
A Framework for Searching in Graphs in the
Presence of Errors
Dariusz Dereniowski1

Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology
Narutowicza 11/12, 80-233 Gdańsk, Poland
deren@eti.pg.edu.pl

https://orcid.org/0000-0003-4000-4818

Stefan Tiegel
Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092 Zürich, Switzerland
tiegels@student.ethz.ch

Przemysław Uznański
Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092 Zürich, Switzerland
przemyslaw.uznanski@inf.ethz.ch

https://orcid.org/0000-0002-8652-0490

Daniel Wolleb-Graf
Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092 Zürich, Switzerland
daniel.graf@inf.ethz.ch

https://orcid.org/0000-0002-6137-5725

Abstract
We consider a problem of searching for an unknown target vertex t in a (possibly edge-weighted)
graph. Each vertex-query points to a vertex v and the response either admits that v is the target
or provides any neighbor s of v that lies on a shortest path from v to t. This model has been
introduced for trees by Onak and Parys [FOCS 2006] and for general graphs by Emamjomeh-
Zadeh et al. [STOC 2016]. In the latter, the authors provide algorithms for the error-less case and
for the independent noise model (where each query independently receives an erroneous answer
with known probability p < 1/2 and a correct one with probability 1− p).

We study this problem both with adversarial errors and independent noise models. First,
we show an algorithm that needs at most log2 n

1−H(r) queries in case of adversarial errors, where
the adversary is bounded with its rate of errors by a known constant r < 1/2. Our algorithm
is in fact a simplification of previous work, and our refinement lies in invoking an amortization
argument. We then show that our algorithm coupled with a Chernoff bound argument leads to
a simpler algorithm for the independent noise model and has a query complexity that is both
simpler and asymptotically better than the one of Emamjomeh-Zadeh et al. [STOC 2016].

Our approach has a wide range of applications. First, it improves and simplifies the Ro-
bust Interactive Learning framework proposed by Emamjomeh-Zadeh and Kempe [NIPS 2017].
Secondly, performing analogous analysis for edge-queries (where a query to an edge e returns
its endpoint that is closer to the target) we actually recover (as a special case) a noisy binary
search algorithm that is asymptotically optimal, matching the complexity of Feige et al. [SIAM J.
Comput. 1994]. Thirdly, we improve and simplify upon an algorithm for searching of unbounded
domains due to Aslam and Dhagat [STOC 1991].

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases graph algorithms, noisy binary search, query complexity, reliability

1 Partially supported by National Science Centre (Poland) grant number 2015/17/B/ST6/01887.

© Dariusz Dereniowski, Stefan Tiegel, Przemysław Uznański, and Daniel Wolleb-Graf;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 4; pp. 4:1–4:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deren@eti.pg.edu.pl
https://orcid.org/0000-0003-4000-4818
mailto:tiegels@student.ethz.ch
mailto:przemyslaw.uznanski@inf.ethz.ch
https://orcid.org/0000-0002-8652-0490
mailto:daniel.graf@inf.ethz.ch
https://orcid.org/0000-0002-6137-5725
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2 A Framework for Searching in Graphs in the Presence of Errors

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.4

Related Version https://arxiv.org/abs/1804.02075

1 Introduction

Consider the following game played on a simple connected graph G = (V,E):

Initially, the Responder selects a target v∗ ∈ V . In each round, the Questioner asks a
vertex-query by pointing to a vertex v of G, and the Responder provides a reply. The
reply either states that v is the target, i.e., v = v∗, or provides an edge incident to v
that lies on a shortest path to the target, breaking ties arbitrarily. A specific number
of replies can be erroneous (we call them lies). The goal is to design a strategy for
the Questioner that identifies v∗ using as few queries as possible.

We remark that this problem is known, among several other names, as Rényi-Ulam games [38,
41], noisy binary search or noisy decision trees [20, 24, 5]. One needs to put some restriction
as how often the Responder is allowed to lie. Following earlier works, we focus on the most
natural probabilistic model, in which each reply is independently correct with a certain fixed
probability.

This problem has interesting applications in noisy interactive learning [1, 18, 25, 29, 40].
In general terms, the learning process occurs as a version of the following scheme. A user is
presented with some information – this information reflects the current state of knowledge of
the system and should take into account earlier interactions with the user (thus, the process
is interactive). Then, the user responds, which provides a new piece of data to the system.
In order to model such dynamics as our problem, one needs to place some rules: what the
information should look like and what is allowed as a valid user’s response. A crucial element
in those applications is the fact that the learning process (reflected by queries and responses)
does not require an explicit construction of the underlying graph on which the process takes
place. Instead, it is enough to argue that there exists a graph whose vertices reflect possible
states. Moreover, this graph needs to have the property that a valid user’s response reveals
an edge lying on a shortest path to the state that needs to be determined by the system.
Specific applications pointed out in [18] are the following. In learning a ranking the system
aims at learning user’s preference list [36, 30]. An information presented to the user is some
list, and as a response the user swaps two consecutive elements on this list which are in the
wrong order with respect to the user’s target preference list. Or, the response may reveal
which element on a presented list has the highest rank. Both versions of the response turn out
to be consistent with our graph-theoretic game over a properly defined graph, whose vertex
set is the set of all possible preference lists. Another application is learning a clustering,
where the user’s reply tells the system that in the current clustering some cluster needs to
be split (the reply does not need to reveal how) or two clusters should be merged [3, 4]. Yet
another application includes learning a binary classifier. The strength that comes from a
graph-theoretic modeling of those applications as our game is that, although the underlying
graph structure has usually exponential number of vertices (for learning a ranking it is l!,
where l is the maximum length of the preference list), the number of required queries is
asymptotically logarithmic in this size [19, 18]. Thus, the learning strategies derived from
the algorithms in [19] and [18] turn out to be quite efficient. We stress out that the lies in
the query game reflect the fact that the user may sometimes provide incorrect replies. We

https://doi.org/10.4230/OASIcs.SOSA.2019.4
https://arxiv.org/abs/1804.02075

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:3

also note that any improvement of those algorithms, at which we aim in this work, leads to
immediate improvements in the above-mentioned applications.

In [19], the authors provide an algorithm with the following query complexity, i.e., the
worst-case number of vertex-queries:

1
1−H(p)

(
log2 n+O(1

C
logn+ C2 log δ−1)

)
,where C = max

(
(1
2 − p)

√
log logn, 1

)
(1)

that identifies the target with probability at least 1− δ, where n is the number of vertices of
an input graph and H(p) = −p log p− (1− p) log(1− p) is the entropy and p is the success
probability of a query. It is further observed that when p < 1/2 is constant (w.r.t. to n),
then (1) reduces to log2 n

1−H(p) + o(logn) +O(log2 δ−1). However, this complexity deteriorates
when 1/2− p = O(1/

√
log logn), and then (1) becomes O(1

1−H(p) (logn+ log δ−1)).

