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—— Abstract

We show that recognizing axiomatizations of the Hilbert-style calculus containing only the axiom
a — (b — a) is undecidable (a reduction from the Post correspondence problem is formalized
in the Lean theorem prover). Interestingly, the problem remains undecidable considering only
axioms which, when seen as simple types, are principal for some A-terms in S-normal form. This
problem is closely related to type-based composition synthesis, i.e. finding a composition of given
building blocks (typed terms) satisfying a desired specification (goal type).

Contrary to the above result, axiomatizations of the Hilbert-style calculus containing only
the axiom a — (b — b) are recognizable in linear time.
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1 Introduction

The problem of decidability of a given Hilbert-style propositional calculus was posed by Tarski
in 1946 and has subsequently been studied by several authors in various forms, beginning with
the abstract published in 1949 by Linial and Post [13] in which the existence of an undecidable
propositional calculus and undecidability of the problem of recognizing axiomatizations of
classical propositional logic was stated (Linial-Post theorems). Zolin [20] provides a good
overview of the history of this problem, and let us mention here only that Singletary [16]
proved in 1974 that there exists a purely implicational propositional calculus which can
represent any r.e. degree. Such a calculus can be seen as a combinatory logic [1, 11] in
simple types [10, 2] with an undecidable inhabitation problem. In honor of the pioneers,
we refer to the set of all Hilbert-style propositional calculi as the Linial-Post spectrum. In
the present work we shed some light on the ‘lower end’ (seemingly very weak calculi) of
the Linial-Post spectrum from the point of view of functional program synthesis. Our main
result is that recognizing axiomatizations of the Hilbert-style calculus containing only the
axiom a — (b — a) (the type of the combinator K in combinatory logic) is undecidable.
Moreover, we show that the problem remains undecidable considering only principal axioms,
i.e. axioms that, seen as simple types, are principal for some A-terms in S-normal form.
In general, to recognize whether given axioms A = {oy,...,0,} axiomatize some calculus
¢ means to decide whether theorems in € coincide with formulae derivable from A using
the rules of substitution and modus ponens. In particular, if € is the Hilbert-style calculus
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containing only the axiom a — (b — a), then A axiomatizes € iff @ — (b — a) is derivable
from A and o is derivable from {a — (b — a)} for each 0 € A. We show that the former
problem, even if only principal axioms are considered, is undecidable while the latter, in
general, is decidable in linear time®. If one is not interested in principal axioms, then the
former result follows directly from the recent work by Bokov [6] which shows that problems
of recognizing axiomatizations and completeness are undecidable for propositional calculi
containing the axiom a — (b — a).

The result presented here encompasses two motivating aspects which distinguish it from
existing work (see [20] for an overview). First, similar to Bokov [6], we explore the lower
end of the Linial-Post spectrum, whereas existing work focuses on classical [13, 19, 4] or
superintuitionistic [12, 20, 5] calculi, often having rich type syntax, e.g. containing negation.
In this work, we consider only implicational formulae and stay below a — (b — a) in
terms of derivability. This is arguably ‘as low as you can get’ because, as will be shown,
axiomatizations of ¢ — a (or even a — (b — b)) are recognizable in linear time. Second,
we are interested in synthesis of functional programs from given building blocks. Following
the same motivation as [15, 3], we want to utilize proof search (inhabitation in combinatory
logics) to synthesize code by composition from a given collection of combinators. Specifically,
provided simply typed A-terms My, ..., M, in B-normal form, we search for an applicative
composition of the given terms that has some designated simple type o. This is equivalent to
proof search in the Hilbert-style calculus having axioms o1, ..., 0, where o; is the principal
type of M; for i =1...n. It is a typical synthesis scenario, in which M, ..., M, are library
components exposing functionality specified by their corresponding principal types o1, ..., 0.
The synthesized composition is a functional program that uses the library to realize behavior
specified by the type o.

Our second motivation forces us to deviate from standard constructions pervading existing
work. For example, considering axioms a — (a — a) (testing equality of two arguments)
or (a — b) — b (encoding disjunction), there are no A-terms in S-normal form having such
axioms as their principal types. Therefore, such logical formulae could be considered an
artificial and purely logical peculiarity from the point of view of program synthesis. Moreover,
necessarily deviating from existing techniques (also using the Post correspondence problem
instead of Post production systems as in [6]) we provide a novel and formalized? proof.

A noteworthy side effect when considering axioms that are tied to corresponding A-
terms via principality is an additional twist to the Curry-Howard isomorphism. We observe
that the constructed proof that a formula is derivable (therefore logically solving the un-
derlying problem) corresponds to a A-term that actually solves the underlying problem
computationally.

The paper is organized as follows. Section 2 recapitulates preliminary definitions (simply
typed A-calculus, simply typed combinatory logic, Hilbert-style calculi and the Post cor-
respondence problem). Our main result on undecidability of recognizing axiomatizations
of @ = (b — a) in shown in Section 3, which also contains linear time derivability from
a — (b — a). The proof is formalized? in the Lean theorem prover. Formalizations of key
statements are referred to by namespace.lemma. Complementary, linear time decidability
of recognizing axiomatizations of @ — a (resp. a — (b — b)) are shown in Section 4 (resp.
Section 5). We conclude the paper in Section 6 which also contains remarks on future work.

