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—— Abstract
A phylogenetic tree is a graphical representation of an evolutionary history in a set of taxa
in which the leaves correspond to taxa and the non-leaves correspond to speciations. One of
important problems in phylogenetic analysis is to assemble a global phylogenetic tree from smaller
pieces of phylogenetic trees, particularly, quartet trees. QUARTET COMPATIBILITY is to decide
whether there is a phylogenetic tree inducing a given collection of quartet trees, and to construct
such a phylogenetic tree if it exists. It is known that QUARTET COMPATIBILITY is NP-hard but
there are only a few results known for polynomial-time solvable subclasses.

In this paper, we introduce two novel classes of quartet systems, called complete multipartite
quartet system and full multipartite quartet system, and present polynomial time algorithms for
QUARTET COMPATIBILITY for these systems. We also see that complete/full multipartite quartet
systems naturally arise from a limited situation of block-restricted measurement.
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1 Introduction

A phylogenetic tree for finite set [n] := {1,2,...,n} is a tree T = (V, E) such that the set of
leaves of T' coincides with [n] and each internal node V' \ [n] has at least three neighbors.
A phylogenetic tree represents an evolutionary history in a set of taxa in which the leaves
correspond to taxa and the non-leaves correspond to speciations. One of important problems
in phylogenetic analysis is to assemble a global phylogenetic tree on [n] (called a supertree)
from smaller pieces of phylogenetic trees on possibly overlapping subsets of [n]; see [17,
Section 6].

A quartet tree (or quartet) is a smallest nontrivial phylogenetic tree, that is, it has four
leaves (as taxa) and it is not a star. There are three quartet trees in set {a,b,c,d}, which
are denoted by abl|cd, ac||bd, and ad||bc. Here abl|cd represents the phylogenetic tree such
that a and b (¢ and d) are adjacent to a common node; see Figure 1. Quartet trees are
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used for representing substructures of a (possibly large) phylogenetic tree. A fundamental
problem in phylogenetic analysis is to construct a phylogenetic tree having given quartets as
substructures. To introduce this problem formally, we need some notations and terminologies.
We say that a phylogenetic tree T displays a quartet ab||cd if the simple paths connecting
a,b and ¢,d in T, respectively, do not meet, i.e., ab||cd is the “restriction” of T to leaves
a, b, ¢, d; see Figure 2. By a quartet system on [n] we mean a collection of quartet trees whose
leaves are subsets of [n]. We say that T' displays a quartet system Q if T' displays all quartet
trees in Q. A quartet system Q is said to be compatible if there exists a phylogenetic tree
displaying Q. Now the problem is formulated as:

Quartet Compatibility

Given: A quartet system Q.

Problem: Determine whether Q is compatible or not. If it is compatible, obtain a phylogenetic
tree T displaying Q.

QUARTET COMPATIBILITY has been intensively studied in computational biology as well
as theoretical computer science, particularly, algorithm design and computational complexity.
After a fundamental result by Steel [18] on the NP-hardness of QUARTET COMPATIBILITY,
there have been a large amount of algorithmic results, e.g., efficient heuristics [13, 19],
approximation algorithms [3, 4, 12], and parametrized algorithms [7, 10].

In contrast, there are only a few results known for polynomial-time solvable special
subclasses:

Colonius—Schulze [8] established a complete characterization to the abstract quaternary

relation N (neighbors relation) obtained from a phylogenetic tree T by: N(a,b, ¢, d) holds

if and only if T displays quartet tree ab||lcd. By using this result, Bandelt—Dress [2]

showed that if, for every 4-element set {a, b, ¢, d} of [n], exactly one of ab||cd, ac||bd, and

ad||cd belongs to Q, then QUARTET COMPATIBILITY for Q can be solved in polynomial
time.

Aho—Sagiv—Szymanski-Ullman [1] devised a polynomial time algorithm to find a rooted

phylogenetic tree displaying the input triple system. By using this result, Bryant—Steel [5]

showed that, if all quartets in Q have a common label, then QUARTET COMPATIBILITY

for Q can be solved in polynomial time.
Such results are useful for designing experiments to obtain quartet information from taxa,
and also play key roles in developing supertree methods for (incompatible) phylogenetic trees
(e.g., [16]).