1.1 Our Contribution – Improved Query Complexity
In our analysis, we first focus on an adversarial model called linearly bounded, in which a
rate of lies r < 1/2 is given at the beginning of the game and the Responder is restricted
so that at most rt lies occur in a game of length t. It turns out that this model is easier to
analyze and leads to the following theorem whose proof is postponed to Section 3.3.

I Theorem 1. In the linearly bounded error model, with known error rate r < 1/2, the target
can be found in at most log2 n

1−H(r) vertex queries.

This bound is strong enough to make an improvement in the probabilistic model. By a
simple application of Chernoff bound, we get the following query complexity.

I Theorem 2. In the probabilistic error model with error probability p < 1/2, the target can
be found using at most

1
1−H(p)

(
log2 n+O(

√
logn log δ−1) +O(log δ−1)

)
vertex queries, correctly with probability at least 1− δ.

By an application of Young’s inequality2 and assuming that p < 1/2 is constant, we
derive a query complexity of

log2 n

1−H(p) + o(logn) +O(log δ−1 log log δ−1).

Query complexity comparison

We compare, in the independent noise model, the precise query complexities of [19], i.e. (1)
with Theorem 2. Observe that logn· 1

C +log δ−1 ·C2 ≥ 2
√

logn log δ−1 ·
√
C ≥ 2

√
logn log δ−1

and that log δ−1 ·C2 ≥ log δ−1, both holding since C ≥ 1. Thus, our bound from Theorem 2
for all ranges of parameters asymptotically improves the one in (1).

Note that the compared bounds are with respect to worst-case strategy lengths. Our
bounds can be made in expectation smaller by a factor of roughly (1 − δ) using the same
techniques as in [5] and [19].

2 ab ≤ ap

p + bq

q for 1/p + 1/q = 1 and a, b ≥ 0, from which follows that for 0 < A ≤ B it holds
√
AB = O(A/ logA) +O(B logB). Thus, if logn ≤ log δ−1, then we bound the term O(

√
logn log δ−1)

by O(logn/ log logn) +O(log δ−1 log log δ−1), and otherwise by the term O(log δ−1).

SOSA 2019

4:4 A Framework for Searching in Graphs in the Presence of Errors

1.2 Our Contribution – Simplified Algorithmic Techniques
The crucial underlying idea behind the algorithm from [19] that reaches the query complexity
in (1) is as follows. The algorithm maintains a weight function µ for the vertex set of the
input graph G = (V,E) so that, at any given time, µ(v) represents the likelihood that v is
the target. Initially, all vertices have the same weight. For a given µ, define a potential of a
vertex v to be Φµ(v) =

∑
u∈V µ(u)d(v, u), where d(u, v) is the distance between the vertices

u and v in G. A vertex q that minimizes this potential function is called a weighted median,
or a median for short, q = arg minv∈V Φµ(v). The vertex to be queried in each iteration of
the algorithm is a median (ties are broken arbitrarily). After each query, the weights are
updated: the weight of each vertex that is compatible with the reply is multiplied by p, and
the weights of the remaining vertices are multiplied by 1− p.

The above scheme for querying subsequent vertices is the main building block of the
algorithm that reaches the query complexity in (1). However, the analysis of the algorithm
reveals a problematic case, namely the vertices that account for at least half of the total
weight, call them heavy. On one side, such vertices are good candidates to include the
target, so they are ‘removed’ from the graph to be investigated later. However, the need to
investigate them in this separate way leads to an algorithm that has three phases, where
the first two end by trimming the graph by leaving only the heavy vertices for the next
phase. The first two phases are sequences of vertex queries performed on a median. The last
phase uses yet a different majority technique. The duration of each of the first two phases
are dictated by complicated formulas, which makes the algorithm difficult to analyze and
understand.

We propose a simpler algorithm than the one in [19]. In each step, we simply query a
median until just one candidate target vertex remains. Our improvement lies in a refined
analysis in how such a query technique updates the weights, which has several advantages. It
not only leads to a better query complexity but also provides a much simpler proof. Moreover,
it results in a better understanding as how querying a median works in general graphs. We
point out that this technique is quite general: it can be successfully applied to other query
models – the details can be found in the appendix.

1.3 Related Work
Regarding the problem of searching in graphs without errors, many papers have been devoted
to trees, mainly because it is a structure that naturally generalizes paths, which represents
the classical binary search (see e.g. [27] for search in a path with non-uniform query times).
This query model in case of trees is equivalent to several other problems, including vertex
ranking [15] or tree-depth [33]. There exist linear-time algorithms for finding optimal query
strategies [34, 39]. A lot of effort has been done to understand the complexity for trees with
non-uniform query times. It turns out that the problem becomes hard for trees [17, 16]. Also
refer the reader to works on a closely related query game with edge queries [10, 11, 14, 28, 31].
For general graphs, a strategy that always queries a 1-median (the minimizer of the sum of
distances over all vertices) has length at most log2 n [19].

To shift our attention to searching in graphs with errors, two works have been recently
published on probabilistic models [19, 18]. These models are further generalized in [12] by
considering the case of identifying two targets t1 and t2, where each answer to a query gives
an edge on a shortest path to t1 with probability p1 or to t2 with probability p2 = 1− p1,
respectively. Furthermore, there exists a closely related model in which the search is restricted
in such a way, that each query performed to a vertex v must be followed by a vertex query
to one of its neighbors – see [7, 21, 23, 22, 26] – in this context errors are usually referred to
as unreliable advice.

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:5

An extensive amount of work has been devoted to searching problems in the presence of lies
in a non-graph-theoretic context. The main tool of analysis is the concept of volume introduced
by Berlekamp [6] – see also [9, 13] for a more detailed descriptions. We skip references to very
numerous works that deal with fixed number of lies, pointing to surveys in [9, 13, 35]. For
general queries, it is known [37] that a strategy of length logn+ L log2 log2 n+O(L logL)
exists, where n is the size of the search space and L is an upper bound on the number
of lies. An almost optimal approximation strategy can be found in [32], which is actually
given for a more general model of q-ary queries. For the most relevant model in our context,
the probabilistic model, we remark on the early works, which bound strategy lengths to
O(1

poly(ε) logn log δ−1), where p < 1
2 and ε = 1

2 − p, with confidence probability 1− δ [2, 8].
A strategy of length O(ε−2(logn+ log δ−1)) is given in [20]. Finally, [5] gives the best known
bound of 1

1−H(p) (log2 n+O(log logn) +O(log δ−1)). We note that we arrive at a strategy
matching asymptotically the complexity of [20] as a by-product from our graph-theoretic
analysis (presented in the appendix).

