A Simple Near-Linear Pseudopolynomial Time
Randomized Algorithm for Subset Sum

Ce Jin

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
jinc16@mails.tsinghua.edu.cn

Hongxun Wu

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
wuhx18@mails.tsinghua.edu.cn

—— Abstract

Given a multiset S of n positive integers and a target integer ¢, the SUBSET SUM problem asks to
determine whether there exists a subset of S that sums up to t. The current best deterministic
algorithm, by Koiliaris and Xu [SODA’17], runs in O(y/nt) time, where O hides poly-logarithm
factors. Bringmann [SODA’17] later gave a randomized O(n 4+ t) time algorithm using two-stage
color-coding. The O(n +) running time is believed to be near-optimal.

In this paper, we present a simple and elegant randomized algorithm for SUBSET SuM in

O(n 4+ t) time. Our new algorithm actually solves its counting version modulo prime p > t, by
manipulating generating functions using FFT.

2012 ACM Subject Classification Theory of computation — Algorithm design techniques
Keywords and phrases subset sum, formal power series, FFT
Digital Object Identifier 10.4230/0ASIcs.SOSA.2019.17

Acknowledgements The authors would like to thank the anonymous reviewers for their helpful
comments.

1 Introduction

Given a multiset S of n positive integers and a target integer ¢, the SUBSET SUM problem
asks to determine whether there exists a subset of S that sums up to ¢. It is one of Karp’s
original NP-complete problems [9], and is widely taught in undergraduate algorithm classes.
In 1957, Bellman gave the well-known dynamic programming algorithm [2] in time O(nt).
Pisinger [12] first improved it to O(nt/logt) on word-RAM models. Recently, Koiliaris and
Xu gave a deterministic algorithm [10, 11] in time O(y/nt), which is the best deterministic
algorithm so far. Bringmann [4] later improved the running time to randomized O(n + t)
using color-coding and layer splitting techniques. Abboud et al. [1] recently showed that
SUBSET SUM has no O(t'=¢n®()) algorithm for any e > 0, unless the Strong Exponential
Time Hypothesis (SETH) is false, so the O(n + t) time bound is likely to be near-optimal.

In this paper, we present a new randomized algorithm matching the O(n—|— t) running time
by Bringmann [4]. The basic idea of our approach is quite straightforward. For prime p > ¢,
we give an O(n + t) algorithm for #,SUBSET SUM, the counting version of SUBSET Sum
problem modulo p. Then the decision version can be solved with high probability by randomly
picking a sufficiently large prime p.
? Ce Jin and HongXL.ln Wu; .

5v icensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No.17; pp. 17:1-17:6

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jinc16@mails.tsinghua.edu.cn
mailto:wuhx18@mails.tsinghua.edu.cn
https://doi.org/10.4230/OASIcs.SOSA.2019.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

17:2

Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum

A closely related problem is #KNAPSACK, which asks for the number of subsets .S such that
> scs s < t. There are extensive studies on approximation algorithms for the #KNAPSACK
problem [6, 8, 13, 7]. Our algorithm can solve the modulo p version #,KNAPSACK in
near-linear pseudopolynomial time for prime p > t.

Compared to the previous near-linear time algorithm for SUBSET SuM by Bringmann [4],
our algorithm is simpler and more practical. The precise running time of our algorithm is
O(n + tlog?t) with error probability O((n +t)~"). If a faster algorithm for manipulating
formal power series by Brent [3] is applied, it can be improved to O(n + tlogt) time (see
Remark on Lemma 2), which is faster than Bringmann’s algorithm by a factor of log* n.

1.1 Main ideas of our algorithm

The SUBSET SUM instance can be encoded as a generating function A(z) = [];—, (1 +),
where s1,...,s, are the input integers, and our goal is to compute the t-th coefficient of
A(z) and see whether it is zero or not.

