
On Counting Oracles for Path Problems

Ivona Bezáková
Department of Computer Science, Rochester Institute of Technology, Rochester, NY, USA
ib@cs.rit.edu

Andrew Searns
Rochester Institute of Technology, Rochester, NY, USA
abs2157@rit.edu

Abstract
We initiate the study of counting oracles for various path problems in graphs. Distance oracles
have gained a lot of attention in recent years, with studies of the underlying space and time
tradeoffs. For a given graph G, a distance oracle is a data structure which can be used to answer
distance queries for pairs of vertices s, t ∈ V (G). In this work, we extend the set up to answering
counting queries: for a pair of vertices s, t, the oracle needs to provide the number of (shortest
or all) paths from s to t. We present O(n1.5) preprocessing time, O(n1.5) space, and O(

√
n)

query time algorithms for oracles counting shortest paths in planar graphs and for counting all
paths in planar directed acyclic graphs. We extend our results to other graphs which admit small
balanced separators and present applications where our oracle improves the currently best known
running times.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Counting oracle, Path problems, Shortest paths, Separators

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.56

Funding Research supported by NSF grant CCF-1319987 and by an REU (Research Experience
for Undergraduates) supplement.

1 Introduction

Shortest path problems have been heavily studied for decades and the developed algorithms
are among the most important algorithmic building blocks. In the most traditional set up,
one is given a graph G and two vertices s, t and the goal is to find a shortest path from s

to t in G. Due to many applications querying for multiple s, t pairs, the design of so-called
distance oracles has gained a lot of attention in recent years [13, 9, 18, 6, 11, 8, 10, 3]. In
an oracle approach, for a given graph G, the goal is to pre-compute a not too large data
structure (an oracle) which can then be used to answer distance queries for pairs of vertices
s, t in as fast time as possible. Many previous works, which we discuss in more detail later,
have studied the tradeoffs between the required space and the query time for such distance
oracles for various graph classes. Among the prime applications of these oracle results is map
querying, where a user often prefers knowing not just one of the optimal routes, but they
would like to be shown a variety of options. Hence, we propose to amend distance oracles
with counting: in addition to the distance from s to t, a counting path oracle returns also
the number of all shortest paths from s to t. Such an oracle can then be used to generate the
paths or provide a random sample when the total number of paths is prohibitively large.

© Ivona Bezáková and Andrew Searns;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 56; pp. 56:1–56:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ib@cs.rit.edu
mailto:abs2157@rit.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2018.56
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

56:2 On Counting Oracles for Path Problems

We design counting oracles for the following two problems: #SHORTPATH-ORACLE,
where one is given a positively weighted graph and the goal is to construct an oracle which
answers queries of “how many shortest paths from s to t are there?”, and #PATH-DAG-
ORACLE, where one is given a directed acyclic graph (DAG) and the oracle answers queries
of “how many paths from s to t are there?”. We note that the second problem is #P-hard for
general graphs [20], but both problems can be solved in polynomial time within the specified
graph class. The second problem, which has applications of its own described below, helps us
build an oracle for the first problem. For both problems, when the input is a planar graph
with n vertices, we design oracles which take O(n1.5) time to construct, take O(n1.5) space,
and each query can be answered within O(

√
n) time1.

A straightforward approach to both problems yields an oracle which takes O(n2) space
and O(1) query time, by simply pre-computing all of the possible queries. In a DAG one can
compute the number of paths from one vertex to all other vertices in linear time, leading
to an O(n(n + m)) preprocessing time to compute the oracle for a graph with n vertices
and m edges. For planar graphs, this preprocessing time is O(n2) since m = O(n). For
several applications, the number of queries can be linear, leading to an O(n2) preprocessing
time and an overall O(n) time across all queries in the planar setting. With our results, we
speed up the running time for such applications to O(n1.5 + n

√
n) = O(n1.5). For arbitrary

positively weighted graphs, one can compute the number of shortest paths from one vertex
to all other vertices in polynomial time, typically within the same running time as finding
the distances to all other vertices. For example, one can extend the Dijkstra’s algorithm to
compute, in addition to the distances, also the respective path counts, and keep updating
them throughout the computation. Our results speed up these traditional approaches.

Our techniques employ balanced separators, which are a staple of planar graph algorithms
but to the best of our knowledge have not been used for any counting problems. The distance
oracle results are ingenious and faster than our results but as far as we see they do not
extend to counting. In an optimization problem, one can focus on a certain canonical type of
the wanted object, such as a left-most shortest path, or one can even assume that there is a
unique shortest path between any pair of vertices. (This can be obtained by small random
perturbations of the edge weights.) For a counting problem there appears to be the need
for more stored information or longer query time. In particular, we store, for each vertex
in the separator, certain path counts to all other vertices in the graph, proceeding in a
divide-and-conquer manner on the two parts of the graph. The main technical aspect of
our contribution lies in a case analysis that proves that each path has been accounted for
exactly once. We generalize our planar results to general graphs which admit small balanced
separators.

