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Abstract
The Light Bulb Problem is one of the most basic problems in data analysis. One is given as input
n vectors in {−1, 1}d, which are all independently and uniformly random, except for a planted
pair of vectors with inner product at least ρ · d for some constant ρ > 0. The task is to find the
planted pair. The most straightforward algorithm leads to a runtime of Ω(n2). Algorithms based
on techniques like Locality-Sensitive Hashing achieve runtimes of n2−O(ρ); as ρ gets small, these
approach quadratic.

Building on prior work, we give a new algorithm for this problem which runs in time O(n1.582+
nd), regardless of how small ρ is. This matches the best known runtime due to Karppa et al. Our
algorithm combines techniques from previous work on the Light Bulb Problem with the so-called
‘polynomial method in algorithm design,’ and has a simpler analysis than previous work. Our
algorithm is also easily derandomized, leading to a deterministic algorithm for the Light Bulb
Problem with the same runtime of O(n1.582 + nd), improving previous results.
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1 Introduction

In this paper, we study the problem of finding correlated vectors. Finding correlations is one
of the most basic problems in data analysis. In many experiments, one gathers data about
a number of different variables, and then one would like to determine which variables are
correlated. By forming the vector of data points for each variable, this amounts to finding
which pairs of vectors are correlated.

The most basic formalization of this problem is the so-called Light Bulb Problem,
introduced by L. Valiant in 1988 [18]:

I Problem 1 (Light Bulb Problem). We are given as input a set S of n vectors from
{−1, 1}d, which are all independently and uniformly random except for two planted vectors
(the correlated pair) which have inner product at least ρ · d for some 0 < ρ ≤ 1. The goal is
to find the correlated pair.

1 Much of this work was done while the author was working at IBM Research Almaden.
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2:2 An Illuminating Algorithm for the Light Bulb Problem

The dimension d of the vectors is called the sample complexity of the problem, since, in
our data analysis application, it corresponds to the number of data points which must be
gathered about the variables in order to determine which are correlated. When d is too small,
then the problem is information-theoretically impossible. For instance, if d < log(n − 2),
then by the pigeonhole principle, two of the random vectors must be equal to each other,
and there is no way to distinguish them from the planted correlated pair we are trying to
find. By standard concentration inequalities, there is a constant c > 1 such that, whenever
d ≥ c logn, the correlated pair is the closest pair of vectors with high probability. We would
like to design algorithms for this d = O(logn) regime, so that we can find correlated pairs
without increasing the sample complexity above the information-theoretic requirement.

A naïve approach to the Light Bulb Problem is to compute the inner product of each pair,
which takes Ω(n2) time. However, in many applications, n is quite large, and quadratic time
is infeasible. For one example, in genome-wide association studies, scientists have gathered
data on millions of genetic markers, and determining which of these are correlated is key to
understanding their interactions in different biological mechanisms [13, 19].

It is not hard to see that the Light Bulb Problem is a special case of the (1+ε)−approximate
Hamming nearest neighbor problem. Using Indyk and Motwani’s famous Locality-Sensitive
Hashing framework [8], one can solve the Light Bulb Problem in time n2−O(ρ). For constant
ρ > 0, this gives a truly subquadratic runtime, but the runtime become quadratic as ρ→ 0.
This is undesirable, as in many data analysis applications, as well as in applications to other
areas like learning theory, we would like to quickly detect weak correlations with small ρ.
Later work [14, 5] improved the constants in the O(ρ) term, but still had the same asymptotic
dependence on ρ in the exponent.

In a breakthrough result, G. Valiant [17] gave an algorithm solving the Light Bulb
Problem in time O(n(5−ω)/(4−ω)+ε + nd) < O(n1.615 + nd), where ω < 2.373 is the matrix
multiplication constant, for any constant ρ > 0, no matter how small. Thereafter, Karppa
et al. [9] gave an improved algorithm with a runtime of O(n2ω/3+ε + nd) < O(n1.582 + nd).
Both of these algorithms work when the sample complexity d matches, up to a constant, the
information-theoretically necessary d = Θ(logn).

In this paper, we give an algorithm with a simple analysis which matches the best known
runtime and sample complexity.

I Theorem 2. For every ε, ρ > 0, there is a κ > 1 such that the Light Bulb Problem
for correlation ρ can be solved in randomized time O(n2ω/3+ε) whenever d = κ logn with
polynomially low error.