2 Preliminaries

We now introduce the notation regarding the dynamics of the game. We assume an input
graph with non-uniform edge lengths, and we denote said lengths by ω(e). We denote by
d(u, v) the distance between two vertices u and v, which is the length of a shortest path
in G between u and v. We first focus on a simplified error model where the Responder is
allowed a fixed number of lies, with the upper bound denoted as L. During the game, the
Questioner keeps track of a lie counter `v for each vertex v of G. The value of `v equals the
number of lies that must have already occurred assuming that v is actually the target v∗.
The Questioner will utilize a constant Γ > 1 that will be fixed later. The goal of having this
parameter is that we can tune it in order to obtain the right asymptotics. We define a weight
µt(v) of a vertex v at the end of a round t > 0:

µt(v) = µ0(v) · Γ−`v ,

where µ0(v) is the initial weight of v. For subsets U ⊆ V , let µ(U) =
∑
v∈U µ(v). For

brevity we write µt in place of µt(V). For a queried vertex q and an answer v, a vertex u is
compatible with the answer if u = v when q = v, or v lies on a shortest path from q to u.

As soon as there is only one vertex v left with `v ≤ L, the Questioner can successfully
detect the target, v∗ = v. We will set the initial weight of each vertex v to be µ0(v) = 1.
Thus, µ0 = n and µT ≥ Γ−L if the strategy length is T .

Based on the weight function µ, we define a potential of a vertex v:

Φ(v) =
∑
u∈V

µ(u) · d(v, u).

We write Φt(v) to refer to the value of a potential at the end of round t. Any vertex x ∈ V
minimizing Φ(x) is called 1-median.

Denote for an edge {v, u}, N(v, u) = {x | d(u, x) + ω({v, u}) = d(v, x)} to be the set of
all vertices to which some shortest path from v leads through u. Thus, N(v, u) consists of
the compatible vertices for the answer u when v has been queried. For any S ⊆ V , we write
for brevity S = V \ S, and for singletons {v} we further shorten to v. We say that a vertex
v is α-heavy, for some 0 ≤ α ≤ 1, if µ(v) > α · µ(V). For a queried vertex q, if the answer is
q, then such a reply is called a yes-answer ; otherwise it is called a no-answer.

SOSA 2019

4:6 A Framework for Searching in Graphs in the Presence of Errors

Algorithm VERTEX: Vertex queries for a fixed number of L lies.
1 for v ∈ V do
2 µ(v) = 1
3 `v = 0
4 while more than one vertex x ∈ V has `x ≤ L do
5 q = arg minx∈V Φ(x)
6 query the vertex q
7 for all nodes u not compatible with the answer do
8 `u = `u + 1
9 µ(u) = µ(u)/Γ

10 return the only x such that `x ≤ L

3 Vertex Searching

We now formally state the search strategy for a fixed number of lies – see Algorithm VERTEX.
We combine our weight together with the idea of querying a 1-median [19]. As announced
earlier, it turns out that our bound together with an appropriately selected weight function
are strong enough so that we do not need the additional stages enhanced with a majority
selection used in [19] in order to gain asymptotic improvements. We also note that we can
easily introduce technical modifications to this strategy by changing the initial weight, the
value of Γ or the stopping condition. We will do this to conclude several results for various
error models (see the appendix).

3.1 Analysis of the Strategy
In this subsection we prove the following main technical contribution.

I Theorem 3. Algorithm VERTEX finds the target in at most

1
log2(2Γ/(Γ + 1)) log2 n+ log2 Γ

log2(2Γ/(Γ + 1)) · L

vertex queries.

Note that, due to the values of the initial and the final weight, it is enough to argue
that the weight decreases on average, i.e., in an amortized way, by a factor of (Γ + 1)/(2Γ)
per round. We first handle two cases (see Lemmas 4 and 5) when the weight decreases
appropriately after a single query. These cases are a no-answer, and a yes-answer but only
when the queried vertex is not 1/2-heavy. In the remaining case, i.e., when the queried vertex
q is 1/2 heavy, it is not necessarily true that the weight decreases by the desired factor – this
particularly happens in case of a yes-answer to such a query. This case is handled by the
amortized analysis: we pair such yes-answers with no-answers to the query on q and show
that in each such pair the weight decreases appropriately.

I Lemma 4. If Algorithm VERTEX receives a no-answer in a round t+1, then µt+1 ≤ Γ+1
2Γ µt.

Proof. Let q be the vertex queried in round t+ 1. Assume that the reply is some neighbor v
of q. By [19], Lemma 4, we get that µt(N(q, v)) ≤ µt/2. Moreover, because the lie counter
increases by one for all vertices in N(q, v) and does not change for all vertices in N(q, v) in
round t+ 1, it follows that µt+1 = µt(N(q, v)) + 1

Γµt(N(q, v)) ≤ Γ+1
2Γ µt. J

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:7

I Lemma 5. Suppose that Algorithm VERTEX queries in round t+ 1 a vertex q that is not
1/2-heavy. If a yes-answer is received, then µt+1 ≤ Γ+1

2Γ µt.

Proof. The lie counter increments for each vertex of G except for q and remains the same
for q in round t+ 1: µt+1(q) = µt(q) and µt+1(q) = 1

Γµt(q). Since q is not 1/2-heavy at the
beginning of round t+ 1, µt(q) ≤ µt/2. Thus, we get µt+1 = µt(q) + 1

Γµt(q) ≤
Γ+1
2Γ µt. J

Now we turn to the proof of Theorem 3. Consider a maximal interval [t1, t2], where t1 ≤ t2
are integers, such that there exists a vertex q that is 1/2-heavy in each round t1, . . . , t2, and q
is not 1/2-heavy in round t2 + 1. Call it a q-interval. Note that t1 > 0 and q is not 1/2-heavy
in round t1 − 1. We permute the replies given by the Responder in the q-interval to obtain a
new sequence of replies as follows. The replies in rounds 1, . . . , t1 − 1 and t2 + 1 onwards
are the same in both sequences. Note that in the interval [t1, t2] the number of yes-answers,
denote it by p, is smaller than or equal to the number of no-answers. Reorder the replies in
the q-interval so that the yes-answers occur in rounds t1 + 2i for each i ∈ {0, . . . , p− 1}. In
other words, we pair the yes-answers with no-answers so that a yes-answer in round t1 + 2i
is paired with a no-answer in round t1 + 2i+ 1; we call such two rounds a pair. Following
the pairs, some remaining, if any, no-answers follow in rounds t1 + 2p, . . . , t2. Perform this
transformation as long as a q-interval exists for some q ∈ V . Denote by µ′ the weight of the
new sequence.

Denote by t′, if it exists, the minimum integer such that for some vertex v and for each
t > t′, v is 1/2-heavy at the end of the round t. If no such t′ exists, then let t′ be defined to
be the number of rounds of the strategy.

We first analyze what happens, in the new sequence, in rounds i and i + 1 that are a
pair in an arbitrary q-interval for some vertex q. After such two rounds the lie counter for q
increases by one, and the lie counter of any other vertex increases by at least one. This in
particular implies that q is a 1-median throughout the entire q-interval in the new sequence.
Moreover, the two replies in these rounds result in weight decrease by a factor of at least Γ,
µ′i+1 ≤ µ′i−1/Γ. Since 1

Γ < (1+Γ
2Γ)2, the overall progress after the pair is as required.