1.1 Related work and applications
Distance oracles have been studied for several decades, with several very recent exciting
results. The current state of the art exact distance oracle of Gawrychowski, Mozes, Weimann,
and Wulff-Nilsen [13] requires O(n1.5) space and can answer queries in O(logn) time. This
work improved on a recent result of Cohen-Addad, Dahlgaard, and Wulff-Nilsen [9] who

1 We note that the returned counts may be exponentially large, for example when the graph is a path
where every edge has been duplicated – if s and t are the end-points, the number of shortest s-t paths is
2n−1. Therefore, manipulating the counts can incur an additional O(n polylog n) factor in the running
time. To simplify our presentation throughout this paper, we will (slightly optimistically) assume that
each arithmetic operation (addition, multiplication of the counts) takes O(1) time.

I. Bezáková and A. Searns 56:3

designed an oracle with O(n5/3) space and O(logn) query time. Furthermore, both works
obtained space/time tradeoffs: for a given S, they design an oracle which takes S space and
the query time is a function of S. In particular, [13] obtain a query time Õ(max{1, n1.5/S})
for S ∈ [n, n2], while [9] answer queries within time Õ(n5/2S3/2) for S ≥ n3/2 (where the Õ
notation hides logarithmic factors). Other previous works, on which the two mentioned results
build, also studied distance oracles and their space/time tradeoffs [18, 6, 11, 8, 10, 3]. As far
as we see, these results do not extend to counting without significant increase in the running
time (or space). Of note is also extensive study of approximate distance oracles, with either
relative or absolute error, which can achieve a near-linear space and near-constant query time,
see [1] and the references within. As for the counting variant in an approximate distance
setting, Mihalák, Šrámek, and Widmayer [17] showed that counting all s-t paths up to a
given length in a DAG is #P-complete. They also give a fully polynomial-time approximation
scheme (FPTAS) for the problem, yielding an approximate counting approximate distance
oracle in DAGs. However, the techniques heavily rely on the graph being acyclic. We also
note two other hardness results for counting: Yamamoto [21] proved that there is no fully
polynomial approximation scheme (FPRAS) for approximately counting all paths in a graph,
unless RP = NP. On the fixed-parameter tractable side, Flum and Grohe [12] showed that
the problem of counting paths of length k is #W[1]-complete.

Among applications of counting oracles for all paths in a DAG is the problem of counting
minimum (s, t)-cuts in planar and bounded genus graphs. The problem of counting minimum
(s, t)-cuts has been studied since the 1980’s due to its connection to the (s, t) network
reliability problem. Provan and Ball [19] proved that it is #P-complete for general graphs
and in [4] they gave a general outline that reduces the problem in planar graphs with both s
and t on the outerface to the problem of counting all paths in a planar DAG. Their technique
was subsequently generalized to any location of s and t by Bezáková and Friedlander [5] and
Chambers, Fox, and Nayyeri [7] further extended the approach to bounded genus graphs. In all
these scenarios, one needs to count all paths between d pairs of vertices in a planar or bounded
genus DAG. For planar graphs, this results in a running time of O(n logn + dn) = O(n2)
since d = O(n), which our result improves to O(n logn + n1.5) = O(n1.5) since instead of
counting the paths for each pair in O(n) time, we can make queries in O(

√
n) time per pair.

The running time encompasses also the oracle preprocessing time. It is worth noting that
our attempts to use more advanced decomposition techniques such as the r-divisions led to
these same running times, making us wonder if a faster than O(n1.5) algorithm exists.

The paper is organized as follows. In Section 2 we discuss preliminaries, including how
to extend existing single source shortest path (SSSP) algorithms to counting, incurring an
additional linear term in the running time. Section 3 presents counting oracles for all paths
in planar DAGs, then we discuss counting oracles for shortest paths in positively weighted
directed or undirected planar graphs in Section 4, and generalize the oracles beyond planar
graphs in Section 5.

2 Preliminaries

An undirected graph G = (V,E) is a set of vertices V and edges E ⊆ (V × V) of unordered
pairs. In a directed graph G = (V,E), the edges are ordered pairs and we refer to them as
arcs, using the standard convention that (u, v) indicates an arc from vertex u to vertex v.
Unless specifically noted, our results apply to both directed and undirected graphs. (We
phrase all our results for graphs but they can be naturally extended to multigraphs which can

ISAAC 2018

56:4 On Counting Oracles for Path Problems

have multiple edges between the same pair of vertices.) A positively weighted graph, denoted
by G = (V,E,w), assigns a positive weight w(e) to each edge e ∈ E (i. e., w : E → R+). For
an S ⊆ V , we use G[S] to denote the sub-graph of G induced by S. Throughout this text we
use n = |V | to denote the number of vertices and m = |E| the number of edges.

