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—— Abstract

Given a multiset S of n positive integers and a target integer ¢, the SUBSET SUM problem asks to
determine whether there exists a subset of S that sums up to t. The current best deterministic
algorithm, by Koiliaris and Xu [SODA’17], runs in O(y/nt) time, where O hides poly-logarithm
factors. Bringmann [SODA’17] later gave a randomized O(n 4+ t) time algorithm using two-stage
color-coding. The O(n + ) running time is believed to be near-optimal.

In this paper, we present a simple and elegant randomized algorithm for SUBSET SuM in

O(n 4+ t) time. Our new algorithm actually solves its counting version modulo prime p > t, by
manipulating generating functions using FFT.
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1 Introduction

Given a multiset S of n positive integers and a target integer ¢, the SUBSET SUM problem
asks to determine whether there exists a subset of S that sums up to ¢. It is one of Karp’s
original NP-complete problems [9], and is widely taught in undergraduate algorithm classes.
In 1957, Bellman gave the well-known dynamic programming algorithm [2] in time O(nt).
Pisinger [12] first improved it to O(nt/logt) on word-RAM models. Recently, Koiliaris and
Xu gave a deterministic algorithm [10, 11] in time O(y/nt), which is the best deterministic
algorithm so far. Bringmann [4] later improved the running time to randomized O(n + t)
using color-coding and layer splitting techniques. Abboud et al. [1] recently showed that
SUBSET SUM has no O(t'=¢n®()) algorithm for any e > 0, unless the Strong Exponential
Time Hypothesis (SETH) is false, so the O(n + t) time bound is likely to be near-optimal.

In this paper, we present a new randomized algorithm matching the O(n—|— t) running time
by Bringmann [4]. The basic idea of our approach is quite straightforward. For prime p > ¢,
we give an O(n + t) algorithm for #,SUBSET SUM, the counting version of SUBSET Sum
problem modulo p. Then the decision version can be solved with high probability by randomly
picking a sufficiently large prime p.
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A closely related problem is #KNAPSACK, which asks for the number of subsets .S such that
> scs s < t. There are extensive studies on approximation algorithms for the #KNAPSACK
problem [6, 8, 13, 7]. Our algorithm can solve the modulo p version #,KNAPSACK in
near-linear pseudopolynomial time for prime p > t.

Compared to the previous near-linear time algorithm for SUBSET SuM by Bringmann [4],
our algorithm is simpler and more practical. The precise running time of our algorithm is
O(n + tlog?t) with error probability O((n +t)~"). If a faster algorithm for manipulating
formal power series by Brent [3] is applied, it can be improved to O(n + tlogt) time (see
Remark on Lemma 2), which is faster than Bringmann’s algorithm by a factor of log* n.

1.1 Main ideas of our algorithm

The SUBSET SUM instance can be encoded as a generating function A(z) = [];—, (1 + ),
where s1,...,s, are the input integers, and our goal is to compute the t-th coefficient of
A(z) and see whether it is zero or not.

Instead of directly expanding A(x), we consider its logarithm B(z) = In(A(z)). Using
basic properties of the logarithm function and its power series, it’s possible to compute the
first ¢ + 1 coefficients of B(z) in O(t) time. Then we can recover the first ¢ + 1 coefficients of
A(z) = exp(B(z)) in O(t) time using a simple divide and conquer algorithm with FFT (or a
slightly faster algorithm by Brent [3]).

The coefficients involved in the algorithm could be exponentially large. To avoid dealing
with high-precision numbers, we pick a prime p and perform arithmetic operations efficiently
in the finite field IF,,, and in the end check whether the result is zero modulo p. By picking
random p from a large interval, the algorithm succeeds with high probability.

2 Preliminaries

2.1 Subset sum problem

Given n (not necessarily distinct) positive integers si, sa, ..., s, and a target sum ¢, the
SUBSET SUM problem is to decide whether there exists a subset of indices I C {1,2,...,n}
such that ), ;s; = t. We also consider the #,SUBSET SUM problem, which asks for

the number of such subsets I modulo p. We use the word RAM model with word length
w = O(logt) throughout this paper.