We now prove that for each t ∈ {0, . . . , t′ − 1} that does not belong to any pair it holds

µ′t+1 ≤
Γ + 1

2Γ µ′t. (2)

Recall that for each t ≤ t′ that does not belong to any q-interval, µ′t(v) = µt(v) for each
v ∈ V . If the answer to this query is a no-answer, then (2) follows from Lemma 4. Lemma 4
also applies to no-answers of a q-interval that do not belong to any pair since, as argued
above, q is a 1-median throughout the q-interval. If the answer is a yes-answer, then since
the queried vertex q is not 1/2-heavy due to the choice of q-intervals, Inequality (2) follows
from Lemma 5.

If t′ is the last round in the original search strategy, then the proof is completed. Otherwise,
consider the suffix of the original sequence of replies, consisting of rounds t for t > t′. In all
these rounds, by definition, some vertex q is 1/2-heavy. Also by definition, both sequences
µ and µ′ are identical in this suffix. One can check that if a vertex is heavy at the end
of some round, then in the subsequent round Algorithm VERTEX does query this vertex.
Thus, the vertex q is queried in all rounds of the suffix, and hence q is the target. Thus, it is
enough to observe how the weight decreases on q in case of a yes-answer in a round t > t′:
µ′t(q) = µ′t−1(q)/Γ ≤ Γ+1

2Γ µ′t−1(q). This completes the proof of Theorem 3.

SOSA 2019

4:8 A Framework for Searching in Graphs in the Presence of Errors

3.2 Proof of Theorem 1

Proof. We turn our attention to the model with a rate of lies bounded by a fraction
r < 1/2 (linearly bounded error model). Our result, Theorem 1, is obtained on the basis
of Algorithm VERTEX and the precise bound from Theorem 3. In particular, we run
Algorithm VERTEX with Γ = 1−r

r and with a fixed bound on number of lies L = log2 n
1−H(r)r.

By Theorem 3, Algorithm VERTEX asks then at most log2 n
log2(2·(1−r)) + log2

1−r
r

log2(2·(1−r)) · L =
log2 n

1−H(r) ·
1−H(r)+r log2

1−r
r

1+log2(1−r) = log2 n
1−H(r) = L/r queries. This bound concludes the proof, since

the number of lies is within r fraction of strategy length. J

3.3 Proof of Theorem 2

Proof. Let ε > 0 be such that p = 1
2 (1− ε). We run the strategy from Theorem 1 with an

error rate r = 1
2 (1− ε0), where ε0 = ε/

(
1 +

√
8 ln δ−1/ lnn

)
. By Theorem 1 the strategy

length is Q = log2 n
1−H(r) which is (up to lower-order terms) 2ε−2

0 lnn, thus at least ε−2
0 lnn for

n large enough. The expected number of lies is E[L] = p ·Q and by the Chernoff bound,

Pr[Q− L ≤ (1− r) ·Q] ≤ exp
(
−1

2

(
1− 1− r

1− p

)2
· (1− p) · lnn

ε2
0

)

≤ exp
(
−1

8

(
ε− ε0

ε0

)2
lnn

)
= δ.

The bound Q = log2 n
1−H(p) (1 + O(

√
ln δ−1/ lnn) + O(ln δ−1/ lnn)) follows then from 1 −

H(x) ∼ (1/2− x)2. J

4 Conclusions

We note that also other query models have been studied in the graph-theoretic context,
including edge queries. In an edge query, the Questioner points to an edge and the Responder
tells which endpoint of that edge is closer to the target, breaking ties arbitrarily. It turns out
that edge queries are more challenging to analyze, i.e., our technique for vertex queries does
not transfer without changes. This is mostly due to a possible lack of edges that subdivide
the search space equally enough. This issue can be patched by treating heavy vertices in
a separate way. We provide a strategy of query complexity O(1

ε2 ∆ log ∆(logn+ log δ−1)).
This generalizes the noisy binary search of [20] to general graphs, and has the advantage of
being a weight-based strategy.

We additionally show the generalizations of our strategies to searching in unbounded
domains, where one is concerned in searching e.g., the space of all positive integers with
comparison queries. The goal is to minimize the number of queries as a function of N , the
(unknown) position of the target. By adjusting the initial distribution of the weight to decay
at polynomial rate with respect to the distance from the point 0, we almost automatically get
desired solutions, e.g., a strategy of query complexity O(1

ε2 (logN + log δ−1)) for searching
in the probabilistic error model, improving upon O(poly(ε−1) logN log δ−1) of [2].

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:9

References

1 Dana Angluin. Queries and Concept Learning. Machine Learning, 2(4):319–342, 1987.
doi:10.1007/BF00116828.

2 Javed A Aslam. Noise tolerant algorithms for learning and searching. PhD thesis, Mas-
sachusetts Institute of Technology, 1995.

3 Pranjal Awasthi, Maria-Florina Balcan, and Konstantin Voevodski. Local algorithms for
interactive clustering. Journal of Machine Learning Research, 18:3:1–3:35, 2017. URL:
http://jmlr.org/papers/v18/15-085.html.

4 Maria-Florina Balcan and Avrim Blum. Clustering with Interactive Feedback. In Algorith-
mic Learning Theory, 19th International Conference, ALT 2008, Budapest, Hungary, Octo-
ber 13-16, 2008. Proceedings, pages 316–328, 2008. doi:10.1007/978-3-540-87987-9_27.

5 Michael Ben-Or and Avinatan Hassidim. The Bayesian Learner is Optimal for Noisy Binary
Search (and Pretty Good for Quantum as Well). In FOCS, pages 221–230, 2008. doi:
10.1109/FOCS.2008.58.

6 Elvyn R. Berlekamp. Block Coding For The Binary Symmetric Channel With Noiseless,
Delayless Feedback, pages 61–88. Wiley & Sons, New York, 1968.

7 Lucas Boczkowski, Amos Korman, and Yoav Rodeh. Searching a Tree with Permanently
Noisy Advice. CoRR, abs/1611.01403, 2016. arXiv:1611.01403.

8 Ryan S. Borgstrom and S. Rao Kosaraju. Comparison-based search in the presence of
errors. In STOC, pages 130–136, 1993. doi:10.1145/167088.167129.

9 Ferdinando Cicalese. Fault-Tolerant Search Algorithms: Reliable Computation with Unreli-
able Information. Springer Publishing Company, Incorporated, 2013.

10 Ferdinando Cicalese, Tobias Jacobs, Eduardo Sany Laber, and Caio Dias Valentim. The
binary identification problem for weighted trees. Theor. Comput. Sci., 459:100–112, 2012.
doi:10.1016/j.tcs.2012.06.023.

11 Ferdinando Cicalese, Balázs Keszegh, Bernard Lidický, Dömötör Pálvölgyi, and Tomás
Valla. On the tree search problem with non-uniform costs. Theor. Comput. Sci., 647:22–32,
2016. doi:10.1016/j.tcs.2016.07.019.

12 Argyrios Deligkas, George B. Mertzios, and Paul G. Spirakis. Binary Search in Graphs
Revisited. In MFCS, pages 20:1–20:14, 2017. doi:10.4230/LIPIcs.MFCS.2017.20.

