the star D0, and either trees Di + u or (Di + u)u,u′ obtained from
Di + u by splitting u, where for a subgraph D′ of D and a vertex u ∈ V \ V (D′), we denote
(V (D′) ∪ {u}, A(D′) ∪

⋃
v∈ND(u)∩V (D′){(u, v), (v, u)}) by D′ + u.

I Lemma 14. For a vertex u in a digraph D = (V,A), let vi, D0, Di, and Di + u,
i = 1, 2, . . . , q be defined as above. Let N1 and N2 be a partition of ND(u) (N1 or N2 may be
empty). Let opt(D, d, u,N1, N2) denote the minimum amount of funds put on V for clearing
all arcs in A under the assumption that (v, u) is cleared before (u, v) for each v ∈ N1 and
(u, v) is cleared before (v, u) for each v ∈ N2. Then,

opt(D, d, u,N1, N2) = opt((D0)N1,N′1
, dN1 )−

∑
v∈N1

d(v, u)
−

∑
v∈N2

max{0, d(v, u)− d(u, v)}
+

∑
vi∈N1

(opt(Di + u, d)−max{0, d(u, vi)− d(vi, u)})
+

∑
vi∈N2

(opt((Di + u)u,u′ , du,u′)− d(u, vi)),

where (D0)N1,N ′1
denotes the star obtained from the star D0 by splitting all vertices in N1,

N ′1 denotes the set of vertices generated by these splitting operations, and dN1 denotes the
resulting debt function on A((D0)N1,N ′1

).

Proof. Let

f(D, d, u,N1, N2) = opt((D0)N1,N ′1
, dN1)−

∑
v∈N1

d(v, u)
−

∑
v∈N2

max{0, d(v, u)− d(u, v)}
+

∑
vi∈N1

(opt(Di + u, d)−max{0, d(u, vi)− d(vi, u)})
+

∑
vi∈N2

(opt((Di + u)u,u′ , du,u′)− d(u, vi)).

Let π be an arbitrary sequence of A such that π(v, u) < π(u, v) for each v ∈ N1 and
π(u, v) < π(v, u) for each v ∈ N2. First we show that pπ(V ) ≥ f(D, d, u,N1, N2), from which
opt(D, d, u,N1, N2) ≥ f(D, d, u,N1, N2). We will consider lower bounds L1, L2, and L3 on
pπ(u),

∑
vi∈N1

pπ(V (Di)), and
∑
vi∈N2

pπ(V (Di)), respectively; pπ(V ) ≥ L1 + L2 + L3.
Consider a lower bound on pπ(u). Since how much funds need to be put on u depends

only on debts of arcs incident from/to u, we consider the minimum amount p∗ of funds
for clearing all arcs in the star D0 with center u. By the assumption that (vi, u) is cleared
before (u, vi) for each vi ∈ N1 and (u, vi) is cleared before (vi, u) for each vi ∈ N2 and
Lemma 13 for leaves vi ∈ N1 of D0, we can see that p∗ = opt((D0)N1,N ′1

, dN1). Now we can
observe that any sequence π′ of A((D0)N1,N ′1

) satisfies pπ′(N(D0)N1,N′1
(u)) =

∑
v∈N1

d(v, u) +
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∑
v∈N2

max{0, d(v, u) − d(u, v)}. Hence, the amount pπ(u) of funds put on u is at least
opt((D0)N1,N ′1

, dN1)− (
∑
v∈N1

d(v, u) +
∑
v∈N2

max{0, d(v, u)− d(u, v)}).
Consider a lower bound on pπ(V (Di)) for vi ∈ N1. Note that how much funds need to

be put on V (Di) depends on debts of A(Di) ∪ {(u, vi), (vi, u)}. By taking into account the
assumption that (vi, u) is cleared before (u, vi), we can observe that pπ(V (Di)) is at least the
minimum amount of funds put on V (Di) among any funds for clearing A(Di + u) in Di + u.
Here notice that the amount of funds put on u in Di + u is always max{0, d(u, vi)− d(vi, u)}.
It follows that pπ(V (Di)) ≥ opt(Di + u, d) −max{0, d(u, vi) − d(vi, u)}. Similarly, we can
observe that for each vi ∈ N2, pπ(V (Di)) ≥ opt((Di + u)u,u′ , du,u′)− d(u, vi) holds.

Thus, we can see that pπ(V ) ≥ f(D, d, u,N1, N2). Finally, we show that some sequence
π∗ of A satisfies pπ∗(V ) = f(D, d, u,N1, N2); π∗ is optimal and proves this lemma. Let π′0 be
a sequence of A((D0)N1,N ′1

) obtained by applying Algorithm MinStar((D0)N1,N ′1
, dN1), and

π0 be the sequence of A(D0) obtained from π′0 by letting π0(u, v) = π′0(u, v′) for all v ∈ N1
and π0(a) = π′0(a) for all other arcs a incident on u. For a tree Di with vi ∈ N1, let πi be a
sequence of A(Di + u) with pπi(V (Di + u)) = opt(Di + u, d) with πi(vi, u) < πi(u, vi). For a
tree Di with vi ∈ N2, let πi be a sequence of A((Di + u)u,u′) with pπi

(V ((Di + u)u,u′)) =
opt((Di + u)u,u′ , du,u′) with πi(vi, u′) > πi(u, vi). Note that such a πi exists for each
vi ∈ N1 ∪ N2. We can construct a sequence π∗ of A with pπ∗(V ) = f(D, d, u,N1, N2) by
combining π0 and πi, i ∈ N1 ∪N2. J

Let D = (V,A) be a tree. Based on Lemma 14, we will give a dynamic programming
algorithm for finding an optimal sequence of A in O(2∆n) time, which proves Theorem 11.

Here, for a vertex r ∈ V chosen arbitrarily, we regard D as a rooted tree with root r. For
a vertex u in D, let pa(u) be the parent of u if it exists, Ch(u) be the children of u, and D(u)
be the subtree of D rooted at u. For a partition {N1, N2} of Ch(u), we define opt1(u,N1, N2)
(resp., opt2(u,N1, N2)) as the minimum amount of funds clearing A(D(u) + pa(u)) under
the assumption that (v, u) is cleared before (u, v) for each v ∈ N1 (resp., v ∈ N1 ∪ {pa(u)})
and (u, v) is cleared before (v, u) for each v ∈ N2 ∪ {pa(u)} (resp., v ∈ N2). Note that
opt1(r,N1, N2) = opt2(r,N1, N2). Let opt∗i (u) = min{opti(u,N1, N2) | N1 ⊆ Ch(u)} for
i = 1, 2. We here remark that opt∗1(u) (resp., opt∗2(u)) is the minimum amount of funds for
clearing A(D(u) + pa(u)) under the assumption that (u, pa(u)) (resp., (pa(u), u)) is cleared
before (pa(u), u) (resp., (u, pa(u))).

Our dynamic programming algorithm proceeds in a bottom-up manner in D, while
computing these two values opt∗1(u) and opt∗2(u) for each vertex u in D. note that opt∗1(r) =
opt∗2(r) = opt(D, d). Lemma 14 indicates that opt1(u,N1, N2) and opt2(u,N1, N2) can be
computed by using opt∗1(v) and opt∗2(v) for v ∈ Ch(u). Namely, we have

opt1(u,N1, N2) = opt((D0)N1,N ′1
, dN1)−

∑
v∈N1

d(v, u)
−

∑
v∈N2

max{0, d(v, u)− d(u, v)}
+

∑
v∈N1

(opt∗1(v)−max{0, d(u, v)− d(v, u)})
+

∑
v∈N2

(opt∗2(v)− d(u, v)),

and

opt2(u,N1, N2) = opt((D0)N1∪{pa(u)},N ′1∪{pa′}, dN1∪{pa(u)})−
∑
v∈N1

d(v, u)
−

∑
v∈N2

max{0, d(v, u)− d(u, v)}
+

∑
v∈N1

(opt∗1(v)−max{0, d(u, v)− d(v, u)})
+

∑
v∈N2

(opt∗2(v)− d(u, v)),

where D0 = D[{u, pa(u)} ∪ Ch(u)], pa′ denotes the vertex generated by splitting pa(u)
in (D0)N1,N ′1

, and dN1∪{pa(u)} denotes the debt function on A((D0)N1∪{pa(u)},N ′1∪{pa′}).
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Here we note that in these two equations, opt∗1(v) = opt(D(v) + u, d) and opt∗2(v) =
opt((D(v) + u)u,u′ , du,u′), by the assumption on N1 and N2. For stars (D0)N1,N ′1

and
(D0)N1∪{pa(u)},N ′1∪{pa′}, we can compute opt((D0)N1,N ′1

, dN1) and opt((D0)N1∪{pa(u)},N ′1∪{pa′},

dN1∪{pa(u)}) in O(|ND(u)| log |ND(u)|) time by Theorem 10. Hence, if we know opt∗1(v) and
opt∗2(v) for all v ∈ Ch(u), then we can compute opt∗1(u) and opt∗2(u) in O(2|ND(u)||ND(u)|
log |ND(u)|) time by computing opt1(u,N1, N2) and opt2(u,N1, N2) for all possible N1 and
N2. Thus, we can compute opt(D, d) = opt∗1(r) = opt∗2(r) in O(2∆n logn) time.

NP-hardness
Next, we give a proof of Theorem 3; we show the NP-hardness of Min-SFC with a tree. We
will reduce from Partition, which is known to be NP-hard [8].

Partition
Instance: {x1, x2, . . . , xn} : A set of n positive integers x1, x2, . . . , xn.
Question: Is there a partition {X1, X2} of [n] such that

∑
i∈X1

xi =
∑
i∈X2

xi?

Take an instance IPART = {x1, x2, . . . , xn} of Partition. From the IPART, we construct
an instance ISFC = (D = (V,A), d) of Min-SFC as follows. Let V = {r, u} ∪

⋃n
i=1{vi, wi}

and E(GD) = {{r, u}}∪
⋃n
i=1{{u, vi}, {vi, wi}}. Let x∗ =

∑
i∈[n] xi, d(r, u) = d(u, r) = x∗/2,

d(u, vi) = d(vi, u) = d(vi, wi) = xi, and d(wi, vi) = xi/2 for i ∈ [n].
We here claim that there exists a partition {X1, X2} of [n] such that

∑
i∈X1

xi =
∑
i∈X2

xi
if and only if there exists a sequence π of A with pπ(V ) ≤ 3x∗/4. Notice that since ISFC can
be constructed from IPART in polynomial time, this claim proves Theorem 3.

I Claim 15. There exists a partition {X1, X2} of [n] such that
∑
i∈X1

xi =
∑
i∈X2

xi if and
only if there exists a sequence π of A with pπ(V ) ≤ 3x∗/4.

5 Max-SFC

5.1 Tractable Case
Assume that D is an acyclic digraph and let τ : V → [n] be a topological ordering of V .
It is not difficult to see that a sequence π of A such that π(a1) > π(a2) if and only if
τ(t(a1)) ≤ τ(t(a2)) for each a1, a2 ∈ A satisfies pπ(V ) =

∑
a∈A d(a). Thus, Max-SFC is

linearly solvable, since the summation of all debts is an upper bound on the optimal value.

I Theorem 16. For an acyclic digraph D, Max-SFC can be solved in linear time.

5.2 NP-hardness
Below, we show that Max-SFC is NP-hard, even in the case where each debt is unit or a
given graph is bipartite.

I Theorem 17. For a digraph D, Max-SFC is NP-hard even if each debt of an arc in A(D)
is unit or D is bipartite.

We prove this theorem by reducing from Vertex Cover, which is known to be NP-hard
[8]. For an undirected graph G = (V,E), a set V ′ ⊆ V of vertices is called a vertex cover if
every edge e = {u, v} ∈ E satisfies {u, v} ∩ V ′ 6= ∅.
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Vertex Cover
Instance: An undirected graph G = (V,E) and an integer k, that is, (G = (V,E), k).
Question: Is there a vertex cover X with |X| ≤ k in G?

Take an instance IVC = (G = (V,E), k) of Vertex Cover. From the IVC, we construct
an instance ISFC = (D = (V ′, A), d) of Max-SFC as follows. For each vertex vi ∈ V , we
introduce two copies v1

i and v2
i of vi and an arc (v1

i , v
2
i ), and let V ′ =

⋃
vi∈V {v

1
i , v

2
i } and

A1 =
⋃
vi∈V (v1

i , v
2
i ). For each edge {vi, vj} ∈ E, we introduce two arcs (v2

i , v
1
j ) and (v2

j , v
1
i ),

and let A2 =
⋃
{vi,vj}∈E{(v

2
i , v

1
j ), (v2

j , v
1
i )}. Let A = A1∪A2 and d(u, v) = 1 for all (u, v) ∈ A.

Note that D is bipartite. The following lemma completes the proof of Theorem 17.

I Lemma 18. G has a vertex cover with cardinality at most k if and only if there exists a
sequence π of A such that pπ(V ′) ≥ |A| − k in D.

6 Future work

One of the most important future work is to deal with more appropriate graphs classes
that reflects well the debts relationship among banks in our real economic activities. As we
mentioned in Section 4.2, it is known that the interbank network system in Japan was a kind
of star structures before 1997 [7]. On the contrary, Imakubo and Soejima [7] also showed
that in the year of 2005 it had changed and turned to be a core-periphery structure, which
is a certain kind of classic hub-authority biclique model [9] and thus one of the so-called
complex networks. In the model, banks are classified into either one of the two categories,
core banks or periphery banks, such that payments among the core banks are more densely
connected among them compared to those among the periphery banks. Recent research
observed similar facts in some other countries, e.g., in the US in 2004 [13], in the Netherlands
in 2006 [11], and so on. In view of these recent observations, it would extremely be important
to consider our problem on this realistic model and develop efficient algorithms for it.
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Abstract
In this paper, we consider the following sum query problem: Given a point set P in Rd, and a
distance-based function f(p, q) (i.e., a function of the distance between p and q) satisfying some
general properties, the goal is to develop a data structure and a query algorithm for efficiently
computing a (1+ε)-approximate solution to the sum

∑
p∈P f(p, q) for any query point q ∈ Rd and

any small constant ε > 0. Existing techniques for this problem are mainly based on some core-set
techniques which often have difficulties to deal with functions with local domination property.
Based on several new insights to this problem, we develop in this paper a novel technique to
overcome these encountered difficulties. Our algorithm is capable of answering queries with high
success probability in time no more than Õε,d(n0.5+c), and the underlying data structure can be
constructed in Õε,d(n1+c) time for any c > 0, where the hidden constant has only polynomial
dependence on 1/ε and d. Our technique is simple and can be easily implemented for practical
purpose.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Sum Query, Distance-based Function, Local Domination, High Dimen-
sions, Data Structure

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.47

1 Introduction

In this paper, we consider the following sum query problem: Given a set P of points in
Rd (where the dimensionality d could be very high) and a function f(, ), the sum query
problem is to build a data structure for P so that the sum of

∑
p∈P f(p, q) can be efficiently

computed or approximated for any query point q in Rd, where f(p, q) is a non-negative
distance-based function. We say that f(p, q) is distance-based if the value of f(p, q) depends
only on the distance between p and q. In other words, f(p, q) can be written as F (‖p, q‖) for
some non-negative real function F (·).

The distance-based sum query problem are frequently encountered in many applications.
A good example is the well known 1-median problem: given a point set P in Rd, find a point
q such that the objective value C(q) =

∑
p∈P ‖q−p‖ is minimized. C(q) is clearly an example

of the distance-based sum query problem (with respect to the to-be-determined median
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point q), where each term of the summation is trivially the Euclidean distance ‖q − p‖ of p
and q. The sum query problem also appears in many real world applications. For example,
the problem of computing the illumination intensity of a given point can be viewed as a
sum query problem. In such an application, the intensity of the query point may jointly
be determined by the total amount of light received from multiple light sources. The light
contributed by each source is inversely proportional to its squared distance to the given
point (i.e. obeying the inverse squared distance law in physics). Note that in this case
the distance-based functions may be different for each light source, depending on its base
intensity. However, if we view a light source with base intensity w as a collection of w light
sources with “unit” intensity located at the same place, we may still treat the intensity as a
purely distance-based function.

Several previous results are closely related to some versions of the problem considered in
this paper. They are mainly based on some core-set techniques [2, 7, 10]. In the 1-median
problem, for example, a core-set of a point set P in Rd is a small-size (weighted) subset of P
such that for any q ∈ Rd, the sum

∑
p∈P ‖p− q‖ can be approximated by just inspecting the

distances between q and points in the core-set. In general, a core set of P with respect to a
function f(p, q) is a small subset of P such that for any q,

∑
p∈P f(p, q) can be estimated

by using only the information of the points in the core-set. For functions f(p, q) satisfying
certain properties, it is possible to construct a core-set for any point set P efficiently [8].

In this paper, we aim to develop an efficient algorithm for supporting distance-based
functions that have local domination property[6], which means that f(p, q) can be very large
when ‖p− q‖ is small. For example, a distance-based function obeying the inverse squared
distance law (i.e. f(p, q) = w/‖p − q‖2 for some constant w), is a function having such a
property. While the aforementioned core-set method is useful for a large family of functions
f(p, q), it does not directly apply to functions which have local domination property. This is
because the

∑
p∈P f(p, q) could become infinitely large when q approaches any one of the

points in P , which means that any “traditional" core-set of P will fail if the core-set is a
proper subset of P .

The local domination property imposes additional challenges to the sum query problem.
Particularly, it requires the query algorithm to be able to detect points that are close to
the query points. This means that the algorithm should have certain ability for proximity
search. However, in high dimensional space, highly accurate nearest neighbor search cannot
be done very efficiently. Well-known techniques for high dimensional nearest neighbor search,
such as the Locality Sensitive Hashing (LSH) [9], require almost linear time to achieve a
c-approximate nearest neighbor when c is close to 1 [3]. Thus, for the sum query problem,
we are required to develop an estimation algorithm with high accuracy, but not allowed to
use the high accuracy proximity search techniques.

To deal with the additional challenge caused by the local domination property, we
first assume that the distance function F satisfies the following local domination implied
properties.
1. F (·) is positive and F (0) could be infinite.
2. F (·) is monotonously decreasing. 1

3. For any constant λ ≥ 1, there exists a constant ∆(λ) ≥ 1, such that F (x) ≤ ∆(λ)F (xλ)
for any x ≥ 0.

1 Indeed this restriction can be greatly soften. Our scheme applies as long as F (·) is “not increasing
rapidly”, i.e., F (x1) ≤ CF (x2) for some constant C when x1 > x2. The listed restriction is mainly for
ease of presentation.
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It is worth noting that although our technique is designed for functions with local domination
property, it actually works for any distance-based non-negative functions. Particularly,
our approach is capable of solving the “inverse" version of the problem, where F (·) is a
monotonically increasing function satisfying some accordingly changed conditions. Since other
types of distance-based functions have already been studied in [8], we focus our investigation
on locally dominating functions in this paper.

Our Result: Our main result for the sum query problem is a novel scheme based on some
sampling and searching techniques, and is capable of reporting a (1 + ε)-approximation for
each sum query (

∑
p∈P f(p, q) = F (‖p− q‖)) in Õε,d(n0.5+c) time with success probability

at least 1 − 1/n for any c > 0. The query algorithm makes use of a soft boundary range
reporting data structure to determine a number of points that are among the closest to the
query point q. The soft boundary range reporting data structure can be computed within
Õε,d(n1+c) time for any c > 0. The hidden constants in the time complexities depend only
polynomially on d and 1/ε. The error factor ε can be very small and is assumed to be within
the range of [8/

√
n, 1). One major advantage of our scheme is that the query algorithm runs

much faster than the best existing (1 + ε)-approximate nearest neighbor search technique
(which takes almost linear time) in high dimensional space for small enough ε .

Our Technique: Our query algorithm consists of 2 main steps. In the first step, we identify
a number of points PΩ that are among the closest to the query point q, and compute directly
their contributions to the sum

∑
p∈PΩ

f(p, q). In the second step, we sample, from the
rest of the points in P , a small subset of points to estimate their contributions to the sum.
Intuitively speaking, since we have already identified a number of points that have the largest
contribution to the sum before sampling, the error incurred by sampling the rest of points is
relatively small and thus controllable. We combine the results from the 2 steps to obtain an
approximate final solution. We use a soft boundary range reporting data structure to identify
points that are among the closest to q. With properly chosen parameters, we are able to
show that it suffices to use a relatively low quality approximate range search procedure to
obtain an accurate solution.

Related Work: As mentioned earlier, the sum query problems can be solved by using
core-sets for distance functions satisfying some “nice" properties. Our work can be viewed as
a complement to those core-set results as it addresses a rather general case that is hard to
use core-sets.

Our scheme makes use of some ideas from range search and top-k indexing. There are a
number of previous results on both problems [13, 12, 4, 1]. Many of them are not the best
fit, especially in high dimensional space, as they cannot be directly applied to our problem.
The special property of our problem enable us to develop a range search scheme with better
performance.

2 Query Algorithm by Searching and Sampling

In this section, we present our algorithm for the sum query problem. We start our discussion
with a high level description of our ideas.
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47:4 A Sum Query Algorithm for Distance-based Functions

2.1 Starting Point: Estimation by Sampling
Answering a distance-based sum query for a given query point q is essentially estimating the
sum (or equivalently, the mean) of a set of numbers: {f(p, q) | p ∈ P}. A common practice
for efficiently estimating the mean of a set of numbers is using sampling. It is well-known
that even for a large set of numbers, it suffices to take only a small sample from the set and
calculate the mean of the sampled set. The calculated sum is very likely to be a high quality
estimation of the mean value of the whole set. The following lemma is one of the known
results on concentration of sample mean.

I Lemma 1 (Hoeffding’s Inequality [11]). Let X = {x1, . . . , xn} be a multi-set of n real
numbers, and x′1, . . . , x

′
m be a random sample drawn without replacement from X. Let

a = min1≤i≤n xi and b = max1≤i≤n xi. Then, for any ε > 0,

P
(
| 1
m

n∑
i=1

x′i − µ| ≥ ε
)
≤ exp

(
− 2mε2

(b− a)2

)
,

where µ = 1
n

∑n
i=1 xi is the mean of X.

Note that the error bound in the above estimation depends on the spread (i.e. the
difference between the largest and smallest elements) of the original number set. This implies
that a straightforward application of the sampling technique may not be sufficient to achieve
highly accurate solution (i.e. (1 + ε)-approximation) of the sum query problem. The error
bound ensured by Lemma 1 could be small in terms of the spread (with high probability, by
setting ε to be Θ((b− a)) and m = Θ(logn), for example), but still might be large compared
to the mean. In the distance-based sum query problem where we are essentially estimating
the mean of all the addictive terms, the error is evaluated with respect to the mean value∑
p∈P f(p, q)/n. If the spread is very large compared to the mean (which could happen if,

for example, the query point q is very close to one of the data point), the error (in terms of
the mean value) will also be large.

Intuitively, since all additive terms (f(p, q) for all p ∈ P ) are nonnegative in the distance-
based sum query problem, the largest terms in the sum tends to contribute more to the error
incurred by sampling. This leads us to the idea of identifying a few of the largest terms in
the sum and considering them separately. To implement this idea for distance-based sum
query, we partition the input point set P into 2 subsets, PO and PΩ, based on f(p, q) and q,
where PΩ contains the k points in P corresponding to the k largest terms of {f(p, q) | p ∈ P}
and k � n is a factor to be determined later. We then estimate the contributions SΩ and SO
of PΩ and PO, respectively. SΩ can be computed directly from PΩ, and SO is determined
from PO by using standard sampling technique. Thus we can obtain the solution from
S = SO + SΩ. The estimation process is efficient if k � n is sufficiently small. By intuition,
this method could achieve better accuracy, since excluding PΩ from the sampling process
avoids the situation that a few very large additive terms exist in the sum, making the
sampling technique not applicable.

2.2 Identifying Close Points: Soft Boundary Range Search
Clearly, the aforementioned approach requires that given any query point q, the set PΩ has
to be determined efficiently. Recall the assumption that f(p, q) is a monotonously decreasing
function with respect to ‖p − q‖. This means that the set PΩ is indeed the subset of P
which consists of the k closest points in P to q. To perform this task efficiently, we need to
build an k-nearest neighbor data structure for P , which is capable of reporting the k nearest
neighbors of q in P for any query point q.
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The k-nearest neighbor (kNN) problem in Rd is known to be hard when d is large due to
the curse of dimensionality. If approximation is allowed, there are several techniques, for
example the well known Locality Sensitive Hashing (LSH), that are applicable to kNN in
arbitrary dimensions. Nonetheless these techniques do not directly provide a solution to our
searching problem with the desired performance. When the approximation ratio is small,
the nearest neighbor query using LSH takes near linear time in high dimensional space. It
seems that it would also be the case for the distance-based sum query problem that the
query would be inefficient for small ε.

To overcome this obstacle, we make use of a bi-criteria approximation scheme to report
PΩ. For a predefined parameter k and a controlling constant factor λ > 1, instead of reporting
the k approximate nearest neighbors of the query point q, we try to report all points that
lie in B(q, rO), where B(q, x) denotes the closed ball centered at q and with radius x, and
rO > 0 satisfies the condition that |B(q, λrO)∩P | = O(k). In other words, we report the near
neighbors of q in P that lie in a soft boundary that is based on the O(k) nearest neighbor of
q. When λ is not very close to 1, the reporting can be performed efficiently using known
proximity search techniques (the technical details of the kNN soft boundary range search
algorithm will be presented in later sections).

Note that in the above soft boundary range reporting scheme, the controlling factor λ
does not depend on ε. This avoids the potential issue that it may take near linear time to
answer a query when ε is small. Later we will show that λ does not need to be close to 1
(i.e. the accuracy of the soft boundary search does not need to be high) when ε is small.
The reason is the follows. If k is small (e.g., k = O(

√
n)), the k-nearest neighbors of q in

P is only a very small fraction of points in P . Therefore, we are able to afford large error
from estimating these points, while still keeping the error of the final solution within the
(1 + ε)-approximation range.

The remaining problem of this scheme is how to determine the value of rO efficiently when
answering a query. This can be achieved by sampling. Suppose that we sample m points
from P where m is a sufficiently large integer. Let P ′s be the sampled point set, and let pα
be the dmk/ne-th closest point to q in P ′s. Intuitively, by performing a “scaling" argument,
pα should be approximately the k-th (by (mk/n) ∗ (n/m) = k) closest point to q in P . Later
we will show that this intuition is correct. We then set rO = ‖pα − q‖/λ.

2.3 Algorithm for Sum Query
We summarize the above discussion with the following explanation of the query procedure.
Suppose that the controlling factor λ is given, and k is set to be d

√
ne. Note that k is just

for analysis purpose and the algorithm does not really depend on it. Let m be the size of the
sample and assume that its value has already been provided. To answer a distance-based
sum query for a query point q, we first sample a subset P ′s from P with size m. Let pα be
the dm/

√
ne-th closest point to q in P ′s. Then pα is approximately the

√
n-th closest point

to q in P . We choose rO to be ‖pα − q‖/λ, and use range search technique to determine
the point set P ′Ω = B(q, rO) ∩ P . P ′Ω contains points that are the closest to q. We use
sampling to estimate the mean value of f(p, q) for all point p ∈ P \ P ′Ω without incurring
large error. This mean value gives us an estimation of the value SO =

∑
p∈P\P ′Ω

f(p, q). The
value SΩ =

∑
p∈P ′Ω

f(p, q) can be directly computed. The sum of SΩ and SO is then an
accurate estimation of the distance-based sum

∑
p∈P f(p, q).

Below are the main steps of query algorithm, where the approximation factor ε satisfies
the condition of 4/

√
n ≤ ε < 1/2 and n ≥ 100. We assume the existence of a soft boundary

range reporting data structure (details of the data structure will be discussed in later section)
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Algorithm 1 ComputeSum(q, λ, ε)
Input: Query point q, controlling factor λ > 1, approximation ratio ε
Output: A value S̄ which is an approximate value of S =

∑
p∈P f(p, q).

1: Set γ = 262∆2ε−2. Randomly sample m = dγ
√
n ln 4ne points from P without replace-

ment. Let P ′s denote the sampled point set.
2: Let pα be the dm/

√
ne-th closest point to q in P ′s. Let rα denotes ‖pα − q‖. Let

rO = rα/λ.
3: Report points lying inside B(q, rO) by using the λ-approximate soft boundary range

search data structure. Let P ′Ω denote the set of reported points.
4: Compute S′Ω =

∑
p∈P ′Ω

f(p).
5: Let P ′O = P ′s \B(q, rO). Compute S′O =

∑
p∈P ′

O
f(p)

6: Output S̄ = SΩ + nS′O/|P ′O| as the result

which can answer the range reporting query made by the algorithm. λ > 1 is a factor for
controlling the accuracy of the soft boundary range reporting data structure. We let ∆ denote
the constant such that F (x) ≤ ∆F (xλ) for any x ≥ 0, where F (·) is the distance-based
function for f(p, q) (i.e, f(p, q) = F (‖p − q‖)). Since the query point q is given, we write
f(p, q) as f(p) for convenience.

2.4 Algorithm Analysis
In this section we prove the correctness of the algorithm and analyze its performance.

For ease of our presentation, we assume that there is no more than one point with exactly
the same distance to q. This assumption is actually not needed for our algorithm. Our
argument still holds using any tie-break mechanism if multiple points have the same distance
to q. For example, we may assign a unique integer label to every point in P and use it as a
tie break.

We first present some lemmas that will be used for later analysis. The following is a
useful bound for random sample without replacement.

I Lemma 2 (Bernstein’s Inequality [5]). Let X = {x1, . . . , xn} be a multi-set of n real
numbers, and x′1, . . . , x

′
m be a random sample drawn without replacement from X. Let

a = min1≤i≤n xi and b = max1≤i≤n xi. Let σ = 1
n

∑
x∈X(x − µ)2 be the variance of X.

For any ε > 0,

P
(
| 1
m

n∑
i=1

x′i − µ| ≥ ε
)
≤ exp

(
− mε2

2σ2 + (2/3)(b− a)ε

)
.

I Lemma 3. Let X be a set of n ≥ 1 real numbers, K ≥ 1, such that for each x ∈ X,
0 ≤ x ≤ K

√
n. Let µ =

∑
x∈X x/n be the mean of X, and σ2 =

∑
x∈X(x − µ)2/n be the

variance. Suppose µ ≥ 1. Then σ2/µ2 ≤ K
√
n.

Proof. Fixing the value of µ ≥ 1, we consider how to construct X so that σ2 is maximized,
subject to the constraint that for each x ∈ X, 0 ≤ x ≤ K

√
n. It is clear that σ2 is maximized

when X is in its most “uneven" state, i.e., with the exception of at most 1 element in X,
all other elements are either 0 or K

√
n. In fact, σ2 can be written as

∑
x∈X x

2/n− µ2. If
we can find 2 elements x1 and x2 in X, such that 0 < x1 ≤ x2 < K

√
n, increasing x2 and

decreasing x1 by a same small number will increase the value of
∑
x∈X x

2 (since f(x) = x2 is
convex), while the mean µ of X is unchanged, which means that σ2 is increased. This proves
that when σ2 is maximized, all elements in X are either 0 or K

√
n with only 1 exception.
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Figure 1 Illustrations of rα, rO, P ′
Ω, PO, P ′

O, Pα.

We can easily list elements in such a set X. There exist integer a ≥ 0 and real number
K
√
n > b ≥ 0, such that nµ = aK

√
n+ b. Therefore, X contains a elements of value K

√
n,

n− 1− a elements of 0, and the rest of the elements take value b. The term
∑
x∈X x

2 can
be easily computed as aK2n+ b2. Then, we have

σ2 =
∑
x∈X

x2/n− µ2 = (aK2n+ b2)/n− µ2. (1)

Note that aK2n+ b2 ≤ aK2n+ bK
√
n =
√
nK(aK

√
n+ b) =

√
nKnµ. Combine this with

the above inequality, we have

σ2 = (aK2n+ b2)/n− µ2 ≤
√
nKµ− µ2. (2)

Therefore σ2/µ2 ≤ (
√
nK/µ) − 1. Since µ ≥ 1, σ2/µ2 ≤ (

√
nK/µ) − 1 ≤

√
nK/µ ≤

K
√
n. J

In the following, we let PO = P \B(q, rO). Define Pα = P ∩B(q, rα). (Figure 1 gives a
simple illustration of rα, rO, P ′Ω, PO, P ′O, Pα for easy understanding of later analysis.)

I Definition 4. We say that the Good Sample Condition is satisfied in a query procedure of
Algorithm 1, if all of the following conditions hold.
1.
√
n/2 ≤ |Pα| ≤ 2

√
n.

2. ||P ′O|n/m− |PO|| ≤ ε|PO|
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I Lemma 5. With probability at least 1− 1/2n, the good sample condition satisfies.

Proof. We first show that |Pα| ≤ 2
√
n happens with probability at least 1− 1/2n.

Let Pβ denote the set of d2
√
ne points in P that are the closest to q. For every p ∈ P ,

we define x(p) as follows. x(p) = 1 if p ∈ Pβ , and x(p) = 0 otherwise. The mean value of
x(p) for all p ∈ P can be easily computed as µ = d2

√
ne/n. Let µ′ be the mean value of x(p)

in the sampled set P ′s. Clearly µ′ = |P ′s ∩ Pβ |/m.
Recall that, from the definition of Pα, we know that Pα contains the dm/

√
ne closest

points in P ′s to q but does not include any point in P ′s farther than the dm/
√
ne closest

points. Consider the event that |Pα| > 2
√
n. If it happens that |Pα| > 2

√
n, it implies that

the closest d2
√
ne points in P to q have no more than dm/

√
ne points in P ′s, which means

that |P ′s ∩ Pβ | ≤ dm/
√
ne ≤ m/

√
n+ 1 ≤ 1.01m/

√
n (where the last inequality comes from

simple calculation m/
√
n = dγ

√
n ln 4ne/

√
n ≥ γ ln 4n − 1 ≥ 262 − 1 = 261). Therefore

we have µ′ = |P ′s ∩ Pβ |/m ≤ 1.01/
√
n. From µ = d2

√
ne/n ≥ 2

√
n/n = 2/

√
n, we get

|µ− µ′| ≥ 0.99/
√
n.

Now we bound the probability of the event |µ− µ′| ≥ 0.99/
√
n using Lemma 2. Applying

Lemma 2 to sample P ′s of P about value x(p), we have

P
(
|µ′ − µ| ≥ 0.99/

√
n
)
≤ exp

(
− m(0.99/

√
n)2

2σ2 + (2/3)(0.99/
√
n)

)
,

where σ2 =
∑
p∈P (x(p) − µ)2/n. It is straightforward to calculate σ2 = 2(d2

√
ne/n)(1 −

d2
√
ne/n). Thus, we have σ2 ≤ 2(d2

√
ne/n) ≤ 5

√
n/n (estimation from the assumption that

n ≥ 100). Therefore, we know that

exp
(
− m(0.99/

√
n)2

2σ2 + (2/3)(0.99/
√
n)

)
≤ exp

(
− m(0.99/

√
n)2

10/
√
n+ (2/3)(0.99/

√
n)

)
.

The right hand side becomes exp(−(m/
√
n)(0.99)2/10.66). Note that m =⌈

262∆2ε−2√n ln 4n
⌉
≥ 262

√
n ln 4n. By simple calculation, we have (m/

√
n)(0.99)2/10.66 ≥

ln 4n. As a result, we know that

P
(
|µ′ − µ| ≥ 0.99/

√
n
)
≤ e− ln 4n = 1/4n.

Since we have already shown that |Pα| > 2
√
n implies |µ − µ′| ≥ 0.99/

√
n, we know that

|Pα| > 2
√
n may also happen with probability at most 1/4n.

Using the same argument we can also prove that the event |Pα| <
√
n/2 happens with

probability at most 1/4n. We omit the proof for this case due to similarity with the above
case. To summarize, we have proved that Condition 1 of the lemma,

√
n/2 ≤ |Pα| ≤ 2

√
n,

holds with probability at least 1− 1/2n.
For the second condition, i.e. ||P ′O|n/m− |PO|| ≤ ε|PO|, we will show that it follows from

Condition 1.
From definition, we know that P ′O ⊇ P ′s \ B(q, rα). Thus, |P ′O| ≥ |P ′s \ B(q, rα)| =

m − dm/
√
ne. Clearly we also have |P ′O| ≤ m. Therefore, we get n − ndm/

√
ne/m ≤

|P ′O|n/m ≤ n. It is easy to have an estimation dm/
√
ne ≤ m/

√
n + 1 ≤ 1.01m/

√
n. Thus

we obtain n− 1.01
√
n ≤ |P ′O|n/m ≤ n

By Condition 1 and PO ⊇ P \Pα, we have |PO| ≥ n− |Pα| ≥ n− 2
√
n. Note that we also

clearly have |PO| ≤ n. As a result, it follows that ||P ′O|n/m−|PO|| ≤ (1.01+2)
√
n = 3.01

√
n.

Now we need to prove that 3.01
√
n ≤ ε|PO|. From Condition 1, we know that |PO| ≥

n− 2
√
n. It suffices to show that 3.01

√
n ≤ ε(n− 2

√
n). Indeed, this trivially follows from

the assumption that ε ≥ 4/
√
n and n ≥ 100. J
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Below is an important lemma which shows that our sampling scheme gives a good
approximation of the mean value of f(p) for all p ∈ PO.

I Lemma 6. Let µ′O be the mean of f(p) for all p ∈ P ′O. Let µO be the mean of f(p) for all
p ∈ PO. Assume that the good sample condition holds. With probability at least 1 − 1/4n,
|µ′O − µO| ≤ εS/n

Proof. Denote f∗(p) = (
√
nf(p) +F (rO))/F (rO) for all p ∈ PO. Let µ′∗ be the mean of f∗(p)

for all p ∈ P ′O, and µ∗ be the mean of f∗(p) for all p ∈ PO. Below we first show that

P
(
|µ′∗ − µ∗| ≥ εµ∗/4∆

)
≤ 1/4n. (3)

We apply Lemma 2 to bound the probability of the event |µ′∗ - µ∗| ≥ εµ∗/4∆ as follows.
The set P ′O can be viewed as a random sample without replacement of size |P ′O| from set PO,
since for a fixed rO, every |P ′O|-subset of PO has equal probability to be the first |P ′O| points in
P ′s, sorted by decreasing order of distances to q. (Note that this fact is true regardless whether
the sample satisfies the good sample condition.) Note that for any p ∈ PO, it is easy to see
that f∗(p) ≥ 1 and f∗(p) ≤

√
n+ 1 (since, by ‖q − p‖ ≤ rO, we have F (rO) ≥ F (‖q − p‖)).

Let σ2 = (
∑
p∈PO (f∗(p)− µ∗)2)/|PO|. From Lemma 2, we have

P
(
|µ′∗ − µ∗| ≥ εµ∗/4∆

)
≤ exp

(
− (1/16)|P ′O|ε2∆−2µ2

∗
2σ2 + (2/3)

√
n(εµ∗/4∆)

)
. (4)

Let

ξ = (1/16)µ2
∗

2σ2 + (2/3)
√
n(εµ∗/4∆)

.

The right hand side of the above inequality (4) becomes e−|P ′O|ε2∆−2ξ.
To estimate ξ, we first bound σ2/µ2

∗. From the good sample condition, we know that
||P ′O|n/m − |PO|| ≤ ε|PO|. Thus, we have |PO| ≥ |P ′O|n/(1 + ε)m. Also, by the definition
of P ′O, we know that P ′s \ Pα ⊆ P ′O. Thus, we get |P ′O| ≥ |P ′s \ Pα| ≥ m − m/

√
n − 1.

Therefore, we obtain |PO| ≥ nm−m/
√
n−1

(1+ε)m = n 1−1/
√
n−1/m

(1+ε) . Since ε < 1/2, m ≥ 100, and
n ≥ 100, we have a rough estimation of |PO| ≥ n/4. Also, we know that for any p ∈ PO,
f∗(p) ≤

√
n+ 1 ≤ 2

√
n. Consequently, we have f∗(p) ≤ 4

√
|PO| for every p ∈ PO. Applying

Lemma 3, we know that σ2/µ2
∗ ≤ 4

√
|PO|. Thus, we get σ2/µ2

∗ ≤ 4
√
n.

Next we show a lower bound for |P ′O|. In fact, we know that |P ′O| = γ
√
n ln 4n− |P ′s ∩

B(q, rO)| ≥ γ
√
n ln 4n− |P ′s ∩B(q, rα)| ≥ γ

√
n ln 4n− γ ln 4n− 1 ≥ (γ

√
n ln 4n)/2 (the last

inequality can be easily obtained from the assumption of n ≥ 100).
Now we estimate ξ = (32σ2/µ2

∗ + (8/3)
√
nε/(µ∗∆))−1. By σ2/µ2

∗ ≤ 4
√
n, ∆ ≥ 1

and µ∗ ≥ 1, we have ξ ≥ (128
√
n+ (8/3)

√
n)−1 ≥ (131

√
n)−1. Then we immediately have

e−|P
′
O|ε

2∆−2ξ ≤ e−γ
√
nε2∆−2ξ/2 ≤ e−262ε−2∆2√nε2∆−2(131

√
n)−1/2 ≤ e− ln 4n = 1/4n. Inequality

(3) then follows from this and inequality (4).
Below we show that, |µ′O−µO| > εS/n implies that |µ′∗−µ∗| ≥ εµ∗/4∆. If this is the case,

by inequality (3), we will know that the latter event happens with probability no more than
1/4n, which also implies that the former event happens with probability no more than 1/4n,
and thus the lemma follows. We will prove the claim by showing that |µ′∗ − µ∗| < εµ∗/4∆
implies that |µ′O − µO| ≤ εS/n.
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Assume that |µ′∗ − µ∗| < εµ∗/4∆. Multiplying each side of this inequality by a factor of
F (rO)/

√
n, we have

|(
∑
p∈P ′

O

(f(p) + F (rO)/
√
n)/|P ′O|)− (

∑
p∈PO

(f(p) + F (rO)/
√
n)/|PO|)| ≤

ε((
∑
p∈PO

f(p))/|PO|+ F (rO)/
√
n)/4∆. (5)

Rearranging the terms gives us

|µ′O − µO| ≤ ε(µO + F (rO)/
√
n)/4∆. (6)

In the following, we will obtain an upper bound on (µO + F (rO)/
√
n)/4∆ in terms of S.

We first consider µO/4∆. For each p ∈ P \ PO, since ‖p− q‖ ≤ rO, we have f(p) ≥ f(p′)
for any p′ ∈ PO. Therefore we have

∑
p∈P\PO f(p)/|P \ PO| ≥

∑
p′∈PO f(p′)/|PO| =

µO. Note that S/n is the mean value of f(p) for all p ∈ P . Thus we have S/n ≥
min(µO,

∑
p∈P\PO f(p)/|P \ PO|). Hence we get S/2n ≥ µO/2 ≥ µO/4∆.

Now we bound F (rO)/4
√
n∆ in terms of S. By the fact that rO = rα/λ, we have

F (rO) ≤ F (rα)∆. Thus we know that F (rO)/4
√
n∆ ≤ F (rα)/4

√
n. From the good sample

condition, we have |Pα| ≥
√
n/2. For each p ∈ Pα = P ∩ B(q, rα), since ‖p − q‖ ≤ rα, it

follows that f(p) ≥ F (rα). Therefore we get S =
∑
p∈P f(p) ≥

∑
p∈Pα f(p) ≥ F (rα)

√
n/2.

It then follows that F (rO)/4
√
n∆ ≤ F (rα)/4

√
n ≤ S/2n.

Combining the above results and recall (6), we obtain |µ′O − µO| ≤ εS/n.
To summarize, we have showed that |µ′∗−µ∗| < εµ∗/4∆ implies |µ′O−µO| ≤ εS/n, which

means that |µ′O − µO| > εS/n implies |µ′∗ − µ∗| ≥ εµ∗/4∆. This completes the proof. J

Below is a result for soft boundary range search. The details of the method will be
discussed in next section.

I Lemma 7. For any λ > 1 and τ > 0, there exists a λ-approximate soft boundary range
search data structure that can be built in time O(dn1+1/2λ+τ ). Each query, provided that the
good sample condition is satisfied,
1. reports all the points in PΩ = P ∩ B(q, rα/λ) in Algorithm 1 ( i.e. P ′Ω = PΩ) with

probability at least 1− 1/4n;
2. takes time O(dn1/2λ+1/2+τ ).

Finally, we have the main theorem for our algorithm.

I Theorem 8. With probability at least 1 − 1/n, S̄ produced by Algorithm 1 satisfies the
inequality |S̄ − S| ≤ 2εS.

Proof. In the following argument, we assume that the good sample condition is satisfied.
P can be partitioned into 2 subsets according to their distances to q: P = PO ∪PΩ, where

PO = P \B(q, rO) (as defined before), and PΩ = P ∩B(q, rα/λ) = P \ PO.
First, we show that the value S′O = µ′O|P ′O|n/m is a good approximation of

∑
p∈PO f(p).

By Lemma 6, we know that with probability at least 1− 1/4n, |µ′O − µO| ≤ εS/n. Thus, we
get |µ′O|P ′O|n/m− µO|P ′O|n/m| ≤ εS|P ′O|/m ≤ εS. By the good sample condition, we have
||P ′O|n/m− |PO|| ≤ ε|PO|. Since PO ⊆ P , clearly we know that |PO|µO =

∑
p∈PO f(p) ≤ S.

Thus, we have |µO|P ′O|n/m− µO|PO|| ≤ εµO|PO| ≤ εS.
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|S′O −
∑
p∈PO

f(p)| = |µ′O|P ′O|n/m− µO|PO|| (7)

= |µ′O|P ′O|n/m− µO|P ′O|n/m+ µO|P ′O|n/m− µO|PO|| (8)
≤ |µ′O|P ′O|n/m− µO|P ′O|n/m|+ |µO|P ′O|n/m− µO|PO|| (9)
≤ εS + εS = 2εS. (10)

For PΩ, by Lemma 7, we know that this set is identical to PΩ with probability at least
1− 1/4n. Thus we have S′Ω =

∑
p∈PΩ

f(p) with probability at least 1− 1/4n.
From the above results, we immediately know that when the good sample condition is

satified, S − S̄ ≤ 2εS with probability at least 1− 1/2n. Since the good sample condition
holds with probability at least 1− 1/2n, the theorem then follows. J

3 Soft Boundary Range Reporting using Approximate Nearest
Neighbor Search

In this section we present a method to report points in PΩ = P ∩ B(q, rα/λ). We assume
that

√
n/2 ≤ |Pα| ≤ 2

√
n, which is a part of the good sample condition.

We reduce the range search query to a number of nearest neighbor queries. Observe that,
since

√
n/2 ≤ |Pα| ≤ 2

√
n, if we take a sample Q of d

√
n/2e points from P uniformly and

independently, with at least constant probability, Q and Pα share exactly 1 common point.

I Lemma 9. For n ≥ 100, the probability of the event that |Pα ∩ Q| = 1 happens with
probability at least ρ = 1/60

Proof. The probability that the event happens can be computed as follows.

P(|Pα ∩Q| = 1) =
⌈√

n/2
⌉ |Pα|
n

(1− Pα
n

)d
√
n/2e−1.

Since |Pα| ≥
√
n/2, we have d

√
n/2e |Pα|n (≥

√
n/3) |Pα|n ≥ 1/6.

Also, from |Pα| ≤ 2
√
n, we get (1 − Pα

n )d
√
n/2e−1 ≥ (1 − Pα

n )
√
n ≥ (1 − 2/

√
n)
√
n.

It is well known that f(x) = (1 − 1/x)x is monotonously increasing for x > 1. Thus
(1− 2/

√
n)
√
n ≥ (1− 1/5)10 > 1/10. Combining this with the above inequality, the lemma

follows. J

If Q and Pα share exactly 1 common point, clearly every point in Pα have the same
probability to be the common point. There are at most 2

√
n points in Pα; therefore every

point has a probability at least ρ/2
√
n to be the only common point of Q and Pα. Similar

observations are used in some other range search techniques[4].
Now, if we are allowed to perform a λ-approximate nearest neighbor search on Q, and if a

point p ∈ PΩ ⊆ Pα happens to be the only common point of Pα and Q, then the approximate
nearest neighbor search will output p. This is because any other point in Q must be in
P \ Pα, and thus their distance to q must be larger than rα = λrO ≥ ‖p− q‖, which means
that p is the only λ-approximate nearest neighbor of q in Q.

Therefore, if we sample a point set Q as stated above, and build a nearest neighbor data
structure that is able to output a λ-approximate nearest neighbor Q for any q, with at least
constant success probability δ > 0(e.g. using technique in [9]), then for any p ∈ PΩ, this data
structure will be able to discover p with probability at least (δρ/2

√
n).
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This suggest us to build a range search data structure in the following way. For some
number t, independently create t samples Q1, . . . , Qt, each one has size d

√
n/2e, by sampling

uniformly and independently from P . Then we build an λ-approximate nearest neighbor
data structure with success query probability δ for each of Q1, . . . , Qt. For the reporting
query, given q and rα, we perform an λ-approximate nearest neighbor.

We set t so that (1− δρ/2
√
n)t (i.e. the probability that a certain point p ∈ PΩ is not

reported) is less than 1/8
√
nn. By simple calculation, we know that it is possible to find such

a t that satisfies the condition t = O(
√
n logn). Since PΩ contains no more than 2

√
n points,

it means that if we perform a nearest neighbor search for all Q1, . . . , Qt, with probability at
least 1− 1/4n, we are able to output all points in PΩ.

Note that using this scheme, for each range reporting query, we are required to per-
form t = O(

√
n logn) times nearest neighbor search queries. For any τ > 0, it is pos-

sible to build a nearest neighbor data structure that answer each nearest neighbor search
query in O(d(

√
n)1/λ+τ ) time[9]. Therefore the time required for a reporting process is

O(td(
√
n)1/λ+τ ). By t = O(

√
n logn), we know that for any τ ′ > 0, it is possible to perform

the range reporting operation in time O(d(
√
n)1+1/λ+τ ′). For the construction time, each

nearest neighbor data structure is built on a O(
√
n) point set, which can be built within time

O(d(
√
n)1+1/λ+τ ) for any τ > 0, Therefore, the total construction complexity is (dn1+1/2λ+τ ′)

for any τ ′ > 0. The bounds for Lemma 7 are proved.
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Abstract
The multi-service center problem is a variant of facility location problems. In the problem, we
consider locating p facilities on a graph, each of which provides distinct service required by all
vertices. Each vertex incurs the cost determined by the sum of the weighted distances to the p

facilities. The aim of the problem is to minimize the maximum cost among all vertices. This
problem is known to be NP-hard for general graphs, while it is solvable in polynomial time when
p is a fixed constant. In this paper, we give sharp analyses for the complexity of the problem
from the viewpoint of graph classes and weights on vertices. We first propose a polynomial-time
algorithm for trees when p is a part of input. In contrast, we prove that the problem becomes
strongly NP-hard even for cycles. We also show that when vertices are allowed to have negative
weights, the problem becomes NP-hard for paths of only three vertices and strongly NP-hard for
stars.
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Keywords and phrases facility location, graph algorithm, multi-service location
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1 Introduction

Facility location is one of the most well-studied topics in combinatorial optimization. There
are various kinds of settings depending on the situations. (See e.g., [4].) Generally, in facility
location problems, we are given a set of clients and a set of facilities in a graph, and we
aim to decide which facilities are open to satisfy the demand of the clients. For example,
the well-known k-center problem is to place k facilities in a graph so that the maximum
distance from each client to their closest facility is minimized [6, 7]. Note that this standard
situation assumes that all k facilities can provide the same service so that each client meets
their demand by only accessing one facility.

Yu and Li [10] recently proposed a new framework of facility location problems, called
multi-service location problems, motivated by the situation where each facility provides
different services and each client needs to access all facilities to meet their demand. As the
first problem of this kind, they proposed the p-service center problem defined as follows.
(The formal definition will be given in Section 2.) In the problem, we assume that clients
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48:2 Complexity of the Multi-Service Center Problem

are all vertices in a graph G, and facilities can be located on any place in G even on an
edge. When we locate p facilities, each of which provides distinct service, the cost of each
client v is determined by the sum of the weighted distances to the p facilities, where the
weighted distance from v to a facility x is the shortest-path distance from v to x multiplied
by a positive weight (representing the demand) of v to the service provided by x. The aim of
the problem is to find a location of p facilities that minimizes the maximum cost among the
clients.

Yu and Li [10] studied the computational complexity of p-service center for several
cases. They designed a polynomial-time algorithm for general graphs when p is a fixed
constant, and an O(n log n)-time algorithm for trees having n vertices when restricted to
p = 2. On the negative side, they showed that the problem is NP-hard for general graphs
when p is a part of input. Anzai et al. [1] showed that this case remains NP-hard even for
split graphs with identical edge-length.

In this paper, we consider a simple generalization of p-service center, that is, each
client can have zero or negative weights (demands) to a facility; recall that the weight must
be positive in the original setting. This generalization is very simple, but enables us to
express several natural situations: a zero demand means that the client does not need the
service provided by the facility, while a negative demand means that the client refuses the
service provided by the facility; furthermore, any vertex can be a non-client by setting all
demands to be zero. In this paper, we sharply analyze the computational complexity of this
generalized problem from the viewpoint of graph classes and weights of vertices. Our main
contributions are summarized as follows:
(1) The problem with nonnegative weights is solvable in polynomial time for trees, even

when the number p of facilities is a part of input.
(2) The problem with nonnegative weights is strongly NP-hard for cycles with identical

edge-length. Thus, the problem cannot be solved in pseudo-polynomial time even for a
cycle unless P = NP.

(3) When clients are allowed to have negative weights, the problem becomes NP-hard even
for paths of only three vertices and strongly NP-hard for stars.

Thus, the problem is polynomially solvable only for trees with nonnegative weights, and is
computationally intractable even for a bit larger graph class or negative weights. Let us
remark that, while both of the algorithms by Yu and Li [10] require that the number p of
facilities is a fixed constant, our algorithm in (1) allows to have p as a part of input.

The rest of the paper is organized as follows. In Section 2, we give a formal definition of
the problem studied in this paper. In Section 3, we present a polynomial-time algorithm on
a tree. Section 4 is devoted to showing the hardness results.

2 Problem Definition

In this section, we formally define the problem studied in this paper.
Let G = (V, E) be an undirected connected graph. For a subgraph H of G, we sometimes

denote by V (H) and E(H) the vertex set and edge set of H, respectively. Assume that each
edge e ∈ E has a length `e ∈ R≥0, where R≥0 is the set of all nonnegative real numbers.
We may assume that all vertices in G are clients, and each facility can be located on any
place in G, even on an edge. We will refer to interior locations on an edge e ∈ E by their
distances along e from its two endpoints. Throughout the paper, a point on G indicates
either a vertex in V or an interior location on an edge in E. For notational convenience, we
sometimes denote simply by G the set of all points on the graph. For two points x, y ∈ G,
let dist(x, y) denote the shortest-path length between x and y.



T. Ito, N. Kakimura, and Y.Kobayashi 48:3

Let I be the set of facilities. Then, a location of I on a graph G = (V, E) is a tuple X

of |I| points on G (which are not necessarily distinct). We denote by GI the family of all
the locations of I on G. Suppose that each vertex v ∈ V has a weight wv,i ∈ R for a facility
i ∈ I, where R is the set of all real numbers; the weight wv,i represents the demand of v

to the service provided by i ∈ I. For each vertex v ∈ V and a location X ∈ GI , the cost
cost(v, X) of v to receive the service from X is defined as follows:

cost(v, X) :=
∑
i∈I

wv,i · dist(v, xi),

where xi denotes the point on G at which the facility i ∈ I is placed by X. In this paper, we
study the following problem:

The multi-service center problem
Instance. A graph G = (V, E), an edge length `e ∈ R≥0 for e ∈ E, a set I of

facilities, and a weight wv,i ∈ R for v ∈ V and i ∈ I.
Question. Find a location X of I on G that minimizes maxv∈V cost(v, X).

We call the problem p-service center if the number p of facilities is a fixed constant.
In addition, we sometimes write the name of the problem with its restriction: For example,
the problem is called multi-service center with nonnegative weights if all weights wv,i

are nonnegative for v ∈ V and i ∈ I.

3 Polynomial-Time Algorithm for Trees with Nonnegative Weights

Recall that Yu and Li [10] showed that p-service center with positive weights is solvable in
polynomial time for general graphs, and 2-service center with positive weights is solvable
in O(n log n) time for trees having n vertices. Both of the algorithms require that the number
p of facilities is fixed. In this section, we prove that multi-service center with nonnegative
weights is solvable in polynomial time for trees even when the number p of facilities is taken
as a part of input, as in the following theorem.

I Theorem 1. Multi-service center with nonnegative weights can be solved in polynomial
time for trees.

In the remainder of this section, we prove Theorem 1. For notational convenience, we
may assume that each edge of a given tree has a positive length; this assumption does not
lose the generality because we simply regard each edge e with `e = 0 as having a sufficiently
small positive length.

3.1 Technical highlights
We first explain our main ideas and proof techniques briefly.

To describe a polynomial-time algorithm for trees, let us first consider the case when
a graph is a path. In this case, it is not difficult to see that the problem can be reduced
to a linear programming problem. In fact, we can identify a point on the path with a
1-dimensional coordinate x by taking one of the end of the path as the origin. Then, the
distance from each client to x can be expressed by an absolute value function with respect to
x. Therefore, multi-service center for a path is equivalent to minimizing the maximum
of the sum of absolute value functions with nonnegative coefficients, which can be formulated
as a linear programming problem.
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Figure 1 (a) A tree with edge-lengths, (b) the admissible vector x̃ = (x̃(e1), . . . , x̃(e6))> =
(0, 2.5, 0, 0, 0, 1.2)> representing a point x, and (c) the admissible vector ṽ = (0, 2.5, 2.0, 1.8, 0, 0)>.

In order to extend the above observation to the tree case, we identify a point on a tree with
a path from a specified vertex (a root). Then, we can represent a point on the tree by a vector
in the m-dimensional space, where m is the number of edges in the tree. (See Figure 1(b) as
an intuitive example; a formal definition will be given later.) This representation gives us a
linear programming problem to find p vectors in the m-dimensional space, as formulated in
Problem (3) later. However, since not all m-dimensional vectors correspond to a (feasible)
point on the tree, the linear programming problem is a relaxation of multi-service center.
The key ingredient of our algorithm is to prove that the linear programming problem has in
fact an optimal solution corresponding to an optimal facility location (Lemma 3). Since our
proof is constructive, we can find an optimal facility location in polynomial time by solving
the linear programming problem.

3.2 Algorithm

Let T = (V, E) be a tree. We choose an arbitrary vertex r in V as the root of T , and regard
T as a rooted tree. For notational convenience, when we denote an edge e by e = uv, we may
assume that u is the parent of v. For each vertex v on T , we denote by Pv the path in T from
r to v. For each interior point x of an edge ex = uxvx, we denote by Px the path in T from
r to vx, that is, Px = Pvx

. For each edge e = uv, let T − e be the subgraph of T obtained by
deleting e from T . Then, T − e consists of exactly two trees that have u and v, respectively;
we denote the two trees by Tu and Tv where u ∈ V (Tu) and v ∈ V (Tv), respectively.

Let x be any point on T , and assume that x is located on an edge ex = uxvx; note that
x = ux or x = vx may hold. Then, we can express the point x using a vector x̃ in RE

≥0,
defined as follows (see Figure 1(b)):

x̃(e) =


`e if e ∈ E(Pux) = E(Px) \ {ex},
dist(ux, x) if e = ex,

0 otherwise.
(1)

Conversely, we say that a vector x̃ ∈ RE
≥0 is admissible if there exist an edge ex = uxvx and

dx in [0, `ex
] such that x̃ has the form of (1) in which dist(ux, x) is replaced with dx. Then,

there exists a one-to-one correspondence between a point x ∈ T and an admissible vector x̃,
and hence any point on T can be represented as an admissible vector. When a vertex v ∈ V

and a point x on T are expressed by ṽ ∈ RE
≥0 and x̃ ∈ RE

≥0, respectively, it holds that

dist(v, x) =
∑
e∈E

|ṽ(e)− x̃(e)| (2)
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(see also Figure 1(c)), because we have

|ṽ(e)− x̃(e)| =


`e if e ∈ (E(Px) M E(Pv)) \ {ex},
dist(ux, x) if e = ex 6∈ E(Pv),
dist(vx, x) if e = ex ∈ E(Pv),
0 otherwise.

For a vertex v ∈ V and any vector x̃ ∈ RE
≥0 (which is not necessarily admissible), we

define

de(v, x̃) = |ṽ(e)− x̃(e)|,

where ṽ is a vector expressing v by (1). Consider the problem of finding |I| vectors x̃i ∈ RE
≥0

(i ∈ I) that minimizes

max
v∈V

∑
i∈I

(
wv,i

∑
e∈E

de(v, x̃i)
)

= max
v∈V

∑
i∈I

(
wv,i

∑
e∈E

|ṽ(e)− x̃i(e)|
)

(3)

subject to x̃i(e) ∈ [0, `e] for i ∈ I and e ∈ E. Note that, by (2), we have
∑

e∈E de(v, x̃) =
dist(v, x) for any point x on T and its corresponding admissible vector x̃. Hence, if we have
an additional constraint that each x̃i is admissible on the problem (3), then it is equivalent to
multi-service center. Thus the problem (3) can be seen as a relaxation of multi-service
center.

I Lemma 2. The optimal value of the problem (3) is smaller than or equal to that of
multi-service center with nonnegative weights.

Proof. Consider any optimal solution to multi-service center with nonnegative weights
which places each facility i ∈ I at a point xi on T . Then, the corresponding vectors x̃i form
a feasible solution of the problem (3), and its objective value is equal to the optimal value
of multi-service center with nonnegative weights because of (2). Thus, the statement
holds. J

We say that a feasible solution of the problem (3) is admissible if each vector x̃i (i ∈ I) of
the solution is admissible. Then, an admissible solution of the problem (3) gives a location of
I on T . Lemma 2 and the following lemma ensure that solving the problem (3) is equivalent
to solving multi-service center with nonnegative weights.

I Lemma 3. The problem (3) has an admissible optimal solution. Furthermore, given an
optimal solution x̃i (i ∈ I) to the problem (3), we can construct an admissible optimal solution
in polynomial time.

Proof. Let x̃i ∈ RE
≥0 (i ∈ I) be an optimal solution to the problem (3). For each edge e ∈ E,

let Pe be the unique path in T from the root r to e which does not include e itself. Thus,
Pe = Pu for an edge e = uv. Let Fi = {e ∈ E | x̃i(e) > 0}. By definition, x̃i is admissible if
and only if it satisfies the following conditions:
(A) any two distinct edges e1, e2 ∈ Fi satisfy either e1 ∈ E(Pe2) or e2 ∈ E(Pe1); and
(B) for each edge e ∈ Fi, there is no edge e′ ∈ E(Pe) such that x̃i(e′) < `e′ .

Suppose that x̃i is not admissible for some i ∈ I. We will show that we can modify the
vector x̃i in polynomial time so that the resulting vector is admissible (i.e., satisfies both (A)
and (B) above), without increasing the objective value of (3).
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Figure 2 Illustration for the proof of Lemma 3.

We first modify x̃i so that it satisfies (A). Suppose that there exist two distinct edges
e1 = u1v1 and e2 = u2v2 in Fi such that both e1 6∈ E(Pe2) and e2 6∈ E(Pe1) hold. (See
Figure 2(a).) Define a new vector x̃′i by

x̃′i(e) =
{

x̃i(e)− ε if e ∈ {e1, e2};
x̃i(e) otherwise,

where ε = min{x̃i(e1), x̃i(e2)}. Then, x̃′i(e) ∈ [0, `e] for each e ∈ E, and hence x̃′i is feasible
to (3). We now claim that this modification does not increase the objective value as follows.
For each vertex z ∈ V expressed by z̃ ∈ RE

≥0 and an index q ∈ {1, 2}, we have

z̃(eq) =
{

0 if z ∈ V (Tuq
);

`eq
if z ∈ V (Tvq

),

where we recall that Tuq and Tvq are trees in T − eq such that uq ∈ V (Tuq ) and vq ∈ V (Tvq ).
We thus have

deq
(z, x̃′i)− deq

(z, x̃i) =
{
−ε if z ∈ V (Tuq

);
ε if z ∈ V (Tvq ).

Since V (Tv1) ∩ V (Tv2) = ∅, the vertex z is contained in V (Tu1) or V (Tu2). Therefore, it
holds that∑

e∈E

de(z, x̃′i)−
∑
e∈E

de(z, x̃i) = de1(z, x̃′i)− de1(z, x̃i) + de2(z, x̃′i)− de2(z, x̃i) ≤ 0. (4)

In this way, while Fi violates (A), we can repeatedly replace x̃i with x̃′i as above. Since
this procedure decreases |Fi| monotonically, the number of repetition is at most |Fi| ≤ |E|.
Thus we can obtain x̃i satisfying (A) in polynomial time.

We next modify x̃i so that it also satisfies (B). If Fi = ∅, then x̃i(e) = 0 for any e ∈ E,
and hence x̃i is admissible. Otherwise, since x̃i satisfies (A), all the edges in Fi are on some
path P from r. Let V (P ) = {v1, v2, . . . , vk+1} and E(P ) = {e1, e2, . . . , ek} be the vertex set
and the edge set of P , respectively, such that v1 = r and ej = vjvj+1 for j = 1, . . . , k. (See
Figure 2(b).) Define p := min{j ∈ {1, . . . , k} | x̃i(ej) < `ej}; let p = +∞ if such j does not
exist. Define q := max{j ∈ {1, . . . , k} | x̃i(ej) > 0}; such j always exists because Fi ⊆ E(P ).
Note that x̃i satisfies (B) if and only if p ≥ q. Suppose that x̃i does not satisfy (B), that is,
p < q. Then, p 6= +∞ holds, and hence we have x̃i(ep) < `ep

. Define a new vector x̃′i by

x̃′i(e) =


x̃i(e) + ε if e = ep;
x̃i(e)− ε if e = eq;
x̃i(e) otherwise,
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where ε = min{`ep − x̃i(ep), x̃i(eq)}. Then, x̃′i(e) ∈ [0, `e] for each e ∈ E, and hence x̃′i is
feasible to (3). We now claim that this modification does not increase the objective value as
follows. For any vertex z ∈ V , we have

dep
(z, x̃′i)− dep

(z, x̃i) =
{

ε if z ∈ V (Tvp
);

−ε if z ∈ V (Tvp+1),

and

deq
(z, x̃′i)− deq

(z, x̃i) =
{
−ε if z ∈ V (Tvq

);
ε if z ∈ V (Tvq+1),

where we recall that Tvp and Tvp+1 are trees in T − ep such that vp ∈ V (Tvp) and vp+1 ∈
V (Tvp+1), and recall that Tvq

and Tvq+1 are trees in T − eq such that vq ∈ V (Tvq
) and

vq+1 ∈ V (Tvq+1). Since V (Tvp) ∩ V (Tvq+1) = ∅, we can see that the objective value does not
increase similarly to (4).

Therefore, we can repeat replacing x̃i with x̃′i as above while x̃i violates (B). Since this
procedure either increases p or decreases q monotonically, we can finally obtain x̃i satisfying
p ≥ q, that satisfies (B), in polynomial time.

In this way, we can obtain an optimal solution x that is admissible in polynomial time. J

We are now ready to prove Theorem 1.

Proof of Theorem 1. It follows from Lemmas 2 and 3 that it suffices to solve the problem (3).
Note that

∑
i∈I

(
wv,i

∑
e∈E |ṽ(e)− x̃i(e)|

)
is a separable-convex function. Since the maximum

of convex functions is also convex, so is the objective function of (3). Therefore, the
problem (3) is a convex programming problem, which can be solved in polynomial time (see
e.g., [3]).

In fact, we can reduce the problem (3) to the following linear programming problem:

minimize c

subject to
∑
i∈I

(
wv,i

∑
e∈E

|ṽ(e)− x̃i(e)|
)
≤ c (v ∈ V ),

x̃i(e) ≤ `e (i ∈ I, e ∈ E),
x̃i ∈ RE

≥0 (i ∈ I),
c ∈ R≥0,

where x̃i(e) (i ∈ I, e ∈ E) and c are variables. Note that the first constraint can be described
by linear inequalities, since the left-hand side is

∑
i∈I

(
wv,i

∑
e∈E

|ṽ(e)− x̃i(e)|
)

=
∑
i∈I

wv,i

 ∑
e∈E(Pv)

(`e − x̃i(e)) +
∑

e∈E\E(Pv)

x̃i(e)

 .

Therefore, it is a linear programming problem with polynomial size, which can be solved in
polynomial time (see e.g., [9]). J

4 Hardness Results

In this section, we show that multi-service center is computationally intractable even
for very restricted instances. We emphasize again that our analyses are sharp in contrast to
Theorem 1.

ISAAC 2017
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4.1 Technical Highlights
Recall that, in multi-service center, we are allowed to place each facility at any point on
a graph (even on an edge), which makes a solution flexible. We design reductions so that
reduced instances force all facilities to be placed at only vertices in any optimal solution.
To ensure this condition, we need to analyze the structure of optimal solutions carefully.
Interestingly, we will verify this condition for cycles (Theorem 7) by using the nonsingularity
of a “distance matrix” [2], which has been studied in the area of algebraic graph theory.

4.2 NP-hardness for paths and stars with negative weights
In this subsection, we show that multi-service center is intractable even for paths and
stars if weights of vertices take negative integers. More specifically, the problem is NP-hard
for paths of only three vertices, and is strongly NP-hard for stars. Indeed, a path of three
vertices is a star, and hence we will construct a common reduction from the following problem:

The equally partition problem
Instance. A set A of elements, a bound b ∈ Z≥0, and a size si ∈ Z≥0 for each

i ∈ A such that
∑

i∈A si = mb for some positive integer m.
Question. Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that∑

i∈Aj
si = b for all j ∈ {1, 2, . . . , m}?

Here, Z≥0 is the set of all nonnegative integers. We summarize our reduction from equally
partition to multi-service center as in the following theorem.

I Theorem 4. There is a polynomial-time reduction from equally partition to multi-
service center for instances such that
(a) G = (V, E) is a star K1,m with the center vertex r having m leaves;
(b) `e := 1 for every e ∈ E;
(c) I := A; and
(d) for v ∈ V and i ∈ I (= A),

wv,i :=
{
−si if v ∈ V \ {r};
−si · 2(m−1)

m if v = r.

Notice that equally partition corresponds to an NP-hard problem partition [5, SP12] if
m = 2. In addition, for general m, equally partition contains all instances of a strongly
NP-hard problem 3-partition [5, SP15]. Thus, the following corollary can be obtained from
Theorem 4.

I Corollary 5. The following (i) and (ii) hold.
(i) Multi-service center is NP-hard even when G = (V, E) is a path of three vertices,

`e = 1 for every e ∈ E, and wv,i = wv′,i for any v, v′ ∈ V and i ∈ I.
(ii) Multi-service center is NP-hard in the strong sense even when G = (V, E) is a star,

and `e = 1 for every e ∈ E.

As described in Theorem 4, our reduction from equally partition to multi-service
center is as follows. Suppose that we are given an instance of equally partition, that
is, a set A of elements, a bound b ∈ Z≥0, and a size si ∈ Z≥0 for each i ∈ A such that∑

i∈A si = mb. Then, we construct a corresponding instance of multi-service center
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as follows. Let G = (V, E) be a star K1,m with the center vertex r and having m leaves
v1, v2, . . . , vm. Set `e := 1 for every e ∈ E, and define I := A. For v ∈ V and i ∈ I (= A), set

wv,i :=
{
−si if v ∈ V \ {r};
−si · 2(m−1)

m if v = r.

This reduction can be done in polynomial time.
To show the correctness of our reduction above, it suffices to prove the following lemma.

I Lemma 6. The original instance of equally partition has a desired partition if and
only if there is a location X of I for the corresponding instance of multi-service center
such that maxv∈V cost(v, X) ≤ −2(m− 1)b.

Proof. Necessity (“only if” part). Suppose that the original instance of equally parti-
tion has a partition (A1, A2, . . . , Am) of A such that

∑
i∈Aj

si = b for all j ∈ {1, 2, . . . , m}.
In this case, we place the facilities in Aj at the vertex vj ∈ V , that is, for each i ∈ Aj , we define
xi := vj in the corresponding instance of multi-service center. Since (A1, A2, . . . , Am) is
a partition of A = I, this properly defines a location X of I. Then, for each leaf vj ∈ V \ {r},
we can estimate the cost of v to receive the service from X as follows:

cost(vj , X) =
∑
i∈I

wvj ,i · dist(vj , xi) = 2 ·
∑

i∈I\Aj

(−si) = −2(m− 1)b.

Similarly, for the center vertex r of the star, its cost can be estimated as follows:

cost(r, X) =
∑
i∈I

wr,i · dist(r, xi) =
∑
i∈I

(
−si ·

2(m− 1)
m

)
= −2(m− 1)b.

Therefore, X is a location of I for the corresponding instance of multi-service center
such that maxv∈V cost(v, X) ≤ −2(m− 1)b, as required.

Sufficiency (“if” part). Suppose that there is a location X ∈ GI of I for the corresponding
instance of multi-service center such that maxv∈V cost(v, X) ≤ −2(m− 1)b. For each
facility i ∈ I, let xi denote the point on G at which i is placed by X. Since r is the center
vertex of the star, dist(r, xi) ≤ 1 for any i ∈ I. In addition, since wr,i is negative for any
i ∈ I, we have

cost(r, X) =
∑
i∈I

wr,i · dist(r, xi) ≥
∑
i∈I

(
−si ·

2(m− 1)
m

)
= −2(m− 1)b.

Since we have assumed that maxv∈V cost(v, X) ≤ −2(m− 1)b, the inequality above is tight.
We thus have dist(r, xi) = 1 for any i ∈ I. Observe that dist(r, xi) = 1 means that xi

is equal to one of the points v1, v2, . . . , vm. With this observation, we obtain a partition
(A1, A2, . . . , Am) of A by defining Aj := {i ∈ I | xi = vj} for each j ∈ {1, 2, . . . , m}.

We now claim that
∑

i∈Aj
si = b for all j ∈ {1, 2, . . . , m}, and hence (A1, A2, . . . , Am) is

a desired partition for equally partition. To see this, we evaluate cost(vj , X) as follows:

max
j∈{1,2,...,m}

cost(vj , X) = max
j∈{1,2,...,m}

(∑
i∈I

wvj ,i · dist(vj , xi)
)

≥ 1
m

m∑
j=1

∑
i∈I

wvj ,i · dist(vj , xi) = 1
m

m∑
j=1

∑
i∈I\Aj

(−si) · 2

= − 2
m

∑
i∈I

(m− 1)si = −2(m− 1)b.
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Since we have assumed that maxv∈V cost(v, X) ≤ −2(m− 1)b, the inequality above is tight.
Then, the tightness of the inequality shows that

∑
i∈I wvj ,idist(vj , xi) = −2(m−1)b for every

vj ∈ V \ {r}. Therefore, we have

−2(m− 1)b =
∑
i∈I

wvj ,i · dist(vj , xi) =
∑

i∈I\Aj

(−si) · 2 = −2

mb−
∑
i∈Aj

si

 .

We thus have
∑

i∈Aj
si = b for all j ∈ {1, 2, . . . , m}, as claimed. J

This completes the proof of Theorem 4, and hence Corollary 5 follows.

4.3 Strong NP-hardness for cycles with nonnegative weights
We show that the problem is strongly NP-hard even when restricted to cycles with identical
edge-length and nonnegative integer weights.

I Theorem 7. Multi-service center with nonnegative weights is NP-hard in the strong
sense even when G = (V, E) is a cycle, `e = 1 for every e ∈ E, and wv,i = wv′,i ∈ Z≥0 for
any v, v′ ∈ V and i ∈ I.

Thus, multi-service center cannot be solved in pseudo-polynomial time even for such
restricted instances unless P = NP.

In the remainder of this subsection, we prove the theorem by giving a polynomial-time
reduction from a strongly NP-hard problem 3-partition to multi-service center for such
restricted instances. The 3-partition problem is defined as follows (see, e.g., [5, SP15]):

The 3-partition problem
Instance. A set A of 3m elements, a bound b ∈ Z≥0, and a size si ∈ Z≥0 with

b
4 < si < b

2 for each i ∈ A such that
∑

i∈A si = mb.
Question. Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that∑

i∈Aj
si = b for all j ∈ {1, 2, . . . , m}?

Note that since b
4 < si < b

2 for each i ∈ A, we have |Aj | = 3 for all j ∈ {1, 2, . . . , m}. It is
known that 3-partition remains NP-hard in the strong sense even if m is restricted to be
odd [8].

Suppose that we are given a set A of 3m elements, a bound b ∈ Z≥0, and a size si ∈ Z≥0
for each i ∈ A as an instance of 3-partition, where m is an odd number. We construct
a corresponding instance of multi-service center as follows. Let G = (V, E) be a cycle
with m vertices such that V = {v1, v2, . . . , vm}, E = {v1v2, v2v3, . . . , vm−1vm, vmv1}, and
`e := 1 for every e ∈ E. Define I := A, and set wv,i := si for v ∈ V and i ∈ I (= A). This
reduction can be done in polynomial time.

To show the correctness of our reduction above, it suffices to prove the following lemma.

I Lemma 8. The original instance of 3-partition has a desired partition if and only if
there is a location X of I for the corresponding instance of multi-service center such that

max
v∈V

cost(v, X) ≤ (m2 − 1)b
4 .

Proof. Necessity (“only if” part). Suppose that the original instance of 3-partition has a
partition (A1, A2, . . . , Am) of A such that

∑
i∈Aj

si = b for all j ∈ {1, 2, . . . , m}. In this case,
we place the (three) facilities in Aj at the vertex vj ∈ V , that is, for each i ∈ Aj , we define
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xi := vj in the corresponding instance of multi-service center. Since (A1, A2, . . . , Am) is
a partition of A = I, this properly defines a location X of I. Then, for each vertex v ∈ V ,
we can estimate the cost of v to receive the service from X as follows:

cost(v, X) =
∑
i∈I

wv,i · dist(v, xi) =
m∑

j=1

∑
i∈Aj

wv,i · dist(v, vj)


=

m∑
j=1

dist(v, vj)
∑
i∈Aj

si

 = b

m∑
j=1

dist(v, vj) = 2b

(m−1)/2∑
k=1

k = (m2 − 1)b
4 .

Therefore, X is a location of I for the corresponding instance of multi-service center
such that maxv∈V cost(v, X) ≤ (m2−1)b

4 , as required.

Sufficiency (“if” part). Suppose that there is a location X ∈ GI of I for the corresponding
instance of multi-service center such that maxv∈V cost(v, X) ≤ (m2−1)b

4 . For each facility
i ∈ I, let xi denote the point on G at which i is placed by X. We will prove the following (a)
and (b):
(a) X places all facilities in I at vertices of G; and
(b)

∑
i:xi=vj

si = b for every vj ∈ V .
Then, by defining Aj := {i ∈ I | xi = vj} for each j ∈ {1, 2, . . . , m}, we obtain a desired
partition (A1, A2, . . . , Am) of A for the original instance of 3-partition.

We first prove (a). To see properties of the location X, we begin with the following claim.

I Claim 9. For any point x on G, it holds that
∑m

j=1 dist(vj , x) ≥ m2−1
4 . Furthermore,∑m

j=1 dist(vj , x) = m2−1
4 holds if and only if x is a vertex of G.

Proof of the claim. Let ε ≥ 0 be the distance from x to the nearest vertex in V . Then,

m∑
j=1

dist(vj , x) =
(m−1)/2∑

k=1
(k − ε) +

(m−1)/2∑
k=0

(k + ε) = m2 − 1
4 + ε.

This shows the claim, because ε = 0 if and only if x is a vertex of G. J

By Claim 9, we have

max
v∈V

cost(v, X) = max
v∈V

(∑
i∈I

wv,idist(v, xi)
)

≥ 1
m

∑
v∈V

∑
i∈I

sidist(v, xi) = 1
m

∑
i∈I

(
si

∑
v∈V

dist(v, xi)
)

≥ 1
m

∑
i∈I

(
si ·

m2 − 1
4

)
= (m2 − 1)b

4 . (5)

Since we have assumed that maxv∈V cost(v, X) ≤ (m2−1)b
4 , all the inequalities above are

tight. The tightness of the inequality in (5) shows that the point xi is a vertex of G for each
i ∈ I by Claim 9.

We then prove (b). Define yu :=
∑

i:xi=u si for each u ∈ V , and define y ∈ RV as the vector
consisting of yu’s. The tightness of the above inequalities shows that

∑
i∈I sidist(v, xi) =
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(m2−1)b
4 for every v ∈ V , which is equivalent to

∑
u∈V

yudist(v, u) = (m2 − 1)b
4 for every v ∈ V . (6)

Let D ∈ RV×V be the distance matrix of G defined by Duv = dist(u, v) for u, v ∈ V . Then,
(6) is represented as Dy = (m2−1)b

4 ·1, where 1 is the all-one vector in RV . Since D1 = m2−1
4 ·1

by a simple calculation, we have

D(y − b1) = 0. (7)

It is shown in [2, Theorem 3.4] that the determinant of D is equal to m2−1
4 , which implies

that D is nonsingular. Thus, (7) shows that y = b1, that is, yu = b for every u ∈ V . J

This completes the proof of Theorem 7.
We finally note that our reductions indeed show that multi-service center remains

computationally hard even with an additional constraint that all facilities must be placed at
only vertices.
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Abstract
In this paper, we investigate offline and online algorithms for Round-UFPP, the problem of min-
imizing the number of rounds required to schedule a set of unsplittable flows of non-uniform sizes
on a given path with non-uniform edge capacities. Round-UFPP is NP-hard and constant-factor
approximation algorithms are known under the no bottleneck assumption (NBA), which stipu-
lates that maximum size of a flow is at most the minimum edge capacity. We study Round-UFPP
without the NBA, and present improved online and offline algorithms. We first study offline
Round-UFPP for a restricted class of instances called α-small, where the size of each flow is at
most α times the capacity of its bottleneck edge, and present an O(log(1/(1−α)))-approximation
algorithm. Our main result is an online O(log log cmax)-competitive algorithm for Round-UFPP
for general instances, where cmax is the largest edge capacities, improving upon the previous best
bound of O(log cmax) due to [16]. Our result leads to an offline O(min(logn, logm, log log cmax))-
approximation algorithm and an online O(min(logm, log log cmax))-competitive algorithm for
Round-UFPP, where n is the number of flows and m is the number of edges.
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capacity constraints. The objective is to partition F into the smallest number of feasible sets
(rounds) R1, ..., Rt.

One practical motivation for Round-UFP is routing in optical networks. Specifically, a
flow fi of size σi can be regarded as a connection request asking for a bandwidth of size σi.
Connections using the same communication link can be routed at the same time as long as
the total bandwidth requested is at most the link capacity. Most modern networks have
heterogeneous link capacities; for example, some links might be older than others. In this
setting, each round (or color) corresponds to a transmission frequency, and minimizing the
number of frequencies is a natural objective in optical networks.

A common simplifying assumption, known as the no-bottleneck assumption (NBA),
stipulates that the maximum demand size is at most the (global) minimum link capacity;
i.e. maxi∈[n] σi ≤ minj∈[m] cj ; most results on UFPP and its variants are under the NBA
(see §1.1). A major breakthrough was the design of O(1)-approximation algorithms for the
unsplittable flow problem on paths (UFPP) without the NBA [10, 2]. In this paper, we make
progress towards an optimal algorithm for Round-UFPP without imposing NBA.

We consider both offline and online versions of Round-UFPP. In the offline case, all flows
are known in advance. In the online case, however, the flows are not known à priori and they
appear one at a time. Moreover, every flow must be scheduled (i.e. assigned to a partition)
immediately on arrival; no further changes to the schedule are allowed.

Even the simpler problem Round-UFPP-NBA, that is, Round-UFPP with the NBA, in the
offline case, is NP-hard since it contains Bin Packing as a special case (consider an instance
with a single edge). On the other hand, if all capacities and flow sizes are equal, then the
problem reduces to interval coloring which is solvable by a simple greedy algorithm.

1.1 Previous work
The unsplittable flow problem on paths (UFPP) concerns selecting a maximum-weight subset
of flows without violating edge capacities. UFPP is a special case of UFP, the unsplittable
flow problem on general graphs. The term, unsplittable refers to the requirement that each
flow must be routed on a single path from source to sink. 1 UFPP, especially under the
NBA, UFPP-NBA, and its variants have been extensively studied [9, 3, 7, 6, 8, 11, 14, 22, 13].
Recently, O(1)-approximation algorithms were discovered for UFPP (without NBA) [10, 2].
Note that, on general graphs, UFP-NBA is APX-hard even on depth-3 trees where all
demands are 1 and all edge capacities are either 1 or 2 [18].

Round-UFPP has been mostly studied in the online setting where it generalizes the interval
coloring problem (ICP) which corresponds to the case where all demands and capacities are
equal. In their seminal work, Kierstead and Trotter gave an optimal online algorithm for
ICP with a competitive ratio of 3ω − 2, where ω denotes the maximum clique size [20]. Note
that, since interval graphs are prefect, the optimal solution is simply ω. Many works consider
the performance of the first-fit algorithm on interval graphs. Adamy and Erlebach were the
first to generalize ICP [1]. In their problem, interval coloring with bandwidth, all capacities
are 1 and each flow fi has a size σi ∈ (0, 1]. The best competitive ratio known for this
problem is 10 [5, 17] and a lower bound of slightly greater than 3 is known [19]. The online
Round-UFPP is considered in Epstein et. al. [16]. They give a 78-competitive algorithm for
Round-UFPP-NBA, an O(log σmax

cmin
)-competitive algorithm for the general Round-UFPP, and

1 Clearly, in the case of paths and trees, the term is redundant. We use the terminology UFPP to be
consistent with the considerable prior work in this area.
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lower bounds of Ω(log logn) and Ω(log log log cmax
cmin

) on the competitive ratio achievable for
Round-UFPP. In the offline setting, a 24-approximation algorithm for Round-UFPP-NBA is
presented in [15].

1.2 Our results
We design improved algorithms for offline and online Round-UFPP. Let m denote the number
of edges in the path, n the number of flows, and cmax the maximum edge capacity.

In §3, we design an O(log(1/(1−α)))-approximation algorithm for offline Round-UFPP for
α-small instances in which the size of each flow is at most an α fraction of the capacity of
the smallest edge used by the flow, where 0 < α < 1. This implies an O(1)-approximation
for any α-small instance, with constant α. Previously, constant-factor approximations
were only known for α ≤ 1/4.
In §4, we present our main result, an online O(log log cmax))-competitive algorithm
for general instances. This result leads to an offline O(min(logn, logm, log log cmax))-
approximation algorithm and an online O(min(logm, log log cmax))-competitive algorithm.

Our algorithm for general instances, which improves on the O(log cmax)-bound achieved
in [16], is based on a reduction to the classic rectangle coloring problem (e.g., see [4, 21,
12]). We introduce a class of "line-sparse" instances of rectangle coloring that may be
of independent interest, and show how competitive algorithms for such instances lead to
competitive algorithms for Round-UFPP.

Due to space limitations, we are unable to include all of the proofs in the main body; we
refer the reader to the full version of this paper2 for any missing proof and pseudocode as
well as extra figures.

2 Preliminaries

In Round-UFPP we are given a path P = (V,E) consisting of m + 1 vertices and m links,
enumerated left-to-right as v0, e1, v1, ..., vm−1, em, vm, with edge capacities {cj}j∈[m], and a
set of n flows F = {fi = (si, ti, σi) : i ∈ [n]}, where si and ti represent the two endpoints
of flow fi, and σi denotes the size of the flow. Without loss of generality, we assume that
si < ti. We say that a flow fi uses a link ej if si < j ≤ ti. For a set of flows F , we denote by
F (e) and F (j) the subset of flows in F using edge e and ej respectively.

I Definition 1. The bottleneck capacity of a flow fi, denoted by bi, is the smallest capacity
among all links used by fi – such an edge is called the bottleneck edge for flow fi.

A set of flows R is called feasible if all of its members can be routed simultaneously
without causing capacity violation. The objective is to partition F into the smallest number
of feasible sets R1, ..., Rt. A feasible set is also referred to as a round.

Alternatively, partitioning can be seen as coloring where rounds correspond to colors.

I Definition 2. For a set of flows F , we define its chromatic number, χ(F ), to be smallest
number of rounds (colors) into which F can be partitioned.

I Definition 3. The congestion of an edge ej with respect to a set of flows F is

rj(F ) =
∑
i∈F (j) σi

cj
, (1)

2 https://arxiv.org/abs/1708.00143
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𝑣1 𝑣2 𝑣3 𝑣4 𝑣6

1

4

3

5

2

𝑣5

𝑓1 = (𝑣1, 𝑣3, 1) 𝑓2 = (𝑣4, 𝑣6, 1)

(1/4)-𝑙𝑎𝑟𝑔𝑒 (1/4)-𝑠𝑚𝑎𝑙𝑙

Capacity

𝑐 𝑣2, 𝑣3 = 3

Figure 1 An example of a path with 5 links and two flows. The first flow f1 is from v1 to v3 of
size 1; the second flow f2 is from v4 to v6 also of size 1. Even though both flows have the same size,
f1 is 1

4 -large whereas f2 is 1
4 -small. The reason is different bottleneck capacities, b1 = 2 and b2 = 4.

that is, the ratio of the total size of flows in F using ej to its capacity. Likewise re(F )
denotes the congestion of an edge e with respect to F . Also, let rmax(F ) = maxj rj(F ) be
the maximum edge congestion with respect to F . When the set of flows is clear from the
context, we simply write rmax.

An obvious lower bound on χ(F) is maximum edge congestion; that is,

I Observation 4. χ(F) ≥ drmax(F)e.