Instead of directly expanding A(x), we consider its logarithm B(z) = In(A(z)). Using
basic properties of the logarithm function and its power series, it’s possible to compute the
first ¢ + 1 coefficients of B(z) in O(t) time. Then we can recover the first ¢ + 1 coefficients of
A(z) = exp(B(z)) in O(t) time using a simple divide and conquer algorithm with FFT (or a
slightly faster algorithm by Brent [3]).

The coefficients involved in the algorithm could be exponentially large. To avoid dealing
with high-precision numbers, we pick a prime p and perform arithmetic operations efficiently
in the finite field IF,,, and in the end check whether the result is zero modulo p. By picking
random p from a large interval, the algorithm succeeds with high probability.

2 Preliminaries

2.1 Subset sum problem

Given n (not necessarily distinct) positive integers si, sa, ..., s, and a target sum ¢, the
SUBSET SUM problem is to decide whether there exists a subset of indices I C {1,2,...,n}
such that), ;s; = t. We also consider the #,SUBSET SUM problem, which asks for

the number of such subsets I modulo p. We use the word RAM model with word length
w = O(logt) throughout this paper.

2.2 Polynomials and formal power series
Formal power series

Let R[z] denote the ring of polynomials over a ring R, and R[[z]] denote the ring of
formal power series over R. A formal power series f(z) = Z;ﬁo fix® is a generalization of a
polynomial with possibly an infinite number of terms. Polynomial addition and multiplication

naturally generalize to R[[z]]. Composition (f o g)(z) = f(g(x)) = > e fi (> e gjmjy is

well-defined for f(z) =Y .o, fiz" € R[[z]] and g(z) = Zjoil gz € zR[[z]]. Here zR[[z]] (or
xR[x]) denotes the set of series in R[[z]] (or polynomials in R[z]) with zero constant term.

C. Jin and H. Wu 17:3

Exponential and logarithm

We are familiar with the following two series in Q[[x]],

X (_1)k—1,k
(142 =y EL 1)
k=1
exp(z) = Z o (2)
k=0
satisfying
exp (In(1+ f(z))) =1+ f(z), (3)
and
In ((1+ f(2))(1+ g(x))) = In(1 + f(2)) + In(1 + g(z)) (4)

for any f(x),g(z) € zQ[x].

Modulo ztt1

Our algorithm only deals with the first ¢4 1 terms of any formal power series. For f(z), g(z) €
R[[x]], we write f(z) = g(x) (mod z'*1) if [27]f(z) = [2%]g(x) for all 0 < i < ¢, where [2%]f(z)
denotes the i-th coefficient of f(x).
As an example, define
t (L‘i

expila) = 0 ®)
i=0
as a t-th degree polynomial in Q[z]. Then exp(f(z)) = exp,(f(x)) (mod z'*1) clearly holds

for any f(x) € zQ[[x]].

2.3 Modulo prime p

To avoid dealing with large fractions or floating-point numbers, we will work in the finite
field F, = {0,1,...,p — 1} of prime order p = 290°8") Addition and multiplication in F,
take O(1) time in the word RAM model. Finding the multiplicative inverse of a nonzero
element in F), takes O(logp) time using extended Euclidean algorithm [5, Section 31.2].

Our algorithm will regard polynomial coefficients as elements from F,. The coefficients
can be rational numbers, but their denominators should not have prime factor p. Formally,
let

Zyz, = {r/s € Q: r,s are coprime integers, p does not divide s} (6)
and apply the canonical homomorphism from Z,z[x] to Fy[z], determined by
r/svs 5740, o . (7)

We use A or A mod p to denote A’s image in F,[z].
From now on we assume p > t, so that exp,(z) € Zyz[x] (see equation (5)), and let
€xp;(x) denote its image in Fp[z].

SOSA 2019

17:4

Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum

procedure COMPUTE(],) > after COMPUTE(I,) returns, all values g1, ..., g, are ready
if [<r then
m < (1 +7)/2]
CoMPUTE(l, m)

fori<~ m+1,m+2,...,r do
9i < gi +i7 3000 (0~ 5) fimjgy
end for
COMPUTE(m + 1,7)
end if

end procedure

procedure MAIN
Initialize gg < 1,g; + 0(1 <i <)
CoMPUTE(O, t)

end procedure

Figure 1 Algorithm for computing g1, ..., g:.