In this paper, we present two novel tractable classes of quartet systems. To describe
our result, we extend the notions of quartets and quartet systems. In addition to ab||cd,
we consider symbol abled as a quartet, which represents the quartet tree ab||cd or the star
with leaves a, b, ¢, d; see Figure 1. This corresponds to the weak neighbors relation in [2, 8],
and enables us to capture a degenerate phylogenetic tree in which internal nodes may have
degree greater than 3. In a sense, ablcd means a “possibly degenerate” quartet tree such that
the center edge can have zero length. We define that a phylogenetic tree T displays ablcd
if the simple paths connecting a,b and c¢,d in T, respectively, meet at most one node, i.e.,
the restriction of T to a,b,c,d is ab||cd or star; see Figure 2. Then the concepts of quartet
systems, displaying, compatibility, and QUARTET COMPATIBILITY are naturally extended.
A quartet system Q is said to be full on [n] if, for each distinct a, b, c,d € [n], either one of
abl|cd, ac||bd, ad||bc belongs to Q or all ab|cd, aclbd, ad|bc belong to Q. The latter situation
says that any phylogenetic tree displaying Q should induce a star on a, b, ¢, d. Actually the
above polynomial-time algorithm by Bandelt-Dress [2] works for full quartet systems.
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abl|ed acl||bd ad||bc {
a c a b ia b a c
b d ¢ d id c b d
ad|be

Figure 1 The quartets ab||cd, ac||bd, and ad||bc represent the first, second, and third phylogenetic
trees for a, b, ¢, d from the left, respectively. ad|bec, for example, represents one of the two phylogenetic
trees in the dotted curve, that is, ad||bc or the star graph with leaves a, b, ¢, d.

13|79, 13|79
13|46, 14|36, 16|34

Figure 2 An example of phylogenetic tree T for {1,2,...,9}. T displays, for example, 13|79, 13|79,
and 13|46, 14|36, 16|34.

Full quartet systems may be viewed as a counter part of complete graphs. We introduce
multipartite counterparts for quartet systems. A quartet system Q is said to be complete
bipartite relative to bipartition {A, B} of [n] with min{|A|,|B|} > 2 if, for all distinct a,a’ € A
and b,0' € B, Q has exactly one of

ab||a’t’, ab'||a’b, aa’ bV, (1)
and every quartet in Q is of the above form (1). Note that every phylogenetic tree displays
exactly one of three quartets in (1). We next introduce a complete multipartite system. Let
A:={A1,As,..., A} be a partition of [n] with |A;| > 2 for all ¢ € [r]. A quartet system Q
is said to be complete multipartite relative to A or complete A-partite if Q is represented
as |, <i<j<r Q;; for complete bipartite quartet systems Q;; on A; U A; with bipartition
{A;, A;}. A quartet system Q is said to be full multipartite relative to A or full A-partite if
Q is represented as Qo U Q1 U---U Q,., where Qg is a complete A-partite quartet system
and Q; is a full quartet system on A; for each ¢ € [r]. Our main result is:

» Theorem 1.1. If the input quartet system Q is complete A-partite or full A-partite, then
QUARTET COMPATIBILITY can be solved in O(|A|n*) time.

The result for full A-partite quartet systems extends the above polynomial time solvability
for full quartet systems by [2]. Also this result has some insights on supertree construction
from phylogenetic trees on disjoint groups of taxa. In such a case, we have a full system on
each group. Another possible application is given as follows.
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Application: Inferring a phylogenetic tree from block-restricted measurements. Quartet-
based phylogenetic tree reconstruction methods may be viewed as qualitative approximations
of distance methods that construct a phylogenetic tree from (evolutionary) distance ¢ : [n] x
[n] = R4 among a set [n] of taxa. Here R denotes the set of nonnegative real values. The
distance ¢ naturally gives rise to a full quartet system Q as follows. Let Q := () at first. For all
distinct a, b, ¢, d € [n], add ab||ed to Q if §(a, b)+d(c,d) < min{d(a, c)+d(b,d),d(a,d)+d(b,d)}.
See [9, 14]. Then Q becomes a full quartet system, after adding ablcd, ac|bd, ac|bd if none of
abl|ed, ac||bd, ac||bd belong to Q. If § coincides with the path-metric of an actual phylogenetic
tree T' (with nonnegative edge-length), then § obeys the famous four-point condition on all
four elements a, b, ¢, d [6]:

(4pt) the larger two of §(a,b) + d(c,d), é(a,c) + 6(b,d), and §(a,d) + (b, c) are equal.

In this case, the above definition of quartets matches the neighbors relation of 7. Thus, from
the full quartet system Q, via the algorithm of [2], we can recover the original phylogenetic
tree T (without edge-length).