By leveraging our simpler analysis, we also give algorithms for several natural extensions
and generalizations of the Light Bulb Problem, which are sometimes much faster than the
algorithms from previous work.

1.1 Algorithm Overview
Our algorithm combines techniques from past work on subquadratic algorithms for the Light
Bulb Problem [17, 9, 10] with techniques for batch nearest neighbor algorithms using the
‘polynomial method in algorithm design’ [2, 1]. Our algorithm begins in a way common to
both methods: we partition S into m = n2/3 groups S = S1 ∪ · · · ∪ Sm. Our goal is then to
simultaneously check, for each pair (Si, Sj) of groups, whether there is a correlated pair of
vectors in Si×Sj . We will do this by, for each group Si, constructing two vectors Ai, Bi ∈ Rt,
for t ≈ n2/3, such that the inner product 〈Ai, Bj〉 is large if and only if there is a correlated
pair of vectors in Si × Sj . By using fast matrix multiplication, we can quickly compute all of
these inner products and find the correlated pair.
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We differ from past work in how the Ai and Bi vectors are constructed. In [17, 9], a
sophisticated random sampling technique is used, including an involved probabilistic analysis
to keep t low, and in [10], that technique is derandomized. We instead use the polynomial
method: we first design a polynomial (see (3) below) which, it is not hard to show, has the
desired properties. We then convert it into Ai, Bi vectors by dividing it up into monomials.
By designing a polynomial whose degree is not too high, we get that the resulting number of
monomials, and hence t, is also not too high. Our proof of correctness is straightforward, and
it almost entirely avoids arguments about tail distributions of sums of dependent variables,
including a multitude of calculations and casework, which are prevalent in the past work.

That said, our algorithm can be seen as the ‘best of both worlds’: past work on the
polynomial method has focused on designing subquadratic time algorithms, but not on
optimizing how subquadratic the runtime is. We use ideas from past work on the Light Bulb
Problem (our overall approach to the problem comes from [17], and the last paragraph in
the proof of Theorem 2 uses a clever trick of [9]) in order to optimize our runtime here.

1.2 Deterministic Light Bulb Problem
In some cases, one would like a deterministic algorithm which is guaranteed to find correlations
in subquadratic time. Since our polynomial construction and evaluation process is entirely
deterministic, we can get such an algorithm easily. However, as the inputs to the Light Bulb
Problem come from a random distribution, we need to be careful about what a deterministic
algorithm means in this setting. For instance, there is a small chance that a random pair
of vectors will be just as correlated as the correlated pair, in which case a deterministic
algorithm has no hope of finding the true correlated pair.

Almost All Instances

One option is to design an algorithm which correctly solves almost all instances. This is the
notion which was introduced and used in the past work by Karppa et al. [10] on deterministic
algorithms for the Light Bulb Problem. We say that an algorithm is correct on almost all
instances if the probability of drawing an instance where the algorithm fails is 1/poly(n).
For this notion, we match the runtime of the best randomized algorithm:

I Theorem 3. For every ε, ρ > 0, there is a κ > 0 such that the Light Bulb Problem for
correlation ρ can be solved in deterministic time O(n2ω/3+ε) on almost all instances whenever
d = κ logn.

Our runtime of O(n2ω/3+ε) ≤ O(n1.582) is faster than the runtime of Karppa et al. [10],
which is at best O(n1.996). Our algorithm also uses more straightforward and elementary
techniques. The original algorithm of Karppa et al. relies heavily on random sampling. In
order to derandomize this, Karppa et al. use heavy-duty techniques including constructing
‘correlation amplifiers’ using the explicit expander graphs of Reingold, Vadhan, and Wigderson
[15]. We avoid any such complications, since our algorithm replaces random sampling with a
deterministic polynomial construction. In fact, one can view our polynomials in (3), below,
as a smaller, elementary construction of their notion of a correlation amplifier.

Our algorithm for Theorem 3 uses two ideas to derandomize the algorithm for Theorem
2 without changing the runtime. First, we use a standard technique in derandomization:
by examining the proof of correctness of Theorem 2, we will see that the random bits it
uses only need to be pairwise independent, rather than fully independent, which means only
O(polylogn) independent random bits are needed for the algorithm to succeed with high

SOSA 2019



2:4 An Illuminating Algorithm for the Light Bulb Problem

probability. Second, in the proof of Theorem 3, we use the fact that, with the exception of
the correlated pair of vectors, the vectors in the input set S of the Light Bulb Problem are
random vectors, and we can use them as the source of random bits we need. This technique of
using the input as a source of randomness has been used in a number of past derandomization
results; see eg. [7, 20].