2.4 Computing exponential using FFT

» Lemma 1 (FFT). Given two polynomials f(z), g(x) € Fplx] of degree at most t, one can
compute their product f(x)g(x) in O(tlogt) time.

Proof. The classic FFT algorithm [5, Chapter 30] can multiply f(z) and g(x), regarded as
polynomials in Z[z], in O(tlogt) time. Then take the remainder of each coefficient modulo
. <

Lemma 2 is a classical result on manipulating formal power series, and is the main building
block of our algorithm.

» Lemma 2 (Brent [3]). Given a polynomial f(x) € xF,[z] of degree at most t (t < p), one
can compute a polynomial g(x) € Fy[z] in O(t) time such that g(z) = &xp,(f(x)) (mod zt*1).

» Remark. Brent’s algorithm [3] uses Newton’s iterative method and runs in time O(tlogt).
Here we describe a simpler O(¢ log? t) algorithm by standard divide and conquer. We present
the algorithm as over Q for notational simplicity.

Proof. Let f(x) = Zle fiz" and g(z) = exp(f(z)) = Y. oop gix’. Then ¢'(z) = g(z)f' ().
Comparing the (i — 1)-th coefficients on both sides gives a recurrence relation

i—1
gi =i (i—i)fimj9 (8)
j=0
with initial value go = 1. The desired coefficients g¢1,...,g; can be computed using the

algorithm in Figure 1, which simply reorganizes the computation of recurrence formula (8)
as a recursion.

To speed up this algorithm, define polynomial F(x) = 7,;10 kfrat G(x) = Z;':Ol gj1z?
and use FFT to compute H(z) = F(z)G(x) in O((r — 1) log(r —1)) time after COMPUTE(L, m)
returns. Then Y77, (i — j) fi—jg; = [+*"']H(z), and hence the for loop runs in O(r —m)
time. The total running time is T'(t) = 27(t/2) + O(tlogt) = O(tlog®t). <

C. Jin and H. Wu

3 Main algorithm

Recall that we are given n positive integers si,...,s, and a target sum ¢. Consider the
generating function A(x) defined by

n

A(z) = [Ja+2%). (9)

=1

The number of subsets that sum up to ¢ is [z*]A(z). The SUBSET SUM instance has a solution
if and only if [z]A(z) # 0.

» Lemma 3. Suppose [2']A(x) # 0. Let p be a uniform random prime from [t + 1, (n + t)3].
With probability 1 — O((n +t)~1), p does not divide [z']A(x).

Proof. Notice that [zf]A(z) < 2", so it has at most n prime factors. Since there are
Q((n+1)?) primes in the interval, the probability that p divides [2!]A(x) is O((n+1)71). <«
» Lemma 4. Let B(z) = In(A(z)) € Q[[z]]. For prime p > t, in O(t) time one can compute

([="]B(x)) mod p for all0 < r < t.

Proof. By definition of B(z),

n n

. sy NN (G
B(:c)zln(H(l—I—xi)):ZIH(I—F@”):ZZ S g, (10)

i=1 i=1 =1 j=1 J

Let ay, be the size of the set {j : s; = k}, and define polynomial

n [t/si] i t [t/k] i
(-1 ar(~1) "
Bie)=) > ——a =)) ———a" (11)
i=1 j=1 k=1 j=1

Then [z"]|Bi(z) = [x"]B(x) for all 0 < r < ¢.

Note that the denominators j in (11) do not have prime factor p. After preparing the
multiplicative inverses j~! for each 1 < j < ¢, we can compute all ([#7]B;(z)) mod p by
simply iterating over k, j in equation (11), which only takes 3} _, [t/k| = O(tlogt) time. <

» Lemma 5. For prime p > t, one can compute ([x"]A(z)) mod p for all 0 < r <t in O(t)
time.