Next we consider the following limited situation in which complete/full A-partite quartet
systems naturally arise. The set [n] of taxa is divided into r groups Ay, As,..., A, (with
|A;| > 2). By reasons of the cost and/or the difficulty of experiments, we are limited to
measure the distance between a € A; and b € A; via different methods/equipments depending
on 7,j. Namely we have (;) distance functions d;; : A; x A; = R4 for 1 <4 < j <r but it
is meaningless to compare numerical values of d;; and 6,7, for {¢,7} # {¢’,j'}. A complete
A-partite quartet system Q is obtained as follows. For distinct 4, j, define complete bipartite
quartet system Q;; by: for all distinct a,a’ € A; and b,b’ € A; it holds

ab||a'b/ S Qij if 5ij (CL, b) + 5ij (CL/, b,) < 61’] (a, b/) + 51']' (a/, b),
ab’| |a'b € Qij if (51']' (a, b) + (5” (a’, b/) > (Sij (a, b/) + (Sij (a’, b),
=d;(a

aa’|bb' € Qij if 5ij (a, b) + 5ij ((L/, bl) ij( s b/) + (51']' (a’, b)

Then Q := U1§i<j§r Q;; is a complete A-partite quartet system.

This construction of complete A-partite quartet system Q is justified as follows. Assume
a phylogenetic tree T' on [n] with path-metric . Assume further that each J;; is linear on 4,
i.e., d;; is equal to «;;6 for some unknown constant «;; > 0. By (4pt), the situation d;;(a, b) +
8;j(a’,b') < 6;5(a,b')+6;5(a’,b) implies 6(a, b)+0(a’, V') < §(a,b')+0(a’,b) = d(a,a’)+0(a,b’),
and implies that T displays ab||a’d’. The situation 0;;(a,b) + ;;(a’, V') = d;5(a,b’) + 6;;(a’, b)
implies d(a, b) + 6(a’,b’) = 6(a,b’) +6(a’,b) > §(a,a’) 4+ 6(a, V'), and implies that T displays
aa’|bt’. Thus, by our algorithm, we can construct a phylogenetic tree 7" “similar” to T in
the sense that 77 and T produce the same result under our limited measurement.

Suppose now that we have additional r distance functions §; : A; x A; = Ry for i € [r].
In this case, we naturally obtain a full A-partite quartet system. Indeed, define full quartet
system Q; on A; according to J; as in the first paragraph. Then Q := U1§i<j§r Qi U
Ui <i<, Qi is a full A-partite quartet system to which our algorithm is applicable.

Organization. QUARTET COMPATIBILITY can be viewed as a problem of finding an appro-
priate laminar family. We first introduce a displaying concept for an arbitrary family of
subsets, and then divide QUARTET COMPATIBILITY into two subproblems: The first is to
find a family displaying the input quartet system, and the second is to transform the family
into a desired laminar family. For the second, we utilize the laminarization algorithm de-
veloped by Hirai-Twamasa-Murota-Zivny [11] for a completely irrelevant problem in discrete
optimization. In Sections 2 and 3, we show the result for complete and full multipartite
quartet systems, respectively. The omitted proofs will be given in the full version of this

paper.
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Preliminaries. A family £ C 2[n] i said to be laminar if X C Y, XDOY, or XNY =90
holds for all X,Y € L. A phylogenetic tree can be encoded into a laminar family as follows.
Let T = (V, E) be a phylogenetic tree for [n]. By deleting internal edge e € E, the tree
T is separated into two connected components, and so is [n]. We denote by {X,,Y.} the
bipartition induced by e. By choosing either X, or Y, appropriately for each internal edge
e € E, we can construct a laminar family £ on [n] with min{|X]|, |[n]\ X|} > 2 for all X € L.
Conversely, let £ on [n] be a laminar family with min{|X|, |[n]\ X|} > 2 for all X € £. Then
we construct the set £ := {{X,[n]\ X} | X € L} of bipartitions from £. It is known [6] that,
for such £, there uniquely exists a phylogenetic tree that induces L.

2 Complete multipartite quartet system

2.1 Displaying and Laminarization

In this subsection, we explain that QUARTET COMPATIBILITY for complete multipartite
quartet systems can be divided into two subproblems named as DISPLAYING and LAMINAR-
IZATION. Let A := {A;, As,..., A} be a partition of [n] with |A;| > 2 for all ¢ € [r], and Q
be a complete A-partite quartet system. We say that a family F C 2" displays Q if, for all
distinct 4,5 € [r], a,a’ € A;, and b, b’ € A;,

ab||a’b’ € Q <= there is X € F satisfying a,b € X Za',0/ or a,b ¢ X 3d',¥'.

We can easily see that, if £ is laminar, then £ displays exactly one complete A-partite
quartet system Q. Furthermore, such Q is the same as the one displayed by the phylogenetic
tree corresponding to £. Thus QUARTET COMPATIBILITY for a complete A-partite quartet
system Q can be viewed as the problem finding a laminar family £ displaying Q if it exists.