A path p in a graph G is a sequence of vertices v1, v2, . . . , vk, k ≥ 1, where (vi, vi+1) ∈ E
for each i ∈ {1, . . . , k − 1}. A path with no repeated vertices is called a simple path. For
convenience, we refer to a path starting at vertex v1 and ending at vertex vk as a v1-vk path.
We define the relation “is before on p = v1, . . . , vk” by u1 ≺p u2 where u1 = vi, u2 = vj ,
and i ≤ j. We say that vi, vi+1, . . . , vj , where i < j, is a sub-path of a path p = v1, . . . , vk.
The length of a path p = v1, . . . , vk is k − 1 in unweighted graphs, and

∑k−1
i=1 w(vi, vi+1) in

weighted graphs. A u1-u2 path is shortest if its length is the smallest possible across all
u1-u2 paths. The length of a shortest u1-u2 path is called the distance from u1 to u2. A
cycle v1, . . . , vk is a path where v1 = vk and k ≥ 2. A graph is acyclic if it does not contain
any cycles.

I Observation 1. Any path in an acyclic graph is simple. Any shortest path in a positively
weighted graph is simple. If p is a shortest path in a graph G, then any sub-path of p must
also be shortest.

We say that a class of graphs admits an (α, f(n))-balanced separator, where f(n) is
a function and α is a constant, if for every graph G with n vertices its vertices can be
partitioned into three sets A,B,C such that the size of A and B are each upper-bounded by
αn, the size of C is O(f(n)), and there are no edges connecting a vertex in A with a vertex
in B. We will refer to such a separator as an (A,B,C) separator.

A graph is planar if it has a planar embedding, that is, if it can be drawn in a plane
without any of its edges crossing one another (except for their end-points). A graph is said
to be of genus g if it has a crossing-free embedding into a surface of genus g. Planar and
bounded genus graphs are sparse, in particular m = O(n) and m = O(n+ g), respectively,
and they admit small balanced separators:

I Theorem 2 (Planar Separator Theorem, Lipton and Tarjan [16]). Every planar graph has a
(2/3,

√
n)-balanced separator, which can be found in time O(n).

I Theorem 3 (Bounded Genus Separator Theorem, Gilbert, Hutchinson, and Tarjan [14]). Every
graph of genus g has a (2/3,√gn)-balanced separator, which can be found in time O(n).

In a DAG G, for a vertex u we can compute the number of all paths from u to v for every
vertex v in time O(m+ n) via a simple application of topological sort: sum the number of
paths to v’s in-neighbors. We will refer to this algorithm as CountPaths(G, u). Next we
show how to extend known single source shortest path (SSSP) algorithms with counting:

Except for the SSSP call, this algorithm runs in linear time and computes the number of
shortest paths from s to every vertex in G. It does this by building a DAG of tight edges. By
Observation 1, since every edge has weight greater than 0, shortest paths are simple. Thus,
no cycles can be added into the DAG G′ while looping over the edges. For every shortest
path p between u and an arbitrary vertex v ∈ V (G), every edge of p will be added in the
direction of the path by Observation 1 (an edge is a two-vertex sub-path of the shortest path
p). This leads to the following lemma:

I Lemma 4. For any SSSP algorithm with running time T (n) there exist an SSSP counting
algorithm with running time T (n) +O(m).

I. Bezáková and A. Searns 56:5

Algorithm 1 Compute #shortest paths from u to every vertex in G.
procedure CountShortestPaths(G, u)

SSSP(G, u) [Use an existing algorithm, assume d[v] stores the distance to vertex v.]
initialize unweighted DAG G′ = (V (G), ∅)
for edge e = (v, w) in G do

if d[w] = d[v] + w(e) then
insert arc (v, w) into G′

else if d[v] = d[w] + w(e) then
insert arc (w, v) into G′

CountPaths(G′, u)

Of special importance is the application of this approach to planar graphs where Henzinger
et al. [15] designed an O(n) SSSP algorithm. Hence, in planar graphs we can count single
source shortest paths in O(n) time. The approach of [15] extends to bounded genus graphs,
where it gives an O(h(g)n) running time for graphs of genus g (where h() is a function
dependent only on g).

3 Counting Oracle for All Paths in Planar DAGs

In this section, we prove the following theorem:

I Theorem 5. For any planar DAG G, there exists an oracle for #PATH-DAG-ORACLE
which takes O(n1.5) space, takes O(n1.5) time to construct, and for any pair of vertices
s, t ∈ V (G) the oracle can answer queries about the number of paths from s to t in O(

√
n)

time.

3.1 Building the Oracle
A naive algorithm for counting the number of paths between two vertices in an unweighted
DAG takes O(n2) time by running CountPaths from every possible source vertex. Instead,
we induce Theorem 2 to construct the oracle in a divide-and-conquer manner: We first
find a separator (A,B,C) for the given graph. Then we count the number of paths that
intersect the separating set C. Finally, we count the number of paths that lie entirely within
sub-graphs induced by A and B, respectively. For planar graphs this will lead to an O(n1.5)
construction time and O(n1.5) space. The tricky aspect comes from the fact that many of
the paths may cross the separator multiple times.