Proof. Suppose ej is any edge of the path. In each round, the amount of flow passing
through the edge is at most its capacity cj . Therefore, the number of rounds required for
the flows in F using ej to be scheduled is at least drj(F )e. J

Without loss of generality, we assume that the minimum capacity, cmin, is 1. Furthermore,
let cmax = maxe∈E ce denote the maximum edge capacity. As is standard in the literature,
we classify flows according to the ratio of size to bottleneck capacity.

I Definition 5. Let α be a real number satisfying 0 ≤ α ≤ 1. A flow fi is said to be α-small
if σi ≤ α · bi and α-large if σi > α · bi (refer to Figure 1 for an example). Accordingly, the set
of flows F is divided into small and large classes

FSα = {f ∈ F | f is α-small}; FLα = {f ∈ F | f is α-large}.

As is often the case for unsplittable flow algorithms, we treat small and large instances
independently. In §3 and §4 we study small and large instances respectively.

3 An approximation algorithm for Round-UFPP with α-small flows

In this section, we design an offline O(1)-approximation algorithm for α-small flows for any
α ∈ (0, 1). We note that offline and online algorithms for α-small instances are known when
α is sufficiently small. More precisely, if α = 1/4, 16-approximation and 32-competitive
algorithms for offline and online cases have been presented in [15] and [16] respectively.

I Lemma 6 ([15, 16]). There exist O(1)-approximation algorithms for Round-UFPP where
all flows are 1

4 -small.
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Algorithm 1: ProcMids

input :A set of [ 1
4 , α]-mid flows F

output :A partition of F into rounds (colors)

1 for i← 1 to dlog cmaxe do
2 Fi ← {fk ∈ F | 2i−1 ≤ bk < 2i};
3 (Ci1, Ci2)← FlowDec(Fi);
4 R← ColOptimize({(Ck1 , Ck2 ) : k = 1, ..., dlog cmaxe});
5 return R;

However, these results do not extend to the case where α is an arbitrary constant in (0, 1).
In contrast, we present an algorithm that works for any choice of α ∈ (0, 1). In our algorithm,
flows are partitioned according to the ratio of their size to their bottleneck capacity. If
α ≤ 1/4, we simply use Lemma 6. Suppose that α > 1/4. The overall idea is to further
partition the set of flows into two subsets and solve each independently. This motivates the
following definition.

I Definition 7. Given two real numbers 0 ≤ β < α < 1, a flow fi is said to be [β, α]-mid if
σi ∈ [β · bi, α · bi]. Accordingly, we define the corresponding set of flows as

FM (β, α) = {f ∈ F | f is [β, α]-mid}.

Observe that, FM (β, α) = FSα ∩ FLβ .

In the remainder of this section, we present an O(1)-approximation algorithm, called
ProcMids, for FM (1/4, α). ProcMids (see Algorithm 1) starts by partitioning FM (1/4, α)
into dlog cmaxe classes according to their bottleneck capacity.

Next, it computes a coloring for each class by running a separate procedure called FlowDec,
explained in §3.1. This will result in a coloring of FM (1/4, α) using O(rmax log cmax) colors.
Finally, ProcMids runs ColOptimize, described in §3.2, to optimize color usage in different
subsets; this results in the removal logarithmic factor and, thereby, a more efficient coloring
using only O(rmax) colors.

3.1 A logarithmic approximation
Procedure FlowDec partitions FM` into O(rmax(FM` )) rounds. In each iteration, it calls
procedure rCover (Algorithm 2) which takes as input a subset F ′` ⊆ FM` and returns two
disjoint feasible subsets C1, C2 of F ′` . In other words, flows in each subset can be scheduled
simultaneously without causing any capacity violation. On the other hand, these two subsets
cover all the links used by the flows in F ′` . More formally, C1 and C2 are guaranteed to have
the following two properties:

(P1) ∀e ∈ E : |C1(e)| ≤ 1 and |C2(e)| ≤ 1,
(P2) |F ′`(e)| > 1⇒ C1(e) ∪ C2(e) 6= ∅.

rCover maintains a set of flows F ′′ which is initially empty. It starts by finding the
longest flow fi1 among those having the first (leftmost) source node. Next, it processes
the flows in a loop. In each iteration, the procedure looks for a flow overlapping with the
currently selected flow fik . If one is found, it is added to the collection and becomes the
current flow. Otherwise, the next flow is chosen among those remaining flows that start after
the current flow’s sink tik . Finally, rCover splits F ′′ into two feasible subsets and returns
them.
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Algorithm 2: rCover
input :A set of flows F
output :Two disjoint feasible subsets of F satisfying Properties (P1) and (P2)

1 F ′′ ← ∅;
2 smin ← minfk∈F sk;
3 ti1 ← max{tk | fk ∈ F and sk = smin};
4 F ′′ ← {fi1};
5 F ← F\{fi1};
6 k ← 1;
7 while tik < maxfi∈F {ti} do
8 if ∃fi ∈ F : si ≤ tik and ti > tik then
9 tik+1 ← max{ti | fi ∈ F and si ≤ tik};

10 else
11 smin ← min{si | fi ∈ F, si > tik};
12 tik+1 ← max{ti | fi ∈ F, si = smin};
13 F ′′ ← F ′′ ∪ {fik+1};
14 k ← k + 1;
15 C1 ← {fij ∈ F ′′ | j is odd};
16 C2 ← {fij ∈ F ′′ | j is even};
17 return (C1, C2);

Algorithm 3: ColOptimize

input :A set of pairs {(Ci1(j), Ci2(j))}, parameter τ
output :A new set of pairs {(Di

1(j), Di
2(j))}

1 for i← 1 to 4rmax do
2 for k ← 1 to τ do
3 Di

1(k)←
⋃d(log cmax)/τe−1
z=0 Ci1(zτ + k);

4 Di
2(k)←

⋃d(log cmax)/τe−1
z=0 Ci2(zτ + k);

5 return {(Di
1(k), Di

2(k)) : k = 1, ..., τ and i ∈ {1, ..., 4rmax}};

I Lemma 8. Procedure rCover finds two feasible subsets C1 and C2 satisfying properties
(P1) and (P2).

I Lemma 9. Procedure FlowDec partitions FM` into at most 8rmax(FM` ) feasible subsets.

3.2 Removing the log factor
In this subsection, we illustrate Procedure ColOptimize (see Algorithm 3), which removes
the logarithmic factor by optimizing color usage. The result is a coloring with O(rmax) colors.

Let τ be a constant to be determined later. Intuitively, the idea is to combine subsets of
different levels in an alternating manner with τ serving as the granularity parameter. More
precisely, let Cia(j), where a ∈ {1, 2}, j ∈ {1, ..., dlog cmaxe}, and i ∈ {1, ..., 4rmax}, denote
the set of colors resulting from the execution of FlowDec. ColOptimize combines colors
from different classes to reduce the number of colors by a factor of τ/dlog cmaxe resulting in
4τ · rmax colors being used. Next, we show that setting τ = log(1/(1− α)) + 2 results in a
valid coloring.
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I Lemma 10. For τ = log(1/(1− α)) + 2, the sets Di
a(k), where a ∈ {1, 2}, k ∈ {1, ..., τ},

and i ∈ {1, ..., 4rmax}, constitute a valid coloring.

The main result of this section now directly follows from Lemma 10.

I Theorem 11. For any α ∈ (0, 1), there exists an offline O(log(1/1− α))-approximation
algorithm for Round-UFPP with α-small flows. In particular, we have a constant-factor
approximation for any constant α < 1.

4 Algorithms for general Round-UFPP instances

In what follows, we present offline and online algorithms for general instances of Round-UFPP.
Our treatment of large flows involves a reduction from Round-UFPP to the rectangle coloring
problem (RCOL) which is discussed in §4.1. Next, in §4.2, we design an online algorithm for
the RCOL instances arising from the reduction. Later, in §4.3, we cover our online algorithm
for Round-UFPP with 1

4 -large flows. Finally, in §4.4, we present our final algorithm for the
general Round-UFPP instances.

4.1 The reduction from Round-UFPP with large flows to RCOL
I Definition 12 (Rectangle Coloring Problem (RCOL).). Given a collection R of n axis-parallel
rectangles, the objective is to color the rectangles with the minimum number of colors such
that rectangles of the same color are disjoint.

Each rectangle R ∈ R is given by a quadruple (xl(R), xr(R), yt(R), yb(R)) of real numbers,
corresponding to the x-coordinates of its left and right boundaries and the y-coordinates
of its top and bottom boundaries, respectively. More precisely, R = {(x, y) | xl(R) ≤ x ≤
xr(R) and yb(R) ≤ y ≤ yt(R)}. When the context is clear, we may omit R and write
xl, xr, yt, yb. Two rectangles R and R′ are called compatible if they do not intersect each
other; else, they are called incompatible.

The reduction from Round-UFPP with large flows to RCOL is based on the work in [10].
It starts by associating with each flow fi = (si, ti, σi), a rectangle Ri = (si, ti, bi, bi − σi). If
we draw the capacity profile over the path P , then Ri is a rectangle of thickness σi sitting
under the curve touching the “ceiling.” Let R(F ) denote the set of rectangles thus associated
with flows in F . We assume, without loss of generality, that rectangles do not intersect on
their border; that is, all intersections are with respect to internal points. We begin with an
observation stating that a disjoint set of rectangles constitutes a feasible set of flows.

I Observation 13 ([10]). Let R(F ) be a set of disjoint rectangles corresponding to a set of
flows F . Then, F is a feasible set of flows.

The main result here is that if all flows in F are k-large then an optimal coloring of R(F )
is at most a factor of 2k worse than the optimal solution to Round-UFPP instance arising
from F . The following key lemma is crucial to the result.

I Lemma 14 ([10]). Let F be a feasible set of flows, and let k ≥ 2 be an integer, such that
every flow in F is 1

k -large. Then there exists a 2k coloring of R(F ).

As an immediate corollary, we get the following.

I Corollary 15. Let F be a feasible set of flows, and let k ≥ 2 be an integer, such that every
flow in F is 1

k -large. Then, χ(R(F )) ≤ 2kχ(F ).
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Figure 2 A collection R of 4-line-sparse rectangles. The lines can be either (a) horizontal or (b)
vertical.

Proof. Consider an optimal coloring C of F with χ(F ) colors. Apply Lemma 14 to each
color class Ci, for 1 ≤ i ≤ χ(F ), to get a 2k-coloring of R(Ci). The final result is a coloring
of R(F ) using at most 2kχ(F ) colors. J

We are ready to state the main result of this subsection.

I Lemma 16. Suppose there exists an offline α-approximation (online α-competitive) al-
gorithm A for RCOL. Then, for every integer k ≥ 2 there exists an offline 2kα-approximation
(online 2kα-competitive) algorithm for Round-UFPP consisting of 1

k -large flows.

Proof. Given a set F of 1
k -large flows for some integer k ≥ 2, construct the set of associated

rectangles R(F ) and apply the algorithm A to it. The solution is a valid Round-UFPP
solution (Observation 13). Furthermore, by Corollary 15,

A(R(F )) ≤ αχ(R(F )) ≤ 2kαχ(F ).

Finally, the reduction does not depend on future flows; hence, it is online in nature. J

4.2 Algorithms for RCOL
In this section, we consider algorithms for the rectangle coloring problem (RCOL). We begin
by introducing a key notion measuring the sparsity of rectangles with respect to a set of
lines. This is similar to the concept of point sparsity investigated by Chalermsook [12].

I Definition 17 (s-line-sparsity). A collection of rectangles R is s-line-sparse if there exists
a set of axis-parallel lines LR (called an s-line-representative set of R), such that every
rectangle R ∈ R is intersected by kR ∈ [1, s] lines in LR (see Figure 2 for an example).

For simplicity, we assume that representative lines are all horizontal. The objective
is to design an online O(log s)-competitive algorithm for RCOL consisting of s-line-sparse
rectangles. In the online setting, rectangles appear one by one; however, we assume that an
s-line-representative set LR is known in advance. As we will later see, this will not cause
any issues since the RCOL instances considered here arise from Round-UFPP instances with
large flows from which it is straightforward to compute s-line-representative sets. In the
offline case, on the other hand, we get a log(n) approximation by (trivially) computing
an n-line-representative set–associate to each rectangle an arbitrary line intersecting it.
The remainder of this subsection is organized as follows. First, in §4.2.1, we consider the
2-line-sparse case. Later, in §4.2.2, we study the general s-line-sparse case.
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4.2.1 The 2-line-sparse case
Consider a collection of rectangles R and a 2-line-representative set LR = {`0, `1, ..., `k}
(that is, each rectangle R is intersected by either one or two lines in LR) where the rectangles
in R appears in an online fashion. Recall, however, that the line set LR is known in advance.
Without loss of generality, assume that y(`0) < y(`1) < ... < y(`k).

For each R ∈ R, let T (R) denote the index of the topmost line in LR that intersects R;
T (R) = max{i | `i intersects R}. Next, partition R into three subsets

Rl = {R ∈ R | T (R) ≡ l mod 3}, for l = 0, 1, 2. (2)

The following lemma shows that each of the above subsets can be viewed as a collection of
interval coloring problem (ICP) instances.

I Lemma 18. Suppose two rectangles R,R′ ∈ R belong to the same subset; that is, R,R′ ∈ Rl
for some l ∈ {0, 1, 2}. Then, the following are true.
(1) If T (R) = T (R′) and the projection of R and R′ on the x-axis have a non-empty

intersection, then R ∩R′ 6= ∅.
(2) If T (R) 6= T (R′), then R ∩R′ = ∅.

We will use the optimal 3-competitive online algorithm due to Kierstead and Trotter
for ICP [20]. The algorithm colors an instance of ICP of clique size ω with at most 3ω − 2
colors which matches the lower bound shown in the same paper. Henceforth, we refer to this
algorithm as the KT algorithm.

Now we can present an O(1)-competitive online algorithm, named COL2SP, with a known
2-line-representative set. COL2SP computes a partition of R into R0,R1, and R2 as explained
above. Then, it applies the KT algorithm to each subset. Note that COL2SP can be seen as
executing multiple instances of the KT algorithm in parallel.

I Lemma 19. Algorithm COL2SP is an online O(1)-competitive algorithm for RCOL on
2-line-sparse instances given prior knowledge of a 2-line-representative set for the incoming
rectangles. Moreover, COL2SP uses at most 3 · ω(R) colors.

4.2.2 The s-line-sparse case
Consider a set of s-line-sparse rectangles R and an s-line-representative set LR. Our goal
in this subsection is to demonstrate a partitioning of R into O(log s) 2-line-sparse subsets,
where each subset is accompanied by its own 2-line-representative set.

Given a set of lines L, we define the degree of a rectangle R ∈ R, with respect to L, to
be the number of lines in L that intersect R,

DegL(R) = |{` ∈ L | ` ∩R 6= ∅}| .

We say that a rectangle R ∈ R is of level l ≥ 0 with respect to LR, if 2l ≤ DegLR
(R) < 2l+1.

The partitioning is based on the level of rectangles. More precisely, R is partitioned into
dlog se+ 1 “levels"

Lev(i) = {R ∈ R | R is of level i}, for i = 0, 1, ..., dlog se.

Next we show that each level is a 2-line-sparse set. To this end, we present a 2-line-
representative set for each level. Let LR = {`1, `2, ...., `k} and define

S(i) = {`j ∈ LR | j ≡ 1 mod 2i}, for i ∈ {0, ..., dlog se.
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Algorithm 4: RectCol
input :A rectangle R ∈ R
input :The last state of RectCol; an s-representative-line set LR for R
output :A color for R

1 i← argminj(2j ≤ DegLR
(R) < 2j+1);

2 Lev(i)← Lev(i) ∪ {R};
3 return COL2SP(R,LR);

I Lemma 20. For every i ∈ {0, ..., dlog se}, Lev(i) is a 2-line-sparse set and S(i) is a
2-line-representative set for Lev(i).

We are ready to present an O(log s)-competitive online algorithm, named RectCol,
for RCOL with a known line-representative set. Algorithm RectCol works as follows (see
Algorithm 4).

I Lemma 21. RectCol is an online O(log s)-competitive algorithm for RCOL with s-line-
sparse rectangles, given a representative-line set. Moreover, RectCol uses O(ω(R) · log s)
colors.

4.3 An algorithm for Round-UFPP with large flows
We are ready to present ProcLarges, an algorithm for Round-UFPP with large flows. For
concreteness, we present the algorithm for 1

4 -large flows; this result can be easily generalized
to α-large flows for any α ≤ 1/2.

The online algorithm we have designed for RCOL need to have access to an s-line-
representative set LR for the set of rectangles R. In our case, these rectangles are constructed
from flows (§4.1) which themselves arrive in an online fashion. However, all we need to be
able to compute an s-line-representative set is the knowledge of the path over which the
flows will be running–that is P = (V,E) with capacities {ce}e∈E (recall that we assume that
cmin = 1, which can always be achieved via scaling if needed). It is possible to construct (at
least) three different s-line-representative sets for R:
L1 A set of s = dlog4/3 cmaxe+ 1 horizontal lines L = {l0, l1, ..., ls} where the y-coordinate

of the ith line is y(li) = (3/4)i · cmax. Note that `0 is the topmost line.
L2 A set of m vertical lines, one per edge in the path.
L3 A set of n axis-parallel lines, one per rectangle.

Note that L3 is only useful in the offline setting. It is obvious that L2 and L3 are valid
line-representative sets for R. Below, we show that L1 is valid as well.

I Lemma 22. L1 is an s-line-representative set for R(F).

I Theorem 23. ProcLarges is an O(log log cmax)-competitive algorithm for Round-UFPP
with 1

4 -large flows. Furthermore, the bound can be improved to O(min(logm, log log cmax)).

Proof. ProcLarges executes algorithm RectCol on R(F ) with a representative-line set
L = L1 of size O(log cmax). The colors returned by RectCol are used for the flows without
modification. Now, setting s = O(log cmax), Lemma 21 states that Algorithm RectCol
uses O(ω(R(F )) log log cmax) colors. Lemma 16 completes the argument. Finally, note that
running algorithm RectCol with L = L2 as the representative-line set, we get a sparsity of
s = m and a coloring using O(ω(R(F )) logm) colors. To get the improved bound, we run
the algorithm with L = L1, if log cmax ≤ m; else, we run it with L = L2. J
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4.4 Putting it together – The final algorithm

At this point, we have all the ingredients needed to present our final algorithm, SolveRUFPP,
for Round-UFPP. SolveRUFPP simply uses procedure ProcLarges (§4.3) for 1

4 -large flows
and procedure ProcSmalls for 1

4 -small flows. For ProcSmalls, we can use our algorithm
in §3 or the 16-competitive algorithm in [15] in the offline case; and the 32-competitive
algorithm in [16] in the online case.

I Theorem 24. There exists an online O(min(logm, log log cmax))-competitive algorithm
and an offline O(min(logn, logm, log log cmax))-approximation algorithm for Round-UFPP.

Proof. In the online case, ProcSmalls is a 32-competitive [16]. On the other hand, by Propos-
ition 23, ProcLarges is an O(min(logm, log log cmax))-competitive. Thus overall, algorithm
SolveRUFPP is O(min(logm, log log cmax))-competitive. In the offline case, since the set of
flows F is known in advance, we can get a slightly better bound by using L3 in §4.3 as the third
line-representative set (of sparsity s = n). Thus we get the O(min(logn, logm, log log cmax))
bound by running the algorithm three times with L1, L2, and L3 and using the best one. J

5 Concluding remarks

In this paper, we present improved offline approximation and online competitive algorithms for
Round-UFPP. Our work leaves several open problems. First, is there an O(1)-approximation
algorithm for offline Round-UFPP? Second, can we improve the competitive ratio achievable
in the online setting to match the lower bound of Ω(log log log cmax) shown in [16], or improve
the lower bound? From a practical standpoint, it is important to analyze the performance
of simple online algorithms such as First-Fit and its variants for Round-UFPP and RCOL.
Another natural direction for future research is the study of Round-UFP and variants on
more general graphs.
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Abstract
In (k, r)-Center we are given a (possibly edge-weighted) graph and are asked to select at most
k vertices (centers), so that all other vertices are at distance at most r from a center. In this
paper we provide a number of tight fine-grained bounds on the complexity of this problem with
respect to various standard graph parameters. Specifically:

For any r ≥ 1, we show an algorithm that solves the problem in O∗((3r + 1)cw) time, where
cw is the clique-width of the input graph, as well as a tight SETH lower bound matching this
algorithm’s performance. As a corollary, for r = 1, this closes the gap that previously existed
on the complexity of Dominating Set parameterized by cw.
We strengthen previously known FPT lower bounds, by showing that (k, r)-Center is W[1]-
hard parameterized by the input graph’s vertex cover (if edge weights are allowed), or feedback
vertex set, even if k is an additional parameter. Our reductions imply tight ETH-based lower
bounds. Finally, we devise an algorithm parameterized by vertex cover for unweighted graphs.
We show that the complexity of the problem parameterized by tree-depth is 2Θ(td2) by showing
an algorithm of this complexity and a tight ETH-based lower bound.

We complement these mostly negative results by providing FPT approximation schemes pa-
rameterized by clique-width or treewidth which work efficiently independently of the values
of k, r. In particular, we give algorithms which, for any ε > 0, run in time O∗((tw/ε)O(tw)),
O∗((cw/ε)O(cw)) and return a (k, (1 + ε)r)-center, if a (k, r)-center exists, thus circumventing the
problem’s W-hardness.
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edge, we are asked if there exists a set K (the center-set) of at most k vertices of V , so that
∀u ∈ V \K we have minv∈K d(v, u) ≤ r, where d(v, u) denotes the shortest-path distance
from v to u under weight function w. If w assigns weight 1 to all edges we say that we have
an instance of un-weighted (k, r)-Center. (k, r)-Center is an extremely well-investigated
optimization problem with numerous applications. It has a long history, especially from the
point of view of approximation algorithms, where the objective is typically to minimize r for
a given k [24, 46, 29, 19, 42, 31, 28, 1, 18]. The converse objective (minimizing k for a given
r) has also been well-studied, with the problem being typically called r-Dominating Set in
this case [11, 43, 36, 12].

Because (k, r)-Center generalizes Dominating Set (which corresponds to the case
r = 1), the problem can already be seen to be hard, even to approximate (under standard
complexity assumptions). In particular, the optimal r cannot be approximated in polynomial
time by a factor better than 2 (even on planar graphs [19]), while k cannot be approximated
by a factor better than lnn [39]. Because of this hardness, we are strongly motivated to
investigate the problem’s complexity when the input graph has some restricted structure.

In this paper our goal is to perform a complete analysis of the complexity of (k, r)-
Center that takes into account this input structure by using the framework of parameterized
complexity. In particular, we provide fine-grained upper and lower bound results on the
complexity of (k, r)-Center with respect to the most widely studied parameters that measure
a graph’s structure: treewidth tw, clique-width cw, tree-depth td, vertex cover vc, and
feedback vertex set fvs. In addition to the intrinsic value of determining the precise complexity
of (k, r)-Center, this approach is further motivated by the fact that FPT algorithms for
this problem have often been used as building blocks for more elaborate approximation
algorithms [16, 18]. Indeed, (some of) these questions have already been considered, but
we provide a number of new results that build on and improve the current state of the art.
Along the way, we also close a gap on the complexity of the flagship Dominating Set
problem parameterized by clique-width. Specifically, we prove the following:

(k, r)-Center can be solved (on unweighted graphs) in time O∗((3r + 1)cw) (if a clique-
width expression is supplied with the input), but it cannot be solved in time O∗((3r+1−ε)cw)
for any (fixed) r ≥ 1, unless the Strong Exponential Time Hypothesis (SETH) [26, 27]
fails. The algorithmic result relies on standard techniques (dynamic programming on
clique-width, fast subset convolution), as well as several problem-specific observations
which are required to obtain the desired table size. The SETH lower bound follows from
a direct reduction from SAT. A noteworthy consequence of our lower bound result is that,
for the case of Dominating Set, it closes the gap between the complexity of the best
known algorithm (O∗(4cw) [9]) and the best previously known lower bound (O∗((3− ε)cw)
[35]).
(k, r)-Center cannot be solved in time no(vc+k) on edge-weighted graphs, or time no(fvs+k)

on unweighted graphs, unless the Exponential Time Hypothesis (ETH) is false. It was
already known that an FPT algorithm parameterized just by tw (for unbounded r) is
unlikely to be possible [10]. These results show that the same holds for the two more
restrictive parameters fvs and vc, even if k is also added as a parameter. They are
(asymptotically) tight, since it is easy to obtain O∗(nfvs), O∗(nvc), and O∗(nk) algorithms.
We remark that (k, r)-Center is a rare example of a problem that turns out to be hard
parameterized by vc. We complement these lower bounds by an FPT algorithm for the
unweighted case, running in time O∗(5vc).
(k, r)-Center can be solved in time O∗(2O(td2)) for unweighted graphs, but if it can be
solved in time O∗(2o(td2)), then the ETH is false. Here the upper bound follows from
known connections between a graph’s tree-depth and its diameter, while the lower bound
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cw, Clique-width

tw, Treewidth

fvs, Feedback Vertex Set

pw, Pathwidth

td, Tree-depth

vc, Vertex Cover

Figure 1 Relationships of parameters. Algorithmic results are inherited downwards, hardness
results upwards.

Table 1 A summary of our results (theorem numbers) for all considered parameters. Initials u/w
denote the unweighted/weighted variants of the problem.

cw tw fvs td vc
FPT exact 3 (w/u) 10 (w/u) 7 (u) 6 (u)
FPT-AS 16 (w/u) 13 (w/u)
SETH LB 1 (u)
ETH LB 5 (w/u) 8 (u) 4 (w)
W[1]-hard 5 (w/u) 4 (w)

follows from a reduction from 3-SAT. We remark that this is a somewhat uncommon
example of a parameterized problem whose parameter dependence turns out to be
exponential in the square of the parameter.

These results, together with the recent work of [10] showing tight bounds of O∗((2r+1)tw)
on the problem’s complexity parameterized by tw, give a complete and often fine-grained,
picture on (k, r)-Center for the most important graph parameters. One of the conclusions
that can be drawn is that, as a consequence of the problem’s hardness for vc (in the weighted
case) and fvs, there are few cases where we can hope to obtain an FPT algorithm without
bounding r: as r increases the complexity of exactly solving the problem quickly degenerates
away from the case of Dominating Set, which is FPT for all considered parameters.

A further contribution of this paper is to complement this negative view by pointing
out that it only applies if one insists on solving the problem exactly. If we allow algorithms
that return a (1 + ε)-approximation to the optimal r, for arbitrarily small ε > 0 and while
respecting the given value of k, we obtain the following:

There exist algorithms which, for any ε > 0, when given a graph that admits a (k, r)-center,
return a (k, (1 + ε)r)-center in time O∗((tw/ε)O(tw)), or O∗((cw/ε)O(cw)), assuming a
tree decomposition or clique-width expression is given in the input.

The tw approximation algorithm is based on a technique introduced in [32], while the
cw algorithm relies on a new extension of an idea from [23], which may be of independent
interest. Thanks to these approximation algorithms, we arrive at an improved understanding
of the complexity of (k, r)-Center by including the question of approximation, and obtain
algorithms which continue to work efficiently even for large values of r. Figure 1 illustrates
the relationships between parameters and Table 1 summarizes our results. We refer the
reader to the full version [25] for all omitted definitions, constructions and proofs.

Related Work: Our work follows upon recent work by [10], which showed that (k, r)-
Center can be solved in O∗((2r + 1)tw), but not faster (under SETH), while its connected
variant can be solved in O∗((2r + 2)tw), but not faster. This paper in turn generalized
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previous results on Dominating Set for which a series of papers had culminated into an
O∗(3tw) algorithm [44, 2, 45], while on the other hand, [35] showed that an O∗((3− ε)pw)
algorithm would violate the SETH, where pw denotes the input graph’s pathwidth. The
complexity of (k, r)-Center by the related parameter branchwidth had previously been
considered in [16] where an O∗((2r + 1) 3

2bw) algorithm is given. Moreover, [37] showed the
problem parameterized by the number k of centers to be W[1]-hard in the L∞ metric, in fact
analysing Covering Points with Squares, a geometric variant. It remains W[2]-hard for
2-degenerate graphs [22]. On clique-width, a O∗(4cw)-time algorithm for Dominating Set
was given in [9], while [41] notes that the lower bound of [35] for pathwidth/treewidth would
also imply no (3− ε)cw · nO(1)-time algorithm exists for clique-width under SETH as well,
since clique-width is at most 1 larger than pathwidth. For the edge-weighted variant, [20]
shows that a (2− ε)-approximation is W[2]-hard for parameter k and NP-hard for graphs
of highway dimension h = O(log2 n), while also offering a 3/2-approximation algorithm
of running time 2O(kh log(h)) · nO(1), exploiting the similarity of this problem with that of
solving Dominating Set on graphs of bounded vc. Finally, for unweighted graphs, [34]
provides efficient (linear/polynomial) algorithms computing (r +O(µ))-dominating sets and
+O(µ)-approximations for (k, r)-Center, where µ is the tree-breadth or cluster diameter
in a layering partition of the input graph, while [18] gives a polynomial-time bicriteria
approximation scheme for graphs of bounded genus.

2 Definitions and Preliminaries

We use standard graph-theoretic notation. For a graph G = (V,E), n = |V | denotes
the number of vertices, m = |E| the number of edges and for a subset X ⊆ V , G[X]
denotes the graph induced by X. Further, we assume the reader has some familiarity with
standard definitions from parameterized complexity theory, such as the classes FPT, W[1]
(see [15, 21, 17]). For a parameterized problem with parameter k, an FPT-AS is an algorithm
which for any ε > 0 runs in time O∗(f(k, 1

ε )) (i.e. FPT time when parameterized by k + 1
ε )

and produces a solution at most a multiplicative factor (1 + ε) from the optimal (see [38]).
We use O∗(·) to imply omission of factors polynomial in n.

In this paper we present approximation schemes with running times of the form
(logn/ε)O(k). These can be seen to imply an FPT running time by a well-known win-
win argument (see Lemma 1 in [25]): If a parameterized problem with parameter k admits, for
some ε > 0, an algorithm running in time O∗((logn/ε)O(k)), then it also admits an algorithm
running in time O∗((k/ε)O(k)).

Treewidth and pathwidth are standard notions in parameterized complexity which measure
how close a graph is to being a tree or path (see [8, 5, 30]). We will also use the standard
graph parameter of clique-width, which was introduced as a generalization of treewidth to
dense graphs (see [13, 14]). Additionally, we will use the parameters vertex cover number
and feedback vertex set number of a graph G, which are the sizes of the minimum vertex set
whose deletion leaves the graph edgeless, or acyclic, respectively. Finally, we will consider
the related notion of tree-depth [40], which is defined as the minimum height of a rooted
forest whose completion (the graph obtained by connecting each node to all its ancestors)
contains the input graph as a subgraph. We will denote these parameters for a graph G as
tw(G), pw(G), cw(G), vc(G), fvs(G), and td(G), and will omit G if it is clear from the context.
We recall the following well-known relations between these parameters [6, 14] which justify
the hierarchy given in Figure 1: For any graph G we have tw(G) ≤ pw(G) ≤ td(G) ≤ vc(G),
tw(G) ≤ fvs(G) ≤ vc(G), cw(G) ≤ pw(G) + 1, and cw(G) ≤ 2tw(G)+1 + 1.
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We also recall here the two main complexity assumptions used in this paper [26, 27]. The
Exponential Time Hypothesis (ETH) states that 3-SAT cannot be solved in time 2o(n+m) on
instances with n variables and m clauses. The Strong Exponential Time Hypothesis (SETH)
states that for all ε > 0, there exists an integer k such that k-SAT cannot be solved in time
(2− ε)n on instances of k-SAT with n variables.

3 Clique-width

3.1 Lower bound based on SETH
The result of this section is that for any fixed constant r ≥ 1, the existence of any algorithm
for (k, r)-Center of running time O∗((3r + 1 − ε)cw), for some ε > 0, would imply the
existence of some algorithm for SAT of running time O∗((2− δ)n), for some δ > 0.

Before we proceed, let us recall the high-level idea behind the SETH lower bound for
Dominating Set given in [35], as well its generalization to (k, r)-Center given in [10]. In
both cases the key to the reduction is the construction of long paths, which are conceptually
divided into blocks of 2r + 1 vertices. The intended solution consists of selecting, say, the
i-th vertex of a block of a path, and repeating this selection in all blocks of this path. This
allows us to encode (2r + 1)t choices, where t is the number of paths we make, which ends
up being roughly equal to the treewidth of the construction. The reason this construction
works in the converse direction is that, even though the optimal (k, r)-Center solution may
“cheat” by selecting the i-th vertex of a block, and then the j-th vertex of the next, one can
see that we must have j ≤ i. Hence, by making the paths that carry the solution’s encoding
long enough we can ensure that the solution eventually settles into a pattern that encodes
an assignment to the original formula (which can be “read” with appropriate gadgets).

In our lower bound construction for clique-width we need to be able to “pack” more
information per unit of width: instead of encoding (2r+ 1) choices for each unit of treewidth,
we need to encode (3r + 1) choices for each label. Our high-level plan to achieve this is to
use a pair of long paths for each label. Because we only want to invest one label for each
pair of paths we are forced to periodically (every 2r + 1 vertices) add cross edges between
them, so that the connection between blocks can be performed with a single join operation
(see the paths A1, B1 in Figure 2 for an illustation). Our plan now is to encode a solution
by selecting a pair of vertices that will be repeated in each block, for example every i-th
vertex of A1 and every j-th vertex of B1. One may naively expect that this would allow us to
encode (2r+ 1)2 choices for each label (which would lead to a SETH lower bound that would
contradict the algorithm of Section 3.2). However, because of the cross edges, the optimal
(k, r)-Center solution is not as well-behaved on a pair of cross-connected paths as it was on
a path, and this makes it much harder to execute the converse direction of the reduction:
a solution that takes every i-th vertex of A1 could alternate repeatedly between various
choices for B1, because the selected vertices of A1 also cover parts of B1. Our strategy is
therefore to identify (3r + 1) ordered selection pairs and show that any valid solution must
be well-behaved with respect to these pairs. An overview of our construction, omitting most
technical details of the reduction’s inner mechanism follows.

Construction overview: We construct a graph G, given some ε < 1 and an instance φ of
SAT with n variables and m clauses. We first choose an integer p, depending on ε and r (for
technical reasons that become apparent in the proof of Theorem 1). Note that for the results
of this section, both r and p are considered constants. We then group the variables of φ into
t = dnγ e groups F1, . . . , Ft, for γ = blog2(3r + 1)pc, being also the maximum size of any such
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group. Our graph G will consist of t rows of m(3rpt+ 1) gadgets Ĝ, each row corresponding
to one such group of variables. Each gadget Ĝ will contain p pairs of paths Ai, Bi and any
selection of one vertex from each path will be associated with a specific partial assignment to
the variables of the group. Gadgets of the same row will be connected in a path-like manner:
for each i ∈ [1, p] both final vertices of each pair Ai, Bi within each gadget will be connected
to both first vertices of the corresponding pair Ai, Bi of the following gadget, with a global
vertex h adjacent to all the first/last vertices of all such long paths, with an additional
path of length r attached to h to ensure its selection in any minimum-sized center-set (and
allowing for any selection in these first/last gadgets to be valid).

Furthermore, we will show that the possible selections of only one vertex from each path
can be divided into 3r + 1 equivalence classes: we define 3r + 1 canonical pairs of numbers
(αy, βy), indexed (and ordered) by y ∈ [1, 3r+ 1], that give the indices of vertices from a pair
of paths Ai, Bi (i.e. the αy-th vertex of Ai and the βy-th vertex of Bi) that would form the
characteristic selection for each class, and show that any other selection within each class
would be interchangeable (in terms of domination/coverage) with the characteristic selection,
while if some pair with index y is used for selection of vertices from paths Ai, Bi in some
gadget Ĝjτ , then any pair used for the paths of the following gadget Ĝj+1

τ (on the same row)
must be of index y′ ≤ y. Observe that, as the path selections from each column must be well
behaved with respect to our canonical pairs, there is an upper bound of 3r on the number
of times the selection pattern can change on some pair of paths, giving 3rp for each row of
gadgets and 3rpt times overall. In each gadget Ĝ, we also make 3r + 1 vertices uyi for each
pair Ai, Bi that signify these canonical selections from each path and further, a group of
(3r + 1)p vertices xS for each set S that only contains one such uyi for each i ∈ [1, p].

In this way, a selection of one vertex from each path Ai, Bi will correspond to a selection
uyi , while all p such selections will correspond to one selection xS that will in turn be
associated with a partial assignment to the group of variables assigned to this row of gadgets
(there are 2γ partial assignments for each group and (3r + 1)p ≥ 2γ sets S). Further, each
column of gadgets will correspond to one clause, with the first m columns assigned to one
clause each and 3rpt + 1 repetitions of this pattern giving the complete association. Our
graph G will have one vertex ĉ for each such column of gadgets (representing the associated
clause) at distance r from vertices xS in the gadgets Ĝ of its column that represent the
partial assignments to the variables of the group associated with the gadget’s row (and group
Fτ ) that would satisfy the clause (Figure 2 provides an illustration).

Thus, a satisfying assignment for φ will give a (k, r)-center for G by selecting in each
gadget Ĝ all vertices corresponding to the partial assignment for its associated group of
variables from each pair of paths, as well as the matching uyi and xS vertices (and h). For
the converse direction, as the number of changes of selection pattern is ≤ 3rpt and the
number of columns is m(3rpt + 1), by the pigeonhole principle, there will always exist m
consecutive columns for which the pattern does not change and thus we will be able to
extract a consistent assignment for all clauses.

I Theorem 1. For any fixed r ≥ 1, if (k, r)-Center can be solved in O∗((3r + 1− ε)cw(G))
time for some ε > 0, then SAT can be solved in O∗((2− δ)n) time for some δ > 0.

I Corollary 2. If Dominating Set can be solved in O∗((4− ε)cw(G)) time for some ε > 0,
then SAT can be solved in O∗((2− δ)n) time for some δ > 0.
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Ĝ1
1

Ĝ
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Figure 2 A simplified picture of the complete construction. Note boxes indicate block gadgets Ĝ,
while there is no vertex anywhere between h and the first/last vertices of the long paths.

3.2 Dynamic programming algorithm
We next present an O∗((3r+1)cw)-time dynamic programming (DP) algorithm for unweighted
(k, r)-Center, using a given clique-width expression TG for G with at most cw labels. Even
though the algorithm relies on standard techniques, there are several non-trivial, problem-
specific observations that we need to make to reach a DP table size of (3r + 1)cw.

Our first step is to re-cast the problem as a distance-labeling problem (not be confused
with ‘label’/‘label-set’ for a clique-width expression), that is, to formulate the problem as
that of deciding for each vertex what is its precise distance to the optimal solution K. This
is helpful because it allows us to make the constraints of the problem local, and hence easier
to verify: roughly speaking, we say that a vertex is satisfied if it has a neighbor with a
smaller distance to K. It is now not hard to design a clique-width based DP algorithm for
this version of the problem: for each label l we need to remember two numbers, namely the
smallest distance value given to some vertex with label l, and the smallest distance value
given to a currently unsatisfied vertex with label l, if it exists.

The above scheme directly leads to an algorithm running in time (roughly) ((r + 1)2)cw.
In order to decrease the size of this table, we now make the following observation: if a
label-set contains a vertex at distance i from K, performing a join operation will satisfy all
vertices that expect to be at distance ≥ i+ 2 from K, since all vertices of the label-set will
now be at distance at most 2. This implies that, in a label-set where the minimum assigned
value is i, states where the minimum unsatisfied value is between i+ 2 and r are effectively
equivalent. With this observation we can bring down the size of the table to (4r)cw, because
(intuitively) there are four cases for the smallest unsatisfied value: i, i+ 1,≥ i+ 2, and the
case where all values are satisfied.

The last trick that we need to achieve the promised running time departs slightly from
the standard DP approach. We will say that a label-set is live in a node of the clique-width
expression if there are still edges to be added to the graph that will be incident to its vertices.
During the execution of the dynamic program, we perform a “fore-tracking” step, by checking
the part of the graph that comes higher in the expression to determine if a label-set is live. If
it is, we merge the case where the smallest unsatisfied value is i+ 2, with the case where all
values are satisfied (since a join operation will eventually be performed). Otherwise, a partial
solution that contains unsatisfied vertices in a non-live label-set can safely be discarded. This
brings down the size of the DP table to (3r + 1)cw, and then we need to use some further
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techniques to make the total running time quasi-linear in the size of the table. This involves
counting the number of solutions instead of directly computing a solution of minimum size,
as well as a non-trivial extension of fast subset convolution from [4] for a 3× (r + 1)-sized
table (or state-changes, see [45, 9] and Chapter 11 of [15]).

I Theorem 3. Given graph G, along with k, r ∈ N+ and clique-width expression TG of clique-
width cw for G, there exists an algorithm to solve the counting version of the (k, r)-Center
problem in O∗((3r + 1)cw) time.

4 Vertex Cover, Feedback Vertex Set and Tree-depth

In this section we first show that the edge-weighted variant of the (k, r)-Center problem
parameterized by vc + k is W[1]-hard, and more precisely, that the problem does not
admit a no(vc+k) algorithm under the ETH. We give a reduction from k-Multicolored
Independent Set.

This is a well-known W[1]-hard problem that cannot be solved in no(k) under the ETH
[15]. Using essentially the same reduction with that of Theorem 4, we obtain a similar
hardness result for unweighted (k, r)-Center parameterized by fvs.

I Theorem 4. The weighted (k, r)-Center problem is W[1]-hard parameterized by vc + k.
Furthermore, if there is an algorithm for weighted (k, r)-Center running in time no(vc+k)

then the ETH is false.

I Corollary 5. The (k, r)-Center problem is W[1]-hard when parameterized by fvs + k.
Furthermore, if there is an algorithm for weighted (k, r)-Center running in time no(fvs+k),
then the ETH is false.

We next show that unweighted (k, r)-Center admits an algorithm running in time
O∗(5vc), in contrast to its weighted version (Theorem 4). We devise an algorithm that
operates in two stages: first, it guesses the intersection of the optimal solution with the
optimal vertex cover, and then it uses a reduction to Set Cover to complete the solution
optimally.

I Theorem 6. Given graph G, along with k, r ∈ N+ and a vertex cover of size vc of G, there
exists an algorithm solving unweighted (k, r)-Center in O∗(5vc) time.

We next consider the un-weighted version of (k, r)-Center parameterized by td. Theo-
rem 4 has estabilshed that weighted (k, r)-Center is W[1]-hard parameterized by vc (and
hence also by td), but the complexity of unweighted (k, r)-Center parameterized by td
does not follow from this theorem, since td is incomparable to fvs. Indeed, we show that
(k, r)-Center is FPT parameterized by td and precisely determine its parameter dependence
based on the ETH.

I Theorem 7. Unweighted (k, r)-Center can be solved in time O∗(2O(td2)).

I Theorem 8. If (k, r)-Center can be solved in 2o(td2) · nO(1) time, then 3-SAT can be
solved in 2o(n) time.

5 Treewidth: FPT approximation scheme

In this section we present an FPT approximation scheme (FPT-AS) for (k, r)-Center
parameterized by tw. Given as input a weighted graph G = (V,E), k, r ∈ N+ and an
arbitrarily small error parameter ε > 0, our algorithm is able to return a solution that uses
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a set of k centers K, such that all other vertices are at distance at most (1 + ε)r from K,
or to correctly conclude that no (k, r)-center exists. The running time of the algorithm is
O∗((tw/ε)O(tw)), which (for large r) significantly out-performs any exact algorithm for the
problem (even for the unweighted case and more restricted parameters, as in Theorems 4
and 5), while only sacrificing a small ε error in the quality of the solution.

Our algorithm will rely heavily on a technique introduced in [32] (see also [3]) to approx-
imate problems which are W-hard by treewidth. The idea is that, if the hardness of the
problem is due to the fact that the DP table needs to store tw large numbers (in our case,
the distances of the vertices in the bag from the closest center), we can significantly speed
up the algorithm if we replace all entries by the closest integer power of (1 + δ), for some
appropriately chosen δ. This will reduce the table size from (roughly) rtw to (log(1+δ) r)tw.

The problem now is that a DP performing calculations on its entries will, in the course of
its execution, create values which are not integer powers of (1 + δ), and will therefore have
to be “rounded” to retain the table size. This runs the risk of accumulating rounding errors,
but we manage to show that the error on any entry of the rounded table can be bounded by
a function of the height of its corresponding bag, then using a theorem of [7] stating that
any tree decomposition can be balanced so that its width remains almost unchanged, yet its
total height becomes O(logn). Beyond these ideas, which are for the most part present in
[32], we will also need a number of problem-specific observations, such as the fact that we
can pre-process the input by taking the metric closure of each bag, and in this way avoid
some error-prone arithmetic operations.

To obtain the promised algorithm we thus do the following: first we re-cast the problem
as a distance-labeling problem (as in the proof of Theorem 3) and formulate an exact
treewidth-based DP algorithm running in time O∗(rO(tw)). We remark that the algorithm
essentially reproduces the ideas of [10], and can be made to run in O∗((2r + 1)tw) if one
uses fast subset convolution for the Join nodes (the naive implementation would need time
O∗((2r + 1)2tw))) but we give it here to ensure that we have a solid foundation upon which
to build the approximation algorithm. We then apply the rounding procedure sketched
above, and prove its approximation ratio by using the balancing theorem of [7] and indirectly
comparing the value produced by the approximation algorithm with the value that would
have been produced by the exact algorithm.

Distance-labeling: We give an equivalent formulation of (k, r)-Center that will be more
convenient to work with in the remainder, similarly to Section 3.2. For an edge-weighted graph
G = (V,E), a distance-labeling function is a function dl : V → {0, . . . , r}. We say that u ∈ V
is satisfied by dl, if dl(u) = 0, or if there exists v ∈ N(u) such that dl(u) ≥ dl(v) + w((v, u)).
We say that dl is valid if all vertices of V are satisfied by dl, and we define the cost of dl as
|dl−1(0)|. The following lemma shows the equivalence between the two formulations:

I Lemma 9. An edge-weighted graph G = (V,E) admits a (k, r)-center if and only if it
admits a valid distance-labeling function dl : V → {0, . . . , r} with cost k.

I Theorem 10. There is an algorithm which, given an edge-weighted graph G = (V,E) and
r ∈ N+, computes the minimum cost of any valid distance labeling of G in time O∗(rO(tw)).

We now describe an approximation algorithm based on the exact DP algorithm of
Theorem 10. We make use of a result of [7] stating that: There is an algorithm which, given
a tree decomposition of width w of a graph on n nodes, produces a decomposition of the same
graph with width at most 3w + 2 and height O(logn) in polynomial time and of the following
lemma:
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I Lemma 11. Let G = (V,E) be an edge-weighted graph, T a tree decomposition of G, and
u, v ∈ V two vertices that appear together in a bag of T . Let G′ be the graph obtained from G

by adding (u, v) to E (if it does not already exist) and setting w((u, v)) = dG(u, v). Then T
is a valid decomposition of G′, and ∀k, r, G′ admits a (k, r)-center if and only if G does.

Let us also give an approximate version of the distance labeling problem we defined
above, for a given error parameter ε > 0. Let δ > 0 be some appropriately chosen secondary
parameter (we will eventually set δ ≈ ε

logn ). We define a δ-labeling function dlδ as a function
from V to {0} ∪ {(1 + δ)i | i ∈ N, (1 + δ)i ≤ (1 + ε)r}. In words, such a function assigns (as
previously) a distance label to each vertex, with the difference that now all values assigned
are integer powers of (1 + δ), and the maximum value is at most (1 + ε)r. We now say that a
vertex u is ε-satisfied if dlδ(u) = 0 or, for some v ∈ N(u) we have dlδ(u) ≥ dlδ(v) + w((v,u))

1+ε .
As previously, we say that dlδ is valid if all vertices are ε-satisfied, and define its cost as
|dl−1

δ (0)|. The following Lemma 12 shows the equivalence of a valid δ-labeling function of
cost k and a (k, (1 + ε)2r)-center for G and using it we conclude the proof of Theorem 13,
stating the main result of this section.

I Lemma 12. If for a weighted graph G = (V,E) and any k, r, δ, ε > 0, there exists a valid
δ-labeling function with cost k, then there exists a (k, (1 + ε)2r)-center for G.

I Theorem 13. There is an algorithm which, given a weighted instance of (k, r)-Center,
[G, k, r], a tree decomposition of G of width tw and a parameter ε > 0, runs in time
O∗((tw/ε)O(tw)) and either returns a (k, (1 + ε))-center of G, or correctly concludes that G
has no (k, r)-center.

6 Clique-width revisited: FPT approximation scheme

We give here an FPT-AS for (k, r)-Center parameterized by cw, both for un-weighted
and for weighted instances (for a weighted definition of cw which we explain below). Our
algorithm builds on the algorithm of Section 5, and despite the added generality of the
parameterization by cw, we are able to obtain an algorithm with similar performance: for
any ε > 0, our algorithm runs in time O∗((cw/ε)O(cw)) and produces a (k, (1 + ε)r)-center if
the input instance admits a (k, r)-center.

Our main strategy, which may be of independent interest, is to pre-process the input
graph G = (V,E) in such a way that the answer does not change, yet producing a graph
whose tw is bounded by O(cw(G)). The main insight that we rely on, which was first observed
by [23], is that a graph of low cw can be transformed into a graph of low tw if one removes
all large bi-cliques. Unlike previous applications of this idea (e.g. [33]), we do not use the
main theorem of [23] as a “black box”, but rather give an explicit construction of a tree
decomposition, exploiting the fact that (k, r)-Center allows us to relatively easily eliminate
complete bi-cliques. As a result, we obtain a tree decomposition of width not just bounded
by some function of cw(G), but actually O(cw(G)).

In the remainder we deal with the weighted version of (k, r)-Center. To allow clique-
width expressions to handle weighted edges, we interpret the clique-width join operation η
as taking three arguments. The interpretation is that η(a, b, w) is an operation that adds
(directed) edges from all vertices with label a to all vertices with label b and gives weight w to
all these edges. It is not hard to see that if a graph has a (standard) clique-width expression
with cw labels, it can also be constructed with cw labels in our context, if we replace every
standard join operation η(a, b) with η(a, b, 1) followed by η(b, a, 1). Hence, the algorithm we
give also applies to un-weighted instances parameterized by (standard) clique-width. We will
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also deal with a generalization of (k, r)-Center, where we are also supplied, along with the
input graph G = (V,E), a subset I ⊆ V of irrelevant vertices. In this version, a (k, r)-center
is a set K ⊆ V \ I, with |K| = k, such that all vertices of V \ I are at distance at most r
from K. Clearly, the standard version of (k, r)-Center corresponds to I = ∅. As we explain
in the proof of Theorem 16, this generalization does not make the problem significantly
harder. In addition to the above, in this section we allow edge weights to be equal to 0. This
does not significantly alter the problem, however, if we are interested in approximation and
allow r to be unbounded, as the following lemma shows:

I Lemma 14. There exists a polynomial algorithm which, for any ε > 0, given an instance
I = [G,w, k, r] of (k, r)-Center, with weight function w : V → N, produces an instance
I ′ = [G,w′, k, r′] on the same graph with weight function w′ : V → N+, such that we have the
following: for any ρ ≥ 1, any (k, ρr′)-center of I ′ is a (k, ρr)-center of I; any (k, ρr)-center
of I is a (k, (1 + ε)ρr′)-center of I ′.

Our main tool is the following lemma, whose strategy is to replace every large label-set by
two “representative” vertices, in a way that retains the same distances among all vertices of
the graph. Applying this transformation repeatedly results in a graph with small treewidth.
The main theorem of this section then follows from the above.

I Lemma 15. Given a (k, r)-Center instance G = (V,E) along with a clique-width ex-
pression T for G on cw labels, we can in polynomial time obtain a (k, r)-Center instance
G′ = (V ′, E′) with V ⊆ V ′, and a tree decomposition of G′ of width tw = O(cw), with the
following property: for all k, r, G has a (k, r)-center if and only if G′ has a (k, r)-center.

I Theorem 16. Given G = (V,E), k, r ∈ N+, clique-width expression T for G on cw labels
and ε > 0, there exists an algorithm that runs in time O∗((cw/ε)O(cw)) and either produces a
(k, (1 + ε)r)-center, or correctly concludes that no (k, r)-center exists.
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Abstract
This paper studies optimal matroid partitioning problems for various objective functions. In
the problem, we are given a finite set E and k weighted matroids (E, Ii, wi), i = 1, . . . , k, and
our task is to find a minimum partition (I1, . . . , Ik) of E such that Ii ∈ Ii for all i. For each
objective function, we give a polynomial-time algorithm or prove NP-hardness. In particular, for
the case when the given weighted matroids are identical and the objective function is the sum of
the maximum weight in each set (i.e.,

∑k
i=1 maxe∈Ii wi(e)), we show that the problem is strongly

NP-hard but admits a PTAS.

1998 ACM Subject Classification G.2.1 Combinatorial algorithms

Keywords and phrases Matroids, Partitioning problem, PTAS, NP-hardness

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.51

1 Introduction

The matroid partitioning problem is one of the most fundamental problems in combinatorial
optimization. In this problem, we are given a finite set E and k matroids (E, Ii), i = 1, . . . , k,
and our task is to find a partition (I1, . . . , Ik) of E such that Ii ∈ Ii for all i. We say that such
a partition (I1, . . . , Ik) of E is feasible. The matroid partitioning problem has been eagerly
studied in a series of papers investigating structures of matroids. See, e.g., [7, 8, 9, 16, 23]
for details. In this paper, we study weighted versions of the matroid partitioning problem.
Namely, we assume that each matroid (E, Ii) has a weight function wi : E → R+. We
consider several possible objective functions of the matroid partitioning problem.

Let Op(1) and Op(2) denote two mathematical operators taken from {max,min,
∑
}. For

any partition P = (I1, . . . , Ik) of E, we call Op(1)
i=1,...,k Op(2)

e∈Ii
wi(e) the (Op(1),Op(2))-

value of P . For example, (
∑
,min)-value of P denotes

∑
i=1,...,k mine∈Ii wi(e).

We define the minimum (Op(1),Op(2))-value matroid partitioning problem as the one for
finding a feasible partition with minimum (Op(1),Op(2))-value. The maximum problems are
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defined analogously. These matroid partitioning problems are natural to study, and have
many applications in various areas such as scheduling and combinatorial optimization. We
note that all the matroids and/or all the weights may be identical in case such as scheduling
with identical machines.

The minimum (
∑
,
∑

)-value matroid partitioning problem is reducible to the weighted
matroid intersection problem, and vice versa [8]. Here, the weighted matroid intersection
problem is to find a maximum weight subset that is simultaneously independent in two
given matroids. It is known that this problem is polynomially solvable, and many papers
have worked on algorithmic aspects of this problem [16, 23]. Generalizations of the weighted
matroid intersection problem have also been studied [17, 21, 18].

Special cases of the minimum (max,
∑

)-value matroid partitioning problem have been
extensively addressed in the scheduling literature under the name of the minimum makespan
scheduling. Since this problem is NP-hard, many papers have proposed polynomial-time
approximation algorithms. We remark that most papers focused on subclasses of matroids
as inputs: for example, free matroids [19, 24], partition matroids [25, 26, 20], uniform
matroid [15, 1, 4], and general matroids [26]. Approximation algorithms for the maximum
(min,

∑
)-value matroid partitioning problem are also well-studied, see, e.g., [3, 13, 25, 20].

The other matroid partitioning problems also have many applications, and yet they
are not much studied especially for general matroids. We here describe some examples of
applications.
Maximum total capacity spanning tree partition Assume that we are given an undirected

weighted graph G = (V,E;w), which can be partitioned into k edge-disjoint spanning
trees. The maximum total capacity spanning tree partition problem is to compute a
partition of the edges into k edge-disjoint spanning trees such that the total of the
minimum weight in each spanning tree is maximized. Then, the problem can be written
as the maximum (

∑
,min)-value matroid partitioning problem having k identical graphic

matroids, where the (
∑
,min)-value is

∑k
i=1 mine∈Ii

w(e).
Minimum total memory of a scheduling In this problem we are also given n jobs E and

k identical machines, and each job needs to be scheduled on exactly one machine. In
addition, we are given size s(e) of job e ∈ E. The set of feasible allocation for each
machine i is represented by a family of independent sets Ii of a matroid. The goal of the
problem is to minimize the total memory needed, i.e., (

∑
,max)-value

∑k
i=1 maxe∈Ii s(e).

Burkard and Yao [2] showed that the minimum (
∑
,max)-value matroid problem can be

solved by a greedy algorithm for a subclass of matroids, which includes partition matroids.
Dell’Olmo et al. [5] investigated optimal matroid partitioning problems where the input
matroids are identical partition matroids.

The goal of our paper is to analyze the computational complexity of these matroid
partitioning problems for general matroids.

Our results
We first show that the maximization problems can be reduced to the minimization problems.
For example, the maximum (

∑
,min)-value matroid partitioning problem can be transformed

to the minimum (
∑
,max)-value matroid partitioning problem. Hence, we focus only on the

minimization problems.
Our main result is to analyze the computational complexity of the minimum (

∑
,max)-

value matroid partitioning problem. This problem contains the maximum total capacity
spanning tree partitioning problem and the minimum total memory scheduling problem.
We first show that the problem is strongly NP-hard even when the matroids and weights
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Table 1 The time complexity of the optimal matroid partitioning problems (the results of the
paper are in bold). Identical case means I1 = · · · = Ik and w1 = · · · = wk.

objective identical case general case reference
(Σ, Σ) P P [8, 11]

(max, Σ) SNP-hard SNP-hard [12]
(Σ, max) PTAS εk-approx. Section 3

SNP-hard NP-hard even for o(log k)-approx.
(min, min) P P Section 4
(max, max) P P Section 4
(min, max) P P Section 4

(min, Σ) P P Section 4
(max, min) P NP-hard even to approximate Section 4

(Σ, min) P NP-hard even to approximate Section 4

are respectively identical. However, for such instances, we also propose a polynomial-time
approximation scheme (PTAS), i.e., a polynomial-time algorithm that outputs a (1 + ε)-
approximate solution for each fixed ε > 0. Our PTAS computes an approximate solution
by two steps: guess the maximum weight in each I∗i for an optimal solution (I∗1 , . . . , I∗k),
and check the existence of such a feasible partition. We remark that the number of possible
combinations of maximum weights is |E|k and it may be too large. To reduce the possibility,
we use rounding techniques in the design of the PTAS. First, we guess the maximum weight
in I∗i for only s indices. Furthermore, we round the weight of each element and reduce the
number of different weights to a small number r. Then, now we have rs possibilities. To
obtain the approximation ratio (1 + ε), we need to set r and s to be Ω(log k) respectively,
and hence the number of possibilities rs is still large. Our idea to tackle this is to enumerate
sequences of maximum weights in the nonincreasing order. This enables us to reduce the
number of possibilities to

(
r+s−1

r

)
(≤ 2r+s−1). This implies that our algorithm is a PTAS.

Moreover, for the (
∑
,max) case with general inputs, we provide an εk-approximation

algorithm for any ε > 0. The construction is similar to the identical case. We also prove the
NP-hardness even to approximate the problem within a factor of o(log k).

For the (min,min), (max,max), (min,max), and (min,
∑

) cases, we provide polynomial-
time algorithms. The main idea of these algorithms is a reduction to the feasibility problem
of the matroid partitioning problem. For the (max,min) and (

∑
,min) cases, we give

polynomial-time algorithms when the matroids and weights are respectively identical, and
prove strong NP-hardness even to approximate for the general case. These results are
summarized in Table 1 with their references.

Due to the space limitation, we omit proofs of some results, which are found in [14].

2 Preliminaries

A matroid is a set system (E, I) with the following properties: (I1) ∅ ∈ I, (I2) X ⊆ Y ∈ I
implies X ∈ I, and (I3) X,Y ∈ I, |X| < |Y | implies the existence of e ∈ Y \ X such
that X ∪ {e} ∈ I. A set I ⊆ I is said to be independent, and an inclusion-wise maximal
independent set is called a base. We denote the set of bases of (E, I) by B(I). All bases of a
matroid have the same cardinality, which is called the rank of the matroid and is denoted
by rank(I). For any B1, B2 ∈ B(I) and e1 ∈ B1 \ B2, there exists e2 ∈ B2 \ B1 such that
B1 − e1 + e2 ∈ B(I) and B2 − e2 + e1 ∈ B(I).

For a matroid (E, I), a subset A ⊆ E, and a nonnegative integer l ∈ Z+, define I|A = {X :
A ⊇ X ∈ I}, I \A = {X \A : X ∈ I}, I/A = {X ⊆ E \A : rank(X ∪A)− rank(A) = |X|},
and I(l) = {X ∈ I : |X| ≤ l}. We call (A, I|A), (E \A, I \A), (E \A, I/A), and (E, I(l)),
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respectively, the restriction, deletion, contraction, and truncation of (E, I). It is well known
that (A, I|A), (A, I \ A), (E \ A, I/A), and (E, I(l)) are all matroids. Given matroids
M1 = (E1, I1) andM2 = (E2, I2), we define the matroid union, denoted byM1 ∨M2, to
be (E1 ∪ E2, I1 ∨ I2) where I1 ∨ I2 = {I1 ∪ I2 : I1 ∈ I1, I2 ∈ I2}. Any matroid union is
also a matroid.

2.1 Model
Throughout the paper, we assume that every matroid is given by an independence oracle,
which checks whether a given set is independent. Let k be a positive integer. We denote
[k] = {1, . . . , k}. Let (E, Ii) be a matroid and wi : E → R+ be a nonnegative weight function
for i ∈ [k]. We denote n = |E|. For any k sets I1, . . . , Ik ⊆ E, we call (I1, . . . , Ik) a feasible
partition of E if it satisfies that

⋃
i∈[k] Ii = E, Ii 6= ∅ (∀i ∈ [k])1, Ii∩Ij = ∅ (∀i, j ∈ [k], i 6= j),

and Ii ∈ Ii (∀i ∈ [k]). In particular, (I1, . . . , Ik) is said to be a base partition if it is a feasible
partition and Ii ∈ B(Ii) for all i ∈ [k]. For two operators Op(1) ∈ {max,min,

∑
} and

Op(2) ∈ {max,min,
∑
}, we define the (Op(1),Op(2))-value of a feasible partition (I1, . . . , Ik)

as Op(1)
i∈[k] Op(2)

e∈Ii
wi(e). In this article, we study the following minimization problem:

min(I1,...,Ik): feasible partition Op(1)
i∈[k] Op(2)

e∈Ii
wi(e).

We refer to the problem as the minimum (Op(1),Op(2))-value matroid partitioning problem.
We write a problem instance as (E, (Ii, wi)i∈[k]). If (Ii, wi) are identical for all i ∈ [k], we
write (E, (I, w), k). For the identical case, we can consider the partitioning problem where k
is also a variable. This problem can be solved by solving (E, (I, w), i) for i = 1, . . . , n. Thus
it suffices to focus on the problem where k is given.

It is known to be easy to decide whether there exists a feasible partition or not. Moreover,
the minimum (

∑
,
∑

)-value matroid partitioning problem can be solved in polynomial time.
These facts are useful to show our results later.

I Theorem 1 ([8, 11]). There exists a polynomial-time algorithm that decides whether or
not there exists a feasible partition for any given matroids (E, I1), . . . , (E, Ik). Moreover, if
it exists, we can find a feasible partition with minimum (

∑
,
∑

)-value in polynomial time.

2.2 Basic properties
In this subsection, we prove basic properties of the partitioning problems. These properties
imply that the minimization and maximization versions of matroid partitioning problems
can be reduced to each other.

We first observe that we only need to consider base partitioning problems. LetMi =
(E, Ii) be a matroid for i ∈ [k]. We add dummy elements so that any feasible partition is a
base partition. To describe this precisely, we denote r =

∑
i∈[k] rank(Ii)− |E|. We remark

that r ≥ 0 if E has a feasible partition, since |E| =
∑

i∈[k] |Ii| ≤
∑

i∈[k] rank(Ii) holds for any
feasible partition (I1, . . . , Ik). Then let D = {d1, . . . , dr} be a set of dummy elements. Note
that E∩D = ∅. We define two matroidsM′i = (D, I ′i) andMi = (E∪D, Ii) for each i ∈ [k] by
I ′i = {D′ ⊆ D : |D′| ≤ rank(Ii)−1} and Ii = {I∪D′ : I ∈ Ii, D

′ ∈ I ′i, |I∪D′| ≤ rank(Ii)}.

1 We remark that the condition Ii 6= ∅ (∀i ∈ [k]) is imposed to make the objective function well-defined.
Moreover, if we define maxe∈∅ wi(e) = 0, mine∈∅ wi(e) =∞, and

∑
e∈∅ wi(e) = 0, then we can reduce

the problem where empty sets are allowed to our problem by adding dummy elements.
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Namely,M′i is a uniform matroid of rank (rank(Ii)− 1), andMi is the rank(Ii)-truncation
of the matroid unionMi ∨M′i. Then, we have the following proposition.

I Proposition 2. For any (E, (Ii, wi)i∈[k]), its minimum (Op(1),Op(2))-value is the same
as the minimum (Op(1),Op(2))-value for (E ∪D, (Ii, wi)i∈[k]), where

wi(e) =


wi(e) (e ∈ E),
mine∈E wi(e) (e ∈ D, Op(2) = max),
maxe∈E wi(e) (e ∈ D, Op(2) = min),
0 (e ∈ D, Op(2) =

∑
).

We remark that the same property holds for the maximization problem.
In the following, we assume |E| =

∑
i∈[k] rank(Ii). We next show that the maximization

problems are reducible to the minimization ones.

I Proposition 3. For any feasible partition (I1, . . . , Ik) for (E, Ii)i∈[k], it is an optimal
solution for the minimum (Op(1),Op(2))-value matroid partitioning problem instance
(E, (Ii, wi)i∈[k]) if and only if it is optimal for the maximum (Õp(1), Õp(2))-value matroid
partitioning problem instance (E, (Ii, w

′
i)i∈[k]), where wmax = maxi∈[k] maxe∈E wi(e),

m̃in = max,
m̃ax = min,∑̃

=
∑ and w′i(e) =

{
|E|·wmax

rank(Ii) − wi(e) (Op(1) ∈ {min,max},Op(2) =
∑

),
wmax − wi(e) (otherwise).

We note that these reductions above are not approximation factor preserving. Hence,
the (in)approximability of the maximization problems are not deduced from that of the
minimization problems.

3 The minimum (∑, max)-value matroid partitioning problem

In this section, we study the minimum (
∑
,max)-value matroid partitioning problem. We

first deal with the case where the matroids and weights are respectively identical and then
go to the general case.

3.1 Strong NP-hardness of the identical case
We first prove that the minimum (

∑
,max)-value matroid partitioning problem is strongly

NP-hard even if the matroids and weights are respectively identical.
To prove this, we use the densest l-subgraph problem, which is known to be strongly

NP-hard [10]. The densest l-subgraph problem is, given a graph G and an integer l, to find
a subgraph of G induced on l vertices that contains the largest number of edges.

In our reduction, we use the following property on a partition matroid. Let (E, I) be
a partition matroid defined by I = {I : |I ∩ Si| ≤ ηi (i ∈ [p])}, where (S1, . . . , Sp) is a
partition of E, and η1, . . . , ηp are positive integers. In addition, we assume that |Si| = ηi · k
for each i ∈ [p] so that E can be partitioned into k bases of I. Then, for any weight w, we
can construct greedily an optimal partition to the instance (E, (I, w), k) of the minimum
(
∑
,max)-value matroid partitioning problem.

I Lemma 4 ([2]). Let (E, I) be any partition matroid with |Si| = ηi · k (∀i ∈ [p]), and let w
be any weight. Let Ii,j consist of ηi elements with the ηi largest weights in Si \ (

⋃j−1
h=1 Ii,h).

Then (
⋃

i∈[p] Ii,1, . . . ,
⋃

i∈[p] Ii,k) is an optimal solution to (E, (I, w), k).
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Table 2 The weight of each element eij , where each row corresponds to i and each column
corresponds to j.

i\j 1 · · · l − 1 l · · · l + 2t− 2 l + 2t− 1 l + 2t · · · l + 2m− 1 l + 2m · · · n+ 2m− 1

1 0 · · · 0 0 t− 1 t− 1 t m · · · m...
...

...
...

...
...

...
...

......
...

...
... t− 1 t− 1 t

...
...

ut

...
...

... t− 1 t t
...

......
...

...
... t− 1 t− 1 t

...
......

...
...

...
...

...
...

...
......

...
...

... t− 1 t− 1 t
...

...
vt

...
...

... t− 1 t t
...

......
...

...
... t− 1 t− 1 t

...
......

...
...

...
...

...
...

...
...

n 0 · · · 0 0 t− 1 t− 1 t m · · · m

n+ 1 0 · · · 0 0 · · · 0 0 0 · · · 0 2m2 · · · 2m2
...

...
...

...
...

...
...

...
...

...
n+ 2m 0 · · · 0 0 · · · 0 0 0 · · · 0 2m2 · · · 2m2

I Theorem 5. The minimum (
∑
,max)-value matroid partitioning problem is strongly

NP-hard even if the matroids and weights are identical.

Proof. Let G = (V, F ) be an instance of the densest l-subgraph problem. We denote
V = {1, . . . , n}, F = {f1, . . . , fm}, and fi = {ui, vi}. For any vertex set T ⊆ V , we denote
F [T ] = {{u, v} ∈ F : {u, v} ⊆ T}.

To solve the densest l-subgraph problem, it suffices to find a set of n− l vertices such
that the set of the other l vertices attain maxT⊆V |F [T ]|. We construct a matroid so that
every feasible partition of the ground set corresponds to some set of n− l vertices in V , and
the (

∑
,max)-value is the number of edges in the induced subgraph by the other l vertices.

Let V ′ = {n+ 1, . . . , n+ 2m} be a set of dummy vertices. For each i ∈ V ∪ V ′, we define
a set Ei of n+ 2m− 1 elements as Ei = {eij : j ∈ {1, . . . , n+ 2m− 1}}. Let

E =
⋃n+2m

i=1 Ei and I = {I ⊆ E : |I| ≤ n+ 2m− 1, |I ∩ Ei| ≤ 1 (∀i ∈ [n+ 2m])}.

The resulting matroid is denoted by (E, I), which is a (n+ 2m− 1)-truncation of a partition
matroid. We set k = n+ 2m. The weights of elements are defined as follows:

for each j = 1, . . . , l − 1, set w(eij) = 0 (∀i ∈ [n+ 2m]);
for each j = l+2m, . . . , n+2m−1, set w(eij) = m if i ≤ n, and w(eij) = 2m2 if i ≥ n+1;
set w(eij) (j = l, l + 1, . . . , l + 2m− 1) as follows: for each ft = {ut, vt} (t = 1, . . . ,m),

w(ei,l+2t−2) =
{
t− 1 (i ∈ [n]),
0 (i ≥ n+ 1),

and

w(ei,l+2t−1) =


t (i ∈ {ut, vt}),
t− 1 (i ∈ [n] \ {ut, vt}),
0 (i ≥ n+ 1).

The weight is illustrated in Table 2.
We remark that |E| = (n+ 2m)(n+ 2m− 1). By the definition of the matroid, for every

i ∈ [n+ 2m], all elements in Ei belong to different independent sets from each other. Thus,
for any feasible partition of E, each independent set has n+ 2m− 1 elements which consist
of one element from each Ei except one set.
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It remains to show that the resulting instance is equivalent to the densest l-subgraph
problem instance (G = (V, F ), l).

I Claim 6. Let α ∈ {0, . . . ,m}. The graph G has a vertex set T ∗ with |T ∗| = l and
|F [T ∗]| ≥ α if and only if there exists a feasible partition (I1, . . . , Ik) of E with (

∑
,max)-

value at most 2m2(n− l) +m2 +m− α.

First, we assume that there exists T ∗ ⊆ V such that |T ∗| = l and |F [T ∗]| ≥ α. Without loss
of generality, we assume that T ∗ = {1, . . . , l} and V \ T ∗ = {l + 1, . . . , n}. We show that
there exists a partition such that its (

∑
,max)-value is at most 2m2(n− l) +m2 +m− α.

We denote Ej [p, q] = {ep,j , . . . , eq,j}. Let J1 = {1, . . . , l}, J2 = {l + 1, . . . , l + 2m}, and
J3 = {l + 2m+ 1, . . . , n+ 2m}. We construct a partition (I∗1 , . . . , I∗n+2m) of E as follows:

I∗j =


Ej−1[1, j − 1] ∪ Ej [j + 1, n + 2m] (j ∈ J1),
Ej−1[1, l] ∪ Ej [l + 1, n + 2m + l − j] ∪ Ej−1[n + 2m + l − j + 2, n + 2m] (j ∈ J2),
Ej−1[1, j − 2m− 1] ∪ Ej [j − 2m + 1, n] ∪ Ej−1[n + 1, n + 2m] (j ∈ J3).

Then, the maximum weight of each independent set is

max
e∈I∗

j

w(e) =



0 (j ∈ J1),
t− 1 (j = l + 2t− 1 ∈ J2, t = 1, . . . ,m, {ut, vt} ∈ F [T ∗]),

t
(
j = l + 2t− 1 ∈ J2, t = 1, . . . ,m, {ut, vt} 6∈ F [T ∗]
j = l + 2t ∈ J2, t = 1, . . . ,m

)
,

2m2 (j ∈ J3).

Thus, the (
∑
,max)-value is at most 0 · l +

∑m
t=1(2t)− |F [T ∗]|+ 2m2 · (n− l) ≤ 2m2(n−

l) +m2 +m− α.
Conversely, we assume that there exists a feasible partition (I1, . . . , Ik) of E such that

maxe∈I1 w(e) ≤ · · · ≤ maxe∈Ik
w(e), and

∑
j∈[k] maxe∈Ij w(e) ≤ 2m2(n− l) +m2 +m− α.

All elements in Ek must be contained in different Ij ’s from each other by definition of (E, I).
Hence at least n− l sets contain elements e with w(e) = 2m2. If maxe∈Ij w(e) ≥ 2m2 holds
for some j ≤ l+ 2m, then the objective value is at least 2m2(n− l+ 1) > 2m2(n− l) +m2 +
m− α. Thus, each of Il+2m+1, . . . , Ik contains 2m elements with weight 2m2, and none of
I1, . . . , Il+2m contains such elements. Let U = {i : |Ei ∩ Ij | = 0 (∃j ∈ {l + 2m+ 1, . . . , k})}.
Note that |U | = n − l and U ⊆ {1, . . . , n}. Here, we have 2m2(n − l) + m2 + m − α ≥∑

j∈[k] maxe∈Ij w(e) = 2m2(n − l) +
∑

j∈[l+2m] maxe∈Ij w(e). In order to obtain a lower
bound of

∑
j∈[l+2m] maxe∈Ij

w(e), we define E′ = {eij : i ∈ U, j = 1, . . . , l + 2m}. Let
(E′, I ′) be a partition matroid where I ′ = {I ′ : |I ′ ∩ Ei| ≤ 1 (∀i ∈ U)}. We observe
that

∑
j∈[l+2m] maxe∈Ij

w(e) ≥
∑

j∈[l+2m] maxe∈Ij∩E′ w(e), and (I1 ∩ E′, . . . , Il+2m ∩ E′) is
a feasible partition to the (

∑
,max) problem instance (E′, (I ′, w), l + 2m). By Lemma 4,

an optimal solution to (E′, (I ′, w), l + 2m) can be obtained by a greedy algorithm. Let
(I ′1, . . . , I ′l+2m) be an output solution of the greedy algorithm. Then we have

∑
j∈[l+2m]

max
e∈Ij

w(e) ≥
∑

j∈[l+2m]

max
e∈I′

j

w(e) = m+
m∑

l=1
2(l − 1) + |{{u, v} : |{u, v} ∩ U | ≥ 1}|

≥ m2 +m− |F [V \ U ]|.

This implies |F [V \U ]| ≥ α. Therefore, T = V \U is a vertex set with |T | = l and |F [T ]| ≥ α.
This proves the theorem. J

ISAAC 2017



51:8 Optimal Matroid Partitioning Problems

Note that the matroid (E, I) in the above proof is graphic because it can be seen as a
matroid corresponding to a cycle with n+2m vertices and each adjacent vertices is connected
by n+ 2m− 1 multiple edges. Thus, the maximum total capacity spanning tree partition
problem is NP-hard.

3.2 PTAS for the identical case
In this subsection, we provide a PTAS for the minimum (

∑
,max)-value matroid partitioning

problem with identical matroids and weights. This is the best possible result (unless P=NP)
because the problem is strongly NP-hard as we proved in the previous subsection.

We start with the following observation, which will be also useful in Section 3.4.

I Proposition 7. Let (E, (Ii, wi)i∈[k]) be any instance of the minimum (
∑
,max)-value

matroid partitioning problem, and let (I∗1 , . . . , I∗k) be an optimal solution. When we know
maxe∈I∗

i
wi(e) for all i ∈ [k], we can easily compute a feasible partition (I1, . . . , Ik) such that∑

i∈[k] maxe∈Ii
wi(e) ≤

∑
i∈[k] maxe∈I∗

i
wi(e).

Proof. The feasible partitions for matroids (E, Ii|{e : wi(e) ≤ maxe∗∈I∗
i
wi(e∗)})i∈[k] satisfy

the condition. Thus, we can find one of them in polynomial time by Theorem 1. J

Let (E, (I, w), k) be a problem instance, and let ε < 1/2 be a positive number. We write
wmax = maxe∈E w(e). Let (I∗1 , . . . , I∗k) be an optimal solution.

The idea of the algorithm is to guess the maximum weights. Since the number of
possibilities of the maximum weights is at most nk, we can solve the problem by solving
the feasibility of matroid partitioning problems nk times. Thus, we can solve the problem
efficiently when k is small, but not in polynomial time. In order to reduce the possibilities,
we guess maxe∈I∗

i
w(e) only for some i’s. Without loss of generality, we assume that

maxe∈I∗1
w(e) ≥ · · · ≥ maxe∈I∗

k
w(e). We define a set J = {i1, . . . , is} of indices by

ij =
{
j (j = 1, . . . , b1/ε2c),
b(1 + ε)t/ε2c (j = b1/ε2c+ t, t = 1, . . . , blog1+ε(kε2)c).

By definition, it holds that 1 = i1 < i2 < · · · < is ≤ k, and s = b1/ε2c+ blog1+ε(kε2)c. Note
that for any j = b1/ε2c+ t and t ≥ 1, we have

ij − ij−1 ≥ ((1 + ε)t/ε2 − 1)− ((1 + ε)t−1/ε2) = (1 + ε)t−1/ε− 1 ≥ 1/ε− 1 > 1

as ε < 1/2. For notational convenience, we denote i0 = 0 and is+1 = k + 1.
To reduce the number of possibilities more, we round the weights w(e). For all e ∈ E,

define

w′(e) =

{
(1+ε)twmax

k
ε
(

(1+ε)twmax

k
ε ≤ w(e) < (1+ε)t+1wmax

k
ε, t ∈ {0, 1, . . . , blog1+ε( k

ε
)c}
)

,

0
(
w(e) < wmax

k
ε
)

.

Our algorithm guesses maxe∈I∗
ij
w′(e) for each ij ∈ J . We write u∗j for the value. Then,

it finds a feasible partition (I1, . . . , Ik) that satisfies maxe∈I1 w(e) ≥ · · · ≥ maxe∈Ik
w(e) and

maxe∈Iij
w′(e) ≤ u∗j for all ij ∈ J . The algorithm is summarized in Algorithm 1.

I Theorem 8. Algorithm 1 is a PTAS algorithm for the minimum (
∑
,max)-value matroid

partitioning problem with identical matroids and weights.
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Algorithm 1: PTAS for the (
∑
,max) problem with identical matroids and weights

1 foreach u1, . . . , us ∈ {0} ∪
{

(1+ε)twmax

k ε : t = 0, . . . , blog1+ε(k/ε)c
}

such that
u1 ≥ · · · ≥ us do

2 find a partition (I1, . . . , Ik) such that Ii ∈ (I|{e : w′(e) ≤ uj}) for each
ij ≤ i < ij+1, j = 1, . . . , s if such a partition exists;

3 return the best solution (I1, . . . , Ik) among the obtained partitions;

Proof. Let (I∗1 , . . . , I∗k) be an optimal solution to the problem and (I1, . . . , Ik) be the output of
Algorithm 1. Without loss of generality, we assume that maxe∈I∗1

w(e) ≥ · · · ≥ maxe∈I∗
k
w(e).

Let u∗j = maxe∈I∗
ij
w′(e) for each ij ∈ J .

We first analyze the running time of Algorithm 1.

I Claim 9. Algorithm 1 runs in polynomial time with respect to k for fixed ε.

Proof of Claim 9. Let r = blog1+ε(k/ε)c + 2. We observe that any choice of a possible
combination of values u1, . . . , us corresponds a multisubset of size s from the set of r values.
Thus the number of possible combinations is

(
r+s−1

s

)
. Furthermore, we have(

r + s− 1
s

)
≤

r+s−1∑
l=0

(
r + s− 1

l

)
= 2r+s−1 ≤ 2(log1+ε(k/ε)+2)+(1/ε2+log1+ε(kε2))

≤ 22 log1+ε k+2+1/ε2
= 22+1/ε2

· klog1+ε 4.

This is a polynomial with respect to k for fixed ε. Thus, the algorithm runs in polynomial
time. J

Note that, without the restriction u1 ≥ · · · ≥ us, the number of possible combinations of
values u1, . . . , us is rs = kΘ(log log k), which is not polynomial with respect to k.

In the remainder, we show the approximation ratio of the algorithm.

I Claim 10. Let OPT denote the optimal value and let ALG denote the (
∑
,max)-value of

(I1, . . . , Ik). Then it holds that ALG ≤ (1 + 15.5ε)OPT.

Proof of Claim 10. First, OPT is at least

OPT =
∑
i∈[k]

max
e∈I∗

i

w(e) ≥
∑
i∈[k]

max
e∈I∗

i

w′(e) ≥
s∑

j=1
(ij − ij−1)u∗j .

Let (I ′1, . . . , I ′k) be a feasible partition of E obtained at line 2 in Algorithm 1 using u∗1, . . . , u∗s .
Then ALG is at most

ALG =
∑
i∈[k]

max
e∈Ii

w(e) ≤
∑
i∈[k]

max
e∈I′

i

w(e)

≤
s∑

j=1
(ij+1 − ij) max

e∈I′
ij

w(e) ≤
s∑

j=1
(ij+1 − ij)

(
(1 + ε)u∗j + wmax

k
ε

)

≤
s∑

j=1
(ij+1 − ij)(1 + ε)u∗j + k · w

max

k
ε ≤ (1 + ε)

s∑
j=1

(ij+1 − ij)u∗j + ε ·OPT. (1)

Here, the third inequality holds by the definition of w′ and maxe∈I′
ij
w′(e) ≤ u∗j .
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We derive an upper bound on
∑s

j=1(ij+1 − ij)u∗j . To simplify notation, let q = b1/ε2c.
First, since ij+1 − ij = ij − ij−1 = 1 holds for any j = 1, . . . , q − 1, we have∑q−1

j=1(ij+1 − ij)u∗j =
∑q−1

j=1(ij − ij−1)u∗j . (2)

Second, we evaluate (iq+1 − iq)u∗q . Note that iq = q = b1/ε2c and iq+1 = b(1 + ε)/ε2c.
Thus iq+1 − iq ≤ (1 + ε)/ε2 − (1/ε2 − 1) = (1 + ε)/ε. Moreover, u∗q = maxe∈I∗q

w′(e) ≤
maxe∈I∗q

w(e) ≤ OPT/q, because OPT =
∑

i∈[k] maxe∈I∗
i
w(e) ≥

∑
i∈[q] maxe∈I∗

i
w(e) ≥

q ·maxe∈I∗q
w(e). We remark that 1/q = 1/b1/ε2c ≤ 1/(1/ε2 − 1) = ε2/(1− ε2) < 4

3ε
2 < 2ε2

as ε < 1/2. Therefore, it follows that

(iq+1 − iq)u∗q ≤ 2ε(1 + ε)OPT. (3)

Lastly, let j ∈ {q + 1, . . . , s}, and let t (≥ 1) be the integer such that ij = b(1 + ε)t/ε2c
(i.e., t = j − q). We observe that ij − ij−1 ≥ (1 + ε)t−1/ε− 1. In addition, we have

ij+1 − ij ≤
(

(1 + ε)t+1

ε2

)
−
(

(1 + ε)t

ε2 − 1
)

= (1 + ε)t

ε
+ 1

≤ (1 + ε)/ε+ 1
(1 + ε)0/ε− 1

(
(1 + ε)t−1

ε
− 1
)
≤ 1 + 2ε

1− ε (ij − ij−1) < (1 + 6ε)(ij − ij−1),

where the second inequality holds since (1+ε)x/ε+1
(1+ε)x−1/ε−1 is monotone decreasing for x ≥ 1 and

the last inequality holds since ε < 1/2. Therefore, it follows that∑s
j=q+1(ij+1 − ij)u∗j =

∑s
j=q+1(1 + 6ε)(ij − ij−1)u∗j . (4)

By combining (1), (2), (3), (4), together with ε < 1/2, we have

ALG ≤ (1 + ε)
(

(1 + 6ε)
∑s

j=1(ij − ij−1)u∗j + 2ε(1 + ε)OPT
)

+ ε ·OPT

≤ (1 + ε) ((1 + 6ε) + 2ε(1 + ε)) ·OPT + ε ·OPT = (1 + 10ε+ 10ε2 + 2ε3)OPT
< (1 + 10ε+ 5ε+ 0.5ε)OPT = (1 + 15.5ε)OPT. J

3.3 Hardness of the general case
We show a stronger result than the NP-hardness of the minimum (

∑
,max)-value matroid

partitioning problem by reducing the set cover problem. Given a set V = [n] and a collection
S = {Si ⊆ V : i ∈ [k]}, the set cover problem is to find a subset S ′ (⊆ S) of minimum
cardinality such that S ′ covers V , i.e.,

⋃
S∈S′ S = V . It is known that the set cover problem

cannot be approximated in polynomial time to within a factor of o(log k) unless P=NP [6, 22].

I Theorem 11. Even if either matroids or weights, but not both, are identical, the minimum
(
∑
,max)-value matroid partitioning problem cannot be approximated in polynomial time

within a factor of o(log k), unless P=NP.

3.4 Algorithm for the general case
In this subsection, we provide an εk-approximation algorithm for any ε > 0. Let
(E, (Ii, wi)i∈[k]) be an instance of the minimum (

∑
,max)-value matroid partitioning problem,

and let (I∗1 , . . . , I∗k) be any optimal partition.
Similarly to the PTAS described in Section 3.2, our algorithm guesses maxe∈I∗

i
wi(e)

for each i ∈ [k]. In order to reduce the number of possibilities, we only guess top-d1/εe
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weights of maxe∈I∗
i
wi(e). For simplicity, let r = d1/εe. Let J∗ = {i1, . . . , ir} be the indices

of top-r weights, i.e., maxe∈I∗
i
wi(e) ≥ maxe∈I∗

j
wi(e) for any i ∈ J∗ and j ∈ [k] \ J∗. Let

u∗i = maxe∈I∗
i
wi(e) for each i ∈ J∗. Then it finds a feasible partition (I1, . . . , Ik) that

satisfies maxe∈Ii wi(e) ≤ u∗i for i ∈ J∗ and maxe∈Ii wi(e) ≤ minj∈J∗ u
∗
j for i ∈ [k] \ J∗.

I Theorem 12. For any positive fixed number ε > 0, there exists a polynomial-time εk-
approximation algorithm for the minimum (

∑
,max)-value matroid partitioning problem.

4 Complexity of other optimal matroid partitioning problems

In this section, we prove the other results in Table 1. We first deal with the cases (1)
(Op(1),Op(2)) = (min,min), (max,max), (min,max) or (min,

∑
); (2) (Op(1),Op(2)) =

(max,min) or (
∑
,min) with identical matroids. For the (min,min), (max,max), (min,max)

and (min,
∑

) problems, we show polynomial-time reductions to the matroid partitioning
problem. Then we can see that these are polynomially solvable by Theorem 1.

I Theorem 13. The minimum (min,min)-value matroid partitioning problem is solvable in
polynomial time.

I Theorem 14. The minimum (max,max) and (min,max)-value matroid partitioning prob-
lems (E, (Ii, wi)i∈[k]) are solvable in polynomial time.

I Theorem 15. The minimum (min,
∑

)-value matroid partitioning problem (E, (Ii, wi)i∈[k])
is solvable in polynomial time.

Next we consider the (max,min) case and the (
∑
,min) case. As we will see later,

the optimal matroid partitioning problems for these cases are (strongly) NP-hard even to
approximate. We provide polynomial-time algorithms for instances where matroids are
identical (weights may differ). The following lemma plays the crucial role for this purpose.

I Lemma 16. Let (E, I) be a matroid. If there is a partition (I1, . . . , Ik) of E such that
Ii ∈ I for all i ∈ [k], then for any k elements e1, . . . , ek ∈ E, there is a partition (I ′1, . . . , I ′k)
of E such that ei ∈ I ′i ∈ I for all i ∈ [k],

We will reduce the problem of finding an optimal partition to the minimum weight perfect
bipartite matching problem. It is well-known that this problem is solvable in polynomial
time (see, e.g., [16, 23] for basic algorithms). Now we are ready to prove the theorem.

I Theorem 17. The minimum (max,min) and (
∑
,min)-value matroid partitioning problems

with identical matroids (E, (I, wi)i∈[k]) are solvable in polynomial time.

Proof. Let (E, I) be any matroid. Recall that the existence of a feasible partition is checkable
in polynomial time by Theorem 1. Hence, in what follows, we assume that (E, (I, w), k) has
a feasible partition.

We first consider the (max,min) problem. By Lemma 16, the minimum (max,min)-value
is at most w if and only if the bipartite graph (E, [k], {(e, i) : wi(e) ≤ w}) has a right-perfect
matching. Thus, we can get the optimal value in polynomial time by setting w for all
{wi(e) : i ∈ [k], e ∈ E} and checking the existence of a right-perfect matching.

