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—— Abstract

We study testing of local properties in one-dimensional and multi-dimensional arrays. A property
of d-dimensional arrays f : [n]? — X is k-local if it can be defined by a family of k x ... x k
forbidden consecutive patterns. This definition captures numerous interesting properties. For
example, monotonicity, Lipschitz continuity and submodularity are 2-local; convexity is (usually)
3-local; and many typical problems in computational biology and computer vision involve o(n)-
local properties.

In this work, we present a generic approach to test all local properties of arrays over any
finite (and not necessarily bounded size) alphabet. We show that any k-local property of d-
dimensional arrays is testable by a simple canonical one-sided error non-adaptive e-test, whose
query complexity is O(e 'klog &) for d = 1 and O(cge /% - n?=1) for d > 1. The queries
made by the canonical test constitute sphere-like structures of varying sizes, and are completely
independent of the property and the alphabet X. The query complexity is optimal for a wide range
of parameters: For d = 1, this matches the query complexity of many previously investigated
local properties, while for d > 1 we design and analyze new constructions of k-local properties
whose one-sided non-adaptive query complexity matches our upper bounds. For some previously
studied properties, our method provides the first known sublinear upper bound on the query
complexity.

2012 ACM Subject Classification Theory of computation — Sketching and sampling

Keywords and phrases Property Testing, Local Properties, Monotonicity Testing, Hypergrid,
Pattern Matching

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.11

Related Version A full version of the paper is available at [5], https://eccc.weizmann.ac.il/
report/2018/196/.

Acknowledgements I would like to thank Frederik Benzing, Eric Blais, Eldar Fischer, Sofya
Raskhodnikova, Daniel Reichman and C. Seshadhri for stimulating discussions, and the anonym-
ous reviewers for helpful suggestions.

1 Introduction

Property testing [22, 33] is devoted to understanding how much information one needs to
extract from an object in order to determine whether it satisfies a given property or is
far from satisfying the property. This active research area has seen many developments
through the last two decades; see the recent book of Goldreich [21] for a good introduction.
The property testing notation we use here is standard, see Subsection 1.7 for the relevant
definitions.

In this paper we focus on testing of local properties in structured data. The objects we
consider are d-dimensional arrays, where d is a positive integer, viewed as a constant. A
d-dimensional array of width n, or an [n]¢-array in short, is a function A: [n]¢ — ¥ from the
hypergrid [n]¢ to the alphabet 2, where the alphabet ¥ is allowed to be any (arbitrarily large)
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finite set; we stress that the size of X is usually not required to be bounded as a function
of the other parameters. For example, a string is an [n]'-array, and the commonly used
RGB representation of images is basically an [n]?-array over {0,1,...,255}3, where the three
values corresponding to each pixel represent the intensity of red, green and blue in it.

1.1 Local properties

Korman, Reichman, and the author [7] recently investigated testing of the property of
consecutive pattern freeness, i.e., not containing a copy of some (predefined) “forbidden”
consecutive subarray. Here, a [k]?-array S is a (consecutive) subarray of an [n]%-array A in
location (iy,...,iq) € [n —k+ 1% if Ay +41 —1,...,ig + ja— 1) = S(j1,...,ja) for any
Jise-sda € [K].

Naturally, a more general follow-up question raised in [7] was the following: what can be
said about testing of properties defined by a family of forbidden consecutive patterns? As we
shall see soon, many interesting properties of arrays (including a large fraction of the array
properties that were previously investigated in the literature) can be characterized this way.

With this in mind, we call a property local if it can be characterized by a family of small
forbidden consecutive patterns. Formally, a property P of [n]?-arrays over an alphabet X is
k-local (for 2 < k < n) if there exists a family F of [k]?-arrays over ¥ so that the following
holds for any [n]¢-array A over ¥:

A satisfies P <= None of the (consecutive) subarrays of A is in F.

For P as above, we sometimes write P = P(F) to denote that P is defined by the forbidden
family F.

The main contribution of this work is a generic one-sided error non-adaptive framework
to test k-local properties. In some cases, our method either matches or beats the best known
upper bounds on the query complexity (although the running time might be far from optimal
in general). We show the optimality of our method by proving a matching lower bound for
non-adaptive one-sided tests, as well as a (weaker) lower bound for two-sided tests.