Promise that random vectors aren’t too correlated

Although the algorithm of [10] is presented as working on almost all instances, it implicitly
works in a stronger regime. It solves a promise version of the Light Bulb Problem, which we
introduce here, in which we are guaranteed that no pair of random vectors is too correlated:

I Problem 4 (Promise Light Bulb Problem with parameter w). We are given as input a set S
of n vectors from {−1, 1}d, where two of the vectors (the correlated pair) have inner product
at least ρ · d for some 0 < ρ ≤ 1, and every other pair of vectors has inner product at most
w
√
d logn. The goal is to find the correlated pair.

To emphasize: the inputs to the Promise Light Bulb Problem are not necessarily chosen
randomly; they can be chosen adversarially as long as they satisfy the guarantee.

By a Chernoff bound, a random instance of the Light Bulb Problem will also satisfy
this guarantee with probability 1 − 1/poly(n), for a sufficiently large constant w. Hence,
deterministically solving the Promise Light Bulb Problem is sufficient to solve the Light Bulb
Problem on almost all instances, and this is the approach that [10] takes. One benefit of the
Promise Light Bulb Problem is that it doesn’t let us use the ‘artificial’ trick of using vectors
from a randomly chosen input as the source of randomness. Without using that trick, we
can nonetheless solve the Promise Light Bulb Problem deterministically, with running time
O(n4ω/5+ε) ≤ O(n1.8983):

I Theorem 5. There is a constant w > 0 such that, for every ε, ρ > 0, there is a κ > 0 such
that the Promise Light Bulb Problem with parameter w for correlation ρ can be solved in
deterministic time O(n4ω/5+ε) whenever d = κ logn.

While this algorithm is slower than our aforementioned algorithms, it is nonetheless still
faster than the previous best deterministic runtime [10] of O(n1.996), and it follows without
much more work from our deterministic polynomial construction.

1.3 Generality of the Light Bulb Problem
As the Light Bulb Problem is so basic, a number of other important problems can be reduced
to it as well. Here we give a couple of examples from prior work.

Correlations on the Euclidean Sphere

In all the above, we have been discussing finding correlated vectors from the domain {−1, 1}d.
What if we are more generally interested in finding correlated vectors from the d-dimensional
Euclidean sphere2? There is a randomized hashing algorithm by Charikar [3] that ‘rounds’
the Euclidean sphere to {−1, 1}d in such a way that all of our algorithms above will still work,
with ρ only decreasing by a constant factor. The hash function simply picks a uniformly
random hyperplane through the origin, and outputs 1 or −1 depending on which side of the

2 The d-dimensional Eucliedan sphere is the set of points x ∈ Rd such that x2
1 + · · ·+ x2

d = 1.
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hyperplane a point lies on. Since our runtime for the Light Bulb Problem in Theorem 2 does
not change when ρ changes by a constant factor, we can thus achieve the same guarantees
for the Light Bulb Problem on the Euclidean sphere.

Learning Sparse Parities with Noise and More

L. Valiant [18] first introduced the Light Bulb Problem as a basic example of a correlated
learning problem. More generally, the Light Bulb Problem can be seen as a special case of
several different problems in learning theory, including learning sparse parities with noise,
learning sparse juntas with or without noise, and learning sparse DNFs. Surprisingly, Feldman
et al. [6] showed that all these more general learning problems can be reduced to the Light
Bulb Problem as well, and the fastest known algorithms for them come from applying this
reduction followed by the best Light Bulb Problem algorithms. Hence, our algorithm gives a
new, simpler algorithm matching the best known runtimes for these problems as well. We
refer to [17, Appendix A] for a more detailed discussion of these reductions.

2 Preliminaries

We assume familiarity with basic facts about combinatorics and probability, and in particular,
the union bound, Chernoff bound, and Chebyshev inequality. For an integer d ≥ 0, we write
[d] := {1, 2, . . . , d}. For a vector x ∈ {−1, 1}d, we will write xi to denote the ith entry of x
for any i ∈ [d], and xM :=

∏
i∈M xi for any M ⊆ [d].