It can happen that different families may display the same complete A-partite quartet
system. To cope with such complications, we define an equivalence relation ~ on sets
X, Y C[n] by: X ~Y if {X} and {Y} display the same complete A-partite quartet system.
Let [X]:={Y C[n]| X ~Y} for X C[n]. Aset X C [n]is called an A-cut if X £ 0, i.e.,
X & [0]. For X C [n], define

(X) = J{Aie A10#£XNA #A}. (2)

One can see that X is an A-cut if and only if § # X N A; # A; holds for at least two i € [r],
ie., (X) D A; UA, for some distinct ¢,j € [r]. We consider only A-cuts if the input quartet
system Q is complete A-partite. Indeed, let F be a family and F’ the A-cut family in F.
Then both F and F’ display the same complete A-partite quartet system.

One can see that, for A-cuts X,Y, it holds that X ~ Y < {{(X) N X, (X)\ X} =
{Y)nY,(Y)\ Y} The equivalence relation is naturally extended to A-cut families F,G
by: F~G & F/~=G/~, where F/~:={[X]| X € F}. It is clear, by the definition of ~,
that if 7 ~ G then both F and G display the same complete A-partite quartet system. An
A-cut family F is said to be laminarizable if there is a laminar family £ with F ~ L.

By the above argument, QUARTET COMPATIBILITY for a complete A-partite quartet
system Q can be divided into the following two subproblems: (i) if Q is compatible, then
find a laminarizable family F displaying Q, and (ii) if F is laminarizable, then find a laminar
family £ with £ ~ F. (i) and (ii) can be formulated as DISPLAYING and LAMINARIZATION,
respectively.
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Displaying

Given: A complete A-partite quartet system Q.

Problem: Either detect the incompatibility of Q, or obtain some A-cut family F displaying
Q. In addition, if @ is compatible, then F should be laminarizable.

Laminarization

Given: An A-cut family F.

Problem: Determine whether F is laminarizable or not. If F is laminarizable, obtain a
laminar A-cut family £ with £ ~ F.

Here, in LAMINARIZATION, we assume that no distinct X, Y with X ~ Y are contained in F,

ie, |F|=|F/~|
QUARTET COMPATIBILITY for complete multipartite quartet systems can be solved as

follows.
Suppose that Q is compatible. First, by solving DISPLAYING, we obtain a laminarizable
A-cut family F displaying Q. Then, by solving LAMINARIZATION for F, we obtain a
laminar A-cut family £ with £ ~ F. Since £ ~ F, L also displays Q.
Suppose that Q is not compatible. By solving DISPLAYING, we can detect the incom-
patibility of Q or we obtain some A-cut family F displaying Q. In the former case,
we are done. In the latter case, by solving LAMINARIZATION for F, we can detect the
non-laminarizability of F, which implies the incompatibility of Q.

In [11], the authors presented an O(n?)-time algorithm for LAMINARIZATION.
» Theorem 2.1 ([11]). LAMINARIZATION can be solved in O(n*) time.

In Section 2.3, we give an O(rn?)-time algorithm for DISPLAYING (Theorem 2.8). Thus, by
Theorems 2.1 and 2.8, we obtain Theorem 1.1 for complete A-partite quartet systems.

2.2 Algorithm for complete bipartite quartet system

We first construct a polynomial time algorithm for QUARTET COMPATIBILITY for complete
bipartite quartet systems. In the following, A is a bipartition of [n] represented as {A, B}
with min{|A[,|B|} > 2. Note that X is an A-cut if and only if § # X N A # A and
#XNB=#B,and that X ~Y ifand only if X =Y or X = [n]\ Y.

Choose an arbitrary a € [n]. For a compatible bipartite quartet system Q, there is a
laminar A-cut family F displaying Q such that there is no X € F with a € X. The following
proposition implies that such F is unique.

» Proposition 2.2. Suppose that a bipartite quartet system Q is compatible. Then a lamin-
arizable A-cut family F displaying Q is uniquely determined up to ~.

We introduce two notations used in Sections 2.2.1 and 2.2.2. For F C 2["l and X C [n],
we denote {FUX | F € F} by FUX. For C C A and D C B, we denote by Q|c p the set
of quartet trees for ¢, d,d’ (¢,d € C and d,d’ € D) in Q.

2.2.1 Caseof |[A|=2o0r |B|=2

We consider the case of |A| = 2 or |B| = 2. Without loss of generality, we assume A = {ag,a}
with ag # a.