We start by defining a notion of paths intersecting sets and introduce two sets that are
closely related to the oracle algorithm. Then we state a structural relation between these
sets, the proof of which we defer to the full version of the paper.

I Definition 6. Let G = (V,E) be a graph. We say a path p intersects a set S ⊆ V if
p contains a vertex from S. A vertex v is a first S-intersecting vertex of p if and only if
v ∈ p ∩ S and there is no other u ∈ p ∩ C such that u ≺p v.

I Definition 7. Let (A,B,C) be a separator of G. For a pair of vertices u and v, define:
PG(u, v) as the set of simple u-v paths in G, and
P ′G,C(u, v, c) as the set of simple u-v paths in G with first C-intersecting vertex c ∈ C.

I Lemma 8. For a DAG G with separator (A,B,C) and c ∈ C,

|P ′G,C(s, t, c)| = |P ′G,C(s, c, c)× PG(c, t)|.

ISAAC 2018

56:6 On Counting Oracles for Path Problems

Since there are O(n2) pairs of vertices, we cannot compute |P ′G,C(s, c, c)× PG(c, t)| for
every s, t pair in total O(n1.5) time. However, if we use the fact that |S × T | = |S||T |
for any two sets S and T , we can compute |P ′G,C(s, c, c)| and |PG(c, t)| upfront and leave
summing over all c ∈ C to the query time. Using the CountPaths algorithm from Section
2 we can determine |PG(c, t)| for all c ∈ C in O(|C|n) time for an unweighted DAG. Since
|C| = O(

√
n), we can compute all |PG(c, t)| in O(n1.5) time. It now remains to show that we

can compute |P ′G,C(s, c, c)| in O(n1.5) time.
Directly computing |P ′G,C(s, c, c)| will take O(|A ∪B|n) time. This already is O(n2) and

takes too long. To reduce the running time, we instead count paths from the separator. This
takes O(|C|n) = O(n1.5) time. By reversing the direction of all arcs in the DAG G, the
number of paths between a pair of vertices is preserved. By modifying G, we can guarantee
that only s-c paths with first C-intersecting vertex c remain. We define a new notation for a
specific modification of G that is necessary in computing |P ′G,C(s, c, c)| efficiently.

I Definition 9. Let G be a graph and let (A,B,C) be its separator. For vertex c ∈ C, define
G′c as the graph constructed from G as follows:

V (G′c) = (V (G) \ C) ∪ {c}, and
E(G′c) = {(u, v)|(v, u) ∈ E(G) ∧ u, v ∈ V (G′c)}.

Intuitively, we remove all vertices from the separator which are not the vertex we are
interested in for computing |P ′G,C(s, c, c)|. Since s-c paths with first C-intersecting vertex
c can only have one vertex in the separator, we remove all paths which could intersect
the separator at any other vertex. We also reverse all remaining arcs in the graph. The
relationship between G and G′c, which we prove in the full version of the paper, is as follows:

I Lemma 10. For a DAG G with separator (A,B,C) and c ∈ C, |P ′G,C(s, c, c)| = |PG′
c
(c, s)|.

Lemmas 8 and 10 suggest the following oracle construction algorithm:

Algorithm 2 Build a Path Counting Oracle for DAG G.
procedure ConstructAllPathsOracleDAG(G)

if |V (G)| = 0 then return
find a separator (A,B,C) in G (and store it)
for c ∈ C do

build G′c by removing C \ {c} from G and reversing arcs
call CountPaths(G, c) and store the results as PG[c, v] for every v ∈ V (G)
call CountPaths(G′c, c) and store the results as PG′

c
[c, v] for every v ∈ V (G)

ConstructAllPathsOracleDAG(G[A]), where G[A] is the A-induced subgraph
ConstructAllPathsOracleDAG(G[B])

To bound the running time of the construction of the oracle, let α be the constant from
the separator definition, used to bound the sizes of the sets A and B. By Theorem 2, α ≤ 2/3
for planar graphs. Then, we get the following recurrence for the running time:

T (n) =
{
T (|A|) + T (|B|) +O(n1.5) ≤ T (αn) + T ((1− α)n) +O(n1.5) if n ≥ 1
O(1) if n = 0

where the O(n1.5) term comes from doing O(
√
n) of the CountPaths computations, and

the inequality is a worst case bound which follows from T ’s convexity. This recurrence can
be evaluated using the Akra-Bazzi Method [2]. Trivially, the p value for which (

∑
i aib

p
i = 1)

I. Bezáková and A. Searns 56:7

is 1, since a0 = a1 = 1, b0 = α, and b1 = 1− α. Since p = 1, the recurrence is evaluated as
follows:

T (n) = O

(
n1
(

1 +
∫ n

1

u1.5

u2 du

))
= O(n1.5).