Polynomial Multilinearization

For a multivariate polynomial p : Rd → R, its multilinearization is the polynomial p̂ : Rd → R
which one gets when one expands p into a sum of monomials, and then for each monomial,
and each variable in that monomial, one reduces the exponent of that variable mod 2 to
either 0 or 1. For instance, if p(x1, x2, x3) = x1x

5
2x

2
3 + 3x2

2, then p̂(x1, x2, x3) = x1x2 + 3.
Notice that x2

i = 1 whenever xi ∈ {−1, 1}, and so for any p, and any x ∈ {−1, 1}d, we always
have that p(x) = p̂(x). The number of multilinear monomials on d variables of degree exactly
r is

(
d
r

)
. Hence, if p has degree r, then the number of monomials in p̂ is at most

∑r
i=0
(
d
i

)
.

We will use the two bounds on binomial coefficients to bound the number of monomials
in p̂. First, if 0 ≤ k1 ≤ k2 ≤ n/2, then

(
n
k1

)
≤
(
n
k2

)
. Second, for any 1 ≤ k ≤ n, Stirling’s

approximation shows that(
n

k

)
≤ nk

k! ≤
(e · n

k

)k
. (1)

Matrix Multiplication Notation

LetM(a, b) denote the runtime to compute the product of an a×b matrix with a b×a matrix,
whose entries are integers of magnitude at most 2polylog(ab). For instance, M(n, n) ≤ O(nω)
where ω ≤ 2.373 [21, 11] is the matrix multiplication exponent. Since a n× n1+ε × n matrix
multiplication can be decomposed into nε different n× n× n multiplications, we see that for
ε ≥ 0,

M(n, n1+ε) ≤ O(nω+ε). (2)

SOSA 2019
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3 Algorithm for the Light Bulb Problem

In this section, we give our algorithm for the Light Bulb Problem, proving our main result,
Theorem 2.

I Theorem 2 (Restated). For every ε, ρ > 0, there is a κ > 0 such that the Light Bulb
Problem for correlation ρ can be solved in randomized time O(n2ω/3+ε) whenever d = κ logn
with polynomially low error.

For two constants γ, k > 0 to be determined, we will pick κ = γk2/ρ2. Let S ⊆ {−1, 1}d
be the set of input vectors, and let x′, y′ ∈ S denote the correlated pair which we are trying to
find. For distinct x, y ∈ S other than the correlated pair, the inner product 〈x, y〉 is a sum of
d uniform independent {−1, 1} values. Let v := γ(k/δ) logn. By a Chernoff bound, for large
enough γ, we have |〈x, y〉| ≤ v with probability at least 1− 1/n3. Hence, by a union bound
over all pairs of uncorrelated vectors, we have |〈x, y〉| ≤ v for all such x, y with probability
at least 1− 1/n. We assume henceforth that this is the case. Meanwhile, 〈x′, y′〉 ≥ ρd = kv.

Arbitrarily partition S into m := n2/3 groups S1, . . . , Sm of size g := n/m = n1/3 each.
We can compute the inner product between each pair of vectors which was assigned to the
same group in time O(m · g2 · d) = Õ(n4/3), and if we find the correlated pair, we can return
it and end the algorithm. Otherwise, we may assume the correlated vectors are in different
groups, and we continue.

For each x ∈ S, our algorithm picks a value ax ∈ {−1, 1} independently and uniformly
at random. For a constant τ > 0 to be determined, let r = dlogk(τn1/3)e, and define the
polynomial p : Rd → R by p(z1, . . . , zd) = (z1 + · · ·+ zd)r. Our goal is, for each (i, j) ∈ [m]2,
to compute the value

Ci,j :=
∑
x∈Si

∑
y∈Sj

ax · ay · p(x1y1, . . . , xdyd).

Solving the problem using Ci,j

Let us first explain why we are interested in computing Ci,j . Denote p(x, y) := p(x1y1, . . . ,

xdyd). Intuitively, p(x, y) is computing an amplification of 〈x, y〉. Ci,j is then summing these
amplified inner products for all pairs (x, y) ∈ Si × Sj . We will pick our parameters so that
the amplified inner product of the correlated pair is large enough to stand out from the sums
of inner products of random pairs.