L As is well known, adding the axiom (a — (b — ¢)) = ((a = b) — (a — c)), the type of the combinator
S, results in intuitionistic implicational logic for which provability is PSPACE-complete [18].
2 http://www-seal.cs.tu-dortmund.de/seal/downloads/research/TYPES17.zip
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2 Preliminaries

In this section we briefly assemble necessary prerequisites in order to discuss principal
axiomatizations of implicational propositional calculi. For a survey on simply typed calculi
along with corresponding (under the Curry-Howard isomorphism) implicational propositional
calculi see [17].

2.1 Simply Typed Lambda Calculus

We denote A-terms (cf. Definition 1) by M, N, L where term variables are denoted by x,y, z.

As is usual, application associates to the left and binds stronger than abstraction.
» Definition 1 (\-Terms). M,N,L :=x | (Az.M) | (M N)

Simple types (cf. Definition 2) are denoted by o, T where type atoms (also called type
variables in literature) are denoted by a, b, ¢ and drawn from the denumerable set A. As is
usual, — associates to the right, i.e. 0 =7 >0 =0 — (7 — 0).

» Definition 2 (Simple Types). T2 o, 7 i=a |0 =T
A type environment T is a finite set of type assumptions {x1 : 01,...,%y, : 05} in which
term variables occur at most once. We set

dom(T) = {x1,...,zn}, IT| ={o1,...,0n}, D(x;) =0, fori=1...n

We write ' U{x : 0} as T,z : ¢ if z ¢ dom(T").

The rules (Var), (—I) and (—E) of the simple type system (F) are given in the following
Definition 3.
» Definition 3 (Simply Typed A-Calculus (I)).

Ne:obEM:7 (1) '-M:0—>7 '-N:o
'EXeM:0—T1 'FMN:T1

(Var) (—E)

Nz:okFx:0

A substitution ¢ : A — T is a mapping such that its substitution domain dom({) := {a € A |
¢(a) # a} is finite. We lift substitutions homomorphically to types. We say o is unifiable
with 7, if there exists a substitution ¢ such that ((o) = {(7). A principal type (cf. Definition
4) of a term is the most general type assignable to that term and is unique up to atom
renaming.

» Definition 4 (Principal Type). We say that 7 is a principal type of M, if - M : 7 and for
all types o such that b M : o there exists a substitution ¢ such that {(7) = o.
2.2 Simply Typed Combinatory Logic

We call A-terms without abstractions combinatory terms (cf. Definition 5), denoted by
F.G,H.

» Definition 5 (Combinatory Terms). F,G, H ==z | (F Q)
The size of a combinatory term is the number of leaves in its syntax tree (cf. Definition 6).
» Definition 6 (Size). size(z) = 1 and size(F G) = size(F) + size(G).

The rules (Ax) and (—E) of the simply typed combinatory logic (F¢) are given in the
following Definition 7.

2:3
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» Definition 7 (Simply Typed Combinatory Logic (F¢)).

I'teFio—T I'teG:o

¢ is a substitution
Tre FG:7 (=F)

Tz:obex:((o)

(Ax)

Observe that the above definition is relativized to arbitrary bases I' whereas ‘simply typed
combinatory logic’ often refers to a fixed base containing the combinators S and K with
their corresponding types. We will use relativization to inspect arbitrary bases allowing to
go below S and K in term of derivability.

Naturally, combinatory terms are of shape x F} ... F,, for some n € N and we have the
following generation lemma (cf. derivation.long_typability).

» Lemma 8 (Generation Lemma). IfT' ¢ Fy ... F, : 7, then there exists a substitution
such that ((T'(z)) =01 = ... = 0y = T for somen €N, o1,...,0, and T' k¢ F; : 0; holds
fori=1...n.

To mitigate extensive use of parentheses in combinatory terms we use the left-associative
pipe metaoperator > defined as Fi>G = (G F). For example, G5 (G2 (G1 F)) = FrG1>Ga>Gs.

2.3 Hilbert-Style Calculus

We identify propositional implicational azioms (sometimes called formulae) with simple types
and denote finite sets of axioms by A. The rules (Ax) and (—E) of the Hilbert-style calculus
(F¢) are given in the following Definition 9.

» Definition 9 (Hilbert-Style Calculus (F%)).

(¢ is a substitution
Av o l_’H C(U)

Abyo—T AbFyo
E
A"HT (_>)

(Ax)

Again, (Fy) is relativized to arbitrary sets of axioms A. Observe that (F3) and (F¢)
are in direct Curry-Howard correspondence. The set of derivable formulae is denoted by
[A]H:{T€T|AFHT}

We say Ay aziomatizes [Ag]y if [A1]y = [Az]y. Clearly, [Aq]y = [Az]y iff Ay by 7 for
all 7 € Ag and Ay Fy o for all 0 € Ay. For brevity, we say A axiomatizes o if [Aly = [{o}]n.

» Example 10. For A={a—b—a,(a = b—¢c) = (a = b) = a — ¢} the set of formulae
[A] contains exactly the intuitionistic propositional implicational tautologies.