2.2 Polynomials and formal power series
Formal power series

Let R[z] denote the ring of polynomials over a ring R, and R[[z]] denote the ring of
formal power series over R. A formal power series f(z) = Z;ﬁo fix® is a generalization of a
polynomial with possibly an infinite number of terms. Polynomial addition and multiplication

naturally generalize to R[[z]]. Composition (f o g)(z) = f(g(x)) = > e fi ( > e gjmjy is

well-defined for f(z) =Y .o, fiz" € R[[z]] and g(z) = Zjoil gz € zR[[z]]. Here zR[[z]] (or
xR[x]) denotes the set of series in R[[z]] (or polynomials in R[z]) with zero constant term.
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Exponential and logarithm

We are familiar with the following two series in Q[[x]],

X (_1)k—1,k
(142 =y EL 1)
k=1
exp(z) = Z o (2)
k=0
satisfying
exp (In(1+ f(z))) =1+ f(z), (3)
and
In ((1+ f(2))(1+ g(x))) = In(1 + f(2)) + In(1 + g(z)) (4)

for any f(x),g(z) € zQ[x].

Modulo ztt1

Our algorithm only deals with the first ¢4 1 terms of any formal power series. For f(z), g(z) €
R[[x]], we write f(z) = g(x) (mod z'*1) if [27]f(z) = [2%]g(x) for all 0 < i < ¢, where [2%]f(z)
denotes the i-th coefficient of f(x).
As an example, define
t (L‘i

expila) = 0 ®)
i=0
as a t-th degree polynomial in Q[z]. Then exp(f(z)) = exp,(f(x)) (mod z'*1) clearly holds

for any f(x) € zQ[[x]].

2.3 Modulo prime p

To avoid dealing with large fractions or floating-point numbers, we will work in the finite
field F, = {0,1,...,p — 1} of prime order p = 290°8") Addition and multiplication in F,
take O(1) time in the word RAM model. Finding the multiplicative inverse of a nonzero
element in F), takes O(logp) time using extended Euclidean algorithm [5, Section 31.2].

Our algorithm will regard polynomial coefficients as elements from F,. The coefficients
can be rational numbers, but their denominators should not have prime factor p. Formally,
let

Zyz, = {r/s € Q: r,s are coprime integers, p does not divide s} (6)
and apply the canonical homomorphism from Z,z[x] to Fy[z], determined by
r/svs 5740, o . (7)

We use A or A mod p to denote A’s image in F,[z].
From now on we assume p > t, so that exp,(z) € Zyz[x] (see equation (5)), and let
€xp;(x) denote its image in Fp[z].

SOSA 2019
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procedure COMPUTE(], ) > after COMPUTE(I, ) returns, all values g1, ..., g, are ready
if [ <r then
m < (1 +7)/2]
CoMPUTE(l, m)

fori<~ m+1,m+2,...,r do
9i < gi +i7 3000 (0~ 5) fimjgy
end for
COMPUTE(m + 1,7)
end if

end procedure

procedure MAIN
Initialize gg < 1,g; + 0(1 <i <)
CoMPUTE(O, t)

end procedure

Figure 1 Algorithm for computing g1, ..., g:.

2.4 Computing exponential using FFT

» Lemma 1 (FFT). Given two polynomials f(z), g(x) € Fplx] of degree at most t, one can
compute their product f(x)g(x) in O(tlogt) time.

Proof. The classic FFT algorithm [5, Chapter 30] can multiply f(z) and g(x), regarded as
polynomials in Z[z], in O(tlogt) time. Then take the remainder of each coefficient modulo
. <

Lemma 2 is a classical result on manipulating formal power series, and is the main building
block of our algorithm.

» Lemma 2 (Brent [3]). Given a polynomial f(x) € xF,[z] of degree at most t (t < p), one
can compute a polynomial g(x) € Fy[z] in O(t) time such that g(z) = &xp,(f(x)) (mod zt*1).