Proof. Let B(z) = In(A(z)). Then A(x) = exp(B(x)) = exp;(B:(z)) (mod z'*!), where
Bi(z) = ZEZO([xi]B(x))xi. We use Lemma 4 to compute B;(x)’s image By(z) € F,[z], and
then use Lemma 2 to compute the first ¢ + 1 terms of &xp,(B(z)), which give the values of
([z")A(z)) mod p for all 0 < r < t. <

» Theorem 6. The SUBSET SUM problem can be solved in time O(n +t) by a randomized
algorithm with one-sided error probability O((n +t)~1).

Proof. By sampling and using Miller-Rabin primality test [5, Section 31.8], we can pick a
uniform random prime p from interval [t+1, (n+1)%] in (log(n+1))°™M time with O((n+t)~1)
failure probability. Then the theorem immediately follows from Lemma 3 and Lemma 5. <«

17:5

SOSA 2019

17:6 Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum

—— References

1

10

11

12

13

Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower
bounds for subset sum and bicriteria path. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2019. To appear. URL: http://arxiv.org/
abs/1704.04546.

Richard E. Bellman. Dynamic programming. Princeton University Press, 1957.

Richard P. Brent. Multiple-precision zero-finding methods and the complexity of elementary
function evaluation. In Analytic Computational Complezity, pages 151-176. Elsevier, 1976.
doi:10.1016/B978-0-12-697560-4.50014-9.

Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Pro-
ceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1073-1084, 2017. doi:10.1137/1.9781611974782.69.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT press, 3rd edition, 2009.

Martin Dyer. Approximate counting by dynamic programming. In Proceedings of the
35th Annual ACM Symposium on Theory of Computing (STOC), pages 693-699, 2003.
doi:10.1145/780542.780643.

Pawel Gawrychowski, Liran Markin, and Oren Weimann. A Faster FPTAS for #Knap-
sack. In Proceedings of the 45th International Colloguium on Automata, Languages, and
Programming (ICALP), pages 64:1-64:13, 2018. doi:10.4230/LIPIcs.ICALP.2018.64.
Parikshit Gopalan, Adam Klivans, Raghu Meka, Daniel Stefankovic, Santosh Vempala, and
Eric Vigoda. An FPTAS for #knapsack and related counting problems. In Proceedings of
the 52nd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages
817-826, 2011. doi:10.1109/F0CS.2011.32.

Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85—103. Springer US, 1972. doi:10.1007/978-1-4684-2001-2_9.
Konstantinos Koiliaris and Chao Xu. A faster pseudopolynomial time algorithm for subset
sum. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1062-1072, 2017. doi:10.1137/1.9781611974782.68.

Konstantinos Koiliaris and Chao Xu. Subset Sum Made Simple. CoRR, abs/1807.08248,
2018. URL: http://arxiv.org/abs/1807.08248.

David Pisinger. Linear time algorithms for knapsack problems with bounded weights.
Journal of Algorithms, 33(1):1-14, 1999. doi:10.1006/jagm.1999.1034.

Romeo Rizzi and Alexandru I. Tomescu. Faster FPTASes for counting and random gener-
ation of knapsack solutions. In Furopean Symposium on Algorithms (ESA), pages 762773,
2014. doi:10.1007/978-3-662-44777-2_63.

http://arxiv.org/abs/1704.04546
http://arxiv.org/abs/1704.04546
http://dx.doi.org/10.1016/B978-0-12-697560-4.50014-9
http://dx.doi.org/10.1137/1.9781611974782.69
http://dx.doi.org/10.1145/780542.780643
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.64
http://dx.doi.org/10.1109/FOCS.2011.32
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1137/1.9781611974782.68
http://arxiv.org/abs/1807.08248
http://dx.doi.org/10.1006/jagm.1999.1034
http://dx.doi.org/10.1007/978-3-662-44777-2_63

	Introduction
	Main ideas of our algorithm

	Preliminaries
	Subset sum problem
	Polynomials and formal power series
	Modulo prime p
	Computing exponential using FFT

	Main algorithm