Next, we consider the (
∑
,min) problem. By Lemma 16, the minimum (

∑
,min)-value is

the minimum weight of right-perfect matchings in the weighted bipartite graph (E, [k], E ×
[k];w), where weight w is defined as w(e, i) = wi(e) for each (e, i) ∈ E × [k]. Thus, we can
find the optimal value in polynomial time. J
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In addition, for the (max,min) case and the (
∑
,min) case, we prove the following

hardness result by a reduction from SAT, which is an NP-complete problem [12].

I Theorem 18. The minimum (max,min) and (
∑
,min)-value matroid partitioning problems

are both strongly NP-hard. Moreover, there exists no approximation algorithm for the problems
unless P=NP.
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Abstract
The online dominating set problem is an online variant of the minimum dominating set problem,
which is one of the most important NP-hard problems on graphs. This problem is defined as
follows: Given an undirected graph G = (V,E), in which V is a set of vertices and E is a set of
edges. We say that a set D ⊆ V of vertices is a dominating set of G if for each v ∈ V \D, there
exists a vertex u ∈ D such that {u, v} ∈ E. The vertices are revealed to an online algorithm one
by one over time. When a vertex is revealed, edges between the vertex and vertices revealed in
the past are also revealed. A revealed subtree is connected at any time. Immediately after the
revelation of each vertex, an online algorithm can irrevocably choose vertices which were already
revealed and must maintain a dominating set of a graph revealed so far. The cost of an algorithm
on a given tree is the number of vertices chosen by it, and its objective is to minimize the cost.
Eidenbenz (Technical report, Institute of Theoretical Computer Science, ETH Zürich, 2002) and
Boyar et al. (SWAT 2016) studied the case in which given graphs are trees. They designed a
deterministic online algorithm whose competitive ratio is at most three, and proved that a lower
bound on the competitive ratio of any deterministic algorithm is two.

In this paper, we also focus on trees. We establish a matching lower bound for any determin-
istic algorithm. Moreover, we design a randomized online algorithm whose competitive ratio is
exactly 5/2 = 2.5, and show that the competitive ratio of any randomized algorithm is at least
4/3 ≈ 1.333.
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Graph Theory, Graph Algorithms, I.1.2 Algorithms, Analysis of Algorithms

Keywords and phrases online algorithm, dominating set, competitive analysis, tree graph, ran-
domized algorithm
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1 Introduction

The dominating set problem is one of the most important NP-hard problems on graphs. This
problem is defined as follows: Given an undirected graph G = (V,E), in which V is a set of
vertices and E is a set of edges. We say that a set D ⊆ V of vertices is a dominating set
of G if for each vertex v ∈ V \D, there exists a vertex u ∈ D such that {u, v} ∈ E. The
objective of the problem is to construct a minimum dominating set. This problem has been
extensively studied for many applications, such as communication in ad-hoc networks (see
e.g., [16]) and facility location on networks (e.g., [12]).

The dominating set problem has also been studied in online settings [11, 4, 2]. In one
of the settings [4, 2], vertices are revealed to an online algorithm one by one, and edges
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between a revealed vertex and vertices revealed in the past are also revealed. The input
of this setting is an undirected graph and a sequence consisting of all the vertices of the
graph. (This sequence represents an order of the vertices revealed to an online algorithm.)
An online algorithm holds the empty set U at the beginning. When a new vertex is revealed,
the algorithm can add vertices revealed so far to U , which means that an added vertex is
not necessarily the newly revealed one. The algorithm must not remove a vertex from U .
The total number of vertices is not known to an online algorithm before the final vertex is
revealed. Thus, U must be a dominating set immediately after the revelation of each vertex.
The performance of online algorithms is evaluated using competitive analysis [1, 14]. The
cost of an algorithm ALG for an input σ is the size of a dominating set constructed by ALG
for σ, which is denoted as CALG(σ). We say that the (strict) competitive ratio of an online
algorithm ON is at most c or ON is c-competitive if for any input σ, CON (σ) ≤ cCOPT (σ),
in which OPT is an optimal offline algorithm for σ. If ON uses randomization, the expected
cost of ON is used.

Previous Results and Our Results
For trees, Eidenbenz [4] and Boyar et al. [2] designed a 3-competitive deterministic algorithm,
and proved that the competitive ratio of any deterministic online algorithm is at least two
(Boyar et al. showed their results in terms of asymptotic competitive ratios, but the results
can hold for strict competitive ratios as well).

In this paper, we show the following three results for trees: (i) We prove that a lower
bound on the competitive ratio of any deterministic algorithm is three. This bound matches
the above upper bound. (ii) We establish a randomized online algorithm whose competitive
ratio is exactly 5/2 = 2.5. This algorithm is the first non-trivial randomized algorithm for
the online dominating set problem for any graph class. (iii) We show that the competitive
ratio of any randomized algorithm is at least 4/3 ≈ 1.333. The above results are shown with
respect to the strict competitive ratio. However, it is easy to see that the same results for
the asymptotic competitive ratios as (i) and (iii) can be shown in a quite similar way to their
proofs. (Note that any upper bound on the strict competitive ratio is an upper bound on
that on the asymptotic competitive ratio. That is, (ii) holds for the asymptotic competitive
ratio.)

Related Results
For several graph classes, Eidenbenz [4] and Boyar et al. [2] studied online algorithms of a
few variants of dominating sets, namely, connected dominating sets, total dominating sets
and independent dominating sets. Their results are summarized in the table in Sec. 6 of
[4] and Table 2 in Sec. 1 of [2]. For example, they proved that the optimal competitive
ratios on a bipartite graph and a planar graph are n − 1, in which n is the number of
given vertices. Boyar et al. [2] defined an incremental algorithm as an algorithm which
maintains a dominating set immediately after a new vertex is revealed. An online algorithm
is incremental, but an optimal incremental algorithm knows the whole input and can perform
better than any online algorithm. They measured the performance of online algorithms
compared with an optimal incremental algorithm in addition to an optimal offline algorithm.
Moreover, they compared the performance of an optimal incremental algorithm with that of
an optimal offline algorithm for several graph classes, which is also summarized in Table 1 in
Sec. 1 of [2].
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King and Tzeng [11] studied two different variants of online dominating sets on general
graphs. One variant is the same as the one studied in this paper, except that immediately
after a new vertex is revealed, an online algorithm can choose the new one but cannot choose
vertices revealed previously. In this setting, they designed a deterministic algorithm whose
competitive ratio is at most n− 1, and proved that the algorithm is the best possible. In
the other variant, an online algorithm knows all vertices in advance, and at a time i, all the
edges between the i-th vertex vi and the other vertices are revealed. They showed an upper
bound of 3

√
n/2 and a lower bound of of

√
n for this variant.

For the offline setting, the minimum dominating set problem is one of the most significant
NP -hard problems on graphs and has been widely studied. One of the most important
open problems is to develop exact (exponential) algorithms (see, e.g. [5, 6, 8, 13, 15,
10]). The current fastest algorithm solves this problem in O(1.4864n) time and polynomial
space [10]. Moreover, many variants have been proposed by putting additional constraints
on the original dominating set problem and have been extensively studied: for example,
connected domination, independent domination and total domination (see, .e.g. [3],[7] and
[9], respectively).

2 Preliminaries

2.1 Model Description
We are given an undirected tree and its vertices are revealed to an online algorithm one by
one over time. The total number of the vertices is not known to the online algorithm up
to the end of the input. When the i-th vertex vi is revealed to the online algorithm, all
the edges between vi and vj such that j < i are also revealed. Except for the first revealed
vertex, a newly revealed vertex has exactly one edge to a vertex revealed previously. That
is, a revealed subtree is connected at any time. An input of the problem is a three-tuple
of the form (V,E, S), in which V is the set of all the vertices of a given tree, E is the set
of all the undirected edges of the tree, and S is a sequence consisting of all the vertices in
V . S represents an order of the vertices revealed to an online algorithm. An algorithm has
the empty set U before the first vertex is revealed. The algorithm can add vertices into U
immediately after the revelation of each vertex, and it is necessary for U to be a dominating
set of the given tree at the end of the input. If the algorithm is online, it does not know
when the input has ended, and thus U must be a dominating set immediately after each
vertex is revealed. Once a vertex is added into U , it must not be removed from U later. The
cost of the algorithm for an input σ is the number of vertices in U at the end of σ, and the
objective of the problem is to minimize the cost. We evaluate the performance of an online
algorithm using competitive analysis. We say that the competitive ratio of a deterministic
online algorithm ON is at most c if for any input σ, CON (σ) ≤ cCOPT (σ). If ON is a
randomized online algorithm, then the expected cost of ON is used, which is denoted by
E[CON (σ)]. If for any input σ, E[CON (σ)] ≤ cCOPT (σ), then we say that the competitive
ratio of a randomized online algorithm ON is at most c against any oblivious adversary.

If the number of vertices in a given tree is one, the cost ratio of any algorithm is clearly
one. Thus, we assume that this number is at least two.

2.2 Notation and Definitions
In this section, we give some definitions and notation used throughout this paper. For
any i(= 1, 2, . . .), we use vi to denote the i-th revealed vertex to an online algorithm (the
first revealed vertex v1 appears frequently in this paper). We say that vertices v and u are
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adjacent if {v, u} ∈ E, in which E is the set of all the edges of a given graph. When a vertex
v is revealed such that v is adjacent to a vertex u which was revealed before v, then we
say that v arrives at u. For any vertex v and any online algorithm ON , DON (v) denotes a
dominating set constructed by ON of a revealed graph up to the time of the revelation of
v. We will omit ON from the notation when it is clear from the context. For an algorithm
ALG including an offline algorithm, DALG(σ) denotes a dominating set constructed by ALG
after the end of the input σ. We will omit σ from the notation when it is clear from the
context. For a vertex v, we say that ALG selects v if v ∈ DALG. For vertices u and v such
that u is revealed after v, degu(v) denotes the degree of v immediately after u is revealed.
deg(v) denotes the degree of v after the end of the input. For a vertex v and a vertex u
revealed after v, we say that u is a descendant of v if any vertex on the simple path from v

to u is revealed after v. The cost of a deterministic algorithm ALG for a vertex set U is the
number of vertices selected by ALG in U . That is, it is the number of vertices in U ∩DALG.
Moreover, if U contains only one vertex, then we simply say the cost for the vertex. In the
same way, we use the term “the expected cost of ALG for U (or a vertex)” if ALG is a
randomized algorithm.

3 Deterministic Lower Bound

Due to page limitations, we omit most of the proofs of the following lemmas and theorems.
The full version of this paper is available at https://arxiv.org/abs/1710.11414.

3.1 Overview of Proof
We first outline an input to obtain our lower bound. The tree of the input is constructed
according to two routines. The tree can be divided into several subtrees satisfying some
properties and we evaluate the competitive ratio for each set of subtrees. One of the routines
appoints a vertex as the root to construct a subtree, which is called a base vertex. The
other routine constructs several subtrees with at most two leaves, each of which arises from
the base vertex. The set of all the vertices excluding the root in each of the subtrees is
called a T -set. It depends on the behavior of an online algorithm ON how many T -sets are
constructed and how many leaves and inner vertices composing T -sets are. If a T -set contains
two leaves, the leaves share the adjacent vertex. For each T -set, OPT selects one vertex
for every consecutive three vertices starting with the parent of a leaf in it. If the degree
of a vertex selected by OPT is two, ON selects the vertex and the two adjacent vertices.
Otherwise, that is its degree is at least three, ON selects at least three vertices from the
vertex and all the adjacent vertices.

Let us explain the proof more in detail. If a T -set contains sufficiently many inner vertices,
it is called a T3-set. Otherwise, a T -set such that ` modulo 3 = i is called a Ti-set, in which
` is the length from the base vertex to a leaf in the T -set. One of the routines tries to force
ON to construct one of the following four sets of T -sets from a base vertex (Fig. 1): (1) a
set of two T1-sets and at least zero T0-set, (2) a set of one T2-set and at least zero T0-set, (3)
a set of one T3-set, at most one T1-set and at least zero T0-set, and (4) a set of sufficiently
many T0-sets and at most one T1-set. The cost ratios of these T -sets are three for (1) or
(2) and approximately three for (3) or (4), respectively. ON can construct none of these
sets. Namely, (5) ON constructs one T1-set and then does one T2-set (Further, ON may also
construct T0-sets). In this case, the routine partitions the T2-set into a vertex u, a T1-set
and a T0-set. This T0-set and all the T -sets in (5) except for the partitioned T2-set compose
a set of T -sets of (1). Then, the routine finishes constructing a subtree from the current
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Figure 1 An example of the five sets of T -sets from (1) to (5). Highlighted vertices denote base
vertices. Black vertices denote vertices selected by ON . Vertices with a gray triangle denote vertices
selected by OP T . One of the five sets of T -sets is constructed for a base vertex. If (5) is constructed,
the T2-set in the set is partitioned into a new base vertex u, a T1-set and a T0-set. After that, the
routines force ON to construct one of the five sets of T -sets for u recursively. u is not dominated by
OP T yet, but is dominated later.

base vertex, whose cost ratio is three, and appoints u as a new base vertex. One T0-set,
which is constructed from the above partition of the T2-set, belongs to the new base vertex u.
Since the set of T -sets of u is not classified into any of the above four categories, the routine
continues to construct subtrees for u. This is how the routine tries to construct one of the
four sets of T -sets for all base vertices and to achieve a lower bound of (approximately) three.
Therefore, we have the following theorem:

I Theorem 1. For any ε > 0, the competitive ratio of any deterministic online algorithm is
at least 3− ε.

4 Randomized Upper Bound

4.1 Algorithm
First, we define our algorithm RA. Before the first vertex is revealed, RA chooses to start
running one of two deterministic online algorithms A and B, which are defined later, with
the probability of 1/2 and thereafter keeps running it up to the end of the input. For a
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vertex v, p(v) denotes the length of the simple path from v1 to v. Roughly speaking, the
difference between A and B is that for a vertex v, A selects v if p(v) is odd, and B selects v
if p(v) is even. Then, A and B try to establish the property that for any vertex u of degree
at most two, u /∈ DA ∩DB .

A (B) can select a vertex which A (B) selected previously in the following definition. It
means that A (B) does nothing at that time. First, we give the definition of A as follows.

Algorithm 1: Algorithm A

Suppose that the i-th vertex vi is revealed.
Case 1 (i = 1): Select v1.
Case 2 (i ≥ 2): Suppose that vi arrives at a vertex u.

Case 2.1 (degvi
(u) ≥ 3): Select u.

Case 2.2 (degvi
(u) ≤ 2):

Case 2.2.1 (p(vi) modulo 2 = 0): Select u.
Case 2.2.2 (p(vi) modulo 2 = 1): Select vi.

Since A selects either a revealed vertex vi or the vertex adjacent to vi, the set of vertices
selected by A is a dominating set of a revealed graph immediately after each of A’s selections.

The definition of B is quite the same as that of A except for Case 2.2. The process of
B in Case 2.2.1 (2.2.2) is the same as that of A in Case 2.2.2 (2.2.1). That is, B selects vi
and u in Cases 2.2.1 and 2.2.2, respectively. Thus, the set of vertices selected by B is also a
dominating set at any time. We omit its formal definition due to page limitation.

4.2 Basic Properties of RA

In this section, we show several basic properties of dominating sets by A and B.

I Lemma 2. The following properties hold for a vertex v:
(1) If v = v1, v ∈ DA and v ∈ DB.
Suppose that v 6= v1.
(2) If deg(v) ≥ 3, v ∈ DA and v ∈ DB.
(3) Suppose that deg(v) = 2.
(3-e) If p(v) modulo 2 = 0, v /∈ DA and v ∈ DB.
(3-o) If p(v) modulo 2 = 1, v ∈ DA and v /∈ DB.
(4) Suppose that deg(v) = 1 and let ũ be the vertex adjacent to v.
(4-1) Suppose that deg(ũ) ≥ 3 and degv(ũ) ≤ 2.
(4-1-e) If p(v) modulo 2 = 0, v /∈ DA and v ∈ DB.
(4-1-o) If p(v) modulo 2 = 1, v ∈ DA and v /∈ DB.
(4-2) If deg(ũ) ≥ 3 and degv(ũ) ≥ 3, then v /∈ DA and v /∈ DB.
(4-3) Suppose that deg(ũ) ≤ 2.
(4-3-e) If p(v) modulo 2 = 0, v /∈ DA and v ∈ DB.
(4-3-o) If p(v) modulo 2 = 1, v ∈ DA and v /∈ DB.

I Lemma 3. The expected cost of RA for v is as follows:
(1) If v = v1, it is one.
Suppose that v 6= v1.
(2) If deg(v) ≥ 3, it is one.
(3) If deg(v) = 2, it is 1/2.
(4) Suppose that deg(v) = 1 and v is adjacent to a vertex u.



K.M. Kobayashi 52:7

(4-1) If deg(u) ≥ 3 and degv(u) ≤ 2, it is 1/2.
(4-2) If deg(u) ≥ 3 and degv(u) ≥ 3, it is zero.
(4-3) If deg(u) ≤ 2, it is 1/2.

We say that a vertex v dominates vertices adjacent to v if OPT selects v. We also say
that v dominates v itself. If a vertex u arrives at a vertex v, (v, u) denotes the edge between
v and u. Suppose that a vertex u arrives at a vertex v. Also, suppose that u is dominated
by a vertex in U and v is dominated by a vertex not in U , in which U is the set of u and
all the descendants of u. Then, we say that the edge (v, u) is free. We say that a free edge
(v, u) is fixed if this edge satisfies the following three conditions: (i) v 6= v1, (ii) deg(u) ≥ 3,
and (iii) either deg(v) = 3 or deg(v) = 2, deg(v′) ≥ 3 and degv(v′) ≥ 3, in which v′( 6= u) is
the vertex at which v arrives. We say that a vertex triplet (u1, u2, u3) is good if the vertices
u1, u2 and u3 satisfy the following three conditions: (i) both u1 and u3 are adjacent to u2,
(ii) deg(u1) = deg(u2) = deg(u3) = 3, and (iii) OPT selects u1 and u3.

In the rest of this section, we will show the following lemma.

I Lemma 4. There exists an input σ which maximizes E[CRA(σ)]
COP T (σ) and satisfies the following

seven properties.
(P1) Any free edge is fixed (Lemmas 7 and 9).
(P2) The degree of any vertex is at most three (Lemma 8).
(P3) The degree of any vertex selected by OPT is three (Lemma 10).
(P4) For any free edge (v, u), OPT does not select v (Lemma 11).
(P5) Good vertex triplets are not contained (Lemma 12).
(P6) For any free edge (v, u), the degree of v is not two (Lemma 14).
(P7) The degree of any vertex is either one or three (Lemma 13).

This lemma shows that we only have to consider an input satisfying the properties from (P1)
to (P7) to evaluate the competitive ratio of RA. It is easy to see that if (P7) holds, both
(P2) and (P6) clearly hold. However, we must prove some lemmas including ones about the
both properties before showing (P7).

To prove the above lemma and the following lemmas, we give a few definitions about
transformations of an input. First, we “divide” an input into two inputs. For an input
σ = (V,E, S) and a vertex v ∈ V , we define the input f1(σ, v) = (V1, E1, S1) such that V1 =
V \U , in which U is the set of v and all the descendants of v, E1 = {{u, u′} ∈ E | u, u′ ∈ V1}.
That is, (V1, E1) is the subgraph of (V,E) induced by V1, and S1 is the subsequence of S
consisting of all the vertices of V1 . Also, we define the input f2(σ, v) = (U,E2, S2) such that
E2 = {{u, u′} ∈ E | u, u′ ∈ U}, that is, (U,E2) is the subgraph of (V,E) induced by U , and
S2 is the subsequence of S consisting of all the vertices of U .

Moreover, we “connect” two inputs. For an input σ′ = (V ′, E′, S′), a vertex v′ ∈ V ′ and
an input σ′′ = (V ′′, E′′, S′′), we define f3(σ′, v′, σ′′) = (V3, E3, S3) such that V3 = V ′ ∪ V ′′,
E3 = E′ ∪ E′′ ∪ {{v′, u′′1}}, in which u′′i is the i(∈ [1, n′′])-th vertex in S′′ and n′′ is the
number of vertices in S′′, and S3 = (u′1, . . . , u′n′ , u′′1 , . . . , u

′′
n′′), in which n′ is the number of

vertices in S′ and u′i is the i(∈ [1, n′])-th vertex in S′.

I Lemma 5. Suppose that the vertex set of an input σ contains two vertices v and u such that
the edge (v, u) is free. Then, there exists OPT such that DOPT (f1(σ, u))∪DOPT (f2(σ, u)) =
DOPT (σ).

I Lemma 6. Suppose that the graph in an input σ contains a vertex v and OPT selects v.
Then, there exists OPT such that DOPT (f3(σ, v, σ̂)) = DOPT (σ), in which σ̂ = ({u},∅, u)
and u is a vertex not in the vertex set of the graph in σ.
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I Lemma 7. Suppose that the graph of an input σ contains at least one free edge which is
not fixed. Then, there exits an input σ′ such that (a) any free edge in the graph of σ′ is fixed,
that is (P1) holds, and (b) E[CRA(σ)]

COP T (σ) ≤
E[CRA(σ′)]
COP T (σ′) .

I Lemma 8. Suppose that an input σ satisfies the following conditions: (i) the graph in σ
contains at least one vertex of degree at least four, and (ii) (P1) holds.

Then, there exists an input σ′ such that (a) the degree of any vertex of the graph in σ′ is
at most three, that is, (P2) holds, and (b) E[CRA(σ)]

COP T (σ) ≤
E[CRA(σ′)]
COP T (σ′) .

I Lemma 9. Suppose that an input σ satisfies the following conditions: (i) the graph in σ
contains at least one free edge which is not fixed, and (ii) (P2) holds.

Then, there exists an input σ′ such that (a) (P1) and (P2) hold, and (b) E[CRA(σ)]
COP T (σ) ≤

E[CRA(σ′)]
COP T (σ′) .

I Lemma 10. Suppose that an input σ satisfies the following conditions: (i) OPT selects at
least one vertex of degree at most two, and (ii) (P1) and (P2) hold.

Then, there exists an input σ′ such that (a) the degree of any vertex selected by OPT is
three, that is, (P3) holds, (b) (P1) and (P2) hold, and (c) E[CRA(σ)]

COP T (σ) ≤
E[CRA(σ′)]
COP T (σ′) .

I Lemma 11. Suppose that an input σ satisfies the following conditions: (i) there exists at
least one free edge (v, u) such that OPT selects v, and (ii) (P1), (P2) and (P3) hold.

Then, there exists an input σ′ such that (a) for any free edge (v, u), OPT does not select
v, that is, (P4) holds, (b) (P1), (P2) and (P3) hold, and (c) E[CRA(σ)]

COP T (σ) ≤
E[CRA(σ′)]
COP T (σ′) .

I Lemma 12. Suppose that an input σ satisfies the following conditions: (i) the graph in σ
contains at least one good vertex triplet, and (ii) the properties from (P1) to (P4) inclusive
hold.

Then, there exists an input σ′ such that (a) the graph in σ′ contains no good vertex
triplets, that is, (P5) holds, (b) the properties from (P1) to (P4) inclusive hold, and (c)
E[CRA(σ)]
COP T (σ) ≤

E[CRA(σ′)]
COP T (σ′) .

I Lemma 13. Consider the graph in an input satisfying the properties from (P1) to (P6)
inclusive. Then, the degree of any vertex is one or three.

I Lemma 14. Suppose that an input σ satisfies the following conditions: (i) there exists
at least one free edge (v, u) such that deg(v) = 2, and (ii) the properties from (P1) to (P5)
inclusive hold.

Then, there exists an input σ′ such that (a) for any free edge (v, u), deg(v) = 3, (b) the
properties from (P1) to (P5) inclusive hold, and (c) E[CRA(σ)]

COP T (σ) ≤
E[CRA(σ′)]
COP T (σ′) .

Now we can show Lemma 4 using Lemmas 13 and 14. In the next section, we analyze
only inputs satisfying the properties from (P1) through (P7).

4.3 Analysis of RA

We assign a positive integer to each vertex of a given tree according to the below routine.
We call the set of all the vertices with the same assigned value a block. All the vertices in
a block are on a path of at most length three. We obtain the competitive ratio of RA by
evaluating the costs of RA and OPT for each block. For a vertex v, N(v) denotes the set
of vertices adjacent to v. That is, N(v) = {u | {v, u} ∈ E}, in which E is the set of all the
edges of a given graph.
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Algorithm 2: BlockRoutine
Step 1: ` := 0 and U := {vi | i = 1, . . . , n}, in which n is the number of all the
vertices of a given graph.
Step 2: ` := `+ 1. If U = ∅, then finish. Otherwise, i1 := min{i | vi ∈ U},
U := U \ {vi1} and assign ` to the vertex vi1 .
Step 3: If U ∩N(vi1) = ∅, then go to Step 2. Otherwise,
i2 := min{i | vi ∈ U ∩N(vi1)}, U := U \ {vi2} and assign ` to the vertex vi2 .
Step 4: U ′ := U ∩ {N(vi1) ∪N(vi2)}. If U ′ = ∅, then go to Step 2. Otherwise,
i3 := min{i | vi ∈ U ′}, U := U \ {vi3}, assign ` to the vertex vi3 and go to Step 2.

I Lemma 15. The number of all the vertices of a given tree is at least four.

By the definition of BlockRoutine, this lemma leads to the fact that at least one vertex
in a block is adjacent to a vertex in another block. Also, by (P7) in the previous section,
the degree of a vertex is one or three, and hence blocks which a given graph can contain
are classified into the following four categories: A B1-block is a set consisting of one vertex
u1 such that deg(u1) = 1. The following three blocks are sets consisting of three vertices
u1, u2 and u3. Suppose that both u1 and u3 are adjacent to u2. A B2-block is a set such
that deg(u1) = 3, deg(u2) = 3 and deg(u3) = 1, a B3-block is a set such that deg(u1) = 1,
deg(u2) = 3 and deg(u3) = 1, and a B4-block is a set such that deg(u1) = 3, deg(u2) = 3
and deg(u3) = 3.

For each block, we discuss vertices selected by OPT and classify B1, B2, B3 and B4 into
the following eleven categories. Then the next lemma shows that we only have to consider
six categories. u1, u2 and u3 to classify Bi are used in the same definitions as those of u1, u2
and u3 to define Bi.

B1-blocks are classified into two categories: A B0
1-block in which OPT does not select

any vertex, and a B1
1-block in which OPT selects only u1.

B2-blocks are classified into two categories: A B010
2 -block in which OPT selects only u2,

and a B110
2 -block in which OPT selects only u1 and u2.

B3-blocks are not classified. OPT selects only u2 in a B3-block.
B4-blocks are classified into six categories: A B000

4 -block in which OPT selects no vertices,
a B100

4 -block in which OPT selects only u1, a B010
4 -block in which OPT selects only u2, a

B110
4 -block in which OPT selects only u1 and u2, a B101

4 -block in which OPT selects only
u1 and u3, and a B111

4 -block in which OPT selects all the vertices.

I Lemma 16. An input can contain at most six kinds of blocks: B0
1 , B2, B3, B

000
4 , B100

4 and
B010

4 .

A B1-block consists of one vertex v of degree one, and (4) in Lemma 3 shows that the
expected cost of RA for v depends on the adjacent vertex u. Then, we classify B1-blocks
into the following two categories in terms of RA: A B1,0-block of v such that degv(u) = 3
and a B1,1-block of v such that degv(u) ≤ 2.

I Lemma 17. Consider a block without v1 and then the expected costs of RA are as follows:
(i) zero for a B1,0-block, (ii) 1/2 for a B1,1-block, (iii) at most 5/2 for a B2-block, (iv) at
most 3/2 for a B3-block and (v) at most three for a B4-block.

Next, we evaluate the expected cost of RA for each block with v1. Since the number of
all the vertices of a given graph is at least four, no B1-block contains v1 by the definition of
BlockRoutine.
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I Lemma 18. Consider a block with v1 and then the expected costs of RA are as follows:
(i) at most three for a B2-block, (ii) at most 5/2 for a B3-block and (iii) at most three for a
B4-block.

Let b1,0, b1,1, b2, b3, b
000
4 , b100

4 and b010
4 denote the numbers of B1,0-blocks, B1,1-blocks,

B2-blocks, B3-blocks, B000
4 -blocks, B100

4 -blocks and B010
4 -blocks, respectively. We define

b4 = b000
4 + b100

4 + b010
4 .

I Lemma 19. If the number of all the vertices of a given graph is at least five,

b1,0 ≤ b2 + b100
4 + b010

4 (1)

and

b1,1 ≤ b100
4 . (2)

I Lemma 20. b1,0 + b1,1 + b3 = b2 + 3b4 + 2.

I Theorem 21. The competitive ratio of RA is at most 5/2.

Proof. First, we consider an input σ of which the number of vertices of a given tree is
four. A combination of blocks composing a tree with four vertices consists of one B1-block
C1 and one B3-block C3 by Lemma 16. Since C1 does not contain v1 by the definition
of BlockRoutine, C3 contains v1. Thus, the expected of RA for C3 is at most 5/2 by
Lemma 18. Let v denote the vertex in C1, and let u denote the vertex adjacent to v in C3.
degv(u) = 3 by the definition of B3-blocks, which means that C1 is a B1,0-block. Thus, the
expected cost for C1 is zero by Lemma 17. By the above argument, E[CRA(σ)] = 5/2. On
the other hand, OPT clearly selects at least one vertex, that is, COPT (σ) ≥ 1. Therefore,
we have shown the statement of the theorem in the case of a tree with four vertices.

Next, we consider the case in which of a graph with at least five vertices. The expected
costs of RA for a B2-block and a B3-block with v1 are greater than those for a B2-block and
a B3-block without v1 by 1/2 and one, respectively, by Lemmas 17 and 18. Also, v1 does not
affect the expected cost for B4-blocks. Thus, let b′2 and b′3 denote the numbers of B2-blocks
and B3-blocks with v1, respectively. By definition, b′2, b′3 ∈ {0, 1} and b′2 + b′3 ≤ 1. Then,
using Lemma 17, we have

E[CRA(σ)] ≤ b1,1/2 + 5b2/2 + 3b3/2 + 3b4 + b′2/2 + b′3 ≤ b1,1/2 + 5b2/2 + 3b3/2 + 3b4 + 1.

By the definitions of blocks, we have

COPT (σ) = b2 + b3 + b100
4 + b010

4 .

By the inequality and the equality, we have
E[CRA(σ)]
COPT (σ) ≤

b1,1/2 + 5b2/2 + 3b3/2 + 3b4 + 1
b2 + b3 + b100

4 + b010
4

= −3b1,0/2− b1,1 + 4b2 + 15b4/2 + 4
−b1,0 − b1,1 + 2b2 + 3b4 + b100

4 + b010
4 + 2 (by the substitution for b3 by Lemma 20)

≤ −3b1,0/2 + 4b2 + 15b4/2− b100
4 + 4

−b1,0 + 2b2 + 3b4 + b010
4 + 2 (by the substitution for b1,1 by Eq. (2))

≤ −5b1,0/2 + 5b2 + 15b4/2 + b010
4 + 4

−b1,0 + 2b2 + 3b4 + b010
4 + 2 (by the substitution for b100

4 by Eq. (1))

= 5
2 ·
−b1,0 + 2b2 + 3b4 + 2b010

4 /5 + 8/5
−b1,0 + 2b2 + 3b4 + b010

4 + 2 <
5
2 .

J
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Our analysis of RA is exact by the following theorem.

I Theorem 22. The competitive ratio of RA is at least 5/2.

5 Randomized Lower Bound

I Lemma 23. Consider a randomized online algorithm RON . Suppose that a vertex v
arrives at a vertex u. Let pu(pv) denote the probability that u ∈ DRON (v)(v ∈ DRON (v)).
Then, pu + pv ≥ 1.

Proof. Let p′u be the probability that u ∈ DRON (u). Since RON ’s selection is irrevocable,
the probability that u ∈ DRON (u) and u ∈ DRON (v) is greater than or equal to p′u (Fact (a)).
Next, we consider the case in which u /∈ DRON (u). RON must select u or v to construct a
dominating set immediately after v is revealed. Thus, the probability that either u ∈ DRON (v)
or v ∈ DRON (v) is one. By the definition of p′u, the probability that u /∈ DRON (u) is 1− p′u.
Hence, the probability that both u /∈ DRON (u) and either u ∈ DRON (v) or v ∈ DRON (v) is at
least 1−p′u. This probability together with Fact (a) shows that pu+pv ≥ p′u+1−p′u = 1. J

I Theorem 24. The competitive ratio of any randomized online algorithm is at least 4/3.

Proof. Consider a randomized online algorithm RON for the following input σ. Let m be
any positive integer. We sketch an adversary constructing σ. First, the adversary gives a line
of 2m vertices to ON . Then, for every two consecutive vertices on the line, the adversary
determines whether an additional vertex will arrive at one of the two vertices. Specifically, if
the probability that RON selects at least one of the two vertices is low, the adversary makes
a new vertex arrive at the vertex.

For each i = 1, 2, . . . , 2m, the i-th vertex vi arrives at vi−1. For each j = 1, 2, . . . , 2m,
let pj be the probability that vj ∈ DRON (v2m). Next, for each ` = 1, 2, . . . ,m, vertices are
revealed after the revelation of v2m in the following two cases.
Case 1 (min{p2`−1, p2`} ≥ 2/3): A new vertex does not arrive at either v2`−1 or v2`.
Since RON ’s selection is irrevocable, the expected cost of RON for v2`−1 and v2` is at least
2 · 2/3 = 4/3.
Case 2 (min{p2`−1, p2`} < 2/3): If p2`−1 ≤ p2`, then define `1 = 2` − 1 and `2 = 2`.
Otherwise, define `2 = 2`−1 and `1 = 2`. Then, a vertex u`1 arrives at v`1 . By Lemma 23, the
probability that v`1 ∈ DRON (u`1) or u`1 ∈ DRON (u`1) is at least one (Fact (a)). Moreover,
p2`−1 + p2` = p`1 + p`2 ≥ 1 also holds. Since p`1 < 2/3 by the condition of Case 2, p`2 ≥ 1/3.
Hence, the expected cost for v`1 , v`2 and u`1 is at least 1 + 1/3 = 4/3.

Let x be the number of such ` with applying Case 1. Thus, the number of such ` with
applying Case 2 is m−x. E[CRON (σ)] ≥ 4x/3 + 4(m−x)/3 = 4m/3 by the above argument.

Next, we consider an offline algorithm OFF to give an upper bound on the cost of
OPT . For such ` with applying Case 1, OFF selects v2`−1 and for such ` with applying
Case 2, selects v`1 . Thus, OFF selects m vertices, and the set of the m selected vertices is
clearly a dominating set. By the optimality of OPT , COPT (σ) ≤ COFF (σ) = m. Therefore,
E[CRON (σ)]/COPT (σ) ≥ 4/3. J

6 Conclusions

In this paper, we have conducted research on algorithms for an online variant of the minimum
dominating set problem on trees and obtained the following results: First, we have shown
that the competitive ratio of any deterministic algorithm is at least 3, which matches the
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upper bound shown in [4, 2]. Then, we have designed an algorithm whose competitive ratio
is exactly 5/2 using randomization. Furthermore, we have shown that the competitive ratio
of any randomized algorithm is at least 4/3.

We conclude this paper by providing open questions: (i) Online algorithms for dominating
sets on several graph classes have been discussed in [4, 2] and optimal online algorithms have
not yet known on some classes. Then, it is interesting to consider online algorithms on other
classes in addition to them. (ii) Our algorithm RA is the first randomized algorithm for the
online dominating set problem on trees and can achieve a competitive ratio smaller than
that of any deterministic algorithm. Can we also obtain a better ratio on other classes using
randomization? (iii) The gap between the randomized bounds shown in this paper is still
large and thus, it is an obvious open problem to close the gap.
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Abstract
In social networks the Strong Triadic Closure is an assignment of the edges with strong
or weak labels such that any two vertices that have a common neighbor with a strong edge are
adjacent. The problem of maximizing the number of strong edges that satisfy the strong triadic
closure was recently shown to be NP-complete for general graphs. Here we initiate the study of
graph classes for which the problem is solvable. We show that the problem admits a polynomial-
time algorithm for two unrelated classes of graphs: proper interval graphs and trivially-perfect
graphs. To complement our result, we show that the problem remains NP-complete on split
graphs, and consequently also on chordal graphs. Thus we contribute to define the first border
between graph classes on which the problem is polynomially solvable and on which it remains
NP-complete.
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1 Introduction

Predicting the behavior of a network is an important concept in the field of social networks
[9]. Understanding the strength and nature of social relationships has found an increasing
usefulness in the last years due to the explosive growth of social networks (see e.g., [2]).
Towards such a direction the Strong Triadic Closure principle enables us to understand
the structural properties of the underlying graph: it is not possible for two individuals to
have a strong relationship with a common friend and not know each other [12]. Such a
principle stipulates that if two people in a social network have a “strong friend” in common,
then there is an increased likelihood that they will become friends themselves at some point
in the future. Satisfying the Strong Triadic Closure is to characterize the edges of
the underlying graph into weak and strong such that any two vertices that have a strong
neighbor in common are adjacent. Since users interact and actively engage in social networks
by creating strong relationships, it is natural to consider the MaxSTC problem: maximize
the number of strong edges that satisfy the Strong Triadic Closure. The problem has
been shown to be NP-complete for general graphs while its dual problem of minimizing the
number of weak edges admits a constant factor approximation ratio [28].

In this work we initiate the computational complexity study of the MaxSTC problem
in important classes of graphs. If the input graph is a P3-free graph (i.e., a graph having
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no induced path on three vertices which is equivalent with a graph that consists of vertex-
disjoint union of cliques) then there is a trivial solution by labeling strong all the edges. Such
an observation might falsely lead into a graph modification problem, known as Cluster
Deletion problem (see e.g., [3, 14]), in which we want to remove the minimum number of
edges that correspond to the weak edges, such that the resulting graph does not contain a
P3 as an induced subgraph. More precisely the obvious reduction would consist in labeling
the deleted edges in the instance of Cluster Deletion as weak, and the remaining ones as
strong. However, this reduction fails to be correct due to the fact that the graph obtained by
deleting the weak edges in an optimal solution of MaxSTC may contain an induced P3, so
long as those three vertices induce a triangle in the original graph (prior to deleting the weak
edges). We stress that there are examples on split graphs (Figure 1) and proper interval
graphs (Figure 3) showing such a difference.

To the best of our knowledge, no previous results were known prior to our work when
restricting the input graph for the MaxSTC problem. It is not difficult to see that for
bipartite graphs the MaxSTC problem has a simple polynomial-time solution by considering
a maximum matching that represent the strong edges [15]. In fact such an argument regarding
the maximum matching generalizes to the larger class of triangle-free graphs. Also notice that
for triangle-free graphs a set of edges is a maximum matching if and only if it is formed by a
solution for the Cluster Deletion problem. It is well-known that a maximum matching
of a graph corresponds to a maximum independent set of its line graph that represents the
adjacencies between the edges [10]. As previously noted, for general graphs it is not necessarily
the case that a maximum matching corresponds to the optimal solution for MaxSTC. Here
we show a similar characterization for MaxSTC by considering the adjacencies between
the edges of a graph that participate in induced P3’s. Such a characterization allows us to
exhibit properties towards an optimal solution of MaxSTC.

Due to the nature of the P3 existence that enforce the labeling of weak edges, there
is an interesting connection to problems related to the square root of a graph; a graph H
is a square root of a graph G and G is the square of H if two vertices are adjacent in G

whenever they are at distance one or two in H. Any graph does not have a square root (for
example consider a simple path), but every graph contains a subgraph that has a square root.
Although it is NP-complete to determine if a given chordal graph has a square root [21],
there are polynomial-time algorithms when the input is restricted to bipartite graphs [20], or
proper interval graphs [21], or trivially-perfect graphs [25]. Among several square roots that
a graph may have, one can choose the square root with the maximum or minimum number
of edges [5, 23]. The relationship between MaxSTC and to that of determining square roots
can be seen as follows. In the MaxSTC problem we are given a graph G and we want to
select the maximum possible number of edges, at most one from each induced P3 in G. Thus
we need to find the largest subgraph (in terms of the number of its edges) H of G such that
the square of H is a subgraph of G. However the known results related to square roots were
concerned with deciding if the whole graph has a (maximum or minimum) square root and
there are no such equivalent formulations related to the largest square root.

Our main motivation is to understand the complexity of the problem on subclasses of
chordal graphs, since the class of chordal graphs (i.e., graphs having no chordless cycle of
length at least four) finds important applications in both theoretical and practical areas
related to social networks [1, 19, 26]. More precisely two famous properties can be found in
social networks. For most known social and biological networks their diameter, that is, the
length of the longest shortest path between any two vertices of a graph, is known to be a small
constant [17]. On the other hand it has been shown that the most prominent social network
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Figure 1 A split graph G is shown to the left side. The right side depicts a solution for MaxSTC
on G where the weak edges are exactly the edges of G that are not shown.

subgraphs are cliques, whereas highly infrequent induced subgraphs are cycles of length four
[29]. Thus it is evident that subclasses of chordal graphs are close related to such networks,
since they have rather small diameter (e.g., split graphs or trivially-perfect graphs) and are
characterized by the absence of chordless cycles (e.g., proper interval graphs). Towards such
a direction we show that MaxSTC is NP-complete on split graphs and consequently also
on chordal graphs. On the positive side, we present the first polynomial-time algorithm
for computing MaxSTC on proper interval graphs. Proper interval graphs, also known
as unit interval graphs or indifference graphs, form a subclass of interval graphs and they
are unrelated to split graphs [27]. By our result they form the first graph class, other than
triangle-free graphs, for which MaxSTC is shown to be polynomial time solvable. In order
to obtain our algorithm, we take advantage of their clique path (consecutive arrangement
of maximal cliques) and apply a dynamic programming on subproblems defined by passing
the clique path in its natural ordering. Our structural proofs on proper interval graphs
can be seen as useful tools towards settling the complexity of MaxSTC on interval graphs.
Furthermore by considering the characterization of the induced P3’s mentioned earlier, we
show that MaxSTC admits a simple polynomial-time solution on trivially-perfect graphs
(i.e., graphs having no induced P4 or C4).

2 Preliminaries

We refer to [4] for our standard graph terminology. Given a graph G = (V,E), a strong-weak
labeling on the edges of G is a function λ that assigns to each edge of E(G) one of the labels
strong or weak; i.e., λ : E(G)→ {strong,weak}. An edge that is labeled strong (resp., weak)
is simply called strong (resp. weak). The strong triadic closure of a graph G is a strong-weak
labeling λ such that for any two strong edges {u, v} and {v, w} there is a (weak or strong)
edge {u,w}. In other words, in a strong triadic closure there is no pair of strong edges {u, v}
and {v, w} such that {u,w} /∈ E(G). The problem of computing a maximum strong triadic
closure, denoted by MaxSTC, is to find a strong-weak labeling on the edges of E(G) that
satisfies the strong triadic closure and has the maximum number of strong edges. Note that
its dual problem asks for the minimum number of weak edges. Here we focus on maximizing
the number of strong edges in a strong triadic closure.

Let G be a strong-weak labeled graph. We denote by (ES , EW ) the partition of E(G)
into strong edges ES and weak edges EW . The graph spanned by ES is the graph G \ EW .
For a vertex v ∈ V (G) we say that the strong neighbors of v are the other endpoints of the
strong edges incident to v. We denote by NS(v) ⊆ N(v) the strong neighbors of v. Similarly
we say that a vertex u is strongly adjacent to v if u is adjacent to v and {u, v} is strong.

I Observation 1. Let G = (ES , EW ) be a strong-weak labeled graph. G satisfies the strong
triadic closure if and only if for every P3 in G \ EW , the vertices of P3 induce a K3 in G.
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3 MaxSTC on split graphs

Here we provide an NP-hardness result for MaxSTC on split graphs. A graph G = (V,E) is
a split graph if V can be partitioned into a clique C and an independent set I, where (C, I)
is called a split partition of G. Split graphs form a subclass of the larger and widely known
graph class of chordal graphs, which are the graphs that do not contain induced cycles of
length 4 or more as induced subgraphs. It is known that split graphs are self-complementary,
that is, the complement of a split graph remains a split graph. Hereafter for two vertices u
and v we say that u sees v if {u, v} ∈ E(G); otherwise, we say that u misses v.

I Lemma 2. Let G = (V,E) be a split graph with a split partition (C, I). Let ES be the set
of strong edges in an optimal solution for MaxSTC on G and let IW be the vertices of I
that are incident to at least one edge of ES.
1. If every vertex of IW misses at least three vertices of C in G then ES = E(C).
2. If every vertex of IW misses exactly one vertex of C in G then |ES | ≤ |E(C)|+ b |IW |

2 c.

Proof. Let wi be a vertex of I and let Bi be the set of vertices in C that are non-adjacent
to wi. Let Ai be the strong neighbors of wi in an optimal solution. For the edges of the
clique, there are |Ai||Bi| weak edges due to the strong triadic closure. Moreover any vertex
wj of I \ {wi} cannot have a strong neighbor in Ai. This means that Ai ∩Aj = ∅. Notice,
however, that both sets Bi ∩Bj and Ai ∩Bj are not necessarily empty.

Observe that IW contains the vertices of I that are incident to at least one strong
edge. Let E(A,B) be the set of weak edges that have one endpoint in Ai and the other
endpoint in Bi, for every 1 ≤ i ≤ |IW |. We show that 2|E(A,B)| ≥

∑
wi∈IW

|Ai||Bi|. Let
{a, b} ∈ E(A,B) such that a ∈ Ai and b ∈ Bi. Assume that there is a pair Aj , Bj such that
{a, b} is an edge between Aj and Bj , for j 6= i. Then a cannot belong to Aj since Ai∩Aj = ∅.
Thus a ∈ Bj and b ∈ Aj . Therefore for every edge {a, b} ∈ E(A,B) there are at most two
pairs (Ai, Bi) and (Aj , Bj) for which a ∈ Ai ∪Bj and b ∈ Bi ∪Aj . This means that every
edge of E(A,B) is counted at most twice in

∑
wi∈IW

|Ai||Bi|.
For any two edges {u, v}, {v, z} ∈ E(C) \ E(A,B), observe that they satisfy the strong

triadic closure since there is the edge {u, z} in G. Thus the strong edges of the clique are
exactly the set of edges E(C) \ E(A,B). In total by counting the number of strong edges
between the independent set and the clique, we have |ES | = |E(C) \E(A,B)|+

∑
wi∈IW

|Ai|.
Since 2|E(A,B)| ≥

∑
wi∈IW

|Ai||Bi|, we get

|ES | ≤ |E(C)|+
∑

wi∈IW

|Ai|
(

1−
⌊
|Bi|

2

⌋)
.

Now the first claim of the lemma holds because |Bi| ≥ 3 so that IW = ∅. For the second
claim we show that for every vertex of IW , |Ai| = 1. Let wi ∈ IW such that |Ai| ≥ 2 and
let Bi = {bi}. Recall that no other vertex of IW has strong neighbors in Ai. Also note that
there is at most one vertex wj in IW that has bi as a strong neighbor. If such a vertex wj

exist and for the vertex bj of the clique that misses wj it holds bj ∈ Ai, then we let v = bj ;
otherwise we choose v as an arbitrary vertex of Ai. Observe that no vertex of I \ {wi} has a
strong neighbor in Ai \ {v} and only wj ∈ IW is strongly adjacent to bi. Then we label weak
the |Ai| − 1 edges between wi and the vertices of Ai \ {v} and we label strong the |Ai| − 1
edges between bi and the vertices of Ai \ {v}. Making strong the edges between bi and the
vertices of Ai \ {v} does not violate the strong triadic closure since every vertex of C ∪ {wj}
is adjacent to every vertex of Ai \ {v}. Therefore for every vertex wi ∈ IW , |Ai| = 1 and by
substituting |Bi| = 1 in the formula for |ES | we get the claimed bound. J
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In order to give the reduction, we introduce the following problem that we call maximum
disjoint non-neighborhood: given a split graph (C, I) where every vertex of I misses three
vertices from C, we want to find the maximum subset SI of I such that the non-neighborhoods
of the vertices of SI are pairwise disjoint. In the corresponding decision version, denoted by
MaxDisjointNN, we are also given an integer k and the problem asks whether |SI | ≥ k.
The polynomial-time reduction to MaxDisjointNN is given from the classical NP-complete
problem 3-Set Packing [18]: given a universe U of n elements, a family F of triplets of
U , and an integer k, the problem asks for a subfamily F ′ ⊆ F with |F ′| ≥ k such that all
triplets of F ′ are pairwise disjoint.

I Corollary 3. MaxDisjointNN is NP-complete on split graphs.

Now we turn to our original problem MaxSTC. The decision version of MaxSTC takes
as input a graph G and an integer k and asks whether there is strong-weak labeling of the
edges of G that satisfies the strong triadic closure with at least k strong edges.

I Theorem 4. The decision version of MaxSTC is NP-complete on split graphs.

Proof. Given a strong-weak labeling (ES , EW ) of a split graph G = (C, I), checking whether
(ES , EW ) satisfies the strong triadic closure amounts to check in G \ EW whether there is a
non-edge in G between the endvertices of every P3 according to Observation 1. Thus by listing
all P3’s of G \ EW the problem belongs to NP. Next we give a polynomial-time reduction
to MaxSTC from the MaxDisjointNN problem on split graphs which is NP-complete
by Corollary 3. Let (G, k) be an instance of MaxDisjointNN where G = (C, I) is a split
graph such that every vertex of the independent set I misses exactly three vertices from
the clique C. For a vertex wi ∈ I, we denote by Bi the set of the three vertices in C that
are non-adjacent to wi. Let n = |C|. We extend G and construct another split graph G′ as
follows (see Figure 2):

We add n vertices y1, . . . , yn in the clique that constitutes the set CY .
We add n vertices x1, . . . , xn in the independent set that constitutes the set IX .
For every 1 ≤ i ≤ n, yi is adjacent to all vertices of (C ∪ CY ∪ I ∪ IX) \ {xi}.
For every 1 ≤ i ≤ n, xi is adjacent to all vertices of (C ∪ CY ) \ {yi}.

Thus wi misses only the vertices of Bi from the clique. By construction it is clear that G′ is
a split graph with a split partition (C ∪ CY , I ∪ IX). Notice that the clique C ∪ CY has 2n
vertices and G = G′[I ∪ C].

We claim that G has a solution for MaxDisjointNN of size at least k if and only if G′
has a strong triadic closure with at least n(2n− 1) + bn

2 c+ dk
2 e strong edges. Due to space

restriction, we only show the one direction.
Assume that {w1, . . . , wk} ⊆ I is a solution for MaxDisjointNN on G of size at least

k. Since the sets B1, . . . , Bk are pairwise disjoint, there are k distinct vertices y1, . . . , yk in
CY such that k ≤ n. We will give a strong-weak labeling for the edges of G′ that fulfills the
strong triadic closure and has at least the claimed number of strong edges. For simplicity,
we describe only the strong edges; the edges of G′ that are not given are all labeled weak.
We label the edges between each vertex wi, yi, xi and the three vertices of each set Bi, for
1 ≤ i ≤ k as follows:

The edges of the form {yi, v} are labeled strong if v ∈ (C ∪ CY ) \Bi or v = wi.
The edges between xi and the three vertices of Bi are labeled strong.

Next we label the edges incident to the rest of the vertices. No edge incident to a vertex
of I \ {w1, . . . , wk} is labeled strong. For every vertex u ∈ C \ (B1 ∪ · · · ∪Bk) we label the
edge {u, v} strong if v ∈ (C ∪ CY ). Let C ′Y = {yk+1, . . . , yn} and let I ′X = {xk+1, . . . , xn}.
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x1
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· · ·

· · ·
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xn−1
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xn
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B|I|

w|I|

IX
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Figure 2 The split graph (C ∪CY , I ∪ IX) given in the polynomial-time reduction. Every vertex
wi misses the vertices of Bi and sees the vertices of (C ∪ CY ) \Bi. Every vertex xi misses yi and
sees the vertices of (C ∪ CY ) \ {yi}. The sets B1, . . . , Bk are pairwise disjoint whereas for every set
Bj , k < j ≤ |I|, there is a set Bi, 1 ≤ i ≤ k, such that Bi ∩Bj 6= ∅. The drawn edges correspond to
the strong edges between the independent set and the clique, and the dashed edges are the only
weak edges in the clique C ∪ CY .

Recall that every vertex xk+j is adjacent to every vertex of C ′Y \ {yk+j}. Let ` = bn−k
2 c.

Let M = {e1, . . . , e`} be a maximal set of pairwise non-adjacent edges in G′[C ′Y ] where
ej = {yk+2j−1, yk+2j}, for j ∈ {1, . . . , `}; note that M is a maximal matching of G′[C ′Y ].
For every vertex y ∈ C ′Y , we label the edge {y, v} strong if v ∈ (C ∪ CY ) \ {y′} such that
{y, y′} ∈M . Moreover, for j ∈ {1, . . . , `}, the edges {xk+2j−1, yk+2j} and {xk+2j , yk+2j−1}
are labeled strong. Note that if n− k is odd then no edge incident to the unique vertex yn

belongs to M and all edges between yn and the vertices of C ∪ CY are labeled strong; in
such a case also note that no edge incident to xn is strong.

Let us show that such a labeling fulfills the strong triadic closure. Any labeling for the
edges inside G′[C ∪ CY ] is satisfied since G′[C ∪ CY ] is a clique. Also note that there are no
two adjacent strong edges that have a common endpoint in the clique C ∪ CY and the two
other endpoints in the independent set I ∪ IX . If there are two strong edges incident to the
same vertex v of the independent set then v ∈ {x1, . . . , xk} and NS [v] = Bi which is a clique.
Assume that there are two adjacent strong edges {u, v} and {v, z} such that u ∈ I ∪ IX , and
v, z ∈ C ∪ CY .

If u ∈ {w1, . . . , wk} then {u, z} ∈ E(G′) since every wi misses only the vertices of Bi.

If u ∈ {x1, . . . , xk} then v ∈ Bi and {u, z} ∈ E(G′) since every vertex xi misses only yi.

If u ∈ IX \ {x1, . . . , xk} then the strong neighbors of v in C ∪CY are adjacent to u in G′
since for the only non-neighbor of u in C ∪ CY there is a weak edge incident to v.

Recall that there is no strong edge incident to the vertices of I \ {w1, . . . , wk}. Therefore the
given strong-weak labeling fulfills the strong triadic closure.

Observe that the number of vertices in C ∪ CY is 2n. There are exactly 3k + ` weak
edges in G′[C ∪ CY ]. Thus the number of strong edges in G′[C ∪ CY ] is n(2n− 1)− 3k − `.
There are k strong edges incident to {w1, . . . , wk}, 3k strong edges incident to {x1, . . . , xk},
and 2` strong edges incident to IX \ {x1, . . . , xk}. Thus the total number of strong edges is
n(2n− 1)− 3k − `+ k + 3k + 2` = n(2n− 1) + `+ k and by substituting ` = bn−k

2 c we get
the claimed bound. J
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4 Computing MaxSTC on proper interval graphs

Due to the NP-completeness on split graphs given in Theorem 4, it is natural to consider
interval graphs that form another well-studied subclass of chordal graphs. However besides
few observations of this section that may be applied for interval graphs, we found several
unresolved technicalities. Moreover, to the best of our knowledge, the complexity of the
close-related Cluster Deletion problem remains unresolved on interval graphs [3]. Thus
we further restrict the input to the class of proper interval graphs that form a proper subclass
of interval graphs. Our polynomial solution for MaxSTC on proper interval graphs can be
seen as a first step towards determining its complexity on interval graphs.

A graph is a proper interval graph if there is a bijection between its vertices and a family
of closed intervals of the real line such that two vertices are adjacent if and only if the two
corresponding intervals overlap and no interval is properly contained in another interval. A
vertex ordering σ is a linear arrangement σ = 〈v1, . . . , vn〉 of the vertices of G. For a vertex
pair x, y we write x � y if x = vi and y = vj for some indices i ≤ j; if x 6= y which implies
i < j then we write x ≺ y. The first position in σ will be referred to as the left end of σ, and
the last position as the right end. We will use the expressions to the left of, to the right of,
leftmost, and rightmost accordingly.

A vertex ordering σ for G is called a proper interval ordering if for every vertex triple
x, y, z of G with x ≺ y ≺ z, {x, z} ∈ E(G) implies {x, y}, {y, z} ∈ E(G). Proper interval
graphs are characterized as the graphs that admit such orderings, that is, a graph is a proper
interval graph if and only if it has a proper interval ordering [24]. We only consider this
vertex ordering characterization for proper interval graphs. Moreover it can be decided in
linear time whether a given graph is a proper interval graph, and if so, a proper interval
ordering can be generated in linear time [24]. It is clear that a vertex ordering σ for G is a
proper interval ordering if and only if the reverse of σ is a proper interval ordering. Two
adjacent vertices u and v are called twins if N [u] = N [v]. A connected proper interval graph
without twin vertices has a unique proper interval ordering σ up to reversal [8, 16]. Figure 3
shows a proper interval graph with its proper interval ordering.

Let us turn our attention to the MaxSTC problem. Instead of maximizing the strong
edges of the original graph G, we will look at the maximum independent set of the following
graph that we call the line-incompatibility graph Ĝ of G: for every edge of G there is a node
in Ĝ and two nodes of Ĝ are adjacent if and only if the vertices of the corresponding edges
induce a P3 in G. In a different context the notion of line-incompatibility has already been
considered under the term Gallai graph in [22] or as an auxiliary graph in [5]. Note that the
line-incompatibility graph of G is a subgraph of the line graph1 of G. Moreover observe that
for a graph G, its line graph and its line-incompatibility graph coincide if and only if G is a
triangle-free graph.

I Proposition 5. A subset S of edges E(G) is an optimal solution for MaxSTC of G if
and only if S is a maximum independent set of Ĝ.

Therefore we seek for the optimal solution of G by looking at a solution for a maximum
independent set of Ĝ. As a byproduct, if we are interested in minimizing the number of
weak edges then we ask for the minimum vertex cover of Ĝ. We denote by I

Ĝ
the maximum

independent set of Ĝ. To distinguish the vertices of Ĝ with those of G we refer to the

1 The line graph of G is the graph having the edges of G as vertices and two vertices of the line graph are
adjacent if and only if the two original edges are incident in G.
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a b

{cde} {fgh}
i j

G:

a b {cde} {fgh} i j
G:

a b {cde} {fgh} i j
G:

Figure 3 A proper interval graph G and its proper interval ordering. The vertices {c, d, e} and
{f, g, h} form twin sets in G. The two lower orderings depict two solutions for MaxSTC on G. A
solid edge corresponds to a strong edge, whereas a dashed edge corresponds to a weak edge. Observe
that the upper solution contains larger number of strong edges than the lower one. Also note that
the lower solution consists an optimal solution for the Cluster Deletion problem on G.

ab

a{cde}

b{cde}

b{fgh}

{cde}{fgh}

{cde}i

{fgh}i

{fgh}j

ij

Ĝ:

IĜ

Figure 4 The line-incompatibility graph Ĝ of the proper interval graph G given in Figure 3. The
set I

Ĝ
is a maximum weighted independent set of Ĝ, by taking into account the weight of each node

(i.e., an edge of G) that corresponds to the number of the twin vertices of its endpoints in G (see
Lemma 6).

former as nodes and to the latter as vertices. For an edge {u, v} of G we denote by uv the
corresponding node of Ĝ. Figure 4 shows the line-incompatibility graph of the proper interval
graph given in Figure 3.

A natural contraction for several graph problems is to group twin vertices since they play
the same role on the given graph. With the next result, we show that this is indeed the case
for the MaxSTC problem.

I Lemma 6. Let x and y be twin vertices of a graph G. Then there is an optimal solution
I

Ĝ
such that xy ∈ I

Ĝ
and for every vertex u ∈ N(x), xu ∈ I

Ĝ
if and only if yu ∈ I

Ĝ
.

Lemma 6 suggests to consider a graph G that has no twin vertices as follows. We partition
V (G) into sets of twins. For every twin set Wx we choose an arbitrary vertex x and remove
all its twin vertices except x from G. Let G′ be the resulting graph that has no twin vertices.
For every edge {x, y} of G′ we assign a weight equal to the product |Wx| · |Wy|. This value
corresponds to all edges of the original graph G between the vertices of Wx and Wy. The
line-incompatibility graph Ĝ′ of G′ is constructed as defined above with the only difference
that a node of Ĝ′ has weight equal to the weight of its corresponding edge in G′. Let I

Ĝ′ be
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a maximum weighted independent set, that is an independent set of Ĝ′ such that the sum of
the weights of its nodes is maximized. Then by Lemma 6 we have I

Ĝ
= I

Ĝ′ ∪ S(W ) where
S(W ) contains |Wx|(|Wx| − 1)/2 nodes for every twin set Wx. Therefore we are interested
in computing a maximum weighted independent set of Ĝ′. Also note that G′ is an induced
subgraph of the original graph G. In order to avoid heavier notation we refer to Ĝ′ as Ĝ by
assuming that G has no twin vertices and every vertex of G has a positive weight.

Before reaching the details of our algorithm for proper interval graphs, let us highlight
the difference between the optimal solution for MaxSTC and the optimal solution for the
Cluster Deletion. As already explained in the Introduction a solution for Cluster
Deletion satisfies the strong triadic closure, though the converse is not necessarily true.
In fact such an observation carries out for the class of proper interval graphs as shown in
the example given in Figure 3. For the Cluster Deletion problem twin vertices can be
grouped together following a similar characterization with Lemma 6, as proved in [3]. This
means that the P3-free graph depicted in the lower part of Figure 3 that is obtained by
removing its weak edges (i.e., the dashed drawn lines) is an optimal solution for Cluster
Deletion problem on the given proper interval graph. Therefore when restricted to proper
interval graphs the optimal solution for Cluster Deletion does not necessarily imply an
optimal solution for MaxSTC.

Let G be a proper interval graph and let σ be a proper interval ordering for G. We say
that a solution I

Ĝ
has the consecutive strong property with respect to σ if for any three

vertices x, y, z of G with x ≺ y ≺ z the following holds: xz ∈ I
Ĝ

implies xy, yz ∈ I
Ĝ
. Our

task is to show that such an optimal ordering exists. We start by characterizing the optimal
solution I

Ĝ
with respect to the proper interval ordering σ.

I Lemma 7. Let x, y, z be three vertices of a proper interval graph G such that x ≺ y ≺ z.
If xz ∈ I

Ĝ
then xy ∈ I

Ĝ
or yz ∈ I

Ĝ
.

Proof. We show that at least one of xy or yz belongs to I
Ĝ
. Assume towards a contradiction

that neither xy nor yz belong to I
Ĝ
. Consider the node xy in Ĝ. If xy is adjacent to a node

xx` ∈ IĜ
then {x`, y} /∈ E(G). Then observe that x` ≺ y because x ≺ y and {x`, y} /∈ E(G).

Since both xx` and xz belong to I
Ĝ
, {x`, z} ∈ E(G). This however contradicts the proper

interval ordering because x` ≺ y ≺ z, {x`, z} ∈ E(G) and y is non-adjacent to x`. Thus xy
is non-adjacent to any node xx` ∈ IĜ

and, in analogous fashion, yz is non-adjacent to any
node zzr ∈ IĜ

.
Now assume that xy is adjacent to a node yyr ∈ IĜ

and yz is adjacent to a node y`y ∈ IĜ
.

This means that {x, yr} /∈ E(G) and {z, y`} /∈ E(G). Since {x, z} ∈ E(G), by the proper
interval ordering we have y` ≺ x ≺ y ≺ z ≺ yr. Then notice that {y`, yr} ∈ E(G), because
both yyr, yy` ∈ IĜ

. By the proper interval ordering we know that both x and z are adjacent
to y`, yr, leading to a contradiction to the assumptions {x, yr} /∈ E(G) and {z, y`} /∈ E(G).
Therefore at least one of xy or yz belongs to I

Ĝ
. J

Thus by Lemma 7 we have two symmetric cases to consider. The next characterization
suggests that there is a fourth vertex with important properties in each corresponding case.

I Lemma 8. Let x, y, z be three vertices of a proper interval graph G such that x ≺ y ≺ z
and xz ∈ I

Ĝ
.

If xy /∈ I
Ĝ

and yz ∈ I
Ĝ

then xy is non-adjacent to any node x`x ∈ IĜ
and there is a

vertex w such that yw ∈ I
Ĝ
, {x,w} /∈ E(G), and z ≺ w.

If xy ∈ I
Ĝ

and yz /∈ I
Ĝ

then yz is non-adjacent to any node zzr ∈ IĜ
and there is a

vertex w such that wy ∈ I
Ĝ
, {w, z} /∈ E(G) and w ≺ x.
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Now we are ready to show that there is an optimal solution that has the described
properties with respect to the given proper interval ordering.

I Lemma 9. There exists an optimal solution I
Ĝ
that has the consecutive strong property

with respect to σ.

Lemma 9 suggests to find an optimal solution that has the consecutive strong property
with respect to σ. In fact by Proposition 5 and the proper interval ordering, this reduces to
computing the largest proper interval subgraph H of G such that the vertices of every P3 of
H induce a clique in G.

Let G be a proper interval graph and let σ = 〈v1, . . . , vn〉 be its proper interval ordering.
For a vertex vi we denote by `(i) and r(i) the positions of its leftmost and rightmost neighbors,
respectively, in σ. Observe that for any two vertices vi ≺ vj in σ, v`(i) � v`(j) and vr(i) � vr(j)
[8]. For 1 ≤ j ≤ r(1), let Vj = {v1, . . . , vj}, that is, Vj contains the first j vertices in σ.
Observe that any subset of vertices of Vj induces a clique in G. For the set Vj we denote by
B(Vj) the value that corresponds to the total weight of the edges incident to v1 and each of
v2, . . . , vj .

Let A(G) be the value of an optimal solution I
Ĝ

for G. For technical reasons we assume
that vivi is an edge of G with weight equal to zero. For every vertex vi we denote by L[i] = i

and R[i] = r(i). The vectors L and R are called the rightmost limits of the vertices. Let
A(G,L,R) be the value of the optimal solution I(G,L,R) such that for every vertex vi its
rightmost strong neighbor vk lies between the positions L[i] and R[i]. That is, for every
vertex vi with vivk ∈ I(G,L,R) and k as large as possible, L[i] ≤ k ≤ R[i] holds. The key
idea is that we try all positions j among the rightmost limits of the first vertex v1. This is
achieved through the consecutive strong property by making v1 strongly adjacent to every
vertex of Vj . Then, however, we need to update accordingly the rightmost limits of each
vertex of Vj in order to obey the consecutive strong property. As a trivial case observe that
if G contains exactly one vertex then A(G) = 0.

I Lemma 10. Let G be a proper interval graph and let L and R be the rightmost limits of
the vertices with respect to σ. Then A(G) = A(G,L,R) and

A(G,L,R) = max
L[1]≤j≤R[1]

{A(G− {v1}, Lj , Rj) +B(Vj)} ,

where Lj [i] =
{
j if i ≤ j,
L[i] otherwise

and Rj [i] =
{

min{r(1), R[i]} if i ≤ j,
R[i] otherwise.

Now we are equipped with our necessary tools in order to obtain our main result, namely
a polynomial-time algorithm that solves the MaxSTC problem on proper interval graphs.

I Theorem 11. There is a polynomial-time algorithm that computes the MaxSTC of a
proper interval graph.

5 Concluding remarks

Given the first study with positive and negative results for the MaxSTC problem on
restricted input, there are some interesting open problems. As we pointed out MaxSTC
is more difficult than Cluster Deletion in the following sense: a solution for Cluster
Deletion forms a solution for MaxSTC but the converse is not necessarily true. We have
given examples showing that such an observation carries out for split graphs as well as for
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proper interval graphs. Despite the structural difference of both problems, our result on
split graphs points out an important and interesting complexity difference between the two
problems: on split graphs Cluster Deletion has already been shown to be polynomially
solvable [3] whereas we prove that MaxSTC remains NP-complete. It is interesting to
explore other graph classes that exhibit the same behavior. Towards such a direction observe
that every problem expressible in monadic second order logic (MSOL) with quantification
over the vertices and vertex sets can be solved in linear time for graphs of bounded treewidth
[7]. Indeed, MaxSTC can be formulated in MSOL: (i) the edges are partitioned into two
subsets ES , EW (i.e., a strong-weak labeling), (ii) the endpoints of every path of length two
spanned by the edges of ES have an edge (i.e., satisfy the strong triadic closure), and (iii)
|ES | is as large as possible. Therefore there is a linear-time algorithm for MaxSTC on
graphs of bounded treewidth [7].

Apart from the structural properties that we proved for the solution on proper interval
graphs, the complexity of MaxSTC on interval graphs is still open. Moreover it is natural
to characterize the graphs for which their line-incompatibility graph is perfect. Such a
characterization will lead to further polynomial cases of MaxSTC, since the problem of
finding a maximum independent set of perfect graphs admits a polynomial solution [13]. A
typical example is the class of bipartite graphs for which their line graph coincides with
their line-incompatibility graph and it is known that the line graph of a bipartite graph is
perfect (see for e.g., [4]). As we show next, another paradigm of this type is the class of
trivially-perfect graphs.

A graph G is called trivially-perfect (also known as quasi-threshold) if for each induced
subgraph H of G, the number of maximal cliques of H is equal to the maximum size of an
independent set of H. It is known that the class of trivially-perfect graphs coincides with
the class of (P4, C4)-free graphs, that is every trivially-perfect graph has no induced P4 or
C4 [11]. A cograph is a graph without an induced P4, that is a cograph is a P4-free graph.
Hence trivially-perfect graphs form a subclass of cographs.

I Theorem 12. The line-incompatibility graph of a trivially-perfect graph is a cograph.

By Theorem 12 and the fact that the maximum independent set of a cograph can be
computed in linear time [6], MaxSTC can be solved in polynomial time on trivially-perfect
graphs. We would like to note that the line-incompatibility graph of a cograph or a proper
interval graph is not necessarily a perfect graph.

More general there are extensions and variations of the MaxSTC problem that are
interesting to consider as proposed in [28]. An interesting and realistic problem is to allow
multiple types of strong edges S0, S1, . . . , Sk that do not allow violating “ordered” P3’s.
More precisely the objective is to partition the edges of G into S0, S1, . . . , Sk with k ≥ 1
so that there is no pair of edges {u, v} ∈ Si and {v, w} ∈ Si such that {u,w} /∈ E(G) and
|S1|+ · · ·+ |Sk| is as large as possible.
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Abstract
Motivated by the question of simultaneous embedding of several flow maps, we consider the
problem of drawing multiple geometric Steiner arborescences with no crossings in the rectilinear
and in the angle-restricted setting. When terminal-to-root paths are allowed to turn freely,
we show that two rectilinear Steiner arborescences have a non-crossing drawing if neither tree
necessarily completely disconnects the other tree and if the roots of both trees are “free”. If
the roots are not free, then we can reduce the decision problem to 2SAT. If terminal-to-root
paths are allowed to turn only at Steiner points, then it is NP-hard to decide whether multiple
rectilinear Steiner arborescences have a non-crossing drawing. The setting of angle-restricted
Steiner arborescences is more subtle than the rectilinear case. Our NP-hardness result extends,
but testing whether there exists a non-crossing drawing if the roots of both trees are free requires
additional conditions to be fulfilled.
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1 Introduction

Flow maps are used in cartography to visualize the movement of objects between different
locations. Generally, multiple sources are connected to multiple destinations with curves of
varying thickness indicating the amount of flow. A good layout of a flow map consists of
“simple” aesthetically pleasing curves, and avoids unnecessary intersections. Specifically, in
this paper we are interested in drawing flow maps with no crossings at all. That is, given
a set of source points and a set of destination points, we are looking to connect the source
points to their corresponding destinations without intersections. For the sake of readability,
the curves of a flow map should roughly be oriented from the source to the destination
(or vice versa). This poses restrictions on the curves, which in related work [5] has been
formalized using the notion of angle-restricted paths: for every point p on the path, the angle
γ between the tangent vector at p and the vector from p to the source can be at most a
prescribed angle α (see Figure 1).

∗ I.K. was partially supported by the Netherlands Organisation for Scientific Research (NWO) under
grant number 639.023.208. I.K. was also supported by F.R.S.-FNRS.

† B.S. was partially supported by the Netherlands Organisation for Scientific Research (NWO) under
grant number 639.023.208.

‡ K.V. was supported by the Netherlands Organisation for Scientific Research (NWO) under grant number
639.021.541.

© Irina Kostitsyna, Bettina Speckmann, and Kevin Verbeek;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 54; pp. 54:1–54:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.54
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


54:2 Non-Crossing Geometric Steiner Arborescences

r
pγ

2α

Figure 1 Angle-restricted
path: γ is bounded by α.
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Figure 2 A rectilinear Steiner arborescence and a flux tree
with eight terminals.

The notion of angle-restricted paths is closely related to that of so-called generalized
self-approaching paths. A ϕ-self-approaching path, as defined by Aichholzer et al. in [2], is a
path such that for any point p on it, the rest of the path lies inside some wedge with apex
in p and with angle ϕ. Accordingly, any angle-restricted path with angular constraint α is
also generalized self-approaching for angle ϕ = 2α: for every point p on the path from some
destination to its source r, the remainder of the path is contained in a wedge with angle 2α,
with apex at p, and with r lying on its bisector. On the other hand, any α-self-approaching
path is also angle-restricted with constraint α.

In a way, angle-restricted paths behave similarly to (xy-monotone) rectilinear paths. In
this case, for every point p on the path, the subpath between p and the source r is bounded
by an axis-aligned 90◦ wedge with the apex at p that contains r. We therefore study the
following problems in this paper. Given a set of source points and a set of corresponding
destination points, is it possible to connect all sources to their respective destinations using
only angle-restricted paths (or xy-monotone paths in the rectilinear case) such that there
are no intersections? The rectilinear case offers a somewhat simpler setting that is more
amenable to analysis and allows us to clearly illustrate our main techniques.

In practice, a flow map will often have a small number of source points connected to
multiple destination points to show the comparison of a certain commodity flow between
several geographic locations, or to compare several types of commodities. Thus, we can
group the flows in a flow map by a common source point to represent the out-flow of a given
commodity from a specific location. Our problem is equivalent to drawing non-intersecting
flow trees with angle-restricted (or xy-monotone for rectilinear) leaf-to-root paths. This
approach has an important advantage of considering relevant flows together, and thus allowing
for the possibility of merging similar flows which are going to the same source. A resulting
merge point will then be a Steiner point, and the flow tree will be a Steiner arborescence
(a tree with directed edges in the direction from the root). Buchin et al. [5] introduced
angle-restricted Steiner arborescences, or flux trees, as a new variant of drawing flow trees.
They study the problem of drawing a flux tree of minimal total length, and, among other
results, show that the branches of an optimal flux tree consist of arcs of logarithmic spirals.
Figure 2 shows an example of a rectilinear Steiner arborescence and a flux tree.

For two or more sets of input points, non-crossing Steiner arborescences need not even
exist. Nonetheless, they are very relevant in practice. A single flux tree can show information
about only one source, but ideally multiple sources should be shown simultaneously, in
such a way that the corresponding flux trees have few or no crossings. To the best of our
knowledge, these problems have not yet been studied. In this paper we are therefore studying
the decision question of whether there exists a simultaneous non-crossing drawing of multiple
geometric Steiner arborescences. Specifically, given a set of k roots (sources) r1, . . . , rk ∈ R2,
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and k sets of terminals (destinations) T1, . . . , Tk ⊂ R2, do there exist k non-crossing Steiner
arborescences which connect each set of terminals Ti to its root ri, such that the leaf-to-root
paths are angle-restricted (or xy-monotone for rectilinear)?

When talking about flows in a flow map, we assume the (standard in the literature)
root-to-terminal orientation of the flows1. However, when drawing a flow tree, we start from
a terminal and move towards the root. Thus, the direction of the paths in the construction
of the trees is opposite to the flows in the flow map. When needed, we will explicitly state
which orientation is considered to avoid any ambiguity.

Related work. The Euclidean Steiner tree problem and its variants have been studied
extensively. Although most of these problems are NP-hard, many efficient approximation
algorithms are known [3, 10]. However, if we want to compute multiple Steiner trees for
multiple point sets, such that the Steiner trees have no or few crossings, then there are
very few results. Aichholzer et al. [1] give an algorithm that, given two sets of n points in
the plane, computes in O(n logn) time two spanning trees (not Steiner trees) such that the
diameters of the trees and the number of intersections between the trees are small. Similar
(weaker) results have also been obtained for drawing more than two plane spanning trees
with few crossings [7, 9]. Recently, Bereg et al. [4] presented approximation algorithms for
computing k disjoint Steiner trees for k point sets, with approximation ratios O(

√
n log k)

and k + ε for general k, (5/3 + ε) for k = 3, and a PTAS for k = 2. Other relevant related
work considers obtaining particular subgraphs of given geometric or topological graphs with
few or no crossings [6, 8, 11, 12]. These problems are often NP-hard, except for certain
special cases [12], but they differ from general Steiner tree problems, as the selected edges
must be part of the input graph.

Preliminaries. In this paper, we focus mostly on the case of drawing two flow trees, i.e.,
when k = 2. When considering only two trees, we refer to the first tree as the red tree, with
root r1 and terminals T1 = {p1, . . . , pn}, and the second tree as the blue tree with root r2 and
terminals T2 = {q1, . . . , qm}. When studying multiple rectilinear Steiner arborescences, we
generally allow the use of different axes for different trees. This way, the rectilinear problem
is more similar to the more involved angle-restricted (flux trees) version of the problem.

It follows from the restriction on the paths that the path between a terminal and its root
must completely lie in a particular region. For rectilinear Steiner arborescences this is the
axes-aligned rectangle spanned by the root and the terminal. For flux tree this region is
bounded by two curves traced by points for which the angle between the tangent and the
direction to the destination is exactly α. These curves are in fact logarithmic spirals, and
hence the above region is called the spiral region [5] (see Figure 3). Here we refer to these
regions as R-regions, and denote the R-region given by a root r and a terminal t by R(r, t).

I Definition 1. Two R-regions R(r1, pi) and R(r2, qj) fully intersect if r1, pi /∈ R(r2, qj),
r2, qj /∈ R(r1, pi), and segments r1pi and r2qj intersect.

It is easy to verify that two non-crossing Steiner arborescences do not exist if there are two
R-regions R(r1, pi) and R(r2, qj) that fully intersect for pi ∈ T1 and qj ∈ T2 (see Figure 3):
any two paths routed within the respective R-regions must intersect.

1 The same flow map can as well be used to represent an in-flow of a product with the flows oriented
from terminals to roots.
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Figure 3 Two R-regions fully intersect. Figure 4 Limited turns: no drawing.

When drawing (the paths of) Steiner arborescences, we will consider two models. In the
limited turns model, we restrict the segments of a terminal-to-root path of a flux tree to only
follow one of the two logarithmic spirals implied by the location of the corresponding root,
and prohibit the path from making a turn anywhere except for maybe at a merging point
with another path. Similarly, in the limited turns model in the rectilinear case, we restrict
terminal-to-root paths to be rectilinear, and prohibit the paths from making a turn except
for at a merging point with another path (or at a corner of an R-region). In the free turns
model, we allow the paths to follow any angle-restricted (or xy-monotone) curves as long as
there is no crossings. The limited turns model can be quite restrictive. Figure 4 shows an
example where a non-crossing drawing of two rectilinear Steiner arborescences exists only if
free turns are allowed.

Results. In Section 2.1 we show that two rectilinear Steiner arborescences, in the case
when the roots are not contained inside any R-regions, have a non-crossing drawing in the
free turns model if and only if no two R-regions fully intersect. In Section 2.2 we lift the
constraint on the roots and show how to reduce the decision problem to 2SAT. For flux trees
the problem is more involved: R-regions of flux trees can have more complicated interactions.
Contrary to rectilinear Steiner arborescences, it is not sufficient for flux trees to consider
only full intersections of R-regions if the roots are not contained in R-regions. Nonetheless
we can extend our arguments for rectilinear Steiner arborescences to show that, in the case
when the roots are not contained in R-regions, we can decide in polynomial time if two flux
trees have a non-crossing drawing. Due to space constraints we provide only a sketch of this
extension in Section 3; refer to the full version of this paper for details. In the limited turns
model we can show that it is NP-hard to decide whether an arbitrary number of rectilinear
Steiner arborescences or flux trees have a non-crossing drawing. This result, as well as all
the omitted proofs, can be found in the full version of this paper.

2 Two rectilinear Steiner arborescences

In this section we show how to decide if a non-crossing drawing of two rectilinear Steiner
arborescences in the free turns model exists and how to construct such a drawing if the
answer is positive. We consider the general case, when the axes of the arborescences are not
aligned. The free turn model implies that, in principle, the paths of the trees can approximate
any xy-monotone curve. We show that we can restrict the directions of the paths to the 8
directions implied by the axes of the two rectilinear Steiner arborescences.
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Figure 5 Non-crossing drawings of two Steiner arborescences.

2.1 Roots not contained in R-regions
Consider the four quadrants of the coordinate system of the red arborescence ordered counter-
clockwise, and the four quadrants of the blue arborescence ordered clockwise. Let the first
quadrants be the ones containing the other root (see Figure 5). In the arrangement of the
four coordinate axes there are eleven faces, to which we refer by the two corresponding
quadrants. For simplicity of presentation, we assume that no terminal lies on an axis of the
other color. Let Cb be a cone with angle range [0, π2 ] in the red coordinate system with the
apex in the blue root, and let Cr be a cone with angle range [0, π2 ] in the blue coordinate
system with the apex in the red root. If the roots are not contained in the R-regions of the
other tree then there are no red terminals in Cb, and there are no blue terminals in Cr.

Given a red terminal p, and some xy-monotone path πp connecting p to r1, define a dead
region D2(πp) with respect to the blue root r2 to be the union of all points q such that path
πp intersects region R(q, r2) and disconnects q from r2. Analogously, given a blue terminal q
and some xy-monotone path πq connecting q to r2, define a dead region D1(πq) to be the
union of all points p such that path πq disconnects p from r1 in region R(p, r1).

Observe that πp is on the boundary of D2(πp), and that the rest of the boundary consists
of lines parallel to blue axes. For example, in Figure 6, D2(πp) is bounded on one side by
a line that goes through r1 that is parallel to the blue y-axis. On the other side D2(πp) is
bounded by a line parallel to the blue y-axis that goes through p, as p is in the blue quadrant
II. If p were, for example, in blue quadrant I, than the bounding line would be parallel to
blue x-axis. Also note that there are terminals p such that D2(πp) only consists of the points
of πp.

I Definition 2. Given a red terminal p such that r2 6∈ R(p, r1), define the dead region D2(p)
with respect to r2 to be the intersection of dead regions D2(πp) for all possible paths πp
connecting p to r1:

D2(p) =
⋂
πp

D2(πp) .

Define the dead region D1(q) of a blue terminal q analogously.

I Proposition 3. For a red terminal p 6∈ R(q, r2) and a blue terminal q 6∈ R(p, r1), the
following three statements are equivalent: (a) q ∈ D2(p), (b) p ∈ D1(q), (c) R(p, r1) and
R(q, r2) fully intersect.

Note that there can exist terminals whose dead regions are empty. For example, if p ∈ I ∩ I
then there is a path connecting p to r1 that does not obstruct routing of any possible blue
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Figure 6 Dead regions: of a path πp (left) and of a terminal p (right).

(a) I ∩ II. (b) II ∩ II. (c) III ∩ I. (d) III ∩ IV.

Figure 7 Red terminal p, blue terminal q, the corresponding dead regions D2(p) (light red) and
D1(q) (light blue), and paths π∗

p and π∗
q connecting p to r1 and q to r2. Cones Cr and Cb are denoted

with dashed red and blue lines respectively.

terminal. Consider the eight faces of the arrangement of the four axes except for faces I ∩ I,
I∩ IV, and IV∩ I. For terminals p and q in them, D2(p) and D1(q) are not empty. Moreover,
in these faces p ∈ D2(p) and q ∈ D1(q). Denote π∗

p to be the path that connects p to r1 along
the boundary of D2(p) (refer to Figure 6 (right)). Similarly, denote π∗

q to be the path that
connects q to r2 along the boundary of D1(q). We can show that:

I Proposition 4. Paths π∗
p and π∗

q are xy-monotone in the red and blue coordinate systems,
respectively.

Therefore π∗
p and π∗

q are valid paths connecting p to r1 and q to r2. From Proposition 3 it
follows that if a blue terminal q 6∈ D2(p) then π∗

p does not intersect π∗
q . Figure 7 illustrates

some of the possible placements of p and q such that their dead regions D2(p) and D1(q) are
not empty.

Routing rules. Note that two cases, when there is a red terminal p in I∩ II and when there
is a blue terminal q in II ∩ I, are mutually exclusive. Otherwise there is no crossing free
drawing of the arborescences. Table 1 gives a full list of all mutually exclusive cases. We will
prove that, given two roots and two sets of terminals such that no two R-regions of opposite
colors fully intersect, there exists a non-crossing drawing of two Steiner arborescences. We
can draw two non-crossing Steiner arborescences using the following routing rules:
Rule 1. If a red terminal p ∈ (II ∪ III)\Cr (refer to Figure 7 (b, c, d)), or p is in faces I ∩ II,

I ∩ III, IV ∩ III, or IV ∩ IV (refer to Figure 7 (a)), then connect p to r1 along π∗
p.

Rule 2. If a blue terminal q ∈ (II ∪ III)\Cb (refer to Figure 7 (a, b)), or q is in faces II ∩ I,
III ∩ I, III ∩ IV, or IV ∩ IV (refer to Figure 7 (c, d) respectively), then connect q to r2
along π∗

q .
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Table 1 Mutually exclusive cases of locations
of red and blue terminals.

red terminals blue terminals
(a) in I ∩ II vs. (b) in II ∩ I,
(c) in I ∩ III vs. (d) in III ∩ I,
(e) in I ∩ IV vs. (f) in IV ∩ I,
(g) in III ∩ IV vs. (h) in IV ∩ III,
(i) in I ∩ III vs. (j) in IV ∩ IV,
(k) in IV ∩ IV vs. (l) in III ∩ I.

x

x

y
y

Figure 8 Rule 3.

I-I

(a) routing in I ∩ I when ∃ red
terminals in I ∩ II

I-I

(b) routing in I∩ I when ∃ blue
terminals in II ∩ I

I-IV

(c) routing in I∩IV when ∃ red
terminals in I ∩ III

I-IV

(d) routing in I ∩ IV when ∃
blue terminals in IV ∩ IV

IV-I

(e) routing in IV ∩ I when ∃
blue terminals in III ∩ I

IV-I

(f) routing in IV∩ I when ∃ red
terminals in IV ∩ IV

Figure 9 Routing rules for drawing rectilinear Steiner arborescences. Shaded regions denote dead
regions.

Rule 3. Route the red terminals in cone Cr parallel to the red y-axis until reaching the x-axis,
then along it. Route the blue terminals in Cb parallel to the blue y-axis until the x-axis,
then along it. For aesthetics, we can add a shortcut in the direction of one of the axes of
the opposite color (see Figure 8).

After applying Rules 1–3, all the terminals outside of I∩ I, I∩ IV, and IV∩ I are connected
to the roots. We use the following routing rules for the remaining terminals (see Figure 9).
Rule 4. Face I ∩ I: in case (a) (in Table 1), red edges are drawn parallel to the red x-axis

until the red y-axis, then follow it, blue edges are drawn parallel to the red x-axis, until a
blue axis, then follow it to the root; in case (b), blue edges are drawn parallel to the blue
x-axis until the blue y-axis, then follow it, red edges are drawn parallel to the blue x-axis
until a red axis, then follow it.

Rule 5. Face I ∩ IV: in case (i) (in Table 1), red edges are drawn parallel to the red y-axis
then along the red x-axis, blue edges are drawn parallel to the red y-axis then along the
blue y-axis; in case (j), red edges are drawn parallel to the blue x-axis then along the red
x-axis, blue edges are drawn parallel to the blue x-axis then along the blue y-axis.

ISAAC 2017
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p`

r2

qj

pi

r1

Figure 10 Definition 6.

Rule 6. Face IV ∩ I: in case (k) (in Table 1), red edges are drawn parallel to the red x-axis
then along the red y-axis, blue edges are drawn parallel to the red x-axis then along the
blue x-axis; in case (l), blue edges are drawn parallel to the blue y-axis then along the
blue x-axis, red edges are drawn parallel to the blue y-axis then along a red axis.

Theorem 5 now follows from the definition of the dead regions and a case analysis over
faces containing red and blue terminals.

I Theorem 5. If the roots are not contained in R-regions, then two rectilinear Steiner
arborescences can be drawn with no crossings in the free turn model if and only if no two
R-regions fully intersect.

2.2 Roots contained in R-regions
We now relax the restriction that the roots cannot be contained in R-regions. Hence, for
any R-region that contains the root of the other color, we need to make a choice of how to
route the terminal-to-root path around the other root. This choice clearly can affect later
decisions.

Before we proceed, we introduce some additional definitions. Points r and t split the
boundary of R(t, r) into two pieces that we call the left and the right sides (with respect to
moving from t to r).

I Definition 6. We say that R(pi, r1) cuts the left (right) side of R(qj , r2), if r1 ∈ R(qj , r2),
and both sides of R(pi, r1) intersect the left (right) side of R(qj , r2) (refer to Figure 10).

We can define a dead region of a terminal p for a fixed direction a p-to-r1 path must take
around r2:

I Definition 7. A left (right) dead region D2(p, left) (D2(p, right)) with respect to r2, for a
given red terminal p such that r2 ∈ R(p, r1), is the intersection of dead regions D2(πp) for all
possible paths πp connecting r1 to p that pass between r2 and the left (right) side of R(p, r1):

D2(p, left) =
⋂

left πp

D2(πp) , D2(p, right) =
⋂

right πp

D2(πp) .