We first explain the idea behind our algorithm (Algorithm 1). Assume that a complete
{{ao, a}, B}-partite quartet system Q is compatible. By Proposition 2.2, there uniquely
exists a laminar {{ag,a}, B}-cut family F displaying Q such that no X € F contains ay.
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This implies that all X € F contains a since F is an {{ao, a}, B}-cut family. Hence, by the
laminarity, F is a chain {By, Ba,...,B,} U{a} with ) =: By C By S B2 € --- C B, €
Bm+1 = B.

Choose an arbitrary b € B. Consider the index k € [m + 1] such that b € By and
b & Bj_1. Partition B into three sets B~ := By_1, B := By \ Bx_1, and BT := B\ By.
The tripartition {B~, B=, BT} can be determined by checking quartets in Q having leaves

ag, a, b:
b € BT < apb|lat’ € Q, (3)
V' € B < b =borapalbt’ € Q, (4)
bV € BY < agb||ab € Q. (5)

Observe that Q|(4,,q},5- is displayed by F~ := {By, ..., Bg_2}U{a} and that Q|(4,.q},5+ is
displayed by F* := {Bgi+1\ Bk, .-, Bm \ B} U{a}. After determining B~, B=, BT, we can
apply recursively the same procedure to Q|¢q, a3, 5- and Ql{q,.q},5+, and obtain F~ and F+.
Combining them with By, = B=UB™ and Bx_1 = B~, we obtain F = {By, Ba, ..., B, }U{a}
as required.

The formal description of Algorithm 1 is the following;:

Algorithm 1 (for complete {{ag, a}, B}-partite quartet system with pivot a).

Input: A complete {{ap, a}, B}-partite quartet system Q.

Output: Either detect the incompatibility of Q, or obtain the (unique) laminar {{ao,a}, B}-
cut family F displaying Q such that no X € F contains ag.

Step 1: If Q =, that is, | B| is at most one, then output the emptyset and stop.

Step 2: Choose an arbitrary b € B. Define B, B=, and B™ as (3), (4), and (5), respectively.

Step 3: If Algorithm 1 for Q. 4},p+ With pivot a detects the incompatibility of Q|¢4,.43,5+
or Algorithm 1 for Q|¢,, 41,5~ With pivot a detects the incompatibility of Q|;4,.43,5-
then output “Q is not compatible” and stop. Otherwise, let 7+ and F~ be the output
families of Algorithm 1 for Q|;4,.a},5+ and for Ql¢,, q},5-, respectively. Define

Fi=F U(FruB-UB))U({B~,B-UB~}\{0,B})U{da}).

Step 4: If F displays Q, then output F. Otherwise, output “Q is not compatible.”

» Proposition 2.3. Algorithm 1 solves QUARTET COMPATIBILITY for a complete {{ag,a}, B}-
partite quartet system Q in O(|Q|) time.

2.2.2 General case

We consider general complete bipartite quartet systems; A is a bipartition {A, B} of [n]. As
in Section 2.2.1, we first explain the idea behind our algorithm (Algorithm 2). Assume that
a complete A-partite quartet system Q is compatible. By Proposition 2.2, there uniquely
exists a laminar A-cut family F displaying Q such that no X € F contains ag.

Define 7 as the output of Algorithm 1 for Q|4 43,5 With pivot a. Since Ql(4,.q},5 18
displayed by {X N B | a € X € F}U{a}, it holds that F* = {X NB|ac X € F}U{a}
by Propositions 2.2 and 2.3. Define FNB := {XNB | X € F}. It can be easily seen
that 7N B = U,ea\ (40} X N B | X € F}. In the following, we consider to combine F“s
appropriately.
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Take any D € FN B, and define Ap := {a € A\ {ao} | {a}UD € F°}. By the laminarity
of F, Ap U D is the unique maximal set X in F such that X N B = D. Hence we can
construct the set G := {ApUD | D e FNB} C F from F* (a € A\ {ap}). Note that G is
laminar.

All the left is to determine all nonmaximal sets X € F with X N B = D for each
D € FnN B. Fix an arbitrary D € F N B. Observe that, by the laminarity of F, the set
{XeF|XNB=D}isachain {X;,Xs,..., X} with X C Xo C---C X, = ApUD.
We are going to identify this chain with the help of Algorithm 1. Let X~ := | J{X' € G |
X' € X}, and choose an arbitrary by € B\ D and b € D. Note that X; 2 X~ by the
laminarity of F. We first consider the easier case X1 N A 2 X~ N A. Then apply Algorithm 1
t0 Ql A\ x— {bo,p} and obtain {(X1\ X7)NA, (X2 \ X7)NA,..., (X \ X7)N A} LI {bo, b}
(that displays Q|4 ,\x— {bo,b})- From this we obtain {X1, Xs,..., X,,}, as required.