For A’ = AU{(((p — ¢q) = p) — p} the set of formulae [A’]y; contains exactly the
classical propositional implicational tautologies [20].

» Definition 11. An axiom o is principal if there exists a A-term M in S-normal form such
that o is the principal type of M in the simply typed A-calculus.

Intuitively, axioms that are not principal, e.g. @ — a — a, could in some contexts (for
example, in synthesis) be considered ‘artificial’ since they have no ‘naturally’ associated
realization. Principality of axioms is decidable [7] and, in fact, PSPACE-complete [9].

2.4 Post Correspondence Problem
The Post correspondence problem (PCP) is well-known for its undecidability ([14]).

» Problem 12 (Post Correspondence Problem). Given pairs of words (vi,wi),..., (v, wk)
over the alphabet {a,b} such that v; # € # w; fori=1...k (where € is the empty word) decide

whether there exists an index sequence i1, ... ,1, such that v;,v;, ... v;, = Wi, Wi, ... W4, .
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As an immediate consequence, the following slight restriction of the problem, where
v; # w;, is also undecidable.

» Corollary 13. Given pairs of words (v1,w1),..., (vi, wg) over the alphabet {a,b} such
that € # v; # w; # € fori =1...k it is undecidable whether there exists an index sequence
U1,y in Such that vV, Vs, ...V, = WIW;, Wiy « .. W, -

n n

We aim at showing undecidability of recognizing principal axiomatizations of the calculus
a — b — a by reduction from PCP. Usually, the Post correspondence problem is approached
constructively, i.e. start with some given pair of words, then iteratively append corresponding
suffixes, and finally test for equality. The approach taken in the present work is, in a sense,
‘deconstructive’. In particular, we start from an arbitrary pair of equal words, then iteratively
remove corresponding suffixes, and finally test whether the resulting pair is given. While the
former approach requires an equality test for arbitrarily large structures as a final operation
(the encoding of which appears problematic in terms of principal axioms), the final operation
of the latter approach can be bounded. The following Definition 14 and Lemma 15 capture
the outlined iterative deconstruction.

» Definition 14. Given a set PCP = {(vi,w1),..., (vg,wy)} of pairs of words over the
alphabet {a,b} we define for n > 0 the set PCP,, of pairs of words as follows

PCPy = {(v,v) | v € {a,b}"} PCPpt1 = {(v,w) | Fi € {1,...,k}.(vv;, ww;) € PCP,}

» Lemma 15. Let n > 0 and v,w € {a,b}*. We have vv;,v;, ... v;
some indexr sequence i1, ..., i, iff (v,w) € PCP,.

= WW;, Wi, ... w;, for

n

Proof. Routine induction on n (cf. pcp.pcp_set_iff_sync_word_pair). <
In sum, it is undecidable whether the prefix (v1,w;) is in PCP,, for some n > 0.

» Lemma 16. Given a set PCP = {(vy,w1), ..., (v, wi)} of pairs of words over the alphabet
{a,b} such that € # v; # w; # € fori=1...k it is undecidable whether there exists an n > 0
such that (v1,w;) € PCP,,.

Proof. Immediate consequence of Corollary 13 and Lemma 15. |

3 Recognizing Axiomatizations of a —» b — a

In this section we show that recognizing principal axiomatizations of the Hilbert-style calculus
containing only the axiom a — b — a is undecidable (cf. Theorem 17), which is our main
result.

» Theorem 17. Given principal axioms o1,...,0, such that {a — b — a} by o for
it =1...n, it is undecidable whether {o1,...,0n} F a = b — a.

» Corollary 18. Given A-terms My, ..., M, in B-normal form with principal types o1,...,0n
in the simply typed \-calculus such that {a — b — a} by o; fori=1...n, it is undecidable
whether there is an applicative composition of My, ..., M, having the simple type a — b — a.

In the context of type-based composition synthesis, the types o1,...,0, are natural spe-
cifications of associated terms M, ..., M, and a — b — a is a goal specification. Deriving
a — b — a from oq,...,0, naturally corresponds to finding a composition of given terms
satisfying the goal specification.

2:5
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We prove Theorem 17 by reduction from the Post correspondence problem, specifically, the

construction in Lemma 16. For that reason, we fix pairs (v1,w1),. .., (vk, wi) of words over
the alphabet {a, b} such that € # v; # w; # e fori =1...k. Our goal is to construct principal
axioms o1,...,0; such that {a = b—a} by o;fori=1...land {o1,...,01} Fyya—=b—a

is equivalent to (v1,w;) € PCP,, for some n > 0.

PCP Reduction

In this subsection we construct axioms o1, ..., o; associated with the outlined reduction. We
do not address principality which will be dealt with in the next subsection.

We need to represent words, pairs and suffixing. Let us fix a unique type atom e. For a
word v € {a,b}* we define its representation as [v] = e - v where the operation - is defined as

oc-e=0 oc-wa=(e— e)—= (0-w) o-wb=(e—e—e)— (0-w)
We represent a pair of types o, 7 as
(o,T)=(0e—>e0e—oe) > (c>T—e)(e—=0)—(e—=T)>e—>e—e

As a side note, [v] contains only e as atom. More importantly, we have [v] - w = [vw],
and representations of two distinct words are not unifiable (cf. Lemma 19).