Analogously, define D1(q, left) and D1(q, right). Note that we can make a similar observation
for left and right dead regions as for dead regions. Let blue root r2 ∈ R(p, r1). A blue
terminal q lies in D2(p, left) (D2(p, right)) if and only if R(q, r2) cuts the left (right) side of
R(p, r1).

We reduce the problem of choosing the direction of the path with respect to the other root
by reducing it to 2SAT. We assign a boolean variable to each R-region containing the root of
the other color, which takes its value according to the direction in which the terminal-to-root
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p1
p2

q1

r1 r2

q2

q3

Figure 11 Dead regions for two flux trees.

q1

r1 r2

q2

p

Figure 12 R(p, rq) does not fully intersect
R(q1, r2) nor R(q2, r2). Nevertheless, there is no
angle-restricted path from p to r1 that does not in-
tersect paths from q1 and q2 to r2. Areas highlighted
in light-blue are the dead regions of q1 and q2.

path goes around the other root. Given a 2SAT formula solution, we can apply the routing
rules and connect the terminals to their roots along the boundaries of the dead regions.

I Theorem 8. We can decide in polynomial time whether two rectilinear Steiner arborescences
can be drawn without crossings in the free turn model.

3 Two flux trees

In this section we sketch how to draw two flux trees with no root containment in R-regions
in the model when free turns are allowed. The details can be found in the full version of this
paper. Similarly to the rectilinear case, free turns imply that a terminal-to-root path can be
any angle-restricted curve. Any angle-restricted curve can be approximated with a curve
following only four types of logarithmic spirals: left-handed and right-handed, or simply left
and right, spirals (left spirals spiral in clockwise direction when moving towards the root,
right spirals spiral in counter-clockwise direction) with their origins in the red and blue roots.
Thus we can restrict our drawing to these four types of spirals.

Similarly to the rectilinear case, we define the areas Cr and Cb which should be empty of
blue and red terminals respectively (to fulfill the no-root-containment requirement). These
areas are bounded by the spirals centered at one root and going through the other root.

Analogously to the rectilinear case, we can define a dead region of a path, and a dead
region of a terminal point. Figure 11 shows an example of several terminals and their dead
regions. The dead regions are bounded by two logarithmic spirals going through a terminal
and centered at the two roots. Consider, for example, red terminal p2 in Figure 11. Part of
the blue spiral that goes through p2 is hidden from root r2 by the red spiral connecting p2
to r1. Therefore, for any terminal q above the red spiral, but below the blue spiral (area
shaded light-red in the figure), R(q, r2) will fully intersect R(p2, r1).

A red and a blue logarithmic spiral can intersect more than once inside the area R2\(Cr∪Cb).
This fact can cause some dead regions to consist of several connected components (for
example, blue terminal q3 in Figure 11). Moreover, we no longer can consider the dead
regions independently, as we did in the rectilinear setting. Consider the example in Figure 12.
Point p does not belong to the dead region of q1 nor of q2 (R(p, r1) does not fully intersect
R(q1, r2) nor R(q2, r2)). Nevertheless, no angle-restricted path connecting p to r1 can avoid
paths from q1 and q2 to r2. Indeed, any angle-restricted path from p to r1 will intersect
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Ab

At

Bt
2Bt

1

Bb
2Bb

1

CbCr

Dt

Db

Figure 13 Regions At, Ab, Bt
1, Bt

2, Bb
1, Bb

2, Dt, and Db.

either the dead region of q1 or the dead region of q2. Thus, when two or more dead regions
intersect, they block some area outside of them that becomes forbidden for the terminals of
the other color. We will call this area an extended dead region.

To formally define the extended dead region, we need to introduce some notation. Let
s+
r (p) and s−

r (p) be respectively the spiral segments of the right and left logarithmic spirals,
centered at r1 and going through p, which are bounded by R2\(Cr ∪ Cb); and let s+

b (q) and
s−
b (q) be respectively the spiral segments of the right and left logarithmic spirals, centered at
r2 and going through q, which are bounded by R2\(Cr ∪ Cb). Let R2

+ be the half-plane to the
left of r1r2, and R2

− be the half-plane to the right of r1r2.

I Definition 9. Given k blue terminals Q = {q1, q2, . . . , qk} in R2
+\(Cr ∪ Cb), such that the

component of the dead region D1(qi) containing qi intersects the left side of R(qi+1, r2) for
all 1 ≤ i < k, and Q is maximal, define the extended dead region D1(Q) with respect to the
red root r1 to be:

D1(Q) =
⋃

1≤i<k

Fi ,

where Fi is the area enclosed between the left sides of R(qi, r2) and R(qi+1, r2), and the two
red spiral segments s+

r (qi) and s+
r (qk).

Similarly define the extended dead region D1(Q) of a set Q of blue terminals lying in the
bottom half-plane, and the extended dead regions D2(P ) of a set P of red terminals for the
top and the bottom half-planes.

We will show that there exists a non-crossing drawing of two flux trees, given that the
roots are not contained in any R-region, if and only if no terminal lies inside a dead region
or an extended dead region of the other color.

Routing rules. We can partition R2 into several regions such that we can specify the routing
rules for terminals within each region separately (see Figure 13): At and Ab are bounded
by r1r2 and two circular arcs with an angle subtended by the chord r1r2 equal to π − 2α;
Bt1, Bt2, Bb1, and Bb2 are bounded by the arcs of At and Ab, the boundaries of the regions
Cr and Cb, and by a spiral going through the topmost or the bottommost point of the arcs;
Dt = R2

+\(Cr ∪ Cb ∪At ∪Bt1 ∪Bt2), and Db = R2
−\(Cr ∪ Cb ∪Ab ∪Bb1 ∪Bb2). An important

observation is that in At and Ab red paths can be routed along blue spirals and vice versa.
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(a) Rule 2. (b) Rule 4. (c) Rules 4 and 5.

Figure 14 Routing rules for drawing flux trees.

We can now introduce the following routing rules to draw two non-crossing flux trees if
there were no terminals of the other color in the dead regions. Refer to Figure 14 for the
illustrations of the rules. Note that Rules 4 and 5 can introduce some intersections, that we
will uncross afterwards.

Rule 1. Route red and blue terminals in Dt in Db along their respective spiral segments s+
r ,

s−
b , s−

r , or s+
b until reaching the boundary of Cr or Cb;

Rule 2. For all blue extended dead regions, route the corresponding sets of blue terminals
Q = {q1, . . . , qk} in R2

+ in the following way: route q1 along a blue spiral segment s−
b (q1)

until it reaches Cb; for every 1 < i ≤ k, route qi along the boundary of its dead region
and then along the boundary of the extended dead region until reaching s−

b (q1) (merging
with the path from q1 to r2) or the boundary of the cone Cb;

Rule 3. For all red extended dead regions, route the corresponding sets of red terminals
P = {p1, . . . , pk} in R2

− in the following way: route p1 along a red spiral segment s−
r (p1)

until it reaches Cr; for every 1 < i ≤ k, route pi along the boundary of its dead region,
then along the boundary of the extended dead region until reaching s−

r (p1) (merging with
the path from p1 to r1) or the boundary of the cone Cr;

Rule 4. The rest of the blue terminals in R2
+ route along their left blue spiral segments until

reaching the boundary of cone Cb; the rest of the red terminals in R2
+ route along a right

red spiral within region Bt2, along a left blue spiral within At, and along right red spiral
within Bt1 until reaching the cone Cr;

Rule 5. The rest of the red terminals in R2
− route along their left red spiral segments until

reaching the boundary of cone Cr; the rest of the blue terminals in R2
− route along a right

blue spiral within Bb1, along a left red spiral within Ab, and along right blue spiral within
Bb2 until reaching the cone Cb;

Rule 6. Finally, route all the blue paths along the boundary of Cb to r2 and all the red paths
along the boundary of Cr to r1. Red terminals in Cr and blue terminals in Cb can be
routed arbitrarily (joining when necessary) within those cones towards their respective
roots.

As mentioned, after applying Rules 4 and 5, some intersections are possible. Specifically,
red and blue paths can intersect within regions Bt1, Bt2, Bb1, or Bb2. Red and blue paths
do not intersect within At or Ab, as they follow non-intersecting spirals; and red and blue
paths do not intersect within Dt or Db, otherwise the corresponding R-regions would fully
intersect.

Consider a red terminal p and a blue terminal q in R2
+ such that their paths, constructed

by the presented routing rules, intersect. These paths can intersect only once, due to the
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Figure 15 Two non-crossing drawings of flux trees for α = 60◦ (left) and α = 30◦ (right).

difference of curvatures of spirals in Bt1 and Bt2, and because within At these paths follow
non-intersecting spirals. There can be two cases: (a) the intersection point is in Bt1; and (b)
the intersection point is in Bt2.

In the first case, the blue terminal q is in Bt1, and the red path crosses its dead region
D1(q). Then reroute the red path along the boundary of the dead region D1(q), when it
first encounters it. If q is a part of a set of blue terminals that define an extended dead
region, then reroute the red path along the boundary of the extended dead region when it
first encounters it. The new red path will not intersect any other blue paths, otherwise these
paths would be a part of the set defining the extended dead region.

In the second case, when intersection point is inside Bt2, the red terminal p is in Bt2. Let f
be the intersection point of the red path with the boundary between At and Bt2. Consider the
left side of R(p, rq). It intersects the blue path exactly two times, otherwise the R-regions of
p and q would fully intersect. Let g be the intersection point of the left side of R(p, rq) and
the blue path inside At. Consider all the blue paths that intersect the red spiral segment
s+
r (p) between points f and g. Reroute all these paths along the red spiral segment s+

r (p)
when they first encounter it, until they reach point g, then route the merged path along
a new blue spiral segment s−

b (g) within Bt2. Let the red path continue following the red
spiral segment s+

r (p) when it enters At until it reaches point f , then let the red path follow
the blue spiral segment s−

b (f) “parallel” to the rest of the paths in At. Note, that if there
was a part of the red path in R2

−, the new path may completely lie in R2
+. This procedure

essentially brings the part of the blue path(s) that was above the red path under it.

The symmetrical cases in the bottom half-plane can be dealt with similarly. And if the
terminals lie in the different half-planes, their paths can intersect once or twice. However,
the method for uncrossing such paths completely mirrors the cases for when p and q lie in
the same half-plane. Figure 15 shows the final result of the procedure. In the full version of
this paper we prove the following theorem.

I Theorem 10. A drawing of two non-crossing flux trees with no root containment in R-
regions exists if and only if no terminal lies in a dead region or an extended dead region of
the other color. If it exists, such a drawing can be constructed in polynomial time.
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4 Conclusion and Future Work

In this paper we study the problem of drawing a flow map with non-crossing curves that
have to be oriented approximately towards the source. We have shown that we can efficiently
decide if two rectilinear Steiner arborescences can be drawn without crossings, if we require
the paths to simply be xy-monotone with no other restrictions. Similarly, we show how to
draw two non-intersecting flux trees in the case when their roots are not contained in the
other tree’s R-regions.

With an extra restriction on the paths that prohibits free turns, the problem becomes
NP-hard for k Steiner arborescences, where k is part of the input. We conjecture that this
problem is also NP-hard for k = 2. Whether the problem is NP-hard for more than two
Steiner arborescences in the free turn model is left as an open problem.
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Abstract
We introduce a version of the Min Sum Set Cover (MSSC) problem in which there are “AND” pre-
cedence constraints on them sets. In the Precedence-Constrained Min Sum Set Cover (PCMSSC)
problem, when interpreted as directed edges, the constraints induce an acyclic directed graph.
PCMSSC models the aim of scheduling software tests to prioritize the rate of fault detection
subject to dependencies between tests.

Our greedy scheme for PCMSSC is similar to the approaches of Feige, Lovász, and, Tetali for
MSSC, and Chekuri and Motwani for precedence-constrained scheduling to minimize weighted
completion time. With a factor-4 increase in approximation ratio, we reduce PCMSSC to the
problem of finding a maximum-density precedence-closed sub-family of sets, where density is
the ratio of sub-family union size to cardinality. We provide a greedy factor-

√
m algorithm for

maximizing density; on forests of in-trees, we show this algorithm finds an optimal solution.
Harnessing an alternative greedy argument of Chekuri and Kumar for Maximum Coverage with
Group Budget Constraints, on forests of out-trees, we design an algorithm with approximation
ratio equal to maximum tree height.

Finally, with a reduction from the Planted Dense Subgraph detection problem, we show
that its conjectured hardness implies there is no polynomial-time algorithm for PCMSSC with
approximation factor in O(m1/12−ε).
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1 Introduction

In this paper, we introduce the Precedence-Constrained Min Sum Set Cover problem,
which has connections to Min Sum Set Cover, Densest Subgraph, Precedence-
Constrained Scheduling to Minimize Total Weighted Completion Time, Schedul-
ing with AND/OR Precedence Constraints, and several other problems.
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55:2 Precedence-Constrained Min Sum Set Cover

Problem definition. Just like Set Cover, or indeed Min Sum Set Cover (aka MSSC),
the input to Precedence-Constrained Min Sum Set Cover (aka PCMSSC) is a family
of sets, F , whose union is the universe, U . In addition, there is a binary precedence relation
on F , represented by ≺. Let G(F ,≺) stand for the directed graph that ≺ induces on F .
Throughout this presentation, we assume G is acyclic. The output is a permutation, π, of
the family of sets, F , that obeys the precedence relation ≺. That is, if A ≺ B, then A must
precede B in the permutation: π−1(A) < π−1(B). The objective value, to be minimized,
is the sum over every item in U of its first covering time in the permutation. That is, for
each item u, let τ(u) = minA∈F{π−1(A) : u ∈ A} be the index of the earliest set in π that
includes item u; the objective is

∑
u∈U τ(u). For convenience, let n be the number of items

in the universe |U |, and let m be the cardinality of the family of sets |F|, and index the
permutation π from 1 to m.

1.1 Application
In the software testing context, we would like to schedule test sequences to prioritize the
rate of fault detection. However, there may be inherent dependencies between the tests –
some test cases need to be scheduled before others – complicating the process of ordering
the test suite [18]. Though they perform well, existing algorithms for test case prioritization
subject to dependencies, are heuristic in their effectiveness [18, 17]. The PCMSSC problem
crystallizes the aims and constraints of this software test prioritization problem in a way
that admits analysis and approximation, yet is realistic. PCMSSC is a small extension
of one existing combinatorial optimization question, MSSC, and a refinement of another,
Scheduling with AND/OR Precedence Constraints (aka SAOPC).

1.2 Theoretical context
The original MSSC problem has the same objective as PCMSSC, to minimize

∑
u∈U τ(u),

but it permits every ordering π of F . Feige, Lovász and Tetali’s greedy algorithm for
MSSC [10] starts from an empty ordering π and is simply: While |π| < m, append to π a
set maximizing the number of (yet) uncovered items. Via a clever pricing and histogram
argument, they show that this is a 4-approximation; they also show that this is the best
possible unless P equals NP.

Chekuri and Motwani attack the Precedence-Constrained Scheduling to Minimize
Total Weighted Completion Time (aka PCSTW) problem, which has the same
precedence structure as PCMSSC. Here, however, the total weighted completion times
objective is additive, whereas set coverage is (only) monotone submodular. Chekuri and
Motwani’s factor-2 algorithm for PCSTW repeatedly (and optimally) solves the subproblem
Minimum-Rank Precedence-Closed Subgraph (aka MRPCS) [7]. The rank of a family
of jobs is the ratio of its total processing time to its total weight.

Key sub-problem definition. To produce an approximation algorithm for PCMSSC, we
combine the ideas of Feige et al. and Chekuri and Motwani. We study a problem we call
Max-Density Precedence-Closed Subfamily (aka MDPCS): in some sense, density
is the reciprocal of rank. We let the coverage of sub-family, A of F , be the union of the
sets in the sub-family: cov(A) ≡ ∪A∈AA. Often, we consider the coverage of a sub-family
on some subset X of the universe: cov(A, X) = cov(A) ∩ X. The density, ∆, of a non-
empty sub-family on subset X is the ratio of the size of its coverage to its cardinality:
∆(A, X) ≡ |cov(A, X)|/|A|. (When it is obvious, we omit the second argument of ∆.)
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Algorithm 1 Algorithm PCMSSC-Greedy.
1: function PCMSSC-Greedy(F ,≺)
2: π ← an “empty permutation”
3: G ← F ; R← U

4: while R 6= ∅ do
5: A ← D(G,≺, R)
6: Append to π some permutation of A consistent with ≺
7: G ← G \ A; R← R \ cov(A)
8: Return π

For convenience’ sake, ∆(∅, X) is defined to be negative. The MDPCS problem seeks a
sub-family A of some input family of sets G that maximizes density on a remaining set
of items to be covered, R, with R ⊆ cov(G), and is precedence closed. That is, the aim
is to maximize ∆(A, R), with the requirement that if A ≺ B and B ∈ A, then A ∈ A.
Were sets in G pairwise disjoint, we could adopt Chekuri and Motwani’s approach for
MRPCS, but in general, it is highly unlikely that such a polynomial-time optimal algorithm
exists for MDPCS. Indeed, our hardness-of-approximation result for MDPCS arises from a
connection to Densest k-Subgraph, whereas Chekuri and Motwani’s max-flow algorithm
solves MRPCS in polynomial time, similar to the approach for Densest Subgraph [12].

1.3 Our results
We first show that an approximately good solution to MDPCS provides, within factor 4, an
approximately good solution to PCMSSC.

We describe a greedy algorithm, MDPCS-Greedy, for MDPCS that obtains a
√
m

approximation, and show that (up to a factor 2) this analysis is tight. We extend MDPCS-
Greedy to be iteratively greedy, and again show that O(

√
m) is the best approximation

we can obtain. If the precedence relation, ≺, induces a forest of in-trees, we show that
MDPCS-Greedy in fact solves MDPCS optimally in polynomial time. If the precedence
relation, ≺, induces a forest of out-trees, we introduce a polynomial-time approximation with
factor equal to the largest tree height.

Consistent with the large approximation factors found in our algorithms, we show there
is no approximation algorithm for PCMSSC with factor in O(m1/12−ε). This result assumes
the Planted Dense Subgraph Conjecture (aka PDSC), which states that it is hard to
find inside an Erdős-Rényi graph a planted dense E-R component. Recently, hardness of
approximation of the Target Set Selection problem was shown via a reduction from
Planted Densest Subgraph and its conjectured hardness [5].

2 Reduction to Max-Density Precedence-Closed Subfamily

In this section, we show that PCMSSC reduces to MDPCS. Suppose we have an algorithm,D,
that returns a factor-α approximation solution to MDPCS. Consider the greedy scheme in
Algorithm 1 for PCMSSC, which we call PCMSSC-Greedy.

Since D is a polynomial-time algorithm (and X only gets smaller), since the while loop
runs at most n times, and since topological sorting takes polynomial time, PCMSSC-
Greedy runs in polynomial time. We now prove that this scheme is in fact an approximation
algorithm.

Although factor α might be a function of both m and n, we assume α is monotonically
non-decreasing in both, so we can safely let α stand for α(m,n) in the following.
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Figure 1 Mapping from upper-bound plot B to one with area a factor 4 · α smaller.

I Lemma 1. PCMSSC-Greedy is a 4 · α approximation algorithm to PCMSSC.

Proof. Let Ai be the sub-family returned by D in iteration i of PCMSSC-Greedy, and
let mi =

∑i
j=1 |Aj |. Also, let Ri be the subset of U not yet covered after i− 1 iterations,

{u : τ(u) > mi−1}, and let Xi ⊆ Ri be the subset of U that is first covered by some set
in Ai, {u : mi−1 < τ(u) ≤ mi}.

We can upper-bound the cost of PCMSSC-Greedy by
∑
i |Ri||Ai|. At worst, each of

the Xi items is covered by the last set in Ai, number mi; hence, at iteration i, appending (a
permutation of) Ai to π increases the cover time of all items in Ri by (at most) |Ai|.

To prove the approximation factor, we adapt the argument of Feige et al. [10]. Consider
a plot of cover time against item number, where we order u ∈ U by τ(u) (Figure 1).

That is, on (u− 1, u] the plot has height τ(u), and the plot is non-decreasing on (0, n].
The PCMSSC solution cost is the area under plot on (0, n]. The upper bound for the
PCMSSC-Greedy solution in the previous paragraph can be viewed as a series of horizontal
slices, of height |Ai| and width |Ri|, with slices “right-aligned”. That is, slice i is the
rectangle (n− |Ri|, n]× (mi−1,mi]. The plot defined by the upper boundary of this series
of slices, which we call B, lies not below the plot for PCMSSC-Greedy. We show that,
with area shrunk by factor of 1/(4α), a mapping of plot B lies not above the plot for (every)
optimal solution, OPT, on (0, n]. Since the area under the plot represents solution cost, we
conclude that PCMSSC-Greedy is a 4 · α approximation.

Mapping. We map slice i to a column of height hi ≡ |Ai||Ri|/(2α|Xi|) and width |Xi|/2,
positioned between |Ri|/2 and |Ri+1|/2 “elements” from the right-hand end of the curve for
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Algorithm 2 Algorithm MDPCS-Greedy.
1: function MDPCS-Greedy(G, ≺, R)
2: A ← G
3: for each S ∈ G do
4: if ∆(P[S], R) > ∆(A, R) then
5: A ← P[S]
6: return A

OPT. This column is the rectangle (n− |Ri|/2, n− |Ri+1|/2]× (0, hi]. (Sets appended to π
after all elements of U are covered do not contribute to the solution cost, so we omit them
from this analysis, and thus assume |Xi| > 0.) Since hi|Xi|/2 = |Ai||Ri|/(4α), this mapping
produces a plot whose area is a factor 4α smaller than plot B. The following claim suffices
to prove Lemma 1, where OPT[j] is the prefix of j sets in permutation OPT (of F).

I Claim 2. For all i with |Ri| > 0, |cov(OPT[bhic], Ri)| ≤ |Ri|/2.

The proof of Claim 2 follows soon. Meanwhile, finalizing the proof of Lemma 1, Claim 2
shows that even after the first bhic sets of solution OPT, there are at least |Ri|/2 uncovered
items (of Ri). Therefore the plot for OPT rises to a height at least bhic + 1 ≥ hi, at a
horizontal position at most n−|Ri|/2. For all i, the top-left corner of the ith mapped column
is at position (hi, n− |Ri|/2); since the plot for OPT is non-decreasing, this rectangle fits
entirely within the plot for OPT, and we have the desired shrunken plot. J

Proof of Claim 2. Let π◦j stand for π after j−1 iterations of the loop in PCMSSC-Greedy.
Abusing notation (as OPT and π are sequences, not families of sets), if OPT[bhic] ⊆ π ◦ i, the
claim is trivially true, since |cov(OPT[bhic], Ri)| = 0. We hence assume that OPT[bhic]\π ◦ i
is non-empty. On its ith instantiation, algorithm D returns a sub-family, Ai, whose density
∆(Ai, Ri) is ≥ 1/α times the maximum-density precedence-closed subfamily of sets. Since
sub-family OPT[bhic] is precedence closed with respect to F , so is OPT[bhic] \ π ◦ i with
respect to Gi = F \ π ◦ i, and it was thus “considered” by D, so

|cov(OPT[bhic] \ π ◦ i), Ri)|
|OPT[bhic] \ π ◦ i|

≤ α · |Xi|
|Ai|

. (1)

Now, Ri is exactly those items not in cov(π◦i), and |OPT[bhic]\π◦i| ≤ bhic, so inequality (1)
leads to |cov(OPT[bhic], Ri)| ≤ αhi |Xi|/|Ai|. Substituting hi = |Ai||Ri|/(2α|Xi|) into this,
we obtain |cov(OPT[bhic], Ri)| ≤ |Ri|/2. J

3 Algorithms for Max-Density Precedence-Closed Subfamily

In this section, we introduce a general greedy method for MDPCS, optimal on in-trees, and
an alternative approach for out-tree forests, with factor equal to maximum tree height.

3.1 Greedy
Recall that the input to MDPCS is a family of sets G and a set of items to be covered R.
Let P[S] be the minimal precedence-closed sub-family of G containing S ∈ G: that is, the
ancestors of S (including S itself). Our greedy algorithm for MDPCS, in Algorithm 2 (which
we call MDPCS-Greedy), returns the denser of G and the best of the P[S] solutions.
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By the definition of P , MDPCS-Greedy returns a feasible solution. We let δP-max stand
for the maximum of ∆(P [S], R) over all S ∈ G. If every set in G covers at least one item in R,
then δP-max ≥ 1. However, since PCMSSC-Greedy could involve a sequence of depleting
instances of MDPCS, there is no guarantee that each set in G contains an item in R.

I Lemma 3. MDPCS-Greedy is a
√
m approximation to MDPCS. If δP-max ≥ 1,

MDPCS-Greedy is a
√
n approximation to MDPCS.

Proof. Consider some optimal solution sub-family, OPT, and let k stand for its cardinality.
For each S1, S2, . . . , Sk in OPT, the density of P[Si] is at most δP-max and, by definition,
P[Si] is a sub-family of OPT. Therefore,

|cov(OPT, R)| = |∪ki=1cov(P[Si], R)| ≤
k∑
i=1
|cov(P[Si], R)| ≤ δP-max

k∑
i=1
|P[Si]| ≤ δP-max·k2 ,

where the first inequality observes the definition of union, while the remarks above justify
the second and third inequalities. Therefore ∆(OPT, R)/δP-max ≤ k.

On the other hand, ∆(OPT, R) ≤ |R|/k, but MDPCS-Greedy returnsA with ∆(A, R) ≥
∆(G, R) = |R|/m. Hence the approximation ratio is at most min(k,m/k) ≤

√
m. If δP-max ≥

1, then the approximation ratio is at most min(k, |R|/k) ≤
√
|R| ≤

√
n. J

Indeed, these factors for MDPCS-Greedy are tight, up to a factor two. And without the
assumption δP-max ≥ 1, there are instance collections on which MDPCS-Greedy achieves
only an Ω(n) approximation. Alternatively, we could iterate MDPCS-Greedy, repeatedly
choosing a sub-family of the form P[S] (for some S ∈ G) that when added to the current
solution maximizes the density of the sub-family, similar to the greedy algorithm for Set
Cover. Again, there is a collection of instances in which this scheme returns only an O(

√
n)

(or O(
√
m)) approximation.

3.2 Forest of in-trees
If graph G(F ,≺), and hence graph G(G,≺) has a special structure, similarly explored in the
context of Partially Ordered Knapsack [15], MDPCS admits better approximation
factors. We start with G a forest of in-trees: for all A in F , at most one set immediately
depends on A, that is |{B ∈ F : A ≺ B}| ≤ 1. Consequently, for all A,B ∈ F , either P[A]
and P [B] are disjoint, or (wlog) A ∈ P [B]. Therefore, a solution in such an input is a union
of disjoint sub-families P[S1],P[S2], . . . . In an optimal solution, each sub-family P[Si] has
optimum density, so MDPCS-Greedy will (in polynomial time) find an optimal solution.

3.3 Forest of out-trees
We consider the “opposite” scenario, in which the in-degree of each set is at most one: that is,
for all A, |{B ∈ F : B ≺ A}| ≤ 1. Focusing on the graph G(F ,≺), each connected component
of G is a rooted out-tree. Here, we introduce another greedy algorithm, which provides
an approximation factor equal to the largest tree height. It acts recursively, adopting the
approach of Chekuri and Kumar [6] for the Maximum Coverage Problem with Group
Budget Constraints, and so adds 1 to the approximation factor at each tree level.

Let OPT be some optimal solution to MDPCS on G, and let δOPT be its density,
∆(OPT, R): therefore, cov(OPT, R)− δOPT|OPT| = 0. Our recursive algorithm DT , shown
in Algorithm 3, has as input (σ+ 1, T, δOPT, R

′), where σ+ 1 is an “approximation factor”, T
a tree, and R′ ⊆ R a subset of items to be covered. Let t @ T denote that t is a subtree of T
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Algorithm 3 Algorithm DT called with (σ + 1, T, δOPT, R
′).

1: function DT (σ + 1, T, δOPT, R
′)

2: r ← root of T
3: R′0 ← R′, A0

T ← {r}
4: Solutions← {∅,A0

T }
5: R′ ← R′ \ cov(A0

T )
6: κ← number of children of r
7: for j = 1 to κ do
8: Let Tj be the subtree rooted at the jth child of r
9: for i = 1 to κ do

10: Candidates← ∅
11: for each child j of r s.t. no sub-family of Tj has yet been added to Ai−1

T do
12: Add the output Ai,jT of DT (σ, Tj , δOPT, R

′) to Candidates
13: Let Ai,j∗T be the tree t in Candidates that maximizes σ|cov(t, R′)| − δOPT|t|
14: AiT ← A

i−1
T ∪ {Ai,j∗T } . By construction, AiT is a tree.

15: Add AiT to Solutions
16: R′ ← R′ \ cov(AiT )
17: return AT , the tree t in Solutions that maximizes σ|cov(t, R′0)| − δOPT|t|

sharing T ’s root. Let M(T,R′) be the t @ T that maximizes |cov(t, R′)| − δOPT|t|. Given
tree T of height at most σ + 1, we show inductively that DT returns some AT @ T with

(σ + 1)|cov(AT , R′)| − δOPT|AT | ≥ |cov(M(T,R′), R′)| − δOPT|M(T,R′)| . (2)

Broadly, algorithm DT behaves as follows. If the root r of tree T has κ children, DTmakes
a sequence of κ recursive calls to itself. After the i− 1th call, it has a putative solution Ai−1

T

comprising r itself and i − 1 subtrees, each hanging from a different child of r. In the ith
iteration, DT adds a subtree from a “new” child to Ai−1

T . This new subtree has the maximum
value of σcov(t, R′i) − δOPT|t|, where R′i is set R′ during the ith iteration (before step 16).
With first parameter σ + 1, DT returns the best of the κ+ 2 putative solutions (including ∅
and {r}), the subtree AT maximizing σ|cov(AT , R′)| − δOPT|AT |.

I Lemma 4. Given tree T of height ≤ σ + 1, DT (σ + 1, T, δOPT, R
′), returns AT @ T

satisfying inequality (2).

Proof. First, the base case. If σ = 0, and the tree has height 1, the only options are ∅
and {r}. These are easy to evaluate and inequality (2) is easily satisfied.

If σ > 0, consider tree M(T,R′0), where R′0 is the initial value of R′ in DT . Again,
if M(T,R′0) is empty, or if it is {r}, DT will consider those two solutions, so will return
some solution satisfying (2). Therefore, assume tree M(T,R′0) comprises root r and subtrees
hanging from κ∗ ≤ κ children. We focus analysis on Aκ∗T . Although DT does not know κ∗, it
generates AiT for all i ≤ κ, returning the best of these, at least as good as Aκ∗T .

We renumber root r’s children to match the order in which they contribute to Aκ∗T , so
that j∗ = i on each iteration. The construction ofM(T,R′0) can also be interpreted iteratively,
so that at iteration i it adds a subtree hanging from child number iM ; let that subtree be
called MiM (T,R′0). However, we insist that if M(T,R′0) contains a subtree hanging from
child i ≤ κ∗, it is chosen at iteration i.

Consider the subtree added to Aκ∗T in iteration i, Ai,iT . If Ai,iT is different fromMiM (T,R′0),
it must be because DT (σ, Ti, δOPT, R

′
i) returned Ai,iT , which had the largest value for t ∈
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Candidates (children numbered i and above) of σ|cov(t, R′i)| − δOPT|t|, while tree M(T,R′0)
added a subtree from child iM ≥ i, giving inequality (3), as follows

σ|cov(Ai,iT , R
′
i)| − δOPT|Ai,iT | ≥ σ|cov(Ai,iMT , R′i)| − δOPT|Ai,iMT | (3)

≥ |cov(M(TiM , R′i), R′i)| − δOPT|M(TiM , R′i)| (4)
≥ |cov(MiM (T,R′0), R′i)| − δOPT|MiM (T,R′0)| , (5)

while inequality (4) arises from the inductive argument about DT (σ, . . .), while inequality (5)
flows from the optimality ofM(TiM , R′i) on (TiM , R′i). If in factAi,iT is the same asMiM (T,R′0),
then the overall inequality (3) – (5) holds because σ ≥ 1.

The coverage of Aκ∗T on R′0 is the union of cov({r}, R′0) and ∪κ∗i=1cov(Ai,iT , R′i). From the
definition of R′i (step 16 of DT ), the cov(·) sets are disjoint. Since also σ ≥ 1,

σ|cov(Aκ
∗

T , R
′
0)| − δOPT|Aκ

∗

T |

≥ [|cov({r}, R′0)| − δOPT] +
κ∗∑
i=1

[
σ|cov(Ai,iT , R

′
0)| − δOPT|Ai,iT |

]
,

and, by applying overall inequality (3) – (5), this is

≥ [|cov({r}, R′0)| − δOPT] +
κ∗∑
i=1

[|cov(MiM (T,R′0), R′i)| − δOPT|MiM (T,R′0)|]

= |cov({r}, R′0)|+
[
κ∗∑
i=1
|cov(MiM (T,R′0), R′i)|

]
− δOPT|M(T,R′0)| , (6)

For each iteration i, inspired by Chekuri and Kumar [6], we have

cov(MiM (T,R′
0), R′

i) ⊇ cov(MiM (T,R′
0), R′

0 \ cov(Aκ
∗
T , R′

0) ) ,

so, cov({r}, R′
0) ∪

κ∗⋃
i=1

cov(MiM (T,R′
0), R′

i) ⊇

(
cov({r}, R′

0) ∪
κ∗⋃
i=1

cov(MiM (T,R′
0), R′

0)

)
\

cov(Aκ
∗
T , R′

0) .

Applying the union bound to the LHS and the composition of M(T,R′
0) to the RHS,

|cov({r}, R′
0)|+

κ∗∑
i=1

|cov(MiM (T,R′
0), R′

i)| ≥ |cov(M(T,R′
0), R′

0) \ cov(Aκ
∗
T , R′

0)|

≥ |cov(M(T,R′
0), R′

0)| − |cov(Aκ
∗
T , R′

0)| .

Combining this with the inequality ending at (6), we see that

σ|cov(Aκ
∗

T , R
′
0)| − δOPT|Aκ

∗

T | ≥
(
|cov(M(T,R′0), R′0)| − |cov(Aκ

∗

T , R
′
0)|
)
−

δOPT|M(T,R′0)| ,

∴ (σ + 1)|cov(Aκ
∗

T , R
′
0)| − δOPT|Aκ

∗

T | ≥ |cov(M(T,R′0), R′0)| − δOPT|M(T,R′0)| . J

For a forest of out-trees, we return the best individual tree solution generated by DT . Without
knowing the value of δOPT, there are only mn possible values, so we can in polynomial time
try them all and return the densest sub-forest. Finally, for OPT, the right-hand side of
inequality (2) is zero, so Lemma 4 shows DT returns a tree with density at least δOPT divided
by maximum tree height.
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4 Hardness of approximation

Apart from the in-tree case, which is in P, the approximation factors for PCMSSC are
polynomial. In this section, we show that such factors are to be “expected”. We show a
hardness reduction to PCMSSC from the Planted Dense Subgraph Conjecture, which
is a statement about the difficulty of finding a dense component in an Erdős-Rényi graph [5].
Our inspiration here is Burge, Munagala and Srivastava’s hardness-of-approximation reduction
from Densest k-Subgraph for pipelined query operators [4].

First, we define the Planted Dense Subgraph Conjecture, where N is the input
graph’s order, α its log density, k the order of the planted component, and β its log density.

I Definition 5. The problem PDS(N, k, α, β) has as input a graph with probability 1/2
drawn from G(N,Nα−1) and with probability 1/2 drawn from G(N,Nα−1), in which some k
vertices are chosen uniformly from N and on them is added a subgraph drawn from G(k, kβ−1).
The task is to correctly report from which of the two distributions the graph was drawn.

I Conjecture 6 (Planted Dense Subgraph Conjecture). For all ε > 0, k ≥
√
N ,

and β < α, no probabilistic polytime algorithm can, with advantage > ε, solve PDS(N, k, α, β).

We show that identifying an ordering π with low PCMSSC score solves PDS almost surely.

I Lemma 7. Assuming the Planted Dense Subgraph Conjecture, there is no poly-time
algorithm that, for ε > 0, approximates PCMSSC within factor O(n1/6−ε) nor O(m1/12−ε).

Proof. First, let k =
√
N , α = 1/2 and β = 1/2− γ, for some γ > 0. Given graph H([N ], E),

the input to PDS, define family F to be Nλ vertex sets, together with an edge set for each edge
in E . More specifically, the vertex sets are Vu,i for each u ∈ {1, . . . , N} and i ∈ {1, . . . , λ},
while the edge sets are Eu,v for each (u, v) ∈ E . For convenience, let U = {0, 1, . . . , n}, so
that |U | = n+ 1, with U+ = {1, . . . , n}.

The ≺ relation acts as follows: every edge set must be preceded by all “copies” of each of
its endpoints’ vertex sets. That is, for all (u, v) ∈ E and for all i, Vu,i ≺ Eu,v and Vv,i ≺ Eu,v.

We now define the composition of the sets in F . Every vertex set comprises the same
item: Vu,i = {0}, for all u, i. To define the edge sets, we associate items with vertices: let the
set of items associated with vertex v be Uv. (This association is merely a vehicle to define
edge sets, and is distinct from vertex-set composition.) The construction is randomized, based
on parameter p ∈ (0, 1): each item in U+ is associated with each vertex in H independently,
with probability p. Hence E[|Uv|] = np, while for all j ∈ U+, E[|{v : j ∈ Uv}|] = Np. For
each edge (u, v), we define Eu,v to be Uu ∩ Uv, with expected size np2.

Choosing p. If there is a planted component, P, it (just) covers all of U : this drives our
selection of p. There are

√
N vertices in P , and each item j is in

√
Np of the Uv sets, on average.

We expect (ignoring constants) around Np2 vertex pairs in P where j is associated with both.
The probability of each vertex pair having an edge is, independently, kβ−1 = (N1/2)(−1/2−γ) =
N−(1/4+γ/2). Therefore, E[|Eu,v ∈ P : j ∈ Eu,v|] ≈ Np2N−(1/4+γ/2) = N3/4−γ/2p2. So this
is close to 1, we set p = 32 ·N (−3+γ′)/8 logN , with γ′ = 2γ.

Planted component. If there is a planted component P, we show a “good” PCMSSC
solution. Suppose that π starts with all Vu,i for all u ∈ P followed by Eu,v for all u, v ∈ P
(edges E in P). The number of sets so far is λ

√
N plus a random value highly concentrated

around
√
N(
√
N − 1)N−(1/4+γ/2)/2, hence ≤ N3/4−γ/2 with high probability (whp). The
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claim below proves U is covered whp by these P-based sets. If so, the PCMSSC cost is whp
bounded by n(λ

√
N +N3/4−γ/2).

I Claim 8. If H was generated with a planted component, P, then with high probability all
items in U+ are covered by the planted component’s edge sets.

Proof of Claim 8. The expected number of Uv in P containing j is
√
Np, so

Pr[|v ∈ P : j ∈ Uv| ≤
√
Np/2] ≤ exp(−

√
Np/8) = exp(−4 ·N (1+γ′)/8 logN) ,

via Chernoff bounds, which is tiny. Therefore, and since
(
x
2
)
≥ x2/4 for large enough x, the

probability that the number of pairs of vertices in P where j is associated with both is at
most Np2/16 is (also) at most exp(−4 ·N (1+γ′)/8 logN).

For each such pair, there is an edge actually present with probability N−(1/4+γ/2).
Item-association and edge-presence events are independent, so in expectation j is in at least

µ = (Np2/16)N−(1/4+γ/2) = 322(log2 N)/16

edge sets in P. For all j ∈ U+, again via Chernoff bounds,

Pr[|{(u, v) ∈ EP : j ∈ Eu,v}| ≤ µ/2] ≤ exp(−(64 logN)/8) = N−8 .

Taking the union over all n items in U+, the probability that some item is uncovered by the
edge sets in P is at most n/N8, which is very small (below, we choose n to be o(N)). J

No planted component. We show that if there is no planted component, even after several
vertex and edge sets have appeared in π, there is a significant portion of items not yet covered,
pushing the PCMSSC score very high.

Consider a solution to PCMSSC derived from x vertices and their induced edges. The
number of vertex sets is λx and the number of vertex pairs is ≈ x2/2. The expected number
of edges is ≤ x2/

√
N , but there are in fact

(
N
x

)
≤ Nx such sets of N vertices. Via the

Chernoff bound, the probability that all of them have at most 3/2 their average number of
edges, µE , is at most Nx exp(−µE/12). If we would like this probability to be at most 1/N8,
say, then let µE ≥ 12(x + 8) logN . Since the number of vertex pairs is at least x2/4, and
hence µE ≥ x2/(4

√
N), there is a very low probability of exceeding x2/

√
N edges across all

sets of x vertices if x ≥ 500
√
N logN .

By construction, each edge set has on average np2 items. The probability that some
edge set related to at least one of the at most x2/

√
N edges has more than 2np2 items is

at most (x2/
√
N) exp(−np2/12). If n ≥ 200 logN/p2, which is satisfied by n ∈ Ω(N3/4),

because x ≤ N , this probability is tiny.
Even ignoring the possibility of edge sets covering common items, we conclude that

whp, after λx vertex sets and x2/
√
N edge sets appear in π, at most 2np2x2/

√
N ≤

2048 · nN (−5+γ′)/4x2(log2 N) items have been covered. Hence if x ≤ N (5−2γ′)/8, then there
are o(n) items covered. With Ω(n) items uncovered, the PCMSSC score is at least a constant
multiplied by n(λN (5−2γ′)/8 +N (3−2γ′)/4).

Letting λ grow to at least N1/4 and letting γ′ shrink, whp the asymptotic ratio between
this cost and the cost in the planted case (just before Claim 8) tends arbitrarily close to N1/8.
Since n ∈ Θ(N3/4) permits our probability bounds, whp there is a gap of Θ(n1/6−ε), for
all ε > 0, in the PCMSSC costs between the two cases. Likewise, the number of sets m in
the input is highly concentrated around λN + N3/2, which is Θ(N3/2). An algorithm for
PCMSSC with an approximation factor better than Θ(n1/6−ε) or Θ(m1/12−ε), for all ε > 0,
could solve PDS with very significant advantage. From this, we conclude Lemma 7. J
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5 Related work

The Min-Sum Vertex Cover problem – the special case of MSSC where each set has
two items – admits a 2-approximation algorithm [10]. In database theory, MSSC has been
referred to as the Pipelined Set Cover problem. This model typically allows for different
processing times (or costs) on the sets, and has been given an alternative (but still factor-4)
approximation algorithm [19].

In web search theory, a generalization of MSSC relating the min-sum objective to
Minimum Latency Set Cover is called Multiple Intents Reranking. This extends
the objective function to allow for different user profiles – relating to how many times each
item needs to be covered [1]. It has also been referred to as the Generalized Min-Sum
Set Cover problem, which has constant-factor approximations [2].

In Scheduling with AND/OR Precedence Constraints (SAOPC), there are two
types of jobs: AND-jobs are available only when all precedences are met, while OR-jobs
only require that at least one of the precedences are met [11]. In fact, PCMSSC is a special
case of SAOPC in which the precedence-constrained sets are AND-jobs, and the item are
OR-jobs. Scheduling to minimize the makespan is Label Cover-hard for general AND/OR
precedences [13], but the reduction has an OR-AND-OR-AND structure: it is unclear whether
PCMSSC is Label Cover-hard, that is [8], hard to approximate within 2log1−1/(log logc n) n.

Erlebach, Kääb, and Möhring prove that minimizing the total completion time in SAOPC
is Label Cover-hard, but that scheduling available jobs with Smith’s shortest processing
time (SPT) rule gives an O(n)-approximation [9]. They further prove that this algorithm
gives an O(

√
n)-approximation for the special case with a single processor where all jobs

have equal weights. However, in PCMSSC, AND jobs have zero weight and unit processing
time, but OR jobs have unit weight and zero processing time.

Finally, in the Partially Ordered Knapsack (aka POK), there is a predecessor ≺
relation, inducing a directed graph, and each vertex has a profit and a weight [15]. The aim is
to find a closed under predecessor set of vertices that maximizes total profit subject to a total
weight constraint. For in- and out-trees, Johnson and Niemi consider pseudo-polynomial
algorithms that are nonetheless efficient in practice, as well as an FPTAS (with running time
proportional to 1/ε) derived from a standard PTAS approach for knapsack problems [15].

Kolliopoulos and Steiner [16] provide an FPTAS for POK when the underlying order is two
dimensional. They note that Hajiaghayi et al. [14] show that POK is hard to approximate
within 2logδ n, that POK generalizes Densest k-Subgraph, and that a constant-factor
algorithm for Partially Ordered Knapsack would provide a sub-factor-2 approximation
for PCSTW. Indeed, the Minimum-Rank Precedence-Closed Subgraph problem that
Chekuri and Motwani solve optimally is a minimize-ratio version of POK; again, there
is some connection to the difference in approximability between Densest Subgraph and
Densest k-Subgraph. Borradaile, Heeringa, and Wilfong [3] examine variants of POK
with undirected graphs, and 1-neighbor as well as all-neighbor precedence requirements.

Acknowledgements. We thank Tim Miller for the foundational software-testing problem.
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Abstract
In the stable marriage problem, we are given a set of men, a set of women, and each person’s
preference list. Our task is to find a stable matching, that is, a matching admitting no unmatched
(man, woman)-pair each of which improves the situation by being matched together. It is known
that any instance admits at least one stable matching. In this paper, we consider a natural
extension where k(≥ 2) sets of preference lists Li (1 ≤ i ≤ k) over the same set of people are
given, and the aim is to find a jointly stable matching, a matching that is stable with respect
to all Li. We show that the decision problem is NP-complete already for k = 2, even if each
person’s preference list is of length at most four, while it is solvable in linear time for any k if
each man’s preference list is of length at most two (women’s lists can be of unbounded length).
We also show that if each woman’s preference lists are same in all Li, then the problem can be
solved in linear time.

1998 ACM Subject Classification G.2.1 Combinatorics

Keywords and phrases stable marriage problem, stable matching, NP-completeness, linear time
algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.56

1 Introduction

In this paper, we focus on the stable marriage problem [3] with incomplete preference lists
(SMI ). An instance I of SMI is a triple I = (U,W,L), where U and W are the sets of men
and women, respectively, such that |U | = |W |(= n), and L is the set of 2n preference lists,
one for each person. A person p’s preference list in L is denoted by L(p). Each person’s
preference list strictly orders a subset of the members of the opposite gender. If a person p
is included in L(q), we say that p is acceptable to q. If p is acceptable to q and vice versa,
(p, q) is called an acceptable pair.

A matching is a set of acceptable (man, woman)-pairs in which no person appears more
than once. For a matching M , a man m, and a woman w, if (m,w) ∈ M then we write
M(m) = w and M(w) = m. If there is no w (respectively, m) such that (m,w) ∈M , we say
that m (respectively, w) is single or unmatched in M . For a matching M , if (i) (m,w) is an
acceptable pair, (ii) m is single in M or prefers w to M(m), and (iii) w is single in M or
prefers m to M(w), then we say that (m,w) is a blocking pair for M in L, or (m,w) blocks
M in L. If there is no blocking pair for M in L, then we say that M is stable in L. It is
well-known that any SMI instance admits at least one stable matching [3].
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In this paper, we consider an extension of SMI where two or more sets of preference lists
are given. An instance I of the Stable Marriage problem with k Incomplete lists (SMkI) is a
(k+2)-tuple I = (U,W,L1, L2, . . . , Lk), where U andW are the same as above, and each Li is
a set of preference lists. It asks if there exists a matching M that is stable in every Li. Such a
matching M is called jointly stable. Let a and b be positive integers. The restriction of SMkI
where the lengths of preference lists of men are at most a and those of women are at most
b is denoted by (a, b)-SMkI. If a (respectively, b) is ∞, it means that the lengths of men’s
(respectively, women’s) preference lists are unbounded. Surprisingly, although this problem
is a natural extension of the classical stable marriage problem, to the best of the authors’
knowledge it has not been considered before in the literature. Note that since the number
of stable matchings grows exponentially in the size of the input [7, 5, 13], an algorithm of
enumerating all the stable matchings for each Li and computing their intersection is not
polynomial-time bounded.

Besides its theoretical interest, the problem has several applications: Consider a scenario
of assigning medical residents to hospitals, where each resident needs to take training in three
fixed clinical departments, e.g., surgery, pediatrics, and internal medicine, at an assigned
hospital. A resident r ranks hospitals according to her preference, but her ranking of hospitals
may differ depending on clinical departments. As a result, she has three (possibly different)
preference lists over hospitals, L1(r) for surgery, L2(r) for pediatrics, and L3(r) for internal
medicine. On the other hand, each clinical department may have its own criteria for ranking
residents, so each hospital h has three independent preference lists over residents, L1(h)
from surgery, L2(h) from pediatrics, and L3(h) from internal medicine. Clearly a blocking
pair in some Li may cause dissatisfaction to the corresponding resident and department, so
we want to avoid such an assignment. Another example is a match making of Judo team
competition. Suppose that there are five different weight classes, and one team consists of
five players, each from each class. As a personal preference, a player p of team T who belongs
to the weight class C is interested in only the players of the same class C, who are potential
candidates for p’s opponent. Therefore, each team has five preference lists corresponding to
weight classes, and a matching avoiding blocking pairs in any class is desirable. Precisely
speaking, the first and the second examples may be suitable to the Hospitals/Residents and
the stable roommates, respectively, but we consider in this paper the stable marriage model
as a first step.

1.1 Our Results
We show that (4, 4)-SMkI is NP-complete for any k ≥ 2, while (2,∞)-SMkI is solvable in
time O(kn) for any k. Therefore the complexity of (3, `)-SMkI for ` ≥ 3 is left open.

We also show that SMkI (with unbounded-length preference lists) is solvable in polynomial
time if L1(w) = L2(w) = · · · = Lk(w) holds for every woman w. This can be thought of as
a case where each woman has only one preference list, and one of its interpretations is a
modification of the previous example of assigning residents to hospitals, where each resident
has three preference lists as above, but each hospital has one preference list determined by
e.g., a personnel director of the hospital, rather than three independent lists coming from
each clinical department.

1.2 Related Work
As noted above, there seems to be no research on stable matching problems considering
multiple preference lists over the same set of people. Only the related work we have found is
the bistable matching problem introduced by Weems [14]; given an instance I of the stable
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marriage problem (where preference lists are complete), let Î be the instance obtained by
reversing the ordering of each preference list of I. A matching is bistable if it is stable in both
I and Î. This is a special case of SM2I where all the preference lists are complete and L1(p)
is a reversed order of L2(p) for every person p. Weems showed an O(n2)-time algorithm to
find a bistable matching or to report that none exists. Sethuraman and Teo [11] showed that
the bistable roommates problem can also be solved in polynomial time. See pages 293–296
of [10] for a brief survey.

2 NP-completeness

In this section, we show the hardness result.

I Theorem 1. For k ≥ 2, (4, 4)-SMkI is NP-complete.

Proof. It is easy to see that (4, 4)-SMkI is in NP. In the following, we show that (4, 4)-SM2I
is NP-hard. To show the NP-hardness for general k, one may simply set L2 = L3 = · · · = Lk

in the reduction.

We give a polynomial-time reduction from the well-known NP-complete problem 3CNF
SAT. The definition of 3CNF SAT is as follows. Let x be a binary variable that takes 1(true)
or 0(false). A literal is a variable x or its negation x. A clause is a disjunction of literals, and
a Conjunctive Normal From (CNF) formula is a conjunction of clauses. A 3CNF formula is
a CNF formula in which each clause contains at most three literals. An instance of 3CNF
SAT is a 3CNF formula f and it asks if there exists an assignment to variables that makes
f true. We may assume without loss of generality that each clause contains exactly three
literals. (If a clause contains less than three literals, then repeat the same literal.)

Let f be an instance of 3CNF SAT, with variables x1, x2, . . . ,

xn and clauses C1, C2, . . . , Cm. We construct an instance I of (4, 4)-SM2I. For each i

(1 ≤ i ≤ n), let si be the number of occurrences of the variable xi. For the jth literal of the
variable xi (1 ≤ j ≤ si), we introduce two men ai,j and bi,j and two women ci,j and di,j .
We call them literal men and literal women. For each clause C`, we introduce nine men ui

`

(1 ≤ i ≤ 9) and nine women vi
` (1 ≤ i ≤ 9). We call them clause men and clause women.

Note that there are 15m men and 15m women in total.

The preference lists of literal people and clause people are given in Figures 1 and 2,
respectively. In ai,1 and di,1’s preference lists of L2 in Fig. 1, ci,j−1 and bi,j−1 are null; hence
their preference lists are of length two. Similarly, in bi,si

and ci,si
’s preference lists of L2,

di,j+1 and ai,j+1 are null. We then explain Ui,j and Vi,j in Fig. 1. Suppose that the jth
occurrence of xi is the tth literal of the clause C`. If this literal is positive, then Ui,j is null
and Vi,j = v4

` if t = 1, Vi,j = v7
` if t = 2, and Vi,j = v1

` if t = 3. If it is negative, then Vi,j

is null and Ui,j = u1
` if t = 1, Ui,j = u4

` if t = 2, and Ui,j = u7
` if t = 3. Finally, we explain

B`,1, B`,2, B`,3, D`,1, D`,2, and D`,3 in Fig. 2. Suppose that, for t = 1, 2, 3, the tth literal
of the clause C` is the jth occurrence of xi. If this literal is positive, then D`,t is null and
B`,t = bi,j ; otherwise, B`,t is null and D`,t = di,j . Now the reduction is completed. It is
not hard to see that the reduction can be performed in polynomial time and each person’s
preference list is of length at most four.

ISAAC 2017
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L1
ai,j : ci,j di,j ci,j : bi,j ai,j

bi,j : di,j Vi,j ci,j di,j : ai,j Ui,j bi,j

L2
ai,j : ci,j ci,j−1 di,j ci,j : bi,j ai,j+1 ai,j

bi,j : di,j di,j+1 ci,j di,j : ai,j bi,j−1 bi,j

Figure 1 Preference lists of literal people corresponding to the jth occurrence of the variable xi

(1 ≤ j ≤ si).

L1

u1
` : v1

` v2
` D`,1 v3

` v1
` : u2

` u3
` B`,3 u1

`

u2
` : v2

` v3
` v1

` v2
` : u3

` u1
` u2

`

u3
` : v3

` v1
` v2

` v3
` : u1

` u2
` u3

`

u4
` : v4

` v5
` D`,2 v6

` v4
` : u5

` u6
` B`,1 u4

`

u5
` : v5

` v6
` v4

` v5
` : u6

` u4
` u5

`

u6
` : v6

` v4
` v5

` v6
` : u4

` u5
` u6

`

u7
` : v7

` v8
` D`,3 v9

` v7
` : u8

` u9
` B`,2 u7

`

u8
` : v8

` v9
` v7

` v8
` : u9

` u7
` u8

`

u9
` : v9

` v7
` v8

` v9
` : u7

` u8
` u9

`

L2

u1
` : v1

` v4
` v2

` v3
` v1

` : u2
` u3

` u7
` u1

`

u2
` : v2

` v3
` v5

` v1
` v2

` : u3
` u8

` u1
` u2

`

u3
` : v3

` v1
` v2

` v3
` : u1

` u2
` u3

`

u4
` : v5

` v7
` v6

` v4
` v4

` : u4
` u5

` u1
` u6

`

u5
` : v6

` v4
` v8

` v5
` v5

` : u5
` u2

` u6
` u4

`

u6
` : v4

` v5
` v6

` v6
` : u6

` u4
` u5

`

u7
` : v9

` v1
` v7

` v8
` v7

` : u9
` u7

` u4
` u8

`

u8
` : v7

` v8
` v2

` v9
` v8

` : u7
` u5

` u8
` u9

`

u9
` : v8

` v9
` v7

` v9
` : u8

` u9
` u7

`

Figure 2 Preference lists of clause people corresponding to the `th clause.

We then proceed to the correctness proof. We first define partial matchings. For each i
and j, we define M1

i,j = {(ai,j , ci,j), (bi,j , di,j)} and M0
i,j = {(ai,j , di,j), (bi,j , ci,j)}. For each

`, we define

M1
` = {(u1

` , v
3
` ), (u2

` , v
1
` ), (u3

` , v
2
` ), (u4

` , v
4
` ), (u5

` , v
5
` ), (u6

` , v
6
` ), (u7

` , v
8
` ), (u8

` , v
9
` ), (u9

` , v
7
` )},

M2
` = {(u1

` , v
2
` ), (u2

` , v
3
` ), (u3

` , v
1
` ), (u4

` , v
6
` ), (u5

` , v
4
` ), (u6

` , v
5
` ), (u7

` , v
7
` ), (u8

` , v
8
` ), (u9

` , v
9
` )}, and

M3
` = {(u1

` , v
1
` ), (u2

` , v
2
` ), (u3

` , v
3
` ), (u4

` , v
5
` ), (u5

` , v
6
` ), (u6

` , v
4
` ), (u7

` , v
9
` ), (u8

` , v
7
` ), (u9

` , v
8
` )}.
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Suppose that f is satisfiable and let T be a satisfying assignment. We will construct a
jointly stable matching M for I. If T (xi) = 1, then we let M1

i,j ⊆M for all j. If T (xi) = 0,
then we let M0

i,j ⊆M for all j. Suppose that the clause C` is satisfied by its tth literal (if
there are more than one true literal, choose one arbitrarily). Then we let M t

` ⊆M . We show
that M is jointly stable.

I Lemma 2. The matching M constructed as above is jointly stable.

Proof. Consider literal people corresponding to xi, namely ai,j , bi,j , ci,j , and di,j (1 ≤ j ≤ si).
If T (xi) = 1, then all the men are matched with their first choices in both L1 and L2. Similarly,
if T (xi) = 0, then all the women are matched with their first choices. Therefore, no blocking
pair arises within literal people corresponding to the same variable. Since literal people
corresponding to different variables are unacceptable to each other, no blocking pair occurs
between them.

As for the 18 people corresponding to the clause C`, we can easily verify that, in any ofM1
` ,

M2
` , and M3

` , no blocking pair arises among them. Also, since clause people corresponding
to different clauses are unacceptable to each other, no blocking pair occurs between them.

Finally, we consider a possibility of a blocking pair between a literal person and a clause
person. Consider the clause C`. First, suppose that M1

` is chosen as a part of M . By
construction of M , this means that the clause C` is satisfied by its first literal. Suppose that
this literal is the jth occurrence of xi, and that it is a positive literal. Then by construction
of preference lists, D`,1 is null and B`,1 = bi,j , so only the possible blocking pair is (bi,j , v`,4)
in L1. However, since C` is satisfied by the first literal, it must be the case that T (xi) = 1.
By construction of M , M1

i,j ⊆M and hence bi,j is matched with his first choice woman in
L1, so he cannot form a blocking pair. Now suppose that the first literal of C` is the jth
occurrence of xi and it is a negative literal. Then B`,1 is null and D`,1 = di,j , so, only the
possible blocking pair is (u`,1, di,j) in L1. However, since C` is satisfied by the first literal,
we have that T (xi) = 0 and hence di,j is matched with her first choice man in L1, so di,j

cannot form a blocking pair. For the other two cases, that is, the case that M2
` is chosen

and M3
` is chosen, we can show that there is no blocking pair by a similar argument. J

Conversely, suppose that I admits a jointly stable matching M . We construct a satisfying
assignment T of f . First, we see basic properties of M .

I Lemma 3. For each i, either M1
i,j ⊆M for all j, or M0

i,j ⊆M for all j.

Proof. We first show that, for each i and j, either M1
i,j ⊆ M or M0

i,j ⊆ M . Suppose not.
Since ci,j and di,j are the only acceptable men to ai,j and bi,j in L1 and L2 in common,
at least one of ai,j and bi,j , say mi,j , is single in M . For the same reason, at least one of
ci,j and di,j , say wi,j , is single in M . Then (mi,j , wi,j) blocks M (in both L1 and L2), a
contradiction.

Now suppose that the statement of the lemma is false. Then there are i and j (1 ≤ j ≤
si − 1) such that (i) M1

i,j ⊆ M and M0
i,j+1 ⊆ M or (ii) M0

i,j ⊆ M and M1
i,j+1 ⊆ M . In

case of (i), (ai,j+1, ci,j) blocks M in L2, while in case of (ii), (bi,j , di,j+1) blocks M in L2, a
contradiction. J

I Lemma 4. For each `, either M1
` ⊆M , M2

` ⊆M , or M3
` ⊆M .

Proof. Suppose that there is a man m` ∈ {u1
` , u

2
` , u

3
`} who is not matched with any of v1

` ,
v2

` , and v3
` in M . Note that D`,1 is a literal woman (if not null), who is not acceptable to

u1
` in L2. Hence it must be the case that m` is single in M . By a similar argument, there
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Table 1 27 matchings and corresponding blocking pairs in L2.

Matching BP Matching BP Matching BP

X1
` ∪ Y 1

` ∪ Z1
` (u7

` , v1
` ) X2

` ∪ Y 1
` ∪ Z1

` (u5
` , v8

` ) X3
` ∪ Y 1

` ∪ Z1
` (u5

` , v8
` )

X1
` ∪ Y 1

` ∪ Z2
` (u7

` , v1
` ) X2

` ∪ Y 1
` ∪ Z2

` (u8
` , v2

` ) X3
` ∪ Y 1

` ∪ Z2
` –

X1
` ∪ Y 1

` ∪ Z3
` (u4

` , v7
` ) X2

` ∪ Y 1
` ∪ Z3

` (u5
` , v8

` ) X3
` ∪ Y 1

` ∪ Z3
` (u5

` , v8
` )

X1
` ∪ Y 2

` ∪ Z1
` (u7

` , v1
` ) X2

` ∪ Y 2
` ∪ Z1

` (u1
` , v4

` ) X3
` ∪ Y 2

` ∪ Z1
` (u1

` , v4
` )

X1
` ∪ Y 2

` ∪ Z2
` (u7

` , v1
` ) X2

` ∪ Y 2
` ∪ Z2

` (u1
` , v4

` ) X3
` ∪ Y 2

` ∪ Z2
` (u1

` , v4
` )

X1
` ∪ Y 2

` ∪ Z3
` – X2

` ∪ Y 2
` ∪ Z3

` (u1
` , v4

` ) X3
` ∪ Y 2

` ∪ Z3
` (u1

` , v4
` )

X1
` ∪ Y 3

` ∪ Z1
` (u7

` , v1
` ) X2

` ∪ Y 3
` ∪ Z1

` – X3
` ∪ Y 3

` ∪ Z1
` (u2

` , v5
` )

X1
` ∪ Y 3

` ∪ Z2
` (u7

` , v1
` ) X2

` ∪ Y 3
` ∪ Z2

` (u8
` , v2

` ) X3
` ∪ Y 3

` ∪ Z2
` (u2

` , v5
` )

X1
` ∪ Y 3

` ∪ Z3
` (u4

` , v7
` ) X2

` ∪ Y 3
` ∪ Z3

` (u4
` , v7

` ) X3
` ∪ Y 3

` ∪ Z3
` (u2

` , v5
` )

is a woman w` ∈ {v1
` , v

2
` , v

3
`} who is single in M . Then (m`, w`) blocks M in L1 and L2, a

contradiction. Therefore, u1
` , u2

` , and u3
` are matched with v1

` , v2
` , and v3

` in M . There are
six possible ways, namely,

X1
` = {(u1

` , v
1
` ), (u2

` , v
2
` ), (u3

` , v
3
` )}, X2

` = {(u1
` , v

2
` ), (u2

` , v
3
` ), (u3

` , v
1
` )},

X3
` = {(u1

` , v
3
` ), (u2

` , v
1
` ), (u3

` , v
2
` )}, X4

` = {(u1
` , v

1
` ), (u2

` , v
3
` ), (u3

` , v
2
` )},

X5
` = {(u1

` , v
2
` ), (u2

` , v
1
` ), (u3

` , v
3
` )}, and X6

` = {(u1
` , v

3
` ), (u2

` , v
2
` ), (u3

` , v
1
` )}.

It is easy to see that X4
` is blocked by (u3

` , v
1
` ), X5

` is blocked by (u2
` , v

3
` ), and X6

` is blocked
by (u1

` , v
2
` ) in L1. Therefore, only X1

` , X2
` , and X3

` can be a part of M . The same argument
applies to u4

` , u5
` , u6

` , v4
` , v5

` , v6
` and u7

` , u8
` , u9

` , v7
` , v8

` , v9
` , implying that only

Y 1
` = {(u4

` , v
4
` ), (u5

` , v
5
` ), (u6

` , v
6
` )}, Y 2

` = {(u4
` , v

5
` ), (u5

` , v
6
` ), (u6

` , v
4
` )},

Y 3
` = {(u4

` , v
6
` ), (u5

` , v
4
` ), (u6

` , v
5
` )},

and

Z1
` = {(u7

` , v
7
` ), (u8

` , v
8
` ), (u9

` , v
9
` )}, Z2

` = {(u7
` , v

8
` ), (u8

` , v
9
` ), (u9

` , v
7
` )},

Z3
` = {(u7

` , v
9
` ), (u8

` , v
7
` ), (u9

` , v
8
` )}

are valid.
Therefore, there are 27 possible combinations. Note that M1

` = X3
` ∪ Y 1

` ∪ Z2
` , M2

` =
X2

` ∪ Y 3
` ∪ Z1

` , and M3
` = X1

` ∪ Y 2
` ∪ Z3

` . We show that the remaining 24 matchings are
unstable in L2. Table 1 shows 27 matchings in “Matching” columns and corresponding
blocking pairs of 24 matchings in “BP” columns. This completes the proof. J

By Lemma 3, either M1
i,j ⊆M for all j or M0

i,j ⊆M for all j holds. In the former case,
we set T (xi) = 1, otherwise, we set T (xi) = 0. We show that T satisfies f . Suppose not, and
let C` be an unsatisfied clause. For t = 1, 2, 3, let the tth literal of C` be the jtth occurrence
of the variable xit

. We will show three claims:
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Claim 1. M1
` 6⊆M . Consider the first literal of C`. Suppose that it appears positively in

C`. Then by construction of the preference lists, the lists of bi1,j1 and v4
` in L1 are as follows:

bi1,j1 : di1,j1 v4
` ci1,j1 v4

` : u5
` u6

` bi1,j1 u4
`

Since C` is unsatisfied, T (xi1) = 0 and so by construction of T , M0
i1,j1
⊆M , i.e., M(bi1,j1) =

ci1,j1 . If M1
` ⊆M , then M(v4

` ) = u4
` and hence (bi1,j1 , v

4
` ) blocks M in L1, a contradiction.

Next, suppose that the first literal of C` is negative, i.e., xi1 . Then by construction, the
preference lists of di1,j1 and u1

` in L1 are as follows:

u1
` : v1

` v2
` di1,j1 v3

` di1,j1 : ai1,j1 u1
` bi1,j1

Since C` is unsatisfied, T (xi1) = 1 and so by construction of T , M1
i1,j1
⊆M , i.e., M(di1,j1) =

bi1,j1 . If M1
` ⊆M , then M(u1

`) = v3
` and hence (u1

` , di1,j1) blocks M in L1, a contradiction.
Therefore, we can conclude that M1

` 6⊆M .

Claim 2. M2
` 6⊆ M . Consider the second literal of C`, and first suppose that it is a

positive literal, i.e., xi2 . Then by construction, the preference lists of bi2,j2 and v7
` in L1 are

as follows:

bi2,j2 : di2,j2 v7
` ci2,j2 v7

` : u8
` u9

` bi2,j2 u7
`

Since C` is unsatisfied, T (xi2) = 0 and hence by construction of T , M0
i2,j2

⊆ M , i.e.,
M(bi2,j2) = ci2,j2 . If M2

` ⊆ M , then M(v7
` ) = u7

` and hence (bi2,j2 , v
7
` ) blocks M in L1, a

contradiction.
Next, suppose that the second literal of C` is xi2 . Then by construction, the preference

lists of di2,j2 and u4
` in L1 are as follows:

u4
` : v4

` v5
` di2,j2 v6

` di2,j2 : ai2,j2 u4
` bi2,j2

Since C` is unsatisfied, T (xi2) = 1 and by construction of T , M1
i2,j2
⊆M , i.e., M(di2,j2) =

bi2,j2 . If M2
` ⊆M , then M(u4

`) = v6
` and hence (u4

` , di2,j2) blocks M in L1, a contradiction.
Therefore, we can conclude that M2

` 6⊆M .

Claim 3. M3
` 6⊆M . Consider the third literal of C`. First, suppose that it is a positive

literal xi3 . Then by construction, the preference lists of bi3,j3 and v1
` in L1 are as follows:

bi3,j3 : di3,j3 v1
` ci3,j3 v1

` : u2
` u3

` bi3,j3 u1
`

Since C` is unsatisfied, T (xi3) = 0 and thus by construction of T ,M0
i3,j3
⊆M , i.e.,M(bi3,j3) =

ci3,j3 . If M3
` ⊆M , then M(v1

` ) = u1
` and hence (bi3,j3 , v

1
` ) blocks M in L1, a contradiction.

Next, suppose that the third literal of C` is negative, i.e., xi3 . Then by construction, the
preference lists of di3,j3 and u7

` in L1 are as follows:

u7
` : v7

` v8
` di3,j3 v9

` di3,j3 : ai3,j3 u7
` bi3,j3

Since C` is unsatisfied, T (xi3) = 1 and by construction of T , M1
i3,j3
⊆M , i.e., M(di3,j3) =

bi3,j3 . If M3
` ⊆M , then M(u7

`) = v9
` and hence (u7

` , di3,j3) blocks M in L1, a contradiction.
Therefore, we can conclude that M3

` 6⊆M .

From Claims 1, 2, and 3, none of M1
` , M2

` , and M3
` can be a part of M , but this

contradicts Lemma 4. Hence we conclude that T satisfies f , which completes the proof of
Theorem 1. J
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In the above reduction, we have exploited existence of pairs that are acceptable in L1
but not in L2, or vice versa. Then one may be curious about whether SMkI is solvable in
polynomial time if the set of acceptable pairs is the same in all Li. However, this is unlikely,
as shown in the following corollary. Let SMk denote the special case of SMkI where all the
preference lists are complete. Clearly SMk satisfies the above mentioned condition.

I Corollary 5. For k ≥ 2, SMk is NP-complete.

Proof. Apparently SMk ∈ NP. For the NP-hardness, in the reduction given in the proof of
Theorem 1, make every preference list complete by appending missing persons to the tail of
the list in an arbitrary order. It is not hard to see that the same correctness proof (with
slight modifications) applies. J

3 Tractable Cases

In this section, we assume without loss of generality that acceptability is mutual, i.e., m
is acceptable to w in Li if and only if w is acceptable to m in Li. This is because, if for
example m is acceptable to w while w is not acceptable to m, then (m,w) can neither be a
part of a matching nor a blocking pair. Hence we may remove m from w’s list safely, without
changing the set of jointly stable matchings. This preprocessing can be done in time linear
in the total length of the input preference lists.

However, even if (m,w) is an acceptable pair in Li but is an unacceptable pair in Lj

(j 6= i), we must not remove m and w from each other’s list in Li. This is because, although
(m,w) cannot be a pair in a jointly stable matching, it may block some matching in Li and
removing it may change the set of jointly stable matchings.

3.1 Length–Two Preferences Lists of One Side
Our first positive result is for instances in which the length of preference lists of one side,
say men’s side, is bounded by two. The proof of Theorem 6 exploits a partially-ordered set
(poset) of rotations and its relation to the whole set of stable matchings. These structural
properties were originally studied for complete preference lists, but they can be extended
easily and naturally to incomplete preference lists. Here we give brief explanations about
them. See [5] for more detail. Readers who are familiar with these notions may skip the
following two paragraphs.

Let I be an instance of SMI and M be a stable matching for I. For a man m matched
in M , sM (m) denotes the first woman w in m’s list such that w is matched in M and w
prefers m to M(w). Note that m prefers M(m) to sM (m); otherwise, (m, sM (m)) blocks
M . Also, nextM (m) denotes the partner of sM (m) in M , that is, nextM (m) = M(sM (m)).
Let ρ = (m0, w0), (m1, w1), . . . , (mr−1, wr−1) (r ≥ 2) be a sequence of pairs such that each
pair in ρ is contained in M and mi+1 = nextM (mi) for each i, where i+ 1 is taken modulo
r. Then we call ρ a rotation exposed in M . By eliminating a rotation ρ from M , we mean
to replace pairs (m0, w0), (m1, w1), . . . , (mr−1, wr−1) by (m0, w1), (m1, w2), . . . , (mr−1, w0)
in M . The resulting matching, denoted by M/ρ, is also stable in I. Note that each man
included in ρ has a worse partner in M/ρ than in M .

Let Π be the set of rotations that are exposed in one or more stable matchings for
I. We can define a partial order � on Π, and (Π,�) is called the rotation poset of I. A
subset P ⊆ Π is called a closed subset of Π if ρ ∈ P and ρ′ � ρ then ρ′ ∈ P . There is a
one-to-one correspondence between the stable matchings for I and the closed subsets of Π by
the mapping defined as follows. Let M0 be the man-optimal stable matching of I (which is
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guaranteed to exist and can be found by the men-oriented Gale-Shapley algorithm in time
linear in the total length of preference lists). Let P be a closed subset of Π. If we eliminate
rotations in P one by one according to the order �, we obtain a stable matching for I.
Conversely, any stable matching for I is obtained by this procedure for some closed subset
of Π. In particular, the empty set corresponds to the man-optimal stable matching and
the whole set Π corresponds to the woman-optimal stable matching (which is the opposite
extreme to the man-optimal stable matching). The rotation poset can be constructed in
time linear in the total length of preference lists (Sec. 3.3 of [5]).

I Theorem 6. (2,∞)-SMkI is solvable in time O(kn).

Proof. We first compute the man-optimal stable matchings Mi for Li (i = 1, 2, . . . , k) using
the men-oriented version of the Gale-Shapley algorithm. For each Li, any stable matching
leaves the same set of men and women unmatched [4]. Thus if there are i and j (i 6= j) such
that the set of matched people in Mi and that in Mj are different, then we can immediately
answer “no”. In the following, we assume that the sets of matched people are the same in all
Mi.

For each i, we compute all the rotations ρi
1, ρ

i
2, . . . , ρ

i
ni

with respect to Li. Since the
length of each man’s preference list is at most two, each man is contained in at most one
rotation. This means that all the rotations are mutually incomparable in the rotation poset.
Hence there is a one-to-one correspondence between the set of stable matchings for Li and
the power set of {ρi

1, ρ
i
2, . . . , ρ

i
ni
}: the subset S ⊆ {ρi

1, ρ
i
2, . . . , ρ

i
ni
} corresponds to the stable

matching Mi,S obtained by eliminating all the rotations in S from Mi. Consider a man m
who is matched in Mi. If m is not included in a rotation, his partner is the same in all the
stable matchings of Li. If he is included in a rotation ρi

j , then he is matched in Mi,S with
his first choice if ρi

j 6∈ S and with his second choice if ρi
j ∈ S.

The remaining task is to check if there are k subsets Si ⊆ {ρi
1, ρ

i
2, . . . , ρ

i
ni
} (1 ≤ i ≤ k)

such that M1,S1 = M2,S2 = · · · = Mk,Sk
. For this purpose, we introduce a binary variable xi

j

for ρi
j (1 ≤ i ≤ k, 1 ≤ j ≤ ni), where xi

j = 1 means to put ρi
j in Si. We then construct a

2CNF SAT instance as follows.
For each man m who is matched in M1 (and equivalently in all Mi), we fix the

value of variables or construct 2CNF clauses to ensure that m’s partners coincide in all
M1,S1 ,M2,S2 , . . . ,Mk,Sk

. If (m,w) is a pair in some stable matching of L, w is called m’s
stable partner in L. Also, if w is m’s stable partner in all Li, w is called m’s jointly stable
partner. If m has no jointly stable partner, we immediately output “no”. If m has one jointly
stable partner w, then for each i, we enforce the variable (if any) to match m with w in Mi,Si .
Namely, if m is not included in a rotation, then there is no variable and we do nothing. If
m is included in a rotation ρi

j and w is his first (second) choice in Li, then we set xi
j = 0

(xi
j = 1). During this course, if some variable is fixed differently, then we immediately output

“no”. Finally, suppose that m has two jointly stable partners w′ and w′′. This means that for
each i, Li(m) contains both w′ and w′′ and m is included in a rotation of Li. Let ρi

ji
be the

rotation that includes m. For i = 2, . . . , k, we construct two clauses as follows: If the order
of w′ and w′′ is same in L1(m) and Li(m), then we construct (x1

j1
∨ xi

ji
) and (x1

j1
∨ xi

ji
);

otherwise, we construct (x1
j1
∨ xi

ji
) and (x1

j1
∨ xi

ji
). The construction of 2CNF formula is

completed by doing this for all the men m who are matched in M1. It is not hard to see that
a satisfying assignment corresponds to subsets Si such that M1,S1 = M2,S2 = · · · = Mk,Sk

.
Recall that men’s preference lists are of length at most two and acceptability is mutual

by assumption, so the total lengths of Li is O(n). Therefore, for each i, finding Mi and
computing the set of rotations of Li can be done in O(n) time, and hence in O(kn) time
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in total. Constructing 2CNF clauses for each man can be done in time O(k), and therefore
O(kn) for at most n men. The resulting 2CNF formula has size O(kn). Finally, solving
2CNF satisfiability problem can be done in linear time [2, 1]. Thus overall time-complexity
is O(kn). J

3.2 Identical Preference Lists of One Side
The next polynomial-time solvable case is that each woman’s preference lists are identical in
all Li. It should be noted that this condition is different from the so-called master lists, in
which all the women have the same preference list. In our case, w and w′ may have different
preference lists.

I Theorem 7. If each woman’s preference lists in all Li (1 ≤ i ≤ k) are identical, SMkI is
solvable in time O(N), where N is the total length of preference lists in an input.

Proof. Let I = (U,W,L1, L2, . . . , Lk) be an instance of SMkI. We first note that, since
L1(w) = L2(w) = · · · = Lk(w) for every woman w, for each man m the sets of women
included in Li(m) are the same for all i, due to the mutual-acceptability assumption made at
the beginning of this section. Now we construct a set L of preference lists from L1, L2, . . . , Lk

as follows: For each woman w, let L(w) := L1(w). For each man m, the set of women
included in L(m) is the same as in Li(m), and their order is defined as follows. Let w′ and
w′′ be women in L(m). If m prefers w′ to w′′ in all Li(m), then m prefers w′ to w′′ in L(m).
If m prefers w′ to w′′ in some Li(m) and w′′ to w′ in some Lj(m), then m is indifferent
between w′ and w′′ in L(m). It is not hard to see that L(m) is a partially-ordered list and
hence I ′ = (U,W,L) can be regarded as an instance of the Stable Marriage problem with
Partially-ordered and Incomplete lists (SMPI ).

We now recall the super-stability [5, 6] in the case that preference lists are not necessarily in
a total order. For a matching M , (m,w) is a blocking pair in super-stability if (1) (m,w) 6∈M
but m and w are acceptable to each other, (2) m is single in M , or prefers w to M(m), or
is indifferent between w and M(m), and (3) w is single in M , or prefers m to M(w), or
is indifferent between m and M(w). We say that a matching is super-stable if it admits
no blocking pair in super-stability. Irving [6] developed an O(n2)-time algorithm to find a
super-stable matching or to report that no super-stable matching exists when preference
lists are complete and may include ties. Manlove [8] extended this algorithm for incomplete
preference lists, and showed that it runs in time O(N) where N is the total length of
preference lists in an input. Also, Manlove showed that the same algorithm is applicable
for partially-ordered preference lists, i.e., SMPI (page 169 of [10]). Therefore, to complete
the proof, it suffices to show that a matching M is jointly stable in I if and only if M is
super-stable in I ′.

First suppose that M is not a jointly stable matching of I and hence has a blocking pair
(m,w) in Li for some i. Then w is single in M or prefers m to M(w) in Li(w). In the latter
case, w prefers m to M(w) also in L(w). Similarly, m is single in M or prefers w to M(w)
in Li(m). In the latter case, m prefers w to M(m) or is indifferent between them in L(m).
Thus (m,w) is a blocking pair in super-stability for M and therefore M is not super-stable
in I ′.

Conversely, suppose that M is not super-stable in I ′. Then, there is a blocking pair
(m,w) in super-stability. Since L(w) is a total order, w is unmatched in M or prefers m to
M(w) in L(w). In the latter case, w prefers m to M(w) in all Li(w). Note that m either (i)
is unmatched in M , or (ii) prefers w to M(m) in L(m), or (iii) is indifferent between w and
M(m) in L(m). In the case of (i), (m,w) is a blocking pair for M in all Li. In the case of
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(ii), m prefers w to M(m) in all Li(m), so again (m,w) is a blocking pair for M in all Li. In
the case of (iii), m prefers w to M(m) in Li(m) for some i, so that (m,w) is a blocking pair
for M in Li. In any case, M in not jointly stable in I.

Constructing I ′ from I and solving I ′ can both be done in O(N) time, hence the theorem
follows. J

As a byproduct of the above proof, we can show the existence of the man-optimal and
woman-optimal stable matchings. Let us call a jointly stable matching M man-optimal if for
any man m and any jointly stable matching M ′, either M(m) = M ′(m) or m prefers M(m)
to M ′(m) in all Li. The woman-optimal jointly stable matching is defined similarly.

Let I = (U,W,L1, L2, . . . , Lk) be an SMkI instance and I ′ = (U,W,L) be the SMPI
instance constructed as in the above proof. It is known that the set of super-stable matchings
for an SMPI instance form a distributive lattice ([12, 9] and page 169 of [10]), so there
are the man-optimal and the woman-optimal stable matchings for I ′, denoted MU and
MW , respectively. Since women’s preference lists are the same in L and all Li, MW is
the woman-optimal jointly stable matching for I. Consider a man m and suppose that
m is indifferent between w1 and w2 in L(m). It is known that it cannot be the case that
m is matched with w1 in one super-stable matching and with w2 in another super-stable
matching. Thus by the man-optimality of MU , for every man m, either MU (m) = M(m) or
m prefers MU (m) to M(m) in L(m) for any super-stable matching M . This implies that by
construction of L, either MU (m) = M(m) or m prefers MU (m) to M(m) in Li(m) for all i,
implying the existence of the man-optimal jointly stable matching.

4 Conclusion

In this paper, we considered a variant of the stable marriage problem in which we are given k
sets of preference lists L1, L2, . . . , Lk, and are asked to determine the existence of a matching
that is stable with respect to all Li (1 ≤ i ≤ k). We have shown that the problem is
NP-complete for k ≥ 2 even if all the preference lists are of length at most four, while it is
solvable in linear time if each man’s preference list is of length at most two. We also showed
that the problem is solvable in linear time if every woman has an identical preference list in
all Li.

An important future work is to determine the complexity of the problem when the lengths
of preference lists are bounded by three, namely, (3, `)-SMkI for ` ≥ 3. Another direction is
approximability of SMkI; given an instance, find a matching that is stable in as many Li as
possible. Finding a stable matching in any one list is a trivial k-approximation algorithm.
On the other hand, using Theorem 1 we can easily deduce an approximation hardness of 2− ε
for even k and 2− 2

k+1 − ε for odd k, for any positive constant ε under P 6=NP. Narrowing
this gap is an interesting future work. Considering an alternative optimization criteria, e.g.,
minimizing the total number of blocking pairs over all Li, would also be attractive.
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Abstract
We introduce a compressed suffix array representation that, on a text T of length n over an
alphabet of size σ, can be built in O(n) deterministic time, within O(n log σ) bits of working
space, and counts the number of occurrences of any pattern P in T in time O(|P |+log logw σ) on
a RAM machine of w = Ω(logn)-bit words. This new index outperforms all the other compressed
indexes that can be built in linear deterministic time, and some others. The only faster indexes
can be built in linear time only in expectation, or require Θ(n logn) bits.

1998 ACM Subject Classification E.1 Data Structures, E.4 Coding and Information Theory

Keywords and phrases Succinct data structures, Self-indexes, Suffix arrays, Deterministic con-
struction

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.57

1 Introduction

The string indexing problem consists in preprocessing a string T so that, later, we can
efficiently find occurrences of patterns P in T . The most popular solutions to this problem
are suffix trees [29] and suffix arrays [21]. Both can be built in O(n) deterministic time
on a text T of length n over an alphabet of size σ, and the best variants can count the
number of times a string P appears in T in time O(|P |), and even in time O(|P |/ logσ n)
in the word-RAM model if P is given packed into |P |/ logσ n words [26]. Once counted,
each occurrence can be located in O(1) time. Those optimal times, however, come with two
important drawbacks:

The variants with this counting time cannot be built in O(n) worst-case time.
The data structures use Θ(n logn) bits of space.

The reason of the first drawback is that some form of perfect hashing is always used to
ensure constant time per pattern symbol (or pack of symbols). The classical suffix trees
and arrays with linear-time deterministic construction offer O(|P | log σ) or O(|P | + logn)
counting time, respectively. More recently, those times have been reduced to O(|P |+ log σ)
[10] and even to O(|P |+ log log σ) [14]. Simultaneously with our work, a suffix tree variant
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was introduced by Bille et al. [7], which can be built in linear deterministic time and counts
in time O(|P |/ logσ n+ log |P |+ log log σ). All those indexes, however, still suffer from the
second drawback, that is, they use Θ(n logn) bits of space. This makes them impractical in
most applications that handle large text collections.

Research on the second drawback dates back to almost two decades [25], and has led
to indexes using nHk(T ) + o(n(Hk(T ) + 1)) bits, where Hk(T ) ≤ log σ is the k-th order
entropy of T [22], for any k ≤ α logσ n − 1 and any constant 0 < α < 1. That is, the
indexes use asymptotically the same space of the compressed text, and can reproduce the
text and search it; thus they are called self-indexes. The fastest compressed self-indexes
that can be built in linear deterministic time are able to count in time O(|P | log log σ) [1] or
O(|P |(1 + logw σ)) [6]. There exist other compressed self-indexes that obtain times O(|P |) [5]
or O(|P |/ logσ n+ logεσ n) for any constant ε > 0 [18], but both rely on perfect hashing and
are not built in linear deterministic time. All those compressed self-indexes use O(n logn

b )
further bits to locate the position of each occurrence found in time O(b), and to extract any
substring S of T in time O(|S|+ b).

In this paper we introduce the first compressed self-index that can be built in O(n)
deterministic time (moreover, using O(n log σ) bits of space [24]) and with counting time
O(|P | + log logw σ), where w = Ω(logn) is the size in bits of the computer word. More
precisely, we prove the following result.

I Theorem 1. On a RAM machine of w = Ω(logn) bits, we can construct an index for
a text T of length n over an alphabet of size σ = O(n/ logn) in O(n) deterministic time
using O(n log σ) bits of working space. This index occupies nHk(T ) + o(n log σ) +O(n logn

b )
bits of space for a parameter b and any k ≤ α logσ n− 1, for any constant 0 < α < 1. The
occurrences of a pattern string P can be counted in O(|P |+ log logw σ) time, and then each
such occurrence can be located in O(b) time. An arbitrary substring S of T can be extracted
in time O(|S|+ b).

We obtain our results with a combination of the compressed suffix tree T of T and the
Burrows-Wheeler transform B of the reversed text T . We manage to simulate the suffix tree
traversal for P , simultaneously on T and on B. With a combination of storing deterministic
dictionaries and precomputed rank values for sampled nodes of T , and a constant-time
method to compute an extension of partial rank queries that considers small ranges in B,
we manage to ensure that all the suffix tree steps, except one, require constant time. The
remaining one is solved with general rank queries in time O(log logw σ). As a byproduct, we
show that the compressed sequence representations that obtain those rank times [6] can also
be built in linear deterministic time.

Compared with previous work, other indexes may be faster at counting, but either they
are not built in linear deterministic time [5, 18, 26] or they are not compressed [26, 7]. Our
index outperforms all the previous compressed [13, 1, 6], as well as some uncompressed [14],
indexes that can be built deterministically.

2 Related Work

Let T be a string of length n over an alphabet of size σ that is indexed to support searches
for patterns P . It is generally assumed that σ = o(n), a reasonable convention we will follow.
Searches typically require to count the number of times P appears in T , and then locate the
positions of T where P occurs. The vast majority of the indexes for this task are suffix tree
[29] or suffix array [21] variants.
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Table 1 Our results in context. The x axis refers to the space used by the indexes (compressed
meaning nHk(T ) + o(n log σ) bits and uncompressed meaning Θ(n logn) bits), and the y axis refers
to the linear-time construction. In the cells we show the counting time for a pattern P . We only list
the dominant alternatives, graying out those outperformed by our new results.

Compressed Uncompressed
D

et
er

m
in

is
tic

|P | log log σ [1]
|P |(1 + logw σ) [6]
|P |+log logw σ (ours)

|P | + log log σ [14]
|P |/ logσ n+log |P |+log log σ [7]

R
an

do
m

iz
ed

|P |(1 + log logw σ) [6]
|P | [5] |P |/ logσ n+ logεσ n [18, 26]

The suffix tree can be built in linear deterministic time [29], even on arbitrarily large
integer alphabets [11]. The suffix array can be easily derived from the suffix tree in linear
time, but it can also be built independently in linear deterministic time [20]. In their basic
forms, these structures allow counting the number of occurrences of a pattern P in T in time
O(|P | log σ) (suffix tree) or O(|P |+ logn) (suffix array). Once counted, the occurrences can
be located in constant time each.

Cole et al. [10] introduced the suffix trays, a simple twist on suffix trees that reduces their
counting time to O(|P |+ log σ). Fischer and Gawrychowski [14] introduced the wexponential
search trees, which yield dynamic suffix trees with counting time O(|P |+ log log σ).

All these structures can be built in linear deterministic time, but require Θ(n logn) bits
of space, which challenges their practicality when handling large text collections.