Let us be more precise. Recall that for uncorrelated x, y we have |〈x, y〉| ≤ v, and
hence |p(x, y)| ≤ vr. Similarly, we have |p(x′, y′)| ≥ (kv)r ≥ τn1/3vr. For x, y ∈ S, define
a(x,y) := ax · ay. Notice that, for i 6= j, Ci,j =

∑
x∈Si,y∈Sj

a(x,y)p(〈x, y〉), where the a(x,y)

are pairwise independent random {−1, 1} values.
We will now analyze the random variable Ci,j where we think of the vectors in S as fixed,

and only the values ax as random.
Consider first when the correlated pair are not in Si and Sj . Then, Ci,j has mean 0,

and (since variance is additive for pairwise independent variables) Ci,j has variance at most
|Si| · |Sj | · maxx∈Si,y∈Sj |p(〈x, y〉)|2 ≤ n2/3 · v2r. For sufficiently large constant τ , by the
Chebyshev inequality, we have that |Ci,j | ≤ τn1/3vr/3 with probability at least 3/4. Let
θ = τn1/3vr/3, so |Ci,j | ≤ θ with probability at least 3/4.

Meanwhile, if x′ ∈ Si and y′ ∈ Sj , then Ci,j is the sum of a(x′,y′)p(〈x′, y′〉) and a variable
C ′ distributed as Ci,j was in the previous paragraph. Hence, since |p(〈x′, y′〉)| ≥ τn1/3vr = 3θ,
and |C ′| ≤ θ with probability at least 3/4, we get by the triangle inequality that |Ci,j | ≥ 2θ
with probability at least 3/4.
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Hence, if we repeat the process of selecting the ax values for each x ∈ S independently at
random O(logn) times, whichever pair Si, Sj has |Ci,j | ≥ 2θ most frequently will be the pair
containing the correlated pair with polynomially low error, and then a brute force within
this set of O(n1/3) vectors can find the correlated pair in Õ(n2/3) time. In all, by a union
bound over all possible errors, this will succeed with polynomially low error.

Computing Ci,j

It remains to give the algorithm to compute Ci,j . Before doing this, we will rearrange the
expression for Ci,j into one which is easier to compute. Since we are only interested in the
values of p when its inputs are all in {−1, 1}, we can replace p with its multilinearization p̂.
Let M1, . . . ,Mt be an enumeration of all subsets of [d] of size at most r, so t =

∑r
i=0
(
d
i

)
.

Then, there are coefficients c1, . . . , ct ∈ Z such that p̂(x) =
∑t
s=1 csxMs

. Rearranging the
order of summation, we see that we are trying to compute

Ci,j =
t∑

s=1

∑
x∈Si

∑
y∈Sj

ax · ay · cs · xMs
· yMs

=
t∑

s=1

cs ·(∑
x∈Si

ax · xMs

)
·

∑
y∈Sj

ay · yMs

 . (3)

In order to compute Ci,j , we first need to compute the coefficients cs. Notice that cs depends
only on |Ms| and r. We can thus derive a simple combinatorial expression for cs, and hence
compute all of the cs coefficients in poly(r) = polylog(n) time. Alternatively, by starting
with the polynomial (z1 + · · ·+ zd) and then repeatedly squaring then multilinearizing, we
can easily compute all the coefficients in O(t2 polylog(n)) time; this slower approach is still
fast enough for our purposes.

Define the matrices A,B ∈ Zm×t by Ai,s =
∑
x∈Si

ax · xMs
and Bi,s = cs · Ai,s. Notice

from (3) that the matrix product C := ABT is exactly the matrix of the values Ci,j we
desire. A simple calculation (see Lemma 6 below) shows that for any ε > 0, we can pick a
sufficiently big constant k > 0 such that t = O(n2/3+ε). Since m = O(n2/3), if we have the
matrices A,B, then we can compute this matrix product in M(n2/3, n2/3+ε) = O(n2ω/3+ε)
time, completing the algorithm.