» Lemma 19. Let v,w € {a,b}*. If [v] and [w] are unifiable, then v = w.

Proof. Assuming v # w we show that [v] and [w] are not unifiable by induction on the

length of v (cf. word.append_unique_encoding). Wlog. v is not longer than w.

Case v = e: Clearly, [v] = e is not unifiable with [w] =01 — ... » 0, — ® with n > 1.

Case v = v'a, w = w'b (resp. v = v'b, w = w'a): Let c =0 — o (resp. o =0 — & —
e)and 7 = e — e — e (resp. T = @ — e). Since o is not unifiable with 7, we have that
[v] = o0 — [v'] is not unifiable with [w] = 7 — [w'].

Case v = v'a, w = w’a (resp. v = v’b, w = w’'b): By induction hypothesis [v'] is not
unifiable with [w’]. Therefore, [v] = o — [v] is not unifiable with [w] = ¢ — [w'], where
og=e— e (resp. c =e — e —e). <

Additionally, for any types o,7 we have that (o, 7) is derivable from a — b — a (cf.
Lemma 21).

» Lemma 20. Let 0,7 be types. If {a - b—a}t by 7, then {a >b—a} by o— 7.

Proof. Use (—»E) with the premises {a - b —a}lby 7 >0 > T7and{a > b—a}by 1. <«

» Lemma 21. Let 0,7 be types. We have {a — b — a} b3 (o, 7).

Proof. Iterative application of Lemma 20 starting with {a = b — a} 3 0 — ¢ — e, <

Finally, we define a type environment I' of k + 2 combinators typed by principal axioms
'={z:{(a,a),z: {[v1],[un]) > e —a— e} U{y; : (a-v;,b-w;) = (a,b) |1 <i<k}

Due to Lemma 21, each axiom in |T'| is derivable from a — b — a.

Having established all prerequisite definitions, we now proceed with our main reduction.
The following Lemma 22 establishes a connection between elements (v,w) € PCP,, and
inhabitants of ([v], [w]).
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» Lemma 22. Let ¢ be a substitution and let v,w € {a,b}*. IfTke x>y Py, >...DY;, :
C[w], [w])) for some index sequence iy .. .in, then (v,w) € PCP,.

Proof. Induction on n (cf. pcp_reduction.piped_term_to_pcp_set).

Basis Step: T' F¢ z : ((([v], [w])) implies ¢([v]) = ¢([w]). By Lemma 19 we obtain v = w.

Inductive Step: Assume I' F¢ x>y, Dy, >...> Yy, by : C(([v], [w])) for some index sequence
i1,y in,l. Wenecessarily haveI' b¢ y; : 0 — ((([v], [w])) and T F¢ apby;, by,>. . >y;, : 0
for some type o. Additionally, o — (({[v], [w])) = &({a - v;,b - w;) — (a,b)) for some
substitution &, which implies (([v]) = £(a), ((Jw]) = £(b) and ((e) = &(e). Therefore,
&(a-v) = C¢([oy]) and (b w;) = ((Jww;]). As a result, we have o = £({a - v;,b - w;)) =
(e, fww])).
By induction hypothesis (vv;, ww;) € PCP,,, which implies (v, w) € PCP,,41. <

Let us define n € NU {oo} (cf. pcp_reduction.min_special) as either the minimal size of

a combinatory term typable in I' by ¢ — ¢ — ¢ or as oo if no such term exists.

n = min{size(F) |I'F¢ F : 0 — 0 — o for some type o}

Intuitively, a ‘small’, i.e. of size less than n, derivation of an instance of ([v1], [w1])
contains no derivation of an instance of ¢ — e — e. Due to our pair encoding, which contains
as its first argument the type e — e — e we are able to severely restrict the shape of the
minimal derivation of ([v1], [w1]) (cf. Lemma 23).

» Lemma 23. IfT' k¢ F : (({(o,7)) for some substitution ¢ such that size(F') < n, then
F=gxzv>y, >...0y;,, for some (possibly empty) index sequence iy, ..., im.

Proof. Induction on size(F') (cf. pcp_reduction.small_to_piped_term).
Basis Step: We have F' # z and F # y; for any i because the type of the corresponding
combinator is not unifiable with (o, 7). If F' = z the claim follows.
Inductive Step:
Case F = z2G1...G,, for some m > 1: We have I' k¢ Gy : (({[v1], [w1])) for some
substitution ¢ which using a +— ((e) impliesT' k¢ z Gy : (o) — ((e) — ((e). Therefore,
n < size(z G1) < size(F) <n. %
Case F =xGy...G,,: Wehave I' k¢ G : ¢/ — ¢/ — ¢ for some ¢’. However,
n < size(G1) < size(F') < n is a contradiction. 4
Case F = y; G for some i: We have I' ¢ G : (({0-v;, 7-w;)). By induction hypothesis
we have G = z>y;, >...>y;,, for some (potentially empty) index sequence i1, ..., 0.
Therefore, ' =x>y;, >...>y,;, >y
Case F = y; Gy ...G,, for some i and some m > 2: Wehave I'Fc Gy : 0/ — 0’ —
o’ for some ¢’. However, n < size(G2) < size(F') < n is a contradiction. 4 <
Next, we show that if @ — b — a is derivable, then there is a small derivation of an instance
of ([v1],w1) (cf. Lemma 24).