13 Christian Deppe. Coding with Feedback and Searching with Lies, pages 27–70. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007. doi:10.1007/978-3-540-32777-6_2.

14 Dariusz Dereniowski. Edge ranking of weighted trees. Discrete Applied Mathematics,
154(8):1198–1209, 2006. doi:10.1016/j.dam.2005.11.005.

15 Dariusz Dereniowski. Edge ranking and searching in partial orders. Discrete Applied Math-
ematics, 156(13):2493–2500, 2008. doi:10.1016/j.dam.2008.03.007.

16 Dariusz Dereniowski, Adrian Kosowski, Przemyslaw Uznański, and Mengchuan Zou. Ap-
proximation Strategies for Generalized Binary Search in Weighted Trees. In ICALP, pages
84:1–84:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.84.

17 Dariusz Dereniowski and Adam Nadolski. Vertex rankings of chordal graphs and weighted
trees. Inf. Process. Lett., 98(3):96–100, 2006. doi:10.1016/j.ipl.2005.12.006.

18 Ehsan Emamjomeh-Zadeh and David Kempe. A General Framework for Robust In-
teractive Learning. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pages 7085–7094, 2017. URL: http://papers.nips.cc/paper/
7283-a-general-framework-for-robust-interactive-learning.

19 Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and proba-
bilistic binary search in graphs. In STOC, pages 519–532, 2016. doi:10.1145/2897518.
2897656.

SOSA 2019

http://dx.doi.org/10.1007/BF00116828
http://jmlr.org/papers/v18/15-085.html
http://dx.doi.org/10.1007/978-3-540-87987-9_27
http://dx.doi.org/10.1109/FOCS.2008.58
http://dx.doi.org/10.1109/FOCS.2008.58
http://arxiv.org/abs/1611.01403
http://dx.doi.org/10.1145/167088.167129
http://dx.doi.org/10.1016/j.tcs.2012.06.023
http://dx.doi.org/10.1016/j.tcs.2016.07.019
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.20
http://dx.doi.org/10.1007/978-3-540-32777-6_2
http://dx.doi.org/10.1016/j.dam.2005.11.005
http://dx.doi.org/10.1016/j.dam.2008.03.007
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.84
http://dx.doi.org/10.1016/j.ipl.2005.12.006
http://papers.nips.cc/paper/7283-a-general-framework-for-robust-interactive-learning
http://papers.nips.cc/paper/7283-a-general-framework-for-robust-interactive-learning
http://dx.doi.org/10.1145/2897518.2897656
http://dx.doi.org/10.1145/2897518.2897656

4:10 A Framework for Searching in Graphs in the Presence of Errors

20 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with Noisy In-
formation. SIAM J. Comput., 23(5):1001–1018, 1994. doi:10.1137/S0097539791195877.

21 Nicolas Hanusse, David Ilcinkas, Adrian Kosowski, and Nicolas Nisse. Locating a target
with an agent guided by unreliable local advice: how to beat the random walk when you
have a clock? In PODC, pages 355–364, 2010. doi:10.1145/1835698.1835781.

22 Nicolas Hanusse, Dimitris J. Kavvadias, Evangelos Kranakis, and Danny Krizanc. Memory-
less search algorithms in a network with faulty advice. Theor. Comput. Sci., 402(2-3):190–
198, 2008. doi:10.1016/j.tcs.2008.04.034.

23 Nicolas Hanusse, Evangelos Kranakis, and Danny Krizanc. Searching with mobile agents
in networks with liars. Discrete Applied Mathematics, 137(1):69–85, 2004. doi:10.1016/
S0166-218X(03)00189-6.

24 Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications. In SODA,
pages 881–890, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283478.

25 Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, 1994. URL: https://mitpress.mit.edu/books/
introduction-computational-learning-theory.

26 Evangelos Kranakis and Danny Krizanc. Searching with Uncertainty. In SIROCCO’99,
6th International Colloquium on Structural Information & Communication Complexity,
Lacanau-Ocean, France, 1-3 July, 1999, pages 194–203, 1999.

27 Eduardo Sany Laber, Ruy Luiz Milidiú, and Artur Alves Pessoa. On binary searching with
non-uniform costs. In SODA, pages 855–864, 2001. URL: http://dl.acm.org/citation.
cfm?id=365411.365796.

28 Tak Wah Lam and Fung Ling Yue. Optimal Edge Ranking of Trees in Linear Time. Algo-
rithmica, 30(1):12–33, 2001. doi:10.1007/s004530010076.

29 Nick Littlestone. Learning Quickly When Irrelevant Attributes Abound: A New Linear-
threshold Algorithm. Machine Learning, 2(4):285–318, 1987. doi:10.1007/BF00116827.

30 Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer, 2011. doi:10.1007/
978-3-642-14267-3.

31 Shay Mozes, Krzysztof Onak, and Oren Weimann. Finding an optimal tree searching
strategy in linear time. In SODA, pages 1096–1105, 2008. URL: http://dl.acm.org/
citation.cfm?id=1347082.1347202.

32 S. Muthukrishnan. On Optimal Strategies for Searching in Presence of Errors. In SODA,
pages 680–689, 1994. URL: http://dl.acm.org/citation.cfm?id=314464.314672.

33 Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homo-
morphism bounds. Eur. J. Comb., 27(6):1022–1041, 2006. doi:10.1016/j.ejc.2005.01.
010.

34 Krzysztof Onak and Pawel Parys. Generalization of Binary Search: Searching in Trees and
Forest-Like Partial Orders. In FOCS, pages 379–388, 2006. doi:10.1109/FOCS.2006.32.

35 Andrzej Pelc. Searching games with errors—fifty years of coping with liars. Theoretical
Computer Science, 270(1):71–109, 2002. doi:10.1016/S0304-3975(01)00303-6.

36 Filip Radlinski and Thorsten Joachims. Query chains: learning to rank from implicit feed-
back. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005, pages 239–248,
2005. doi:10.1145/1081870.1081899.

37 Ronald L. Rivest, Albert R. Meyer, Daniel J. Kleitman, Karl Winklmann, and Joel Spencer.
Coping with errors in binary search procedures. Journal of Computer and System Sciences,
20(3):396–404, 1980.

38 Alfréd Rényi. On a problem of information theory. MTA Mat. Kut. Int. Kozl., 6B:505–516,
1961.

http://dx.doi.org/10.1137/S0097539791195877
http://dx.doi.org/10.1145/1835698.1835781
http://dx.doi.org/10.1016/j.tcs.2008.04.034
http://dx.doi.org/10.1016/S0166-218X(03)00189-6
http://dx.doi.org/10.1016/S0166-218X(03)00189-6
http://dl.acm.org/citation.cfm?id=1283383.1283478
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory
http://dl.acm.org/citation.cfm?id=365411.365796
http://dl.acm.org/citation.cfm?id=365411.365796
http://dx.doi.org/10.1007/s004530010076
http://dx.doi.org/10.1007/BF00116827
http://dx.doi.org/10.1007/978-3-642-14267-3
http://dx.doi.org/10.1007/978-3-642-14267-3
http://dl.acm.org/citation.cfm?id=1347082.1347202
http://dl.acm.org/citation.cfm?id=1347082.1347202
http://dl.acm.org/citation.cfm?id=314464.314672
http://dx.doi.org/10.1016/j.ejc.2005.01.010
http://dx.doi.org/10.1016/j.ejc.2005.01.010
http://dx.doi.org/10.1109/FOCS.2006.32
http://dx.doi.org/10.1016/S0304-3975(01)00303-6
http://dx.doi.org/10.1145/1081870.1081899

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:11

39 Alejandro A. Schäffer. Optimal Node Ranking of Trees in Linear Time. Inf. Process. Lett.,
33(2):91–96, 1989. doi:10.1016/0020-0190(89)90161-0.