We note that in many cases both the running time and the space requirements can be
significantly smaller, for example for graphs with O(1) size separators such as outerplanar
graphs.

At each recursive call of the oracle construction we store, for each c ∈ C, both PG[c, v] and
PG′

c
[c, v]. This results in O(|C|n) = O(n1.5) space per recursive call, yielding the following

recurrence for the total space needed by the oracle: S(n) = S(A) + S(B) +O(n1.5). This is
exactly the same recurrence as the one for the running time of building the oracle. Thus, the
amount of space needed to store the oracle is O(n1.5).

3.2 Querying the Oracle

To query the oracle, we essentially compute
∑

c∈C PG′
c
[c, s]PG[c, t] for each depth until (and

including) s and t become separated by the separator. This can be done using the following
algorithm:

Algorithm 3 Query the #PATH-DAG-ORACLE.
procedure QueryPaths(G, s, t)

numPaths = 0
while (s, t ∈ A) or (s, t ∈ B), where (A,B,C) is the stored separator of G do

for c ∈ C do
numPaths+ = PG′

c
[c, s]PG[c, t]

if s, t ∈ A then G = G[A]
else G = G[B]

for c ∈ C do
numPaths+ = PG′

c
[c, s]PG[c, t]

This algorithm relies on Lemmas 8 and 10. For any position of s and t, the paths from s

to t can be split into two groups: those that intersect C and those that do not. The paths
that intersect C contribute

∑
c∈C |PG′

c
(c, s)||PG(c, t)| =

∑
c∈C PG′

c
[s, c]PG[t, c]. Notice that

this computation holds also in the case when s ∈ C (in which case |PG′
c
(c, s)| = 1 for c = s

and |PG′
c
(c, s)| = 0 for every other c), or when t ∈ C (in which case |PG(c, t)| = 1 for c = t

and |PG(c, t)| = 0 for every other c). The paths that do not intersect C, which occur only
when s and t are either both in A or both in B, are entirely contained within G[A] or G[B].
Hence, it suffices to recurse on the respective side of the graph.

It remains to analyze the running time of the query algorithm. Since the oracle has
already been computed, the addition steps each take O(1) time. The running time of this
algorithm is bounded by the maximum depth before s and t are split by a separator and by
the number of vertices in a separator at each depth. Since the separator is balanced, we have
T (n) ≤ T (αn) + O(

√
n). With a simple application of the Master Theorem, the running

time of a query is O(
√
n). This concludes the proof of Theorem 5.

ISAAC 2018

56:8 On Counting Oracles for Path Problems

4 Counting Oracle for Shortest Paths in Planar Graphs

We have shown that an oracle can be built for planar DAGs for counting the number of
paths between any pair of vertices. In this section, we prove the existence of a similar data
structure for shortest paths on any planar graph with positive edge weights. As noted in
Observation 1, if all edge weights are positive, then shortest paths must be simple. We first
prove shortest path versions of Lemmas 8 and 10. For notational convenience, we define two
relevant sets of shortest paths:

I Definition 11. For a positively weighted graph G = (V,E,w) with a separator (A,B,C)
and vertices u and v, define:

QG(u, v) as the set of shortest paths from u to v in G, and
Q′G,C(u, v, c) as the set of shortest paths from u to v in G with first C-intersecting vertex
c ∈ C.

Note that the paths in QG(u, v) are always simple by Observation 1. However, the paths
in Q′G,C(u, v, c) do not have to be simple since they are required to pass through a specific
vertex. Next we extend the notion of edge and path lengths to sets:

I Definition 12. Let S be a set of paths in G. We define w(S) as the length of the shortest
path in S. If S = ∅, w(S) =∞.

In particular, w(QG(u, v)) is the length of the shortest u-v path in G, and w(Q′G,C(u, v, c))
is the length of the shortest u-v path in G which has a first C-intersecting vertex c. We make
a note that for some vertices c ∈ C, it may be the case that w(Q′G,C(u, v, c)) > w(QG(u, v)).
However, if s ∈ A and t ∈ B, then there must be some c ∈ C such that w(Q′G,C(u, v, c)) =
w(QG(u, v)) as any shortest path p ∈ QG(u, v) must intersect separator C. There may be
multiple such c, but at least one must always exist.

With these definitions in place, we now give a similar set of lemmas to compute |QG(u, v)|
by computing |Q′G,C(u, v, c)| for all paths that intersect the separator C. For the cases where
s ∈ C or t ∈ C, we note that the s-s and the t-t paths consisting of only one vertex have a
weight of 0. As before, the remaining paths which lie entirely within A or B can be counted
with recursion.

I Lemma 13. For a graph G with separator (A,B,C) and a vertex c ∈ C, |Q′G,C(s, t, c)| =
|Q′G,C(s, c, c)×QG(c, t)| and w(Q′G,C(s, t, c)) = w(Q′G,C(s, c, c)) + w(QG(c, t)).