Faster counting is possible if we resort to perfect hashing and give away the linear
deterministic construction time. In the classical suffix tree, we can easily achieve O(|P |) time
by hashing the children of suffix tree nodes, and this is optimal in general. In the RAM model
with word size Θ(logn), and if the consecutive symbols of P come packed into |P |/ logσ n
words, the optimal time is instead O(|P |/ logσ n). This optimal time was recently reached by
Navarro and Nekrich [26] (note that their time is not optimal if w = ω(logn)), with a simple
application of weak-prefix search, already hinted in the original article [2]. However, even
the randomized construction time of the weak-prefix search structure is O(n logε n), for any
constant ε > 0. By replacing the weak-prefix search with the solution of Grossi and Vitter
[18] for the last nodes of the search, and using a randomized construction of their perfect
hash functions, the index of Navarro and Nekrich [26] can be built in linear randomized time
and count in time O(|P |/ logσ n+ logεσ n). Only recently, simultaneously with our work, a
deterministic linear-time construction algorithm was finally obtained for an index obtaining
O(|P |/ logσ n+ log |P |+ log log σ) counting time [7].

Still, these structures are not compressed. Compressed suffix trees and arrays appeared in
the year 2000 [25]. To date, they take the space of the compressed text and replace it, in the
sense that they can extract any desired substring of T ; they are thus called self-indexes. The
space occupied is measured in terms of the k-th order empirical entropy of T , Hk(T ) ≤ log σ
[22], which is a lower bound on the space reached by any statistical compressor that encodes
each symbol considering only the k previous ones. Self-indexes may occupy as little as
nHk(T ) + o(n(Hk(T ) + 1)) bits, for any k ≤ α logσ n− 1, for any constant 0 < α < 1.

ISAAC 2017
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The fastest self-indexes with linear-time deterministic construction are those of Barbay
et al. [1], which counts in time O(|P | log log σ), and Belazzougui and Navarro [6, Thm. 7],
which counts in time O(|P |(1 + logw σ)). The latter requires O(n(1 + logw σ)) construction
time, but if log σ = O(logw), its counting time is O(|P |) and its construction time is O(n).

If we admit randomized linear-time constructions, then Belazzougui and Navarro [6,
Thm. 10] reach O(|P |(1 + log logw σ)) counting time. At the expense of O(n) further bits,
in another work [5] they reach O(|P |) counting time. Using O(n log σ) bits, and if P comes
in packed form, Grossi and Vitter [18] can count in time O(|P |/ logσ n + logεσ n), for any
constant ε > 0, however their construction requires O(n log σ) time.

Table 1 puts those results and our contribution in context. Our new self-index, with
O(|P | + log logw σ) counting time, linear-time deterministic construction, and nHk(T ) +
o(n log σ) bits of space, dominates all the compressed indexes with linear-time deterministic
construction [1, 6], as well as some uncompressed ones [14] (to be fair, we do not cover the
case log σ = O(logw), as in this case the previous work [6, Thm. 7] already obtains our result).
Our self-index also dominates a previous one with linear-time randomized construction [6,
Thm. 10], which we incidentally show can also be built deterministically. The only aspect in
which some of the dominated indexes outperform ours is in that they may use o(n(Hk(T )+1))
[6, Thm. 10] or o(n) [6, Thm. 7] bits of redundancy, instead of our o(n log σ) bits.

3 Preliminaries

We denote by T [i..] the suffix of T [0, n− 1] starting at position i and by T [i..j] the substring
that begins with T [i] and ends with T [j], T [i..] = T [i]T [i + 1] . . . T [n − 1] and T [i..j] =
T [i]T [i+ 1] . . . T [j − 1]T [j]. We assume that the text T ends with a special symbol $ that
lexicographically precedes all other symbols in T . The alphabet size is σ and symbols
are integers in [0..σ − 1] (so $ corresponds to 0). In this paper, as in the previous work
on this topic, we use the word RAM model of computation. A machine word consists of
w = Ω(logn) bits and we can execute standard bit and arithmetic operations in constant
time. We assume for simplicity that the alphabet size σ = O(n/ logn) (otherwise the text is
almost incompressible anyway [15]). We also assume log σ = ω(logw), since otherwise our
goal is already reached in previous work [6, Thm. 7].

3.1 Rank and Select Queries
We define three basic queries on sequences. Let B[0..n− 1] be a sequence of symbols over
alphabet [0..σ− 1]. The rank query, ranka(i, B), counts how many times a occurs among the
first i+ 1 symbols in B, ranka(i, B) = |{ j ≤ i, B[j] = a}|. The select query, selecta(i, B),
finds the position in B where a occurs for the i-th time, selecta(i, B) = j iff B[j] = a and
ranka(j, B) = i. The third query is access(i, B), which returns simply B[i].

We can answer access queries in O(1) time and select queries in any ω(1) time, or vice
versa, and rank queries in time O(log logw σ), which is optimal [6]. These structures use
n log σ + o(n log σ) bits, and we will use variants that require only compressed space. In this
paper, we will show that those structures can be built in linear deterministic time.

An important special case of rank queries is the partial rank query, rankB[i](i, B), which
asks how many times B[i] occurrs in B[0..i]. Unlike general rank queries, partial rank queries
can be answered in O(1) time [6]. Such a structure can be built in O(n) deterministic time
and requires O(n log log σ) bits of working and final space [24, Thm. A.4.1].
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For this paper, we define a generalization of partial rank queries called interval rank
queries, ranka(i, j, B) = 〈ranka(i − 1, B), ranka(j, B)〉, from where in particular we can
deduce the number of times a occurs in B[i..j]. If a does not occur in B[i..j], however, this
query just returns null (this is why it can be regarded as a generalized partial rank query).

In the special case where the alphabet size is small, log σ = O(logw), we can represent B
so that rank, select, and access queries are answered in O(1) time [6, Thm. 7], but we are
not focusing on this case in this paper, as the problem has already been solved for this case.

3.2 Suffix Array and Suffix Tree
The suffix tree [29] for a string T [0..n− 1] is a compacted digital tree on the suffixes of T ,
where the leaves point to the starting positions of the suffixes. We call Xu the string leading
to suffix tree node u. The suffix array [21] is an array SA[0..n− 1] such that SA[i] = j if and
only if T [j..] is the (i+ 1)-th lexicographically smallest suffix of T . All the occurrences of a
substring P in T correspond to suffixes of T that start with P . These suffixes descend from
a single suffix tree node, called the locus of P , and also occupy a contiguous interval in the
suffix array SA. Note that the locus of P is the node u closest to the root for which P is a
prefix of Xu. If P has no locus node, then it does not occur in T .

3.3 Compressed Suffix Array and Tree
A compressed suffix array (CSA) is a compact data structure that provides the same
functionality as the suffix array. The main component of a CSA is the one that allows
determining, given a pattern P , the suffix array range SA[i..j] of the prefixes starting with
P . Counting is then solved as j − i+ 1. For locating any cell SA[k], and for extracting any
substring S from T , most CSAs make use of a sampled array SAMb, which contains the
values of SA[i] such that SA[i] mod b = 0 or SA[i] = n− 1. Here b is a tradeoff parameter:
CSAs require O(n logn

b ) further bits and can locate in time proportional to b and extract S
in time proportional to b+ |S|. We refer to a survey [25] for a more detailed description.

A compressed suffix tree [28] is formed by a compressed suffix array and other components
that add up to O(n) bits. These include in particular a representation of the tree topology
that supports constant-time computation of the preorder of a node, its number of children,
its j-th child, its number of descendant leaves, and lowest common ancestors, among others
[27]. Computing node preorders is useful to associate satellite information to the nodes.

Both the compressed suffix array and tree can be built in O(n) deterministic time using
O(n log σ) bits of space [24].

3.4 Burrows-Wheeler Transform and FM-index
The Burrows-Wheeler Transform (BWT) [8] of a string T [0..n−1] is another string B[0..n−1]
obtained by sorting all possible rotations of T and writing the last symbol of every rotation
(in sorted order). The BWT is related to the suffix array by the identity B[i] = T [(SA[i]− 1)
mod n]. Hence, we can build the BWT by sorting the suffixes and writing the symbols that
precede the suffixes in lexicographical order.

The FM-index [12, 13] is a CSA that builds on the BWT. It consists of the following
three main components: (1) the BWT B of T ; (2) the array Acc[0..σ − 1] where Acc[i] holds
the total number of symbols a < i in T (or equivalently, the total number of symbols a < i

in B); (3) the sampled array SAMb.

ISAAC 2017
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The interval of a pattern string P [0..m− 1] in the suffix array SA can be computed on
the BWT B. The interval is computed backwards: for i = m − 1,m − 2, . . ., we identify
the interval of P [i..m − 1] in B. The interval is initially the whole B[0..n − 1]. Suppose
that we know the interval B[i1..j1] that corresponds to P [i+ 1..m− 1]. Then the interval
B[i2..j2] that corresponds to P [i..m− 1] is computed as i2 = Acc[a] + rankc(i1 − 1, B) and
j2 = Acc[a] + rankc(j1, B)− 1, where a = P [i]. Thus the interval of P is found by answering
2m rank queries. Any sequence representation offering rank and access queries can then be
applied on B to obtain an FM-index.

An important procedure on the FM-index is the computation of the function LF , defined
as: if SA[j] = i+ 1, then SA[LF (j)] = i. LF can be computed with access and partial rank
queries on B, LF (j) = rankB[j](i, B) + Acc[B[j]]− 1, and thus constant-time computation
of LF is possible. Using SAMb and O(b) applications of LF , we can locate any cell SA[r].
A similar procedure extracts any substring S of T with O(b+ |S|) applications of LF .

4 Small Interval Rank Queries

We start by showing how a compressed data structure that supports select queries can be
extended to support a new kind of queries that we dub small interval rank queries. An
interval query ranka(i, j, B) is a small interval rank query if j − i ≤ log2 σ. Our compressed
index relies on the following result.

I Lemma 2. Suppose that we are given a data structure that supports access queries on a
sequence C[0..m− 1], on alphabet [0..σ− 1], in time t. Then, using O(m log log σ) additional
bits, we can support small interval rank queries on C in O(t) time.

Proof. We split C into groups Gi of log2 σ consecutive symbols, Gi = C[i log2 σ..(i +
1) log2 σ − 1]. Let Ai denote the sequence of the distinct symbols that occur in Gi. Storing
Ai directly would need log σ bits per symbol. Instead, we encode each element of Ai as its
first position in Gi, which needs only O(log log σ) bits. With this encoded sequence, since we
have O(t)-time access to C, we have access to any element of Ai in time O(t). In addition,
we store a succinct SB-tree [17] on the elements of Ai. This structure uses O(p log log u) bits
to index p elements in [1..u], and supports predecessor (and membership) queries in time
O(log p/ log log u) plus one access to Ai. Since u = σ and p ≤ log2 σ, the query time is O(t)
and the space usage is bounded by O(m log log σ) bits.

For each a ∈ Ai we also keep the increasing list Ia,i of all the positions where a occurs
in Gi. Positions are stored as differences with the left border of Gi: if C[j] = a, we store
the difference j − i log2 σ. Hence elements of Ia,i can also be stored in O(log log σ) bits per
symbol, adding up to O(m log log σ) bits. We also build an SB-tree on top of each Ia,i to
provide for predecessor searches.

Using the SB-trees on Ai and Ia,i, we can answer small interval rank queries ranka(x, y, C).
Consider a group Gi = C[i log2 σ..(i + 1) log2 σ − 1], an index k such that i log2 σ ≤ k ≤
(i+ 1) log2 σ, and a symbol a. We can find the largest i log2 σ ≤ r ≤ k such that C[r] = a,
or determine it does not exist: First we look for the symbol a in Ai; if a ∈ Ai, we find the
predecessor of k − i log2 σ in Ia,i.

Now consider an interval C[x..y] of size at most log2 σ. It intersects at most two groups,
Gi and Gi−1. We find the rightmost occurrence of symbol a in C[x..y] as follows. First
we look for the rightmost occurrence y′ ≤ y of a in Gi; if a does not occur in C[i log2 σ..y],
we look for the rightmost occurrence y′ ≤ i log2 σ − 1 of a in Gi−1. If this is ≥ x, we find
the leftmost occurrence x′ of a in C[x..y] using a symmetric procedure. When x′ ≤ y′ are
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found, we can compute ranka(x′, C) and ranka(y′, C) in O(1) time by answering partial rank
queries (Section 3.1). These are supported in O(1) time and O(m log log σ) bits. The answer
is then 〈ranka(x′, C)− 1, ranka(y′, C)〉, or null if a does not occur in C[x..y]. J

The construction of the small interval rank data structure is dominated by the time
needed to build the succinct SB-trees [17]. These are simply B-trees with arity O(

√
log u)

and height O(log p/ log log u), where in each node a Patricia tree for O(log log u)-bit chunks
of the keys are stored. To build the structure in O(log p/ log log u) time per key, we only
need to build those Patricia trees in linear time. Given that the total number of bits of all
the keys to insert in a Patricia tree is O(

√
log u log log u), we do not even need to build the

Patricia tree. Instead, a universal precomputed table may answer any Patricia tree search
for any possible set of keys and any possible pattern, in constant time. The size of the table
is O(2O(

√
logu log logu)√log u) = o(u) bits (the authors [17] actually use a similar table to

answer queries). For our values of p and u, the construction requires O(mt) time and the
universal table is of o(σ) bits.

5 Compressed Index

We classify the nodes of the suffix tree T of T into heavy, light, and special, as in previous
work [26, 24]. Let d = log σ. A node u of T is heavy if it has at least d leaf descendants and
light otherwise. We say that a heavy node u is special if it has at least two heavy children.

For every special node u, we construct a deterministic dictionary [19] Du that contains
the labels of all the heavy children of u: If the jth child of u, uj , is heavy and the first
symbol on the edge from to u to uj is aj , then we store the key aj in Du with j as satellite
data. If a heavy node u has only one heavy child uj and d or more light children, then we
also store the data structure Du (containing only that heavy child of u). If, instead, a heavy
node has one heavy child and less than d light children, we just keep the index of the heavy
child using O(log d) = O(log log σ) bits.

The second component of our index is the Burrows-Wheeler Transform B of the reverse
text T . We store a data structure that supports rank, partial rank, select, and access queries
on B. It is sufficient for us to support access and partial rank queries in O(1) time and rank
queries in O(log logw σ) time. We also construct the data structure described in Lemma 2,
which supports small interval rank queries in O(1) time. Finally, we explicitly store the
answers to some rank queries. Let B[lu..ru] denote the range of Xu, where Xu is the reverse
of Xu, for a suffix tree node u. For all data structures Du and for every symbol a ∈ Du we
store the values of ranka(lu − 1, B) and ranka(ru, B).

Let us show how to store the selected precomputed answers to rank queries in O(log σ)
bits per query. Following a known scheme [16], we divide the sequence B into chunks of
size σ. For each symbol a, we encode the number dk of times a occurs in each chunk k
in a binary sequence Aa = 01d001d101d2 . . .. If a symbol B[i] belongs to chunk k = bi/σc,
then ranka(i, B) is select0(k + 1, Aa)− k plus the number of times a occurs in B[kσ..i]. The
former value is computed in O(1) time with a structure that uses |Aa| + o(|Aa|) bits [9],
whereas the latter value is in [0, σ] and thus can be stored in Du using just O(log σ) bits.
The total size of all the sequences Aa is O(n) bits.

Therefore, Du needs O(log σ) bits per element. The total number of elements in all the
structures Du is equal to the number of special nodes plus the number of heavy nodes with
one heavy child and at least d light children. Hence all Du contain O(n/d) symbols and use
O((n/d) log σ) = O(n) bits of space. Indexes of heavy children for nodes with only one heavy
child and less than d light children add up to O(n log log σ) bits. The structures for partial
rank and small interval rank queries on B use O(n log log σ) further bits. Since we assume
that σ is ω(1), we can simplify O(n log log σ) = o(n log σ).
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The sequence representation that supports access and rank queries on B can be made
to use nHk(T ) + o(n(Hk(T ) + 1)) bits, by exploiting the fact that it is built on a BWT [6,
Thm. 10].1 We note that they use constant-time select queries on B instead of constant-time
access, so they can use select queries to perform LF−1-steps in constant time. Instead, with
our partial rank queries, we can perform LF -steps in constant time (recall Section 3.4), and
thus have constant-time access instead of constant-time select on B (we actually do not use
query select at all). They avoid this solution because partial rank queries require o(n log σ)
bits, which can be more than o(n(Hk(T ) + 1)), but we are already paying this price.

Apart from this space, array Acc needs O(σ logn) = O(n) bits and SAMb uses O(n logn
b ).

The total space usage of our self-index then adds up to nHk(T ) + o(n log σ) +O(n logn
b ) bits.

6 Pattern Search

Given a query string P , we will find in time O(|P |+ log logw σ) the range of the reversed
string P in B. A backward search for P in B will be replaced by an analogous backward
search for P in B, that is, we will find the range of P [0..i] if the range of P [0..i− 1] is
known. Let [li..ri] be the range of P [0..i]. We can compute li and ri from li−1 and ri−1 as
li = Acc[a] + ranka(li−1 − 1, B) and ri = Acc[a] + ranka(ri−1, B) − 1, for a = P [i]. Using
our auxiliary data structures on B and the additional information stored in the nodes of the
suffix tree T , we can answer the necessary rank queries in constant time (with one exception).
The idea is to traverse the suffix tree T in synchronization with the forward search on B,
until the locus of P is found or we determine that P does not occur in T .

Our procedure starts at the root node of T , with l−1 = 0, r−1 = n− 1, and i = 0. We
compute the ranges B[li..ri] that correspond to P [0..i] for i = 0, . . . , |P | − 1. Simultaneously,
we move down in the suffix tree. Let u denote the last visited node of T and let a = P [i].
We denote by ua the next node that we must visit in the suffix tree, i.e., ua is the locus of
P [0..i]. We can compute li and ri in O(1) time if ranka(ri−1, B) and ranka(li−1 − 1, B) are
known. We will show below that these queries can be answered in constant time because
either (a) the answers to rank queries are explicitly stored in Du or (b) the rank query that
must be answered is a small interval rank query. The only exception is the situation when
we move from a heavy node to a light node in the suffix tree; in this case the rank query
takes O(log logw σ) time. We note that, once we are in a light node, we need not descend in
T anymore; it is sufficient to maintain the interval in B.

For ease of description we distinguish between the following cases.
1. Node u is heavy and a ∈ Du. In this case we identify the heavy child ua of u that is

labeled with a in constant time using the deterministic dictionary. We can also find li
and ri in time O(1) because ranka(li−1 − 1, B) and ranka(ri−1, B) are stored in Du.

2. Node u is heavy and a 6∈ Du. In this case ua, if it exists, is a light node. We then find it
with two standard rank queries on B, in order to compute li and ri or determine that P
does not occur in T .

3. Node u is heavy but we do not keep a dictionary Du for the node u. In this case u has at
most one heavy child and less than d light children. We have two subcases:
a. If ua is the (only) heavy node, we find this out with a single comparison, as the heavy

node is identified in u. However, the values ranka(li−1 − 1, B) and ranka(ri−1, B) are
not stored in u. To compute them, we exploit the fact that the number of non-a’s in
B[li−1..ri−1] is less than d2, as all the children apart from ua are light and less than d.

1 In fact it is nHk(T ), but this is nHk(T ) +O(logn) [12, Thm. A.3].
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Therefore, the first and the last occurrences of a in B[li−1..ri−1] must be at distance
less than d2 from the extremes li−1 and ri−1, respectively. Therefore, a small interval
rank query, ranka(li−1, li−1 + d2, B), gives us ranka(li−1− 1, B), since there is for sure
an a in the range. Analogously, ranka(ri−1 − d2, ri−1, B) gives us ranka(ri−1, B).

b. If ua is a light node, we compute li and ri with two standard rank queries on B (or
we might determine that P does not appear in T ).

4. Node u is light. In this case, P [0..i−1] occurs at most d times in T . Hence P [0..i− 1] also
occurs at most d times in T and ri−1 − li−1 ≤ d. Therefore we can compute ri and li in
O(1) time by answering a small interval rank query, 〈ranka(li−1 − 1, B), ranka(ri−1, B)〉.
If this returns null, then P does not occur in T .

5. We are on an edge of the suffix tree between a node u and some child uj of u. In this
case all the occurrences of P [0..i− 1] in T are followed by the same symbol, c, and all
the occurrences of P [0..i− 1] are preceded by c in T . Therefore B[li−1..ri−1] contains
only the symbol c. This situation can be verified with access and partial rank queries on
B: B[ri−1] = B[li−1] = c and rankc(ri−1, B)− rankc(li−1, B) = ri−1 − li−1. In this case,
if a 6= c, then P does not occur in T ; otherwise we obtain the new range with the partial
rank query rankc(ri−1, B), and rankc(li−1 − 1, B) = rankc(ri−1, B) − (ri−1 − li−1 + 1).
Note that if u is light we do not need to consider this case; we may directly apply case 4.

Except for the cases 2 and 3b, we can find li and ri in O(1) time. In cases 2 and 3b we
need O(log logw σ) time to answer general rank queries. However, these cases only take place
when the node u is heavy and its child ua is light. Since all descendants of a light node are
light, those cases occur only once along the traversal of P . Hence the total time to find the
range of P in B is O(|P |+ log logw σ). Once the range is known, we can count and report
all occurrences of P in the standard way.

7 Linear-Time Construction

7.1 Sequences and Related Structures
Apart from constructing the BWT B of T , which is a component of the final structure, the
linear-time construction of the other components requires that we also build, as intermediate
structures, the BWT B of T , and the compressed suffix trees T and T of T and T , respectively.
All these are built in O(n) deterministic time and using O(n log σ) bits of space [24]. We
also keep, on top of both B and B, O(n log log σ)-bit data structures able to report, for any
interval B[i..j] or B[i..j], all the distinct symbols from this interval, and their frequencies in
the interval. The symbols are retrieved in arbitrary order. These auxiliary data structures
can also be constructed in O(n) time [24, Sec. A.5]. On top of the sequences B and B, we
build the representation that supports access in O(1) and rank in O(log logw σ) time [6].
This was built using perfect hashing, but it can also be built deterministically [4, Lem. 11].

7.2 Structures Du

The most complex part of the construction is to fill the data of the Du structures. We visit
all the nodes of T and identify those nodes u for which the data structure Du must be
constructed. This can be easily done in linear time, by using the constant-time computation
of the number of descendant leaves. To determine if we must build Du, we traverse its
children u1, u2, . . . and count their descendant leaves to decide if they are heavy or light.

We use a bit vector D to mark the preorders of the nodes u for which Du will be
constructed: If p is the preorder of node u, then it stores a structure Du iff D[p] = 1, in
which case Du is stored in an array at position rank1(D, p). If, instead, u does not store Du
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but it has one heavy child, we store its child rank in another array indexed by rank0(D, p),
using log log σ bits per cell.

The main difficulty is how to compute the symbols a to be stored in Du, and the ranges
B[lu, ru], for all the selected nodes u. It is not easy to do this through a preorder traversal of T
because we would need to traverse edges that represent many symbols. Our approach, instead,
is inspired by the navigation of the suffix-link tree using two BWTs given by Belazzougui
et al. [3]. Let Tw denote the tree whose edges correspond to Weiner links between internal
nodes in T . That is, the root of Tw is the same root of T and, if we have internal nodes
u, v ∈ T where Xv = a ·Xu for some symbol a, then v descends from u by the symbol a in
Tw. It is well known that that the nodes of Tw are the internal nodes of T .

We do not build Tw explicitly, but just traverse its nodes conceptually in depth-first order
and compute the symbols to store in the structures Du and the intervals in B. Let u be
the current node of T in this traversal and u its corresponding locus in T . Assume for now
that u is a node, too. Let [lu, ru] be the interval of Xu in B and [lu, ru] be the interval of
the reverse string Xu in B.2 Our algorithm starts at the root nodes of Tw, T , and T , which
correspond to the empty string, and the intervals in B and B are [lu, ru] = [lu, ru] = [0, n−1].
We will traverse only the heavy nodes, yet in some cases we will have to work on all the
nodes. We ensure that on heavy nodes we work at most O(log σ) time, and at most O(1)
time on arbitrary nodes.

Upon arriving at each node u, we first compute its heavy children. From the topology of
T we identify the interval [li, ri] for every child ui of u, by counting leaves in the subtrees
of the successive children of u. By reporting all the distinct symbols in B[lu..ru] with their
frequencies, we identify the labels of those children. However, the labels are retrieved in
arbitrary order and we cannot afford sorting them all. Yet, since the labels are associated
with their frequencies in B[lu..ru], which match their number of leaves in the subtrees of u,
we can discard the labels of the light children, that is, those appearing less than d times in
B[lu..ru]. The remaining, heavy, children are then sorted and associated with the successive
heavy children ui of u in T .

If our preliminary pass marked that a Du structure must be built, we construct at this
moment the deterministic dictionary [19] with the labels a of the heavy children of u we have
just identified, and associate them with the satellite data ranka(lu − 1, B) and ranka(ru, B).
This construction takes O(log σ) time per element, but it includes only heavy nodes.

We now find all the Weiner links from u. For every (heavy or light) child ui of u, we
compute the list Li of all the distinct symbols that occur in B[li..ri]. We mark those symbols
a in an array V [0..σ − 1] that holds three possible values: not seen, seen, and seen (at least)
twice. If V [a] is not seen, then we mark it as seen; if it is seen, we mark it as seen twice;
otherwise we leave it as seen twice. We collect a list Eu of the symbols that are seen twice
along this process, in arbitrary order. For every symbol a in Eu, there is an Weiner link from
u labeled by a: Let X = Xu; if a occurred in Li and Lj then both aXai and aXaj occur in
T and there is a suffix tree node that corresponds to the string aX. The total time to build
Eu amortizes to O(n): for each child v of u, we pay O(1) time for each child the node v has
in T ; each node in T contributes once to the cost.

The targets of the Weiner links from u in T correspond to the children of the node u in
T . To find them, we collect all the distinct symbols in B[lu..ru] and their frequencies. Again,
we discard the symbols with frequency less than d, as they will lead to light nodes, which
we do not have to traverse. The others are sorted and associated with the successive heavy

2 In the rest of the paper we wrote B[lu..ru] instead of B[lu..ru] for simplicity, but this may cause
confusion in this section.
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children of u. By counting leaves in the successive children, we obtain the intervals B[l′i..r′i]
corresponding to the heavy children u′i of u.

We are now ready to continue the traversal of Tw: for each Weiner link from u by
symbol a leading to a heavy node, which turns out to be the i-th child of u, we know
that its node in T is u′i (computed from u using the tree topology) and its interval is
B[l′i..r′i]. To compute the corresponding interval on B, we use the backward step operation,
B[x, y] = B[Acc[a] + ranka(lu− 1, B),Acc[a] + ranka(ru, B)− 1]. This requires O(log logw σ)
time, but applies only to heavy nodes. Finally, the corresponding node in T is obtained in
constant time as the lowest common ancestor of the x-th and the y-th leaves of T .

In the description above we assumed for simplicity that u is a node in T . In the general
case u can be located on an edge of T . This situation arises when all occurrences of Xu

in the reverse text T are followed by the same symbol a. In this case there is at most one
Weiner link from u; the interval in B does not change as we follow that link.

A recursive traversal of Tw might require O(nσ logn) bits for the stack, because we store
several integers associated to heavy children during the computation of each node u. We can
reduce this to O(σ log2 n) = O(n log σ) by standard means [3, Lem. 1].

We have spent at most O(log σ) time on heavy nodes, which are O(n/d) = O(n/ log σ)
in total, thus these costs add up to O(n). All other costs that apply to arbitrary nodes are
O(1). The structures for partial rank queries (and the succinct SB-trees) can also be built in
linear deterministic time, as seen in Section 4. Then our index is constructed in O(n) time.

8 Conclusions

We have shown how to build, in O(n) deterministic time and using O(n log σ) bits of working
space, a compressed self-index for a text T of length n over an alphabet of size σ that searches
for patterns P in time O(|P |+ log logw σ), on a w-bit word RAM machine. This improves
upon previous compressed self-indexes requiring O(|P | log log σ) [1] or O(|P |(1 + logw σ))
[6] time, on previous uncompressed indexes requiring O(|P |+ log log σ) time [14] (but that
supports dynamism), and on previous compressed self-indexes requiring O(|P |(1+log logw σ))
time and randomized construction (which we now showed how to build in linear deterministic
time) [6]. The only indexes offering better search time require randomized construction
[5, 18, 26] or Θ(n logn) bits of space [26, 7].

In our extended paper [23], we show that using O(n log σ) bits of space, we can build
in O(n) deterministic time an index that searches in time O(|P |/ logσ n+ logn(log logn)2).
Current indexes obtaining similar counting time require O(n log σ) construction time [18] or
higher [26], or O(n logn) bits of space [26, 7].

It is not clear if O(|P |) time, or even O(|P |/ logσ n), query time can be achieved with a
linear deterministic construction time, even if we allow O(n logn) bits of space for the index
(this was recently approached, but some additive polylog factors remain [7]). This is the
most interesting open problem for future research.
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Abstract
The satisfiability of a given branching program is to determine whether there exists a consistent
path from the root to 1-sink. In a syntactic read-k-times branching program, each variable
appears at most k times in any path from the root to a sink. We provide a satisfiability algorithm
for syntactic read-k-times branching programs with n variables and m edges that runs in time
O
(

poly(n,mk2) · 2(1−µ(k))n
)
, where µ(k) = 1

4k+1 . Our algorithm is based on the decomposition
technique shown by Borodin, Razborov and Smolensky [Computational Complexity, 1993].
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1 Introduction

Branching programs (BPs) are well studied computation models in theory and practice. A
BP is a directed acyclic graph with a unique root node and two sink nodes. Each nonsink
node is labeled using a variable, and the edges correspond to a variable’s value of zero or
one. Sink nodes are labeled either 0 or 1 depending on the output value. A BP computes a
Boolean function naturally: it follows the edge corresponding to the input value from the
root node to a sink node.

Given a BP, its satisfiability (BP SAT) involves the determination of whether there exists
a consistent path from the root to 1-sink. Recently, BP SAT has become a significant problem
because of the connection between satisfiability algorithms and lower bounds. Let C be a
class of a circuit. Given a circuit in C, C-SAT is the determination of whether there exists an
assignment to the input variables such that the circuit outputs 1. Williams [26] showed that
to obtain NEXP 6⊆ C, it suffices to develop an O

(
2n−ω(logn)) time algorithm for C-SAT.

Barrignton [3] showed that any function in NC1 can be computed using width-5 BPs of
polynomial length. By combining these results, if we would like to prove NEXP 6⊆ NC1, it
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is sufficient to develop an O
(
2n−ω(logn)) time algorithm for width-5 BP SAT. In addition,

the hardness of BP SAT implies the hardness of the Edit Distance and Longest Common
Sequence problem [1]. Thus, the designing of a fast algorithm for BP SAT is one of the
important tasks in the field of computational complexity.

For the SAT of some restricted BPs, polynomial or moderately exponential time algorithms
are known. An ordered binary decision diagram (OBDD) is a BP that has the same order
of variables in all paths from the root to any sink. By checking the reachability from the
root to 1-sink, the OBDD SAT can be solved in polynomial time. A k-OBDD is a natural
extension of an OBDD with k layers; all layers are OBDDs with the same order of variables.
Bollig, Sauerhoff, Sieling, and Wegener [6] provided a polynomial time algorithm that solves
the k-OBDD SAT for any constant k. A k-indexed binary decision diagram (k-IBDD) is
the same as a k-OBDD, except that an OBDD in each layer may have a different order of
variables. A k-IBDD SAT is known to be NP-complete when k ≥ 2 [6]. Nagao, Seto, and
Teruyama [18] proposed a satisfiability algorithm for any instances of k-IBDD SAT with
cn edges, and its running time is O

(
2(1−µk(c))n), where µk(c) = Ω

(
1

(log c)2k−1−1

)
. Chen,

Kabanets, Kolokolova, Shaltiel, and Zuckerman [10] showed that general BP SAT with o(n2)
nodes can be determined in time O

(
2n−ω(logn)). However, there are not so much researches

on BP SAT.
In this paper, we focus on syntactic read-k-times BPs. There exist two models of read-k-

times BPs: semantic and syntactic. A read-k-times BP is syntactic if each variable appears
at most k times in any path. It is semantic if each variable appears at most k times in
any “computational” path. The semantic model is substantially stronger than the syntactic
model. Beame, Saks, and Thathachar [5] showed that polynomial-size semantic read-twice
BP can compute functions requiring exponential size on any syntactic read-k-times BP. To
the best of our knowledge, non-trivial lower bounds on semantic read-twice BP are not known;
however, the syntactic model is well-studied. Borodin, Razborov, and Smolensky [7] exhibited
an explicit function of the lower bound of exp

(
Ω
(

n
k34k

))
. Jukna [17] provided an explicit

function f such that nondeterministic read-once BPs of polynomial size can compute ¬f
(i.e., the negation of f); however, to compute f , nondeterministic read-k-times BPs require
a size of exp

(
Ω
(√

n
k2k

))
. Thathachar [25] showed that for any k, the computational power

of read-(k + 1)-times BPs is strictly stronger than that of read-k-times BPs. Sauerhoff [21]
proved the exponential lower bound for randomized read-k-times BPs with a two-sided error.

When k = 1, syntactic read-k-times BP SAT can be determined in polynomial time by
solving the reachability from the root to 1-sink. However, even when k = 2, this problem is
known to be NP-complete; to the best our knowledge, there is no algorithm that is faster
than the brute-force search. Therefore, we present a moderately exponential time algorithm
for any constant k ≥ 2. Our algorithm is based on the decomposition technique by Borodin,
Razborov, and Smolensky [7].

I Theorem 1. There exists a deterministic and polynomial space algorithm for a non-
deterministic and syntactic read-k-times BP SAT with n variables and m edges that runs in
time O

(
poly(n,mk2) · 2(1−4−k−1)n

)
.

1.1 Our Techniques
Our satisfiability algorithm consists of two steps as follows: [Step 1: Decomposition] Given
a syntactic read-k-times BP B ofm edges, we obtain the representation of a function computed
by B as a disjunction of at most m2k2 decomposed functions by using the decomposition
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algorithm proposed by Borodin, Razborov, and Smolensky [7]. It is sufficient to check the
satisfiability of each decomposed function in the running time of Theorem 1, because if one
of these functions is satisfiable then the input B is also satisfiable. Moreover, the property
of the decomposition algorithm states that each decomposed function is a conjunction of
at most 2k2 functions on small variable sets. Let us represent a conjunction of functions as
a set of functions F = {f1, f2, . . . , f`}, where ` ≤ 2k2. [Step 2: Satisfiability Checking]
To check the satisfiability of F , we find an assignment that all functions fi are satisfied
at the same time. Let (F1,F2) be a partition of F . In addition, let X1 and X2 be sets of
input variables appearing in only F1 and F2 respectively and X3 be a set of input variables
appearing in both F1 and F2. If X3 is an empty set, we can check the satisfiability of F1
and F2 independently in time O(2|X1| + 2|X2|) by exhaustive search on each set X1 and
X2. If both F1 and F2 are satisfiable, we know that F is also satisfiable. Our algorithm
assigns 0/1 value to the variables in X3 and then performs the exhaustive search on each
set X1 and X2. Assuming that |X1|+ |X2|+ |X3| = n, we obtain the satisfiability of F in
time O(2|X3|(2|X1| + 2|X2|)) = O(2n−min{|X1|,|X2|}). Further, using probabilistic method, we
show that the existence of a partition (F1,F2) of F such that the value min{|X1|, |X2|} is
adequately large to imply the running time in Theorem 1. Thus, we can save the running
time of our satisfiability algorithm.

1.2 Related Work

A circuit satisfiability problem is, given a Boolean circuit, to find an assignment to the inputs of
the circuit such that the circuit outputs 1. Recently, this problem has been studied extensively,
and excellent algorithms that can outperform a brute-force search have been known for
some restricted circuit classes such as conjunctive normal forms [2, 8, 12, 13, 14, 19, 22],
AC0 [4, 9, 15], ACC0 [27], depth-2 threshold circuits [16], De Morgan formulas [11, 20, 24],
and formulas over the full binary basis [23].

Paper Organization

The remainder of this paper is organized as follows. In Section 2, we provide the notation and
definitions. In Section 3, we provide two algorithms. One is a decomposition algorithm based
on the technique in [7]. The other is a satisfiability algorithm for a specific class of Boolean
functions. In Section 4, we propose our satisfiability algorithm for syntactic read-k-times
BPs.

2 Preliminaries

A set of integers {1, 2, . . . , n} is denoted by [n]. For a set S, |S| denotes the cardinality of S.
Let X = {x1, . . . , xn} be a set of Boolean variables, and for x ∈ X, x denotes the negation of
x. A branching program (BP), denoted by B = (V,E), is a rooted directed acyclic multigraph.
A BP has a unique root node r and two sink nodes (0-sink and 1-sink); 0-sink and 1-sink
are nodes labeled by 0 and 1, respectively. Each node except for the sink nodes is labeled
from X. Each edge e ∈ E has a label 0 (0-edge) or 1 (1-edge). We call node v an xi-node
when v’s label is xi. A BP B is deterministic if any nodes except the two sink nodes in B
have exactly two outgoing edges: one is a 0-edge, and the other is a 1-edge. Otherwise, B
is nondeterministic. For an edge e = (u, v) ∈ E, u is a parent of v and the head of e. The
in-degree of v is defined as the number of parents of v.
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Figure 1 Syntactic read-twice branching program.

For a BP B on X, each input α = (α1, . . . , αn) ∈ {0, 1}n activates all αi-edges leaving the
xi-nodes in B, where 1 ≤ i ≤ n. A computation path is a path from r to a 0-sink or from r to
a 1-sink using only activated edges. A BP B outputs 0 if there is no computation path from
the root r to a 1-sink; otherwise, B outputs 1. Let f : {0, 1}n → {0, 1} be a Boolean function.
A BP B represents f if f(α) is equal to the output of B for any assignment α ∈ {0, 1}n.
Two BPs B1 and B2 are equivalent if B1 and B2 represent the same function. The size of
B, denoted by |B|, is defined as the number of edges in B. A BP is syntactic read-k-times
if each variable appears at most k times in each path. Figure 1 is an example of syntactic
read-twice BPs (k = 2). A BP is semantic read-k-times if each variable appears at most
k times in each computation path. In this paper, we use only the syntactic model and for
simplicity we call it read-k-times BP.

For a BP B and two nodes v, w, a subbranching program 〈B, v, w〉 is a BP that contains
v as the root node, w as the sink node, and every nodes and edges in all v-w paths in B.
Given a BP B and nodes v, w ∈ V , 〈B, v, w〉 is constructed as follows:
1. Let V ′ be the subset of V such that u ∈ V ′ is reachable from v and to w.
2. Output the subgraph of B induced by V ′.
Note that, for any pair of nodes v and w, we can construct 〈B, v, w〉 in O(|B|).

A partial assignment to x = (x1, . . . , xn) is α = (α1, . . . , αn) ∈ {0, 1, ∗}n such that xi is
unset when αi = ∗; otherwise xi is assigned to αi. For any partial assignment α ∈ {0, 1, ∗}n,
a support of α is defined as S(α) := {xi | αi 6= ∗}. For partial assignments α and α′ such
that S(α) and S(α′) are disjoint, α ◦α′ denotes the composition of α and α′: α ◦α′(i) = α(i)
if xi ∈ S(α), α ◦ α′(i) = α′(i) if xi ∈ S(α′), and α ◦ α′(i) = ∗ otherwise. For instance, when
α = (1, ∗, ∗) and α′ = (∗, ∗, 0), α ◦ α′ = (1, ∗, 0).

3 Key Lemmas

In this section, we provide two key lemmas for our algorithm. First, we introduce the decom-
position algorithm developed by Borodin, Razborov, and Smolensky [7]. Their algorithm
decomposes a (nondeterministic) read-k-times BP into a set of BPs with a small number of
variables. Next, we provide a satisfiability algorithm for a specific class of Boolean functions
that have three properties with parameters a and k: (1) Each function is composed of a
disjunction of ka subfunctions. (2) Each variable belongs to at most k subfunctions. (3)
Each subfunction has at most n/a variables. Our algorithm that checks the satisfiability of
such a function is exponentially faster than a brute-force search.
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Now, we analyze the running time of a decomposition algorithm by Borodin, Razborov,
and Smolensky [7]. We will use this algorithm as a module to solve the syntactic read-k-times
BP SAT in Section 4.1.

I Lemma 2 (Theorem 1 in [7]). Let B be a (nondeterministic) syntactic read-k-times BP
with n variables and size m and represent a Boolean function f : {0, 1}n → {0, 1}, and let a
be a positive integer. There is an algorithm that constructs kamka BPs {Bi,j} from B, where
i ∈ [mka] and j ∈ [ka], such that the following properties hold:
1. Let fi,j be the Boolean function represented by Bi,j. Then,

f =
∨

i∈[mka]

∧
j∈[ka]

fi,j .

2. Let Xi,j be the set of variables that appear in Bi,j. For each i and j, |Xi,j | is at most
dn/ae. For each i, each variable x belongs to at most k sets of {Xi,j}j=1,...,ka.

I Lemma 3. Given a (nondeterministic) syntactic read-k-times BP B with n variables and
size m, the running time of algorithm in Lemma 2 is at most O(kamka+1).

Proof. Let us observe the construction given in the proof of Theorem 1 in [7]. Let B be a
nondeterministic and syntactic read-k-times BP with n variables and size m. For each pair
of nodes (v, w) ∈ V 2, X(v, w) denotes the set of all variables that appear in the labels on all
possible paths from v to w except for the label of w.

We call a sequence e1 := (w1, v2), e2 := (w2, v3), . . . , e` := (w`, v`+1) of edges a trace if
and only if the following properties hold:
(a) For each j with 1 ≤ j ≤ `+ 1, we have |X(vj , wj)| < n/a.
(b) For each j with 1 ≤ j ≤ `, we have |X(vj , vj+1)| ≥ n/a,
where we set v1 as the root and w`+1 as the 1-sink.

Note that any path from r to the 1-sink contains a unique trace. Let T be the set of all
traces. For each trace T = (e1 = (w1, v2), . . . , e` = (w`, v`+1)) ∈ T and 1 ≤ j ≤ `, let BT,j
be a BP constructed as follows:
1. Prepare the subbranching program 〈B, vj , wj〉, 0-sink, and 1-sink.
2. Create an edge from wj to the 1-sink with the same label of (wj , vj+1).
3. If some node v does not have a 0-edge (resp. 1-edge) as an outgoing edge, create a 0-edge

(resp. 1-edge) from v to the 0-sink.
Intuitively, BT,j contains all paths from vj to vj+1 through wj . Note that the index i of the
statement corresponds to each trace T . Let gT,j be the function represented by BT,j . Then,
we have f =

∨
T∈T

∧`+1
j=1 gT,j . Each function gT,j depends on at most dn/ae variables by

property (a). Because B is a syntactic read-k-times BP, for each trace T and each variable
x, at most k functions gT,j depend on x. By property (b), we have

∑̀
j=1
|X(vj , vj+1)|+ |X(v`+1, w`+1)| ≥ n`

a
+ |X(v`+1, w`+1)|,

where w`+1 is the 1-sink. Since each variable belongs to at most k subbranching programs,
the left-hand side can be bounded above by kn. Then, ` ≤ ka holds. Moreover, ` = ka holds
only if |X(v`+1, w`+1)| = 0, in which case gT,`+1 is a constant function. If this constant is
0, then

∧`+1
j=1 gT,j is equal to 0 and we can drop whole terms. If it is 1, we can drop gT,`+1.

Therefore, each conjunction part consists of at most ka terms. The number of traces |T | is
at most mka because ` ≤ ka holds.

The rest of the proof is to analyze the running time of the above construction. First,
we find X(v, w) by dynamic programming in O(m) time for each pair of nodes v, w ∈
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V . Then, the running time for enumerating all X(v, w) is at most O(m3). Using the
database of X(v, w), we enumerate all traces by a DFS-like search. The running time for
enumerating all traces is at most O(mka · |T |). For each trace T ∈ T , we construct at
most ka branching programs Bt,j in O(mka) time. Then, the total running time is at most
O(m3) +O(mka · |T |) = O(kamka+1). J

Next, we prove the following lemma for the satisfiability algorithm for a specific class of
Boolean functions.

I Lemma 4. Let a and k be positive integers with a ≤ n. Suppose that we are given a set of
ka functions fi that satisfy the following properties:
1. Each fi depends on only at most dn/ae variables Xi ⊂ X, i.e., |Xi| ≤ dn/ae.
2. Each variable x belongs to at most k sets Xi.
3. Each function fi can be computed in a time of at most t and a space of at most s.

Then, there exists a deterministic algorithm for counting the satisfiable assignments of
the function f =

∧
i fi that runs in time O

(
2kakan

)
+O(kat) · 2(1− 2

4k+1 (1− k
a ))n and space

O(s+ kan).

Proof. Suppose that n is even. (In the case when n is odd, we also obtain the same result in
a similar way.) We can also assume that each variable x belongs to at least one set Xi. If all
sets Xi do not contain a variable x, then

∑
i |Xi| ≤ k(n− 1). This implies that there exists

a set Xi such that |Xi| ≤ (n− 1)/a < dn/ae. Then, we can put the variable x into the set
Xi while preserving the properties.

Let F be the family of all subsets of [ka]. The size of F , i.e., |F| is 2ka. For F ∈ F , F̄ is
defined as [ka] \ F . We define the set of variables VF :=

(⋃
i∈F Xi

)
\
(⋃

i∈F̄ Xi

)
. The set VF

contains all variables that belong to only
⋃
i∈F Xi. By definition, for any F ∈ F , VF and VF̄

are disjoint.
Find the set F ∈ F that maximizes min{|VF |, |VF̄ |} in |F| · O(kan) = O(2kakan) time

by an exhaustive search for F . Let Y := {x1, . . . , xn} \ (VF ∪ VF̄ ). Apply some partial
assignment α whose support is Y . Then, all fi|α for i ∈ F (resp. i ∈ F̄ ) depend on only the
variables in VF (resp. VF̄ ). Let AF be a set of partial assignments αF such that S(αF ) = VF ,
and fi|α(αF ) = 1 holds for all i ∈ F . Similarly, let AF̄ be a set of partial assignments αF̄
such that S(αF̄ ) = VF̄ , and fi|α(αF̄ ) = 1 holds for all i ∈ F̄ . By an exhaustive search for all
partial assignments whose support is VF (resp. VF̄ ), we count the number of elements of AF
(resp. AF̄ ). Since f =

∧ka
i=1 fi, for αF ∈ AF and αF̄ ∈ AF̄ , f(α ◦ αF ◦ αF̄ ) = 1 holds. Then,

the number of assignments that satisfy f and contain a partial assignment α is |AF | · |AF̄ |.
We can count the satisfiable assignments of f by the above operations for all partial

assignments α where S(α) = Y . For each i, the number of times for computing the function
fi is at most 2|Y | ·2max{|VF |,|VF̄ |}. Using |Y |+ |VF |+ |VF̄ | = n, we have 2|Y | ·2max{|VF |,|VF̄ |} =
2n−min{|VF |,|VF̄ |}. Thus, the running time is at most

O(2kakan) + kat · 2n−min{|VF |,|VF̄ |}.

Now, we show that maxF∈F min{|VF |, |VF̄ |} is at least 2
4k+1

(
1− k

a

)
n− 1

2 . It follows that
the running time of our algorithm is

O(2kakan) + kat · 2n−min{|VF |,|VF̄ |} ≤ O
(
2kakan

)
+ kat · 2n−

2
4k+1 (1− k

a )n+ 1
2

= O
(
2kakan

)
+
√

2kat · 2(1− 2
4k+1 (1− k

a ))n.

Let S be the set of variables {x1, . . . , xn/2} and L be the set of variables {x(n/2)+1, . . . , xn}.
Now, we define good/bad pairs of variables. This notation is used in the proof of Theorem 6
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in [7]. A pair (x, x′) ∈ S × L is good iff there is no i ∈ [ka] such that x ∈ Xi and x′ ∈ Xi

and bad otherwise. For each i, the number of bad pairs for Xi is |S ∩Xi| · |L ∩Xi|. Since
|S ∩Xi|+ |L ∩Xi| = |Xi| ≤

⌈
n
a

⌉
hold, we have

|S ∩Xi| · |L ∩Xi| ≤
1
4 ·
⌈n
a

⌉2
.

By summing the number of bad pairs for all Xi, the total number of bad pairs is at most
ka
4 ·
⌈
n
a

⌉2. Then, using ⌈na ⌉ < n
a + 1 and a ≤ n, the number of good pairs is at least

n2

4 −
ka

4 ·
⌈n
a

⌉2
>

1
4

(
1− k

a

)
n2 − 3k

4 n.

Let us consider that the set F ∈ F is chosen uniformly at random. For each good pair
(x, x′) ∈ S × L, Pr[x ∈ VF , x′ ∈ VF̄ ] ≥ 4−k. Hence,

E
F∈F

[
|{(x, x′) | x ∈ S ∩ VF , x′ ∈ L ∩ VF̄ }|

]
≥ 1

4k

[
1
4

(
1− k

a

)
n2 − 3kn

4

]
holds. This implies that there exists a set F such that

|VF | · |VF̄ | ≥ |S ∩ VF | · |L ∩ VF̄ | ≥
1
4k

[
1
4

(
1− k

a

)
n2 − 3kn

4

]
.

For such a set F ∈ F , if |S ∩ VF | · |L ∩ VF̄ | ≥M for some value M , then we have

min{|S ∩ VF |, |L ∩ VF̄ |} ≥
M

max{|S ∩ VF |, |L ∩ VF̄ |}
≥ 2M

n
.

We used the fact that |S∩VF |, |L∩VF̄ | ≤ n
2 . Since min{|VF |, |VF̄ |} ≥ min{|S∩VF |, |L∩VF̄ |}

holds and n and k are nonnegative integers, we have

min{|VF |, |VF̄ |} ≥
2

4kn

[
1
4

(
1− k

a

)
n2 − 3kn

4

]
= 2

4k+1

(
1− k

a

)
n− 6k

4k+1

>
2

4k+1

(
1− k

a

)
n− 1

2 .

The last inequality is by the fact that for any k ≥ 1, 6k
4k+1 <

1
2 holds.

We need the computational space O(kan) for finding the set F ∈ F that maximizes
min{|VF |, |VF̄ |}, and O(s) for computing functions fi. J

4 Satisfiability Algorithms for Syntactic Read-k-times BPs

4.1 Satisfiability Algorithm
In this section, we detail our satisfiability algorithm for syntactic read-k-times BPs and
analyze its running time. We describe the outline of our algorithm. Our algorithm consists
of two steps.

First, applying the decomposition algorithm in Lemma 2 with a = 2k, we decompose
the input syntactic read-k-times BP B into a disjunction of at most m2k2 BPs. Then,
B is satisfiable iff at least one of these decomposed BPs is satisfiable. In addition, each
decomposed BP consists of a conjunction of at most 2k2 BPs.

Second, we determine the satisfiability of each decomposed BP by checking whether there
exists an assignment that satisfies all BPs. Let a decomposed BP be a conjunction of BPs
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{B1, . . . , B`}, where ` ≤ 2k2. Applying Lemma 4 with a = 2k, we count the number of
satisfiable assignments that satisfy all BPs.

Repeating the above operations for all decomposed BPs, we can determine the satisfiability
of the input B.

I Theorem 5 (Restatement of Theorem 1). There exists a deterministic and polynomial
space algorithm for a nondeterministic and syntactic read-k-times BP SAT with n variables
and m edges that runs in time O

(
poly(n,mk2) · 2(1−4−k−1)n

)
.

Proof. Our algorithm consists of the following two steps: (1) decomposition and (2) satis-
fiability checking.

[Step 1: Decomposition]
Setting a = 2k in Lemma 2, construct the set of BPs {Bi,j} from the input B. Let f and
fi,j be Boolean functions represented by B and Bi,j , respectively. Let Xi,j be the set of
variables that appear in Bi,j . Then, the following properties hold:
1. f =

∨
i∈[m2k2 ]

∧
j∈[2k2] fi,j .

2. For each i and j, |Xi,j | is at most
⌈
n
2k
⌉
. For each i, each variable x belongs to at most k

sets of {Xi,j}j=1,...,2k2 .
The computational time required in Step 1 is at most O

(
2k2m2k2+1

)
.

[Step 2: Satisfiability Checking]
In order to check the satisfiability of B, we check whether there exists an assignment that
satisfies all branching programs Bi,1, . . . , Bi,2k2 for each i ∈ [m2k2 ]. Let us consider a fixed
i. We denote Bi,j , fi,j , and Xi,j simply by Bj , fj , and Xj , respectively. Note that each
function fj can be computed in O(m) time and O(m) space by simulating the computation
of Bj .

Our goal in this step is to determine whether there is an assignment that satisfies all fj
for j ∈ [2k2]. By applying Lemma 4 and setting a = 2k, t = O(m), and s = O(m), we count
the satisfiable assignments that satisfy all fj in a time of at most

O
(

22k2
k2n

)
+O(k2m) · 2(1− 1

4k+1 )n.

Therefore, the running time of Step 2 is at most

m2k2
·
{
O
(

22k2
k2n

)
+O(k2m) · 2(1− 1

4k+1 )n
}

= poly
(
n,mk2

)
· 2(1− 1

4k+1 )n.

Combining the analyses of Step 1 and Step 2, the running time of our algorithm is at
most

O
(

2k2m2k2+1
)

+ poly
(
n,mk2

)
· 2(1− 1

4k+1 )n = poly
(
n,mk2

)
· 2(1− 1

4k+1 )n.

Note that if a given B is a deterministic and syntactic read-k-times BP, then any satisfiable
assignment of B satisfies only one conjunction part of the decomposed BPs. Then, the
number of satisfiable assignments of B is equal to the sum of the results of Step 2. J
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Abstract
We study the following dynamic graph problem: given an undirected graph G, we maintain a
connectivity oracle between any two vertices in G under any on-line sequence of vertex deletions
and insertions with incident edges. We propose two algorithms for this problem: an amortized
update time deterministic one and a worst case update time Monte Carlo one. Both of them
allow an arbitrary number of new vertices to insert. The update time complexity of the former
algorithm is no worse than the existing algorithms, which allow only limited number of vertices
to insert. Moreover, for relatively dense graphs, we can expect that the update time bound of
the former algorithm meets a lower bound, and that of the latter algorithm can be seen as a
substantial improvement of the existing result by introducing randomization.
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1 Introduction

In this paper, we consider the dynamic graph connectivity problem. Given an undirected
graph G, the goal for this problem is to build a data structure which can process an on-line
sequence of graph updates and queries. Here for the query C(u, v), the data structure should
answer whether there is a path between two vertices u and v in G. There are some variants
for this problem with respect to the kinds of operations allowed as the graph updates.

Dynamic subgraph connectivity (DSGC): a binary status is associated with each vertex in
G, and we can switch it between “on” and “off”. The query is to answer whether there is
a path between two vertices in the subgraph of G induced by the “on” vertices.
Fully dynamic graph connectivity under edge updates (FGCE): we can delete an existing
edge e from G and insert a new edge e′ to G.
Fully dynamic graph connectivity under general vertex updates (FGCV): we can delete an
existing vertex w from G, and insert a new vertex v and its incident edges to G.

In this paper, we study the FGCV problem.
Among these three problems, the FGCV problem is the most general framework when

we focus on vertex updates. First, an FGCV data structure allows us to insert new vertices,
while a DSGC data structure does not. Second, the FGCV problem can be somewhat solved
by an FGCE data structure as follows, but there is a limitation on the number of new vertices.
In the preprocessing, we add some isolated vertices to G. Then when a new vertex insertion
occurs, we select one of the isolated vertices and regard it as the new vertex. Since single
vertex update amounts to O(n) edge updates (insertions or deletions) for a graph with n
vertices and m edges, the FGCE data structure can process vertex updates. However, in
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Table 1 Comparison of the vertex update time for the (fully) dynamic graph connectivity. “A”,
“M”, and “D” in the first column mean that the corresponding rows show the time complexity of
amortized update time deterministic, worst case update time Monte Carlo, and worst case update
time deterministic algorithms, respectively. The query time is all O(logn) or o(logn).

FGCE * FGCV
A O(n log2 n

log log n
) [14] O(

√
m log1.25 n+ l log2 n

log log n
+ n) X

M O(n log5 n) [10] O(
√
ml log2.75 n+ n) Y

D O(n
√

n(log log n)2

log n
) [11] O(

√
mn log1.25 n) [12]

* They are multiplied by n since we focus on vertex updates.

this approach we cannot insert an arbitrary number of new vertices. On the other hand, an
FGCV data structure can solve the DSGC and FGCE problems (in FGCE setting, one edge
update can be converted to two vertex updates).

The FGCE problem is well-studied for years, and various kinds of algorithms for this
problem were developed even recently, e.g. an amortized update time deterministic one [14],
a worst case update time Monte Carlo one [10], and a worst case update time deterministic
one [11]. There were also these kinds of algorithms for the DSGC problem [6, 8, 7]. However,
there exist almost no FGCV algorithms which allow us to insert an arbitrary number of
new vertices. The only exception is the algorithm of Baswana et al. [2], which maintains a
depth-first search (DFS) tree of undirected graphs. Their worst case deterministic update
time is recently improved by Nakamura and Sadakane [12]. The comparison of the “vertex”
update time of these algorithms is shown in Table 1. Here the update time of the FGCE
algorithm is multiplied by n since single vertex update amounts to O(n) edge updates.
Note that the update time for the DSGC algorithms [6, 8, 7] is omitted since they have
O(mαpolylog(n)) query time with α ≥ 1/5. This is much slower than O(logn), which is the
upper bound for the query time of the algorithms in Table 1.

1.1 Our Results

We develop two data structures for the FCGV problem, both of which allow us to insert an
arbitrary number of new vertices. One is an amortized update time deterministic algorithm
(algorithm X), and the other is a worst case update time Monte Carlo algorithm (algorithm
Y). Both algorithms X and Y have a query time of O(logn). Their time bounds for single
vertex update are shown in the right column of Table 1.

Our time bounds in Table 1 depend on l, that is, the number of leaves of a DFS forest (a
spanning forest generated by DFS) of G at some point. Both algorithms X and Y internally
rebuild a DFS forest of G periodically, and l is in fact the number of leaves of it. Since l ≤ n,
algorithm X can solve the FGCV problem no slower than using the FGCE data structure [14].
Indeed, we can expect l� n for relatively dense graphs as described in Sect. 7.

For algorithm X, its update time complexity becomes O(n) if l = O(n/ log2 n) (unless
m = Ω(n2/ log2.5 n)), which is a firm lower bound since the size of input incident edges
around the inserted vertex may become Θ(n). In addition to this, both algorithms X and Y
permit G to have some edges initially, while the amortized update time FGCE algorithm [14]
assumes G has no edges initially. In summary, the advantages of using algorithm X over
using amortized update time FGCE data structure [14] directly is as follows.

Algorithm X allows us to insert an arbitrary number of new vertices.
Algorithm X permits G to have some edges initially.
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The update time complexity of algorithm X is no slower than using [14] directly. For
relatively dense graphs it is expected to become O(n) which is a firm lower bound.

For algorithm Y, if l � n, the time bound O(
√
ml · polylog(n)) can be seen as a

considerable improvement of that of [12] by introducing randomization. Moreover, in Sect. 7
it is shown that under ER model [9], which is a popular model of random graphs, the time
bound becomes O(n log3.25 n) with high probability, which is faster than using the Monte
Carlo FGCE data structure [10] directly. Again note that algorithm Y allows us to insert an
arbitrary number of vertices while the Monte Carlo FGCE data structure [10] does not.

Our work can be summarized as follows. Our algorithms use a disjoint tree partitioning,
which is used in the dynamic DFS algorithm of Baswana et al. [2], and the FGCE data
structures ([14] for algorithm X, [10] for algorithm Y). First, we develop an efficient method
to maintain disjoint tree partitioning (Sect. 3.1), which reduces the update time when the
number of incident edges around the new vertex is small. Second, we define some queries on
the graph and show an efficient way to solve them (Sect. 4). We believe these queries are of
independent interest. Third, we find a good property of the disjoint tree partitioning for the
amortized time complexity analysis (Lemma 2), and develop an algorithm which fully adopts
this property (Sect. 5). Lastly, we develop a method to convert the amortized update time
algorithm to a worst case update time one (Sect. 6). Note that this kind of technique is also
employed in various dynamic graph algorithms such as dynamic DFS [2, 12] and dynamic
all-pairs shortest paths [1], but in our situation we need some additional considerations.

2 Preliminaries

Throughout this paper, n and m denote the numbers of vertices and edges of a graph,
respectively. We use log(·) as the base-2 logarithm; the natural logarithm is denoted by ln(·).
Note that they differ only by a constant factor, thus ln x = Θ(log x).

Given a spanning forest T of an undirected graph G each tree in which is a rooted tree,
the parent vertex of a vertex v is denoted by par(v). A subtree τ of T is said to be hanging
from a path p if the root r of τ satisfies both r /∈ p and par(r) ∈ p. Two vertices x and y are
said to have ancestor-descendant relation if x = y, x is an ancestor of y, or y is an ancestor
of x. A path p in T is said to be an ancestor-descendant path if the endpoints of p have
ancestor-descendant relation. A spanning forest T of G is a DFS forest of G iff each tree in
T is a DFS tree of the corresponding connected component of G. The number of leaves of a
DFS forest T is the sum of that of each tree in T .

The DFS tree satisfies the following property. Let G be a connected undirected graph and
T be a rooted spanning tree of G. Then T is a DFS tree of G, iff every edge in G connects
two vertices which have ancestor-descendant relation. We call this DFS property.

3 Disjoint Tree Partitioning

In this section, we refer to a disjoint tree partitioning [2], and develop an efficient way to
maintain this partition. The disjoint tree partitioning is defined as follows.

I Definition 1 ([2]). Given a DFS forest T of an undirected graph G and a set U of vertices,
the forest T − U obtained by deleting the vertices in U from T is considered. Then the
disjoint tree partitioning of T −U is a partition of T −U into a set P of ancestor-descendant
paths in T with |P| ≤ |U | and a set T of subtrees of T .

From now we abbreviate disjoint tree partitioning as DTP.

ISAAC 2017
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Figure 1 (A) An example of the building process of DTP. Subtrees τ ∈ T are colored with light
gray and ancestor-descendant paths p ∈ P with dark gray. (B) Corresponding binary trees B and
lists P and T . Here the pointers from B to P or T are omitted.

In [2] the way to construct DTP is also given. First, if U = ∅ then we set P = ∅ and add
all DFS trees in the DFS forest T to T . Next, the DTP of T − (U ∪ {v}) can be obtained
by modifying the DTP of T − U as follows. If v ∈ ∃p ∈ P we remove p from P and add (at
most) two paths obtained by deleting v from p to P. Otherwise if v ∈ ∃τ ∈ T , we remove
τ from T and add a path p′ from par(v) to the root of τ to P. Then we add all subtrees
hanging from v or p′ to T . An example of this process is shown in Fig. 1(A). Note that since
the number of paths in P is increased by at most one during each operation, |P| ≤ |U | holds.
This operation takes O(n) time for each v, thus the DTP of T − U can be calculated one by
one in total O(|U |n) time [2].

3.1 More Efficient Construction
Now we show a more efficient method of maintaining DTP we develop. First, if T is connected,
a heavy-light (HL) decomposition [13] of T is calculated, and the order L of vertices is decided
according to the pre-order traversal of T , such that for the first time a vertex v is visited,
the next vertex to visit is one that is directly connected with a heavy edge derived from the
HL decomposition. Then the vertices of T are numbered from 0 to n− 1 according to L; the
vertex id of v is denoted by f(v). If T is disconnected, we calculate the order of vertices for
each DFS tree in the same way and vertices are numbered by consecutive integers from 0 to
n− 1. Note that this numbering originates in the dynamic DFS algorithm of Baswana et
al. [2], but they utilize this in order to solve some other queries on G. An example of this
numbering is shown in Fig. 1(A).

The important point is that the vertices of τ ∈ T occupy single interval in L since L
is a pre-order traversal of T , and those of p ∈ P occupy O(logn) intervals thanks to HL
decomposition. Now we maintain these intervals by a balanced binary search tree B. Here
the key of each element is the lower endpoint of its interval. We can say |B| ≤ n and
|B| = O(|T |+ |P| logn). Besides this, P and T are retained by lists; each p ∈ P is expressed
by a pair of its endpoints and each τ ∈ T by its root. Here all vertices are stored as the
vertex id f(·). Additionally, we add a pointer from each element in B to the corresponding
x ∈ P ∪ T . Examples of B and the lists are shown in Fig. 1(B).

Thanks to B, we can efficiently update DTP when a vertex v is deleted. First, search
f(v) in B and detect p ∈ P or τ ∈ T which contains v, which takes O(log |B|) = O(logn)
time. Then if v ∈ ∃p ∈ P, remove p from P and corresponding intervals from B, and add
at most two paths obtained by deleting v from p to P and corresponding intervals to B.
These processes take O(log2 n) time, since they amount to O(logn) deletions and insertions
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of elements on B. If v ∈ ∃τ ∈ T , first remove τ from T and a corresponding interval from B.
Then while traversing a path p′ from par(v) to the root of τ , add subtrees hanging from v or
p′ to T and corresponding intervals to B. Finally, add p′ to P and corresponding O(logn)
intervals to B. These take O(log2 n+ |p′|+ δ logn) time, where δ is the number of hanging
subtrees. In fact, we can limit the sum of |p′| and δ as follows.

I Lemma 2. Given a graph G, its DFS forest T and a set of vertices U = {v1, . . . , v|U |},
suppose the DTP of T − {v1, . . . , vi} (i = 1, . . . , |U |) is calculated one by one by the above
process. In calculating the DTP of T − {v1, . . . , vi} by modifying that of T − {v1, . . . , vi−1},
if vi ∈ ∃τ ∈ T , let p′i be the traversed path (i.e. the path from par(vi) to the root of τ) and
δi be the number of hanging subtrees from p′i or vi. (if vi ∈ ∃p ∈ P set p′i = ∅ and δi = 0).
Then

∑|U |
i=1 |p′i| ≤ n and

∑|U |
i=1 δi ≤ l + |U | hold, where l is the number of leaves of T .

Proof. For any vertex v, once v is contained in some p′i, v is always contained in one of the
paths in P until deleted. This means that v cannot be contained in more than one of p′i.
Then

∑|U |
i=1 |p′i| ≤ n holds. Next, it can be pointed out that |T | cannot be more than l at any

time, since every τ ∈ T has at least one distinct leaf of T . In the process of calculating DTP,
|T | increases by 0 if vi ∈ ∃p ∈ P or δi − 1 if vi ∈ ∃τ ∈ T . Therefore

∑|U |
i=1(δi − 1) ≤ l. J

Note that in the preprocessing, the HL decomposition can be calculated in O(n) time and
the initialization of DTP can be done in O(t) time, where t ≤ l is the number of connected
components of T . Hence we can immediately obtain the following result from Lemma 2.

I Lemma 3. By the process described above, the DTP of T − U can be calculated one by
one in total O(|U | log2 n+ n+ l logn) time.

4 Queries on the Disjoint Tree Partitioning

In this section, we define some queries related to the DTP and show an efficient solution for
them. We consider the following queries Q and Q′.

I Definition 4. An undirected graph G and its DFS forest T are given. Then for any subtree
τ of T and ancestor-descendant path p in T , Q(τ, p) returns one of the edges in G which
directly connect τ and p if exists, or ∅ otherwise. Here we assume τ and p have no common
vertices. Similarly, for any two disjoint ancestor-descendant paths p1, p2 in T , Q′(p1, p2)
returns one of the edges in G which directly connect p1 and p2 if exists, or ∅ otherwise.

The motivation to consider these queries is as follows. Roughly speaking, our algorithms
proposed later treat paths p ∈ P and subtrees τ ∈ T derived from the DTP of T − U as
virtual vertices and maintain a data structure to answer connectivity queries among them.
Therefore for any distinct τ1, τ2 ∈ T and p1, p2 ∈ P it is important to judge quickly whether
there are some edges in G − U between p1 and p2 or between p1 and τ1. Here it is noted
that thanks to DFS property, there are no edges in G− U between τ1 and τ2.

Indeed, the query very similar to Q(τ, p) is utilized in the dynamic DFS algorithm by
Baswana et al. [2], and is revealed to be efficiently solved with the vertex numbering described
in Sect. 3 and the orthogonal range search problem [2, 12].

I Definition 5. On grid points in a 2-dimensional plane, k points are given. Then for any
rectangular region R = [x1, x2]× [y1, y2], the orthogonal range one reporting query returns
one of the points within R if exists, or ∅ otherwise. We abbreviate it as ORR query.

ISAAC 2017
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Figure 2 The possible configurations of two ancestor-descendant paths in T .

The queries Q(τ, p) and Q′(p1, p2) can be converted to the ORR query in the following
way. First, the vertices of T are numbered from 0 to n − 1 in the same way as Sect. 3.
Second, we consider a grid G and, for each edge (v, w) of G, put two points on the coordinates
(f(v), f(w)) and (f(w), f(v)) in G. This is equivalent to consider the adjacency matrix of G,
therefore 2m points are placed. Now a careful case analysis shows the following results. Since
Lemma 6 is almost the same as what is proved in [12], we only show the proof of Lemma 7.

I Lemma 6 ([12]). For any subtree τ of T and ancestor-descendant path p in T , the query
Q(τ, p) can be answered by solving single ORR query on G.

I Lemma 7. For any ancestor-descendant paths p1, p2 in T , the query Q′(p1, p2) can be
answered by solving O(logn) ORR queries on G.

Proof. Let x, y be the endpoints of p1 with f(x) ≤ f(y) and z, w be those of p2 with
f(z) ≤ f(w). W.l.o.g. we can assume f(x) < f(z). Due to the HL decomposition, the
vertices of p2 occupy O(logn) intervals [a1, b1], . . . , [ak, bk] in the vertex id. Now we assume
that p1 and p2 are in the same connected component in G. Then there are three patterns on
the configuration of p1 and p2 as drawn in Fig. 2, and two patterns on the vertex id: (a)
f(x) ≤ f(y) < f(z) ≤ f(w) and (b) f(x) < f(z) ≤ f(w) < f(y).

When (a) holds, the answer for Q′(p1, p2) can be obtained by solving ORR queries on G
with R = [f(x), f(y)]× [ai, bi] for i = 1, . . . , k and combining these results. The inequality
(a) can appear in all configurations in Fig. 2. In (i), it may be that [f(x), f(y)] contains
some branches forking from p1, but it makes no problem since there are no edges between
these branches and p2 thanks to DFS property. The same argument can be applied to (ii).
In (iii), the answer for Q′(p1, p2) is ∅ due to DFS property, and each ORR query also returns
∅. Note that even if p1 and p2 are in different connected components in G, (a) holds and the
above procedure returns ∅ correctly. When (b) holds, the answer can be obtained in a similar
way except that the rectangles are R = [f(x), f(LCA(y, z))]× [ai, bi], where LCA(y, z) is the
lowest common ancestor of y and z in T . The inequality (b) can appear in only (ii). In (ii),
all edges between p1 and p2 are indeed between the path from x to LCA(y, z) and p2, and
again it does not matter [f(x), f(LCA(y, z))] contains some branches forking from p1. Note
that the LCA query can be solved in O(1) time with a data structure constructed in O(n)
time [5]. This construction time is absorbed in the cost of HL decomposition. J

Recently, Belazzougui and Puglisi [4] proved that an ORR query with k points in a rank
space can be solved in O(logε k) time with a data structure of O(k) space constructed in
O(k
√

log k) time. With a standard conversion between a rank space and a general grid via
bit vectors (see e.g. [12]), we can apply it to Lemma 6 and 7, and obtain the following lemma.

I Lemma 8. The queries Q(τ, p) and Q′(p1, p2) can be solved in O(logε n) time and
O(log1+ε n) time for arbitrary 0 < ε < 1, respectively, with a data structure of O(m)
space constructed in O(m

√
logn) time.
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5 Amortized Update Time Algorithm

In this section, we show an amortized update time FGCV algorithm. First we give an
overview of our algorithm. As described in Sect. 4, paths p ∈ P and subtrees τ ∈ T derived
from the DTP of T − U are treated as virtual vertices. If we deal with only deletion of
vertices, all we have to do is maintain a connectivity oracle (i.e. a data structure to answer
connectivity queries) among them. However, in the fully dynamic setting we deal with
insertion of vertices and their incident edges. Thus we also treat each inserted vertex as a
virtual vertex, i.e. we maintain a connectivity oracle among P ∪ T ∪ V, where V is a set of
inserted vertices. Then our amortized update time algorithm can be described as follows.
First, perform DFS on G to build a DFS forest T and initialize the DTP of T , an FGCE data
structure (a connectivity oracle) C, and the data structure of Lemma 8 to solve Q and Q′.
Second, for the first ∆(≤ n) vertex updates, if vertex insertion occurs then insert the new
vertex to V and update C, otherwise if vertex deletion occurs then update V (if the deleted
vertex is in V) or the DTP (otherwise) and also update C. Third, when ∆ vertex updates are
processed, again perform DFS on G to rebuild the DFS forest T and reinitialize the DTP,
the connectivity oracle, and the data structure in Lemma 8, which is used for the next ∆
updates. In summary, we initialize data structures periodically after every ∆ updates.

We proceed to the detailed description of the initialization. In the initialization, we have
to construct the FGCE data structure C. From now we call the vertex in C node to avoid
confusion. Since in the edge update setting we cannot change the number of nodes, we
must decide at first the number of nodes C has. Because C maintains connectivity among
P ∪ T ∪ V, it suffices to prepare M nodes for C where M is an upper bound of |P ∪ T ∪ V|
while ∆ updates are being processed. The following lemma ensures us that l + ∆ nodes
are sufficient. Note that C is initialized to have no edges between any nodes since at first
P = V = ∅ and each τ ∈ T is indeed a connected component of G.

I Lemma 9. While ∆ updates are being processed from the initialization, |P ∪ T ∪ V| is not
more than l + ∆ at any time, where l is the number of leaves of T .

Proof. It suffices to show that |P ∪ T ∪ V| is not more than l + ∆ “when” ∆ updates are
processed. Let ∆D and ∆I be the numbers of deleted and inserted vertices during ∆ updates,
respectively. First, it is already shown that |T | ≤ l at any time. Second, from the definition
of DTP, |P| ≤ ∆D. Finally, |V| ≤ ∆I holds trivially (the case |V| < ∆I occurs when some
inserted vertices are deleted). Then |P ∪ T ∪ V| ≤ l + ∆D + ∆I = l + ∆. J

Since each element in P ∪T ∪V can be deleted, we may have to reuse the nodes of deleted
elements when new elements are created. This can be addressed by numbering the nodes in
C, storing the corresponding node id for each p ∈ P, τ ∈ T and v ∈ V, and maintaining the
unused nodes by list. We assume this node recycling runs in background, and for simplicity,
the node in C representing x ∈ P ∪ T ∪ V is denoted by C(x).

We next describe the update procedure. Let n be the number of vertices of G at the
initialization. Since the initial vertices are numbered from 0 to n − 1, the newly inserted
vertices, i.e. the vertices in V, are numbered one by one from n.

First we describe how to update the data structures when vertex insertion occurs. At
this time the list A of vertices the newly inserted vertex v is incident with is given. Let
k(≥ n) be the vertex id of v. First, convert each element of A to the vertex id f(·) and store
in an array A[k][·] sorted in ascending order. A is an adjacency list for the newly inserted
vertices. If A has a vertex u ∈ V, append k to A[f(u)], and connect C(v) with C(u). Next,
for each x ∈ P ∪ T judge whether v is incident with x and connect C(v) with C(x) if so.

ISAAC 2017
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These judgments can be performed by traversing B while scanning A[k] from left to right,
since A[k] is sorted. For each interval [a, b] in B, if [a, b] contains some elements in A[k] then
we mark the corresponding x ∈ P ∪ T incident with v. If y ∈ P ∪ T is not marked when the
traversal of B finishes, y is not incident with v.

Next we describe what to do when the deletion of a vertex w occurs. Let k = f(w). The
vertex u with f(u) = x is denoted by f−1(x). First, if w ∈ V, i.e. k ≥ n, then undo what is
performed when inserting w. More specifically, first disconnect C(f−1(A[k][i])) from C(w)
for each i such that A[k][i] ≥ n, then judge whether w is incident with each x ∈ T ∪ P and
disconnect C(x) from C(w) if so. This judgment can be done in the same way as described
above. Next, if w /∈ V , detect y ∈ P ∪T which contains w by a search on B, and then update
DTP and C simultaneously as described later. When the DTP is updated as in Sect. 3,
some of the following four operations may occur: adding a path p to P, removing p from P,
adding a subtree τ to T , and removing τ from T .

Now we focus on a path p, and show how to judge whether x ∈ P ∪T ∪V \{p} is incident
with p, i.e. there are some edges between x and p. For each u ∈ V we can judge it by the
following way. Let [a1, b1], . . . , [ak, bk] be the intervals the vertices of p occupy in the vertex
id, and lb(A[i], j) be the smallest element in A[i] which is not less than j, which can be
obtained by a binary search on A[i]. Then p is incident with u iff there exists i such that
lb(A[f(u)], ai) ≤ bi. For each p′ ∈ P and τ ′ ∈ T we can judge the incidence by the queries
Q′(p′, p) and Q(τ ′, p), respectively. Using these judging frameworks, we can update C when
the addition or removal of p occurs: for each x ∈ P ∪ T ∪ V incident with p, disconnect C(x)
from C(p) when p is removed from P, or connect C(x) with C(p) when p is added to P.

We can cope with the addition or removal of a subtree τ in a similar way. Let [a, b] be
the interval the vertices of τ occupy in the vertex id. Then τ is incident with u ∈ V iff
lb(A[f(u)], a) ≤ b. For each p′ ∈ P , we can judge whether p′ is incident with τ by the query
Q(τ, p′). Again note that τ is not incident with any τ ′ ∈ T \ {τ} due to DFS property. The
update procedure for C is the same: for each x ∈ P ∪ V incident with τ , disconnect C(x)
from C(τ) when τ is removed from T , or connect C(x) with C(τ) when τ is added to T .

Finally we show how to answer the connectivity query between v and w. First we detect
x ∈ P ∪ T ∪ V containing v. Even if v /∈ V we can determine x ∈ P ∪ T by searching the
interval which contains f(v) on B. The same argument can be applied to the conversion
from w to y ∈ P ∪ T ∪ V. If x = y then v and w are obviously connected, otherwise the
answer can be obtained by querying on C whether C(x) and C(y) are connected.

5.1 Time Complexity Analysis
We proceed to the time complexity analysis of this algorithm. In our analysis, we use
the FGCE data structure proposed by Wulff-Nilsen [14] as C, which has O(log2 k/ log log k)
amortized update time and O(log k/ log log k) query time for a graph with k nodes. Since
k = l + ∆ ≤ n+ n as in Lemma 9, these are bounded by O(Tu) amortized time for update
and O(Tq) time for query, with Tu = log2 n/ log logn and Tq = logn/ log logn. First of all,
the query time of our algorithm is O(logn), since a search on B takes O(log |B|) = O(logn)
time and a query on C takes O(Tq) = o(logn) time. From now the update time is considered.

First, we consider the time consumed by the (periodic) initialization, which is amortized
over ∆ updates. The data structure in Lemma 8 can be built in O(m

√
logn) time and C in

O(k log k) = O((l+∆) logn) time (though the initialization cost of C is not explicitly described
in [14], we prove that for a graph with k nodes and no edges C can be initialized in O(k log k)
time). From Lemma 3, the total time of maintaining DTP is O(∆ log2 n+ n+ l logn).
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Next, we focus on the vertex insertion. Let mv be the number of incident vertices of
the newly inserted vertex v, i.e. the number of newly inserted edges. Sorting these incident
vertices takes O(mv logmv) = O(mv logn) time, or O(n) time by bucket sort. Traversing
B while scanning A[k] takes O(mv + |B|) = O(mv + |T | + |P| logn) time. Connecting
C(v) with some C(x) occurs at most |P ∪ T ∪ V| times, thus updating C takes at most
O((|P|+ |T |+ |V|)Tu) time.

Finally we consider the deletion of a vertex w. There are three cases, namely, w ∈ V,
w ∈ ∃p ∈ P and w ∈ ∃τ ∈ T . If w ∈ V, the time complexity is almost the same as that of
vertex insertion, except that sorting incident vertices is not needed. If not, we can detect
y ∈ P ∪ T which contains v in O(log |B|) = O(logn) time. Then if y = p ∈ P, one path is
removed from P and at most two paths are added to P. For each removal or addition of a
path, judging the incidence takes O(log2 n) time for each u ∈ V (since this amounts to at
most O(logn) binary searches on A[f(u)]), O(log1+ε n) time for each p′ ∈ P, and O(logε n)
time for each τ ′ ∈ T (Lemma 8). Updating C takes at most O((|P| + |T | + |V|)Tu) time.
Then the total cost is bounded by O((|P|+ |T |)Tu + |V| log2 n) time. The most complicated
case is y = τ ∈ T . In this case, one subtree is removed from T , one path is added to P , and
δw subtrees are added to T , where δw is the number of hanging subtrees as described in Sect.
3. Here judging the incidence between τ ∈ T and each u ∈ V takes O(logn) time, since this
amounts to one binary search on A[f(u)]. Then a similar analysis shows that the total cost
is bounded by O((|P|+ |T |)Tu + |V| log2 n+ δw(|P|+ |V|)Tu).

Now we sum up all of the costs described above. The most crucial point is that we
can amortize the sum of δw over ∆ updates by Lemma 2:

∑
w δw ≤ l + ∆. Since |P| ≤ ∆,

|T | ≤ l and |V| ≤ ∆, the amortized cost for the update procedure (other than initialization)
over ∆ updates is bounded by O(lTu + ∆ log2 n + min{m logn, n}) per update, where
m =

∑
vmv/∆ is the average number of newly inserted edges per update. The overall

amortized update time is obtained by adding the initialization cost divided by ∆ to it.
Some terms are absorbed in lTu and ∆ log2 n terms and we obtain the following bound:
O((n + m

√
logn)/∆ + ∆ log2 n + lTu + min{m logn, n}). By taking ∆ = d

√
m/ log0.75 ne,

this bound becomes O(
√
m log1.25 n+ l log2 n/ log logn+ n). If m = Ω(n/

√
logn), the n/∆

term is absorbed in m
√

logn/∆ term and the last n term becomes min{m logn, n}.

I Theorem 10. There exists a deterministic fully dynamic connectivity algorithm under
general vertex updates such that each update can be processed in amortized O(

√
m log1.25 n+

l log2 n/ log logn+n) time and each query in O(logn) time, where l is the number of leaves of
a DFS forest of G at some point. If m = Ω(n/

√
logn), the amortized update time complexity

is reduced to O(
√
m log1.25 n+ l log2 n/ log logn+ min{m logn, n}), where m is the average

number of newly inserted edges per update.

6 Worst Case Update Time Algorithm

In this section, we show a worst case update time FGCV algorithm. In our worst case update
time algorithm, the procedure for processing graph updates and queries is kept same as
the amortized update time algorithm in Sect. 5. We alter the periodic initialization. The
principles to achieve “worst case” update time are as follows: (i) to perform simultaneously
the processing of graph updates and queries and the initialization of data structures, and (ii)
to utilize the data structures built from a DFS forest with “less” number of leaves. The idea
(i) is used for various worst case update time dynamic graph algorithms such as dynamic
DFS [2, 12] and dynamic all-pairs shortest paths [1]. The idea (ii) is due to the observation
that in the amortized update time algorithm, smaller l leads to a better update time bound.

ISAAC 2017
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The overview of our algorithm is described as follows. Let a > 1 be a positive constant
and ∆0,∆1, . . . be positive integers (their values are decided later). We virtually divide the
sequence of graph updates into phases; the first ∆0 updates are called phase 0, the next ∆1
updates are called phase 1, and similarly from (∆0 + · · ·+ ∆j−1 + 1)-st to (∆0 + · · ·+ ∆j)-th
updates are called phase j. Let Gj be the graph at the end of phase (j − 1). First, given an
original undirected graph G, calculate a DFS forest T0 of G to get the number of leaves l0
of T0, initialize the data structure D0 for G and T0, and use D0 for processing updates and
queries in phase 0 and 1. Here D0 is indeed a collection of the DTP of T0, the FGCE data
structure C, and the data structure to solve Q and Q′. Besides this, in phase j ≥ 1, in the
first half (i.e. first ∆j/2 updates) the followings are performed gradually: calculate a DFS
forest Tj of Gj to get the number of leaves lj of Tj and initialize the data structure Dj for
Gj and Tj . Then if lj > alj−1 (i.e. the number of leaves of Tj is too much), do nothing other
than processing updates and queries in the second half, and in the next phase (j + 1) the
data structure used in phase j is consecutively utilized for processing updates and queries. If
lj ≤ alj−1, in the second half apply the ∆j vertex updates (from (∆0 + · · ·+ ∆j−1 + 1)-st
to (∆0 + · · ·+ ∆j)-th) on Dj gradually. This can be done by applying two updates on Dj
during each graph update. In this way Dj is ready to use for processing updates and queries
in the end of phase j, and Dj is utilized in the next phase (j + 1).

6.1 Probability and Time Complexity Analysis
Now we consider the probability of correctness and the update time complexity. Here we
use the Monte Carlo FGCE data structure proposed by Kapron et al. [10] as C, which has
O(log5 k) worst case update time and O(log k/ log log k) query time for a graph with k nodes.
Their algorithm has only one-sided error: if their algorithm answers “yes” for the query, the
answer is always correct, otherwise the answer is correct with probability at least 1− k−c
for any fixed constant c. If the data structures are used for processing updates and queries
in the same way as Sect. 5, the most time consuming case occurs when a vertex w with
w ∈ ∃τ ∈ T is deleted, which causes δw ≤ l subtrees to be added to T . When ∆ updates are
already processed, |P| ≤ ∆ and |V| ≤ ∆. Therefore the worst case cost for single update
in phase j is bounded by O(l∆ log5 n + n) when ∆ updates are processed, where l is the
number of leaves of a DFS forest the data structures used in phase j are built from. Note
that the O(n) term derived from the vertex insertion is also not negligible.

First we consider the probability of correctness. The connectivity oracle by Kapron et
al. [10] maintains a spanning forest of the graph internally. Indeed, their oracle guarantees
that this spanning forest is maintained correctly with probability at least 1 − k−c. This
means that in our algorithm the spanning forest of a graph with vertex set P ∪ T ∪ V is
maintained correctly in C with probability at least 1− k−c. Later we set k ≥

√
n, then our

algorithm answers the query correctly with probability at least 1− n−c/2.
Next we consider the time complexity. In the analysis, we assume the number of edges

of G is not drastically changed during each phase for simplicity. In other words, let mj

be the number of edges of Gj , then we assume clmj−1 ≤ mj ≤ cumj−1 for all j ≥ 1 with
some fixed constants cl and cu (note that this assumption is also implicitly imposed on the
analysis of the dynamic DFS algorithms [2, 12]). We set a = 4, ∆0 = b

√
m/l0/ log2.25 nc

and ∆j = b
√
m/lj−1/ log2.25 nc (j ≥ 1).

In phase j ≥ 1, performing DFS and initializing the data structure to solve Q and Q′ takes
O((m

√
logn + n)/(∆j/2)) = O(

√
mlj−1 log2.75 n + n) time per update (similar argument

can be applied to phase 0). If lj ≤ 4lj−1, in the second half of phase j applying ∆j updates
on Dj takes O(lj∆j log5 n+ n) = O(

√
mlj−1 log2.75 n+ n) time per update.



K.Nakamura 59:11

The most important point is how many updates each data structure Dt is processed. It
seems to be difficult to analyze it because even if m does not change drastically during each
phase, l may change drastically. However, we can obtain the following lemma.

I Lemma 11. During our algorithm, Dt processes at most O(
√
m/lt/ log2.25 n) updates.

Proof. Suppose Dt (t ≥ 1) is used for processing updates and queries from phase (t+ 1) to
(t+ k). Then Dt processes ∆t + · · ·+ ∆t+k updates overall. Due to the assumption of the
periodic initialization described above, we can say alt−1 ≥ lt < lt+1/a < · · · < lt+k−1/a

k−1.
Therefore ∆t+i ≤ (

√
m/lt/ log2.25 n)/2i−1 (i = 0, . . . , k) (with a = 4). Since the sum of

geometric series converges to a constant, ∆t + · · ·+ ∆t+k ≤ (
√
m/lt/ log2.25 n) · (2 + 1 + · · ·+

1/2k−1) = O(
√
m/lt/ log2.25 n). Similar arguments can be applied to D0. J

Then the worst case cost of processing single update with Dt is bounded by O(lt log5 n ·√
m/lt/ log2.25 n+ n) = O(

√
mlt log2.75 n+ n). If Dt (t ≥ 1) is used for processing updates

and queries in phase j > t, we can say lt < lj−1/a
j−1−t, so the bound can be written as

O(
√
mlj−1 log2.75 n+ n). Similar arguments hold for the cases t = 0 and t = j.

We do not care the cost of C’s initialization, but this does not cause trouble. From
the choice of ∆j , k = dmax{lj + 2

√
m/ log2.25 n,

√
n}e is enough for Dj . The initialization

cost of C is O(k log4 n) [10] since C is initialized to have no edges as in Sect. 5. Here
lj log4 n/∆j ,

√
m log1.75 n/∆j and

√
n log4 n/∆j are absorbed in lj∆j log5 n, m

√
logn/∆j

and n/∆j , respectively. Similarly, the initialization cost of DTP is also negligible. Overall, it
can be said that the worst case update time complexity is O(

√
ml0 log2.75 n+ n) in phase 0

and O(
√
mlj−1 log2.75 n+ n) in phase j. Now we obtain the following theorem.

I Theorem 12. There exists a Monte Carlo fully dynamic connectivity algorithm under
general vertex updates such that each update can be processed in worst case O(

√
ml log2.75 n+n)

time and each query in O(logn) time, where l is the number of leaves of a DFS forest of G
at some point. If this algorithm answers “yes” for the query, the answer is always correct,
otherwise correct with probability at least 1− n−c for any fixed constant c.