40 Burr Settles. Active Learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, 2012. doi:10.2200/
S00429ED1V01Y201207AIM018.

41 Stanislaw M. Ulam. Adventures of a Mathematician. Scribner, New York, 1976.

A Analysis of the Generic Strategies for Edge Queries

We recall a different format of queries called edge queries, where in each round the Questioner
selects an edge {u, v} of an input graph and the Responder replies with the endpoint of
{u, v} that is closer to the target. Again, ties are broken arbitrarily. The edge-query model
naturally generalizes comparison queries in linearly or partially ordered data. In case of
edge-queries we consider graphs with unit edge lengths.

We start by giving the notation regarding edge queries. The degree of a vertex v, denoted
by deg(v), is the number of its neighbors in G. We denote by ∆ = maxv∈V deg(v) the
maximum degree of G. We define an edge-vertex distance d(e, v) = min(d(x, v), d(y, v)) for
an edge e = {x, y}. Similarly as for vertex queries, based on a weight function µ and distance
d, we define a potential of an edge e:

Φ(e) =
∑
u∈V

µ(u) · d(e, u).

Again, we write Φt(e) to refer to this value at the end of round t. Any edge e minimizing
Φ(e) is called 1-edge-median. For an edge e = {u, v} and one of its endpoints,

N(e, v) = {w | d(v, w) ≤ d(u,w)}, N<(e, v) = {w | d(v, w) < d(u,w)}.

For edge-queries we give a strategy that is a bit more complicated – see Algorithm EDGE.
Intuitively, as opposed to the vertex-query case, there may be no edges in the graph that
‘subdivide’ the search space evenly enough. This already happens as soon as one of the
vertices is 1

∆+1 -heavy. If this is the case, and say vertex v is 1
∆+1 -heavy, we cyclically query

edges incident to v in an appropriate greedy order. We continue to do so until all other
vertices have been eliminated, and hence v must be the target, or v is no longer 1

∆+1 -heavy.
If none of the vertices is 1

∆+1 -heavy, we simply query a 1-edge-median. The absence of such
heavy vertices essentially ensures, that this decreases the weight sufficiently.

This results in a more involved proof given in Section 3.1. Similarly as for vertex queries,
we also first provide an analysis for a fixed number of lies (see Theorem 6) and then from
this bound we derive appropriate bounds for other models (Theorems 7 and 8).

I Theorem 6. Let Γ > 1. Algorithm EDGE finds the target in at most logn+L log Γ
log(1+ Γ−1

Γ∆+1) edge
queries.

I Theorem 7. In the linearly bounded error model with error rate r = 1
∆+1 (1− ε) for some

0 < ε ≤ 1, the target can be found in at most 2ε−2∆ lnn edge queries.

I Theorem 8. In the probabilistic error model with error rate p = 1
2 (1−ε) for some 0 < ε ≤ 1

there exists a strategy that finds the target using at most O(ε−2∆ log ∆ · (logn + log δ−1))
edge queries, correctly with probability at least 1− δ.

SOSA 2019

http://dx.doi.org/10.1016/0020-0190(89)90161-0
http://dx.doi.org/10.2200/S00429ED1V01Y201207AIM018
http://dx.doi.org/10.2200/S00429ED1V01Y201207AIM018

4:12 A Framework for Searching in Graphs in the Presence of Errors

Algorithm EDGE: Edge queries for fixed number of L lies.
1 for v ∈ V do
2 µ(v) = 1
3 `v = 0
4 while more than one vertex x satisfies `x ≤ L do
5 if there exists v such that µ(v) > µ/(∆ + 1) then . v is 1

∆+1-heavy
6 for i = 1 to deg(v) do . greedy ordering of neighbors
7 select an edge ei incident to v to maximize µ(

⋃
j≤iN<(ej , v))

8 i = 1
9 do . cyclically query edges incident to v

10 query ei
11 for all nodes u not compatible with the answer do
12 `u = `u + 1
13 µ(u) = µ(u)/Γ
14 if the answer to the last query is v then
15 i = (i+ 1) mod deg(v)
16 while µ(v) > µ/(∆ + 1) and there exists more than one x with `x ≤ L
17 else
18 e = arg minx∈E Φ(x)
19 query e
20 for all nodes u not compatible with the answer do
21 `u = `u + 1
22 µ(u) = µ(u)/Γ
23 return v such that `v ≤ L

Proof of Theorem 6
We first prove two technical lemmas and then we give the proof of the theorem.

I Lemma 9. Let Γ > 1. Suppose that Algorithm EDGE queries in round t+ 1 an edge eq
incident to a vertex q such that eq = arg minx∈E Φt(x). If deg(q) > 1, then

µt(N(eq, q)) ≥
1

deg(q) (µt − µt(q)). (3)

Proof. Denote eq = {q, v}. For each neighbor w of q define

N∩w = N(eq, q) ∩N<({q, w}, w).

Consider an edge e′ = {q, w} that maximizes µt(N∩w). If X is the set of neighbors of q,
then by definition and by the fact that eq lies on no shortest path from q to any vertex in
N<(eq, v), i.e., N∩v = ∅, it holds

N(eq, q) \ {q} ⊆
⋃
w′∈X

N∩w′ =
⋃

w′∈X\{v}

N∩w′ .

Hence (since e′ maximizes µt(N∩w)) we obtain that

µt(N∩w) ≥ 1
deg(q)− 1(µt(N(eq, q))− µt(q)). (4)

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:13

For brevity, we extend our notation in the following way: for an edge e and a subset
S of vertices, Φt(e, S) =

∑
z∈S µt(z) · d(e, z). Note that for any S ⊆ V and any edge e,

Φt(e) = Φt(e, S) + Φt(e, S). We obtain

Φt(e′, N(eq, q)) = Φt(e′, N∩w) + Φt(e′, N(eq, q) \N∩w)

=
∑
u∈N∩w

µt(u) · (d(q, u)− 1) +
∑

u∈N(eq,q)\N∩w

µt(u) · d(q, u)

=
∑

u∈N(eq,q)

µt(u) · d(q, u)− µt(N∩w)

≤ Φt(eq, N(eq, q))−
1

deg(q)− 1(µt(N(eq, q))− µt(q)), (5)

where the last inequality is due to (4). For any vertex u, d(e′, u) ≤ d(eq, u) + 1 because eq
and e′ are adjacent. Using this fact we obtain:

Φt(e′, N(eq, q)) =
∑

u/∈N(eq,q)

µt(u) · d(e′, u)

≤
∑

u/∈N(eq,q)

µt(u) · d(eq, u) +
∑

u/∈N(eq,q)

µt(u)

= Φt(eq, N(eq, q)) + µt(N(eq, q)). (6)

Finally, by (5) and (6) we get:

Φt(e′) = Φt(e′, N(eq, q)) + Φt(e′, N(eq, q))

≤ Φt(eq, N(eq, q))−
µt(N(eq, q))− µt(q)

deg(q)− 1 + Φt(eq, N(eq, q)) + µt(N(eq, q))

= Φt(eq) + µt(N(eq, q))−
1

deg(q)− 1(µt(N(eq, q))− µt(q)).