Proof. To prove the first part, we show a bijection between Q′G,C(s, t, c) and Q′G,C(s, c, c)×
QG(c, t). We map p ∈ Q′G,C(s, t, c) to a pair of paths p1 ∈ Q′G,C(s, c, c) and p2 ∈ QG(c, t) as
follows: let p1 be the s-c sub-path of p and p2 be the c-t sub-path of p. By Observation 1,
both p1 and p2 must be shortest paths. Since we split p at c, p1 only intersects the separator
at c and thus p1 ∈ Q′G,C(s, c, c). Since p2 is a shortest path, p2 ∈ QG(c, t). Also, the map
from p to (p1, p2) is injective by the same argument as in Lemma 8.

Conversely, let path p1 ∈ Q′G,C(s, c, c) and path p2 ∈ QG(c, t). Since both p1 and p2 are
shortest paths, it follows that the path p formed by concatenating p1 and p2 is a shortest
path with respect to all s-t paths with first C-intersecting c. If a shorter s-t path with
C-intersecting vertex c existed, then it either contains a shorter s-c or c-t sub-path than
p1 or p2 respectively2 which contradicts p1 and p2 being shortest paths. Thus for any pair

2 This is not true for all s-t paths. There may be a shorter s-t path with a different first C crossing
vertex. Such a case will be determined by a query by comparing path lengths across the vertices in the
separator.

I. Bezáková and A. Searns 56:9

p1 ∈ Q′G,C(s, c, c) and p2 ∈ QG(c, t), there is a corresponding path p ∈ Q′G,C(s, t, c) which
maps to (p1, p2) by the above map. Thus the map is also surjective.

Since p was formed by concatenating p1 with p2, we have w(p) = w(p1) +w(p2). Because
all paths in each of Q and Q′ have the same weight, w(Q′G,C(s, t, c)) = w(Q′G,C(s, c, c)) +
w(QG(c, t)). J

We next show how to compute |Q′G,C(s, c, c)|. For a graph G with edge weights wG,
construct G′c according to Definition 9 and add weights wG′

c
as follows: for (u, v) ∈ E(G′c)

let wG′
c
(u, v) = wG(v, u). We get the following weighted version of Lemma 10:

I Lemma 14. In a graph G with separator (A,B,C) and a vertex c ∈ C, |Q′G,C(s, c, c)| =
|QG′

c
(c, s)| and w(Q′G,C(s, c, c)) = w(QG′

c
(c, s)).

The last piece we need in order to build an oracle for the number of shortest paths
in a planar graph is a way to compute |QG(u, v)| efficiently. As discussed in Section 2,
in planar graphs we can compute both |QG(u, v)| and w(QG(u, v)) in O(n) time for all
vertices v ∈ V (G) and a source vertex u ∈ V (G). Then, we can build an oracle for counting
shortest paths by mimicking Algorithm 2 where the CountPaths calls get replaced with
CountShortestPaths calls, see Algorithm 1. As before, both construction time for the
oracle and the space needed are O(n1.5) for planar graphs.

Algorithm 4 Build a Shortest Path Counting Oracle for graph G.
procedure ConstructShortestPathOracle(G)

if |V (G)| = 0 then return
find a separator (A,B,C) in G (and store it)
for c ∈ C do

construct graph G′c (see Definition 9, plus add weights)
call CountShortestPaths(G, c)
call CountShortestPaths(G′c, c)
store the respective counts as QG[c, v] and QG′

c
[c, v],

store also the corresponding path lengths as wG[c, v] and wG′
c
[c, v], respectively

ConstructOracle(G[A])
ConstructOracle(G[B])

Querying the oracle requires a few extra conditions, see Algorithm 5, but it can still be
done in time O(

√
n). As we noted before, for some c ∈ C, w(Q′G,C(s, t, c)) may be larger

than w(QG(s, t)). We can detect this by comparing w(Q′G,C(s, c, c))+w(Q′(c, t, G)). Since at
least one c ∈ C must have w(Q′G,C(s, t, c)) = w(QG(s, t)), we can have our query determine
which c satisfy minw(Q′G,C(s, c, c)) + w(QG(c, t) and only add counts from those c. We
assume that the distance results from the SSSP are stored along with the number of shortest
paths as before. We double the amount of space required, but this still falls within O(n1.5)
space.

This analysis leads to the following theorem:

I Theorem 15. For any planar graph G, there exists an oracle for #SHORTPATH-ORACLE
which takes O(n1.5) space, takes O(n1.5) time to construct, and for any pair of vertices
s, t ∈ V (G) the oracle can answer queries about the number of paths from s to t in O(

√
n)

time.