7 The Number of Leaves of DFS Forest

In this section, we focus on the value of l, that is, the number of leaves of the DFS forest.
Now we state that for relatively dense random graphs l = o(n) holds with high probability.

Here we consider the ER model [9] G(n, p). In a random graph G(n, p) which is an
undirected graph with n vertices, for every pair (v, w) of vertices an edge between v and w is
added to the graph with probability p independent of other pairs. The average number of
edges is M = Np with N =

(
n
2
)
≤ n2/2. Recently, Baswana et al. [3] proved the following

result, which is about the property of DFS on G(n, p).

I Lemma 13 ([3]). Given a random graph G(n, p) with p = (lnn0 + c)/n0 for any integers
n0 ≤ n and c ≥ 1, the DFS on G(n, p) proceeds without moving backward for the first n− n0
vertices with probability at least 1− 2/ec.

The DFS on a graph can be seen as a sequence of moving forward and moving backward; if
there exist unvisited adjacent vertices then it moves forward, otherwise it moves backward.
This lemma implies that with high probability the number of leaves of the DFS forest of
G(n, p) is less than n0 since the first n − n0 vertices are all non-leaf vertices in the DFS
forest. The proof of Lemma 13 in [3] is very simple: the probability that the DFS on G(n, p)
proceeds without moving backward for the first n− n0 vertices is

∏n−n0
j=1 {1− (1− p)n−j},

and this probability is lower bounded by 1− 2/ec using some elementary inequalities.
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In Lemma 13, if we set M = n ln1+α n/2 then n0 ≤ n/ lnα n and M = n1+ε/2 then
n0 ≤ n1−ε lnn. If l = O(n/ log2 n), the amortized update time complexity in Theorem 10
becomes O(n) (unless m = Ω(n2/ log2.5 n)), which is a firm lower bound. Simple calculations
show that l ≤ n0 = O(n/ log2 n) is achieved with high probability when M = Ω(n log3 n) or
Ω(n1+ε). Moreover, if we set M = gn with g ≥ 1 then n0 ≤ n lnn/2g in Lemma 13. This
means that under ER model, Ml ≤Mn0 ≤ n2 lnn/2 holds with high probability. Therefore
the worst case update time complexity in Theorem 12 becomes O(n log3.25 n) (which is faster
than O(n log5 n) [10]) also with high probability.

It is regrettable that maintaining a connectivity oracle of dense G(n, p) is often useless
since G(n, p) with M > n lnn/2 is almost surely connected. However, these observations
suggest that for a graph with a few parts each of which is dense (e.g. a graph with a few
isolated and dense connected components), algorithms X and Y work fast. We think this kind
of graph may appear in a social graph with a few isolated or almost isolated communities.

Acknowledgements. The author would like to thank Kunihiko Sadakane for helpful com-
ments and discussion on this work.
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Abstract
We consider the following problem: Preprocess a set S of n axis-parallel boxes in Rd so that given
a query of an axis-parallel box Q in Rd, the pairs of boxes of S whose intersection intersects the
query box can be reported efficiently. For the case that d = 2, we present a data structure of size
O(n logn) supporting O(logn+k) query time, where k is the size of the output. This improves the
previously best known result by de Berg et al. which requires O(logn log∗ n+k logn) query time
using O(n logn) space. There has been no known result for this problem for higher dimensions,
except that for d = 3, the best known data structure supports O(

√
n + k log2 log∗ n) query

time using O(n
√
n logn) space. For a constant d > 2, we present a data structure supporting

O(n1−δ logd−1 n + k polylogn) query time for any constant 1/d ≤ δ < 1. The size of the data
structure is O(nδd logn) if 1/d ≤ δ < 1/2, or O(nδd−2δ+1) if 1/2 ≤ δ < 1.
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Keywords and phrases Geometric data structures, axis-parallel rectangles, intersection
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1 Introduction

Range searching is one of the fundamental problems, which has been studied extensively
in computational geometry [2]. Typical problems of this type are formulated as follows.
Preprocess a set I of input geometric objects so that given a query of geometric object Q,
the objects in I ∩Q can be reported or counted efficiently. There are a number of variants of
the problem, including checking the emptiness of I ∩Q, finding the minimum (or maximum)
weight of the objects in I ∩Q, and computing the sum of the weights of the objects in I ∩Q.

In this paper, we consider a variant of the range searching problem, which is stated as
follows. Given a set S of n axis-parallel boxes in Rd, preprocess S so that given a query
of an axis-parallel box Q in Rd, all the pairs (S, S′) of boxes in S with S ∩ S′ ∩ Q 6= ∅
can be reported efficiently. The desired running time for the query algorithm is of form
O(f(n) + k(g(n))) for some functions f(n) = o(n) and g(n) = o(n), where k is the size
of the output. One straightforward way is to compute all boxes of S intersecting Q and
check whether each pair (S, S′) of them has their intersection S ∩ S′ in Q. However, this
straightforward algorithm takes Ω(n) time in the worst case even when k = 0.

This problem occurs in a number of real-world applications. For instance, suppose that
we are given a collection of personal qualities (or personality traits) of n clients stored in a
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database, each of them is represented as an interval of values. A pair of clients is said to be
compatible each other if there is a common subinterval over every quality of them. A typical
query on such a collection is composed of a range on each of the qualities, which represents a
certain criterion of selecting some compatible pairs of clients that match the query criterion.

If we are allowed to use Ω(n2) space in the database, we may precompute all compatible
pairs in advance and store them to answer queries efficiently. Otherwise, it is desirable to
devise a way of storing the data using less amount of space while the query time remains the
same or does not increase much. That is, we need to construct a data structure to answer
such a query efficiently in both the query time and the size of the data structure. This is the
goal of the problem we study in this paper.

Previous Work. There are a few results on this problem [6, 8, 9]. Consider a simpler
problem in which input objects are orthogonal line segments. Orthogonal line segments can
be considered as degenerate axis-parallel rectangles. Gupta [8] presented a data structure of
size O(n log2 n) supporting O(log2 n+ k) query time for this problem, where k is the size of
the output and n is the size of the input. Later, the size of the data structure and the query
time were improved to O(n logn) and O(logn+ k), respectively by Rahul et al. [9].

For axis-parallel rectangles in the plane, de Berg et al. [6] presented a data structure of
size O(n logn) that supports O(logn log∗ n+ k logn) query time. We observe that their data
structure can be improved to support O(logn+ k logn) query time by simply replacing the
range searching algorithm in [10] with the one in [1]. For details, see Section 2.2.1.

The algorithm by de Berg et al. [6] does not extend to higher dimensions directly. Using
more observations and techniques, they presented a data structure of size O(n

√
n logn)

supporting O(
√
n+ k log2 n log∗ n) query time in R3. For fat rectangles, the space and query

time are improved to O(α3n log2 n) and O(α2(k+ 1) log2 log∗ n), respectively, where α is the
maximum ratio between the lengths of the longest and the shortest edges of input rectangles.

One might be concerned on the preprocessing time as well as the size of the data structure.
In this type of problems, however, queries are supposed to be made in a repetitive fashion
and the preprocessing time can be seen as being amortized over the queries to be made later
on [3]. Therefore, we focus mainly on the space requirement of the data structure and the
query time for the problem as other previous works did.

Our Result. In this paper, we first present a data structure of size O(n logn) for two-
dimensional case that supports O(logn+ k) query time. This improves the data structure
of de Berg et al. [6]. Recall that our problem is a generalization of the problem studied by
Rahul et al. [9]. Although our problem is more general, our data structure with its query
algorithm requires the same storage and running time as theirs.

Moreover, our data structure is almost optimal. To see this, observe that our problem
can be reduced to the 2D orthogonal range reporting problem. Given a set P of points in R2,
the 2D orthogonal range reporting problem asks to preprocess them so that given a query of
an axis-parallel rectangle, the points of P contained in the query rectangle can be reported.
To solve this problem using the data structure for our problem, we map each point p in P to
two points lying on p (two degenerate boxes). Then we construct a data structure for our
problem on the set of the degenerate boxes for all points in P. The data structure reports
the pairs (S, S′) of degenerate boxes such that S and S′ lie on the same position and are
contained in a query rectangle. Therefore, we can answer the 2D orthogonal range reporting
problem using the data structure for our problem without increasing the running time. For
the 2D orthogonal range reporting problem, it is known that on a pointer machine model,
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a query time of O(polylogn + k), where k is the size of the output, can only be achieved
at the expense of Ω(n logn/ log logn) storage [4]. Moreover, on a pointer machine model, a
query time of o(logn + k) cannot be achieved regardless of the size of the data structure.
Therefore, our query time is optimal, and the size of our data structure is almost optimal.

We also consider the problem in higher dimensions Rd. For a constant d > 2, we present
a data structure that supports O(n1−δ logd−1 n + k logd−1 n) query time for any constant
δ with 1/d ≤ δ < 1. The size of the data structure is O(nδd logn) if 1/d ≤ δ < 1/2, or
O(nδd−2δ+1) if 1/2 ≤ δ < 1. A constant δ shows a trade-off between storage and query time.
This is the first result on the problem in higher dimensions.

Preliminaries. We are given a set S = {S1, . . . , Sn} of n axis-parallel boxes (hyperrectangles)
in Rd for some constant d ≥ 2. For any two boxes Si, Sj ∈ S, we use I(i, j) to denote the
intersection of Si and Sj .

Our goal is to preprocess S so that for a query of an axis-parallel box Q, we can report
all pairs (Si, Sj) of boxes in S with I(i, j) ∩ Q 6= ∅ efficiently. We use U(Q) and k(Q) to
denote the output and the size of the output for a query Q, respectively. We simply use U
and k to denote U(Q) and k(Q), respectively, if they are understood in context.

Due to lack of space, some of the proofs and details are omitted.

2 Planar Case

In this section, we consider the problem in the plane, that is, we are given a set S of n
axis-parallel rectangles in the plane. We present a data structure of size O(n logn) that
supports O(logn+ k) query time for queries of axis-parallel rectangles. This improves the
previously best known data structure with its query algorithm by de Berg et al. [6]. Their
data structure has size of O(n logn) and supports O(log∗ n logn+ k logn) query time.

2.1 Configurations of Two Intersecting Rectangles
An axis-parallel rectangle has four sides: the top, bottom, left and right sides. We call the
top and bottom sides the horizontal sides, and the left and right sides the vertical sides.

Consider a side ab of a rectangle S ∈ S with endpoints a and b. Let a′b′ be the segment
on ab such that a′ and b′ are the points closest to a and b, respectively, among all intersection
points of ab with input rectangles other than S. We call a′b′ the stretch of S on ab. Note
that ab has no stretch if ab intersects no rectangles of S \ {S}. There is at most one stretch
for each side of a rectangle in S. Let S` be the set of all stretches of the rectangles of S.

For any pair (Si, Sj) of rectangles in S with I(i, j) ∩Q 6= ∅, it is not difficult to see that
the pair belongs to one of the following three cases: (1) Q is contained in one of the two
rectangles of the pair, (2) Q contains a corner of I(i, j), or (3) Q contains no corner of I(i, j).
Here we provide another way of describing all the cases in terms of stretches so that the
query time can be improved without increasing the size of the data structures compared
to the one in [6]. Each of these cases can be rephrased into one or two configurations in
Observation 1. More precisely, case (1) corresponds to C1, case (2) corresponds to C2 and
C3, and case (3) corresponds to C4 and C5 of Observation 1.

I Observation 1 (Five Configurations of Intersections). For any pair (Si, Sj) of rectangles in
S with I(i, j) ∩Q 6= ∅, one of the followings holds. See Figure 1.

C1. Si or Sj contains Q.
C2. Q contains an endpoint of a stretch of Si or Sj.
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C1 C2 C3

C4 C5

Q

Si

Sj

Q
Si

Sj

Q

Si

Sj

Q
Si

Sj

QSi

Sj

Figure 1 Five configurations of (Si, Sj) and Q.

C3. A stretch of Si and a stretch of Sj cross Q in different directions.
C4. I(i, j) contains a corner of Q.
C5. I(i, j) and Q cross each other.

We consider the configurations one by one in our query algorithm. We first report all
pairs satisfying C1 (simply, all C1-pairs), then we report all pairs satisfying C2 (simply, all
C2-pairs), and so on. There might be a pair (Si, Sj) of input rectangles that belongs to
more than one configuration. To avoid reporting the same pair more than once, we give
a priority order to the configurations such that our algorithm reports a pair exactly once
in the configuration of the highest priority. Since there are only five configurations and we
can check in constant time whether a pair belongs to a configuration or not, this does not
increase the asymptotic time complexity of our algorithm.

2.2 Reporting All Pairs, except C5-pairs
We first show how to construct data structures for finding all pairs (Si, Sj) of input rectangles
with I(i, j) ∩Q 6= ∅. except C5-pairs. In Section 2.3, we show how to find all C5-pairs.

2.2.1 Data Structures
We construct four data structures for four different problems: the orthogonal segment
intersection problem, the point enclosure problem, the orthogonal range reporting problem,
and the rectangle crossing problem. There has been a fair amount of work on these problems.
We observe that the last problem reduces to the 3D orthogonal range reporting problem with
a four-sided query box, which has also been studied well. Thus we borrow data structures
for these four problems after slightly modifying them to achieve our purpose.

Orthogonal Segment Intersection Problem: SegInt. The orthogonal segment intersection
problem asks to preprocess horizontal input segments so that given a query of a vertical
segment, the horizontal input segments intersected by the query can be computed efficiently.
Chazelle [3] gave a data structure called the hive-graph to solve this problem efficiently.
The hive-graph is a planar orthogonal graph with O(N) cells, each of which has a constant
number of edges on its boundary, where N is the number of the input segments.
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The query algorithm first finds the cell of the hive-graph containing an endpoint of the
query segment and traverses the hive-graph along the query segment from the endpoint to
the other endpoint. The edges of the hive-graph encountered during the traversal are the
horizontal input segments intersected by the query. In this way, the algorithm finds all such
segments in order sorted along the query. The query algorithm takes constant time per
output segment, excluding the time for the point location.

In our problem, we construct two hive-graph data structures, one for the horizontal sides
of the rectangles of S and one for the vertical sides of the rectangles of S. Then for each
endpoint of the stretches of S`, we find the cells of the hive-graphs that contain the endpoint
in the preprocessing phase. This saves the time for point locations in our query algorithm.
Specifically, we can find the sides of the rectangles of S crossed by a stretch ` of S` in the
sorted order along ` from one endpoint of `. This takes constant time per output side. We
denote this data structure by SegInt.

Point Enclosure Problem: PtEnc and EPtEnc. The point enclosure problem asks to
preprocess input rectangles so that all input rectangles containing a query point can be
computed efficiently. Chazelle [3] gave a data structure for this problem. We construct this
data structure on S in the preprocessing time, and denote the data structure by PtEnc.
It has size of O(n) and allows us to find all rectangles of S containing a query rectangle in
O(logn+K) time, where K is the size of the output in this subproblem. Moreover, it allows
us to check whether there exists such a rectangle in O(logn) time.

In our query algorithm, we consider this problem for two different purposes: finding
all rectangles of S containing a corner of Q, and finding all rectangles of S containing an
endpoint of a stretch of S`. We perform the former task at most four times in our query
algorithm since Q has four corners. Thus we simply use PtEnc for this task. However, we
will perform the latter task Θ(k) times in the worst case, which takes Ω(k logn) time. Here
k is the size of the output in our query algorithm. Note that we have the endpoints of the
stretches of S` in the preprocessing phase, and therefore the latter task can be done in the
preprocessing phase.

To do this, we show how the data structure by Chazelle [3] works. Its primary structure is
a balanced binary search tree on the rectangles of S with respect to the x-coordinates of their
vertical sides. Each node of the binary search tree corresponds to a vertical line, and it is
augmented by the hive-graph on the set of the rectangles of S intersecting its corresponding
vertical line. The query algorithm finds O(logn) nodes of the binary search tree, and then
searches on the hive-graphs associated with the nodes. This takes O(logn+K) time due to
fractional cascading, where K is the size of the output in this subproblem.

This means that we consider O(logn) hive-graphs and spend O(logn) time to find the
cells containing a query point on the hive-graphs. By finding such cells in the preprocessing
phase, we can save the logn term in the running time of the query algorithm. Note that we
need O(n logn) space to store the cells containing endpoints of the stretches of S`. Then we
can find all rectangles of S containing an endpoint of a stretch of S` in O(1 +K) time, where
K is the size of the output. Note that O(1 +K) = O(K) since each endpoint is contained
in at least two rectangles of S, and thus K > 1. We denote this data structure (PtEnc
associated with pointers for the endpoints of the stretches) by EPtEnc.

Orthogonal Range Reporting Problem: RecEnc. We want to preprocess all endpoints of
the stretches of S` so that the endpoints contained in a query rectangle can be computed effi-
ciently. Chazelle [3] presented a data structure for this problem that has O(n logn/ log logn)
size and supports O(logn+K) query time, where K is the size of the output. We denote
this data structure by RecEnc.
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Rectangle Crossing Problem: RecCross and RecInt. We want to preprocess the stretches
in S` so that all stretches crossing a query rectangle can be computed efficiently. De Berg
et al. [6] also considered this problem. To do this, they reduce to this problem to the
orthogonal range reporting problem in three dimensional space as follows. Let [a, b]× [c, d]
be a query rectangle. The query rectangle is crossed by a vertical stretch x1 × [y1, y2] if
and only if x1 ∈ [a, b], y1 ∈ [−∞, c], and y2 ∈ [d,∞]. Using this observation, they map each
vertical stretch x1 × [y1, y2] to the point (x1, y1, y2) in R3. Then we can find all vertical
stretches crossing the query rectangle by finding all points contained in the orthogonal region
[a, b]× [−∞, c]× [d,∞]. Similarly, we can do this for horizontal stretches. However, they did
not use the fact that a query is unbounded: it is four-sided in R3. In this case, we can use a
more efficient algorithm given by Afshani et al. [1] instead of the one in [10]. The algorithm
by Afshani et al. takes O(logn+K) time for four-sided query boxes using a data structure
of O(n logn/ log logn) size, where K is the size of the output. We denote this data structure
by RecCross. This data structure is of size O(n logn/ log logn) and allows us to find all
vertical (or horizontal) stretches of S` crossing a query rectangle in O(logn+K) time, where
K is the size of the output.

A rectangle S of S intersects a query rectangle Q if and only if (1) Q crosses a side of
S, (2) Q contains a corner of S, or (3) Q is contained in S. To find all rectangles of S
intersecting a query rectangle, we use RecCross for case (1), use RecEnc for case (2), and
use PtEnc for case (3). We call the combination of these data structures RecInt. We can
find all rectangles of S intersecting Q in O(logn+K) time using RecInt, where K is the
size of the output in this subproblem.

2.2.2 Query Algorithms.
Assume that we have the data structures of size O(n logn) described in Section 2.2.1. Then,
we can find all pairs (Si, Sj) of S with I(i, j) ∩Q 6= ∅, except C5-pairs, in O(logn+ k) time.

Reporting C1-pairs of Q. We can find the C1-pairs of Q in O(logn+ k(Q)) time. A pair
of rectangles in S is a C1-pair of Q if one rectangle in the pair contains all four corners of Q
and the other rectangle intersects Q.

We find the rectangles of S containing all four corners of Q by finding all rectangles of S
containing each corner of Q using PtEnc. Note that there are O(k(Q) + 1) rectangles that
contain a corner of Q simply because every pair of the rectangles containing the corner is
in U(Q). (We need “+1” since it is possible that there is just one rectangle containing the
corner, but k(Q) is zero.) Thus, we can compute such rectangles in O(logn+ k(Q)) time.
Let S1 denote the set of all rectangles containing all four corners of Q.

Let S2 denote the set of all rectangles intersecting Q. If S1 is not empty, we find all
rectangles of S2 in O(logn+K) time using RecInt, where K is the number of such rectangles.
Since S1 is not empty, K is at most k(Q). We report every pair (S1, S2) with S1 ∈ S1 and
S2 ∈ S2 as a C1-pair of Q, which takes O(logn+ k(Q)) time. It is clear that we report all
C1-pairs of Q in this way.

Reporting C2-pairs of Q. We can find the C2-pairs of Q in O(logn+ k(Q)) time. A pair
of rectangles in S is a C2-pair of Q if Q contains an endpoint of a stretch ` of one of them
and the other intersects ` ∩ Q. We find all stretches of S` whose endpoints are in Q in
O(logn+ k(Q)) time using RecEnc. The number of such stretches is O(k(Q)) because each
endpoint of the stretches of S` is contained in at least two rectangles of S and there are at
most four stretches from one rectangle of S.
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For each such stretch `, we want to find all rectangles S of S with S ∩ ` ∩Q 6= ∅. Such
rectangles S satisfy one of the followings: ` ∩Q is intersected by the boundary of S or ` ∩Q
is contained in S. For the former case, we use SegInt. Starting from the endpoint of `
contained in Q, we traverse the hive-graph along ` until we escape from Q or we arrive
at the other endpoint of `. We find all rectangles S whose sides intersect ` ∩ Q in time
linear to the number of such rectangles using SegInt. For the latter case, we compute all
rectangles containing the endpoint of ` that is also in Q in time linear to the number of such
rectangles using EPtEnc. Therefore, for each stretch ` with an endpoint in Q, we can find
all rectangles of S intersecting ` ∩Q in time linear to the number of such rectangles.

By applying this procedure for every stretch with an endpoint in Q, we can find all
C2-pairs of Q in O(k(Q)) time, excluding the time for finding all such stretches. Therefore,
we can compute all C2-pairs of Q in O(logn+ k(Q)) time in total.

Reporting C3-pairs of Q. We can find the C3-pairs of Q in O(logn+ k(Q)) time. A pair
of rectangles in S is a C3-pair of Q if two stretches, one from each rectangle, cross Q in
different directions. Let Sv be the set of the rectangles of S whose vertical stretches cross Q.
Let Sh be the set of the rectangles of S whose horizontal stretches cross Q.

We first check whether Sv or Sh is empty in O(logn) time using RecCross. If both of
them are nonempty, we compute Sv and Sh in O(logn+ k(Q)) time using RecCross. The
size of Sv and Sh is O(k(Q)) since every rectangle of Sv intersects every rectangle of Sh in Q.
Then we report the pairs (S, S′) with S ∈ Sv and S′ ∈ Sh as the C3-pairs in O(logn+ k(Q))
time in total.

Reporting C4-pairs of Q. We can report the C4-pairs of Q in O(logn+k(Q)) time. A pair
of rectangles in S is a C4-pair of Q if the intersection of the rectangles contains a corner of
Q. We first check whether there exists a rectangle of S containing a corner of Q in O(logn)
time using PtEnc. Again, the number of the rectangles of S containing a corner of Q is
O(k(Q)) as every pair of such rectangles is in U(Q).

If there exists such a rectangle, we find all such rectangles in O(logn+ k(Q)) time using
PtEnc. Then we report all pairs consisting of such rectangles. We do this for each of the
other corners of Q. Then we can report all C4-pairs in O(logn+ k(Q)) time.

2.3 Reporting C5-pairs
We have shown how to find all pairs consisting of two rectangles of S intersecting each other
in Q, except for the C5-pairs. There might be some pairs of rectangles that belong to both
C5 and one of the other configurations. As mentioned earlier, this can be checked in constant
time per pair of rectangles. Since we use a priority order over the configurations, we assume
that they have already been reported by the algorithm for the configurations other than C5.

A pair of rectangles in S is a C5-pair of a query rectangle Q if the intersection of the
rectangles and Q cross each other. In the following, we show how to find and report the
C5-pairs of Q not belonging to any other configuration such that the horizontal sides of
the intersection intersect the vertical sides of Q. The C5-pairs not belonging to any other
configuration such that the vertical sides of the intersection intersect the horizontal sides of
Q can be found analogously.

One-dimensional segment tree. We construct a one-dimensional segment tree T of S with
respect to the x-axis as follows [5]. The segment tree has a balanced binary search tree on
the x-projections of the rectangles of S as a primary structure. Each node v of the balanced
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(a) (b)

Si

Sj QH(v) Si

Sj

QH(v)

Figure 2 (a) A canonical node v of (i, j, Q). It holds that Si ∈ SC(v), but Sj ∈ SB(v). (b) A
canonical node v of (i, j, Q). It holds that both Si and Sj are in SC(v).

binary search tree corresponds to a closed vertical slab H(v). We say that a rectangle S
crosses H(v) if S intersects H(v) and no vertical side of S is contained in H(v). Let SC(v)
be the set of the rectangles of S that cross H(v) but do not cross H(u) for the parent u of
v in T . There are O(logn) nodes v with S ∈ SC(v). Moreover, the union of H(v)’s for all
such nodes v contains S. Let SB(v) be the set of the rectangles of S whose left or right side
is contained in the interior of H(v). Note that SB(v) is empty for every leaf node v. For a
rectangle S ∈ S, there are at most two nodes v of T with S ∈ SB(v) at each level of T , and
each such node lies on one of the two paths of T from the root to two leaf nodes w,w′ with
the left side of S contained in H(w) and the right side of S contained in H(w′). We use S(v)
to denote the union of SC(v) and SB(v). For each node v of T , we store SB(v) and SC(v).
The binary search tree together with the sets SB(·) and SC(·) forms the segment tree of S.

Canonical nodes of a C5-pair. Consider any C5-pair (Si, Sj) of Q. Note that there are
O(logn) nodes v of T such that Si, Sj ∈ S(v) and I(i, j) ∩Q ∩H(v) 6= ∅. If we traverse T
and find C5-pairs at each node, then the same pair is found at O(logn) nodes of T , and
therefore the total running time is Ω(k logn) for k pairs in the worst case. Instead, we use a
number of canonical nodes (to be defined below) such that there is a unique canonical node
of (i, j, Q) in T for any C5-pair. We will show how to find the canonical nodes and report all
C5-pairs efficiently in the subsequent sections. See Figure 2.

I Definition 2. For a rectangle Q and a pair (Si, Sj) of the rectangles of S with I(i, j)∩Q 6= ∅,
a node v of T is called the canonical node of (i, j, Q) if the left side of Q is contained in H(v)
and both Si and Sj are in S(v) satisfying Si ∈ SC(v) or Sj ∈ SC(v).

Note that not every canonical node of some triple (i, j, Q) defines a C5-pair of Q, though
I(i, j) ∩Q 6= ∅. However, there is a canonical node of (i, j, Q) in T for each C5-pair of Q.

I Lemma 3. For any C5-pair (Si, Sj) of Q, there is a canonical node of (i, j, Q) in T .

Proof. Consider the C5-pairs of Q such that the horizontal sides of the intersection intersects
the vertical sides of Q. The other cases can be analyzed in a similar way. Let p be the
intersection between the left side of Q and the top side of I(i, j). Then there is a path π from
the root node to some leaf node u with p ∈ H(u) in T . Consider a node w in π. Since p lies
on the left side of Q, the slab H(w) contains the left side of Q. Moreover, H(w) intersects
both Si and Sj .

We claim that there is a canonical node of (i, j, Q) in π. By the construction of the
segment tree, Si ∈ SB(v) for the root node v and Si 6∈ SB(u) for the leaf node u of π. Thus,
there is a node wi of π with Si ∈ SC(wi). For a node w closer to the root node than wi,
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Si ∈ SB(w). For a node w′ closer to the leaf node than wi along π, Si 6∈ S(w′). This also
holds for Sj , so there is a node wj of π with Sj ∈ SC(wj). Without loss of generality, we
assume that wi lies between the root node and wj (including them) along π. Then we have
Si ∈ SC(wi) and Sj ∈ S(wi). Since wi is in π, H(wi) contains the left side of Q. Therefore,
si is a canonical node of (i, j, Q) in π. J

We need the following lemma to bound the total number of canonical nodes for Q over
all pairs of rectangles in S by O(k(Q)).

I Lemma 4. For any rectangle Q and any pair (Si, Sj) of the rectangles of S with I(i, j)∩Q 6=
∅, there is at most one canonical node of (i, j, Q) in T .

I Corollary 5. The total number of canonical nodes for a query rectangle Q is O(k(Q)).

Our general strategy is the following. Given a query rectangle Q, we find a set of nodes of
the segment tree T that contains the canonical node of (i, j, Q) for every C5-pair (Si, Sj) not
belonging to any other configuration in O(logn+ k(Q)) time. The size of this set is O(k(Q)).
For each such node v, we find all C5-pairs (Si, Sj) such that v is a canonical node of (i, j, Q)
in time linear to the number of the output.

2.3.1 Finding all Canonical Nodes for C5-pairs
In this subsection, we present data structures and their query algorithms to find a set of
canonical nodes of (i, j, Q) with I(i, j) ∩Q 6= ∅ for a query rectangle Q. This set contains all
canonical nodes of (i, j, Q) for every C5-pair (Si, Sj) not belonging to any other configuration.
We show how to find such C5-pairs such that the horizontal sides of I(i, j) intersect the
vertical sides of Q. Similarly, we can find the other C5-pairs such that the vertical sides of
I(i, j) intersect the horizontal sides of Q.

Data Structures. For each node v of T and each rectangle S in S(v), we trim S as follows.
We first remove the parts of S lying outside of H(v). Then we remove the parts of the
resulting rectangle that lie outside of the smallest horizontal slab enclosing

⋃
S′∈SC(v) S

′

with S ∩ S′ 6= ∅. We call the resulting rectangle the trimmed rectangle for (S, v). Let L
be the set of the horizontal sides of all trimmed rectangles for all nodes of T . Note that
|L| = O(n logn).

We construct the hive-graph on L, which allows us to report all horizontal sides of L
intersecting a query vertical segment ` in sorted order along ` in O(logn+K) time, where K
is the size of output [3]. Since the size of L is O(n logn), the hive-graph has O(n logn) size.
We make each segment in L to point to the rectangle in S from which the segment comes.

Query Algorithm. Given a query rectangle Q, our query algorithm finds all sides of L
intersecting the left side of Q using the hive-graph on L. Then for each such side, our query
algorithm marks the node of T pointed by the side as a canonical node in O(logn+ k) time
due to the following lemmas.

I Lemma 6. The query algorithm finds the canonical node of (i, j, Q) for every C5-pair
(Si, Sj) not belonging to any other configuration.

I Lemma 7. The number of the sides of L intersecting the left side of Q is O(k(Q)).

I Lemma 8. Given a query rectangle Q, we can find a set of k nodes of T containing all
canonical nodes for C5-pairs not belonging to any other configuration in O(logn+ k) time.
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2.3.2 Handling Each Canonical Node to Find All C5-pairs
Let V be the set of all nodes we found in Section 2.3.1. For each node v ∈ V , we show how to
find all C5-pairs (Si, Sj) not belonging to any other configuration such that v is a canonical
node of (i, j, Q). Here, we consider only the case that Si ∈ SC(v) and Sj ∈ S(v). The other
case that Sj ∈ SB(v) and Si ∈ S(v) can be handled analogously. Moreover, we consider only
the C5-pairs such that the horizontal sides of I(i, j) intersect the vertical sides of Q. The
other case can be handled analogously.

For each node v, we spend O(1 +k(v)) time, where k(v) is the number of C5-pairs (Si, Sj)
such that v is an canonical node of (i, j, Q). Once we do this for every node in V, we can
obtain all C5-pairs for the canonical nodes of (i, j, Q) not belonging to any other configuration
in O(k) time, excluding the time for computing all such canonical nodes.

Data Structures and Preprocessing. While computing the set V in Section 2.3.1, we obtain
all rectangles Sj ∈ S(v) for each node v ∈ V such that a horizontal side of the trimmed
rectangle for (Sj , v) intersects the left side of Q. Moreover, a horizontal side of the trimmed
rectangle for (Sj , v) intersects the left side of Q if there is a rectangle Si ∈ SC(v) such that
(Si, Sj) belongs to C5, but does not belong to any other configuration and the vertical sides
of I(i, j) intersect the horizontal sides of Q.

Therefore, we can find all such C5-pairs as follows. For each such rectangle Sj , we find
all pairs (Si, Sj) for Si ∈ SC(v) such that y(Sj), y(Si) and y(Q) contain a common point,
where y(A) is the y-projection of a set A ⊆ R2. Let S′j be the trimmed rectangle for (Sj , v).
Note that for such rectangle, y(S′j), y(Si) and y(Q) also contain a common point.

Thus there are two cases: y(S′j) ∩ y(Q) contains an endpoint of y(Si), or y(S′j) ∩ y(Q)
is contained in y(Si). For the first case, a horizontal side of Si intersects Q ∩ S′j . For the
second case, a horizontal side of S′j is contained in Si. We maintain two data structures, one
for finding the pairs of the first case and the other for finding the pairs of the second case.

The first one is as follows. For each node v of T , we maintain two sorted lists of the
rectangles in SC(v), one with respect to their top sides and the other with respect to their
bottom sides. We make each rectangle Sj in SB(v) to point to the rectangle in SC(v) with
highest bottom side (and highest top side) lying below the top side (and bottom side) of S′j .
Similarly, we make Sj to point to the rectangle in SC(v) with lowest top side (and lowest
bottom side) lying above the bottom side (and top side) of S′j .

For the second one, we use a partially persistent data structure of a linked list. Once we
update a linked list and destroy the old versions, we cannot search any element on an old
version any longer. But a partially persistent data structure allows us to access any version
at any time by keeping the changes on the linked list. Driscoll et al. [7] presented a general
method to make a data structure based on pointers partially persistent. Using their method,
we can construct a partially persistent data structure of a linked list.

In our case, the linked list has rectangles in SC(v) as its elements. We consider a y-
coordinate as a time stamp. A rectangle Si ∈ SC(v) is appended to the linked list at time t1
and deleted from the linked list at time t2, where t1 is the y-coordinate of the top side of Si
and t2 is the y-coordinate of the bottom side of Si. Each insertion and deletion can be done
in constant time, which is subsumed in the preprocessing time. For each horizontal side of S′j ,
we need an extra pointer that points to the first element of the persistent data structure at
time t, where t is the y-coordinate of the horizontal side. The size of the partially persistent
data structure is linear to the size of S(v). Due to the partially persistent data structure and
the pointers associated with the horizontal sides of the rectangles of S(v), we can find all
rectangles in Si containing a horizontal side of S′j in O(1 +K) time, where K is the number
of such Si’s.
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Query Algorithm. Given a query rectangle Q, for each node v in V and each rectangle
Sj ∈ S(v) such that the trimmed rectangle for (Sj , v) intersects the left side of Q, we want
to find all C5-pairs (Si, Sj) with Si ∈ SC(v) such that y(Sj), y(Si) and y(Q) contain a
common point. Recall that there are two cases: y(S′j) ∩ y(Q) contains an endpoint of y(Si),
or y(S′j) ∩ y(Q) is contained in y(Si).

To find the C5-pairs (Si, Sj) belonging to the first case, we do the followings. We search
the sorted list of the rectangles in SC(v) with respect to their top sides starting from the
rectangle of SC(v) with lowest top side lying above the bottom side of S′j if the bottom side
of S′j intersects Q. Note that we can obtain the starting point using the pointer that the
bottom side of S′j has. We stop searching the sorted list when we reach the top side of S′j or
the top side of Q. Similarly, we search the sorted list of the rectangles in SC(v) with respect
to their bottom sides starting from the rectangle that the bottom side of S′j points to until
we reach the top side of S′j or the top side of Q if the top side of S′j intersects Q. In this
way, we can find all rectangles Si in SC(v) belongs to the first case in O(1 +K) time, where
K is the number of such rectangles.

To find the C5-pairs (Si, Sj) belonging to the second case, we do the followings. Recall
that a horizontal side ` of S′j is contained in Q. Moreover, ` is also contained in Si since
y(S′j) ∩ y(Q) is contained in y(Si). We search the partially persistent data structure at time
t, where t is the y-coordinate of `. Starting from the pointer that ` points to, we traverse
the linked list at time t. All rectangles we encounter are the rectangles containing `. This
takes O(1 +K ′) time, where K ′ is the number of such rectangles.

Note that both K and K ′ are at least k(v), where k(v) is the number of the output
pairs (Si, Sj) in U(Q) such that the canonical node of (i, j, Q) is v. Therefore, we spend
O(1 + k(v)) time for each node v ∈ V. Note that k(v) is at least one for every node v ∈ V
by the construction of V. Once we do this for every node in V, we can obtain U(Q) in
O(1 + k(Q)) time in total.

I Lemma 9. Given a query rectangle Q, we can find all C5-pairs in O(logn+ k(Q)) time.

Therefore, we have the following theorem.

I Theorem 10. We can construct a data structure of size O(n logn) on a set S of n axis-
parallel rectangles so that for a query axis-parallel rectangle Q, the pairs (Si, Sj) of S with
Si ∩ Sj ∩Q 6= ∅ can be reported in O(logn+ k) time, where k is the size of the output.

3 Higher Dimensional Case

In this section, we consider a set S = {S1, . . . , Sn} of n axis-parallel boxes (hyperrectangles)
in Rd for a constant d > 2. Let δ ∈ R be any constant with 1/d ≤ δ < 1. We present a
data structure that supports O(n1−δ logd−1 n+ k polylogn) query time. The size of the data
structure is O(nδd logn) if 1/d ≤ δ < 1/2, or O(nδd−2δ+1) if 1/2 ≤ δ < 1. There has been no
known result for this problem in higher dimensions, except that for d = 3, the best known
data structure has size of O(n

√
n logn) and supports O(

√
n+ k log2 log∗ n) query time.

Due to lack of space, we gives only a sketch of our data structure and algorithm. For
each index 1 ≤ t ≤ d, we construct nδ intervals on the xt-axis. Consider the xt-projections of
the xt-facets of S and choose every bn1−δcth projection. Then we have nδ projections that
define nδ intervals. Let Tt be the set of such intervals. A grid cell is a d-tuple (v1, . . . , vd) of
intervals vt ∈ Tt for 1 ≤ t ≤ d. Note that there are O(nδd) grid cells. We define the canonical
grid cell of a box B, not necessarily in S in Rd to be the grid cell containing the corner of B
with minimum xt-coordinates for all 1 ≤ t ≤ d.
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We construct a data structure for each interval on the xt-axis, and store a Boolean value
to each grid cell. The total size of the data structures is O(nδd logn) if 0 < δ < 1/2, or
O(nδd−2δ+1) if 1/2 ≤ δ < 1.

Given a query box Q, we observe that the canonical grid cell of I(i, j) is contained in Q,
or I(i, j) ∩ Q intersects a grid cell intersecting the boundary of Q for a pair (Si, Sj) with
I(i, j) ∩Q 6= ∅. We find all pairs of the first case in O(k logd−1 n) time. For the second case,
we reduce this problem to the (d− 1)-dimensional problem and obtain a recurrence equation
on the running time of our algorithm. Then we obtained the following theorem.

I Theorem 11. We can construct data structures on a set S of n axis-parallel boxes in
Rd so that for a query axis-parallel box Q for a constant d, the pairs (Si, Sj) of S with
Si ∩ Sj ∩ Q 6= ∅ can be reported in O(n1−δ logd−1 n + k logd−1 n) time for any constant
1/d ≤ δ < 1, where k is the size of the output. The size of the data structure is O(nδd logn)
if 1/d ≤ δ < 1/2, or O(nδd−2δ+1) if 1/2 ≤ δ < 1.
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Abstract
We are given a read-only memory for input and a write-only stream for output. For a pos-
itive integer parameter s, an s-workspace algorithm is an algorithm using only O(s) words of
workspace in addition to the memory for input. In this paper, we present an O(n2/s)-time
s-workspace algorithm for subdividing a simple polygon into O(min{n/s, s}) subpolygons of
complexity O(max{n/s, s}).

As applications of the subdivision, the previously best known time-space trade-offs for the
following three geometric problems are improved immediately: (1) computing the shortest path
between two points inside a simple n-gon, (2) computing the shortest path tree from a point
inside a simple n-gon, (3) computing a triangulation of a simple n-gon. In addition, we improve
the algorithm for the second problem even further.
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1 Introduction

In the algorithm design for a given task, we seek to achieve an efficient algorithm with respect
to the time and space complexities. However, one cannot achieve both goals at the same
time in many cases: one has to use more space to achieve a faster algorithm and spend
more time to reduce the space consumption of the algorithm. Therefore, one has to make
a compromise between the running time and the space consumption, considering the goal
of the task and the system resources where the algorithm is performed. With this reason,
a number of time-space trade-offs were considered even as early as in 1980s. For example,
Frederickson [7] presented optimal time-space trade-offs for sorting and selection problems
in 1987. After this work, a significant amount of research has been done for time-space
trade-offs in the design of algorithms.

The model we consider in this paper is formally described as follows. An input is given
in a read-only memory. For a positive integer parameter s which is determined by users,
we are allowed to use O(s) words as workspace in addition to the memory for input. We
assume that a word is large enough to store a number and a pointer. While processing input,
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we write output to a write-only stream without repetition. An algorithm designed in this
setting is called an s-workspace algorithm.

Most of previous fundamental algorithms and applications assume that they can use
workspace without much constraint in size. Typically, they use workspace of at least the size
of input. Although the memory is relatively cheap these days, this is not always the case as
the amount of data collected and used by various applications has significantly increased
over the last years and the memory resource available in the system is relatively smaller
compared to the amount of data they use. This constraint implies some restriction in using
workspace for the applications.

We assume that input is given in a read-only memory under a random-access model. The
assumption on the read-only memory has been considered in applications where the input is
required to be retained in its original state or more than one program may access the input
simultaneously. Many time-space trade-offs for fundamental problems have been studied
under this read-only assumption.

In this paper, we consider time-space trade-offs for constructing a few geometric structures
inside a simple polygon: the shortest path between two points, the shortest path tree from
a point, and a triangulation of a simple polygon. With linear-size workspace, optimal
algorithms for these problems are known. The shortest path between two points and the
shortest path tree from a point inside a simple n-gon can be computed in O(n) time [8]. A
triangulation of a simple n-gon can also be computed in O(n) time [5].

For a positive integer parameter s, the following s-workspace algorithms are known.
The shortest path between two points inside a simple polygon: The first non-
trivial s-workspace algorithm for computing shortest paths between any two points in a
simple n-gon was given by Asano et al. [2]. Their algorithm consists of two phases. In the
first phase, they subdivide the input simple polygon into O(s) subpolygons of complexity
O(n/s) in O(n2) time. In the second phase, they compute the shortest path between the
two points in O(n2/s) time using the subdivision. In the paper (and the talk by Asano
in a workshop in honor of his 65th birthday during SoCG 2014), they asked whether
the first phase can be avoided and the running time can be improved to O(n2/s). This
problem is still open while there are several partial results.
Har-Peled [9] presented an s-workspace algorithm which takes O(n2/s+n log s log4(n/s))
expected time. Their algorithm takes O(n2/s) expected time for the case that s =
O(n/ log2 n). For the case that the input polygon is monotone, Barba et al. [4] presented
an s-workspace algorithm which takes O(n2/s + (n2 logn)/2s) time. Their algorithm
takes O(n2/s) time for log logn ≤ s < n.
The shortest path tree from a point inside a simple polygon: Aronov et al. [1]
presented an s-workspace algorithm for computing the shortest path tree from a given
point. Their algorithm reports the edges of the shortest path tree without repetition in
an arbitrary order in O((n2 logn)/s+ n log s log5(n/s)) expected time.
A triangulation of a simple polygon: Aronov et al. [1] presented an s-workspace
algorithm for computing a triangulation of a simple n-gon. Their algorithm returns
the edges of a triangulation without repetition in O(n2/s+ n log s log5 (n/s)) expected
time. Moreover, their algorithm can be modified to report the resulting triangles of a
triangulation together with their adjacency information in the same time if s ≥ logn.
For a monotone n-gon, Barba et al. [4] presented an (s logs n)-workspace algorithm for
triangulating the polygon in O(n logs n) time for a parameter s ∈ {1, . . . , n}. Later,
Asano and Kirkpatrick [3] showed how to reduce the workspace to O(s) words without
increasing the running time.
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1.1 Our Results
We present an s-workspace algorithm to subdivide a simple polygon with n vertices into
O(min{n/s, s}) subpolygons of complexity O(max{n/s, s}) in O(n2/s) deterministic time.
We obtain this subdivision in three steps. First, we choose every max{n/s, s}th vertex
of the simple polygon which we call partition-vertices. In the second step, for every pair
of consecutive partition-vertices, we choose O(1) vertices which we call extreme-vertices.
Then we draw the vertical extensions from each partition-vertex and each extreme-vertex,
one going upwards and one going downwards, until the extensions escape from the simple
polygon. These extensions subdivide the polygon so that each subpolygon has complexity of
O(max{n/s, s}) or has a spiral-like structure. In the third step, we subdivide each spiral-like
structure into subpolygons of complexity O(max{n/s, s}). Then we show that the resulting
subdivision has the desired complexity.

By using this subdivision method together with new ideas, we improve the running times
of the following three problems without increasing the size of the workspace.

The shortest path between two points inside a simple polygon: We can compute
the shortest path between any two points inside a simple n-gon in O(n2/s) deterministic
time using O(s) words of workspace. The previously best known s-workspace algorithm [9]
takes O(n2/s+ n log s log4(n/s)) expected time.
The shortest path tree from a point inside a simple polygon: We can compute
the shortest path tree from a given point inside a simple n-gon in O(n2/s+ (n2 logn)/sc)
expected time for any constant c > 0. The previously best known s-workspace algorithm [1]
takes O((n2 logn)/s+ n log s log5 (n/s)) expected time. The algorithm in [1] computes
the shortest path between two points as a subprocedure. If one uses our shortest path
algorithm for this subprocedure, the algorithm takes O((n2 logn)/s) expected time.
A triangulation of a simple polygon: The previously best known s-workspace
algorithm [1] takes O(n2/s+ n log s log4(n/s)) expected time. This algorithm computes
the shortest path between two points as a subprocedure. If their algorithm uses our
shortest path algorithm for this subprocedure, it takes O(n2/s) deterministic time.

All missing details and proofs can be found in the full version of this paper [10].

2 Preliminaries

Let P be a simple polygon with n vertices. Let v0, . . . , vn−1 be the vertices of P in clockwise
order along ∂P . The vertices of P are stored in a read-only memory in this order. For a
subpolygon S of P , we use ∂S to denote the boundary of S and |S| to denote the complexity
of S. For any two points p and q in P , we use π(p, q) to denote the shortest path between
p and q contained in P . We assume that no two distinct vertices of P have the same
x-coordinate. We can avoid this assumption by using a shear transformation [6, Chapter 6].

Let v be a vertex of P . We consider two vertical extensions from v, one going upwards
and one going downwards, until they escape from P for the first time. A vertical extension
from v contains no vertex of P other than v due to the assumption that no two distinct
vertices of P have the same x-coordinate. We call the point of ∂P where an extension from
v escapes from P for the first time a foot point of v. Note that a foot point of a vertex might
be the vertex itself. We can compute (report) the foot points of all vertices of P in O(n2/s)
time using O(s) words of workspace.

I Lemma 1. We can report the foot points of all vertices of P in O(n2/s) deterministic
time using O(s) words of workspace.
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Figure 1 (a) Two chains γ and γ̄ connecting two vertices p1 and p2. The set Vγ = {u2, u4}. The
(l,c)-extreme-vertex of γ is u2, and the (l,cc)-extreme-vertex of γ is u4. The (r,c)-extreme-vertex of
γ̄ is u1, and the (r,cc)-extreme-vertex of γ̄ is u3. (b) In the third step, we compute h for (`0, `1, `2)
and h′ for (`2, `3, `4).

In the following, we compute the extensions from some vertices of P . These extensions
form a subdivision of P . We call each such extension a wall, and each subpolygon in the
subdivision a cell. Given an edge of a cell, we can traverse the boundary of the cell starting
from the given edge in time linear to the complexity of the cell once we store the walls of the
subdivision and their endpoints in clockwise order along ∂P in the workspace.

3 Balanced Subdivision of a Simple Polygon

In this section, we present an s-workspace algorithm to subdivide a simple polygon P into
O(min{n/s, s}) subpolygons of complexity O(max{n/s, s}) using O(min{n/s, s}) walls. To
do this, we first present an s-workspace algorithm to subdivide P into O(n/4) subpolygons
of complexity O(4) using O(n/4) walls in O(n2/s) time, where 4 is a positive integer with
min{n/s, (s logn)/n} ≤ 4 ≤ n which is determined by s. Since n/s ≤ 4, we have n/4 ≤ s.
Thus, we can keep all such walls in the workspace of size O(s). We will set the value of 4 in
Theorem 10 so that we can obtain a subdivision of our desired complexity.

The first step: Subdivision by partition-vertices. We first consider every 4th vertex of P
from v0 in clockwise order, that is, v0, v4, v24, . . . , vbn/4c4. We call them partition-vertices.
The number of partition-vertices is O(n/4). We compute the foot points of each partition-
vertex, which can be done for all partition-vertices in O(n2/s) time in total by Lemma 1. We
sort the foot points along ∂P in O((n/4) log(n/4)) time, which is O(n2/s) by the fact that
4 ≥ (s logn)/n. We store them together with their vertical extensions using O(n/4) = O(s)
words of workspace.

The second step: Subdivision by extreme-vertices between two partition-vertices. The
(l,c)-extreme-vertex and (l,cc)-extreme-vertex of a polygonal curve γ ⊂ ∂P are defined as
follows. Let Vγ be the set of all vertices of γ both of whose foot points are on ∂P \γ and whose
extensions lie locally to the left of γ. The (l,c)-extreme-vertex (or the (l,cc)-extreme-vertex)
of γ is the vertex in Vγ defining the first extension we encounter while we traverse ∂P in
clockwise (or counterclockwise) order from v0. See Figure 1(a). Similarly, we define the
(r,c)-extreme-vertex and (r,cc)-extreme-vertex of γ. In this case, we consider the vertices of
γ whose extensions lie locally to the right of γ. We simply call the (l,c)-,(l,cc)-,(r,c)- and
(r,cc)-extreme-vertices extreme-vertices of γ. Note that γ may not have any extreme-vertex.
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In the second step, we compute the extreme-vertices of each polygonal curve connecting
two consecutive partition-vertices along ∂P and containing no other partition-vertices. Then
we have O(n/4) extreme-vertices. We compute the foot points of all extreme-vertices and
store them together with their vertical extensions using O(n/4) = O(s) words of workspace
in O(n2/s) time using Lemma 1 and Lemma 2.

I Lemma 2. We can find the extreme-vertices of every polygonal curve connecting two
consecutive partition-vertices along ∂P and containing no other partition-vertices in O(n2/s)
total time using O(s) words of workspace.

The third step: Subdivision by a vertex on a chain connecting three extensions. After
applying the first and second steps, we obtain the subdivision induced by the extensions
from the partition- and extreme-vertices. Let S′ be a subpolygon in this subdivision. We
will see later in Lemma 4 that S′ has the following property: every chain connecting two
consecutive extensions along ∂S′, except for two of them, has no extreme-vertex. However,
it is still possible that S′ contains ω(1) extensions on its boundary. In this case, S′ has a
spiral-like structure due to the property of S′ mentioned above. See Figure 1(b). In the third
step, we subdivide each subpolygon further so that every subpolygon has O(1) extensions on
its boundary.

The boundary of S′ consists of vertical extensions and polygonal chains from ∂P whose
endpoints are partition-vertices, extreme-vertices, or their foot points. We treat the upper
and lower extensions defined by one partition- or extreme-vertex (more precisely, the union
of them) as one vertical extension.

For every triple (`, `′, `′′) of consecutive vertical extensions on ∂S′ such that `, `′ and `′′
appear on ∂S′ in clockwise order, we consider the part (polygonal curve) of ∂S′ from ` to `′′
in clockwise order (excluding ` and `′′). Let Γ be the set of all such polygonal curves. For
every γ ∈ Γ, we find a vertex v(γ) of ∂S′ \ γ such that one of its foot points lies in γ between
` and `′, and the other foot point lies in γ between `′ and `′′ if it exists. If there are more
than one such vertex v(γ), we choose an arbitrary one.

The extensions of v(γ) subdivide S′ into three subpolygons each of which contains one of
`, `′ and `′′. In other words, the extensions from v(γ) separate `, `′ and `′′. We can compute
v(γ) and their extensions for every γ ∈ Γ in O(|S′|2/s+4) time in total. See Figure 1(b).
The sum of |S′| over all subpolygons S′ is O(n) and the number of the subpolygons from
the second step is O(n/4) since we construct O(n/4) extensions in the first and second
steps. Therefore, we do this for all subpolygons in the subdivision from the second step in
O(n2/s+ n) = O(n2/s) time using O(s) words of workspace.

Analysis. We obtained O(n/4) vertical extensions in O(n2/s) time using O(s) words of
workspace. In the following, we show that these vertical extensions subdivide P into O(n/4)
subpolygons of complexity O(4). We call this subdivision the balanced subdivision of S. For
any two points a, b on ∂P , we use P [a, b] to denote the polygonal curve from a to b (including
a and b) in clockwise order along ∂P .

We use the technical lemmas (Lemma 3 to Lemma 6) to show that each subpolygon in
the final subdivision is incident to O(1) walls and has complexity of O(4). Then we obtain
Theorem 11 by setting a parameter 4.

I Lemma 3. Both P [a1, v] and P [v, a2] contain partition-vertices for any extension a1a2
from a vertex v constructed from any of the three steps such that P [a1, a2] contains v.
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Let S be a subpolygon in the final subdivision and S′ be the subpolygon in the subdivision
from the second step containing S. We again treat two vertical extensions defined by one
vertex as one vertical extension. We label the extensions lying on ∂S as follows. Let `0
be the first extension on ∂S we encounter while we traverse ∂P from v0 in clockwise order.
We let `1, `2, . . . , `k be the extensions appearing on ∂S in clockwise order along ∂S from `0.
Similarly, we label the extensions lying on ∂S′ from `′0 to `′k′ along ∂S′ in clockwise order
such that `′0 is the first one we encounter while we traverse ∂P from v0 in clockwise order.
Then we have the following lemmas.

I Lemma 4. For any 1 ≤ i < k′, let a1a2 = `′i and b1b2 = `′i+1 such that a1, a2, b1 and b2
appear on ∂P (and ∂S′) in clockwise order. Then P [a2, b1] has no extreme-vertex.

I Lemma 5. For any 1 ≤ i < k − 1, one of `i, `i+1 and `i+2 is constructed in the third step.

I Lemma 6. The subpolygon S is incident to O(1) extensions constructed in the third step.

Proof. Consider an extension ` incident to S constructed in the third step. Let v be the
vertex defining the extension `. The boundary of S′ consists of the walls `′0, . . . , `′k′ and the
polygonal curves connecting two consecutive walls. Let ηi be the polygonal curve of ∂S′
connecting `′i and `′i+1 (excluding the walls) for 0 ≤ i < k′, and ηk′ be the polygonal curve
connecting `′k′ and `′0 (excluding the walls).

We also claim that there exist at most two vertices u ∈ η0 such that the foot points of u
are in ∂S′ \ η0 and the extension of u is incident to S. To see this, let u1, u2 ∈ η0 be such
vertices if they exist. Let h1 and h2 be the extensions from u1 and u2, respectively, incident
to S. One polygonal chain connecting h1 and h2 along ∂S (but not containing them in its
interior) is contained in η0 since u1 and u2 are in η0. The other polygonal chain along ∂S
does not intersect η0. This is because the foot points of u1 and u2 are not in η0, and both h1
and h2 are incident to S. Therefore, no other vertex in η0 with foot points in ∂S \ η0 has
extensions incident to S. This proves the claim. The same holds for ηk′ .

Therefore, there are at most four extensions on ∂S constructed in the third step: two of
them are extensions of vertices of η0 and the others are extensions of vertices of ηk′ . Thus
the lemma holds. J

Due to Lemma 5 and Lemma 6, the following corollary holds.

I Corollary 7. Every subpolygon in the final subdivision is incident to O(1) extensions.

I Lemma 8. Every subpolygon in the final subdivision has complexity of O(4).

Proof. Consider a subpolygon S in the final subdivision. By Corollary 7, the boundary
of S consists of O(1) vertical extensions and O(1) polygonal curves from the boundary of
P connecting two consecutive endpoints of vertical extensions of S. Each polygonal curve
from the boundary of P contains at most one partition-vertex in its interior. Otherwise,
a vertical extension intersecting the interior of S is constructed in the first or second step,
which contradicts that S is a subpolygon in the final subdivision. The number of vertices
between two consecutive partition-vertices is O(4). Therefore, S has O(4) vertices on its
boundary. J

Therefore, we have the following lemma.

I Lemma 9. Given a simple n-gon and a parameter 4 with min{n/s, (s logn)/n} ≤ 4 ≤ n,
we can compute a set of O(n/4) walls which subdivides the polygon into O(n/4) cells of
complexity O(4) in O(n2/s) time using O(s) words of workspace.
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By setting a parameter, we can obtain the following theorem.

I Theorem 10. Given a simple n-gon, we can compute a set of O(min{n/s, s}) walls which
subdivides the polygon into O(min{n/s, s}) cells of complexity O(max{n/s, s}) in O(n2/s)
time using O(s) words of workspace.

Proof. We set 4 to n/s if s ≤
√
n. We set 4 to s, otherwise. J

4 Applications

Comparison with other subdivision methods. There are several subdivision methods which
are used for computing the shortest path between two points in the context of time-space
trade-offs. Asano et al. [2] presented a subdivision method that subdivides a simple polygon
into O(s) subpolygons of complexity O(n/s) using O(s) chords. Then they showed that the
shortest path can be computed in O(n2/s) time using O(s) words of workspace. However,
their algorithm takes O(n2) time to compute such a subdivision, which dominates the overall
running time. Thus, computing such a subdivision is a bottleneck of this problem. In fact,
in the paper, they asked whether such a subdivision can be computed more efficiently.

Instead of answering this question directly, Har-Peled [9] presented a way to subdivide a
simple polygon into subpolygons of slightly different complexity and show that this subdivision
has a structural property similar to the one for the subdivision of Asano et al. The subdivision
of Har-Peled consists of O(n/s) subpolygons of complexity O(s) using O(n/s) line segments.
The number of line segments defining this subdivision is larger than Ω(s), so they cannot
keep the whole subdivision in the workspace. Instead, they gave a procedure to find the
subpolygon containing a query point in O(n+ s log s log4(n/s)) expected time. They showed
that one can find the shortest path between two points using this subdivision in a way similar
to the algorithm by Asano et al.

The balanced subdivision that we propose has a structural property similar to the ones by
Asano et al. and Har-Peled, so we can use our balanced subdivision to compute the shortest
path between any two points. Moreover, our subdivision method has several advantages
compared to the ones of Asano et al. and Har-Peled: our balanced subdivision can be
computed faster than the one by Asano et al., and we can keep the whole subdivision in
the workspace unlike the one by Har-Peled. Due to the first advantage, ours can be used to
improve a number of algorithms. Due to the second advantage, we can solve a few other
application problems. A specific example is to compute the shortest path between a query
point and a fixed point after a preprocessing for the fixed point. See Lemma 17.

Computing the shortest path between two points. Given any two points p and q in P ,
we can report the edges of the shortest path π(p, q) in order in O(n2/s) deterministic time
using O(s) words of workspace. This improves the s-workspace randomized algorithm by
Har-Peled [9] which takes O(n2/s+ n log s log4(n/s)) expected time.

As mentioned earlier, our subdivision method has properties similar to the ones by Asano
et al. [2] and Har-Peled [9]. For s ≥

√
n, we have the subdivision consisting of O(n/s)

cells of complexity O(s). We use the algorithm by Har-Peled [9]. His algorithm takes
O(n(T (n) + n)/s) time, where T (n) is the time for finding the cell containing a query point.
In our case, T (n) = O(n), thus we can compute the shortest path between any two points in
O(n2/s) deterministic time.

For s <
√
n, we have the subdivision consisting of O(s) cells of complexity O(n/s). We

use the algorithm by Asano et al. [2] that computes the shortest path between any two points
assuming that we are given a subdivision consisting of O(s) cells of complexity O(n/s).
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I Theorem 11. Given any two points in a simple polygon with n vertices, we can compute
the shortest path between them in O(n2/s) deterministic time using O(s) words of workspace.

Computing the shortest path tree from a point. The shortest path tree rooted at p is
defined to be the union of π(p, v) over all vertices v of P . Aronov et al. [1] gave an s-workspace
randomized algorithm for computing the shortest path tree rooted at a given point. It takes
O((n2 logn)/s+ n log s log5 (n/s)) expected time and uses the algorithm by Har-Peled [9] as
a subprocedure. If one uses Theorem 11 instead of Har-Peled’s algorithm, the running time
is improved to O((n2 logn)/s) expected time. In Section 5, we improve this algorithm even
further using our balanced subdivision.

Computing a triangulation of a simple polygon. Aronov et al. [1] presented an s-workspace
algorithm for computing a triangulation of a simple polygon by using the shortest path
algorithm by Har-Peled [9] as a subprocedure. By replacing this algorithm with ours in
Theorem 11, we can obtain a triangulation of a simple polygon in O(n2/s) deterministic
time using O(s) words of workspace.

I Theorem 12. Given a simple polygon with n vertices, we can compute a triangulation of
the simple polygon in O(n2/s) deterministic time using O(s) words of workspace.

5 Improved Algorithm for Computing the Shortest Path Tree

In this section, we improve the algorithm for computing the shortest path tree from a given
point even further to O(n2/s+ (n2 logn)/sc) expected time for an arbitrary constant c > 0.
We use the following lemma given by Aronov et al. [1].

I Lemma 13 ([1, Lemma 6]). For any point p in a simple n-gon, we can compute the shortest
path tree rooted at p in O(n2 logn) expected time using O(1) words of workspace.

We apply two different algorithms depending on the size of the workspace: s = O(
√
n) or

s = Ω(
√
n). In this paper, we consider the case of s = O(

√
n) only. The other case can be

handled analogously. A main difference is that we do not use Theorem 11 and Lemma 13 for
s = Ω(

√
n). Instead, we use the fact that we can store all edges of each cell in the workspace.

The details for the case of s = Ω(
√
n) can be found in the full version of this paper.

Given a point p ∈ P , we want to report all edges of the shortest path tree rooted at p. For
every wall a1a2 of the balanced subdivision, we first compute the edges of π(p, a1) ∪ π(p, a2)
crossing some walls in O(n2/s2) time in Section 5.1. We show that the number of such edges
is O(s) in total. These edges allow us to compute the shortest path π(p, q) for any point q of
P in O(n2/s2) time. We call an edge a w-edge if it crosses a wall.

Then we decompose P into subpolygons associated with vertices in Section 5.2. For each
subpolygon, we compute the shortest path tree rooted at its associated vertex inside the
subpolygon recursively. If a subpolygon satisfies one of stopping conditions (to be defined
later), we compute the shortest path tree inside the subpolygon in different ways. Because
of the space restriction, we restrict the depth of the recurrence to be a constant instead of
applying the procedure recursively until the problem size becomes O(s).

5.1 Computing w-edges
We compute all w-edges of the shortest paths between p and the endpoints of the walls. The
following lemma implies that there are O(s) such w-edges. For any three points x, y and z in
P , we call a point x′ the junction of π(x, y) and π(x, z) if π(x, x′) is the maximal common
path of π(x, y) and π(x, z).
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Figure 2 (a) We compute the junction v of π(p, a1) and π(p, b1) by applying binary search on
the w-edges of π(p, b1). (b) We extend e1 and e2 towards b1. The gray region contains the edge of
π(v, a1) incident to v and has complexity of O(n/s).

I Lemma 14. For every wall a1a2, there is at most one w-edge of π(p, ai) for i = 1, 2 which
is not a w-edge of π(p, b) ∪ π(p, b′) for any wall bb′ crossed by π(p, ai).

We consider the walls one by one in a specific order and compute such w-edges one by
one. To decide the order for considering the walls, we define a wall-tree T as follows. Each
node α of T corresponds to a wall d(α) of the balanced subdivision of P , except for the root.
The root of T corresponds to p and has children each of which corresponds to a wall incident
to the cell containing p. A non-root node β of T is the parent of a node α if and only if d(β)
is the first wall that we encounter during the traversal of π(p, a1) from a1 for an endpoint a1
of d(α). We can compute T in O(n) time.

I Lemma 15. The wall-tree can be built in O(n) time using O(s) words of workspace.

After constructing T , we apply depth-first search on T . Let D be an empty set. When
we visit a node α with a1a2 = d(α), we compute the w-edges of π(p, a1) ∪ π(p, a2) which
are not in D yet, and put them in D. Each w-edge in D has information on the node of T
defining it and the cells of the balanced subdivision containing its endpoints. Due to this
information, we can compute the w-edges of π(p, a) in order from a in O(s) time for any
endpoint a of d(α) and any node α we visited before. Once the traversal is done, D contains
all w-edges in the shortest paths between p and the endpoints of the walls.

We show how to compute the w-edge of π(p, a1) which is not in D yet. The case for
π(p, a2) can be handled analogously. By Lemma 14, there is at most one such edge of π(p, a1).
Moreover, by its proof, such an edge is incident to v on π(v, a1). Here, v is the one of the
two junctions closer to a1 than the other among the junction of π(p, b1) and π(p, a1), and
the junction of π(p, b2) and π(p, a1), where b1b2 is the wall corresponding the parent of α.

Computing junctions. We show how to compute the junction v1 of π(p, b1) and π(p, a1)
in O(n2/s2) time assuming that s = O(

√
n). The junction of π(p, b2) and π(p, a1) can be

computed analogously. Then we can compute v in the same time.
To do this, we find the w-edges in D lying on π(p, bi) in order from bi in O(s) time for

i = 1, 2 and denote the set of them by D(bi). Note that these are the w-edges of π(p, bi). We
find two consecutive edges in D(b1) containing v1 between them along π(p, b1) by applying
binary search on the edges in D(b1).

Given any edge e in D(b1), we can determine which side of e along π(p, b1) contains v1 in
O(n/s) time as follows. We first check whether e is also contained in π(p, b2) in constant
time using D(b2). If so, v1 is contained in the side of e along π(p, b1) containing b1. Thus
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we are done. Otherwise, we extend e towards b1 until it escapes from S, where S is the cell
incident to both a1a2 and b1b2. See Figure 2(a). Note that the extension crosses b1b2 since
both π(b1, ve) and π(b2, ve) are concave for an endpoint ve of e. We can compute the point
where the extension escapes from S in O(n/s) time by traversing the boundary of S once. If
an endpoint of the extension lies on the part of ∂S between a1 and b1 not containing a2, v1
lies in the side of e containing p along π(p, b1). Otherwise, the junction v1 is contained in
the other side of e. Therefore, we can find two consecutive w-edges in D(b1) containing v1
between them along π(p, b1) in O((n/s) log s) time since the size of D(b1) = O(s).

The edges of π(p, b1) lying between the two consecutive w-edges are contained in the
same cell. Let x and y be the endpoints of the two consecutive edges of D(b1) contained in
the same cell. Then we compute the edges of π(x, y) one by one from x to y inside the cell
containing x and y. By Theorem 11, we can compute π(x, y) in O(n2/s3) time since the size
of the cell is O(n/s). Here, we use extra O(s) words of workspace for computing π(x, y).
When the algorithm in Theorem 11 reports an edge f of π(x, y), we check which side of f
along π(x, y) contains v1 in O(n/s) time as we did before. We do this until we find v1. This
takes O((n/s)2) time since there are O(n/s) edges in π(x, y). Therefore, in total, we can
compute the junction v1 in O(s+ (n/s) log s+ n2/s2) = O(n2/s2) time since s = O(

√
n).

Computing the edge of π(v, a1) incident to the junction v. In the following, we compute
the edge of π(v, a1) incident to v. Let e1 and e2 be two edges of π(p, b1) incident to v, which
can be obtained while we compute v. See Figure 2(b). We extend e1 and e2 towards b1
until they escape from the cell incident to both a1a2 and b1b2. We consider the subpolygon
bounded by the two extensions and containing a1 on its boundary. Its boundary consists of
parts of the boundary of P and three extra line segments: the extensions of e1 and e2, and
the part of the wall a1a2. Thus, the subpolygon can be represented using O(1) words and
the number of vertices in the subpolygon is O(n/s). Note that π(v, a1) is contained in the
subpolygon. Thus, the edge of π(v, a1) incident to v inside the subpolygon is the edge we
want to compute. We can compute it in O(n2/s3) time by applying Theorem 11 to this cell.

In summary, we presented a procedure to compute the w-edge of π(p, a1) which is not
computed before in O(n2/s2) time assuming that we have done this for every node we
have visited so far. More specifically, computing the junction of π(p, a1) and π(p, bi) takes
O(n2/s2) time for i = 1, 2, and computing the edge incident to each junction takes O(n2/s3)
time. One of the edges is the w-edge that we want to compute. Since the size of the wall-tree
is O(s), we can do this for every node in O(n2/s) time in total. Thus we have the following
lemma.

I Lemma 16. Given a point p in a simple polygon with n vertices, we can compute all
w-edges of the shortest paths between p and the endpoints of the walls in O(n2/s) time using
O(s) words of workspace for s = O(

√
n).

Due to the w-edges, we can compute the shortest path π(p, q) in O(n2/s2) time for any
point q in P . Note that n2/s2 is at least n for s = O(

√
n). For a proof, see Section M.

I Lemma 17. Given a fixed point p in P and a parameter s = O(
√
n), we can compute π(p, q)

in O(n2/s2) time for any point q in P using O(s) words of workspace after an O(n2/s)-time
preprocessing for P and p.

5.2 Decomposing the Shortest Path Tree into Smaller Trees
We subdivide P into subpolygons each of which is associated with a vertex of it in a way
different from the one for the balanced subdivision. Then inside each such subpolygon, we
report all edges of the shortest path tree rooted at its associated vertex recursively. We
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Figure 3 Subdivision of the region bounded by π(v, g1) ∪ π(v, g2) and the part of ∂P from g1 to
g2 in clockwise order along ∂P by extending the edges of π(v, g1) ∪ π(v, g2). (Pi, pi)’s are three of
the subproblems of (P, p) for i = 1, 2, 3.

guarantee that the edges reported in this way are the edges of the shortest path tree rooted
at p. We also guarantee that all edges of the shortest path tree rooted at p are reported. We
use a pair (P ′, p′) to denote the problem of reporting the shortest path tree rooted at a point
p′ inside a simple polygon P ′ ⊆ P . Initially, we are given the problem (P, p).

Structural properties of the decomposition. We use the following two steps of the decom-
position. In the first step, we decompose P into a number of subpolygons by the shortest
path π(p, a) for every endpoint a of the walls. The boundary of each subpolygon consists
of polygonal curves from ∂P with endpoints g1, g2 and shortest paths π(v, g1) and π(v, g2),
where v is the junction of π(p, g1) and π(p, g2). In the second step, we decompose each
subpolygon into smaller subpolygons by extending the edges of the shortest paths π(v, g1)
and π(v, g2) towards g1 and g2, respectively. See Figure 3.

Consider a subpolygon Pi in the resulting subdivision. Its boundary consists of a polygonal
curve from ∂P and two line segments sharing a common endpoint pi. We can represent Pi
using O(1) words. Moreover, Pi has complexity of O(n/s). For any point q in Pi, π(p, q) is
the concatenation of π(p, pi) and π(pi, q). Therefore, the shortest path rooted at pi of Pi
coincides with the shortest path tree rooted at p inside P restricted to Pi. We can obtain
the entire shortest path tree rooted at p inside P by solving (Pi, pi) for every subpolygon Pi
in the resulting subdivision and its associated vertex pi.

The procedure for obtaining this decomposition is described in the full version of this
paper. We decompose each problem recursively unless the problem satisfies one of the three
stopping conditions in Definition 18. Then we directly solve each base problem (that is, we
report the edges of the shortest path tree.) But for non-base problems, we do not report any
edge of the shortest path tree. In this way, we report each edge of the shortest path tree at
most twice. We can report each edge without repetition using an orientation of each edge.

I Definition 18 (Stopping conditions). There are three stopping conditions for (Pi, pi):
(1) Pi has O(s) vertices, (2) s ≥

√
|Pi|, where |Pi| is the complexity of Pi, and (3) the depth

of the recurrence is c, where c > 0 is a fixed constant.

When stopping condition (1) holds, we compute the shortest path tree directly using the
algorithm by Guibas et al. [8]. When stopping condition (2) holds, we apply the algorithm
described in the full version of this paper that computes the shortest path tree rooted at pi
inside Pi in O(|Pi|2/s) time for the case that s ≥

√
|Pi|, where |Pi| is the complexity of Pi.

When stopping condition (3) holds, we compute the shortest path tree using Lemma 13.
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For each maximal polygonal curve with endpoints g1 and g2 containing no endpoints
of walls in its interior, we spend O(n2/s2 + nk/s) time, where k is the number of edges
of π(v, g1) ∪ π(v, g2) for the junction v of π(p, g1) and π(p, g2). Since there are O(s) such
maximal polygonal curves and the sum of k over all such maximal polygonal curves is O(n),
the running time for decomposing the problem (P, p) into smaller problems is O(n2/s).

The total time complexity is O(cn2/s+ (n2 logn)/sc) = O(n2/s+ (n2 logn)/sc), and the
space complexity is O(cs) = O(s).

I Theorem 19. Given a point p in a simple polygon with n vertices, we can compute the
shortest path tree rooted at p in O(n2/s+ (n2 logn)/sc) expected time using O(s) words of
workspace for an arbitrary constant c > 0.

By setting c to the size of workspace and s to 2, we have the following theorem.

I Theorem 20. Given a point p in a simple polygon with n vertices, we can compute the
shortest path tree rooted at p in O((n2 logn)/2s) expected time using O(s) words of workspace
for s ≤ log logn.
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Abstract
For an integer k ≥ 1, k-coloring reconfiguration is one of the most well-studied reconfigur-
ation problems, defined as follows: In the problem, we are given two (vertex-)colorings of a graph
using k colors, and asked to transform one into the other by recoloring only one vertex at a time,
while at all times maintaining a proper coloring. The problem is known to be PSPACE-complete
if k ≥ 4, and solvable for any graph in polynomial time if k ≤ 3. In this paper, we introduce
a recolorability constraint on the k colors, which forbids some pairs of colors to be recolored
directly. The recolorability constraint is given in terms of an undirected graph R such that each
node in R corresponds to a color and each edge in R represents a pair of colors that can be
recolored directly. We study the hardness of the problem based on the structure of recolorabil-
ity constraints R. More specifically, we prove that the problem is PSPACE-complete if R is of
maximum degree at least four, or has a connected component containing more than one cycle.
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1 Introduction

Recently, reconfiguration problems [11] have been intensively studied in the field of theoretical
computer science. The problem arises when we wish to find a step-by-step transformation
between two feasible solutions of a search problem such that all intermediate results are also
feasible and each step conforms to a fixed reconfiguration rule, that is, an adjacency relation
defined on feasible solutions of the original search problem. (See, e.g., a survey [16] and
references in [7, 12].)

One of the most well-studied reconfiguration problems is based on the (vertex-)coloring
search problem [1, 2, 3, 4, 6, 8, 9, 13, 17], defined as follows. In the k-coloring recon-
figuration problem, we are given two proper k-colorings f0 and fr of the same graph G,
and asked to determine whether there is a sequence 〈f0, f1, . . . , f`〉 of proper k-colorings of
G such that f` = fr and fi can be obtained from fi−1 by recoloring only a single vertex in
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Figure 1 (a) Input graph G, (b) a recolorability graph R with four colors 1, 2, 3 and 4, and (c)
an (f0 → f7)-reconfiguration sequence.

G for all i ∈ {1, 2, . . . , `}. The complexity status of this reconfiguration problem has been
clarified based on several “standard” measures (e.g., the number of colors [3, 6] and graph
classes [2, 9, 17]) which are used well also for analyzing the original search problem.

In this paper, we propose a new measure to capture the hardness of coloring recon-
figuration according to recoloring steps.

1.1 Our problem

For an integer k ≥ 1, let C be the color set consisting of k colors 1, 2, . . . , k. Let G be a
graph with vertex set V (G) and edge set E(G). Recall that a k-coloring f of G is a mapping
f : V (G)→ C such that f(v) 6= f(w) holds for each edge vw ∈ E(G).

In this paper, we introduce the concept of “recolorability” and generalize the adjacency
relation on k-colorings. The recolorability on the color set C is given in terms of an undirected
graph R, called the recolorability graph on C, such that V (R) = C; each edge ij ∈ E(R)
represents a “recolorable” pair of colors i, j ∈ V (R) = C. Then, two k-colorings f and f ′ of
G are adjacent (under R) if the following two conditions (a) and (b) hold:
(a)

∣∣{v ∈ V (G) : f(v) 6= f ′(v)}
∣∣ = 1, that is, f ′ can be obtained from f by recoloring a

single vertex v ∈ V (G); and
(b) if f(v) 6= f ′(v) for a vertex v ∈ V (G), then f(v)f ′(v) ∈ E(R), that is, the colors f(v)

and f ′(v) form a recolorable pair.
Figure 1(c) shows eight different 4-colorings of the graph in Figure 1(a). Then, for each
i ∈ {1, 2, . . . , 7}, two 4-colorings fi−1 and fi are adjacent under the recolorability graph R in
Figure 1(b). As defined above, the known adjacency relation in [1, 2, 3, 4, 6, 8, 9, 13, 17]
only requires the condition (a) above, that is, we can recolor a vertex from any color to any
color directly. Observe that this corresponds to the case where R is a complete graph of size
k, and hence our adjacency relation generalizes the known one.

Given a graph G, and two k-colorings f0 and fr of G, the coloring reconfiguration
problem under R-recolorability is the decision problem of determining whether there
exists a sequence 〈f0, f1, . . . , f`〉 of k-colorings of G such that f` = fr and fi−1 and fi are
adjacent under R for all i ∈ {1, 2, . . . , `}; such a desired sequence is called an (f0 → fr)-
reconfiguration sequence. For example, the sequence 〈f0, f1, . . . , f7〉 in Figure 1(c) is an
(f0 → f7)-reconfiguration sequence.

We emphasize that the concept of recolorability graphs changes the situation drastically
from k-coloring reconfiguration. For example, the (f0 → f7)-reconfiguration sequence
in Figure 1(c) is a shortest one between f0 and f7 under the recolorability graph R in
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Figure 2 (a) Recolorability graph R with three colors 1, 2 and 3, and (b) and (c) 3-colorings f0

and fr of a graph consisting of a single edge, respectively.

Figure 1(b). However, in 4-coloring reconfiguration (in other words, if R would be
K4 and would have the edge joining colors 1 and 3), we can recolor the vertex from 1 to 3
directly. As another example, the instance illustrated in Figure 2 is a no-instance for our
problem even if the number of colors is larger than the number of vertices in an input graph
(a single edge), but is clearly a yes-instance for 3-coloring reconfiguration.

1.2 Related results

As we have mentioned above, k-coloring reconfiguration has been studied intensively
from various viewpoints.

From the viewpoint of the number k of colors in the color set C, a sharp analysis has
been obtained: Bonsma and Cereceda [3] proved that k-coloring reconfiguration is
PSPACE-complete if k ≥ 4. On the other hand, Cereceda et al. [6] proved that k-coloring
reconfiguration is solvable for any graph in polynomial time if k ∈ {1, 2, 3}, despite the
fact that the original search problem (i.e., asking for the existence of one 3-coloring in a given
graph) is NP-complete. In addition, for any yes-instance of 3-coloring reconfiguration,
an (f0 → fr)-reconfiguration sequence with the shortest length can be found in polynomial
time [6, 13].

From the viewpoint of graph classes, Wrochna [17] proved that k-coloring reconfig-
uration remains PSPACE-complete even for graphs with bounded bandwidth (and hence
bounded pathwidth). Bonamy et al. [2] gave some sufficient condition with respect to graph
structures so that any pair of k-colorings of a graph has a reconfiguration sequence: for
example, chordal graphs and chordal bipartite graphs satisfy their sufficient condition.

From the viewpoint of parameterized complexity, the length ` of a desired sequence
is taken as a parameter for various reconfiguration problems [14]. Bonsma et al. [4] and
Johnson et al. [13] independently developed a fixed-parameter algorithm to solve k-coloring
reconfiguration when parameterized by k + `. In contrast, if the problem is parameterized
only by `, then it is W[1]-hard when k is an input [4] and does not admit a polynomial
kernelization when k is fixed unless the polynomial hierarchy collapses [13].

As generalizations of k-coloring reconfiguration, reconfiguration problems for H-
colorings [18] and circular colorings [5] have been studied. Note that both colorings are
generalizations of k-colorings, and always form k-colorings of the same graph; but k-colorings
do not always form these colorings. The two reconfiguration problems take the same adjacency
relation as the original k-coloring reconfiguration (i.e., satisfying only the condition (a)
in Section 1.1), but the set of feasible solutions does not always contain all k-colorings. On the
other hand, our problem takes the same set of feasible solutions as the original k-coloring
reconfiguration (i.e., all k-colorings), but takes different adjacency relation which obeys
a recolorability graph R.
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1.3 Our contribution
In this paper, we show the hardness of the coloring reconfiguration problem under
R-recolorability based on the graph structure of recolorability graphs. We show the
PSPACE-completeness of the problem for two cases. We first prove in Section 3.2 that the
problem is PSPACE-complete for any recolorability graph with maximum degree at least four.
We then show in Section 3.3 that the problem is PSPACE-complete for any recolorability graph
R which contains a connected component RC such that |E(RC)| > |V (RC)|, equivalently,
for the case where the recolorability graph contains a connected component RC having at
least two cycles. This result implies that there exists a graph R of maximum degree three
for which the problem remains PSPACE-complete. We note that our first result is strong
in the sense that it shows PSPACE-completeness for all recolorability graphs of maximum
degree at least four.

Due to the page limitation, we omit some proofs from this extended abstract.

2 Preliminaries

Since we deal with (vertex-)coloring, we may assume without loss of generality that an
input graph G is simple, connected and undirected. For a vertex v ∈ V (G), let N(G, v) =
{w ∈ V (G) : vw ∈ E(G)}. We say that a graph H is a supergraph of a graph G if both
V (G) ⊆ V (H) and E(G) ⊆ E(H) hold; and hence H can be G itself.

For a graph G and a recolorability graph R on C, we define the R-reconfiguration graph
on G, denoted by CR(G), as follows: CR(G) is an undirected graph such that each node of
CR(G) corresponds to a k-coloring of G, and two nodes in CR(G) are joined by an edge if their
corresponding k-colorings are adjacent under R. We sometimes call a node in CR(G) simply
a k-coloring if it is clear from the context. A path in CR(G) from a k-coloring f to another
one f ′ is called an (f → f ′)-reconfiguration sequence. Note that any (f → f ′)-reconfiguration
sequence is reversible, that is, the path in CR(G) forms an (f ′ → f)-reconfiguration sequence,
too. Then, the coloring reconfiguration problem under R-recolorability is the
decision problem of determining whether CR(G) contains an (f0 → fr)-reconfiguration
sequence. Note that the problem does not ask for an actual (f0 → fr)-reconfiguration
sequence as the output.

We introduce the concept of “frozen” vertices from the viewpoint of recoloring, which
plays an important role in the paper. For a k-coloring f of a graph G and a recolorability
graph R on C, a vertex v ∈ V (G) is said to be frozen on f (under R) if f ′(v) = f(v) holds
for any k-coloring f ′ of G such that CR(G) has an (f → f ′)-reconfiguration sequence.

3 PSPACE-completeness

In this section, we clarify the computational hardness of the problem from the viewpoint
of recolorability graphs R. In Section 3.1, we introduce the list variant of the problem.
Interestingly, the list variant is equivalent to the non-list one in our reconfiguration problem,
and hence it suffices to construct reductions to the list variant. In Sections 3.2 and 3.3, we
give our hardness results.

3.1 List recolorability
In the list variant, each vertex v of a graph G is associated with a subgraph LR(v) of the
common recolorability graph R; we call LR(v) the list recolorability of v, and sometimes call
the list assignment (mapping) LR the list R-recolorability. Note that LR(v) is not necessarily
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Figure 3 (a) Recolorability graph R such that LR(v) is a subgraph of R for each vertex v ∈ V (G),
(b) a vertex v ∈ V (G) whose list recolorability LR(v) is written inside, and (c) the vertex v in
G′, where the (red) thick dotted part corresponds to forbidding the pair of colors 1 and 2 in
E(R) \ E(LR(v)) and the (blue) thick part corresponds to forbidding the pair of colors 2 and 3 in
E(R) \ E(LR(v)).

a spanning subgraph of R. Let k = |V (R)|. Then, a k-coloring f of G is called a list coloring
of G if f(v) ∈ V (LR(v)) for all vertices v in G. Observe that for any supergraph R′ of R,
any list R-recolorability is also list R′-recolorability. We say that two list colorings f and f ′

are adjacent under LR if they differ in exactly one vertex v such that f(v)f ′(v) ∈ E(LR(v)).
Analogous to the R-reconfiguration graph, we define the LR-reconfiguration graph on G,
denoted by CLR

(G), as the undirected graph whose nodes correspond to list colorings of
G, and two nodes in CLR

(G) are joined by an edge if their corresponding list colorings are
adjacent under LR.

Let G be an input graph with a list R-recolorability LR. Then, for two list colorings f0
and fr of G, the coloring reconfiguration problem under list R-recolorability
(the list variant, for short) is the decision problem of determining whether CLR

(G) contains
an (f0 → fr)-reconfiguration sequence. Observe that coloring reconfiguration under
R-recolorability can be seen as the list variant such that LR(v) = R holds for every
vertex v ∈ V (G). Furthermore, note that CLR

(G) forms a subgraph of CR(G).
Interestingly, the list variant for our reconfiguration problem is equivalent to the non-list

one, as in the following theorem.

I Theorem 1. Coloring reconfiguration under list R-recolorability can be
reduced to coloring reconfiguration under R-recolorability in time polynomial in
|V (G)| and |V (R)|, where G is an input graph of the list variant.

Proof. Let G be an input graph for the list variant with a list R-recolorability LR, and suppose
that we are given two list colorings f0 and fr of G. Then, we construct a corresponding
instance of coloring reconfiguration under R-recolorability; we denote by G′ the
corresponding graph, and by f ′0 and f ′r the corresponding initial and target k-colorings of G′,
respectively, where k = |V (R)|.

Indeed, we will give a gadget which forbids recoloring a vertex v ∈ V (G) directly from a
color i to another color j for each pair ij ∈ E(R) \ E(LR(v)). Note that, for each color i

in V (R) \ V (LR(v)), we can add the vertex i to LR(v) as an isolated vertex (by adding the
forbidding gadgets between i and all colors j such that ij ∈ E(R)). Then, since f0 and fr

are list colorings of G, both f0(v) 6= i and fr(v) 6= i hold and hence v is never recolored to
the isolated color i.
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To construct such a forbidding gadget, we will use a (newly added) clique of size k = |V (R)|
such that all vertices are colored with distinct colors. Notice that no vertex in the clique can
be recolored to any color, that is, they are frozen vertices on the k-coloring. We use this
property, and construct the corresponding instance, as follows.

We first add to G a new clique Kk of k vertices r1, r2, . . . , rk. Then, for each vertex
v ∈ V (G), consider any pair of colors i and j such that ij ∈ E(R) \E(LR(v)). We add a new
vertex vij to G, and join it with v. In addition, we join vij with all vertices in V (Kk)\{ri, rj}.
(See Figure 3(a)–(c) as an example of the application of this procedure.) Let G′ be the
resulting graph after applying the procedure above to all vertices v ∈ V (G) and all pairs
ij ∈ E(R) \E(LR(v)). For notational convenience, we denote by VF the set of all vertices vij

in G′ that are newly added for each vertex v ∈ V (G) and ij ∈ E(R) \ E(LR(v)). We note
that V (G′) is partitioned into V (G), V (Kk), and VF . Furthermore, each vertex vij ∈ VF

satisfies N(G′, vij) ∩ V (G) = {v}. We denote by v this unique vertex in N(G′, vij) ∩ V (G)
for each vertex vij ∈ VF . Then, the corresponding k-colorings f ′0 and f ′r of G′ are defined as
follows: for each l ∈ {0, r} and a vertex w ∈ V (G′),

f ′l (w) =


fl(w) if w ∈ V (G);
i if w = ri ∈ V (Kk);
j if w = vij ∈ VF and fl(v) = i; and
i otherwise, that is, w = vij ∈ VF and fl(v) 6= i.

Then, all vertices r1, r2, . . . , rk are frozen on both f ′0 and f ′r (indeed, under any recolorability
graph). This completes the construction of the corresponding instance. This construction
can be done in time polynomial in |V (G)| and k = |V (R)|.

The correctness proof of our reduction is omitted from this extended abstract. J

Recall that for any supergraph R′ of R, any list R-recolorability is also a list R′-
recolorability, therefore we obtain the following corollary:

I Corollary 2. Let R′ be an arbitrary supergraph of a recolorability graph R. Then, Col-
oring reconfiguration under list R-recolorability can be reduced to coloring
reconfiguration under R′-recolorability in time polynomial in |V (G)| and |V (R′)|,
where G is an input graph of the list variant.

3.2 Recolorability graphs of maximum degree at least four
In this subsection, we consider the case where a recolorability graph is of maximum degree at
least four. We emphasize again that the following theorem holds for an arbitrary recolorability
graph as long as its maximum degree is at least four.

I Theorem 3. Let R′ be any recolorability graph whose maximum degree is at least four.
Then, coloring reconfiguration under R′-recolorability is PSPACE-complete.

Proof. Observe that the problem can be solved in (most conveniently, nondeterministic [15])
polynomial space, and hence it is in PSPACE. Therefore, we show that the problem is
PSPACE-hard for such a recolorability graph R′. Notice that, since R′ is of maximum
degree at least four, R′ is a supergraph of a star K1,4. Therefore, by Corollary 2 it suffices
to prove that the list variant remains PSPACE-hard even for a list R-recolorability such
that R = K1,4. (See Figure 4(a).) To show this, we give a polynomial-time reduction from
4-coloring reconfiguration, which is known to be PSPACE-complete [3].
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Figure 4 (a) Recolorability graph K1,4. In our reduction, the star K1,4 with center color 5 is the
list recolorability of all vertices v ∈ V (G). (b) Recolorability graph which is a diamond graph. (c)
Recolorability graph which is a 2K3 + e graph.