Next consider the case X1 N A = X~ N A. In this case, by applying Algorithm 1
to Qla,\x— {bo,b}, We only obtain {(Xo \ X7)NA,... (X, \ X7) N A} U {bo, b}, and
hence {Xs, ..., X, }. Therefore we need to construct X; individually as follows. Pick any
a € X~ N A and retake b from D \ X’ for maximal X’ € G with a € X’ C X~. For
a € (X, \ X7)N A, it cannot happen that abg||la’b € Q since all X € F containing a’, b
also include a. Furthermore we can say that ab||a’by € Q if and only if o’ & X1(3 a,b). This
implies that aa’|bbg € Q if and only if o’ belongs to X;. Hence it holds that X is the union
of X~ UD and all elements o’ € Ap \ X~ with aa’|byb € Q.

The formal description of Algorithm 2 is the following; note that, if F is laminar, then
|F| is at most 2n (see e.g., [15, Theorem 3.5]).

» Proposition 2.4. Algorithm 2 solves QUARTET COMPATIBILITY for a complete bipartite
quartet system Q in O(|Q|) time.

2.3 Algorithm for complete multipartite quartet system

In this subsection, we present a polynomial time algorithm for complete multipartite quartet
systems. First we introduce some notations before giving the outline of our proposed algorithm
(Algorithm 4). Let A := {A;, As,..., A} be a partition of [n] with |A;| > 2 for all i € [r].
For the analysis of the running-time of Algorithm 4, we assume |A;| > |As| > -+ > |A,|.
For R C [r] with |R| > 2, let Ar := {Ai}icr and Ar := [J;cp Ai. For complete A-
partite quartet system Q = U1§i<j§r Q;j;, define Qp = Ui,jeR,i<j Q;;. That is, Qg
is the complete Ag-partite quartet system included in Q. For A-cut family F, define
Fr:={XNAgr | X € Fsuch that X N Ar is an Ag-cut}. Note that Fp is an Ag-cut
family. Then we can easily see the following lemma, which says that partial information Fpr
of F can be obtained from Qg.

» Lemma 2.5. Suppose R C [r] with |R| > 2. If Q is displayed by F, then Qg is displayed
by Fr. Furthermore, if Q is compatible, then so is Qg.

Our algorithm for DISPLAYING is to construct an Apj-cut family F; displaying Qj for
t=2,3,...,r in turn as follows.

First we obtain an Ay oy-cut family 5 displaying Q12 by Algorithm 2.

For t > 2, we can extend an Ap,_q)-cut family F;_; displaying Qp;_1j to an Apj-cut family

Fy displaying Q) by Algorithm 3. In order to construct F; in Algorithm 3, we use

an Ag; n-cut family G; displaying Qy; for all i € [t — 1]. These G; can be obtained by

Algorithm 2.

We perform the above extension step for t = 3 to ¢ = r, and then obtain a desired A-cut

family F := F,.. This is described in Algorithm 4.
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Algorithm 2 (for complete bipartite quartet system).

Input: A complete bipartite quartet system Q.

Output: Either detect the incompatibility of Q, or obtain a laminar A-cut family F displaying
Q.

Step 1: Fix an arbitrary ap € A. For each a € A\ {ap}, we execute Algorithm 1 for
Ql{ao,a},B With pivot a. If Algorithm 1 outputs “Q|(4,,q},5 is N0t compatible” for some a,
then output “Q is not compatible” and stop. Otherwise, obtain the output F* for each a.

Step 2: Let G := (. For each a € A\ {ao}, update G as

G+« {XeF*|BY € G such that XN B =Y N B}
U{Y € G|#X € F* such that XN B =Y N B}
U({Y € G|3X € F*such that XN B=Y NB}U{a}).

If |G| > 2n for some a, then output “Q is not compatible” and stop.
Step 3: If G is not laminar, then output “Q is not compatible” and stop. Otherwise, define
F :=G. For each X € G, do the following;:
3-1: Let X~ = J{X' € G| X' C X}, and choose an arbitrary by € B\ X and b € X N B.
3-2: Execute Algorithm 1 for Q|x\x-)na, {bo,p} With pivot b. If Algorithm 1 outputs
“Ql(x\X~)NA,{bo,b} 18 NOt compatible,” then output “Q is not compatible” and stop.
Otherwise, define

‘H := the output family of Algorithm 1U (X~ U (X N B)).

If X~ # (), then go to Step 3-3. Otherwise, go to Step 3-4
3-3: Choose an arbitrary a € X~ N A and retake b from (X \ X’)N B for maximal X’ € G
with a € X’ C X~. Define X; :=X"U(XNB)U{a' € (X\X7)NA|ad|bb € Q}.
If X7 is not included in the minimal element in 4, then output “Q is not compatible”
and stop. Otherwise, update H + H U {X;}.
3-4: F +— FUH.
Step 4: If F displays Q, then output F. Otherwise, output “Q is not compatible.”