ISAAC 2018

56:10 On Counting Oracles for Path Problems

Algorithm 5 Querying the #SHORTPATH-ORACLE.
procedure QueryPaths(G, s, t)

numPaths = 0
minDist =∞
while (s, t ∈ A) or (s, t ∈ B), where (A,B,C) is the stored separator of G do

for c ∈ C do
if wG′

c
[c, s] + wG[c, t] < minDist then

minDist = wG′
c
[c, s] + wG[c, t]

numPaths = QG′
c
[c, s]QG[c, t]

else if wG′
c
[c, s] + wG[c, t] = minDist then

numPaths+ = QG′
c
[c, s]QG[c, t]

if s, t ∈ A then G = G[A]
else G = G[B]

for c ∈ C do
if wG′

c
[c, s] + wG[c, t] < minDist then

minDist = wG′
c
[c, s] + wG[c, t]

numPaths = QG′
c
[c, s]QG[c, t]

else if wG′
c
[c, s] + wG[c, t] = minDist then

numPaths+ = QG′
c
[c, s]QG[c, t]

5 Generalizing the Oracle

In this section, we relax the constraints of the previous sections to generalize the oracle data
structure. The constraints we require are as follows:

G has positive edge weights, and
G has an (α, f(n))-balanced (A,B,C) separator which can be found in time O(g(n)).

Then, we can use Algorithms 1-5 (in fact, Algorithm 1 works for any graph and does
not require separators) as stated and the proofs of correctness still hold. However, we need
to rework the running time estimates and space bounds. The running time of the oracle
construction is given by the following recurrence, where TSSSP (n) denotes the running time
of SSSP:

T (n) ≤ T (αn) + T ((1− α)n) +O(TSSSP (n)f(n)) +O(g(n)).

For simplicity, let us express the additive term as f̂(n). As before, this recurrence can be
evaluated using the Akra-Bazzi Method. Again, the p value for which

∑
i aib

p
i = 1 is 1. (Take

a0 = a1 = 1, b0 = α, and b1 = 1− α.) With p = 1, the recurrence is evaluated as follows:

T (n) = Θ
(
x1
(

1 +
∫ x

1

f̂(u)
u2 du

))
.

This splits nicely into three cases.
1. If f̂(n) = o(n), then T (n) = Θ(n).
2. If f̂(n) = Θ(n loga n), then T (n) = Θ(n loga+1 n).
3. If for every a we have f̂(n) = ω(n loga n), then T (n) = Θ(f̂(n)).

I. Bezáková and A. Searns 56:11

Therefore, the running time of the oracle construction can be determined using f̂(n) =
O(TSSSP (n)f(n))+O(g(n)). The space requirement of this algorithm is f̂(n) = O(nf(n)+n)
(this can be done by only storing which side of the separator a vertex lies in (A, B, or C),
distances and numbers of paths to a vertex for each vertex in the separator.

In real applications of this oracle, case 1 will never occur as running SSSP takes Ω(n)
time in any graph. However, case 2 may occur. In fact, for outerplanar graphs, which have
m = O(n) (since they are planar) but which also have O(1) separators, case 2 applies, giving
a running time of O(n logn) to build this oracle and a running time of O(logn) to query it.

The time to query this oracle data structure is given by the following recurrence: T (n) =
T (αn) + 2f(n). As before, we only query A or B until the separator splits vertices s and t.
This recurrence can be evaluated with the Master Theorem giving a query time as follows:
1. If f(n) = o(logn), then T (n) = Θ(logn).
2. If f(n) = Ω(logn), then T (n) = Θ(f(n)).

Putting together all of this, we have the following theorem.

I Theorem 16. Let G be a graph with (α, f(n)) balanced separators which can be found in g(n)
time and let TSSSP (n) be the time needed to solve SSSP for G. Let f̂(n) = TSSSP (n)f(n) +
g(n). An oracle data structure for counting the number of shortest paths in G between any
pair of vertices can be computed in the following time bounds:

f̂(n) Construction Time
o(n) T (n) = Θ(n)
Θ(n loga n) T (n) = Θ(n loga+1 n)
ω(n loga n) for all a T (n) = Θ(f̂(n))

f(n) Query Time
f(n) = o(log n) T (n) = Θ(log n)
f(n) = Ω(log n) T (n) = Θ(f(n))

The space bounds required are O(nf(n) +m).

For classes of graphs with small separators and fast SSSP algorithms (e. g. planar graphs
and graphs of bounded genus) this oracle can improve the running time. We have seen that
for planar graphs, the running time is bounded by O(n1.5) and the query time for O(k)
pairs is given by O(

√
nk). In graphs of bounded genus, SSSP can be done in linear time,

in particular h(g)n for some function h of the genus g and it is possible to find a balanced
separator of size O(√gn). Thus these graphs have path counting oracles which can be found
in O(√gnh(g)n) = O(h(g)g0.5n1.5) time, take O(√gnn) = O(g0.5n1.5) space, and answer
queries in time O(√gn).