» Lemma 24. If|T'| by a — b — a, then T k¢ F : (({[v1], [w1])) for some substitution ¢ and
combinatory term F' such that size(F) < n.

Proof. Case analysis (cf. pcp_reduction.aba_to_small_viwl). |I'| by a — b — a implies
n<oo,ie I'ke H: o0 — 0 — o for some type ¢ and combinatory term H such that
size(H) = n.

Cases H =x or H =z or H =vy; or H=y; G: H cannot be typed by 0 -0 — 0. %
Case H =xzG,...G,, forsome m > 1: We have I'" ¢ G : ¢/ — ¢’ — ¢’ for some o’.
However, n < size(G1) < size(H) = n is a contradiction. %

2:7
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Case H = y; G ...G,, for some m > 2: We have I' k¢ G5 : 0/ — 0’/ — o’ for some o’.
Again, n < size(G2) < size(H) = n is a contradiction. 4

Case H = 2zG1...G,, for some m > 1: We have I' ¢ Gy : ((([v1], [w1])) for some sub-
stitution ¢ which proves the claim since size(G1) < size(H) = n. <

By construction, elements (v, w) € PCP,, are associated with terms of type ([v], [w]) (cf.
Lemma 25).

» Lemma 25. Letv,w € {a,b}*. If (v,w) € PCP,, then T F¢ xby;, by, >...>y;, : ([v], [w])
for some index sequence iy ...1i,.

Proof. Routine induction on n (cf. pcp_reduction.pcp_set_to_piped_term).

Basis Step: (v,w) € PCPy implies v = w. Using the substitution a — [v] = [w] we obtain
[ke @ : (o], [w]).

Inductive Step: (v,w) € PCP,; implies (vv;,ww;) € PCP,, for some | € {1,...k}. By
induction hypothesis I' F¢ x> y;, B yi, b ... > ys, : ([vv], [ww,]) for some index sequence
i1...1n. Using the substitution a — [v],b — [w] we have T" k¢ y; : ([vv], [ww]) —
([v], [w]). By (—E), we obtain the claim I' F¢ x>y, Dy, b ... > y;, Dy ([v], [w]). <«

Finally, we can prove the following key Lemma 26 (cf. pcp_reduction.aba_iff_pcp_set)
which relates membership of (v, w;) in some PCP,, and derivability of @ — b — a from |T'|.

» Lemma 26. We have [I'|Fy a = b — a iff (v1,w1) € PCP,, for some n > 0.

Proof. =>: Assume |I'| b3y @ — b — a. By Lemma 24 we have I' ¢ F : {({[v1], [w1])) for
some substitution ¢ and combinatory term F with size(F) < n. By Lemma 23 we have
F=2x>y; by, >...>y;, for some index sequence i ...1,. Finally, by Lemma 22 we have
(v1,wy1) € PCP,,.

<=: Assume (v1,w;) € PCP,. By Lemma 25 we have I' F¢ F': ([v1], [w1]) for some term
F'. Using an appropriate substitution, we obtain I' F¢ 2 F : a — b — a. |

Principality of Axioms |T|

In this subsection we inspect evidence that axioms |T'| are, in fact, principal by means
of examples. Moreover, we explore the correspondence between compositions of principal
inhabitants and solutions to the given PCP instance. Particularly, a composition of principal
inhabitants which shows at type level that the given PCP instance has a solution also
constructs and verifies the corresponding solution at term level.

Let us fix the following PCP instance

k| (vi, wi)|(v2, w2)|(vs, ws) [v1i w2 v v3 = w1 wy w1 ws
3| (ba, b) |(ab, aa) |(a, baa) |ba ab ba a = b aa b baa
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In this case, |T'| consists of the following five axioms

of = (a-vs,b-ws)
a

We utilize Haskell? to implement principal inhabitants of the above axioms. Further, we
use GHC’s built-in type inference to attest principality*. In the following code fragments
‘\f -> M represents the A-term ‘Af.M’ and ‘--comment’ marks a comment.

The following A-term pair,, is a principal inhabitant of o* and is implemented in the
subsequent Listing 1 together with its inferred principal type.

pair,, =M\ f. sy . Amake, . Amake,, . Azx.\y.
fz (f (iSyw (make, x) (make,, x)) (isyy (make,, y) (make, y)))

Listing 1 Principal Inhabitant of o*.

pair_eq = \f -> \is_vw -> \make_v -> \make_w -> \x -> \y ->
f x (£ (is_vw (make_v x) (make_w x)) (is_vw (make_w y) (make_v y)))

--inferred principal type
pair_eq
(t1 -> t1 -> t1)
=> (t2 -> t2 -> t1) -> (t1 -> t2) -> (t1 -> t2) -> t1 -> t1 -> ti1

Intuitively, f is used as conjunction and is,,,, make,, make,, are used to attest equality of v
and w. Following this intuition, the type e is inhabited by tautologies (e.g. the Haskell value
True), which leads to a principal inhabitant of 0% implemented in the following Listing 2.