Unfortunately, computing the entries of A and B naively would take Ω(m · t · g) = Ω(n5/3)
time, which is slower than we would like. We will instead use a clever trick due to Lovett [12],
which was first applied in this context by Karppa et al. [9]: we will compute those entries
using another matrix multiplication. Let N1, . . . , Nu be an enumeration of all subsets of [d]
of size at most dr/2e. For each i ∈ [m], define the matrices Li, L̃i ∈ Zu×g (whose columns
are indexed by elements x ∈ Si) by Lis,x = xNs and L̃is,x = ax · xNs . Then, compute the
product P i := LiL̃i

T
. We can see that P is,s′ =

∑
x∈Si

ax · xNs⊕Ns′ , where Ns ⊕Ns′ is the
symmetric difference of Ns and Ns′ . Since any set of size at most r can be written as the
symmetric difference of two sets of size at most dr/2e, each desired entry Ai,s can be found
as an entry of the computed matrix P i. Similar to our bound on t from before (see Lemma 6
below), we see that for big enough constant k, we have u = O(n1/3+ε). Computing the
entries of the Li matrices naively takes only O(m · u · g · r) = Õ(n · u) = Õ(n4/3+ε) time,
and then computing the products P i takes O(m ·max(u, g)ω) = O(n(2+ω)/3+ε) time; both of
these are dominated by O(n2ω/3+ε). This completes the algorithm! Finally, we perform the
computations mentioned above:

SOSA 2019



2:8 An Illuminating Algorithm for the Light Bulb Problem

I Lemma 6. For every ε > 0, there is a k > 0 such that (with the same notation as in the
proof of Theorem 2 above) we can bound t = O(n2/3+ε), and u = O(n1/3+ε).

Proof. Recall that d = O(k2 log(n)), and r = logk(O(n1/3)). Hence, by the bound (1),

t ≤ (r + 1) ·
(
d

r

)
≤ (r + 1) · (ed/r)r ≤ O(k2 log(k))logk(O(n1/3)) = n2/3+O(log log(k)/ log(k)).

For any ε > 0 we can thus pick a sufficiently large k so that t ≤ O(n2/3+ε). We can similarly
bound

(
d
r/2
)
≤ O(n1/3+ε) which implies our desired bound on u. J

4 Deterministic Algorithms

We now present our two deterministic algorithms for the Light Bulb Problem. Each is a
slight variation on the algorithm from the previous section.

I Theorem 3 (Restated). For every ε, ρ > 0, there is a κ > 0 such that the Light Bulb
Problem for correlation ρ can be solved in deterministic time O(n2ω/3+ε) on almost all
instances whenever d = κ logn.

Proof. The only randomness used by our algorithm for Theorem 2 was our choice of an
independently and uniformly random ax ∈ {−1, 1} for each x ∈ S. Since this requires Θ(n)
random bits, and we repeat the entire algorithm Θ(logn) times to get our desired correctness
guarantee, the total number of random bits used is Θ(n logn).

However, the only property of the ax variables which we use in the proof of correctness is
that they are pairwise-independent. By standard constructions3, only O(logn) independent
random bits are needed to generate n pairwise-independent random bits. Thus, our entire
algorithm actually only needs O(log2 n) independent random bits.

Our entirely deterministic algorithm then proceeds as follows. Pick the same κ as in
Theorem 2. Let S ⊆ {−1, 1}d be the input vectors. Arbitrarily pick a subset S′ ⊆ S of
|S′| = Θ(logn) of the input vectors, and let R = S \ S′ be the remaining vectors.

We begin by testing via brute-force whether either vector of the correlated pair is in S′.
This can be done in O(|S′| · |S| · d) = O(n log2(n)) time. If we find the correlated pair (a
pair with inner product at least ρ · d), then we output it, and otherwise, we can assume that
the vectors in S′ are all uniformly random vectors from {−1, 1}d. In other words, we can
use them as d · |S′| = Θ(log2 n) independent uniformly random bits. We thus use them as
the required randomness to run the algorithm from Theorem 2 on input vectors R. That
algorithm has polynomially low error, which implies the desired correctness guarantee. J

I Theorem 5 (Restated). There is a constant w > 0 such that, for every ε, ρ > 0, there is a
κ > 0 such that the Promise Light Bulb Problem with parameter w for correlation ρ can be
solved in deterministic time O(n4ω/5+ε) whenever d = κ logn.

Proof. The guarantee of the Promise Light Bulb Problem is that, when we pick a sufficiently
large w, the uncorrelated vectors have as small inner product as we assumed they did in the
first paragraph in the proof of Theorem 2. In other words, there is a quantity v such that
|〈x, y〉| ≤ v for all x, y ∈ S other than the correlated pair, and moreover, 〈x′, y′〉 ≥ kv for a
constant k > 0 with k →∞ as w →∞.