In order to demonstrate the wide range of properties captured by the above definition, we
now present various examples of properties that are k-local for small k, including some of the
most widely investigated properties in the property testing literature, as well as properties
from areas of computer science that were not systematically studied in the context of property
testing. In what follows, the sum of two tuples = (z1,...,24),y = (Y1, ..., yaq) is defined as
the tuple (1 + y1, ..., 2q + yaq); additionally, e’ denotes the i-th unit vector in d dimensions.

Monotonicity. Perhaps the most thoroughly investigated property in the testing literature:
see e.g. the entries related to monotonicity testing in the Encyclopedia of Algorithms
[14, 32] and the references within. An [n]¢-array A over an ordered alphabet ¥ is monotone
(non-decreasing) if A(z) < A(y) for any z = (z1,...,24) and y = (y1, ..., yq) satisfying
z; < y; for any i. Monotonicity is 2-local: an array A is monotone if and only if there is
no pair z, + ¢* € [n]? so that A(x) > A(x + €?).

Lipschitz continuity. Another well-investigated property with connections to differential
privacy [3, 10, 15, 24], an [n]%-array A is c-Lipschitz continuous if |A(x) — A(y)| <
czle ly; — 2| for any x,y € [n]¢. This condition holds iff |A(z) — A(z + )| < ¢ for any
z,x + €' € [n]¢, and thus Lipschitz continuity is also 2-local.

Convexity. Discrete convexity is an important geometric property with connections to
optimization and other areas [9, 8, 13, 18, 30, 31]. A one-dimensional array A is convex
if M(z) + (1 = NA(y) > A(Ax + (1 — N)y) for any z,y € [n] and 0 < A < 1 satisfying
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Az 4+ (1—A)y € [n]. Convexity is 3-local for the case d = 1: an array A : [n] — ¥ is convex
if and only A[z] — 2A[z + 1] + A[z + 2] > 0 for any x € [n — 2]. In higher dimensions,
several different notions of discrete convexity have been used in the literature — see e.g.
the introductory sections of the book of Murota on discrete convex analysis [27]. Two of
the commonly used definitions, M¥-convexity and Lf-convexity, are 3-local and 4-local,
respectively: see Theorems 4.1 and 4.2 in [26], where it is shown that both notions can be
defined locally using slight variants of the Hessian matrix consisting of the partial discrete
derivatives. Another common definition that is a natural variant of the continuous case
states that convexity is equivalent to the positive semi-definiteness of the Hessian matrix;
under this definition, convexity is 3-local. A strictly weaker notion of convexity, called

d_array A is separately convex if it is

separate convexity [13], is defined as follows: an [n]
convex along each of the axes. Similarly to one-dimensional convexity, separate convexity
is 3-local for any d.

Properties of higher order derivatives. More generally, any property of arrays that can be
characterized by “forbidden pointwise behavior” of the first k discrete derivatives [13]
is (k + 1)-local. Monotonicity (for k = 1), Lipschitz continuity (k = 1) and convexity
(k = 2) are special cases of such properties.

Submodularity. An important property closely related to convexity [10, 11, 30, 34]. Given
r=(z1,...,70),y = (Y1,...,ya) € [n]?, define x Ay = (min(x1,y1),...,min(xq, yq4)) and
rVy = (max(x1,91), ..., max(xq,vq)). An [n]%-array is submodular if Alz Ay]+AlzVy] <
Alx] + Aly] for any z,y € [n]¢. Submodularity is 2-local: it is not hard to verify that
submodularity is equivalent to the condition that A(z)+A(z+e'+el) < A(x+e’)+A(z+el)
for all z.

Pattern matching and computer vision. Tasks involving pattern matching under some lim-
itations — such as noise in the image, obstructed view, or rotation of elements in the
image — are at the core of computer vision and its applications. For example, the local
property of not containing a good enough ¢;-approximation of a given forbidden pattern
is of practical importance in computer vision. Sublinear approaches closely related to
property testing are known to be effective for problems of this type, see e.g. [25].

Computational biology. Many problems in computational biology are closely related to
one-dimensional pattern matching. As an example, a defensive mechanism of the human
body against RNA-based viruses involves “cutting” a suspicious RNA fragment, if it finds
one of a (small) family of short forbidden consecutive patterns in it, indicating that this
RNA might belong to a virus. Thus, in order to generate fragments of RNA that are not
destroyed by such defensive mechanisms (which is a basic task in computational biology),
understanding the process of “repairing” a fragment so that it will not contain any of the
forbidden patterns is an interesting problem related to property testing.