Listing 2 Principal Inhabitant of o*.

check_ba_b = \pair -> \x -> \z ->
let £ = pair (\x1 -> \x2 -> x) (\v -> \w -> x)
(\x’> -> \vl1c2 -> \vicl -> x) (\x’ -> \wlcl -> x)

in pair
(\x1 -> \x2 -> f x1 x2) --and
A\v -=> \w -> £ (v (f x) £) (w £)) --is_vw
(\x’> -> \vic2 -> \vicl -> f x’ (f (v1c2 x) (vlcl x x))) --make_v
(\x’> -> \wilcl -> f x’ (wlcl x x)) --make_w
x --True
x —-True

3 https://www.haskell.org/
4 Although Haskell’s type system is more expressive than simple types, we argue that the additional
features play no role in the given examples.
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check_ba_b --inferred principal type
((p1t -> p1 -> pil)
-> (((p1 -> p1) -> (p1l -> pl -> p1) -> pl)
-> ((p1 -> p1 -> p1) -> pl) -> pl)
-> (p1t -> (p1 -> p1) -> (pl -> pi1 -> pl) -> pil)
-> (p1 -> (p1 -> p1l -> pl1) -> pl)
-> pl -> p1 -> p1l) -> pl -> p2 -> pi

Note that the 1et ... in construction in this case does not contribute to principality (replacing
all occurrences of £ by copies of its implementation does not change the principal type) and
is just syntactic sugar. In the above, f is used not only as conjunction but also to construct
inhabitants £ x of type ¢ — e (represents a) and £ of type ¢ — e — e (represents b). As
a result, v (£ x) £ is of type e iff v is of type [ba]. Since £ allows for arbitrary nesting, we
argue that the above principal inhabitant construction can be generalized for any pair of
words vy, w1.
Finally, we implement principal inhabitants of o}, c3, o} in the following Listing 3.

Listing 3 Principal Inhabitants of ¢, 0y, 0.

step_ba_b = \pair -> \f -> \is_vw -> \make_v -> \make_w -> \x -> \y ->
f (f x y) (£ (is_vw (make_v x) (make_w y))
(pair (\x1 -> \x2 -> f x1 x2)
A\v’ -> \w’ -> is_vw (v’ (f x) f) (w’> f)) --is_v’w’
(\x’> -> \v’c2 -> \v’cl ->
make v (f x’ (f (v’c2 x) (v’cl x x)))) —--v’
(\x’> -> \w’cl ->
make_w (f x’ (w’cl x x))) --w’
x y))

step_ba_b --inferred principal type
((t1 -> t1 -> t1)
-> (((t1 -> t1) -> (t1 -> t1 -> t1) -> t2)
-> ((t1 -> t1 -> t1) -> t3) -> t1)
-> (t1 -> (t1 -> t1) -> (t1 -> t1 -> t1) -> t2)
-> (t1 -> (t1 -> t1 -> t1) -> t3)
-> t1 -> t1 -> t1)
-> (t1 -> t1 -> t1) -> (t2 -> t3 -> t1) -> (t1 -> t2) -> (t1 -> t3)
=> t1 -> t1 -> t1

step_ab_aa = \pair -> \f -> \is_vw -> \make_v -> \make_w -> \x -> \y ->
f (f x y) (£ (is_vw (make_v x) (make_w y))
(pair (\x1 -> \x2 -> f x1 x2)

(v’ -> \w’ -> is_vw (v’ £ (f x)) (w’> (£ x) (f x)))

(\x’ -> \v’c2 -> \v’cl ->
make_ v (f x’ (f (v’c2 x x) (v’cl x))))

(\x’ -> \w’c2 -> \w’cl ->
make w (f x° (f (w’c2 x) (w’cl x))))

x y))

step_a_baa = \pair -> \f -> \is_vw -> \make_v -> \make_w -> \x -> \y ->
f (f x y) (f (is_vw (make_v x) (make_w y))
(pair (\x1 -> \x2 -> f x1 x2)

Av’ -> \w’ -> is_vw (v’ (£ x)) (w’> (£ x) (£ x) £))

(\x’ -> \v’cl ->
make_v (f x’ (v’cl x)))

(\x’> -> \w’c3 -> \w’c2 -> \w’cl ->
make w (f x’ (f (w’c3 x) (f (w’c2 x) (w’cl x x)))))

x y))

Similarly, to the principal inhabitant of 0%, we need to ensure that the principal type of
the first argument pair is suffixed by the given words. Now, we may (and have to) use the
additional arguments is_vw of type a — b — e and make_v, make_w of types @ — a and e — b.
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Using £ as conjunction and a way to construct inhabitants of character representations,
\v’ -> \w’ -> is_vw (v’ (f x) £) (w’ £) implements the principal inhabitant of (a-ba) — (b-
b) — . Having x of type , \x’ -> \v’c2 -> \v’cl -> make_v (f x’ (£ (v’c2 x) (v’cl x %)))
implements the principal inhabitant of @ — (a - ba). Again, we argue that the principal
inhabitant construction can be generalized inductively.

Knowing a solution to the above PCP instance, let us compose the given implementations
in the following Listing 4 to an implementation of a — b — a.

Listing 4 Inhabitant of a — b — a.