As a compatible complete bipartite quartet system (Proposition 2.2), a compatible
complete multipartite quartet system Q induces some kind of uniqueness of a laminarizable
family displaying Q, which ensures the validity of our proposed algorithm.

» Proposition 2.6. Suppose that a complete A-partite quartet system Q is compatible. Then
a minimal laminarizable A-cut family F displaying Q is uniquely determined up to ~.

Algorithm 3 constructs a minimal laminarizable family F; displaying Q) from a minimal
laminarizable family F; ; displaying Qp;_;;. We define a partial order relation < in A-cuts
by: X <Y if (X) C(Y)and {(X)NX,(X)\ X} ={(X)NY,(X)\Y}. Define X <Y by
X <Y or X =Y. For nonempty R C [r], we define ~p for A-cuts by:

X~pY = {(Nrn X, (X)p\X}={(Y)rNY,(Y)r\Y},

where (X)p := (X) N Ag and (Y)r := (Y) N Ag; recall (2) for the notation (X). We
abbreviate {i1,i2,...,ix} as 414z i for distinct i1,4a,...,9,. It is noted that, if F is
laminarizable and X ¢ Y for all distinct X,Y € F, then |F| is at most 2n = 2|A,|.

The following proposition shows that Algorithm 3 actually works.
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Algorithm 3 (for extending F’ to F).

Input: An A-cut family F" with |F'| < 2|A[._y| displaying Qp._q).

Output: Either detect the incompatibility of Q, or obtain A-cut family F with |F| < 2n =
2|Ap,| displaying Q.

Step 1: For each i € [r — 1], execute Algorithm 2 for Q,,.. If Algorithm 2 returns “Q;,. is not
compatible” for some i € [r — 1], then output “Q is not compatible” and stop. Otherwise,
obtain G; for all ¢ € [r — 1]. Let F := ).

Step 2: If 7' = (), update as F + F U Uie[rfl] G;, and go to Step 3. Otherwise, do the
following: Take any X' € F'. Let {i1,42,...,9} be the set of indices i € [r — 1] with
(X') = Aiyiy..qp,- Let FX' be the set of maximal A-cuts Y with respect to < such that

there is R C {i1,i2,...,i} with (Y) = Apyqry and Y ~p X', and
there are X; € G; with Y ~;, X; for all i € R.
Then update as F + FU{X'}UFX and F' « F'\ {X'}, and go to Step 2.

Step 3: Update as

F < the set of maximal elements in F with respect to <.

If |F| < 2n, then output F. Otherwise, output “Q is not compatible.”

» Proposition 2.7. If Algorithm 8 outputs F, then F displays Q. In addition, if Q is
compatible and F' is a minimal laminarizable A}, _yj-cut family displaying Qj,_yj, then F is
a minimal laminarizable A-cut family.

Our proposed algorithm for DISPLAYING is the following.

Algorithm 4 (for DISPLAYING).

Step 1: Execute Algorithm 2 for Qpo. If Algorithm 2 returns “Q75 is not compatible,” then
output “Q is not compatible” and stop. Otherwise, obtain F5.

Step 2: For t = 3,...,r, execute Algorithm 3 for F;_;. If Algorithm 3 returns “Qy, is not
compatible,” then output “Q is not compatible” and stop. Otherwise, obtain F;.

Step 3: Output F := F,.

» Theorem 2.8. Algorithm 4 solves DISPLAYING in O(rn*) time. Furthermore, if the input
1s compatible, then the output is a minimal laminarizable A-cut family.

3  Full multipartite quartet system

3.1 Full Displaying and Full Laminarization

As in Section 2.1, we see that QUARTET COMPATIBILITY for full multipartite quartet systems
can be divided into two subproblems named as FULL DISPLAYING and FULL LAMINARIZATION.
The outline of the argument is the same as the case of complete multipartite quartet systems
in Section 2.1. We say that a family F C 2[" displays a full quartet system Q on finite set
A C [n] if for all distinct a, b, c,d € A,

ablled € Q <= there is X € F satisfying a,b € X F¢,dor a,b ¢ X 3¢, d.

Let A:= {A;, As,..., A} be a partition of [n] with |4;] > 2 for all i € [r]. We also say that
F displays a full A-partite quartet system Q = QqgU Q1 U---U Q,., where Qg is complete
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A-partite and Q; is full on A; for each i € [r], if F displays all Qg, Qy,...,Q,. Thus
QUARTET COMPATIBILITY for full A-partite quartet system Q can also be viewed as the
problem of finding a laminar family £ displaying Q if it exists.