1.2 Previous results on local properties
One-dimensional arrays

A seminal result of Ergiin et al. [19] shows that for constant e, monotonicity is e-testable over
the line (that is, for one-dimensional arrays) using O(logn) queries over general alphabets.
The non-adaptive one-sided error test proposed in [19] is based, roughly speaking, on imitating
a binary search non-adaptively. It was shown by Fischer [20] that the above is tight even for
two-sided error adaptive tests, proving a matching Q(logn) lower bound. Later on, Parnas,
Ron and Rubinfeld [30] and Jha and Raskhodnikova [24] showed that the O(logn) upper
bound on the non-adaptive one-sided query complexity also holds for convexity and Lipschitz
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continuity, respectively. For general e, the upper bound in [24] is of the type O(e~!logn); the
same work also presents a matching lower bound of Q(logn) for the one-sided non-adaptive
case, while Q(logn) lower bounds for two-sided non-adaptive tests of convexity, and more
generally, monotonicity of the ¢-th derivative, are proved by Blais, Raskhodnikova and
Yaroslavtsev [13] using a communication complexity based approach [12]. Finally, a recent
result of Belovs [4] refines the one-sided non-adaptive query complexity of monotonicity to
O(e~tlogen).

When the alphabet is binary (of size two), general positive results are known regarding
the testability of local properties in one dimension. It follows from the testability of
regular languages, established by Alon et al. [2], that any k-local property is testable in
O(c(F)e (log®(e=1))) queries, where ¢(F) depends only on the family F of forbidden
consecutive length-k patterns defining the property. However, ¢(F) can be exponential in k
in general.

Multi-dimensional arrays

Chakrabarty and Seshadhri [16] extended some of the above results to hypergrids, showing
that a general class of so-called “bounded derivative” properties (all of which are 2-local),
Ik

including monotonicity and Lipschitz continuity as special cases, are all testable over [n
arrays with O(e~!dlogn) queries. Another work by the same authors [17] shows a matching
lower bound of Q(e~!dlogen) for monotonicity, that holds even for two-sided adaptive tests,
while the communication complexity approach of [13] gives a (non-adaptive, two-sided)
Q(dlogn) lower bound for convexity, separate convexity and Lipschitz.

Submodularity is testable for d = 2 with O(log® n) queries [30]; However, no non-trivial
upper bound on the query complexity is known for submodularity in the case d > 2 and
convexity in the case d > 1 under the Hamming distance and over general alphabets (although
[9] proves constant-query testability for 2D convexity over a binary alphabet). Under L;-
distance and for any d, it was shown in [10] that convexity in [n]%-arrays is testable with
number of queries that depends only on d.

Pattern freeness

In [7], it was shown that the property of (consecutive) pattern freeness, for a single forbidden
pattern, is testable with O(cy/€) queries for any d. The proof, however, requires multiple
sophisticated combinatorial observations and does not seem to translate to the case of a
family of forbidden patterns discussed here.

1.3 Our results

In this work, we present a generic approach to test all k-local properties of [n]?-arrays. Among
other consequences, a simple special case of our result in the one-dimensional regime shows
that the abundance of properties whose query complexity is ©(logn) is not a coincidence:
in fact, any O(1)-local property of one-dimensional arrays is testable with O(logn) queries,
using a canonical binary search like querying scheme.

On the other hand, we prove a lower bound for testing local properties in d > 1 dimensions,
showing that the query complexity of our test is optimal (for fixed d) among non-adaptive
one-sided tests, even when restricted to alphabets of size that is polynomial in n?. We also
prove a lower bound for non-adaptive two-sided tests.
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1.3.1 Upper bounds

Our first main result is an upper bound on the number of queries required to test any k-local
property of [n]?-arrays non-adaptively with one-sided error. The test is canonical in a strong
sense: The queries it makes depend on n,d, k, and (relatively weakly) on €; they do not
depend on P or the alphabet X. In other words, it makes the same type of queries for all
k-local properties of [n]?-arrays over any finite (and not necessarily bounded-size) alphabet.

» Theorem 1. Let 2 < k <n and d > 1 be integers, and let ¢ > 0. Any k-local property P
of [n]%-arrays over any finite (and not necessarily bounded size) alphabet has a one-sided
error non-adaptive e-test whose number of queries is

O(% -log <) for d = 1.

O(cdeﬁd -nd=1) ford > 1.
Here, ¢ > 0 is an absolute constant. The test chooses which queries to make based only on
the values of n,d, k, €, and independently of the property P and the alphabet 3.

Note that we are interested here in the domain where n is large and d is considered a constant.
Thus, we did not try to optimize the ¢? term in the second bullet, seeing that it is negligible
compared to n¢~! anyway.