I Application. We conclude with mentioning how our oracle provides an improvement in
the running time of the algorithm of Chambers, Fox, and Nayyeri [7] counting minimum
(s, t)-cuts in graphs of bounded genus. Due to space constraints we do not reproduce their
algorithm here but only discuss the parts that are relevant to our improvement of their
original running time of 2O(g)n2. The main component contributing to this running time
(see Section 5.3 in [7]) is iterating through 2O(g) “crossing sequences,” which determine the
different “shapes” of the possible minimum (s, t)-cuts. For each such crossing sequence a
DAG embedded in a surface of the same genus is constructed, and in this DAG one needs
to compute the number of paths between O(n) pairs of vertices. Arithmetic operations
(addition, multiplication) on these numbers then yield the desired number of minimum
(s, t)-cuts. The original work simply bounded the running time needed for these cut-counts as
O(n2), yielding an overall 2O(g)n2 running time. Using our oracle approach, the running time
becomes O(√gn) per query with O(n) queries, totaling 2O(g)√gn1.5 time, which includes the
construction of the 2O(g) oracles. The overall improved running time, including a maximum
flow computation and a triangulation transformation of the input graph (both of which can
be bounded by O(n2)), is then 2O(g)√gn1.5 +O(n2).

ISAAC 2018

56:12 On Counting Oracles for Path Problems

References
1 Ittai Abraham, Shiri Chechik, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.

On Dynamic Approximate Shortest Paths for Planar Graphs with Worst-case Costs. SODA,
pages 740–753, 2016.

2 Mohamad Akra and Louay Bazzi. On the Solution of Linear Recurrence Equations. Com-
putational Optimization and Applications, 10(2):195–210, 1998.

3 Srinivasa Rao Arikati, Danny Z. Chen, L. Paul Chew, Gautam Das, Michiel H. M. Smid,
and Christos D. Zaroliagis. Planar Spanners and Approximate Shortest Path Queries among
Obstacles in the Plane. In Proceedings of Algorithms - ESA ’96, Fourth Annual European
Symposium, pages 514–528, 1996.

4 Michael O. Ball and J. Scott Provan. Calculating Bounds on Reachability and Connect-
nedness in Stochastic Networks. Networks, 13:253–278, 1983.

5 Ivona Bezáková and Adam J. Friedlander. Counting and Sampling Minimum (s, t)-Cuts in
Weighted Planar Graphs in Polynomial Time. Theor. Comp. Sci., 417:2–11, 2012.

6 Sergio Cabello. Many Distances in Planar Graphs. Algorithmica, 62(1-2):361–381, 2012.
7 Erin W. Chambers, Kyle Fox, and Amir Nayyeri. Counting and Sampling Minimum Cuts

in Genus g Graphs. Discrete & Computational Geometry, 52(3):450–475, 2014.
8 Danny Z. Chen and Jinhui Xu. Shortest path queries in planar graphs. In Proceedings of

the Thirty-Second Annual ACM Symposium on Theory of Computing, pages 469–478, 2000.
9 Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wulff-Nilsen. Fast and Compact

Exact Distance Oracle for Planar Graphs. In 58th IEEE Annual Symposium on Foundations
of Computer Science, FOCS, pages 962–973, 2017.

10 Hristo Djidjev. On-Line Algorithms for Shortest Path Problems on Planar Digraphs. In
Proceedings of Graph-Theoretic Concepts in Computer Science, 22nd International Work-
shop, WG, pages 151–165, 1996.

11 Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest
paths, and near linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006.

12 Jörg Flum and Martin Grohe. The Parameterized Complexity of Counting Problems. SIAM
J. Comput., 33(4):892–922, 2004.

13 Pawel Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wulff-Nilsen. Better
Tradeoffs for Exact Distance Oracles in Planar Graphs. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 515–529, 2018.

14 John R. Gilber, Joan P. Hutchinson, and Robert Endre Tarjan. A Separator Theorem for
Graphs of Bounded Genus. Journal of Algorithms, 5(3):391–405, 1984.

15 Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian. Faster
Shortest-Path Algorithms for Planar Graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997.

16 Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979. doi:10.1137/0136016.

17 Matúš Mihalák, Rastislav Šrámek, and Peter Widmayer. Approximately Counting
Approximately-Shortest Paths in Directed Acyclic Graphs. Theory Comput. Syst., 58(1):45–
59, 2016.

18 Shay Mozes and Christian Sommer. Exact distance oracles for planar graphs. In Proceedings
of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,, pages
209–222, 2012.

19 J. Scott Provan and Michael O. Ball. The Complexity of Counting Cuts and of Computing
the Probability that a Graph is Connected. SIAM J. Comput., 12(4):777–788, 1983.

20 Leslie G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM J.
Comput., 8(3):410–421, 1979.

21 Masaki Yamamoto. Approximately counting paths and cycles in a graph. Discrete Applied
Mathematics, 217:381–387, 2017.

http://dx.doi.org/10.1137/0136016

	Introduction
	Related work and applications

	Preliminaries
	Counting Oracle for All Paths in Planar DAGs
	Building the Oracle
	Querying the Oracle

	Counting Oracle for Shortest Paths in Planar Graphs
	Generalizing the Oracle