By assumption, Φt(eq) ≤ Φt(e′). Therefore,

1
deg(q)− 1(µt(N(eq, q))− µt(q)) ≤ µt(N(eq, q)),

which can be rewritten as in (3). J

I Lemma 10. Let Γ > 1. Suppose that Algorithm EDGE queries in round t + 1 an edge
incident to a vertex q that is not 1

∆+1 -heavy in this round, and the answer is q. Then,
µt+1 ≤ (1− Γ−1

Γ(∆+1))µt.

Proof. Let eq = {q, v} be the edge queried in round t+ 1. Suppose first that deg(q) > 1. By
Lemma 9,

µt(N(eq, q)) ≥
1

deg(q) (µt − µt(q)) ≥
1
∆(µt − µt(q)). (7)

Because eq is the queried edge in round t + 1 and the reply is q, the lie counter remains
unchanged for the vertices in N(eq, q) and decreases by one in the complement N(eq, q).
Hence,

µt+1 = µt(N(eq, q)) + 1
Γµt(N(eq, q)) = µt −

Γ− 1
Γ µt(N(eq, q)).

SOSA 2019

4:14 A Framework for Searching in Graphs in the Presence of Errors

Thus, by (7) and by the fact that µt(q) ≤ 1
∆+1µt for q that is not 1

∆+1 -heavy in round t,

µt+1 ≤
(

1− Γ− 1
Γ∆ · ∆

∆ + 1

)
µt,

which completes the proof in the case when deg(q) > 1.
If deg(q) = 1, then in round t the lie counter increases by one for each vertex in q. Thus,

again by the fact that q is not 1
∆+1 -heavy,

µt+1 = µt(q) + 1
Γµt(q) ≤

(
1

∆ + 1 + 1
Γ

)
µt ≤

(
1− Γ− 1

Γ(∆ + 1)

)
µt. J

Proof of Theorem 6. Having proved the technical lemmas, we now turn to the proof of
Theorem 6. It is enough to argue that every query, amortized, multiplies the weight by a
factor of 1 − Γ−1

Γ(∆+1) = 1/(1 + Γ−1
Γ∆+1). If there is no 1

∆+1 -heavy vertex, then the theorem
follows from Lemma 10. Hence suppose in the rest of the proof that there exists a 1

∆+1 -heavy
vertex and denote this vertex by q.

For the amortized analysis, consider a sequence of t consecutive queries to edges e1, . . . , et,
t ≤ deg(q), performed while q is 1

∆+1 -heavy; call such a sequence a segment. Suppose this
sequence starts in round t′. Denote ei = {q, vi}, i ∈ {1, . . . , t}, and let

Q1 =
t⋃
i=1

N<(ei, vi), Q2 = V \ (Q1 ∪ {q}).

First we assume that the query in round t′ + t (i.e., the query that follows the sequence)
does not return v as a reply, or v stops being 1

∆+1 -heavy. We argue, informally speaking,
that this query in round t′ + t amortizes the t queries prior to it thanks to the assumption
t ≤ deg(q). Because the lie counter of q increments in round t′ + t,

µt′+t(q) ≤
1
Γµt

′(q). (8)

We have µt′+t(Q1) ≤ 1
Γµt′(Q1) by the formulation of Algorithm EDGE, and µt′+t(Q2) ≤

µt′(Q2). Then, Q1 ∪Q2 = q and Q1 ∩Q2 = ∅ imply µt′(Q1) ≤ µt′(q)− µt′(Q2) and hence

µt′+t(Q1) + µt′+t(Q2) ≤ 1
Γµt

′(q) + Γ− 1
Γ µt′(Q2). (9)

Due to the order according to which the edges {q, vi} are queried, we have

µt′(Q2) ≤
(

1− t

deg(q)

)
µt′(q) ≤

(
1− t

∆

)
µt′(q). (10)

Note that µt′(q) ≤ ∆
∆+1µt′ since by assumption q is 1

∆+1 -heavy in round t′. Since µt′+t =
µt′+t(q) + µt′+t(Q1) + µt′+t(Q2), we get by (8), (9) and (10):

µt′+t ≤
(

1
Γ + Γ− 1

Γ
∆− t
∆ + 1

)
µt′ =

(
1− Γ− 1

Γ
t+ 1

(∆ + 1)

)
µt′ ≤

(
1− Γ− 1

Γ(∆ + 1)

)t+1
µt′ ,

where the last inequality comes from (1− x)k ≥ 1− xk, for k ≥ 1 and x < 1.
Consider now a maximal sequence S of rounds in which q is 1

∆+1 -heavy and is not
1

∆+1 -heavy in the round that follows the sequence. Note that Algorithm EDGE cyclically
queries the edges incident to q in S. Let r′1 ≤ · · · ≤ r′b′ be all rounds in S having q as an

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:15

answer. Denote X = S \ {r′1, . . . , r′b′}, the set of rounds in S in which q is not an answer.
Let a = db′/ deg(q)e. The lie counter of each vertex in q increases by at least a− 1 and by at
most a times by executing S – we point out that this crucial property follows from the fact
that the queries in the segment are applied to the edges incident to q consecutively modulo
deg(v). Since q is 1

∆+1 -heavy at the beginning of S and is not 1
∆+1 -heavy right after S, the

lie counter of q increases by at least a as a result of S. Hence, |X| ≥ a. Partition r′1, . . . , r′b′
into a minimum number of segments of length at most deg(q) each, which leads to at most
a segments. Thus, we can pair these segments with rounds in X. For each such pair of at
most deg(q) + 1 rounds we apply the amortized analysis performed above. Note that this
approach is valid since the amortized analysis is insensitive of the order of appearance of the
queries in X and the queries in S \X.