Let G be an input graph for 4-coloring reconfiguration, and let f0 and fr be two
given 4-colorings of G; let C = {1, 2, 3, 4} be the color set. As a corresponding instance of
the list variant, we take the same graph G in which the list recolorability LR(v) of each
vertex v ∈ V (G) is a star K1,4 such that its center is a new color 5 and its leaves are the
four colors 1, 2, 3 and 4. Then, both f0 and fr are list colorings of the corresponding graph
G, and we take the 4-colorings f0 and fr as the corresponding list colorings. This completes
the construction of the corresponding instance, and hence it can be done in polynomial time.

The correctness proof of our reduction is omitted from this extended abstract. J

3.3 Recolorability graphs with more than one cycle
In this subsection, we consider the case where a recolorability graph R′ contains a connected
component having more than one cycle. Our result is expressed as follows:

I Theorem 4. Let R′ be a recolorability graph which contains a connected component R such
that |E(R)| > |V (R)|. Then, coloring reconfiguration under R′-recolorability is
PSPACE-complete.

To prove Theorem 4, by Corollary 2 it suffices to prove that the list variant remains
PSPACE-hard for a list R-recolorability, where R is a connected component in R′ such that
|E(R)| > |V (R)|. We first characterize the structure of R by two small graphs: A graph is
called a diamond graph if it can be obtained by deleting exactly one edge from a complete
graph K4 of size four (see Figure 4(b)); a 2K3 +e graph is a graph obtained by adding exactly
one edge to disjoint union of two triangles K3 (see Figure 4(c).) We have the following
lemma.

I Lemma 5. Let R be a connected graph such that |E(R)| > |V (R)|. Then, R satisfies at
least one of the following statements:
(a) R has a vertex whose degree is at least four;
(b) R is a supergraph of some subdivision of a diamond graph; and
(c) R is a supergraph of some subdivision of a 2K3 + e graph.

If Lemma 5(a) holds for the recolorability graph R, then coloring reconfiguration
under R-recolorability is PSPACE-complete by Theorem 3. Therefore, it suffices to
prove the PSPACE-hardness for the other cases, that is, the recolorability graph R is either
(b) any subdivision of a diamond graph, or (c) any subdivision of a 2K3 + e graph.

We now give a sketch of our proof. We first prove that the list variant remains PSPACE-
hard for a list R-recolorability when R is either a diamond graph or a 2K3 +e graph (without
subdivisions). We use these claims as the bases of inductive proofs for the cases (b) and (c).
Due to the page limitation, we only prove the base for the case (b), as follows.
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Figure 5 (a) A configuration of an NCL machine, (b) NCL and vertex u, and (c) NCL or vertex
v.

I Lemma 6. Let D be a diamond graph. Then, coloring reconfiguration under list
D-recolorability is PSPACE-complete.

Proof. We give a polynomial-time reduction from nondeterministic constraint logic
(NCL, for short) [10], defined as follows. An NCL “machine” is specified by an undirected
graph together with an assignment of weights from {1, 2} to each edge of the graph. An
(NCL) configuration of this machine is an orientation (direction) of the edges such that the
sum of weights of in-coming arcs at each vertex is at least two. Figure 5(a) illustrates a
configuration of an NCL machine, where each weight-2 edge is depicted by a thick (blue) line
and each weight-1 edge by a thin (orange) line. Then, two NCL configurations are adjacent
if they differ in a single edge direction. Given an NCL machine and its two configurations, it
is known to be PSPACE-complete to determine whether there exists a sequence of adjacent
NCL configurations which transforms one into the other [10].

In fact, the problem remains PSPACE-complete even for and/or constraint graphs, which
consist only of two types of vertices, called “NCL and vertices” and “NCL or vertices.” A
vertex of degree three is called an NCL and vertex if its three incident edges have weights 1,
1 and 2. (See Figure 5(b).) An NCL and vertex u behaves as a logical and, in the following
sense: the weight-2 edge can be directed outward for u if and only if both two weight-1 edges
are directed inward for u. Note that, however, the weight-2 edge is not necessarily directed
outward even when both weight-1 edges are directed inward. A vertex of degree three is
called an NCL or vertex if its three incident edges have weights 2, 2 and 2. (See Figure 5(c).)
An NCL or vertex v behaves as a logical or: one of the three edges can be directed outward
for v if and only if at least one of the other two edges is directed inward for v. It should be
noted that, although it is natural to think of NCL and/or vertices as having inputs and
outputs, there is nothing enforcing this interpretation; especially for NCL or vertices, the
choice of input and output is entirely arbitrary because an NCL or vertex is symmetric. For
example, the NCL machine in Figure 5(a) is an and/or constraint graph. From now on,
we call an and/or constraint graph simply an NCL machine, and call an edge in an NCL
machine an NCL edge.

Gadgets. We first subdivide every NCL edge vw into a path vv′w′w of length three by
adding two new vertices v′ and w′; the newly added vertices v′ and w′ are called connectors
for v and w, respectively. (See Figure 6(a) and (b).) We call the edge v′w′ a link edge
between two NCL vertices v and w, and call the edges vv′ and ww′ NCL one-third edges for
v and w, respectively. Notice that every vertex in the resulting graph belongs to exactly one
of stars K1,3 such that the center v of each K1,3 corresponds to an NCL and/or vertex and
the three leaves are connectors for v. Furthermore, these stars are all mutually disjoint, and
joined together by link edges. (See Figure 6(c) as an example.)
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Figure 6 (a) An NCL edge vw, (b) its subdivision into a path vv′w′w, and (c) the resulting
graph which corresponds to the NCL machine in Figure 5(a), where each connector is depicted by a
(red) large circle and each link edge by a thin (green) line.

2-4 4-1 1-2 2-3 3-4 4-2

v' w'

Figure 7 The link edge gadget Gv′w′ between two connectors v′ and w′.

Therefore, our reduction involves constructing three types of gadgets which correspond
to link edges and stars of NCL and/or vertices. In our gadgets, all connectors v′ for NCL
and/or vertices v have the same list recolorability LD(v′) such that V (LD(v′)) = {2, 4} and
E(LD(v′)) = {24}. Then, in our reduction, assigning the color 4 to v′ always corresponds to
directing the NCL one-third edge vv′ from v′ to v (i.e., the inward direction for v), while
assigning the color 2 to v′ always corresponds to directing vv′ from v to v′ (i.e., the outward
direction for v).

(i) Link edge gadget. Figure 7 illustrates our link edge gadget Gv′w′ for each link edge
v′w′, where v′ and w′ are connectors for NCL and/or vertices v and w, respectively. The
graph in each vertex (circle) indicates the list recolorability of the vertex. Recall that, in
a given NCL machine, v and w are joined by a single NCL edge. Therefore, the link edge
gadget should be consistent with the orientations of the NCL edge, as follows (see also
Figure 8(a) and (b)): If we assign 4 to v′ (the inward direction for v), then w′ must be
colored with 2 (the outward direction for w); conversely, v′ must be colored with 2 if we
assign 4 to w′. In particular, the gadget must forbid a list coloring which assigns 4 to both
v′ and w′ (the inward directions for both v and w), because such a list coloring corresponds
to the direction which contributes to both v and w illegally. On the other hand, assigning
2 to both v′ and w′ (the outward directions for both v and w) corresponds to the neutral
orientation of the NCL edge vw which contributes to neither v nor w, and hence we simply
do not care such an orientation.

Figure 8(c) illustrates the LD-reconfiguration graph CLD(Gv′w′) on the link edge gadget
Gv′w′ . Each rectangle corresponds to a node of CLD(Gv′w′), that is, a list coloring of
Gv′w′ , where the underlined bold number represents the color assigned to the vertex. Then,
CLD(Gv′w′) is connected, and there is no list coloring which assigns 4 to both v′ and w′, as
claimed above. Furthermore, the reversal of the NCL edge vw can be simulated by the path
on CLD(Gv′w′) via the neutral orientation of vw, as illustrated in Figure 8(c). Thus, this
gadget works correctly as a link edge.

(ii) And gadget. Figure 9 illustrates our and gadget Gand for each NCL and vertex v,
where va, vb and vc correspond to the three connectors for v. In the figure, the connectors
va and vb come from the two weight-1 NCL edges, while the connector vc comes from the
weight-2 NCL edge. We now explain this gadget works as an NCL and vertex. Similarly as
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Figure 8 (a) Three orientations of an NCL edge vw, (b) their corresponding orientations of the
NCL one-third edges vv′ and ww′, and (c) all list colorings of the link edge gadget Gv′w′ in the
LD-reconfiguration graph CLD (Gv′w′ ).

4-2 2-1 1-4 4-3 3-2 2-3 3-4 4-1 1-2 2-4-2
4

va vbvc

Figure 9 And gadget Gand with three connectors va, vb and vc.

for the link edge gadget, the and gadget must forbid the case where all the connectors va,
vb and vc are colored with 2 at the same time (i.e., all NCL one-third edges vva, vvb and
vvc take the outward direction for v). In addition, the gadget must simulate the following
situation: vc can be colored with 2 (i.e., the weight-2 edge vvc can take the outward direction
for v) only when both va and vb are colored with 4 at the same time (i.e., both the weight-1
edges vva and vvb take the inward direction for v).

Figure 10(a) illustrates all feasible orientations of the three NCL one-third edges vva,
vvb and vvc, whose corresponding assignments of colors to the connectors are depicted in
Figure 10(b). Due to the space limitation, in Figure 10(b), we only indicate the colors
assigned to va, vc and vb, but Figure 10(c) shows all list (proper) colorings of Gand that assign
the colors 2, 4 and 4 to va, vc and vb, respectively. Then, as illustrated in Figure 10(c), these
list colorings are “internally connected,” that is, any two list colorings are reconfigurable
with each other without recoloring any connector of Gand. Furthermore, this gadget preserves
the “external adjacency” in the following sense: if we contract the list colorings in CLD(Gand)
having the same color assignments to the connectors into a single vertex, then the resulting
graph is exactly the graph depicted in Figure 10(a). We have checked by a computer search
that these two properties hold for our and gadget. Therefore, we can conclude that our and
gadget correctly works as an NCL and vertex.
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Figure 10 (a) All feasible orientations of the three NCL one-third edges incident to an NCL and
vertex together with their adjacency, (b) image of LD-reconfiguration graph CLD (Gand) on the and
gadget Gand, and (c) the inside of the rightmost (green) thick box in the image which corresponds
to assigning the colors 2, 4 and 4 to va, vc and vb, respectively, where we simply write the colors
assigned to Gand by a sequence of colors.

1 4 3 1 4 3 1 4 3

4 2 3 42 3 4 1 1 2 2 4 4 2 3 42 3 4 1 1 2 2 4
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4
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4

3 2 3 21 2 1 2

A

C

B
vb1 vb2 vb3

vx vy vz

Figure 11 Or gadget Gor with three connectors vx, vy and vz.

(iii) Or gadget. Figure 11 illustrates our or gadget Gor for each NCL or vertex v, where
vx, vy and vz correspond to the three connectors for v. We now explain this gadget works as
an NCL or vertex. For each NCL or vertex v, it suffices that at least one of the three NCL
edges take the inward direction for v. Thus, the or gadget must forbid only the case where
all the connectors vx, vy and vz are colored with 2 at the same time. Indeed, our gadget in
Figure 11 forbids such the case, because otherwise all three vertices vb1, vb2 and vb3 in Part B
must be colored with 4 and this yields that there is no available color for vertices in Part A.

Similarly as for the and gadget, we have checked by a computer search that our or gadget
is internally connected and preserves the external adjacency. Therefore, we can conclude
that our or gadget correctly works as an NCL or vertex.
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Reduction. As we have mentioned above, we first subdivide every NCL edge vw into a
path vv′w′w of length three by adding two connectors v′ and w′. (See Figure 6.) Then, we
replace each of link edges and NCL and/or vertices with its corresponding gadget; let G be
the resulting graph. In addition, we construct two list colorings of G which correspond to
two given configurations C0 and Cr of the NCL machine. Note that there are (in general,
exponentially) many list colorings which correspond to the same NCL configuration. However,
by the construction of the three gadgets, no two distinct NCL configurations correspond
to the same list coloring of G. We thus choose any two list colorings f0 and fr of G which
correspond to C0 and Cr, respectively. This completes the construction of the corresponding
instance for the list variant under list D-recolorability. This construction can be done in
polynomial time.

We omit the correctness proof of our reduction from this extended abstract. J
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Abstract
In this paper, we report progress on answering the open problem presented by Pagh [11], who
considered the nearest neighbor search without false negatives for the Hamming distance. We
show new data structures for solving the c-approximate nearest neighbors problem without false
negatives for Euclidean high dimensional space Rd. These data structures work for any c =
ω(
√

log logn), where n is the number of points in the input set, with poly-logarithmic query time
and polynomial pre-processing time. This improves over the known algorithms, which require c
to be Ω(

√
d).

This improvement is obtained by applying a sequence of reductions, which are interesting
on their own. First, we reduce the problem to d instances of dimension logarithmic in n. Next,
these instances are reduced to a number of c-approximate nearest neighbor search without false
negatives instances in

(
Rk
)L space equipped with metric m(x, y) = max1≤i≤L(‖xi − yi‖2).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.3 Probabil-
ity and Statistics

Keywords and phrases locality sensitive hashing, approximate nearest neighbor search, high-
dimensional, similarity search

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.63

1 Introduction

The nearest neighbor search has numerous applications in image processing, search engines,
recommendation engines, predictions and machine learning. We define the nearest neighbor
problem as follows: for a given input set, a query point and a distance R, return a point
(optionally all points) from the input set, which is closer to the query point than R in the
given metric (typically lp for p ∈ [1,∞]), or report that such a point does not exist. The
input set and the distance R are known in advance. Hence, the input set may be preprocessed
what may result in reducing the query time. The problem in which the distance R is not
known during the preprocessing and our task is to find the nearest neighbor can be efficiently
reduced to the problem defined as above [7].1 Unfortunately, the nearest neighbors search,
defined as above, appears to be intractable for high dimensional spaces such as ldp for large d.
The existence of an algorithm with a sub-linear in the data size and not exponential in

∗ This work was partially supported by grant NCN2014/13/B/ST6/00770 of Polish National Science
Center and ERC StG grant TOTAL no. 677651.

1 Authors used to distinguish between these two problems. The problem in which the radius is known in
pre-processing is sometimes called Point Location in Equal Balls (PLEB) [7].
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d query time and with not exponential in d pre-processing, would contradict the strong
exponential time hypothesis [12]. In order to overcome this obstacle, the c-approximate
nearest neighbors problem with c > 1, was introduced. In this problem, the query result is
allowed to contain points which are within the distance cR from the query point. In other
words, the points within the distance R from the query point are classified as neighbors, the
points farther than cR are classified as non-neighbors, while the rest may be classified into
any of these two categories. This assumption makes the problem easier, for many metric
spaces such as lp when p ∈ [1, 2] or the Hamming space [7]. On one hand, sub linear in the
input size queries are possible. On the other hand, the queries and pre-processing times are
polynomial in the dimension of the space.

Locality sensitive hashing (LSH) is one of the major techniques for solving the c-approxi-
mate nearest neighbor search. Many LSH functions are mappings which roughly preserve
distances. A random LSH function maps two ’close’ points to two ’close’ hashes with ’large’
probability. Analogously, two ’distant’ points are mapped to two ’distant’ hashes with ’large’
probability. Roughly speaking, the LSH is used to reduce the dimension of the input space,
which allows to solve the problem in the lower dimensional space. Thus, the efficiency of the
algorithm strongly depends on the quality of LSH functions used. The crucial properties of
the LSH functions are the probability of false positives and the probability of false negatives.
A false negative is a point which is ’close’ to the query point, but its hash is ’far away’ from
the hash of the query point. Analogously, the false positive is a point whose distance to the
query point is ’large’, but it is mapped to a ’close’ hash.

The previously known algorithms for the c-approximate nearest neighbors (see e.g., [2, 4])
give Monte Carlo guaranties for returned points, i.e., an input point close to the query
point is returned with some probability. In other words, there might be false negatives. For
example, a common choice of the hash functions is f(x) = 〈x, v〉 or f(x) = b〈x, v〉c, where v
is a vector of numbers drawn independently from some probability distribution [2, 7, 10].
For a Gaussian distribution, 〈x, v〉 is also Gaussian with zero mean and standard deviation
equal to ‖x‖2. It is easy to see that these are LSH functions for l2, but as mentioned above,
they only give probabilistic guaranties. In this paper, we aim to enhance this by focusing on
the c-approximate nearest neighbor search without false negatives for l2. In other words, we
consider algorithms, where a point ’close’ to the query point is guaranteed to be returned.

Throughout this paper, we assume that n � d and exp(d) � n. This represents a
situation where the exhaustive scan through all the input points, as well as the usage of data
structures exponentially dependant on d, become intractable. The typical values to consider
could be n = 109 and d = 100. If not explicitly specified, all statements assume the usage of
the l2 norm.

2 Related Work

There exists an efficient, Monte Carlo c-nearest neighbor algorithm for l1 [7] with the query
and the pre-processing complexity equal to O(n1/c) and O(n1+1/c), respectively. For l2 in
turn, there exists a near to optimal [9] algorithm [2] with the query and the pre-processing
complexity equal to n1/c2+o(1) and n1+1/c2+o(1), respectively. Moreover, the algorithms
presented in [7] work for lp for any p ∈ [1, 2]. There are also data dependent algorithms,
which take into account the actual distribution of the input set [3], which achieve query time
dnρ+o(1) and space O(n1+ρ+o(1) + dn), where ρ = 1/(2c2 − 1).

Pagh [11] considered the c-approximate nearest neighbor search without false negat-
ives (NNwfn) for the Hamming space, obtaining the results close to those of [7]. He showed
that the bounds of his algorithm for cR = log(n/k) differ by at most a factor of ln 4 in
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the exponent in comparison to the bounds of [7]. Recently, Ahle [1] showed an optimal [9]
algorithm for the nearest neighbor without false negatives for Hamming space and Braun-
Blanquet metric. Indyk [5] provided a deterministic algorithm for l∞ for c = Θ(log1+ρ log d)
with the storage O(n1+ρ logO(1) n) and the query time logO(1) n for some tunable parameter
ρ. He proved that the nearest neighbor without false negatives for l∞ for c < 3 is as hard as
the subset query problem, a long-standing combinatorial problem. This indicates that the
nearest neighbor without false negatives for l∞ might be hard to solve for any c > 1. Also,
Indyk [6] considered deterministic mappings ln2 → lm1 , for m = n1+o(1), which might be useful
for constructing efficient algorithms for the nearest neighbor without false negatives [11].

Pacuk et al. [10] presented a schema for solving the nearest neighbor without false
negatives for any p ∈ [1,∞] for c = Ω(dmax{1/2,1−1/p}). Using the enhanced hash functions,
Wygocki [13] presented algorithms with improved complexities. He considered two hashing
families, giving different trade-offs between the execution times and the conditions on c. In
particular, (Theorem 3, case 2, for p = 2 in [13]):

I Theorem 1 ([13]). For any c > τ̃ = 2
√
d, there are data structures for the nearest neighbor

without false negatives with
O(n1+ ln 3

ln(c/τ̃) ) pre-processing time and O(d|P |+d logn+d2) query time for the ’fast query’
algorithm,
O(nd logn) pre-processing time and O(d(|P | + n

ln 3
ln(3c/τ̃) )) query time for the ’fast pre-

processing’ algorithm,
where |P | is the size of the result.

The dimension reduction with means of random linear mappings was considered previously
in a more general context. In particular, Johnson-Lindenstrauss Lemma [8] is the most well
known reference here. The concentration bounds used to prove this classic result will be very
useful in our reductions:

I Lemma 2 (Johnson-Lindenstrauss). Let Y ∈ Rd be chosen uniformly from the surface of the
d-dimensional sphere. Let Z = (Y1, Y2, . . . , Yk) be the projection onto the first k coordinates,
where k < d. Then for any α < 1 :

P
[
d

k
‖Z‖2

2 ≤ α
]
≤ exp(k2 (1− α+ logα)), (1)

3 Our contribution

Recently, efficient algorithms were proposed for solving the approximate nearest neighbor
search without false negatives for c = Ω(max{

√
d, d1−1/p}) in lp for any p ∈ [1,∞] [10, 13].

The main problem with these algorithms is the constraint on c. For l2, the previous result
require c to be of order of Ω(

√
d), thus the nearest neighbor algorithm were allowed to return

points within O(
√
dR) radius from query point. We relax this to any c, which makes the

presented algorithms usable in practical cases. The contribution of this paper is relaxing this
condition and improving the complexity of the algorithms for l2:

We show that the NNwfn can be reduced to d instances of NNwfn in Rlogn. For our typical
settings of parameters, the factor of d is negligible. As a result, reducing the dimension
leads to reducing the complexity of the problem. Moreover, it leads to relaxing the
conditions on c to c = Ω(

√
logn).

Further reductions lead to algorithms for any c = ω(
√

log logn). We introduce an
algorithm with the no(1) query time and polynomial pre-processing time, which for large
c tents to n1+o(1).
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The first reduction is interesting on its own since further work on the problem can be
done under the assumption that the dimension of the problem is logarithmic in n. This
simplifies the problem at a cost of multiplying the complexities by a factor of d. Also, the
authors of [10] proved that their construction is tight for d = ω(logn), living the case of
d = Θ(logn) inconclusive.

3.1 Used Methods

In order to relax the conditions on c, we apply a sequence of dimension reductions. In
Section 4, we show how to reduce the c-approximate nearest neighbors in ld2 (NNwfn(c, d))
to d/ log(n) instances of NNwfn(O(c),O(logn)). Applying the algorithm of [13] as a black
box gives the first improvement over [13]: an efficient algorithm for c = Ω(

√
logn). The

reduction is based on the well-known Johnson-Lindenstrauss Lemma [8]. We introduce
d/ log(n) linear mappings, each reduces the dimension of the original problem. Each mapping
roughly preserves the length of the vector and additionally at least one of them does not
increase the length of the input vector. The property of not increasing the length of the
vector is crucial. For two ’close’ vectors x, y ∈ Rd: ‖x− y‖2 < 1 and a linear mapping A, Ax
and Ay are ’close’ if and only if ‖Ax−Ay‖2 = ‖A(x− y)‖2 < 1 , so A maps a ’small’ vector
x− y, to a ’small’ vector A(x− y).

In Section 5, we show further reductions, which enable us to relax the constraint to
c = ω(

√
log logn). We extend the reduction from Section 4 by using a number of mapping

families. This leads to an interesting sub-problem of solving the approximate nearest
neighbors in (Rk)L, for norm max-l2(x) := max1≤i≤L‖xi‖2 and the induced metric. This
norm is present in literature and was denoted as max–product or l∞–product. Apparently,
the c-approximate nearest neighbor search in max-l2 might be solved using the LSH functions
family introduced in [13].

This series of reductions leads to our final results. First we reduce the problem to a
number of NNwfn(O(c),O(logn)) instances, each of which is further reduced to a number
of problems in max-l2, which in turn are solved using the LSH functions presented in [13].
sectionNotations

The c-approximate nearest neighbors search without false negatives with parameter c > 1
and the dimension of the space equal to d, will be denoted as NNwfn(c, d). The expected
query and pre-processing time complexities of NNwfn(c, d) will be denoted as query(c, d) and
preproc(c, d) respectively. The input set will be denoted as X and it will always be assumed
to contain n points. W.l.o.g, throughout this work we will assume, that R – a given radius
equals 1 (otherwise, all vectors’ lengths might be rescaled by 1/R). The Õ() denotes the
complexity up to the poly logarithmic factors i.e., Õ(f(n)) = O(f(n)poly(log(n))). ‖·‖2
denotes the standard norm in l2, i.e., ‖x‖2 = (

∑
i |xi|2)1/2. The f(n) = ω(g(n)) means that

f dominates g asymptotically, i.e., g(n) = o(f(n)).

4 Algorithm for c = Ω(
√

log n)

The basic idea is the following: we will introduce a number of linear mappings to transform
the d-dimensional problem to a number of problems with dimension reduced to O(logn).
Then we use the algorithm introduced in [13], to solve these problems in the space with the
reduced dimension.
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We will introduce d/k2 linear mappings A(1), A(2), . . . , A(d/k) : Rd → Rk, where k < d

and show the following properties:
1. for each point x ∈ Rd, such that ‖x‖2 ≤ 1, there exists 1 ≤ i ≤ d/k, such that
‖A(i)x‖2 ≤ 1,

2. for each point x ∈ Rd, such that ‖x‖2 ≥ c, where c > 1, the probability that there exists
1 ≤ i ≤ d/k, such that ‖A(i)x‖2 ≤ 1 is bounded.

The property 1. states, that for a given ’short’ vector (with a length smaller than 1),
there is always at least one mapping, which transforms this vector to a vector of length
smaller than 1. Moreover, we will show, that there exists at least one mapping A(i), which
does not increase the length of the vector, i.e., such that ‖A(i)x‖2 ≤ ‖x‖2. The property 2.
states, that we can bound the probability of a ’long’ vector (‖x‖2 > c), being mapped to a
’short’ one (‖A(i)x‖2 ≤ 1). Using the standard concentration measure arguments, we will
prove that this probability decays exponentially in k.

4.1 Linear mappings
In this section, we will introduce linear mappings satisfying properties 1. and 2. Our technique
will depend on the concentration bound used to prove the classic Johnson-Lindenstrauss
Lemma. In Lemma 2, we take a random vector and project it to the first k vectors of the
standard basis of Rd. In our settings, we will project the given vector to a random orthonormal
basis which gives the same guaranties. The mapping A(i) consists of k consecutive vectors
from the random basis of the Rd space scaled by

√
d
k . The following reduction describes the

basic properties of our construction:

I Lemma 3 (Reduction Lemma). For any parameter α ≥ 1 and k < d, there exist d/k linear
mappings A(1), A(2), . . . , A(d/k), from Rd to Rk, such that:
1. for each point x ∈ Rd such that ‖x‖2 ≤ 1, there exists 1 ≤ i ≤ d/k, such that ‖A(i)x‖2 ≤ 1,
2. for each point x ∈ Rd such that ‖x‖2 ≥ c, where c > 1, for each i: 1 ≤ i ≤ d/k, we have

P
[
‖A(i)x‖2 ≤ α

]
< e−k( c−α

2c )2
.

Proof. Let a1, a2, . . . , ad be a random basis of Rd. Each of the A(i) mappings is represented
by a k × d dimensional matrix. We will use A(i) for denoting both the mapping and the
corresponding matrix. The jth row of the matrix A(i) equals A(i)

j =
√

d
ka(i−1)k+j . In other

words, the rows of A(i) consist of k consecutive vectors from the random basis of the Rd

space scaled by
√

d
k .

To prove the first property, observe that A =
∑d
i=1 〈ai, x〉

2 ≤ 1, since the distance is
independent of the basis. Assume on the contrary, that for each i, ‖A(i)

2 x‖ > 1. It follows
that d ≥ dA = k

∑d
i=1‖A(i)x‖2

2 > d. This contradiction ends the proof of the first property.
For any x ∈ Rd, such that ‖x‖2 > c, the probability:

P
[
‖A(i)x‖2 ≤ α

]
= P

[
‖A(i)x‖2

2
c2 ≤ (α

c
)2
]
≤ P

[
‖A(i)x‖2

2
‖x‖2

2
≤ (α

c
)2
]
.

2 For simplicity, let us assume that k divides d, this can be achieved by padding extra dimensions with
0’s.
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Using the fact that log x < x− 1− (x− 1)2/2 for x < 1 and Lemma 2, the above is bounded
as follows:

P
[
‖A(i)x‖2

2
‖x‖2

2
≤ (α

c
)2
]
≤ exp

(
− k

4 (1− (α
c

)2)2) ≤ e−k( c−α
2c )2

,

which completes the proof. J

4.2 Algorithm
The algorithm works as follows: for each i, we project Rd to Rk using Ai and solve the
corresponding problem in the smaller space. For each query point, we need to merge the
solutions obtained for each subproblem. This results in reducing the NNwfn(c, d) to d/k
instances of NNwfn(α, k).

I Lemma 4. For 1 < α < c and k < d, the NNwfn(c, d) can be reduced to d/k instances of
the NNwfn(α, k). The expected pre-processing time equals O(d2n + d/k preproc(α, k)) and
the expected query time equals O(d2 + d/k e−k( c−α

2c )2
n+ d/k query(k, α)).

Proof. We use the assumption that k < d < n to simplify the complexities. The pre-
processing time consists of:

d3: the time of computing a random orthonormal basis of Rd.
d2n: the time of changing the basis to a1, a2, . . . , ad.
dnk: the time of computing A(i)x for all 1 ≤ i ≤ d and for all n points.
d/k preproc(α, k): the expected pre-processing time of all subproblems.

The query time consists of:
d2: the time of changing the basis to a1, a2, . . . , ad.
d/k e−k( c−α

2c )2
n: the expected number of false positives (by Lemma 3).

d/k query(k, α): the expected query time of all subproblems. J

The following corollary simplifies the formulas used in Lemma 4 and shows that if c
c−α is

bounded, the NNwfn(c, d) can be reduced to a number of problems of dimension logn in an
efficient way. Namely, setting k =

( 2c
c−α

)2 logn we get:

I Corollary 5. For any 1 ≤ α < c and γ logn < d, the NNwfn(c, d) can be reduced to d/ logn
instances of the NNwfn(α, γ logn), where γ =

( 2c
c−α

)2 and:

query(c, d) = O(d2 + d/ log(n) query(α, γ logn)),

preproc(c, d) = O(d2n+ d/ log(n) preproc(α, γ logn)).

Combining the above corollary with the results introduced in [13], we can achieve the
algorithm with the polynomial pre-processing time and the sub-linear query time. Theorem
1 states, that for any c > 2

√
d, the NNwfn(c, d) can be solved in the O(n1+ log 3

log(c/τ̃) ) pre-
processing time and the query time equal to O(d|P |+ d logn+ d2), where P is the size of
the result set and τ̃ = 2

√
d. Altogether, setting α = c/2 in Corollary 5, we get3:

3 The author of [13] presented multiple algorithms giving different trade-offs between the pre-processing
time and the query time. Particularly, the algorithm with the O(n log n) processing time and the
sub-linear query time was presented. The same can be done for Theorem 6. We omit this to avoid the
unnecessary complexity.
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A(1,1)

A(i1,1)

A(d/k,1)

...
...

A(1,2)

A(i2,2)

A(d/k,2)

...
...

A(1,L)

A(id,L)

A(d/k,L)

...
...

. . .

Figure 1 Each column describes one family of linear mappings, constructed based on one random,
orthonormal basis. The blue path describes one combination of mappings.

I Theorem 6. The NNwfn(c, d) can be solved for any c > κ̃ = 16
√

logn with:

query(c, d) = O(d|P |+ d logn+ d2)

preproc(c, d) = O(dn1+ ln 3
log(c/κ̃) / log(n)).

The time complexity of the algorithm is the same as for c = Ω(
√
d), the pre-processing time

is larger by a factor of d/ log(n).

5 The algorithm for c = ω(
√

log(log(n)))

In this section we give another algorithm which works for c = ω(
√

log(log(n))). Lemma 2
implies that the NNwfn(c, d) problem can be reduced to d/ log(n) problems of dimension
logarithmic in n. In order to reduce the dimension even more, we will employ L independent
families of linear mappings introduced in Section 4. In each of the families, there is at least
one mapping, which does not increase the length of the input vector. As a result, there exists
a combination of L mappings (each mapping taken from a distinct family) which do not
increase the input vector length. Also, for any combination of L mappings, the probability
that all the mappings transform a ’long’ vectors to a ’short; one can be bounded. The
structure of the mappings is presented in Figure 1.

To formalize the above line of thinking, we introduce the following lemma:

I Lemma 7. For any natural number L > 0, there exist d/k L linear mappings A(i,j) : Rd →
Rk, where k < d, 1 ≤ i ≤ d/k and 1 ≤ j ≤ L, such that
1. for each point x ∈ Rd which satisfies ‖x‖2 ≤ 1, there exist 1 ≤ i1, i2, . . . , iL ≤ d such that
‖A(ij ,j)x‖2 ≤ 1, for each 1 ≤ j ≤ L.

2. for each point x ∈ Rd which satisfies ‖x‖2 ≥ c, where c > 1, for each i1, i2, . . . , iL:
1 ≤ i1, i2, . . . , iL ≤ d/k, we have

P
[
∀j : ‖A(ij ,j)x‖2 ≤ α

]
< exp

(
− kL

4 (c− α
c

)2).
Proof. For each j: 1 ≤ j ≤ L we independently sample the orthonormal basis of Rd:
a1, a2, . . . , ad. The A(i,j) will be created in the same way as in Lemma 3, namely, the t–th
row of A(i,j) equals A(i,j)

t =
√

d
ka(i−1)k+t . The properties (1) and (2) follow directly from

Lemma 3. J

In order to employ Lemma 7 for a given query q, we need to be able to find all points in
X such that a given combination of mappings transforms these points and the query point
to ’close’ vectors. In other words, we need to find all c-approximate nearest neighbors for
the transformed input set X̃ ⊂ (Rk)L in the space equipped with metric: max-l2(x, y) =
max1≤i≤L(‖xi − yi‖), which is formally defined as follows:

ISAAC 2017
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IDefinition 8 (the c-approximate nearest neighbor search inmax-l2). Themax-l2_NN(c, L, k)
is defined as follows: given a query point q ∈ (Rk)L and a set X̃ ⊂ (Rk)L of n input points,
find all input points, such that for each 1 ≤ i ≤ L: ‖qi− x̃i‖2 ≤ 1. Moreover, each x̃ satisfying
∀i‖qi − x̃i‖2 ≤ c, might be returned as well. Finally, each x such that ∃i‖qi − x̃i‖ > c, must
not be returned.

Using the construction from Lemma 7, the NNwfn(c, d) problem can be reduced to dL
instances of the max-l2_NN(α,L, k). Each of the instances is represented by indices:
{i1, i2, . . . , iL} and the corresponding mappings A(ij ,j) for 1 ≤ j ≤ L. Each input point
x̃ ∈ X̃ comes from the point x ∈ X by applying the mappings: x̃ = (A(i1,1)x, . . . , A(iL,L)x).
Similarly, the query point q, in max-l2, is created from the query point q in NNwfn(c, d), as
(A(i1,1)q, . . . , A(iL,L)q).

I Lemma 9. The NNwfn(c, d) can be reduced to (d/k)L instances of max-l2_NN(α,L, k).
The expected pre-processing time equals:

O(Ld2n+ (d/k)L preprocmax-l2(α,L, k))

and the expected query time equals:

O(Ld2 + (d/k)Le−kL( c−α
2c )2

n+ (d/k)L querymax-l2(α,L, k)).

The proof of the Lemma is analogical to the proof of Lemma 4. The following corollary
presents the simplified version of Lemma 9. Setting k = dL−1( 2c

c−α
)2 logne we get:

I Corollary 10. For any 1 ≤ α < c, the NNwfn(c, d) can be reduced to dL instances of
max-l2_NN(α,L, L−1γ logn), where γ =

( 2c
c−α

)2 and:

query(c, d) = O(Ld2 + (d/ log(n))L querymax-l2(α,L, dL−1γ logne)),

preproc(c, d) = O(Ld2n+ (d/ log(n))L preprocmax-l2(α,L, dL−1γ logne)).

Themax-l2_NN(α,L, k) can be trivially solved by dealing with each of the L-dimensional
NNwfn(α, k) problems separately. Unfortunately, this gives unacceptable complexities. In
order to improve complexity of algorithm for the NNwfn(c, d) problem, we need to be able to
solve the max-l2_NN more efficiently.

5.1 Solving the c-approximate nearest neighbors in max-l2

In order to solve this problem, we use the standard LSH technique based on the hash functions
h̃ introduced in [13] defined as follows:

h̃(x) = b〈w, x〉c , where w is a random vector from the unit sphere S(d−1).

We consider two hashes to be ’close’ if |h̃(x)− h̃(x′)| ≤ 1. Based on h̃, we introduce a
new hash function g. Each of the input points is hashed by g and the reference to this point
is kept in a single hash map. For a given query point, we examine all input points which are
hashed to the same value as the query point.

Namely, each x̃ ∈ (Rk)L will be hashed by g(x̃) := (g1(x̃1), . . . , gL(x̃L)), where gi(x) :=
(h̃1(x), h̃2(x), . . . , h̃w(x)) is a hash function defined as a concatenation of w random LSH
functions h̃. The function g can be also seen as a concatenation of wL random hash
functions h̃. If two points are ’close’ in the considered max-l2 metric, then g transforms these
points to hashes p(1), p(2) ∈ ZwL, such that |p(1)

i −p
(2)
i | ≤ 1 for all i ∈ wL. The pre-processing
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algorithm is summarized in the following pseudocode:

Algorithm 1: The pre-processing algorithm
Data: X ⊂ (Rk)L - the set of n input points
Result: H : ZwL → 2X - the hash map storing for each hash α ∈ ZwL the subset of

input points with hashes close to α
H = ∅;
for x ∈ X do

α = g(x);
for α′ such that ‖α− α′‖∞ ≤ 1 do

H(α′).push(x);
end

end

The query algorithm consists of examining the bucket for g(guery_point):

Algorithm 2: The query algorithm
Data: q ∈ (Rk)L - the query point
Result: P ⊂ X - the set of neighbors of q
P = ∅;
for x ∈ H(g(q)) do

if x is a neighbor of q then
P.push(x);

end
end

The following theorem describes the above algorithm:

I Theorem 11. For L = o(logn) and c > 2
√
k, the max-l2_NN(c,L,k) can be solved in

the O(kL|P |+ k lnn+ Lk2) query time and O(n1+ ln 3
ln(c/κ̃) ) pre-processing time complexity for

κ̃ = 2
√
k.4

Proof. Let us start with the key properties of the LSH family.

I Observation 12 (’Close’ points have ’close’ hashes for h̃ (Observation 5 in [13])). For
x, y ∈ Rd, if ‖x− y‖ < 1 then ∀h̃|h̃(x)− h̃(y)| ≤ 1.

I Lemma 13 (The probability of false positives for h̃ (Lemma 2 in [13])). For x, y ∈ Rd and
c > τ̃ = 2d1/2 such that ‖x− y‖ > c, it holds:

p̃fp = P
[
|h̃(x)− h̃(y)| ≤ 1

]
< τ̃/c.

Since we consider two hashes to be ’close’, when they differ at most by one (see Observa-
tion 12), for each hash α ∈ ZwL we need to store the reference to every point, that satisfies
‖α − g(x)‖∞ ≤ 1. Thus, the hash map size is O(n3wL). Computing a single h̃ function
in Rk takes O(k), so evaluating the g(x) for x ∈ (Rk)L takes O(wkL). The pre-processing
consists of computing the 3wL hashes for each point in the input set. The query consists
of computing the hash of the query point, looking up all the points with colliding hashes,
filtering out the false positives and returning the neighbors.

4 Theorem 11 might be generalized, to any p ∈ [1, ∞]. The generalization is done by applying hash
functions suited for lp. Such hash functions where introduced in [13].

ISAAC 2017
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It is easy to derive the following complexities:
For any c > 2k1/2 and the number of iterations w ≥ 1, there exists a max-l2_NN(c,L,k)

algorithm with the following properties:
the pre-processing time: O(n(wkL+ 3wL)), where wkL is the time needed to compute
the g(input_point) and the O(3wL) is the number of the updated hashes for one input
point,
the expected query time: O(kL(|P | + w + np̃fp

wL)), where wkL is the time needed to
compute the g(query_point), np̃fp

wL is the number of false positives which need to be
ignored, |P | denotes the size of the result set. For each of the candidates, we need to
perform a check of complexity O(kL) to classify the point as a true positive or a false
positive.

Above p̃fp = τ̃ /c (see Lemma 13).
The number of iterations w can be chosen arbitrarily, so we will choose the optimal value.

Denote a = − ln p̃fp and b = ln 3, then set w to be:

w =
⌈ ln na

k

a
L−1

⌉
.

Let us assume that n is large enough so that w ≥ 1. Then, using the fact that x1/x is
bounded for x > 0 we have:

3wL ≤ 3 · (3ln na
k )1/a = 3 ·

(na
k

)b/a = 3 ·
(n
k

)b/a
,

np̃fp
wL = ne−awL ≤ ne−a

ln(na
k

)
a = k

a
.

Hence, for constant c the expected query time is O(kL|P |+ k lnn+ Lk2). Subsequently,
the pre-processing time is: O(n3wL) = O(n1+b/a). Substituting a, b and pfp values gives the
needed complexity guaranties. J

5.2 Putting it All Together
In order to achieve an efficient algorithm for c = ω(log(log(n))), we will make a series of reduc-
tions. First, using Corollary 5, we reduce our problem to a number of NNwfn(O(c),O(logn))
problems. Next, these problems are reduced to a number of max-l2_NN problems with
dimension k of O(log logn). In the end, we use Theorem 11 to solve the max-l2_NN .

I Theorem 14. The NNwfn(c, d) can be solved with:
the pre-processing time Õ(d2n+ dn1+ ln 3

ln(c/µ) +1/f(n)),
the query time Õ(d2 + dn1/f(n)|P |),

for any c > µ = D
√
f(n) log logn, where f(n) is any function, which satisfies 1/f(n) = o(1)

and D is some constant.

Proof. There are two consecutive reductions:
1. By Corollary 5, the NNwfn(c, d) can be reduced to d instances of the NNwfn(α1, k1).
2. By Corollary 10, the NNwfn(α1, k1) can be reduced to kL1 instances of the

max-l2_NN(α2, k2, L).

Accordingly, we set:
1. α1 = c/2 and k1 = dD1 logne in the first reduction
2. α2 = c/4, k2 = dD2L

−1 logne ≤ dD2f(n) log logne and L = d logn
f(n) log logne in the second

reduction.
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The constants D1 and D2 are chosen to satisfy Corollaries 5 and 10. kL1 can be bounded in
the following way:

kL1 = dD1 logneL = Õ(n1/f(n)) = Õ(no(1)).

Substituting the complexities for subproblems gives the final complexities. J

The function f(n) may be chosen arbitrarily. Slowly increasing f(n) will be chosen for small
c close to Θ(log logn). For larger c, one should choose the maximal possible f(n), to optimize
the query time complexity.

6 Conclusion and Future Work

We have presented the c-approximate nearest neighbor algorithm without false negatives
in l2 for any c = ω(

√
log logn). Such an algorithm might work very well for high entropy

datasets, where the distances tend to be relatively large (see [11] for more details). Also, we
showed that the c-approximate nearest neighbor search in ld2 may be reduced to d instances
of the problem in llogn

2 . Hence, further research might focus on the instances with dimension
logarithmic in n.

Another open problems are to reduce the time complexity of the algorithm and relax the
restrictions on the approximation factor c or proving that these restrictions are essential.
We wish to match the time complexities given in [7] or show that the achieved bounds are
optimal.
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Abstract
We consider the partial vertex cover problem with hard capacity constraints (Partial VC-HC)
on hypergraphs. In this problem we are given a hypergraph G = (V,E) with a maximum edge
size f and a covering requirement R. Each edge is associated with a demand, and each vertex is
associated with a capacity and an (integral) available multiplicity. The objective is to compute
a minimum vertex multiset such that at least R units of demand from the edges are covered by
the capacities of the vertices in the multiset and the multiplicity of each vertex does not exceed
its available multiplicity.

In this paper we present an f -approximation for this problem, improving over a previous
result of (2f + 2)(1 + ε) by Cheung et al to the tight extent possible. Our new ingredient of this
work is a generalized analysis on the extreme points of the natural LP, developed from previous
works, and a strengthened LP lower-bound obtained for the optimal solutions.
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1 Introduction

The capacitated vertex cover problem with hard capacities (VC-HC) models a demand-to-
service assignment scenario generalized from the classical vertex cover problem. In this
problem, we are given a hypergraph G = (V,E ⊆ 2V ) where each e ∈ E is associated with a
demand de ∈ R≥0 and each v ∈ V is associated with a capacity cv ∈ R≥0 and an available
multiplicity mv ∈ Z≥0. The objective is to find a vertex multiset, or, cover, represented by a
demand assignment function h : E × V → R≥0, such that the followings are met:
(1)

∑
v∈e he,v = 1 for all e ∈ E,

(2) x(h)
v ≤ mv for all v ∈ V , where x(h)

v :=
⌈∑

e : e∈E, v∈e (de · he,v) /cv
⌉
,

and
∑
v∈V x

(h)
v is minimized.
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In this paper, we consider VC-HC with partial covering constraints (Partial VC-HC).
Instead of dictating that all the demand be covered, we are specified a covering requirement
R to be fulfilled. In particular, the constraint (1) above is replaced by the following two
constraints:

(1.a)
∑
v∈e

he,v ≤ 1 for all e ∈ E, (1.b)
∑
e∈E

∑
v∈e

de · he,v ≥ R.

Note that, under this notion, VC-HC is the special case for which we have R =
∑
e∈E de.

Moreover, following the convention used in the literature, it is equivalent to specify the slack
of coverage L, i.e., the amount of demand that is allowed to be left uncovered.

Background

The vertex cover problem is among the fundamental problems in the study of graph theory
and approximation algorithms. It is known that an f -approximation can be obtained via
LP rounding and duality, where f is the size of the largest hyperedge. Khot and Regev [13]
showed that, assuming the unique game conjecture (UGC), approximating this problem to a
ratio better than f − ε is NP-hard for any ε > 0 and f ≥ 2.

The capacitated vertex cover generalizes vertex cover in that demand-to-supply constraints
are introduced in addition to the 0/1-covering model. Chuzhoy and Naor [4] considered
VC-HC on simple graphs with unit edge demands, i.e., f = 2 and de = 1 for all e ∈ E.
They presented a 3-approximation for this problem. They showed that, when the vertices
are weighted, minimizing the weighted cost is at least set-cover-hard. Therefore O(f)-
approximations towards weighted cost model is unlikely even for this simple setting.

Gandhi et al. [5] gave a 2-approximation for VC-HC with unit edge demand by a refined
rounding approach to [4]. Saha and Khuller [15] considered general edge demands and
presented an O(f)-approximation for f -hypergraphs. Cheung et al. [3] presented an improved
approach for this problem. They presented a

(
1 + 2/

√
3
)
-approximation for simple graphs

and a 2f -approximation for f -hypergraphs. The gap of approximation for VC-HC was closed
recently by Kao and Wong [9,16] to a tight f -approximation for any f ≥ 2.

The Partial VC-HC problem was first considered by Cheung et al in [3] and a (2f+2)(1+ε)-
approximation in time O

(
|V |1/ε|E|

)
was presented, based on the rounding technique provided

for VC-HC in the same paper and an exhaustive search on potential solutions with cardinality
O(1/ε).

Related Work

When the available multiplicity of the vertices is unlimited, this problem is known as soft
capacitated vertex cover (CVC). This problem was first considered by Guha et al. [7] and
a 2-approximation was presented. Kao et al. [8, 10,11] studied capacitated dominating set
problem and presented a series of results for the complexity and approximability of this
problem. Bar-Yehuda et al. [2] considered partial CVC and presented a 3-approximation for
simple graphs. A tight approximation for Partial CVC was given by Mestre [14], based on a
delicate primal-dual scheme developed for a gradually strengthened LP of this problem.

In additional to partial coverage, VC-HC with relaxed multiplicity constraints have also
been addressed in the literature, i.e., the constraint xv ≤ mv for all v is relaxed in exchange
of affordable solution quality. Grandoni et al. [6] considered VC-HC with weighted cost
model and relaxed multiplicity constraints. For the case mv = 1 for all v ∈ V , they showed
that, when augmenting the available multiplicity by a factor of f , a cover with cost guarantee



J.-Y. Shiau, M.-J. Kao, C.-C. Lin, and D.T. Lee 64:3

of f2 to the optimal feasible cover can be obtained.1, The bi-criteria approximation ratio was
recently improved by Kao et al. [12] to

(
k, (1 + 1

k−1 )(f − 1)
)
for any k ≥ 2 and arbitrary

vertex multiplicities.

Our Contribution and Discussion.

In this paper we consider the partial VC-HC problem and present tight approximation result
for this problem. Our main result is the following theorem.

I Theorem 1. We can compute an f -approximation for partial VC-HC in polynomial time,
where f is the size of the largest hyperedge.

This improves over the previous ratio of (2f + 2)(1 + ε) in [3] for Partial VC-HC to the
tight extent. Our algorithm builds upon the iterative rounding technique developed for the
VC-HC problem in our previous works [9, 16]. In each iteration, our algorithm modifies
the current instance based on the optimal extreme point solution of the current working
LP. When certain structural property is attained for the gradually modified instance, the
algorithm rounds up the solution and terminates.

In contrast to the previous works for VC-HC [9, 16], our new ingredient in this work
comes in two-fold. The first one is a strengthened LP lower-bound for the optimal solution.
Surprisingly, the natural LP formulation for Partial VC-HC, which performs arbitrarily
badly even for very simple settings, can be tuned to give tight lower-bounds for the optimal
solutions. This allows us to get rid of the exhaustive search step used in [3], which inevitably
brings in an undesirable ε-dependency in their result.

Our second ingredient for this work is a new insight on the analysis of extreme point
solutions of the extended natural LP. Instead of reducing instances of Partial VC-HC for
f -hypergraphs into instances of VC-HC for (f + 1)-hypergraphs and introducing an extra
O(1) constant in the approximation ratio, as was done in [3], we analyze the extreme point
solution for the original instance directly. This keeps the possibility of tight approximation
result alive. Together this gives our tight f -approximation for Partial VC-HC.

The rest of this paper is organized as follows. In Section 2 we formally define Partial
VC-HC and the LP relaxation we will be using throughout this paper. In Section 3 we
present our tight approximation algorithm for this problem. We conclude with an extension
of our result and discussion for future direction in Section 4.

2 Problem Statement and LP Relaxation

In this section we formally define the Partial VC-HC problem and introduce the LP relaxation
we will be using. Throughout this paper, we use G = (V,E) to denote a hypergraph with
vertex set V and edge set E ⊆ 2V . Under this context, each hyperedge e ∈ E is represented
by the set of its incident vertices, which is a vertex subset of V . In other words, e ⊆ V for all
e ∈ E. We use f := maxe∈E |e| to denote the size of the largest hyperedge in the considered
graph.

For any edge subset E ⊆ E, we use E [v] to denote the set of edges in E that are incident
to the vertex v. Formally, E [v] :=

{
e : e ∈ E such that v ∈ e

}
.

1 The bi-approximation ratio of [6] is updated due to the difference between the considered models.
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2.1 Partial Vertex Cover with Hard Capacities (Partial VC-HC)

In this problem we are given a hypergraph G = (V,E) and a covering requirement R, where
each e ∈ E is associated with a demand de and each v ∈ V is associated with a capacity cv
and an (integral) available multiplicities mv.

A solution to this problem consists of a demand assignment function h : E×V → R+∪{0},
where he,v denotes the fraction of the edge e that is assigned to the vertex v. The multiplicity
of each vertex v given by h is denoted x

(h)
v :=

⌈∑
e∈E[v](de · he,v)/cv

⌉
. The assignment

h is feasible if (1)
∑
v∈e he,v ≤ 1 for all e ∈ E, (2)

∑
e∈E

∑
v∈e de · he,v ≥ R, and (3)

x
(h)
v ≤ mv for all v ∈ V .

Given an instance Π = (V,E,R, c,m,d) as described above, the problem of Partial
VC-HC is to find a feasible assignment h such that

∑
v∈V x

(h)
v is minimized. Without loss

of generality, we assume that the input graph G admits a feasible assignment since this
condition can be checked via a max-flow computation.

For the ease of presentation, we also use L :=
∑
e∈E de − R to denote the amount of

demand that can be left unassigned. Furthermore, for each e ∈ E, we use hφe := 1−
∑
v∈e he,v

to denote the fraction that is left unassigned for edge e.
We remark that, when de and cv are integer-valued for all e ∈ E, v ∈ V , by the integrality

of b-matching polytope, any fractional assignment can be turned into an integral assignment,
i.e., de · he,v ∈ Z≥0 for all e, v, using a standard integer flow computation.

2.2 LP relaxation for Partial VC-HC

Given an instance Π = (V,E, c,m,d) of Partial VC-HC, for
(1) a vertex subset V ⊆ V ,
(2) an edge subset E ⊆ E,
(3) a residue fraction of the edges r to be covered, where 0 ≤ r ≤ 1, and
(4) an additional lower-bound `, where 0 ≤ ` ≤m, on the multiplicity of the vertices,
we consider the following relaxation, with Ψ := (V, E , r, `, c,m,d) being a parameter tuple:

min
(x,h)

∑
v∈V

xv LP(Ψ)

s.t.∑
v∈e∩V

he,v + hφe = re, ∀e ∈ E (1a)

∑
e∈E[v]

de · he,v ≤ cv · xv, ∀v ∈ V (1b)

∑
e∈E

de · hφe ≤ L, (1c)

`v ≤ xv ≤ mv, ∀v ∈ V (1d)

0 ≤ he,v ≤ xv, ∀e ∈ E , v ∈ e ∩ V (1e)

0 ≤ hφe , ∀e ∈ E (1f)
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Since each of the variables he,v and xv is bounded from both below and above, the feasible
region of LP(Ψ) is a polytope, and the reference to its extreme points is well-defined.

Throughout this paper, for a given instance Π of Partial VC-HC, a number of different
parameter tuples will be considered. However, since m and d will remain the same in every
considered tuple, we will use (V, E , r, `, c) to denote the parameter tuple Ψ for the LP.

2.3 The Integrality Gap
We have introduced an extended natural LP relaxation for Partial VC-HC in the previous
section. It may seem that LP(Ψ) with parameter tuple Ψ = (V,E,1,0, c) has an unbounded
integrality gap for Partial VC-HC.

Consider the following simple example, where we have one vertex v and one edge e = {v}.
The capacity of v is k for some k ∈ N, the demand of e is also k. The covering requirement
R is 1. ( Therefore, L = k − 1. )

The optimal fractional solution to LP(Ψ) has cost at most 1/k since we can set xv =
he,v = 1/k and hφe = (k − 1)/k. However, any integral solution has cost at least 1 since the
vertex v has to be selected. Therefore the gap between the two solutions can be arbitrarily
large, and it seems that we need an LP stronger than LP(Ψ) to manage this problem.

In general, strengthening an LP for improved integrality gap can be a challenging task to
accomplish. However, if we use the fact that any integral solution must also have an integral
cost, then the lower-bound given by LP(Ψ) for this simple example becomes d1/ke = 1, which
matches the integral solution. Although this may seem to be case-dependent, we will show
in the rest of this paper that, surprisingly, this strengthened LP lower-bound is sufficient to
give a tight f -approximation result for this problem.

3 Tight Approximation for Partial VC-HC

In this section we describe our tight approximation algorithm for Partial VC-HC. In each
iteration, the algorithm makes local decisions based on current working LP and modifies the
parameter tuple accordingly. When no such decisions are there to be made, it rounds up all
vertices unconditionally and stops.

We first introduce notions and operations our algorithm will be using. In Section 3.1 we
describe our algorithm in detail. The analysis is provided in Section 3.2.

Basic Notion and Operations

Let Ψ = (V, E , r, `, c) be a parameter tuple and p = (x,h) be a feasible solution for LP(Ψ).

I Definition 2 (Supporting edge). For any e ∈ E and v ∈ e, we say that edge e supports
vertex v in the solution p if 0 < he,v = xv.

The idea behind this definition is that, this condition gives information on how the rounding
can be done locally. Suppose that he,v = xv holds for some e and v. Then from constraint (1b)
of LP(Ψ) we know that

de · he,v ≤
∑
e∈E[v]

de · he,v ≤ cv · xv

Since he,v = xv, it follows that de ≤ cv. In other words, if we know that the vertex v is to be
rounded up eventually, then its capacity will be sufficient for covering the demand of e. This
suggests the edge-folding operation for our rounding algorithm.
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I Definition 3 (Edge folding). Let e be an edge that supports a vertex v in p. By folding e
into v, we update Ψ as follows:
(i) Remove e from E and decrease cv by de.
(ii) Impose the constraint xv ≥ 1/f to LP(Ψ) by setting `v = 1/f .

Notice that, from the discussion above, folding supporting edges into the supported vertices
results in no loss in the feasibility and approximation guarantee of the final solution, provided
that the supported vertices are to be rounded-up eventually.

I Definition 4 (Vertex down-pinning). We say that a vertex v ∈ V is tight if xv = 1/f . By
pinning down the value of v, we update Ψ as follows:
(i) For each e ∈ E [v], decrease re by he,v.
(ii) Remove v from V.

Intuitively a vertex is tight when its value hits the minimal extent that still results in
no extra loss (in terms of an f -approximation) when rounded up. When a tight vertex is
pinned down, we also pin down the assignment from its incident edges. By constraint (1e) it
ensures that, for each of its incident edge, say, e, only a small amount of demand, i.e., ≤ 1/f ,
is removed from re when v is removed from V. This guarantees that e still has a relatively
large assignment, i.e., ≥ 1/f , to one of its remaining incident ends.

3.1 The Algorithm
In the following we describe our tight approximation algorithm for Partial VC-HC in detail.
The algorithm begins with the initial parameter tuple Ψ = (V,E,1,0, c). In each iteration,
it proceeds in the four steps described below.

1. Let Ψ = (V, E , r, `, c) denote the current parameter tuple.
Solve LP(Ψ) for a basic optimal solution p = (x,h). Let I :=

{
v ∈ V : 0 < xv <

1
f

}
.

2. If there exists an edge e ∈ E that supports some v /∈ I in p,
then fold e into v.

3. If there exists a vertex v ∈ V that is tight,
then pin down the value of v.

4. If any operation is performed in Step 2 or Step 3,
then restart Step 1.
Otherwise, round up vertices in V and stop.

Let Ψ̂ = (V̂, Ê , r̂, ˆ̀, ĉ) denote the parameter tuple when the algorithm enters the final
rounding step and p̂ = (x̂, ĥ) denote the basic optimal solution computed for Ψ̂.

Let h′ denote the {0, 1}-assignment function for E \ Ê that indicates the vertex which
each edge e ∈ E \ Ê is folded into. In particular, for each e ∈ E \ Ê and v ∈ e, the variable
h′e,v is 1 if e is folded into v and 0 otherwise. Furthermore, for any v ∈ V \ V̂ and any e ∈ Ê [v],
let h′′e,v denote the assignment value of e to v when v was pinned down.

The final output (x∗,h∗) is defined as follows. For any v ∈ V and e ∈ E[v], let

x∗v :=
{
dx̂ve , if v ∈ V̂,
1, otherwise.

and h∗e,v :=


ĥe,v, if e ∈ Ê and v ∈ V̂,
h′′e,v, if e ∈ Ê but v /∈ V̂,
h′e,v, otherwise.

Then (x∗,h∗) is output as the approximate solution.



J.-Y. Shiau, M.-J. Kao, C.-C. Lin, and D.T. Lee 64:7

We remark that, since this approach is insensitive to multiple operations, in the actual
algorithm we will fold every supporting edge and pin down the value of every tight vertex.
Furthermore, ties are broken arbitrarily if an edge supports multiple vertices outside I.

Let Tight-Partial-VC-HC denote the above algorithm. Our tight approximation result is
stated in the following theorem:

I Theorem 5. On any instance Π = (V,E,R, c,m,d) of Partial VC-HC with maximum
edge size f ≥ 2, algorithm Tight-Partial-VC-HC computes an f-approximation (x∗,h∗) in
polynomial time.

3.2 Analysis
In this section we prove Theorem 5. First, since the algorithm iterates only if some edge
is folded or some vertex is pinned down, we know that the number of iterations is at most
O(|E|+ |V |). Let k denote the number of iterations the algorithm repeats before it enters
the rounding stage. For 1 ≤ i ≤ k, we use the following notations to denote the respective
concepts we have in the ith iteration:

Ψ(i) =
(
V(i), E(i), r(i), `(i), c(i) ): The parameter tuple the algorithm maintains when

it enters the ith iteration. Note that Ψ(1) = (V,E,1,0, c) is the initial tuple and
Ψ(k) =

(
V̂, Ê , r̂, ˆ̀, ĉ

)
is the final tuple.

p(i) =
(
x(i),h(i)): The basic optimal solution computed for LP(Ψ(i)).

From the usage of edge-folding and vertex-pinning operations, it is not difficult to see
that Algorithm Tight-Partial-VC-HC indeed produces a feasible solution for Partial VC-HC.
We summarize the feasibility of the algorithm in the following lemma.

I Lemma 6. Algorithm Tight-Partial-VC-HC outputs a feasible solution (x∗,h∗) for
LP(Ψ(1)). Moreover, x∗ is integral.

To prove Lemma 6, it suffices to show that (1) After each iteration, the modified tuple is
feasible for the next iteration, i.e., for any 1 ≤ i < k, the feasible region of LP(Ψ(i+1)) is not
empty. Therefore the access to basic feasible solutions of the LP is always valid. (2) The
solution (x∗, h∗) does not violate the constraints of LP(Ψ(1)).

For statement (1) above, the following lemma shows that,
(
x(i),h(i)) gives a feasible

point for LP(Ψ(i+1)), thereby ensuring that its feasible region will not be empty.

I Lemma 7. The solution
(
x(i),h(i)), when restricted to V(i+1) and E(i+1), is feasible for

LP(Ψ(i+1)), for any 1 ≤ i < k.

Lemma 7 and statement (2) are proved by verifying the corresponding LP constraints. In
the rest of this section, we establish the approximation guarantee.

The Approximation Guarantee

From Lemma 7 we know that, the sum of fractional values over vertices in V between
successive iterations, which is composed of the objective value of the LP and the values of
the down-pinned vertices, will form a non-increasing sequence. Therefore the total fractional
value we have in each iteration always gives a valid lower-bound to any optimal integral
solution. In particular, we have the following lemma.
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I Lemma 8. For any 1 ≤ i ≤ k, 1
f
·
∣∣∣V \ V(i)

∣∣∣ +
∑
v∈V(i)

x(i)
v

 ≤ OPT,

where OPT is the cost of any optimal integral solution.

Proof. Since OPT is integer-valued, it suffices to show that for any 1 ≤ i ≤ k,

1
f
·
∣∣∣V \ V(i)

∣∣∣ +
∑
v∈V(i)

x(i)
v ≤ OPT.

The base case i = 1 holds directly since V(1) = V and since x(1) is optimal for LP(Ψ(1)).
For 1 < i ≤ k, since V(i) ⊆ V(i−1), by Lemma 7 and the optimality of x(i) for LP(Ψ(i)), we
have∑

v∈V(i)

x(i)
v ≤

∑
v∈V(i)

x(i−1)
v .

Therefore,

1
f
·
∣∣V \ V(i)∣∣ +

∑
v∈V(i)

x(i)
v ≤ 1

f
·
∣∣V \ V(i−1)∣∣ +

 1
f
·
∣∣V(i−1) \ V(i)∣∣ +

∑
v∈V(i)

x(i−1)
v


= 1

f
·
∣∣V \ V(i−1)∣∣ +

∑
v∈V(i−1)

x(i−1)
v .

Therefore this lemma follows by an induction on i. J

Note that, the rounding cost of vertices in
∣∣V \ V(k)

∣∣ is properly bounded by its own
fractional value since the fractional value of each down-pinned vertex is exactly 1/f . Therefore
it suffices to show that the rounding cost of vertices in V(k) can be properly bounded as well.

Let I(k) :=
{
v ∈ V(k) : 0 < x

(k)
v < 1

f

}
and M (k) :=

{
v ∈ V(k) : 0 < x

(k)
v = mv

}
denote

the set of vertices with small and large fractional values in p(k), respectively. The following
lemma upper-bounds the cardinality of I(k) in terms of the cardinality of M (k).

I Lemma 9.
∣∣I(k)

∣∣ ≤ ∣∣M (k)
∣∣+ 1.

Proof. Recall that p(k) = (x(k),h(k)) is an extreme point solution of LP(Ψ(k)). Therefore, it
follows that the rank of the tight constraints we have, i.e., the maximum number of linearly
independent constraints we can pick among the inequalities that hold with equality, w.r.t.
p(k) equals the total number of variables.

Since there exist no tight vertices in V(k) nor edges in E(k) that supports vertices outside
I(k) by the design of the algorithm, it follows that, each tight constraint we have in LP(Ψ(k))
w.r.t. p(k) must belong to one of the forms listed in Figure 1.

Modify the tight constraints as follows: Remove all zero-valued varaibles from the
constraints of types (2a), (2b), and (2c). Plug the constraints of types (2d) and (2e) back
into that of (2a) and (2b) by replacing corresponding xv with mv and he,v with xv.

Note that, by doing so, we literally remove equal number of variables and linearly
independent tight constraints from the above. Therefore, the number of remaining variable
still equals the rank of remaining tight constraints.
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∑
v∈e∩V(k)

he,v + hφe = r(k)
e , e ∈ E(k) (2a)

∑
e∈E(k)[v]

de · he,v = c(k)
v · xv, v ∈ V(k) (2b)

∑
e∈E(k)

de · hφe = L, (2c)

xv = mv, v ∈M (k) (2d)

he,v = xv, e ∈ E(k), v ∈ e ∩ I(k) (2e)

xv = 0, v ∈ V(k) (2f)

he,v = 0, e ∈ E(k), v ∈ e ∩ V(k) (2g)

hφe = 0, e ∈ E(k) (2h)

Figure 1 Possible tight constraints we have in LP(Ψ(k)) with reference to the solution p(k).

Define the following sets:

H∗ :=
{

(e, v) : e ∈ E(k), v ∈ e ∩ I(k), 0 < he,v = xv
}
. This corresponds to the non-zero

he,v variables that have been replaced by xv due to constraints of type (2e).
H+ :=

{
(e, v) : e ∈ E(k), v ∈ e ∩ V(k), 0 < he,v < xv

}
, which corresponds to the set of

he,v variables that remains in the constraints.
V+ :=

{
v : v ∈ V(k) \M (k), xv > 0

}
and Eφ :=

{
e : e ∈ E(k), hφe > 0

}
.

The remaining tight constraints we have, after modification, are of the following forms, where
c̃

(k)
v = c

(k)
v −

∑
e : (e,v)∈H∗ de is the resulting constant after the constraints (2e) are plugged

in.

∑
v : (e,v)∈H+

he,v +
∑

v : (e,v)∈H∗
xv +

[
e ∈ Eφ

]
· hφe = r(k)

e , e ∈ E(k) (3a)

∑
e : (e,v)∈H+

de · he,v = c̃(k)
v · xv, v ∈ V+ (3b)

∑
e∈Eφ

de · hφe = L, (3c)

∑
e : (e,v)∈H+

de · he,v = c(k)
v ·mv, v ∈M (k) (3d)

In the following we work with constraints (3a) through (3d). We show that, the cardinality
of I(k) is at most the number of constraints of types (3c) and (3d).

Let C be a maximal collection of linearly independent constraints from (3a) through (3d)
and Vars denote the set of remaining variables. It follows that |C| = |Vars| = |H+|+ |V+|+∣∣Eφ∣∣ and the coefficient matrix of C is of full-rank. Therefore, by identifying a set of pivots
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of the coefficient matrix, we obtain a bijection σ : Vars 7→ C such that any variable, say,
a ∈ Var, appears in the constraint σ(a).

For the brevity of notations, in the following for any e ∈ E(k) we will use e to denote the
corresponding type (3a) constraint it represents. Similarly, for any v ∈ V(k), we use v to
denote the type (3b) or (3d) constraint it represents. We use φ to denote the only one type
(3c) constraint.

We have the following two properties, obtained from the fact that σ is a bijection.

I Claim 10. We have σ(xv) = v for any v ∈ V+ \ I(k).

Proof. Consider any v ∈ V+ \ I(k). Since (e, v) /∈ H∗ for all e, the only constraint that
contains xv is v itself. Therefore σ must map xv to v. J

I Claim 11. For any e ∈ E(k), either hφe > 0 or he,v > 0 for some v ∈ V(k) \ I(k).

Proof. Suppose that hφe = 0. We will argue that he,v > 0 for some v ∈ V(k) \ I(k).
Since the value of each down-pinned vertex equals 1/f , the residue fraction of e decreases

by at most 1/f each time when one of its incident vertices is pinned down. Therefore it
follows that

r(k)
e ≥ 1− 1

f
·
∣∣∣e ∩ (V \ V(k)

)∣∣∣ ≥ 1
f
·
∣∣∣e ∩ V(k)

∣∣∣ ,
where the last inequality follows from the fact that |e| ≤ f .
This says,

∑
v : (e,v)∈H+

he,v +
∑

v : (e,v)∈H∗
xv ≥

1
f
·
∣∣∣e ∩ V(k)

∣∣∣ .
Therefore, one of the variables in the L.H.S. has value at least 1/f , and it must be he,v′ for
some v′ with (e, v′) ∈ H+ since xv < 1/f for all v with (e, v) ∈ H∗. Since he,v′ ≥ 1/f , we
know that v′ /∈ I(k) and this claim follows. J

Consider any v ∈ I(k) and the constraint σ(xv). Since the variable xv appears only in (3a)
and (3b), we have the following two cases.

If σ(xv) = e for some e ∈ E(k), then according to Claim 11, either hφe > 0 or there exists
v′ ∈ V(k) \ I(k) such that the variable he,v′ appears in e.
If hφe > 0, then σ must map hφe to φ, i.e., σ(hφe ) = φ, since the variable hφe appears only
in e and φ but e is already mapped to by xv.
Similarly, if he,v′ > 0 for some v′ ∈ V(k)\I(k), then it follows that σ(he,v′) = v′. Therefore,
by Claim 10, v′ does not belong to V+ \ I(k) and v′ must belong to I(k) ∪M (k). Hence
we know that v′ ∈M (k).
Therefore, if σ(xv) = e for some e ∈ E(k), then xv corresponds exclusively to either φ or
a vertex v′ ∈M (k).
If σ(xv) = v, then there exists some e such that (e, v) ∈ H+ since the constraint v is
linearly independent from the others, implying that constraint v is non-degenerating.
Since he,v appears only in constraints e and v, it follows that σ(he,v) = e. By the same
argument as the previous case, we can again associate xv exclusively with either φ or
some vertex v′ ∈M (k).

From the two cases above, we can associate each v ∈ I(k) exclusively to either φ or some
vertex in M (k). It follows that

∣∣I(k)
∣∣ ≤ ∣∣M (k)

∣∣+ 1 and this lemma is proved. J
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The following lemma bounds the cost of x∗, which is exactly
∣∣V \ V(k)

∣∣ +
∑
v∈V(k)

⌈
x

(k)
v

⌉
,

and establishes the approximation guarantee.

I Lemma 12. We have∣∣∣V \ V(k)
∣∣∣+

∑
v∈V(k)

⌈
x(k)
v

⌉
≤ f ·OPT.

Proof. By Lemma 8 it suffices to show that

∣∣∣V \ V(k)
∣∣∣+

∑
v∈V(k)

⌈
x(k)
v

⌉
≤ f ·

 1
f
·
∣∣∣V \ V(k)

∣∣∣ +
∑

v∈V(k)

x(k)
v

 . (4)

Note that, since
⌈
x

(k)
v

⌉
≤ f · x(k)

v for any v ∈ V(k) \ I(k), this inequality holds trivially if
I(k) = ∅. In the following we assume that I(k) 6= ∅.

Pair up the vertices in I(k) with that in M (k) by associating each v ∈ I(k) a distinct
vertex from M (k). By Lemma 9, at most one vertex in I(k) could be unpaired. Without loss
of generality, we assume that exactly one vertex, say, u, from I(k) is unpaired. It follows that∑

v∈I(k)∪M(k)

⌈
x(k)
v

⌉
≤

⌈
x(k)
u

⌉
+

∑
v∈M(k)

(mv + 1) ≤
⌈
x(k)
u

⌉
+ f ·

∑
v∈M(k)

mv, (5)

where the last inequality holds since f ≥ 2 and since mv ≥ 1 for all v ∈M (k).

Let W := V(k) \
(
I(k) ∪M (k)). Plugging Inequality (5) into the L.H.S. of Inequality (4),

since
∑
v∈M(k) mv is integral and can be moved freely outside the ceilings, we can conclude

that, Inequality (4) holds if the following statement holds.

1
f
·

( ∣∣∣V \ V(k)
∣∣∣ +

∑
v∈W

⌈
x(k)
v

⌉
+
⌈
x(k)
u

⌉ )
≤

⌈
1
f
·
∣∣∣V \ V(k)

∣∣∣ +
∑
v∈W

x(k)
v + x(k)

u

⌉
. (6)

In the following we establish Inequality (6). Let p and q denote the integer multiple and the
remainder of

∣∣V \ V(k)
∣∣+
∑
v∈W

⌈
x

(k)
v

⌉
with the modulus f , i.e., we write∣∣∣V \ V(k)

∣∣∣ +
∑
v∈W

⌈
x(k)
v

⌉
= p · f + q,

where p, q ∈ Z≥0, 0 ≤ q < f . The L.H.S. of Inequality (6) simplifies to

1
f
·
(
pf + q + 1

)
≤ p+ 1 =

⌈
1
f
·

( ∣∣∣V \ V(k)
∣∣∣ +

∑
v∈W

⌈
x(k)
v

⌉ )
+ x(k)

u

⌉

≤

⌈
1
f
·
∣∣∣V \ V(k)

∣∣∣ +
∑
v∈W

x(k)
v + x(k)

u

⌉
,

where the second equality holds since 0 < x
(k)
u < 1/f and the last inequality follows from the

fact that 1/f < x
(k)
v < mv for each v ∈W , which implies that (1/f) ·

⌈
x

(k)
v

⌉
≤ x(k)

v .
This proves Inequality (6) and this lemma follows. J
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4 Conclusion

We conclude with an interesting generalization of Partial VC-HC where we are given, instead
of one global coverage requirement, a set of partial coverage constraints to be satisfied. In
particular, we are given a function R : 2E → [0, 1], where for any A ⊆ E, R(A) denotes the
fraction of demand coverage among the edges in A to be fulfilled.2

Let k =
∣∣ {A : A ⊆ E, R(A) > 0

}∣∣ denote the number of partial coverage constraints.
By a direct generalization of Lemma 9 combined with the exhaustive search technique used
in [3], we can obtain an (f + k)(1 + ε)-approximation in poly

(
|V |k/ε|E|

)
time.

However, it is not yet clear how better guarantees can be obtained nor how the dependency
of k could be removed, and this would be an interesting direction to explore. The MFN-type
LP relaxations, originally developed for capacitated facility location [1], could be a powerful
tool to manage the approximation guarantee.
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Abstract
A constraint satisfaction problem (CSP) is a problem of computing a homomorphism R → Γ
between two relational structures, e.g. between two directed graphs. Analyzing its complexity
has been a very fruitful research direction, especially for fixed template CSPs (or, non-uniform
CSPs), denoted CSP(Γ), in which the right side structure Γ is fixed and the left side structure
R is unconstrained.

Recently, the hybrid setting, written CSPH(Γ), where both sides are restricted simultaneously,
attracted some attention. It assumes that R is taken from a class of relational structures H
(called the structural restriction) that additionally is closed under inverse homomorphisms. The
last property allows to exploit an algebraic machinery that has been developed for fixed template
CSPs. The key concept that connects hybrid CSPs with fixed-template CSPs is the so called
“lifted language”. Namely, this is a constraint language ΓR that can be constructed from an
input R. The tractability of the language ΓR for any input R ∈ H is a necessary condition for
the tractability of the hybrid problem.

In the first part we investigate templates Γ for which the latter condition is not only necessary,
but also is sufficient. We call such templates Γ widely tractable. For this purpose, we construct
from Γ a new finite relational structure Γ′ and define a “maximal” structural restriction H0
as a class of structures homomorphic to Γ′. For the so called strongly BJK templates that
probably captures all templates, we prove that wide tractability is equivalent to the tractability
of CSPH0 (Γ). Our proof is based on the key observation that R is homomorphic to Γ′ if and
only if the core of ΓR is preserved by a Siggers polymorphism. Analogous result is shown for
conservative valued CSPs.
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Keywords and phrases constraint satisfaction problem, polymorphisms, algebraic approach, lif-
ted language, hybrid CSPs, closed under inverse homomorphisms
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1 Introduction

The constraint satisfaction problems (CSPs) and the valued constraint satisfaction problems
(VCSPs) provide a powerful framework for the analysis of a large set of computational
problems arising in propositional logic, combinatorial optimization, graph theory, artificial
intelligence, scheduling, biology (protein folding), computer vision etc. CSP can be formalized
either as a problem of (a) finding an assignment of values to a given set of variables, subject to
constraints on the values that can be assigned simultaneously to specified subsets of variables,
or as a problem of (b) finding a homomorphism between two finite relational structures A
and B (e.g., two oriented graphs). These two formulations are polynomially equivalent under
the condition that input constraints in the first case or input relations in the second case
are given by lists of their elements. A soft version of CSP, the Valued CSP, generalizes the
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CSP by changing crisp constraints to cost functions applied to tuples of variables. In the
VCSP we are asked to find a minimum (or maximum) of a sum of cost functions applied to
corresponding variables.

The CSPs have been a very active research field since 70s. One of the topics that
revealed the rich logical and algebraic structure of the CSPs was the problem’s computational
complexity when constraint relations are restricted to a given set of relations or, alternatively,
when the second relational structure is some fixed Γ. Thus, this problem is parameterized by
Γ, denoted as CSP(Γ) and called a fixed template CSP with a template Γ (another name
is a non-uniform CSP). E.g., if the domain set is boolean and Γ is a structure with four
ternary relations x ∨ y ∨ z, x ∨ y ∨ z, x ∨ y ∨ z, x ∨ y ∨ z, CSP(Γ) models 3-SAT which is
historically one of the first NP-complete problems [8]. At the same time, if we restrict that
all relations in Γ are binary, then we obtain tractable 2-SAT. Schaeffer proved [25] that for
any template Γ over the boolean set, CSP(Γ) is either in P or NP-complete. For the case
when Γ is a graph (without loops) Hell and Nešetřil [14] proved an analogous statement, by
showing that only for bipartite graphs the problem is tractable. Feder and Vardi [11] found
that all fixed template CSPs can be expressed as problems in a fragment of SNP, called the
Monotone Monadic SNP (MM SNP), and showed that for any problem in MM SNP there
is a polynomial-time Turing reduction to a fixed template CSP. Thus, non-uniform CSPs’
complexity classification would yield a classification for MM SNP problems. This result
placed fixed-template CSPs into a broad logical context which naturally lead to a conjecture
that such CSPs are either tractable or NP-hard, the so called dichotomy conjecture.

In [16] Jeavons showed that the complexity of CSP(Γ) is determined by the polymorphisms
of Γ. Research in this direction lead to a conjectured description of tractable templates
through properties of their polymorphisms. The key formulation was given by Bulatov,
Jeavons, and Krokhin [5], with subsequent reformulations of this conjecture by Maroti and
McKenzie [23]. Later, it was shown by Siggers [26] that if the Bulatov-Jeavons-Krokhin
formulation is true, then for a relational structure to be tractable it is necessary and sufficient
that its core is preserved by a single 6-ary polymorphism that satisfies a certain term identity.
Further, an arity of a polymorphism in the latter formulation was decreased to 4 [18]. We
will use the last fact as a key ingredient for our results. Very recently, several independent
proofs of the Bulatov-Jeavons-Krokhin formulation were announced [24, 6, 30]. Since the
papers have not yet been thoroughly verified and widely accepted by the CSP community, in
this paper we refer to the formulation as a hypothesis.

Related work. A meta-problem of the VCSP topic is to establish the complexity of VCSP
given that an input is restricted to an arbitrary subset of all input pairs (R,Γ). A natural
approach to this problem is to construct a new structure for any input (R,Γ), GR,Γ, and shift
the analysis to GR,Γ. In case of binary CSPs (i.e. when all relations of an input are binary) it
is natural to define GR,Γ as a microstructure graph [17] of an instance (R,Γ). Thereby, a set
of inputs, in which certain local substructures in GR,Γ are forbidden, forms a parametrized
problem. Cooper and Živný [9] investigated this formulation and found examples of specific
forbidden substructures that result in tractable hybrid CSPs. Microstructure graphs also
naturally appear in the context of fixed template CSPs. Specifically, if a template Γ with
binary relations is such that the arc and path consistency preprocessing of an instance of
CSP(Γ) always results in a perfect microstructure graph, then additionally to satisfying all
constraints (by finding a maximum clique) one can also optimize arbitrary sums of unary
terms over a set of solutions (by assigning weights to vertices of the microstructure graph).
The latter optimization problem is called the minimum cost homomorphism problem and all
such templates were completely classified in [28].
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Recently, a hybrid framework for VCSP has attracted some attention [21], that is when
left structures are restricted to some set H and a right structure Γ is fixed (the corresponding
CSP is denoted as CSPH(Γ)) and H is closed under inverse homomorphisms. The specific
feature of this case is that for any input R ∈ H one can construct a new language ΓR,
called a lifted language, so that tractability of this language is a necessary condition for the
tractability of CSPH(Γ).

Our results. The first question that we address is a characterization of those templates Γ
for which the tractability of ΓR for any R ∈ H is not only necessary, but also is sufficient for
the tractability of CSPH(Γ). We call Γ that possesses this property for any H (closed under
inverse homomorphisms) widely tractable. It turns out that the statement that the core of
ΓR is preserved by a Siggers polymorphism (i.e. satisfies the Bulatov-Jeavons-Krokhin test
for non-NP-hardness) is equivalent to the statement that R is homomorphic to a certain
structure Γ′ (constructed from Γ). Based on this observation we prove that, for a class
of templates (that is likely to capture all templates), wide tractability is equivalent to the
tractability of CSPH0(Γ), where H0 is equal to a set of structures homomorphic to Γ′.
Moreover, we prove that CSP(Γ) can be in polynomial-time Turing reduced to CSP(Γ′)
and, therefore, Γ′ is at least as hard as Γ. We develop an analogous theory for conservative
valued CSPs.

2 Preliminaries

Throughout the paper it is assumed that P 6= NP . A problem is called tractable if it can
be solved in polynomial time. Let Q = Q ∪ {∞} denote the set of rational numbers with
(positive) infinity and [k] = {1, ..., k}. Also, D and V are finite sets, DV is a set of mappings
from V to D. We denote the tuples in lowercase boldface such as a = (a1, . . . , ak). Also for
mappings h : A→ B and tuples a = (a1, . . . , ak), where aj ∈ A for j = 1, . . . , k, we will write
b = (h(a1), . . . , h(ak)) simply as b = h(a). Relational structures are denoted in uppercase
boldface as R = (R, r1, . . . , rk). Finally let ar(%), ar(a), and ar(f) stand for the arity of a
relation %, the size of a tuple a, and the arity of a function f , respectively.

2.1 Fixed template VCSPs
Let us formulate the general CSP as a homomorphism problem.

I Definition 1. Let R = (R, r1, . . . , rk) and R′ = (R′, r′1, . . . , r′k) be relational structures
with a common signature (that is ar(ri) = ar(r′i) for every i = 1, . . . , k). A mapping
h : R → R′ is called a homomorphism from R to R′ if for every i = 1, . . . , k and for any
(x1, . . . , xar(ri)) ∈ ri we have that

(
(h(x1), . . . , h(xar(r′

i
))
)
∈ r′i. In that case, we write R h→ R′

or sometimes just R → R′.

I Definition 2. The general CSP is the following problem. Given a pair of relational
structures with a common signature R = (V, r1, . . . , rk) and Γ = (D, %1, . . . , %k), the question
is whether there is a homomorphism h : R → Γ. The second structure Γ is called a template.

I Definition 3. Let D be a finite set and Γ be a finite relational structure over D. Then
the fixed template CSP for template Γ, denoted CSP(Γ), is defined as follows: given a
relational structure R = (V, r1, . . . , rk) of the same signature as Γ, the question is whether
there is a homorphism h : R → Γ.
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A more general framework operates with cost functions f : Dn → Q instead of relations
% ⊆ Dn.

I Definition 4. Let us denote the set of all functions f : Dn → Q by Φ(n)
D and let

ΦD =
⋃
n≥1 Φ(n)

D . We call the functions in ΦD cost functions over D. For every cost function
f ∈ Φ(n)

D , let dom f = {x | f(x) <∞}.

I Definition 5. An instance of the valued constraint satisfaction problem (VCSP) is
a triple (R,Γ, {wi(v)}i∈[k],v∈ri) where R = (V, r1, . . . , rk) is a relational structure, Γ =
(D, f1, . . . , fk) is a tuple where D is finite and fi ∈ Φ(ar(ri))

D , {wi(v)}i∈[k],v∈ri are positive
rationals, and the goal is to find an assignment h ∈ DV that minimizes a function from DV

to Q given by

fI(h) =
k∑
i=1

∑
v∈ri

wi(v)fi(h(v)), (1)

A tuple Γ = (D, f1, . . . , fk) is called a valued template.

I Definition 6. We will denote by VCSP(Γ) a class of all VCSP instances in which the
valued template is Γ.

For such Γ we will denote by Γ (without boldface) the set of cost functions {f1, . . . , fk}. A
set Γ is called a constraint language. The complexity of VCSP(Γ) does not depend on the
order of cost functions, therefore, we will use VCSP(Γ) and VCSP(Γ) interchangeably.

This framework captures many specific well-known problems, including k-Sat, Graph
k-Colouring, Minimum Cost Homomorphism Problem and others (see [15]).

A function f ∈ Φ(n)
D that takes values in {0,∞} is called crisp. We will often view it as a

relation in Dn, and vice versa (this should be clear from the context). If a language Γ is
crisp (i.e. it contains only crisp functions) then VCSP(Γ) is a search problem corresponding
to CSP(Γ).
I Remark. Note that we formulated CSP as a decision problem, whereas VCSP as a search
optimizational problem. This convention is followed throughout the text and further it
becomes more important because decision and search problems are not computationally
equivalent for hybrid CSPs (see after definition 20).

I Definition 7. A constraint language Γ (or, a template Γ) is said to be tractable, if
VCSP(Γ0) is tractable for each finite Γ0 ⊆ Γ. Also, Γ (or, Γ) is NP-hard if there is a finite
Γ0 ⊆ Γ such that VCSP(Γ0) is NP-hard.

An important problem in the CSP research is to characterize all tractable languages.

2.2 Polymorphisms and fractional polymorphisms
Let O(m)

D denote a set of all operations g : Dm → D and let OD =
⋃
m≥1O

(m)
D .

Any language Γ over a domain D can be associated with a set of operations on D, known
as the polymorphisms of Γ, defined as follows.

I Definition 8. An operation g ∈ O(m)
D is a polymorphism of a relation ρ ⊆ Dn (or, g

preserves ρ) if, for any x1, . . . ,xm ∈ ρ, we have that g(x1, . . . ,xm) ∈ ρ where g is applied
component-wise. For any crisp constraint language Γ over a set D, we denote by Pol(Γ) a
set of all operations on D which are polymorphisms of every ρ ∈ Γ.
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Polymorphisms play a key role in the algebraic approach to the CSP, but, for VCSPs,
more general constructs are necessary, which we now define.

I Definition 9. An m-ary fractional operation ω on D is a probability distribution on O(m)
D .

The support of ω is defined as supp(ω) = {g ∈ O(m)
D | ω(g) > 0}.

IDefinition 10. Anm-ary fractional operation ω onD is said to be a fractional polymorphism
of a cost function f ∈ ΦD if, for any x1, . . . ,xm ∈ dom f , we have∑

g∈supp(ω)

ω(g)f(g(x1, . . . ,xm)) ≤ 1
m

(f(x1) + . . .+ f(xm)). (2)

For a constraint language Γ, fPol(Γ) will denote a set of all fractional operations that are
fractional polymorphisms of each function in Γ.

We will also use symbols Pol(Γ), fPol(Γ) meaning Pol(Γ), fPol(Γ) respectively.

2.3 Algebraic dichotomy conjecture
An algebraic characterization for tractable templates was first conjectured by Bulatov,
Krokhin and Jeavons [5], and a number of equivalent formulations were later given in [23, 1,
26, 18]. We will use the formulation from [18] that followed a discovery by M. Siggers [26]; it
is crucial for our purposes that in the next definition an operation has a fixed arity (namely,
4) and, therefore, there is only a finite number of them on a finite domain D.

I Definition 11. An operation s : D4 → D is called a Siggers operation on D′ ⊆ D if
s(x, y, z, t) ∈ D′ whenever x, y, z, t ∈ D′ and for each x, y, z ∈ D′ we have:

s(x, y, x, z) = s(y, x, z, y)
s(x, x, x, x) = x

I Definition 12. Let g be a unary and s be a 4-ary operations onD and g(D) = {g(x)|x ∈ D}.
A pair (g, s) is called a Siggers pair on D if s is a Siggers operation on g(D). A crisp constraint
language Γ is said to admit a Siggers pair (g, s) if g and s are polymorphisms of Γ.

I Theorem 13 ([18]). A crisp constraint language Γ that does not admit a Siggers pair is
NP-Hard.

I Definition 14. A crisp language Γ is called a BJK language if it satisfies one of the
following:

CSP (Γ) is tractable
Γ does not admit a Siggers pair.

Algebraic dichotomy conjecture: Every crisp language Γ is a BJK language.
This theorem first has been verified for domains of size 2 [25], 3 [3], or for languages

containing all unary relations on D [4]. It has also been shown that it is equivalent to its
restriction for directed graphs (that is when Γ contains a single binary relation %) [7]. Just
recently, a number of authors [24, 6, 30] independently claimed the proof of the conjecture.

3 Hybrid VCSP setting

I Definition 15. Let us call a family H of relational structures with a common signature a
structural restriction.

ISAAC 2017
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I Definition 16 (Hybrid CSP). Let D be a finite domain, Γ a template over D, and H a
structural restriction of the same signature as Γ. We define CSPH(Γ) as the following problem:
given a relational structure R ∈ H as input, decide whether there is a homomorphism
h : R → Γ.

I Definition 17 (Hybrid VCSP). Let D be a finite domain, Γ = (D, f1, . . . , fk) a valued
template over D, and H a structural restriction of the same signature as Γ. We define
VCSPH(Γ) as a class of instances of the following form.