3 For one example, to generate 2` − 1 pairwise-independent bits, pick only ` bits b1, . . . , b` ∈ {−1, 1}
independently and uniformly at random, and then output, for each I ⊆ [`], the product

∏
i∈I

bi.
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The algorithm is then almost identical to Theorem 2, except we need to remove the only
use of randomness: the randomness used to pick the ax values. To do this, we will simply
pick ax = 1 for all x.

In order to guarantee the correctness of our algorithm, we must now change the parameters
slightly. Instead of partitioning the input into m = n2/3 groups of size g = n1/3, we will
instead partition into m = n4/5 groups of size g = n1/5. Similarly, instead of picking r (the
exponent in the polynomial p) to be logk(O(n1/3)), we will pick r = logk(3n2/5), so that
p(x′, y′) ≥ (kv)r = 3n2/5vr.

With these choices, for any i and j such that the correlated pair are not in Si and Sj ,
we have |Ci,j | ≤ |Si| · |Sj | · n2/5 = n2/5v, whereas if x′ ∈ Si and y′ ∈ Sj then by the triangle
inequality, |Ci,j | ≥ p(x′, y′)− |Si| · |Sj | · n2/5 ≥ 2n2/5vr. Hence, the correlated pair must be
in whichever Si and Sj with i 6= j has the largest |Ci,j |.

The algorithm to compute the Ci,j values is identical to that of Theorem 2. We now get
that t =

∑r
i=0
(
d
i

)
≤ O(n4/5+ε) and similarly, u ≤ O(n2/5+ε), which leads to a final runtime

of O(n4ω/5+ε), as desired. J

5 Conclusion

Faster Algorithms?

In this paper, we give an algorithm for the Light Bulb Problem and some variants. A natural
question remains: can one improve the O(n2ω/3) runtime? It seems like substantially new
techniques might be necessary. We currently reduce the problem to a n2/3 × n2/3 × n2/3

matrix multiplication; with a further reduction in the dimensions, even using the cubic matrix
multiplication algorithm would give a subquadratic algorithm for the Light Bulb Problem.
This would be surprising, since recent progress on the problem has relied heavily on fast
matrix multiplication.

It should nonetheless be noted that, despite using fast matrix multiplication, the al-
gorithms in this paper can be quite practical. For instance, using Strassen’s original algorithm
[16], which is frequently used in practice, gives ω ≈ 2.81, and hence a subquadratic runtime
for the Light Bulb Problem of about O(n2ω/3) ≤ O(n1.874).

Finding General Correlations

Past work on the Light Bulb Problem has also approached a more general problem of finding
correlations:

I Problem 7 (Finding Correlations). We are given as input two sets X,Y ⊆ {−1, 1}d of n
vectors each, with the promise that for at most q pairs of x, y ∈ X × Y , we have |〈x, y〉| ≥ ρd
(x and y are correlated), and for all other pairs of x, y ∈ X × Y , we have |〈x, y〉| ≤ τd (x
and y are uncorrelated) for some constants 0 < τ < ρ ≤ 1. Our goal is to find all q of the
correlated pairs of vectors.

Again, as ρ→ 0, hashing techniques give runtimes which approach quadratic. However,
if τ is also comparatively small (say, there is a constant σ > 1 such that ρ/τ ≥ σ), we might
hope to achieve a truly subquadratic runtime, no matter how small ρ becomes. With only a
slight modification of our algorithm for Theorem 5, we can achieve this:
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I Proposition 8. For all constants η, c > 0, and σ > 1, there exists a constant ε > 0
such that Finding Correlations can be solved in O(n2−ε) deterministic time when ρ/τ ≥ σ,
q ≤ n2−η and d = c log(n).

Proposition 8 is somewhat weaker than the results from past work [17, 10, 9], which only
require that log(1/τ)/ log(1/ρ) be bounded below by a constant. However, our algorithm
benefits from the same simplicity as our Light Bulb Problem algorithms, and it is also
deterministic (in the usual sense – there is no distribution on inputs the Finding Correlations
problem). Like before, only [10] gives a deterministic algorithm, and it involves the same
aforementioned heavy-duty techniques which we avoid. We omit the details of this algorithm
here for clarity of exposition, as the algorithm is almost identical to that of Theorem 5. We
also note that Chen [4, Lemma 3.2] recently gave an algorithm similar to Proposition 8 for
the very related ‘approximate maximum inner product’ problem, which also made use of the
polynomial p(z1, . . . , zd) = (z1 + · · ·+ zd)r.
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