Finally, suppose that there is a series of queries at the end of the strategy (a suffix)
performed to edges incident to a 1

∆+1 -heavy vertex q such that all replies point to q and q
remains 1

∆+1 -heavy till the end of the strategy. Note that in such a case q is the target. The
vertex q had the uniquely smallest lie counter just before those queries. This in particular
implies that the lie counter is strictly smaller than L. We artificially add a sequence of
pseudo-queries, each of which increments the lie counter of q until it reaches L. This implies
that the suffix of the search strategy now consists of a reply (which comes from a regular
query or a pseudo-query) which does not point to q. Thus, we use again the arguments from
our amortized analysis: we can find a segment and pair with it the above mentioned query
pointing away from q. J

Proof of Theorem 7
Proof. Similarly as in the case of vertex queries, the generic strategy in Algorithm EDGE for
edge queries and its corresponding bound for a fixed number of lies can be used to provide
strong bounds for linearly bounded and probabilistic error models.

Let Γ = 1 + ∆+1
∆

ε
1−ε = 1−r

r ·
1
∆ . Denote Qmin = lnn

ln(1+ Γ−1
Γ∆+1)−r ln Γ . We run Algo-

rithm EDGE with bound L = Qminr and parameter Γ set as just mentioned above. Then,
by Theorem 6, the length of the strategy is at most 1

ln(1+ Γ−1
Γ∆+1) · lnn+ ln Γ

ln(1+ Γ−1
Γ∆+1) ·Qminr =

Qmin = L/r. To conclude the proof, we bound

Qmin = lnn
F (ε)/(∆ + 1) + F (−ε/∆) ·∆/(∆ + 1) =

(where F (x) def= x+ (1− x) ln(1− x) =
∑∞
i=2

xi

i(i−1))

= lnn∑∞
i=2

εi

i(i−1)
∆i−1+(−1)i
(∆+1)∆i−1

≤ lnn
ε2/(2∆) = 2ε−2∆ lnn. J

Proof of Theorem 8
Proof. For edge queries, we use a two step approach: first, we repeatedly ask queries to
boost their error rate from ∼ 1/2 to below 1/(∆ + 1), and then use the linearly bounded
error strategy.

As a first step, we show that for p0 = 1
∆+1 (1− ε0), there exists a strategy that locates the

target with high probability using O(∆ logn/ε2
0) edge queries. Indeed, assume without loss

of generality that ε0 < 1/2. We fix ε1 = ε0/(1 +
√

3
2

∆+1
∆ ln δ−1/ lnn) , and use Theorem 7

SOSA 2019

4:16 A Framework for Searching in Graphs in the Presence of Errors

with error rate r0 = 1
∆+1 (1 − ε1). By Theorem 7, we obtain that the strategy length is

Q = 2ε−2
1 ∆ lnn = O(∆ε−2

0 (logn+ log δ−1)). The expected number of lies is E[L] = p0 ·Q
and by the Chernoff bound,

Pr[L ≥ r0 ·Q] ≤ exp
(
−1

3

(
r0

p0
− 1
)2
· p0 ·Q

)
≤ exp

(
−2

3

(
ε0 − ε1

ε1

)2
· ∆

∆ + 1 lnn
)

= δ.

We now observe that to achieve the error rate of 1
2 (1− ε), we can boost the query error

rate to be smaller by repeating the same query multiple times and taking the majority answer.
By repeating each query P = O(log(2∆ + 2) · ε−2) times, we get the correct answer with
probability 1− p′ = 1− 1

2 ·
1

∆+1 , and as shown already, we only need O(∆(logn+ log δ−1))
queries with the error rate p′ to locate the target with probability at least 1− δ. Thus the
claimed bound follows. J

As an immediate corollary we obtain a very simple strategy for noisy binary search in an
integer range of complexity O(ε−2(logn+ log δ−1)) matching [20].

B Application: Searching Unbounded Integer Ranges

Building on our generic strategies, we now obtain a general technique for searching an
unbounded domain N = {1, 2, . . .} with comparison queries. Here the measure of complexity
is the dependency on the error rate (number of lies) and on N , the (initially unknown)
position of the target. The main idea is to use Algorithms VERTEX and EDGE, tweaking
the initial weight distribution. We fix the initial weight of an integer n to be µ0(n) = n−2.
The total initial weight then equals π2/6 = Θ(1). We provide the following bounds.3

I Corollary 11. There exists a strategy that finds an integer in an unbounded integer range
(N) using at most

log π2
6 +2 logN+L log Γ

log 2Γ
Γ+1

ternary queries, or
log π2

6 +2 logN+L log Γ
log 3Γ

2Γ+1
binary (comparison) queries,

where N is the target, L is an upper bound on the number of (adversarial) lies and Γ > 1 is
an arbitrarily selected coefficient.

Proof. We use Algorithm VERTEX for ternary queries; let the strategy length be Q. By the
proof of Theorem 3, µQ ≤ (2Γ

Γ+1)Q · π
2

6 . The final weight is at least µQ ≥ N−2 · Γ−L, and the
bound for ternary queries follows since the number of queries is at most log(π2/6

N−2Γ−L)/ log 2Γ
Γ+1 .

The bound for binary queries is obtained analogously from Theorem 6 (note that ∆ = 2)
since we apply Algorithm EDGE for binary queries. J

Simply setting Γ = 2 yields an O(logN + L) length strategy with comparison queries on
unbounded integer domains with a fixed number of L lies.

We need to restate the linearly bounded error model in the case of unbounded domains
since the Responder does not know a priori the length of the strategy. We define this error
model as follows: whenever the Questioner finds the target and thus declares the search to
be completed after t rounds, it is guaranteed that at most rt lies have occurred throughout
the search.

3 We note that the term ternary refers to a model in which each query selects an integer i and as a
response receives information whether the target is smaller than i, equals i, or is greater than i.

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:17

I Corollary 12. For the linearly bounded error model with an error rate r and an unbounded
integer domain, there exists a strategy that finds the target integer N in:
O(ε−2 logN) ternary queries when r = 1

2 (1− ε), or
O(ε−2 logN) binary queries when r = 1

3 (1− ε).

Proof. Consider ternary queries. We proceed analogously as in the proof of Theorem 1. We
have that the initial weight is π2/6. Run Algorithm VERTEX until there is a single n such
that `n ≤ r ·Q. Any Q such that Q ≥ ln(π2/6)/ ln 2Γ

Γ+1 + 2 lnN/ ln 2Γ
Γ+1 + L ln Γ/ ln 2Γ

Γ+1 is
an upper bound on the length of the strategy. We thus get an upper bound

Q ≤ 2ε−2(2 lnN +O(1)).

The binary case follows in an analogous manner. J

I Corollary 13. In the probabilistic error model, the target integer N can be found in an
unbounded integer range using O(ε−2(logN + log δ−1)) binary queries for p = 1

2 (1 − ε),
correctly with probability at least 1− δ.

Proof. Same proof strategy as for Theorem 8, with ∆ = 2, applies. J

SOSA 2019

	Introduction
	Our Contribution – Improved Query Complexity
	Our Contribution – Simplified Algorithmic Techniques
	Related Work

	Preliminaries
	Vertex Searching
	Analysis of the Strategy
	Proof of Theorem 1
	Proof of Theorem 2

	Conclusions
	Analysis of the Generic Strategies for Edge Queries
	Application: Searching Unbounded Integer Ranges