Running time

The main drawback of our approach is the running time of the test, which is high in general.
After making all of its queries, our test runs an inference step, where it tries to evaluate (by
enumerating over all relevant possibilities) whether a violation of the property must occur in
view of the queries made, and reject if this is the case.

Without applying any property-specific considerations, the running time of the inference
step is of order |E|O("d). However, for various specific properties of interest, such as
monotonicity and 1D-convexity, it is not hard to make the running time of the inference step
of the same order of magnitude as the query complexity. Moreover, in one dimension we can
use dynamic programming to achieve running time that is significantly better than the naive
one, but still much higher than the query complexity in general: O(|%|°®)n). This works for
any k-local property in one dimension; see the last part of Subsection 1.4.1 for more details.

Proximity oblivious test

Interestingly, the behavior of the test depends quite minimally on €, and it can be modified
very slightly to create a proximity oblivious test (POT) for any k-local property. The useful
notion of a POT, originally defined by Goldreich and Ron [23], refers to a test that does not
receive € as an input, and whose success probability for an input not satisfying the property
is a function of the Hamming distance of the input from the property.

» Theorem 2. Fiz d > 0. Any k-local property P of [n]%-arrays over any finite (but not
necessarily bounded size) alphabet has a one-sided error non-adaptive proximity oblivious test
whose number of queries is O(klog(n/k)) if d =1 and O(kn%=1) if d > 1. For any input A
not satisfying P, the rejection probability of A is linear (for fized d) in the Hamming distance
of A from P.

One can run O(cg/€) iterations of the POT to obtain a standard one-sided error non-
adaptive test. The query complexity is O(ke~!log(n/k)) for d = 1 and O(cgke 1n~1) for
d > 1, where ¢4 > 0 depends only on d. Thus, the POT-based test is sometimes as good as
the test of Theorem 1 (specifically, for d = 1 it matches the above bounds for almost the
whole range of € and k). In any case, the multiplicative overhead of the POT-based test is
sublinear in 1/¢ across the whole range.
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Type of queries

In one dimension, many of the previously discussed properties, including, for example,
monotonicity and Lipschitz continuity, are testable in O(logn) queries. Previously known
tests for monotonicity and Lipschitz continuity make queries that resemble a binary search:
these tests query pairs of entries of distance 27 for multiple choices of 0 < i < logn.

Our test continues the line of works using querying schemes roughly inspired by binary
search. The test queries structures that can be viewed, intuitively, as Lo.-spheres of different
sizes in [n]¢. For this purpose, an L..-sphere with radius r and width £ in [n]? is a set
X1 x Xox...x X4 C [n], where each X; is a union of intervals of the form [a;, a; +1,. .., a; +
—2.a;+0—1U[b; —€+2,b; —€+3,...,b; — 1,b;], and b; — a; € {r,r + 1} for any ¢ € [d].
More specifically, our test for k-local properties queries spheres with width k£ — 1 and radius
of order 2' for different values of 7. In the simple special case where d = 1 and k = 2, this is
very similar to the querying scheme mentioned in the previous paragraph.

Implications

In one dimension, the query complexity of the test matches the best known upper bounds
(and, in some regimes, refines the dependence on €) for several previously investigated
properties including monotonicity, Lipschitz continuity and convexity. For monotonicity of
k-th order derivatives, which is (k 4 1)-local, it proves the first sublinear upper bound on the
query complexity: O(klogn); in comparison, the best known lower bound [13] is Q(logn).

For pattern matching type properties in 1D arrays (including applications in computational
biology and other areas), our approach gives a property- and alphabet-independent upper
bound of O(klogn) on the query complexity, with essentially optimal dependence on € as well.
Previously known approaches for testing such properties, like the regular languages testing
approach [2], yield tests whose query complexity is dependent on the family of forbidden
patterns considered, whose size might be exponential in the locality parameter k. Our
approach, on the other hand, requires an O(logn) “overhead”, but its query complexity is
independent of the size of the forbidden family discussed. Instead, the dependence in k
is linear.

In multiple dimensions, our approach is far from tight for well-understood properties
such as monotonicity and Lipschitz continuity, whose query complexity is known to be
O(dlogn) (in comparison, our approach yields an O(n?~1!) type bound). However, for testing
of other properties like convexity (for d > 1) and submodularity (for d > 2) in [n]-arrays, no
non-trivial upper bounds on the query complexity are known over general alphabets, so our
upper bound of O(n?~1) is the first such bound. While we do not believe this bound is tight
in general, this might be a first step towards the development of new tools for efficiently
testing such properties.