(1> xy =y x
k = pair_eq |> step_a_baa |> step_ba_b |> step_ab_aa |> check_ba_b
k :: pl -> p2 -> pl --inferred principal type

As expected, evaluating ‘k "Lazy_ Hello" undefined’ via GHC results in "Lazy, Hello", which
shows that the second argument undefined is not evaluated. For some higher-order pleasure,
the expression ‘k ((.)$(.)) "Ask the owl" (==) 2 (1+) 1’ evaluates (as expected) to True.

Interestingly, the above principal implementation of the given axioms has more computa-
tional meaning than just preserving an argument. Viewing True as the only inhabitant of e,
consider the following piece of code.

Listing 5 Composition of Inhabitants.

a = \x -> x
b =\x ->\y -> x && y
——e = a
is_a = \c -> (c True == a True) && (c False == a False)
--c == Db
is_b = \c -> (¢ True True == b True True)
&& (c True False == b True False)
&% (c False True == b False True)
&& (c False False == b False False)

make_ba = \x -> \c2 -> \cl -> x && (is_a c2) && (is_b c1)
make_b = \x -> \cl -> x && (is_b c1)

is_ba_b = \v -> \w -> (v a b) && (w b)

composition = pair_eq |> step_a_baa |> step_ba_b |> step_ab_aa
f = composition (&&) is_ba_b make_ba make_b
show_function_table = do

putStrLn ("f_,True,,True,,=," ++ (show (f True True)))

putStrln ("f,True,, False =" ++ (show (f True False)))
putStrLn ("f_ False, True, =," ++ (show (f False True)))
putStrln ("f_,False False, =" ++ (show (f False False)))

The terms a and b implement representations of characters a and b. Given a character
c, the function is_a (resp. is_b) extensionally verifies equality to a (resp. b). The func-
tions make_ba, make_b and is_ba_a construct and verify inhabitants of representations of the
corresponding words.

Using the solution to the given PCP instance we have that composition is of type

([ba], [b]) = (¢ — @ — @) — ([ba] — [b] — @) — (e — [ba]) — (e — [b]) > e — e —

and, therefore, £ is of type e — e — o. Displaying the function table of £ reveals that if
conjunction (&&) is the first argument of composition, then £ remains a conjunction. On closer
examination of the underlying implementation, the term £ True True evaluates to True by
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constructing the representation of the actual solution to the given PCP instance and verifying
the correctness of the constructed solution via pair_eq. Viewing |I'| as an intuitionistic
axiomatization of the corresponding PCP instance, this provides an additional twist to the
Curry-Howard isomorphism. The constructed A-term not only corresponds to the proof that
a formula is derivable, but actually solves the underlying problem on the term level.

Derivability froma — b — a

We conclude this section by the systematic observation that the condition {a — b — a} F¢ oy
for 1 =1...n is decidable. The key observation is that any formula derivable from a — b — a
is a prefixed instance of a — b — a (cf. Lemma 27).

» Lemma 27.
Ha—=b—allu={o1— ... 20,2 0pt1 =T = 0p1|n>0andoy,...,0n11,7 € T}

Proof. D: n-fold use of Lemma 20 starting with {a = b — a} by 0py1 = 7 — opt1-
C:Let I'={z:a—b— a}. Assume I' ¢ F : o such that size(F') is minimal. We show
the claim by induction on size(F).
Case F = x: We have 0 = ((a — b — a) for some substitution ¢, showing the claim.
Case F = o G: We have 0 = ((b — a) and T' ¢ G : {(a) for some substitution ¢. By
the induction hypothesis {(a) =01 — ... = 0, = 0py1 = T — opy1 for some n >0
and 01,...,0,41,7 € T. Therefore, c =({(b — a) =((b) > 01 = ... = 0y = Opt1 —
T — Op+1, which shows the claim.
Case F=2 Gy...G; forsomel > 2: Wehave'lFeca:m = ... o1 > 0=((a—
b — a) for some substitution ¢, therefore 74 = 73 — ... =& 77 — 0. Additionally,
we have I' F¢ G; : 7; for i = 1...1. As aresult, I' F¢ Gy Gs3...G; : o with
size(G1 Gs ... G)) < size(F) which contradicts minimality of size(F). <

As a result of the above syntactic characterization by Lemma 27 of formulae de-
rivable from a — b — a, it is decidable in linear time whether for a given formula
o we have 0 € [{a —b— a}]y. This contrasts PSPACE-completeness to decide o €
{a—=b—a,(a—=b—c)— (a—=b)— (a— )}y [18].

4 Recognizing Axiomatizations of a — a

In this section, we record that axiomatizations of the Hilbert-style calculus containing only
the axiom a — a are recognizable in linear time. The key observation is that you cannot
meaningfully compose axioms that are instances of a — a. Therefore, the only derivable
formulae are instances of the given axioms (cf. Lemma 28).