An instance is a function from DV to Q given by

fI(h) =
k∑
i=1

∑
v∈ri

wi(v)fi(h(v)), (3)

where R = (V, r1, . . . , rk) ∈ H is a relational structure, {wi(v)}i∈[k],v∈ri are positive rationals.
The goal is to find an assignment h ∈ DV that minimizes fI .

For certain classes of structural restrictions the tractability/intractability can be explained
by algebraic means, and of special interest is the case when H is up-closed.

I Definition 18. A family of relational structures H is called closed under inverse
homomorphisms (or up-closed for short) if whenever R′ → R and R ∈ H, then also
R′ ∈ H.

Examples of hybrid CSPs with up-closed structural restrictions include such studied
problems as a digraph H-coloring for an acyclic input digraph [27] or for an input digraph
with odd girth at least k [21], renamable Horn Boolean CSPs [12] etc. The key tool in their
analysis is a construction of the so called lifted language that appeared first in [21]. In this
construction, given arbitrary R ∈ H one constructs a language ΓR over a finite domain, such
that for tractability of VCSPH(Γ), the tractability of VCSP(ΓR) is necessary.

Let us give a detailed description of ΓR. Given R = (V, r1, . . . , rk) and Γ = (D, f1, ..., fk)
we define DR = V ×D and Dv = {(v, a)|a ∈ D} , v ∈ V .

For tuples a = (a1, . . . , ap) ∈ Dp and v = (v1, . . . , vp) ∈ V p denote d(v,a) = ((v1, a1), ...,
(vp, ap)).

Now for a cost function f ∈ ΦD and v ∈ V ar(f) we will define a cost function on DR of
the same arity as f via

fv(x) =
{
f(y) if x = d(v,y) for some y ∈ Dar(f)

∞ otherwise
∀x ∈ Dar(f)

R (4)

Finally, we construct the sought language ΓR on domain DR as follows:

ΓR = {fv
i : i ∈ [k],v ∈ ri} ∪ {Dv : v ∈ V }

where relation Dv ⊆ DR is treated as a unary function Dv : DR → {0,∞}.
After ordering of its relations ΓR becomes a template ΓR. The following is true [21]:

I Theorem 19. Suppose that H is up-closed, R ∈ H and Γ is a (valued) template. Then
there is a polynomial-time reduction from (V)CSP(ΓR) to (V)CSPH(Γ). Consequently,
(a) if (V)CSPH(Γ) is tractable then so is (V)CSP(ΓR);
(b) if (V)CSP(ΓR) is NP-hard then so is (V)CSPH(Γ).

Let us give a proof of the latter theorem that slightly differs from the original one. For
this purpose we will need a special case of hybrid VCSP, called the VCSP with input prototype.
Given a finite relational structure R, denote Up (R) = {I|I→ R}.
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I Definition 20. For a given valued template Γ and a relational structure R a problem
VCSPH(Γ) where H = Up (R) is called the VCSP with input prototype R and is
denoted as VCSPR(Γ). If Γ is crisp, then the decision version of VCSPR(Γ) is denoted as
CSPR(Γ).

It is easy to see that H = Up (R) is up-closed. Note that an input of (V)CSPR(Γ) is a
relational structure I that is homomorphic to R but this homomorphism itself is not a part of
the input. If we also assume that together with a structure I we are given a homomorphism
h : I→ R, then the latter problem is denoted as (V)CSP+

R(Γ).
I Remark. Note that the complexities of VCSPR(Γ) and VCSP+

R(Γ) can be sharply different.
For example, consider Γ = ([4]; neq4) and R = ([3]; neq3) where neqk = {(i, j)|i, j ∈ [k], i 6=
j}. While VCSPR(Γ), a problem of 4-coloring of a 3-colorable graph, is known to be NP-hard
[19], VCSP+

R(Γ) is a trivial one. This example also demonstrates the distinction between
decision and search in the hybrid framework: the decision problem CSPR(Γ) is also trivial,
whereas its search version is NP-hard.

I Lemma 21. (V)CSP(ΓR) is polynomially equivalent to (V)CSP+
R(Γ)

Theorem 19 (a). Since H is up-closed, then for any R ∈ H, {I|I → R} ⊆ H. I.e. a
problem VCSPR(Γ) is a restriction of VCSPH(Γ) to certain inputs. Therefore, VCSP+

R(Γ)
is polynomially reducible to VCSPH(Γ). Using the previous lemma, we conclude that for
the tractability of VCSPH(Γ) it is necessary that VCSP+

R(Γ) and VCSP(ΓR) are tractable.
Part (b) can be proved analogously. J

4 Wide tractability of a crisp language

Throughout this section we will assume that Γ is crisp.

4.1 Widely tractable languages
For up-closed structural restrictions H, the construction of a lifted language gives us the
necessary conditions for the tractability of CSPH(Γ) (Theorem 19 (a)). Let us now define
widely tractable templates Γ as those for which the necessary conditions for the tractability
of CSPH(Γ) are, in fact, sufficient:

I Definition 22. A template Γ is called widely tractable if for any up-closed H, CSPH(Γ)
is tractable if and only if CSP(ΓR) is tractable for any R ∈ H.

The concept of wide tractability is important in the hybrid CSPs setting due to the
following theorem:

I Theorem 23. If a template Γ is widely tractable, then there is an up-closed HΓ such that
for any up-closed H, CSPH(Γ) is tractable if and only if H ⊆ HΓ.

Proof. Let us define

HΓ = {R|CSP(ΓR) is tractable} (5)

It is easy to see that HΓ is up-closed itself. By definition, HΓ contains only such R for which
CSP(ΓR) is tractable, and this together with wide tractability of Γ, implies that CSPHΓ(Γ)
is tractable.

Suppose that for some up-closed H, CSPH(Γ) is tractable. From the wide tractability of
Γ we obtain that it is equivalent to stating that CSP(ΓR) is tractable for any R ∈ H. But
the last is equivalent to H ⊆ HΓ. J
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4.2 Wide tractability in case of strongly BJK languages
In this section we will give necessary and sufficient conditions of wide tractability in a very
important case of crisp languages, namely, strongly BJK languages.

I Definition 24. A crisp language Γ is called strongly BJK language if for any R the lifted
ΓR is BJK.

I Remark. As we have already noted it is likely that this class includes all crisp languages [24,
6, 30].

Before introducing the main theorem of this section, let us describe one construction.
Let ρ be some m-ary relation over a domain D. It induces a new relation ρ′ over a
set of Siggers pairs on a set D, denoted D′, by the following rule: a tuple of Siggers
pairs

(
(g1, s1), · · · , (gm, sm)

)
∈ ρ′ if and only if for any (x1, ..., xm) ∈ ρ we have that

(g1(x1), ..., gm(xm)) ∈ ρ and for any tuples (a1, ..., am), (b1, ..., bm), (c1, ..., cm), (d1, ..., dm)
from ρ we have that

(
s1(a1, b1, c1, d1), ... , sm(am, bm, cm, dm)

)
∈ ρ. Note that elements of

D′ are Siggers pairs, but not necessarily polymorphisms of ρ.
Given a relational structure Γ = (D, ρ1, ..., ρs), we define Γ′ = (D′, ρ′1, ..., ρ′s).

I Theorem 25. Let Γ be a strongly BJK language. Then Γ is widely tractable if and only if
CSPΓ′(Γ) is tractable.

A proof of theorem 25 is mainly based on the following lemma:

I Lemma 26. For an arbitrary R, ΓR admits a Siggers pair if and only if there is a
homomorphism h : R → Γ′.

I Remark. If Γ′ → Γ then CSPΓ′(Γ) is a trivial problem and theorem 25 gives us that Γ
is a widely tractable template. Such templates are quite common. E.g. our computational
experiment showed (see section 6) that if D = {0, 1} and ρ ⊆ {0, 1}3 is such that Γ = {ρ} is
NP-hard, then Γ′ → Γ. Example of a widely tractable and NP-hard Γ for which Γ′ 6→ Γ will
be given in the next section (example 29).

4.3 Relationship between Γ and Γ′

The binary relation → is transitive, reflexive, but not antisymmetric. It also induces the
equivalence relation ∼ on a set of all finite structures:

R1 ∼ R2 ⇔ R1 → R2,R2 → R1

I Theorem 27. For any Γ, Γ→ Γ′.

Thus, we can view CSP(Γ′) as a relaxation of CSP(Γ). Moreover, theorem 27 has the
following interesting consequence.

I Theorem 28. If Γ is strongly BJK, then there is a polynomial-time Turing reduction from
CSP(Γ) to CSP(Γ′)

If Γ is tractable, then Γ′ is preserved by a nullary constant operation o = (g, s), where
(g, s) ∈ D′ is a Siggers pair that is admitted by Γ. I.e., Up(Γ′) is a set of all finite structures
with the same vocabulary as Γ. We can take any tractable Γ that is not constant-preserving
(e.g. Γ = ([3]; neq3)) as an example of a template for which Γ 6∼ Γ′, i.e. Γ′ 6→ Γ.

The following example demonstrates an NP-hard Γ for which Γ 6∼ Γ′.
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I Example 29. Define Γ = ({0, 1} ; {0} , {1} , ρ), where ρ = {0, 1}3 \ {(0, 1, 0), (1, 0, 1)}. A
fixed-template CSP with this Γ is called the boolean betweennes, and it is NP-hard because
Γ does not fall into any of Schaefer‘s classes [25].

The boolean betweennes can be popularly reformulated in the following way. Suppose that
we have a number of n towns v1, ..., vn and a system of roads (each consisting of 3 consecutive
towns) (vα1 , vα2 , vα3), ..., (vω1 , vω2 , vω3). Our goal is to divide those towns between 2 states
(assign 0 or 1 to n variables) in such a way that unary constraints are satisfied, i.e. certain
towns should be given to prespecified states, and every road should not cross administrative
barriers twice.

Let Γα = ({0, 1, α} ; {0, α} , {1, α} , ρα), where ρα = ρ ∪ {(1, 1, α), (α, 1, 1), (0, 0, α),
(α, 0, 0), (0, α, 1), (1, α, 0)}. A symbol α can be interpreted as a “dual attachment” status
that can be given to towns, for which we can freely change α-status to both 0 and 1 without
violating ternary constraints.

It is easy to see that Γα 6→ Γ (image of α cannot be both 0 and 1). If we prove that
CSP(ΓΓα) is tractable (and, therefore, ΓΓα admits a Siggers pair), this will lead to a
conclusion that Γα → Γ′ by lemma 26, and consequently, Γ′ 6→ Γ.

According to lemma 21, CSP(ΓΓα) is equivalent to a problem of deciding whether
there is a homomorphism h : R → Γ for a relational structure R = (V,Ω0,Ω1,Ω) and a
homomorphism g : R → Γα given as inputs. If Ω0 ∩ Ω1 6= ∅ we claim the nonexistence of h.
Otherwise, h is defined in the following way: h(x) = g(x), if g(x) 6= α; h(x) = 0, if x ∈ Ω0
and g(x) = α; h(x) = 1, if x ∈ Ω1 and g(x) = α; and h(x) = 0, if otherwise. It can be
checked that this algorithm solves CSP+

Γα(Γ).
Our computational experiment showed (see section 6) showed that, in fact, Γ′ ∼ Γα. It is

easy to see that in the latter algorithm for CSP(ΓΓα) we used a homomorphism g : R → Γα
only at the stage of the construction of h, i.e. we did not need it at the decision stage. The
latter means that CSPΓα(Γ) as a decision problem is also tractable and from theorem 25 we
obtain that Γ is widely tractable (under condition that it is strongly BJK).

Theorem 28 gives us the idea that we can reduce CSP(Γ) to CSP(Γ′), CSP(Γ′) to
CSP(Γ′′) etc. It turns out that this sequence of reductions collapses very soon:

I Theorem 30. If Γ,Γ′ are both strongly BJK, then Γ′ ∼ Γ′′.

5 Valued templates: conservative case

So far, the most applicable class of fixed-template valued VCSPs was the submodular function
minimization problems [22]. Also, minimum cost homomorphism problems (MinHom)
appeared in such different contexts as Defense Logistics [13] and Computer Vision [10].
These two examples make the framework of conservative valued CSPs of special interest, since
it includes both MinHom and submodular function minimization. The structure of tractable
conservative languages is very clearly understood both in crisp [4] and valued cases [29]. Let
us now give the definition.

I Definition 31. A valued constraint language Γ is called conservative if it contains UnD,
where UnD is a set of all unary {0, 1}-valued cost functions over D.

In the hybrid VCSPs setting, if the right structure Γ is conservative, we have to make
a certain supplementary assumption on structural restrictions, so that we do not loose the
desirable property that optimized function can have an arbitrary unary part.
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I Definition 32. We say that a relational structure H does not restrict unaries if for
each R ∈ H of the form R = (V, r1, . . . , ri−1, ri, ri+1, . . . , rk) with ar(ri) = 1 and for each
unary relation r′i ⊆ V , we have R′ ∈ H, where R′ = (V, r1, . . . , ri−1, r

′
i, ri+1, . . . , rk).

A generalization of the wide tractability for conservative languages will be the following
definition.

I Definition 33. A valued conservative language Γ is called widely c-tractable if for any
up-closed H that does not restrict unaries, VCSPH(Γ) is tractable if and only if VCSP(ΓR)
is tractable for any R ∈ H.

I Theorem 34. Any conservative valued language is widely c-tractable.

An analog of theorem 23 is the following statement.

I Theorem 35. For any conservative valued language Γ there is an up-closed HΓ
c that

does not restrict unaries and such that for any up-closed H that does not restrict unaries,
VCSPH(Γ) is tractable if and only if H ⊆ HΓ

c .

Our next goal will be to prove that HΓ
c = Up(Γ′c) for a certain template Γ′c. If in a case

of CSPH(Γ) we used a description of tractable templates in terms of polymorphisms, in the
current case we will need a description via fractional polymorphisms.

I Definition 36. Let (t,u) be a pair of binary operations and (Mj1,Mj2,Mn3) be a triple
of ternary operations defined on a domain D, and M ⊆ {{a, b} |a, b ∈ D, a 6= b}.

The pair (t,u), is a symmetric tournament polymorphism (STP) on M if ∀x, y,
{x t y, x u y} = {x, y} and for any {a, b} ∈M , a t b = b t a, a u b = b u a.

The triple (Mj1,Mj2,Mn3) is an MJN on M if ∀x, y, z, {Mj1(x, y, z),Mj2(x, y, z),
Mn3(x, y, z)} = {x, y, z} and for each triple (a, b, c) ∈ D3 with {a, b, c} = {x, y} ∈ M

operations Mj1(a, b, c), Mj2(a, b, c) return the unique majority element among a, b, c (that
occurs twice) and Mn3(a, b, c) returns the remaining minority element.

The following theorem was established in [20].

I Theorem 37. A conservative valued language Γ is tractable if and only if there is a
symmetric tournament polymorphism (t,u) on M , an MJN (Mj1,Mj2,Mn3) on M =
{{a, b} |a, b ∈ D, a 6= b} \M , such that (t,u), (Mj1,Mj2,Mn3) ∈ fPol(Γ).

Given Γ = (D, f1, ..., fs), let us construct a relational structure Γ′c = (D′c, f ′1, ..., f ′s). Its
domain, D′c, is defined as a set of all triples

(
M, (t,u), (Mj1,Mj2,Mn3)

)
such that (t,u)

is a symmetric tournament polymorphism on M and (Mj1,Mj2,Mn3) is an MJN on M .
All f ′i will be relations, i.e. crisp cost functions.

A tuple((
M1, (t1,u1), (Mj1

1 ,Mj1
2 ,Mn1

3)
)
, · · · ,

(
Mp, (tp,up), (Mjp1 ,Mjp2 ,Mnp3)

))
is in f ′i if and only if

(
t1, · · · ,tp

)
,
(
u1, · · · ,up

)
and

(
Mj1

1 , · · · ,Mjp1
)
,
(
Mj1

2 , · · · ,Mjp2
)
,(

Mn1
3, · · · ,Mnp3

)
are component-wise fractional polymorphisms of fi, i.e. for any x =

(x1, · · · , xp), y = (y1, · · · , yp), z = (z1, · · · , zp) the following inequalities are satisfied:

fi(x t y) + fi(x u y) ≤ fi(x) + fi(y)
fi(Mj1(x,y, z)) + fi(Mj2(x,y, z)) + fi(Mn3(x,y, z)) ≤

fi(x) + fi(y) + fi(z)
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where x t y =
(
x1 t1 y1, ..., xp tp yp

)
and x u y =

(
x1 u1 y1, ..., xp up yp

)
. Analogously,

M(x,y, z) =
(
M1(x1, y1, z1), ...,Mp(xp, yp, zp)

)
, where instead ofM we can pasteMj1,Mj2,

or Mn3.
The structure Γ′c is an analog of Γ′. Its domain consists of fractional polymorphisms,

that play the same role for valued CSPs as polymorphisms for the crisp case.

I Theorem 38. For conservative Γ, HΓ
c = Up(Γ′c).

6 Some experiments and open problems

We list here some experimental results and open problems
In the case when D = {0, 1}, it can be shown that in the definition of Γ′ Siggers pairs can
be replaced with pairs (g, w) where g is unary and w is a ternary weak near unanimity
operation on g(D) (the number of such pairs on {0, 1} is moderate). This allows a
practical computation of Γ′s core. We experimented with random structures over the
boolean domain (Γ = {ρ1, ρ2, ρ3}, ar(ρi) ≤ 3) and found that the domain size of Γ′s core
is never greater than 5.
Since CSP(Γ) is reducible to CSP(Γ′), an interesting problem is to find necessary
and sufficient conditions for Γ ∼ Γ′ (i.e. for the case when such reduction is trivial).
Experiments showed that if Γ = {ρ}, ρ ⊆ {0, 1}3 is NP-hard, then Γ ∼ Γ′. At the same
time, if Γ = {ρ, {0}, {1}}, ρ ⊆ {0, 1}3 is NP-hard, then Γ 6∼ Γ′.
The number of Siggers pairs on D grows as O(|D||D|4) which does not allow the calculation
of Γ′ even in the case when |D| = 3. Upper bounds on the domain size of Γ′s core is an
open problem.
The problem of classifying all conservative Γ for which CSP(Γ′c) is tractable (modification:
is solvable in Datalog [2]) is also open.
Are all crisp templates widely tractable, or is CSPΓ′(Γ) always tractable?
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1 Introduction

The minimum common string partition (MCSP) problem is a well-studied string comparison
problem in computer science, with applications in fields such as text compression and
bioinformatics. MCSP was first introduced by Goldstein et al. [16], and can be defined
as follows: Consider two length-n strings A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) over
some alphabet Σ, such that B is a permutation of A. Let PA be a partition of A, which is a
multi-set of substrings whose concatenation in a certain order becomes A. The cardinality
of PA is the number of substrings in PA. The MCSP problem asks to find a minimum
cardinality partition PA of A which is also a partition of B. k-MCSP denotes the restricted
version of MCSP where every letter of the alphabet Σ occurs at most k times in each of the
two strings.

Goldstein et al. [16] have shown that the MCSP problem is NP-hard and APX-hard,
even when k = 2. There have been several approximation algorithms [10, 11, 12, 16, 18, 19]
presented since 2004, among which the current best result is an O(logn log∗ n)-approximation
for the general MCSP and an O(k)-approximation for k-MCSP. On the other hand, MCSP
is proved to be fixed parameter tractable (FPT), with respect to k and/or the cardinality of
the optimal partition [13, 17, 7, 8].

An ordered pair of consecutive letters in a string is called a duo of the string [16], which
is said to be preserved by a partition if the pair resides inside a substring of the partition.
Therefore, a length-` substring in the partition preserves `− 1 duos of the string. With the
complementary objective to that of MCSP, the problem of maximizing the number of duos
preserved in the common partition is referred to as the maximum duo-preservation string
mapping problem by Chen et al. [9], denoted as Max-Duo. Analogously, k-Max-Duo is the
restricted version of Max-Duo where every letter of the alphabet Σ occurs at most k times
in each string. In this paper, we focus on 2-Max-Duo, to design an improved approximation
algorithm.

Along with Max-Duo, Chen et al. [9] introduced the constrained maximum induced
subgraph (CMIS) problem, in which one is given an m-partite graph G = (V1, V2, . . . , Vm, E)
with each Vi having n2

i vertices arranged in an ni × ni matrix, and the goal is to find ni

vertices in each Vi from different rows and different columns such that the number of edges
in the induced subgraph is maximized. k-CMIS is the restricted version of CMIS where
ni ≤ k for all i. Given an instance of Max-Duo, we may construct an instance of CMIS
by setting m to be the number of distinct letters in the string A, and ni to be the number
of occurrences of the i-th distinct letter; the vertex in the (s, t)-entry of the ni × ni matrix
“means” mapping the s-th occurrence of the i-th distinct letter in the string A to its t-th
occurrence in the string B; and there is an edge between a vertex of Vi and a vertex of Vj if
the two corresponding mappings together preserve a duo. Therefore, Max-Duo is a special
case of CMIS, and furthermore k-Max-Duo is a special case of k-CMIS. Chen et al. [9]
presented a k2-approximation for k-CMIS and a 2-approximation for 2-CMIS, based on a
linear programming and randomized rounding techniques. These imply that k-Max-Duo
can also be approximated within a ratio of k2 and 2-Max-Duo can be approximated within
a ratio of 2.

Alternatively, an instance of the k-Max-Duo problem with the two strings A =
(a1, a2, . . . , an) and B = (b1, b2, . . . , bn) can be viewed as a bipartite graph H = (A,B, F ),
constructed as follows: The vertices in A and B are a1, a2, . . . , an in order and b1, b2, . . . , bn

in order, respectively, and there is an edge between ai and bj if they are the same letter. The
two edges (ai, bj), (ai+1, bj+1) ∈ F are called a pair of parallel edges. This way, a common
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partition of the strings A and B corresponds one-to-one to a perfect matching in H, and the
number of duos preserved by the partition is exactly the number of pairs of parallel edges in
the matching.

Moreover, from the bipartite graph H = (A,B, F ), we can construct another graph
G = (V,E) in which every vertex of V corresponds to a pair of parallel edges of F , and there
is an edge between two vertices of V if the two corresponding pairs of parallel edges of F
cannot co-exist in any perfect matching of H (called conflicting, which can be determined in
constant time; see Section 2 for more details). This way, one easily sees that a set of duos
that can be preserved together, by a perfect matching of H, corresponds one-to-one to an
independent set of G [16, 5]. Therefore, the Max-Duo problem can be cast as a special
case of the well-known maximum independent set (MIS) problem [15]; furthermore, Boria
et al. [5] showed that in such a reduction, an instance of k-Max-Duo gives rise to a graph
with a maximum degree ∆ ≤ 6(k − 1). It follows that the state-of-the-art

(
(∆ + 3)/5 + ε

)
-

approximation algorithm for MIS [2], for any ε > 0, is a
(
(6k − 3)/5 + ε

)
-approximation

algorithm for k-Max-Duo. Especially, 2-Max-Duo can now be better approximated within
a ratio of 1.8 + ε. Boria et al. [5] proved that 2-Max-Duo is APX-hard, similar to 2-MCSP
[16], via a linear reduction from MIS on cubic graphs. For MIS on cubic graphs, it is NP-hard
to approximate within 1.00719 [3]. Besides, Boria et al. [5] claimed that 2-Max-Duo can be
approximated within 1.6 + ε, for any ε > 0.

Recently, Boria et al. [4] presented a local search 3.5-approximation for the general
Max-Duo problem. In the meantime, Brubach [6] presented a 3.25-approximation using a
novel combinatorial triplet matching. Max-Duo has also been proved to be FPT by Beretta
et al. [1], with respect to the number of preserved duos in the optimal partition. Most
recently, two local search algorithms were independently designed for the general Max-Duo
problem at the same time, achieving approximation ratios of 2.917 [20] and 2 + ε [14] for any
ε > 0, respectively. They both exceed the previously the best

(
(6k − 3)/5 + ε

)
-approximation

algorithm for k-Max-Duo, when k ≥ 3. In this paper, we focus on the 2-Max-Duo problem;
using the above reduction to the MIS problem, we present a vertex-degree reduction scheme
and design an improved (1.4 + ε)-approximation, for any ε > 0.

The rest of the paper is organized as follows. We provide some preliminaries in Section
2, including several important structural properties of the graph constructed from the two
given strings. The vertex-degree reduction scheme is also presented as a separate subsection
in Section 2. The new approximation algorithm, denoted as Approx, is presented in Section
3, where we show that it is a (1.4 + ε)-approximation for 2-Max-Duo. We conclude the
paper in Section 4.

2 Preliminaries

Consider an instance of the k-Max-Duo problem with two length-n strings A = (a1, a2, . . . ,

an) and B = (b1, b2, . . . , bn) such that B is a permutation of A. Recall that we can view the
instance as a bipartite graph H = (A,B, F ), where the vertices in A and B are a1, a2, . . . , an

in order and b1, b2, . . . , bn in order, respectively, and there is an edge between ai ∈ A and
bj ∈ B if they are the same letter, denoted as ei,j . See Figure 2.1a for an example, where
A = (a, b, c, d, e, f, b, c, d, e) and B = (f, b, c, d, e, a, b, c, d, e). Note that |F | ≤ kn, and so H
can be constructed in O(n2) time.

The two edges ei,j , ei+1,j+1 ∈ F are called a pair of parallel edges (and they are said to be
parallel to each other); when both are included in a perfect matching of H, the corresponding
duo (ai, ai+1) of A is preserved. Two pairs of parallel edges are conflicting if they cannot
co-exist in any perfect matching of H. This motivates the following reduction from the
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a c e b d

b c d ca b

A :

B :

b d f c e

f e d e

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

(a) The bipartite graphH = (A,B, F ), where
the ten edges in bold form a perfect matching.

v1,6 v2,7 v3,8 v4,9

v2,2 v3,3 v4,4 v7,7 v8,8 v9,9

v6,1 v7,2 v8,3 v9,4

(b) The instance graph G = (V,E) of MIS, where the eight
filled vertices form an independent set.

Figure 2.1 An instance of the k-Max-Duo problem with A = (a, b, c, d, e, f, b, c, d, e) and
B = (f, b, c, d, e, a, b, c, d, e). Figure 2.1a is the graphical view as a bipartite graph H = (A,B, F ),
where a perfect matching consisting of the ten bold edges form into eight pairs of parallel edges,
corresponding to the eight preserved duos (a, b), (b, c), (c, d), (d, e), (f, b), (b, c), (c, d) and (d, e). Fig-
ure 2.1b shows the instance graph G = (V,E) of MIS constructed from H, where the independent
set {v1,6, v2,7, v3,8, v4,9, v6,1, v7,2, v8,3, v9,4} corresponds to the eight pairs of parallel edges shown in
Figure 2.1a, and consequently also corresponds to the eight preserved duos. In this instance, we have
k = 2. Any maximum independent set of G must contain some of the degree-6 vertices, invalidating
the (1.6 + ε)-approximation for 2-Max-Duo proposed in [5].

k-Max-Duo problem to the MIS problem: From the bipartite graph H = (A,B, F ), we
construct another graph G = (V,E) in which a vertex vi,j of V corresponds to the pair of
parallel edges (ei,j , ei+1,j+1) of F ; two vertices of V are conflicting if and only if the two
corresponding pairs of parallel edges are conflicting, and two conflicting vertices of V are
adjacent in G. One can see that a set of duos of A that can be preserved all together, a set
of pairwise non-conflicting pairs of parallel edges of F , and an independent set in G, are
equivalent to each other. See Figure 2.1b for an example of the graph G = (V,E) constructed
from the bipartite graph H shown in Figure 2.1a. We note that |V | ≤ k(n− 1) and thus G
can be constructed in O(k2n2) time from the instance of the k-Max-Duo problem.

In the graph G, for any v ∈ V , we use N(v) to denote the set of its neighbors, that is,
the vertices adjacent to v. The two ordered letters in the duo corresponding to the vertex v
is referred to as the letter content of v. For example, in Figure 2.1b, the letter content of
v1,6 is “ab” and the letter content of v6,1 is “fb”.

Recall from the construction that there is an edge ei,j in the graph H = (A,B, F ) if
ai = bj , and there is a vertex vi,j in the graph G = (V,E) if the parallel edges ei,j and
ei+1,j+1 are in H = (A,B, F ).

I Lemma 2.1. The graph G = (V,E) has the following properties.
1. If vi,j, vi+2,j+2 ∈ V , then vi+1,j+1 ∈ V .
2. Given any subset of vertices V ′ ⊂ V , let F ′ = {ei,j |vi,j ∈ V ′}, A′ = {ai|ei,j ∈ F ′},
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and B′ = {bj |ei,j ∈ F ′}. If the subgraph H ′ = (A′, B′, F ′) in H is connected, then all
the vertices of V ′ have the same letter content; and consequently for any two vertices
vi,j , vh,` ∈ V ′, we have both vh,j , vi,` ∈ V .

3. For any vi,j ∈ V , we have

N(vi,j) =
⋃

p=−1,0,1
{vi′+p,j+p ∈ V | i′ 6= i} ∪

⋃
p=−1,0,1

{vi+p,j′+p ∈ V | j′ 6= j}. (1)

Proof. The proof is mostly based on the definitions, or how the graphs are constructed from
the instance of the 2-Max-Duo problem. Due to the space limit, the interested reader can
find the detailed proofs of several earlier lemmas and corollaries in the full version. J

From Lemma 2.1 and its proof (in the full version), we see that for any vertex of V there
are at most k − 1 conflicting vertices of each kind (corresponding to a set in Equation (1)).
We thus have the following corollary.

I Corollary 2.2. The maximum degree of the vertices in G = (V,E) is ∆ ≤ 6(k − 1).

2.1 When k = 2
We examine more properties for the graph G = (V,E) when k = 2. First, from Corollary 2.2
we have ∆ ≤ 6.

Berman and Fujito [2] have presented an approximation algorithm with a performance
ratio arbitrarily close to (∆ + 3)/5 for the MIS problem, on graphs with maximum degree ∆.
This immediately implies a (1.8 + ε)-approximation for 2-Max-Duo. Our goal is to reduce
the maximum degree of the graph G = (V,E) to achieve a better approximation algorithm.
To this purpose, we examine all the degree-6 and degree-5 vertices in the graph G, and show
a scheme to safely remove them from consideration when computing an independent set.
This gives rise to a new graph G2 with maximum degree at most 4, leading to a desired
(1.4 + ε)-approximation for 2-Max-Duo.

We remark that, in our scheme we first remove the degree-6 vertices from G to compute an
independent set, and later we add half of these degree-6 vertices to the computed independent
set to become the final solution. Contrary to the claim that there always exists a maximum
independent set in G containing no degree-6 vertices [5, Lemma 1], the instance in Figure 2.1
shows that any maximum independent set for the instance must contain some degree-6
vertices, thus invalidating the (1.6 + ε)-approximation for 2-Max-Duo proposed in [5].

In more details, the instance of 2-Max-Duo, illustrated in Figure 2.1, consists of two
length-10 strings A = (a, b, c, d, e, f, b, c, d, e) and B = (f, b, c, d, e, a, b, c, d, e). The bipartite
graph H = (A,B, F ) is shown in Figure 2.1a and the instance graph G = (V,E) of the
MIS problem is shown in Figure 2.1b. In the graph G, we have six degree-6 vertices:
v2,2, v7,7, v3,3, v3,8, v8,3 and v8,8. One can check that {v1,6, v2,7, v3,8, v4,9, v6,1, v7,2, v8,3, v9,4}
is an independent set in G, of size 8. On the other hand, if none of these degree-6 vertices
is included in an independent set, then because the four vertices v4,4, v4,9, v9,4, v9,9 form
a square implying that at most two of them can be included in the independent set, the
independent set would be of size at most 6, and thus can never be a maximum independent
set in G.

Consider a duo (ai, ai+1) of the string A and for ease of presentation assume its letter
content is “ab”. If no duo of the string B has the same letter content “ab”, then this duo
of the string A can never be preserved; in fact this duo does not even become (a part
of) a vertex of V of the graph G. If there is exactly one duo (bj , bj+1) of the string B
having the same letter content “ab”, then these two duos make up a vertex vi,j ∈ V , and
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from Lemma 2.1 we know that the degree of the vertex vi,j ∈ V is at most 5, since there
is no such vertex vi,j′ with j′ 6= j sharing exactly the two letters ai and ai+1 with vi,j .
Therefore, if the degree of the vertex vi,j ∈ V is six, then there must be two duos of the
string A and two duos of the string B having the same letter content “ab”. Assume the
other duo of the string A and the other duo of the string B having the same letter content
“ab” are (ai′ , ai′+1) and (bj′ , bj′+1), respectively. Then all four vertices vi,j , vi,j′ , vi′,j , vi′,j′

exist in V . We call the subgraph of G induced on these four vertices a square, and denote
it as S(i, i′; j, j′) = (V (i, i′; j, j′), E(i, i′; j, j′)), where V (i, i′; j, j′) = {vi,j , vi,j′ , vi′,j , vi′,j′}
and E(i, i′; j, j′) = {(vi,j , vi,j′), (vi,j , vi′,j), (vi′,j′ , vi,j′), (vi′,j′ , vi′,j)} due to their conflicting
relationships. One clearly sees that every square has a unique letter content, which is the
letter content of its four member vertices.

In Figure 2.1b, there are three squares S(2, 7; 2, 7), S(3, 8; 3, 8) and S(4, 9; 4, 9), with
their letter contents “bc”, “cd” and “de”, respectively. The above argument says that every
degree-6 vertex of V must belong to a square, but the converse is not necessarily true, for
example, all vertices of the square S(4, 9; 4, 9) have degree 4. We next characterize several
properties of a square.

The following lemma is a direct consequence of how the graph G is constructed and the
fact that k = 2.

I Lemma 2.3. In the graph G = (V,E) constructed from an instance of 2-Max-Duo,
1. for each index i, there are at most two distinct j and j′ such that vi,j , vi,j′ ∈ V ;
2. if vi,j , vi,j′ ∈ V where j′ 6= j, and vi+1,j′′+1 ∈ V (or symmetrically, vi−1,j′′−1 ∈ V ), then

either j′′ = j or j′′ = j′.

I Lemma 2.4. For any square S(i, i′; j, j′) in the graph G = (V,E), N(vi,j) = N(vi′,j′),
N(vi,j′) = N(vi′,j), and N(vi,j) ∩N(vi,j′) = ∅. (Together, these imply that every vertex of
V is adjacent to either none or exactly two of the four member vertices of a square.)

I Corollary 2.5. In the graph G = (V,E), the degree-6 vertices can be partitioned into pairs,
where each pair of degree-6 vertices belong to a square in G and they are adjacent to the
same six other vertices, two inside the square and four outside of the square.

Proof. We have seen that every degree-6 vertex in the graph G must be in a square. The
above Lemma 2.4 states that the four vertices of a square S(i, i′; j, j′) can be partitioned into
two pairs, {vi,j , vi′,j′} and {vi,j′ , vi′,j}, and the two vertices inside each pair are non-adjacent
to each other and have the same neighbors. In particular, if the vertex vi,j in the square
S(i, i′; j, j′) has degree 6, then Lemma 2.1 states that it is adjacent to the six vertices
vi−1,j′−1, vi,j′ , vi+1,j′+1, vi′−1,j−1, vi′,j , vi′+1,j+1 (see an illustration in Figure 2.2). J

I Corollary 2.6. If there is no square in the graph G = (V,E), then every degree-5 vertex is
adjacent to a degree-1 vertex.

We say the two vertices vi,j and vi+1,j+1 of V are consecutive; and we say the two squares
S(i, i′; j, j′) and S(i+ 1, i′ + 1; j + 1, j′ + 1) in G are consecutive. Clearly, two consecutive
squares contain four pairs of consecutive vertices. The following Lemma 2.7 summarizes
the fact that when two consecutive vertices belong to two different squares, then these two
squares are also consecutive (and thus contain the other three pairs of consecutive vertices).

I Lemma 2.7. In the graph G, if there are two consecutive vertices vi,j and vi+1,j+1 belonging
to two different squares S(i1, i′1; j1, j

′
1) and S(i2, i′2; j2, j

′
2) respectively, then i2 = i1 + 1, i′2 =

i′1 + 1, j2 = j1 + 1, j′2 = j′1 + 1, i.e., these two squares are consecutive.
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vi,j

vi′,j′

vi−1,j′−1 vi,j′ vi+1,j′+1 vi′−1,j−1 vi′,j vi′+1,j+1

Figure 2.2 The square S(i, i′; j, j′) shown in bold lines. The two non-adjacent vertices vi,j and
vi′,j′ of the square form a pair stated in Corollary 2.5; they have 6 common neighbors, of which two
inside the square and four outside of the square.

A series of p consecutive squares {S(i+ q, i′ + q; j + q, j′ + q), q = 0, 1, . . . , p− 1} in the
graph G, where p ≥ 1, is maximal if none of the square S(i− 1, i′ − 1; j − 1, j′ − 1) and the
square S(i + p, i′ + p; j + p, j′ + p) exists in the graph G. Note that the non-existence of
the square S(i− 1, i′ − 1; j − 1, j′ − 1) in G does not rule out the existence of some of the
four vertices vi−1,j−1, vi′−1,j′−1, vi−1,j′−1, vi′−1,j−1 in V ; in fact by Lemma 2.1 there can be
as many as two of these four vertices existing in V (however, more than two would imply
the existence of the square). Similarly, there can be as many as two of the four vertices
vi+p,j+p, vi′+p,j′+p, vi+p,j′+p, vi′+p,j+p existing in V . In the sequel, a maximal series of p
consecutive squares starting with S(i, i′; j, j′) is denoted as Sp(i, i′; j, j′), where p ≥ 1. See
for an example in Figure 2.3b where there is a maximal series of 2 consecutive squares
S2(2, 8; 2, 8), where the instance of the 2-Max-Duo is expanded slightly from the instance
shown in Figure 2.1.

I Lemma 2.8. Suppose Sp(i, i′; j, j′), where p ≥ 1, exists in the graph G. Then,
1. the two substrings (ai, ai+1, . . . , ai+p) and (ai′ , ai′+1, . . . , ai′+p) of the string A and the

two substrings (bj , bj+1, . . . , bj+p) and (bj′ , bj′+1, . . . , bj′+p) of the string B are identical
and do not overlap;

2. if a maximum independent set of G contains less than 2p vertices from Sp(i, i′; j, j′), then
it must contain either the four vertices vi−1,j−1, vi′−1,j′−1, vi′+p,j+p, vi+p,j′+p or the four
vertices vi′−1,j−1, vi−1,j′−1, vi+p,j+p, vi′+p,j′+p.

Proof. By the definition of the square S(i + q, i′ + q; j + q, j′ + q), we have ai+q = ai′+q

and ai+q+1 = ai′+q+1; we thus conclude that the two substrings (ai, ai+1, . . . , ai+p) and
(ai′ , ai′+1, . . . , ai′+p) are identical. In Figure 2.3b, for S2(2, 8; 2, 8) the two substrings are
“bcd”. If these two substrings overlapped, then there would be three occurrences of at least
one letter, contradicting the fact that k = 2. This proves the first item.

Note that the square S(i− 1, i′ − 1; j − 1, j′ − 1) does not exist in the graph G, and thus
at most two of its four vertices (which are vi−1,j−1, vi′−1,j−1, vi−1,j′−1 and vi′−1,j′−1) exist
in V . We claim that if no vertex of the square S(i, i′; j, j′) is in I∗, then there are exactly
two of the four vertices vi−1,j−1, vi′−1,j−1, vi−1,j′−1 and vi′−1,j′−1 exist in V and they both
are in I∗. Suppose otherwise there is at most one of the four vertices in I∗, say vi−1,j−1;
we may increase the size of I∗ by removing vi−1,j−1 while adding either the two vertices
vi,j and vi′,j′ or the two vertices vi′,j and vi,j′ (depending on which vertices of the square
S(i+ 1, i′ + 1; j + 1, j′ + 1) are in I∗), a contradiction.

Assume next that a vertex of the square S(i, i′; j, j′) is in I∗, say vi,j ; then due to
maximality of I∗ and Lemma 2.4 both vi,j and vi′,j′ are in I∗. We claim and prove similarly
as in the last paragraph that if no vertex of the square S(i+1, i′+1; j+1, j′+1) is in I∗, then
there are exactly two of the four vertices vi−1,j−1, vi′−1,j−1, vi−1,j′−1 and vi′−1,j′−1 exist in V
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(a) The bipartite graph H = (A,B, F ).

v2,2 v3,3 v4,4
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(b) The instance graph G = (V,E).
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(c) The bipartite graph H ′ = (A′, B′, F ′)
after removal of S2(2, 8; 2, 8).

v4,4

v10,4v1,7 v7,1 v11,5

v5,13

(d) The updated instance graph G′ = (V ′, E′)
after removal of S2(2, 8; 2, 8).

Figure 2.3 An instance of the 2-Max-Duo problem with A = (a, b, c, d, e, f, g, b, c, d, e, h, y, x)
and B = (g, b, c, d, e, h, a, b, c, d, x, y, e, f). The bipartite graph H = (A,B, F ) is shown in Figure 2.3a
and the instance graph G = (V,E) of the MIS problem is shown in Figure 2.3b. There is a maximal
series of 2 squares S2(2, 8; 2, 8) in the graph G, with the four substrings “bcd”. The bipartite graph
H ′ = (A′, B′, F ′) is shown in Figure 2.3c and the graph G′ = (V ′, E′) is shown in Figure 2.3d, on
A′ = (a, d, e, f, g, d, e, h, y, x) and B′ = (g, d, e, h, a, d, x, y, e, f). Applying the vertex contracting
process on G also gives the graph G′.

and they both are in I∗. If there is a vertex of the square S(i+1, i′+1; j+1, j′+1) in I∗, then
it must be one of vi+1,j+1 and vi′+1,j′+1; and due to maximality and Lemma 2.4 both vi+1,j+1
and vi′+1,j′+1 are in I∗. And so on; repeatedly applying this argument, we claim and prove
similarly that if no vertex of the square S(i+p−1, i′+p−1; j+p−1, j′+p−1) is in I∗, then
there are exactly two of the four vertices vi−1,j−1, vi′−1,j−1, vi−1,j′−1 and vi′−1,j′−1 exist in V
and they both are in I∗. If there is a vertex of the square S(i+p−1, i′+p−1; j+p−1, j′+p−1)
in I∗, then it must be one of vi+p−1,j+p−1 and vi′+p−1,j′+p−1; and due to maximality and
Lemma 2.4 both vi+p−1,j+p−1 and vi′+p−1,j′+p−1 are in I∗.

To summarize, we proved in the above two paragraphs that if I∗ contains less than 2p
vertices from Sp(i, i′; j, j′), then there are exactly two of the four vertices vi−1,j−1, vi′−1,j−1,

vi−1,j′−1 and vi′−1,j′−1 exist in V and they both are in I∗; and these two vertices are either
vi−1,j−1 and vi′−1,j′−1 or vi′−1,j−1 and vi−1,j′−1. Symmetrically, there are exactly two of
the four vertices vi+p,j+p, vi′+p,j+p, vi+p,j′+p and vi′+p,j′+p exist in V and they both are
in I∗; and these two vertices are either vi+p,j+p and vi′+p,j′+p or vi′+p,j+p and vi+p,j′+p.
Clearly from the above, when the combination is vi−1,j−1 and vi′−1,j′−1 versus vi+p,j+p and
vi′+p,j′+p, we may increase the size of I∗ to contain exactly 2p vertices from Sp(i, i′; j, j′)
without affecting any vertex outside of Sp(i, i′; j, j′), a contradiction. Therefore, the only
possible combinations are vi−1,j−1 and vi′−1,j′−1 versus vi′+p,j+p and vi+p,j′+p, and vi′−1,j−1
and vi−1,j′−1 versus vi+p,j+p and vi′+p,j′+p. This proves the second item of the lemma. J

Suppose Sp(i, i′; j, j′), where p ≥ 1, exists in the graph G. Let A′ denote the string ob-
tained from A by removing the two substrings (ai, ai+1, . . . ,

ai+p−1) and (ai′ , ai′+1, . . . , ai′+p−1) and concatenating the remainder together, and B′ de-
note the string obtained from B by removing the two substrings (bj , bj+1, . . . , bj+p−1) and
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Algorithm 3.1 Approx – A high-level description of the approximation algorithm for
2-Max-Duo.
1: Construct the graph G = (V,E) from two input strings A and B;
2: while (there is a square in the graph) do
3: find a maximal series of squares;
4: locate the four identical substrings of A and B as in Lemma 2.8;
5: remove the corresponding substrings and accordingly update the graph;
6: end while
7: denote the resultant graph as G1 = (V1, E1);
8: set L1 to contain all degree-0 and degree-1 vertices of G1;
9: set N [L1] to be the closed neighborhood of L1 in G1, i.e. N [L1] = L1 ∪N(L1);
10: set G2 = G1[V1 −N [L1]], the subgraph of G1 induced on V1 −N [L1];
11: compute an independent set I2 in G2 by the ((∆ + 3)/5 + ε)-approximation in [2];
12: set I1 = I2 ∪ L1, an independent set in G1;
13: return an independent set I in G using I1 and Corollary 2.9.

(bj′ , bj′+1, . . . , bj′+p−1) and concatenating the remainder. Let the graph G′ = (V ′, E′) denote
the instance graph of the MIS problem constructed from the two strings A′ and B′. See
for an example G′ in Figure 2.3d, where there is a maximal series of 2 consecutive squares
S2(2, 8; 2, 8) in the graph G.

I Corollary 2.9. Suppose Sp(i, i′; j, j′), where p ≥ 1, exists in the graph G. Then, the union
of a maximum independent set in the graph G′ = (V ′, E′) and certain 2p vertices from
Sp(i, i′; j, j′) becomes a maximum independent set in the graph G = (V,E), where these
certain 2p vertices are vi,j , vi+1,j+1, . . . , vi+p−1,j+p−1 and vi′,j′ , vi′+1,j′+1, . . . , vi′+p−1,j′+p−1
if vi−1,j−1 or vi+p,j+p is in the maximum independent set in G′, or they are vi′,j , vi′+1,j+1, . . .,
vi′+p−1,j+p−1 and vi,j′ , vi+1,j′+1, . . . , vi+p−1,j′+p−1 if vi′−1,j−1 or vi′+p,j+p is in the maximum
independent set in G′.

Iteratively applying the above string shrinkage process, or equivalently the vertex con-
tracting process, associated with the elimination of a maximal series of consecutive squares.
In O(n) iterations, we achieve the final graph containing no squares, which we denote as
G1 = (V1, E1).

3 An approximation algorithm for 2-Max-Duo

A high-level description of the approximation algorithm, denoted as Approx, for the 2-Max-
Duo problem is depicted in Algorithm 3.1.

In more details, given an instance of the 2-Max-Duo problem with two length-n strings
A and B, the first step of our algorithm is to construct the graph G = (V,E), which is done
in O(n2) time. In the second step (Lines 2–7 in Algorithm 3.1), it iteratively applies the
vertex contracting process presented in Section 2 at the existence of a maximal series of
consecutive squares, and at the end it achieves the final graph G1 = (V1, E1) which does not
contain any square. This second step can be done in O(n2) time too since each iteration of
vertex contracting process is done in O(n) time and there are O(n) iterations. In the third
step (Lines 8–10 in Algorithm 3.1), let L1 denote the set of singletons (degree-0 vertices)
and leaves (degree-1 vertices) in the graph G1; our algorithm removes all the vertices of
L1 and their neighbors from the graph G1 to obtain the remainder graph G2 = (V2, E2).
This step can be done in O(n2) time too due to |V1| ≤ |V | ≤ 2n, and the resultant graph
G2 has maximum degree ∆ ≤ 4 by Corollaries 2.5 and 2.6. (See for an example illustrated
in Figure 3.1a.) In the fourth step (Lines 11–12 in Algorithm 3.1), our algorithm calls the
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v4,4

v10,4v1,7 v7,1 v11,5

v5,13

(a) The independent set I1 =
{v1,7, v7,1, v10,4, v11,5, v5,13} in G1, con-
sisting of all the five leaves of G1 = G′

shown in Figure 2.3d.

v2,2 v3,3 v4,4

v10,4v1,7 v2,8 v3,9 v7,1 v8,2 v9,3

v8,8 v9,9

v11,5

v5,13

(b) Using I1, since v10,4 ∈ I1, the four vertices
v2,8, v3,9, v8,2, v9,3 are added to form an independent
set I in the original graph G shown in Figure 2.3b.

a b c d e f g b

g b c d e h a b

A :

B :

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

9
c

10
d

11
e

12
h

13
y

14
x

c d x y e f
9 10 11 12 13 14

(c) The parallel edges of H corresponding to the independent
set I shown in Figure 3.1b, also correspond to the 9 preserved
duos (a, b), (b, c), (c, d), (e, f), (g, b), (b, c), (c, d), (d, e), (e, h)
for the instance shown in Figure 2.3a.

Figure 3.1 Illustration of the execution of our algorithm Approx on the instance shown in
Figure 2.3. The independent set I1 in the graph G1 is shown in Figure 3.1a in filled circles, for which
we did not apply the state-of-the-art approximation algorithm for the MIS problem. The independent
set I in the graph G is shown in Figure 3.1b in filled circles, according to Corollary 2.9 the four
vertices v2,8, v3,9, v8,2, v9,3 are added due to v10,4 ∈ I1. The parallel edges of H corresponding to the
vertices of I are shown in Figure 3.1c, representing a feasible solution to the 2-Max-Duo instance
shown in Figure 2.3.

state-of-the-art approximation algorithm for the MIS problem [2] on the graph G2 to obtain
an independent set I2 in G2; and returns I1 = L1 ∪ I2 as an independent set in the graph
G1. The running time of this step is dominated by the running time of the state-of-the-art
approximation algorithm for the MIS problem, which is a high polynomial in n and 1/ε. In
the last step (Line 13 in Algorithm 3.1), using the independent set I1 in G1, our algorithm
adds 2p vertices from each maximal series of p consecutive squares according to Corollary 2.9,
to produce an independent set I in the graph G. (For an illustrated example see Figure 3.1b.)
The last step can be done in O(n) time.

The state-of-the-art approximation algorithm for the MIS problem on a graph with
maximum degree ∆ has a performance ratio of (∆ + 3)/5 + ε, for any ε > 0 [2].

I Lemma 3.1. In the graph G1 = (V1, E1), let OPT1 denote the cardinality of a maximum
independent set in G1, and let SOL1 denote the cardinality of the independent set I1 returned
by the algorithm Approx. Then, OPT1 ≤ (1.4 + ε)SOL1, for any ε > 0.

I Theorem 3.2. The 2-Max-Duo problem can be approximated within a ratio arbitrarily
close to 1.4, by a linear reduction to the MIS problem.

Proof. We prove by induction. At the presence of maximal series of p consecutive squares, we
perform the vertex contracting process iteratively. In each iteration to handle one maximal
series of p consecutive squares, let G and G′ denote the graph before and after the contracting
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step, respectively. Let OPT′ denote the cardinality of a maximum independent set in G′,
and let SOL′ denote the cardinality of the independent set I ′ returned by the algorithm
Approx. Given any ε > 0, from Lemma 3.1, we may assume that OPT′ ≤ (1.4 + ε)SOL′.

Let OPT denote the cardinality of a maximum independent set in G, and let SOL denote
the cardinality of the independent set returned by the algorithm Approx, which adds 2p
vertices from the maximal series of p consecutive squares to the independent set I ′ in G′,
according to Corollary 2.9, to produce an independent set I in the graph G. Lemma 2.8
states that OPT = OPT′ + 2p. Therefore,

OPT = OPT′ + 2p ≤ (1.4 + ε)SOL′ + 2p ≤ (1.4 + ε)(SOL′ + 2p) = (1.4 + ε)SOL.

This proves that for the original graph G = (V,E) we also have OPT ≤ (1.4 + ε)SOL
accordingly. That is, the worst-case performance ratio of our algorithm Approx is 1.4 + ε,
for any ε > 0. The time complexity of the algorithm Approx has been determined to be
polynomial at the beginning of the section, and it is dominated by the time complexity of
the state-of-the-art approximation algorithm for the MIS problem. The theorem is thus
proved. J

4 Conclusion

In this paper, we examined the Max-Duo problem, the complement of the well studied
minimum common string partition problem. Based on an existing linear reduction to the
maximum independent set (MIS) problem [16, 5], we presented a vertex-degree reduction
technique for the 2-Max-Duo to reduce the maximum degree of the constructed instance
graph to 4. Along the way, we uncovered many interesting structural properties of the
constructed instance graph. This degree reduction enables us to adopt the state-of-the-
art approximation algorithm for the MIS problem on low degree graphs [2] to achieve a
(1.4 + ε)-approximation for 2-Max-Duo, for any ε > 0.

It is worth mentioning that our vertex-degree reduction technique can be applied for
k-Max-Duo with k ≥ 3. In fact, we had worked out the details for k = 3, to reduce the
maximum degree of the constructed instance graph from 12 to 10, leading to a (2.6 + ε)-
approximation for 3-Max-Duo, for any ε > 0. Nevertheless, the (2.6 + ε)-approximation is
superseded by the (2 + ε)-approximation for the general Max-Duo [14].

It would be worthwhile to investigate whether the maximum degree can be further
reduced to 3, by examining the structural properties associated with the degree-4 vertices.
On the other hand, it is also interesting to examine whether a better-than-1.4 approximation
algorithm can be designed directly for the MIS problem on those degree-4 graphs obtained
at the end of the vertex contracting process.
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Abstract
While every instance of the Hospitals/Residents problem admits a stable matching, the problem
with lower quotas (HR-LQ) has instances with no stable matching. For such an instance, we ex-
pect the existence of an envy-free matching, which is a relaxation of a stable matching preserving
a kind of fairness property.

In this paper, we investigate the existence of an envy-free matching in several settings, in
which hospitals have lower quotas. We first provide an algorithm that decides whether a given
HR-LQ instance has an envy-free matching or not. Then, we consider envy-freeness in the
Classified Stable Matching model due to Huang (2010), i.e., each hospital has lower and upper
quotas on subsets of doctors. We show that, for this model, deciding the existence of an envy-free
matching is NP-hard in general, but solvable in polynomial time if quotas are paramodular.

1998 ACM Subject Classification F.2.2 Computations on discrete structures, G.2.1 Combinat-
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Keywords and phrases stable matchings, envy-free matchings, lower quotas, polynomial time
algorithm, paramodular functions
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1 Introduction

Since the seminal work of Gale and Shapley [11], the Hospitals/Residents problem (HR, for
short), or the College Admission problem, has been studied extensively [14, 20, 27]. They
proposed an algorithm that finds a stable matching in linear time for every instance. In
this problem, each hospital has an upper quota for the number of doctors assigned to it. In
some applications, each hospital also has a lower quota for the number of doctors it receives.
That is, we want to consider the Hospitals/Residents problem with lower quotas (HR-LQ,
for short). Unfortunately, for HR-LQ, we cannot ensure the existence of a stable matching.
However, it is easy to decide whether there is a stable matching or not for a given HR-LQ
instance, because the number of doctors assigned to each hospital is identical for any stable
matching (according to the well-known Rural Hospitals Theorem [12, 24, 25, 26]).

When a given HR-LQ instance has no stable matching, one natural approach is to
weaken stability concept while preserving some kind of fairness. Envy-freeness [30] (also
called fairness in the school choice literature [8, 13]) of matchings is a relaxation of stability
obtained by giving up efficiency. Similarly to stability, envy-freeness forbids the existence of
a doctor who has justified envy toward some other doctor, but it tolerates the existence of a
doctor who claims a hospital’s vacant seat. The importance of envy-freeness and its variants
has recently been recognized in the context of constrained matching [8, 13, 18, 19, 4], and
structural properties of envy-free matchings were investigated in [30].
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Envy-free matchings naturally arise when we find a matching in the following ad hoc
manner. For an HR-LQ instance, suppose that we find a stable matching while disregarding
the lower quotas, and that the obtained matching does not meet the lower quotas. Let us
reduce the upper quotas of hospitals that receive many doctors, and again find a stable
matching while disregarding the lower quotas, and repeat. If we find a stable matching that
meets the lower quotas after repeating such adjustments, then the obtained matching is an
envy-free matching of the original instance (see Proposition 4).

Because an envy-free matching is a relaxation of a stable matching, it is more likely to
exist. Indeed, if all doctor-hospital pairs are acceptable and the sum of lower quotas of all
hospitals does not exceed the number of doctors, then we can ensure the existence of an
envy-free matching. (This follows from the results of Fragiadakis et al. [8]). However, if
not all pairs are acceptable, then even an envy-free matching may fail to exist. Moreover,
deciding the existence of an envy-free matching is not so simple because envy-free matchings
have different sizes unlike stable matchings.

Our Contribution

In this paper, we study envy-free matchings for the HR-LQ model and its generalizations. In
our models, not all doctor-hospital pairs are acceptable (i.e., preference lists are incomplete).

We first investigate envy-free matchings in the setting of HR-LQ. We provide the following
characterization of the existence of an envy-free matching. Let I be a given HR-LQ instance
and let I ′ be an HR instance obtained from I by removing lower quotas and replacing upper
quotas with the original lower quotas. We prove that I has an envy-free matching if and only
if every hospital is full in a stable matching of I ′ (Theorem 6). Combined with the rural
hospitals theorem, this characterization yields an efficient algorithm to decide the existence
of an envy-free matching for an HR-LQ instance. That is, we can decide it by finding a
stable matching for the HR instance whose upper quotas are the original lower quotas, and
checking whether all hospitals are full or not.

Next, we move to a generalized model, in which each hospital imposes an upper and a
lower quota on each subset of doctors. That is, we consider an envy-free matching version of
Huang’s Classified Stable Matching [17] (CSM, for short). (See “Related Works” below for
results on stable matchings of CSM and its generalizations.) In Huang’s original model, each
hospital has a family of sets of doctors, called classes, and each class has an upper and a
lower quota. We formulate this setting by letting each hospital have a pair of set functions
defined on the set of acceptable doctors. These two functions respectively represent upper
quotas and lower quotas. For this model, we show that it is NP-hard to decide the existence
of an envy-free matching, even if the number of non-trivial quotas is linear (Theorem 6).
The proof is by a reduction from the NP-complete problem (3,B2)-SAT [2].

Then, we provide a tractable special case of CSM. We show that if the pair of lower and
upper quota functions of each hospital is paramodular [9] (see Section 4 for the definition),
then we can decide the existence of an envy-free matching in polynomial time. This means
that the problem is tractable if the family of acceptable doctor sets forms a generalized
matroid for each hospital. A generalized matroid [28] (also called an M\-convex family [22]) is
a family of subsets satisfying a certain axiom called the exchange axiom. It is known that a
paramodular function pair defines a generalized matroid and vice versa. Because constraints
defined on a laminar (or hierarchical) family yield a generalized matroid, our tractable special
case includes a case in which each hospital defines quotas on a laminar family of doctors.
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Related Works

Recently, the study of matching models with lower quotas has developed substantially
[1, 7, 13, 15, 16, 17, 20, 21]. The Hospitals/Residents problem with lower quotas (HR-LQ)
was first studied by Hamada et al. [15, 16], who considered the minimization of the number
of blocking pairs subject to upper and lower quotas. They showed the NP-hardness of the
problem, gave an inapproximability result, and provided an exponential-time exact algorithm.
Motivated by the matching scheme used in Hungary’s higher education sector, Biró et al. [3]
considered a version of HR-LQ in which hospitals (i.e., colleges) are allowed to be closed, i.e.,
each hospital is assigned enough doctors or no doctor. They showed the NP-completeness to
decide the existence of a stable matching.

The Classified Stable Matching problem (CSM), proposed by Huang [17], is a general-
ization of HR-LQ without hospital closures. In this model, each hospital (or institute, in
Huang’s terminology) has a classification of doctors (i.e., applicants) based on their expertise
and gives an upper and lower quota for each class. Huang showed that it is NP-complete
in general to decide the existence of a stable matching, and proved that it is solvable in
polynomial time if classes form a laminar family. For this tractable special case, Fleiner
and Kamiyama [7] gave a concise explanation in terms of matroids, and their framework is
generalized by Yokoi [31] to a framework with generalized matroids.

To cope with the nonexistence of a stable matching in constrained matching models (not
only models with lower quotas but also with other types of constraints such as regional
constraints), several relaxations of stability have been proposed. See, e.g., Kamada and
Kojima [18, 19], Fragiadakis et al. [8], and Goto et al. [13]. Envy-freeness is one of them
that places emphasis on fairness rather than efficiency. Fragiadakis et al. [8] provided a
strategy-proof algorithm that always finds an envy-free matching (or fair matching, in their
terminology) of HR-LQ under the assumption that all doctor-hospital pairs are acceptable.
The outcome of their mechanism also fulfills a second-best efficiency (i.e., nonwastefulness)
property. Their framework is generalized in Goto et al. [13] so that regional quotas can be
handled.

Here we compare our models with the above models. Unlike the models of Goto et al.
[13] and Kamada and Kojima [18, 19], our models cannot handle regional quotas. Instead,
our CSM model (in Sections 3 and 4) allows each hospital to have quotas on classes of
doctors, which are not dealt with in their models. The setting of a tractable special case of
CSM described in Section 4 is equivalent to a many-to-one case of Yokoi’s model [31], which
studied stable matchings. Neither [31] nor the study in this paper relies on the results of the
other, while both of them utilize the matroid framework of Fleiner [5, 6].

The remainder of this paper is organized as follows. Section 2 investigates envy-free
matchings in the Hospitals/Residents problem with lower quotas (HR-LQ). In Section 3, we
define an envy-free matching in the classified stable matching (CSM) model, and show the
NP-hardness of its existence test. As its tractable special case, Section 4 presents results on
CSM with paramodular quota functions. Due to space constraints, we defer the proofs for
the theorems and corollary in Section 4 to the full version.

2 Envy-freeness in HR with lower quotas

In this section, we investigate envy-free matchings in the Hospitals/Residents problem with
lower quotas (HR-LQ).

There are two disjoint sets D and H, which represent doctors and hospitals, respectively.
A set of acceptable doctor-hospital pairs is denoted by E ⊆ D ×H.
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For each doctor d ∈ D, its acceptable hospital set is denoted by

A(d) := {h ∈ H | (d, h) ∈ E } ⊆ H,

and d has a preference list (strict order) �d on A(d). Similarly, for each hospital h ∈ H,

A(h) := { d ∈ D | (d, h) ∈ E } ⊆ D,

and h has a preference �h on A(h). Each hospital h has a lower quota lh ∈ Z and an upper
quota uh ∈ Z with 0 ≤ lh ≤ uh ≤ |A(h)|.

We call a tuple I = (D,H,E,�DH , {(lh, uh)}h∈H) an HR-LQ instance, where �DH is
an abbreviated notation for the union of {�d}d∈D and {�h}h∈H . In particular, if lh = 0 for
all h ∈ H, we call it an HR instance. An arbitrary subset M of E is called an assignment.
For any assignment M , we denote M(d) = {h ∈ A(d) | (d, h) ∈M } for each d ∈ D and
M(h) = { d ∈ A(h) | (d, h) ∈M } for each h ∈ H. If |M(d)| = 1, the notation M(d) is also
used to refer its single element.

An assignment M is called a matching (or, said to be feasible) if |M(d)| ≤ 1 for each
d ∈ D and lh ≤ |M(h)| ≤ uh for each h ∈ H. In a matching M , a doctor d is unassigned
(resp., assigned) if M(d) = ∅ (resp., |M(d)| = 1), and h is undersubscribed (resp., full)
if |M(h)| < uh (resp., |M(h)| = uh).

I Definition 1. For a matching M , an unassigned pair (d, h) ∈ E \M is a blocking pair if
(i) d is unassigned or h �d M(d), and (ii) h is undersubscribed or there is d′ ∈M(h) with
d �h d

′. A matching M is stable if there is no blocking pair.

For an HR instance, it is known that the algorithm of Gale and Shapley [11] always finds a
stable matching. The set of stable matchings has the following property.

I Proposition 2 (“Rural Hospitals” Theorem [12, 24, 26]). For a given HR instance, any two
stable matchings M,M ′ satisfy |M(h)| = |M ′(h)| for every h ∈ H. Moreover M(h) = M ′(h)
if h is undersubscribed in M or M ′.

As mentioned in the Introduction, if hospitals have lower quotas, then we cannot guarantee
the existence of a stable matching anymore. By Proposition 2, however, we can easily check
the existence by finding a stable matching while disregarding lower quotas, and checking
whether the obtained matching meets lower quotas.

For an instance that has no stable matching, we want to obtain some matching that still
has a kind of fairness. As a relaxation of the concept of stability, envy-freeness (also called
fairness) of matchings has been proposed [8, 30].

I Definition 3. For a matchingM , a doctor d has justified envy toward d′ withM(d′) = h

if (i) d is unassigned or h �d M(d) and (ii) d �h d
′. A matching M is envy-free if no doctor

has justified envy.

Note that, if d has justified envy toward d′ with M(d) = h, then it means that (d, h) is a
blocking pair. Thus, stability implies envy-freeness. The envy-freeness of a matching is also
regarded as the stability with reduced upper quotas, as follows.

I Proposition 4. For I = (D,H,E,�DH , {(lh, uh)}h∈H), an assignment M is an envy-free
matching if and only if M is a stable matching of I ′ = (D,H,E,�DH , {(lh, u′h)}h∈H) for
some {u′h}h∈H with u′h ≤ uh (h ∈ H).
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Doctor’s preferences Hospitals’ preferences

d1 : h1 h1 : d2 d1 (lh1 = 1, uh1 = 2)

d2 : h1 h2 h2 : d2 (lh2 = 1, uh2 = 2)

Figure 1 An instance of HR-LQ with no envy-free matching.

Proof. The “if” part is clear because feasibility in I ′ implies that in I, and stability implies
envy-freeness. For the “only if” part, suppose that M is envy-free in I and set u′h := |M(h)|
for each h ∈ H. Then, M is feasible for I ′ and all hospitals are full, and hence there is no
doctor who claims a hospital’s vacant seat. Because M is envy-free, it is stable in I ′. J

By Proposition 4, to check whether we can obtain a stable matching by reducing upper
quotas, it suffices to check for the existence of an envy-free matching.

Under the assumption that all doctor-hospital pairs are acceptable and the sum of lower
quotas does not exceed the number of doctors, Fragiadakis et al. [8] provided a strategy-proof
mechanism that always finds an envy-free matching. As a corollary, we have the following.

I Proposition 5. For an instance I = (D,H,E,�DH , {(lh, uh)}h∈H) such that E = D ×H
and |D| ≥

∑
h∈H lh, there exists an envy-free matching.

However, if not all pairs are acceptable, then even an envy-free matching may not exist.
Figure 1 shows an instance with D = {d1, d2}, H = {h1, h2}, E = {(d1, h1), (d2, h1), (d2, h2)},
lh1 = lh2 = 1, and uh1 = uh2 = 2. For this instance, M = {(d1, h1), (d2, h2)} is the unique
feasible matching, but it is not envy-free because d2 has justified envy toward d1. Hence,
there is no envy-free matching.

Note that an envy-free matching does exist if there is no lower quota, because empty
matching is clearly envy-free. Therefore, the existence test of an envy-free matching is
non-trivial when incomplete lists and lower quotas are introduced simultaneously. Here we
provide a characterization.

I Theorem 6. I = (D,H,E,�DH , {(lh, uh)}h∈H) has an envy-free matching if and only
if some stable matching M ′ of the HR instance I ′ = (D,H,E,�DH , {(0, lh)}h∈H) satisfies
|M ′(h)| = lh for all h ∈ H.

Proof. For the “if” part, let M ′ be a stable matching of I ′ satisfying |M ′(h)| = lh for all
h ∈ H. Then, M ′ is feasible for I ′ and no doctor has justified envy because M ′ has no
blocking pair. Thus, M ′ is an envy-free matching of I.

For the “only if” part, assume that I has an envy-free matching M . Suppose, to the
contrary, a stable matching M ′ of I ′ satisfies |M ′(h∗)| < lh∗ for some h∗ ∈ H. Let us denote
N = M \M ′ and N ′ = M ′ \M . For every h ∈ H, because |M ′(h)| ≤ lh ≤ |M(h)|, we have
|N ′(h)| ≤ |N(h)|. In particular, |N ′(h∗)| < |N(h∗)| follows from |M ′(h∗)| < lh∗ .

Consider a bipartite graph G = (D,H;N∪N ′), i.e., a graph between doctors and hospitals
with edge set N ∪N ′ = M4M ′. Let G∗ be a connected component of G including h∗, and
denote by D∗ and H∗ the sets of doctors and hospitals in G∗, respectively. Because there is no
edge connecting G∗ and the outside,

∑
d∈D∗ |N(h)| =

∑
h∈H∗ |N(h)| and

∑
d∈D∗ |N ′(h)| =∑

h∈H∗ |N ′(h)|. As |N ′(h∗)| < |N(h∗)| and |N ′(h)| ≤ |N(h)| for any h ∈ H∗, we obtain∑
d∈D∗ |N ′(h)| =

∑
h∈H∗ |N ′(h)| <

∑
h∈H∗ |N(h)| =

∑
d∈D∗ |N(h)|.

Then, there exists d∗ ∈ D∗ with |N ′(d∗)| < |N(d∗)|, which impliesN ′(d∗) = ∅ and |N(d∗)| = 1
because N ′ = M ′ \M and N = M \M ′ are subsets of matchings. As G∗ is a connected
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bipartite graph, there is a path d0 h0 d1 h1 . . . dk hk with d0 = d∗ and hk = h∗. Also, as
|N(di)| ≤ 1 and |N ′(di)| ≤ 1 for i = 0, 1, . . . k, this path alternately uses edges in N = M \M ′
and N ′ = M ′ \M . Because N ′(d∗) = ∅ and |N(d∗)| = 1, we have

M ′(d0) = ∅,
(di, hi) ∈M \M ′ (i = 0, 1, . . . , k),

(di+1, hi) ∈M ′ \M (i = 0, 1, . . . , k − 1).

The doctor d0 is unassigned in M ′ and finds h0 acceptable because (d0, h0) ∈ M . Hence,
the stability of M ′ implies that h0 prefers d1 ∈M ′(h0) to d0. Then, the envy-freeness of M
implies that d1 prefers h1 = M(d1) to h0. In this way, we obtain

di+1 �hi
di (i = 0, 1, . . . , k − 1),

hi+1 �di+1 hi (i = 0, 1, . . . , k − 1).

Thus, M(dk) = hk �dk
hk−1 = M ′(dk). Because hk = h∗ satisfies |M ′(hk)| < lhk

, then
(dk, hk) is a blocking pair in I ′, which contradicts the stability of M ′. J

Theorem 6 ensures that the following algorithm decides the existence of an envy-free matching
of an HR-LQ instance I = (D,H,E,�DH , {(lh, uh)}h∈H).

Algorithm EF-HR-LQ
Step1. Find a stable matching M ′ of I ′ = (D,H,E,�DH , {(0, lh)}h∈H).
Step2. returnM ′ if |M ′(h)| = lh for all h ∈ H, and otherwise “there is no envy-free matching.”

Since the Gale-Shapley algorithm finds a stable matching of an HR instance in O(|E|)
time, we obtain the following theorem.

I Theorem 7. For any HR-LQ instance I = (D,H,E,�DH , {(lh, uh)}h∈H), the algorithm
EF-HR-LQ decides whether I has an envy-free matching or not in O(|E|) time.

3 Envy-freeness in Classified Stable Matching

In this section, we consider the envy-freeness in a model in which each hospital has lower and
upper quotas on subsets of doctors. This can be regarded as an envy-free matching version
of the Classified Stable Matching, proposed by Huang [17]. Similarly to Section 2, we have
doctors D, hospitals H, acceptable pairs E ⊆ D ×H, and preferences �DH .

The only difference from HR-LQ is that, in the current model, each hospital h ∈ H has
a pair of functions ph, qh : 2A(h) → Z, instead of a pair of numbers lh, uh. These functions
define a lower and an upper quota for each subset of acceptable doctors. Throughout this
paper, we assume that for any hospital h, the functions ph and qh satisfy

0 ≤ ph(B) ≤ qh(B) ≤ |B| (B ⊆ A(h)).

We call such a tuple (D,H,E,�DH , {(ph, qh)}h∈H) a CSM instance. For each h ∈ H, the
family of acceptable subsets of doctors is denoted by

F(ph, qh) := {X ⊆ A(h) | ∀B ⊆ A(h) : ph(B) ≤ |X ∩B| ≤ qh(B) } .

For any h ∈ H, we say that B ⊆ A(h) has a non-trivial lower (resp., upper) constraint
if ph(B) > 0 (resp., qh(B) < |B|). We denote the family of constrained subsets by

C(ph, qh) := {B ⊆ A(h) | ph(B) > 0 or qh(B) < |B| } .
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Then, we see that F(ph, qh) is represented as

F(ph, qh) = {X ⊆ A(h) | ∀B ⊆ C(ph, qh) : ph(B) ≤ |X ∩B| ≤ qh(B) } .

For a CSM instance I = (D,H,E,�DH , {(ph, qh)}h∈H), M ⊆ E is called a matching
(or, said to be feasible) if |M(d)| ≤ 1 for each d ∈ D and M(h) ∈ F(ph, qh) for each h ∈ H.

I Definition 8. For a matching M , an unassigned pair (d, h) ∈ E \M is a blocking pair if
(i) d is unassigned or h �d M(d), and (ii) M(h) + d ∈ F(ph, qh) or M(h) + d− d′ ∈ F(ph, qh)
for some d′ ∈M(h) with d �h d

′. A matching M is stable if there is no blocking pair.

In Definition 8, the condition M(h) + d ∈ F(ph, qh) means that h can add d to the current
assignment without violating any upper quota, and M(h) + d− d′ ∈ F(ph, qh) means that
h can replace d′ with d without violating any upper or lower quota. The Classified Stable
Matching, introduced by Huang [17], is the problem to decide the existence of a stable
matching for a given CSM instance1. Because this is a generalization of HR-LQ, there are
instances that have no stable matching. Let us consider envy-freeness for a CSM instance.

I Definition 9. For a matchingM , a doctor d has justified envy toward d′ withM(d′) = h

if (i) d is unassigned or h �d M(d) and (ii) M(h) + d − d′ ∈ F(ph, qh) and d �h d′. A
matching M is envy-free if no doctor has justified envy.

As in the case of HR-LQ, an envy-free matching can be regarded as a stable matching
with reduced upper quotas as follows. For any h ∈ H and k ∈ Z with 0 ≤ k ≤ q(A(h)), a
function q′h : 2A(h) → Z is called a k-truncation of qh if q′(A(h)) = k and q′(B) = q(B) for
every B ( A(h). Also, we simply say that q′h is a truncation of qh if there is such k ∈ Z.

I Proposition 10. For I = (D,H,E,�DH , {(ph, qh)}h∈H), an assignment M is an envy-free
matching if and only if M is a stable matching of I ′ = (D,H,E,�DH , {(ph, q

′
h)}h∈H) such

that each q′h is some truncation of qh.

Proof. To show the “only if” part, let M be an envy-free matching of I. For each h ∈ H,
let q′h be the |M(h)|-truncation of qh. Then M(h) ∈ F(ph, q

′
h) and M(h) + d 6∈ F(ph, q

′
h)

for every d ∈ A(h) \M(h). That is, M is feasible for I ′ and there is no doctor who claims
a hospital’s vacant seat. Therefore, if there is a blocking pair (d, h) ∈ E \M for I ′, it
follows that d has a justified envy toward some d′ with M(d′) = h, which contradicts the
envy-freeness of M . Thus, M is a stable matching of I ′.

For the “if” part, let M be a stable matching of I ′. Clearly, M is feasible for I. Suppose,
to the contrary, some doctor d has justified envy toward d′ with M(d′) = h with respect to I.
Then d is unassigned or h �d M(d). Also, we have d �h d

′ and M(h) + d− d′ ∈ F(ph, qh).
Then, M(h) + d− d′ ∈ F(ph, q

′
h) follows because |M(h) + d− d′| = |M(h)|. Hence, (d, h) is

a blocking pair in I ′, a contradiction. J

We provide a hardness result for deciding the existence of an envy-free matching. Here,
we assume that evaluation oracles of set functions ph and qh are available for each hospital h.

I Theorem 11. It is NP-hard to decide whether a CSM instance I = (D,H,E,�DH

, {(ph, qh)}h∈H) has an envy-free matching or not. The problem is NP-complete even if the
size of C(ph, qh) is at most 4 for each h ∈ H.

1 In his original model, each hospital h has a classification Ch ⊆ 2A(h) and sets a lower and an upper
quota for each member of Ch. That is, we are provided C(ph, qh) and the values of ph, qh on it, rather
than set functions ph, qh. Our formulation uses set functions to simplify the arguments in the next
section.
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Proof. We use reduction from the NP-complete problem (3, B2)-SAT [2], which is a restriction
of SAT such that each clause contains exactly three literals and each variable occurs exactly
twice as a positive literal and exactly twice as a negative literal. Let ϕ = c1 ∧ c2 ∧ · · · ∧ cm

be an instance of (3, B2)-SAT with Boolean variables v1, v2, . . . , vn. Then, each clause cj

is a disjunction of three literals, (e.g., cj = v1 ∨ ¬v2 ∨ ¬v3) and each of literals vi and ¬vi

appears in exactly two clauses. For each variable vi, denote by j∗(i, 1), j∗(i, 2) the indices
of two clauses that contain vi. Similarly, denote by j∗(i,−1), j∗(i,−2) the indices of two
clauses that contain ¬vi.

We now define a CSM instance corresponding to ϕ. We have a variable-hospital hi for
each variable vi, and a clause-hospital hj for each clause cj . For each variable vi, we have
four doctors { di,t | t ∈ {1, 2,−1,−2} }. For each doctor di,t, we have

A(di,t) = {hi, hj∗(i,t)}, hi �di,t hj∗(i,t).

The set E is defined as the set of all pairs (di,t, h) such that h ∈ A(di,t). Then, for each
variable-hospital hi and clause-hospital hj , we have

A(hi) = { di,t | t ∈ {1, 2,−1,−2} } ,
A(hj) = { di,t | j∗(i, t) = j } .

Note that di,t ∈ A(hj) implies vi ∈ cj or ¬vi ∈ cj . Also, each of vi ∈ cj and ¬vi ∈ cj

implies di,t ∈ A(hj) for some unique t ∈ {1, 2,−1,−2}. Therefore, |A(hj)| = 3 for each
clause-hospital hj . For each variable-hospital hi, define phi

and qhi
so that

C(phi
, qhi

) =
⋃
{ {di,t, di,t′} | t ∈ {1, 2}, t′ ∈ {−1,−2} } ,

phi
({di,t, di,t′}) = qhi

({di,t, di,t′}) = 1 (t ∈ {1, 2}, t′ ∈ {−1,−2}).

Then, we see that F(phi
, qhi

) = {D+
i , D

−
i }, whereD

+
i := {di,1, di,2} andD−i := {di,−1, di,−2}.

For each clause-hospital hj , define phi
and qhi

so that

C(phj
, qhj

) = {A(hj)}, phj
(A(hj)) = 1, qhj

(A(hj)) = |A(hj)| = 3.

We define preference lists of hospitals arbitrarily. Note that |C(ph, qh)| ≤ 4 for every hospital.
We show that this CSM instance has an envy-free matching if and only if ϕ = c1∧c2∧· · ·∧cm

is satisfiable.
The “only if” part: Suppose that there is an envy-free matching M . Then, for every

variable-hospital hi,M(hi) is D+
i or D−i . For each hi, set variable vi to FALSE ifM(hi) = D+

i ,
and to TRUE ifM(hi) = D−i . This Boolean assignment satisfies every clause cj of ϕ as follows.
Because M(hj) ∈ F(phj

, qhj
), we have |M(hj)| ≥ 1. Hence, some di,t with j∗(i, t) = j is

assigned to hj . Then, di,t 6∈M(hi). There are two cases: (i) t ∈ {1, 2}, (ii) t ∈ {−1,−2}. In
the case (i), di,t 6∈M(hi) implies M(hi) 6= D+

i , and hence vi is set to TRUE. Also, t ∈ {1, 2}
and j∗(i, t) = j imply vi ∈ cj . Hence, clause cj is satisfied. Similarly, in the case (ii), we see
that vi is set to FALSE and we have ¬vj ∈ cj . Hence, clause cj is satisfied.

The “if” part: Suppose that there is a Boolean assignment satisfying ϕ. Define an
assignment M so that

M(hi) = D−i if vi is TRUE, and M(hi) = D+
i if vi is FALSE, and

M(hj) = { di,t∈A(hj) | di,t∈D+
i , vi is TRUE } ∪ { di,t∈A(hj) | di,t∈D−i , vi is FALSE }.

We can observe that |M(d)| = 1 for every doctor d, and M(hi) ∈ F(phi
, qhi

) for every
variable-hospital hi. Also, because all clauses are satisfied, the above definition implies
M(hj) ∈ F(phj

, qhj
) for every clause-hospital hj . Then, M is feasible. We now show the
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envy-freeness of M . Suppose, to the contrary, di,t has justified envy toward d′. Because
we have |M(di,t)| = 1, A(di,t) = {hi, hj∗(i,t)}, and hi �di,t

hj∗(i,t), this justified envy
implies conditions d′ ∈ M(hi), di,t 6∈ M(hi) and M(hi) + di,t − d′ ∈ F(phi

, qhi
). As

M(hi) ∈ F(phi , qhi) = {D+
i , D

−
i }, then we have {M(hi) + di,t − d′,M(hi)} = {D+

i , D
−
i },

which contradicts |D+
i \D

−
i | = |D

−
i \D

+
i | = 2. J

4 Envy-freeness in CSM with Paramodular Quotas

In Section 3, we showed that it is NP-hard in general to decide whether a CSM instance has
an envy-free matching or not. This section shows that the problem is solvable in polynomial
time if the pair of quota functions is paramodular for each hospital. The proofs of the
theorems and corollary in this section can be found in the full version. We first introduce
the notion of paramodularity [9].

Let A be a finite set and let p, q : 2A → Z. The pair (p, q) is paramodular (or, called a
strong pair [10]) if

p is supermodular, i.e., p(B) + p(B′) ≤ p(B ∪B′) + p(B ∩B′) for every B,B′ ⊆ A,
q is submodular, i.e., q(B) + q(B′) ≥ q(B ∪B′) + q(B ∩B′) for every B,B′ ⊆ A, and
the cross-inequality q(B)− p(B′) ≥ q(B \B′)− p(B′ \B) holds for every B,B′ ⊆ A.

Here we provide examples of constraints that can be represented by paramodular pairs.
(See Yokoi [31, Appendices A and B].)

I Example 12 (Laminar Constraints). Let L ⊆ 2A be a laminar (or hierarchical) classification
(i.e., any X,Y ⊆ L satisfy X ⊆ Y or X ⊇ Y or X ∩ Y 6= ∅). Let p̂, q̂ : L → Z be functions
that define a lower and an upper quota for each class. Denote the acceptable set family by
J (L, p̂, q̂) := {B ⊆ A | ∀X ∈ L : p̂(X) ≤ |B ∩X| ≤ q̂(X) }. If J (L, p̂, q̂) is nonempty, then
J (L, p̂, q̂) = F(p, q) for some paramodular pair (p, q).

I Example 13 (Staffing Constraints). For a finite set S (e.g., a set of sections of a hospital),
let Γ : S → 2A and l̂, û : S → Z be functions such that Γ(s) ⊆ A represents members
acceptable to s ∈ S and l̂(s), û(s) ∈ Z represent a lower and an upper quota of each s ∈ S.
Let J (S,Γ, l̂, û) ⊆ 2A be a family of subsets B ⊆ A such that there exists a function
π : B → S satisfying ∀d ∈ B : d ∈ Γ(π(d)) and ∀s ∈ S : l̂(s) ≤ | { d ∈ B | π(d) = s } | ≤ û(s).
If J (S,Γ, l̂, û) is nonempty, then J (S,Γ, l̂, û) = F(p, q) for some paramodular pair (p, q).

For a set function p : 2A → Z, its complement p : 2A → Z is defined by

p(B) = p(A)− p(A \B) (B ⊆ A).

Recall that a CSM instance is represented as a tuple (D,H,E,�DH , {(ph, qh)}h∈H),
where it is assumed that 0 ≤ ph(B) ≤ qh(B) ≤ |B| for every h ∈ H and B ⊆ A(h). Here is
the main theorem of this section. We denote by 0 a set function that is identically zero.

I Theorem 14. For a CSM instance I = (D,H,E,�DH , {(ph, qh)}h∈H), suppose that
(ph, qh) is paramodular for each h ∈ H. Then, an instance I ′ = (D,H,E,�DH , {(0, ph)}h∈H)
has at least one stable matching and the following three conditions are equivalent.
(a) I has an envy-free matching.
(b) Some stable matching M ′ of I ′ satisfies |M ′(h)| = ph(A(h)) for all h ∈ H.
(c) Every stable matching M ′ of I ′ satisfies |M ′(h)| = ph(A(h)) for all h ∈ H.
Also, if (b) holds, then M ′ is an envy-free matching of I.
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Algorithm 1: EF-Paramodular-CSM
Input: I = (D,H,E,�DH , {(ph, qh)}h∈H) such that each (ph, qh) is paramodular
Output: return an envy-free matching M ′, or “there is no envy-free matching.”

Set ND ← E, NH ← ∅, and let M ′ be undefined;
while M ′ is undefined do

RD ←
⋃

d∈D { (d, h) | h ∈ ND(d), h 6= max�d
ND(d) };

RH ←
⋃

h∈H { (d, h) | d ∈ NH(h), p(A(h) \NH(h)�hd) = p(A(h) \NH(h)�hd) };
if (ND, NH) = (E \RH , E \RD) then

let M ′ ← ND ∩NH and break;
else

update (ND, NH)← (E \RH , E \RD);
end

end
if |M ′(h)| = ph(A(h)) for all h ∈ H then

return M ′;
else

return “there is no envy-free matching”;
end

Here we sketch the proof of Theorem 14. See the full version for the detailed proof. The
existence of a stable matching of I ′ and the equivalence between (b) and (c) can be shown
by using Fleiner’s results on the matroid framework [5, 6]. The most difficult part is showing
the equivalence between conditions (a) and (b). To show that (a) implies (b), we construct a
stable matching M ′ of I ′ from an envy-free matching M of I. This construction is achieved
by using the fixed-point method of Fleiner [6]. The paramodularity of each (ph, qh) (or
a generalized matroid structure of each F(ph, qh)) is essential to show the existence of a
fixed-point satisfying a required condition.

Theorem 14 implies that, when quota function pairs are paramodular, we can decide the
existence of an envy-free matching of I = (D,H,E,�DH , {(ph, qh)}h∈H) by the following
algorithm.
Step1. Find a stable matching M ′ of I ′ = (D,H,E,�DH , {(0, ph)}h∈H).
Step2. If |M ′(h)| = ph(A(h)) for every h ∈ H, then return M ′. Otherwise, return “there is

no envy-free matching.”

Step 1 (i.e., finding a stable matching of I ′) can be done by the generalized Gale-Shapley
algorithm studied in [5, 6] (for the details see the full version). Then, the detailed description
of the algorithm is given as follows. Here, for each h ∈ H, N ⊆ E, and d ∈ N(h), we use nota-
tions N(h)�hd := { d′ ∈ N(h) | d′ �h d } and N(h)�hd := { d′ ∈ N(h) | d′ �h d or d′ = d }.

In the full version, we show that the assignment M ′ obtained in the above algorithm is
indeed a stable matching of I ′. Also, it is shown that ND is monotone decreasing and NH is
monotone increasing in the algorithm, and hence the “while loop” is iterated at most 2|E|
times. Thus, we obtain the following theorem.

I Theorem 15. For a CSM instance I = (D,H,E,�DH , {(ph, qh)}h∈H) such that each
(ph, qh) is paramodular, the algorithm EF-Paramodular-CSM decides whether I has an envy-
free matching or not in O(|E|2) time, provided that evaluation oracles of {ph}h∈H are
available.
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As is shown in Examples 12 and 13, if the acceptable family of each hospital h is defined by
a laminar constraint Jh := J (Lh, p̂h, q̂h) or by a staffing constraint Jh := J (Sh,Γh, l̂h, ûh),
there is a paramodular pair (ph, qh) such that Jh = F(ph, qh). The following corollary
states that, in such a case, we can decide the existence of an envy-free matching of I =
(D,H,E,�DH , {(ph, qh)}h∈H) even if evaluation oracles of {ph}h∈H are not provided.

I Corollary 16. Suppose that, for each h ∈ H, the family of acceptable doctor sets is defined
in the form Jh := J (Lh, p̂h, q̂h) 6= ∅ (resp., Jh := J (Sh,Γh, l̂h, ûh) 6= ∅). Let (ph, qh) be a
paramodular pair such that Jh = F(ph, qh). Then, given Lh, p̂h, q̂h (resp., Sh,Γh, l̂h, ûh) for
each h ∈ H, one can decide whether I = (D,H,E,�DH , {(ph, qh)}h∈H) has an envy-free
matching or not in time polynomial in |E| (resp., in |E| and maxh∈H |Sh|).

Proof. As we have Theorem 15, it completes the proof to show that we can simulate an
evaluation oracle of each ph in time polynomial in |E| (resp., in |E| and |Sh|). For a
paramodular pair (ph, qh) with Jh = F(ph, qh), it is known that, for any B ⊆ A(h), we have
ph(B) = min{ |X ∩B| | X ∈ Jh} (see, e.g., [9, Theorem 14.2.8]). Consider a weight function
wB on A(h) such that wB(d) = 1 for every d ∈ B and wB(d) = 0 for every d ∈ A(h) \ B.
Then, ph(B) = min {wB(X) | X ∈ Jh }, which is a weight minimization problem on Jh. As
shown in [31, Appendix C], if Jh is defined in the form in the statement, this problem can be
reduced to the minimum cost circulation problem, which can be solved in strongly polynomial
time [29, 23]. (See [31] for the details of the reduction.) Thus, the proof is completed. J

Acknowledgments. I wish to thank the anonymous reviewers whose comments have be-
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