We also introduce an equivalent relation ~ on sets X,Y C [n] by: X ~ Y if the families
{X} and {Y'} display the same full A-partite quartet system. A set X C [n] is called a
weak A-cut if X % (. One can see that X is a weak A-cut if and only if X is an A-cut, or
(X) = A; for some i € [r] and min{|X],|4; \ X|} > 2. One can see that, for weak A-cuts
X,Y,it holds that X = Y & {{X)N X, (X)\ X} = {{Y)NY,(Y)\ Y}. The equivalence
relation is extended to weak A-cut families F,G by: F = G & F/~ = G/~, where F/~ is
defined as in Section 2.1. A weak A-cut family F is said to be laminarizable if there is a
laminar family £ with F ~ L. Note that an A-cut is a weak A-cut, and for A-cuts or A-cut
families, the equivalence relations ~ and =~ are the same.

By the same argument as in Section 2.1, QUARTET COMPATIBILITY for a full A-partite
quartet system Q can be divided into the following two subproblems.

Full Displaying

Given: A full A-partite quartet system Q.

Problem: Either detect the incompatibility of Q, or obtain some weak A-cut family F
displaying Q. In addition, if Q is compatible, then F should be laminarizable.

Full Laminarization
Given: A weak A-cut family F.
Problem: Determine whether F is laminarizable or not. If F is laminarizable, obtain a
laminar weak A-cut family £ with £ ~ F.
Here, in FULL LAMINARIZATION, we assume that no distinct X,Y with X ~ Y are contained
in F, ie., |F| =|F/~|
FULL LAMINARIZATION can be solved in O(n*) time by reducing to LAMINARIZATION.

» Theorem 3.1. FULL LAMINARIZATION can be solved in O(n*) time.
In Section 3.2, we give an O(rn*)-time algorithm for FULL DISPLAYING (Theorem 3.3). Thus,

by Theorems 3.1 and 3.3, we obtain Theorem 1.1 for full A-partite quartet systems.

3.2 Algorithm for full multipartite quartet system

Our proposed algorithm for full multipartite quartet systems is devised by combining
Algorithm 4 for complete multipartite quartet systems and an algorithm for full quartet
systems. For full quartet system Q, it is known [2] that QUARTET COMPATIBILITY can be

solved in linear time of |Q|, and that a phylogenetic tree displaying Q is uniquely determined.

By summarizing these facts with notations introduced in this paper, we obtain the following.

» Theorem 3.2 ([2, 8]). Suppose that Q is full on [n]. Then QUARTET COMPATIBILITY can
be solved in O(|Q|) time. Furthermore, if Q is compatible, then a weak {[n]}-cut family F
displaying Q is uniquely determined up to =.

Let A := {41, As,..., A} be a partition of [n] with |4;] > 2 for all ¢ € [r]. Suppose
that a full A-partite quartet system Q = Qo U Q; U ---U Q,. is compatible. Then we can
obtain a minimal laminarizable A-cut family F; displaying Qp and laminar weak .A-cut
families £; C 24¢ displaying Q; for i € [r]. By combining Fy, L, ..., L, appropriately, we
can construct a minimal laminarizable weak A-cut family displaying Q as follows.
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Algorithm 5 (for FULL DISPLAYING).

Input: A full A-partite quartet system Q@ = Qo U Q1 U---U Q,.

Output: Either detect the incompatibility of Q, or obtain weak A-cut family F displaying
Q.

Step 1: Solve DISPLAYING for Qg by Algorithm 4 and QUARTET COMPATIBILITY for Q; for
i € [r]. If algorithms detect the incompatibility of Q; for some 7, then output “Q is not
compatible” and stop. Otherwise, obtain an A-cut family Fy displaying Qg and laminar
weak A-cut families £; C 24 displaying Q; for all i € [r].

Step 2: Let F; :={X NA;| X € Fosuch that (X) D A4;} fori € [r]. If F;/~ < L;/=, then
output “Q is not compatible” and stop.

Step 3: Define F:= Fo U, {Y € £i | Y # X for all X € Fi}. If |[F| < 2n, then output
F. Otherwise, output “Q is not compatible.”

» Theorem 3.3. Algorithm 5 solves FULL DISPLAYING in O(rn*) time. Furthermore, if the
input is compatible, then the output is a minimal laminarizable weak A-cut family.

By the proof of Theorem 3.3, the following corollary holds.

» Corollary 3.4. Suppose that a full A-partite quartet system Q is compatible. Then a
minimal laminarizable weak A-cut family F displaying Q is uniquely determined up to ==.
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