» Lemma 28. Given o4,...,0, € T we have

o1 = 01,00 = ontlu = U{C(ai — 0;) | € is a substitution}

i=1

Proof. D: holds by instantiation of o; — o; for i =1...n.
C:LetI'={21:01 = 01,...,&p : 0y = op}. Assume I' F¢ F : o such that size(F) is
minimal.
Case F' = x; for some ¢ € {1,...,n}: We have o = ((0; — 0;) for some substitution
¢, which shows the claim.
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Case F =2; G1...G, forsome i € {1,...,n}: Wehave'bFeca;:m — ... > 1 —
o = ((0; — o;) for some substitution (, therefore 71 = » — ... = 77 = 0. Addi-
tionally, we have I' F¢ G; : 7 for i =1...1. Asaresult, ' ¢ G1 G>...G; : o0 with
size(G1 Gs ... G)) < size(F) which contradicts minimality of size(F). <

As a side note, the above proof of Lemma 28 implies that the set of minimal proofs from
axioms {0y — 01,...,0, — 0, } is of finite cardinality n.

» Corollary 29. [{a — a}]y ={r — 7|7 € T}.
» Lemma 30. If [A]ly = [{a — a}]n, thenb— b€ A for some b € A.

Proof. Since [{a — a}]y 2 [A]y implies [{a — a}]y 2 A we have A = {0y = 01,...,0p —
opn} for some o1,...,0, € T by Corollary 29. By Lemma 28 we obtain [A]y = J;_,{¢(0; —
0;) | ¢ is a substitution}. Due to [{a — a}]x C [A]y we obtain a — a = {(o; — o;) for some
i €{1,...,n} and some substitution ¢, which holds iff o; = 0; =b — b for some b € A. <«

» Corollary 31. We have [Aly =[{a » a}]n if AC{oc —-0|oc €T} andb—be A for
some b € A.

As a result of Corollary 31, recognizing axiomatizations of a — a is decidable in linear time.

5 Recognizing Axiomatizations of a — b — b

In this section, we extend linear time recognizability to axiomatizations of the Hilbert-style
calculus containing only the axiom a — b — b. Similarly to @ — a, meaningful logical
compositions of instances of @ — b — b are limited (cf. Lemma 32).

» Lemma 32. [{a b= bl y={c—>7—=>7|0o,7€eT}U{r—>71|7€T}

Proof. D: Instantiation resp. derivability of a — a.
C: LetI'={x:a—b— b}. Assume I' ¢ F': o such that size(F') is minimal.
Case F' = x: We have 0 = ((a — b — b) for some substitution ¢, which shows the claim.
Case F =2 G: Wehave ' F¢ 2 : 7 = 0 = ((a — b — b) for some substitution (,
therefore o = ¢/ — o', which shows the claim.
Case F=a2 G;...Gywherel >2: Wehave'bFez:mqp — ... > 11 = 0 =((a =

b — b) for some substitution ¢, therefore 73 = 73 — ... = 7, = o. Additionally,
we have I' ¢ G; : 7 for i = 1...1. As aresult, I' ¢ G2 G3...G; : o with
size(G2 Gy ... G)) < size(F) which contradicts minimality of size(F’). <

As a side note, the above proof of Lemma 32 implies that the set of minimal proofs starting
from the axiom a — b — b is finite (in fact of cardinality 2).

Using the above observation, we can characterize axiomatizations of a — b — b syntactic-
ally (cf. Lemma 33).

» Lemma 33. We have [Aly = [{a = b= b}y iff c > d — d € A for some ¢,d € A and
AC{o—=wT1—=>71|o7eTU{r—>r71|7eT}.

Proof. <=: 0 — 7 — 7 and 7 — 7 are derivable from ¢ — d — d for any 0,7 € T.
=>:Dueto[{a >b— b}y 2Awehave AC{oc w7 — 7|0, 7€TU{r =7 |7€T}
by Lemma 32. Due to [{a = b — b}y C [A]y we obtain A k¢ a — b — b. By case
analysis (similar to the proof of Lemma 32) the minimal derivation of A k3 @ — b — b is an
instantiation of some ¢ =7 — 7 € A i.e. a > b— b= (0 — 7 — 7) for some substitution
¢. Therefore, 0 - 17— 7 =c— d — d for some c,d € A. <

2:13
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As a result of the above Lemma 33, recognizing axiomatizations of a — b — b is decidable
in linear time. One reason why recognizing axiomatizations of a — a and a — b — b is trivial
is that the set of minimal proofs in the corresponding calculi is finite, which is not the case
fora — b — a.

6 Conclusion

We have shown that even under two severe restrictions subintuitionistic propositional calculi
have undecidable derivability. In particular, it is undecidable whether from a given set of
axioms (all of which are principal and derivable from a — b — a) the formula a — b — a is
derivable. In contrast, with respect to the formula a — b — b derivability is decidable in
linear time. Our result sheds some light on the lower end of the spectrum of propositional
calculi. In future, it may be of systematic interest to inspect (sets of) axioms that correspond
to principal types of other well known combinators such as S.

Under the Curry-Howard isomorphism, our result is related to type-based composition
synthesis. Particularly, even under the the assumption that the given building blocks are
‘natural’ (in the sense of principality) and ‘plain’ (in the sense of their types are derivable from
the axiom @ — b — a) synthesis remains undecidable. The research program in type-based
composition synthesis outlined in [15] is based on bounded variants of the inhabitation
problem in combinatory logic [8].

Additionally, the reduction from the Post correspondence problem proving of our main
result is formalized in the Lean theorem prover.
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