» Remark. Brent’s algorithm [3] uses Newton’s iterative method and runs in time O(tlogt).
Here we describe a simpler O(¢ log? t) algorithm by standard divide and conquer. We present
the algorithm as over Q for notational simplicity.

Proof. Let f(x) = Zle fiz" and g(z) = exp(f(z)) = Y. oop gix’. Then ¢'(z) = g(z)f' ().
Comparing the (i — 1)-th coefficients on both sides gives a recurrence relation

i—1
gi =i (i—i)fimj9 (8)
j=0
with initial value go = 1. The desired coefficients g¢1,...,g; can be computed using the

algorithm in Figure 1, which simply reorganizes the computation of recurrence formula (8)
as a recursion.

To speed up this algorithm, define polynomial F(x) = 7,;10 kfrat G(x) = Z;':Ol gj1z?
and use FFT to compute H(z) = F(z)G(x) in O((r — 1) log(r —1)) time after COMPUTE(L, m)
returns. Then Y77, (i — j) fi—jg; = [+*"']H(z), and hence the for loop runs in O(r —m)
time. The total running time is T'(t) = 27(t/2) + O(tlogt) = O(tlog®t). <
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3 Main algorithm

Recall that we are given n positive integers si,...,s, and a target sum ¢. Consider the
generating function A(x) defined by

n

A(z) = [Ja+2%). (9)

=1

The number of subsets that sum up to ¢ is [z*]A(z). The SUBSET SUM instance has a solution
if and only if [z]A(z) # 0.

» Lemma 3. Suppose [2']A(x) # 0. Let p be a uniform random prime from [t + 1, (n + t)3].
With probability 1 — O((n +t)~1), p does not divide [z']A(x).

Proof. Notice that [zf]A(z) < 2", so it has at most n prime factors. Since there are
Q((n+1)?) primes in the interval, the probability that p divides [2!]A(x) is O((n+1)71). <«
» Lemma 4. Let B(z) = In(A(z)) € Q[[z]]. For prime p > t, in O(t) time one can compute

([="]B(x)) mod p for all0 < r < t.

Proof. By definition of B(z),

n n

. sy NN (G
B(:c)zln(H(l—I—xi)):ZIH(I—F@”):ZZ S g, (10)

i=1 i=1 =1 j=1 J

Let ay, be the size of the set {j : s; = k}, and define polynomial

n [t/si] i t [t/k] i
(-1 ar(~1) "
Bie)=) > ——a =) ) ———a" (11)
i=1 j=1 k=1 j=1

Then [z"]|Bi(z) = [x"]B(x) for all 0 < r < ¢.

Note that the denominators j in (11) do not have prime factor p. After preparing the
multiplicative inverses j~! for each 1 < j < ¢, we can compute all ([#7]B;(z)) mod p by
simply iterating over k, j in equation (11), which only takes 3} _, [t/k| = O(tlogt) time. <

» Lemma 5. For prime p > t, one can compute ([x"]A(z)) mod p for all 0 < r <t in O(t)
time.

Proof. Let B(z) = In(A(z)). Then A(x) = exp(B(x)) = exp;(B:(z)) (mod z'*!), where
Bi(z) = ZEZO([xi]B(x))xi. We use Lemma 4 to compute B;(x)’s image By(z) € F,[z], and
then use Lemma 2 to compute the first ¢ + 1 terms of &xp,(B(z)), which give the values of
([z")A(z)) mod p for all 0 < r < t. <

» Theorem 6. The SUBSET SUM problem can be solved in time O(n +t) by a randomized
algorithm with one-sided error probability O((n +t)~1).

Proof. By sampling and using Miller-Rabin primality test [5, Section 31.8], we can pick a
uniform random prime p from interval [t+1, (n+1)%] in (log(n+1))°™M time with O((n+t)~1)
failure probability. Then the theorem immediately follows from Lemma 3 and Lemma 5. <«
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