Sketching for testing

The fact that the queries made are completely independent of the property suggests the
following sketching technique allowing for “testing in retrospect”: Given e and k in advance,
we make all queries of the generic e-test for k-local properties in “real time”, and store them
for postprocessing. This is suitable, for example, in cases where we have limited access to a
large input for a limited amount of time (e.g. when reading the input requires specialized
expensive machinery), but the postprocessing time is not an issue. Note that for this approach
we do not need to know the property of interest in advance.
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1.3.2 Lower bounds

Our next main result is a tight lower bound for non-adaptive one-sided error testing of local
properties, that applies for any d, and is tight for any fixed d satisfying d > 1.

» Theorem 3 (One-sided tests). Let d > 1 and n > k > 2 be integers, and let d/n < e < 1.
There exists a k-local property P of [n]%-arrays over an alphabet ¥ of size n°D | so that any
non-adaptive one-sided error e-test for P requires €2 (min {del% -1 nd}) queries.

Note that the size of the alphabet in Theorem 3 is only polynomial in the input size. We
also prove a lower bound for non-adaptive two-sided tests; here the dependence in |X|
is exponential.

» Theorem 4 (Two-sided tests). Let d > 1 and n > k > 2 be integers, and let d/n < e < 1.
There exists a k-local property P of [n]®-arrays over an alphabet ¥ of size 20(”d), so that any

non-adaptive two-sided error e-test for P requires §) (min {W\/E)/m cpld=1)/2 nd}) queries.

For fixed d > 1, the lower bound for one-sided tests matches the upper bound from Theorem
1 across the whole range of € and k. For d = 1 the bound obtained here is Q(k/¢), which is
tight up to a logn factor. Note the threshold behavior occurring at k/e'/? = ©(n): When
k/e*/4 = o(n), the upper bound of Theorem 1 implies that any k-local property is e-testable
with a sublinear number of queries, while for k/e'/¢ = Q(n), the property of Theorem 3
requires Q(n¢) non-adaptive one-sided queries to test.

From Theorem 4 we conclude that the improvement in query complexity obtained by
two-sided error non-adaptive tests is at most quadratic in the worst case; specifically, there

exists a 2-local property requiring n®(4=1) queries to test by two-sided non-adaptive tests.

1.4 Proof ideas and techniques

Here we present the main ideas of our proofs in an informal way, starting with the upper
bound. For simplicity, we stick to the one-dimensional case, and assume that ¢ is fixed
and k = o(n).

1.4.1 Upper bound for 1D

Suppose that P = P(F) is a k-local property of [n]'-arrays A over an alphabet 3, defined by
the forbidden family F. Let S be a consecutive subarray of A of length at least 2k — 2. The
boundary of S consists of the first £k — 1 elements and the last k — 1 elements of .S, and all
other elements of S are its interior. We call S unrepairable if one cannot make the array S

satisfy the property P without changing the value of at least one element in its boundary.

Otherwise, S is repairable. Observe the following simple facts.
It suffices to only query the boundary elements of S in order to determine whether S is
unrepairable.
If S is unrepairable, then A does not satisfy P.
If S is repairable, then we can delete all forbidden patterns from S by modifying only
entries in its interior, without creating any new copies of forbidden patterns in A.
We call the process of understanding whether S is unrepairable using only its boundary
elements inference. Note that the inference step does not make any additional queries.

11:7

ITCS 2019



11:8

Testing Local Properties of Arrays

A simple sublinear test

A first attempt at a generic test for local properties is the following: we query ©(y/n)
intervals in [n], each containing exactly k — 1 consecutive elements, including the intervals
{1,...,k—1} and {n — k+ 2,...,n}, where the distance between each two neighboring
intervals is ©(y/n). A block is a subarray consisting of all elements in a pair of neighboring
intervals and all elements between them. The crucial observation is that at least one of the
following must be true, for any array A that is e-far from P (recall that € is fixed).

At least one of the blocks is unrepairable.

At least Q(y/n) of the blocks do not satisfy P.

Indeed, if the first condition does not hold, then one can make A satisfy P by only changing
elements in the interiors of blocks that do not satisfy P. Seeing that A is e-far from P and
that we do not need to modify elements in the interiors of blocks that satisfy P, this implies
that at least Q(y/n) of the blocks do not satisfy P.

Now we are ready to present the test: We query all O(k+/n) elements of all intervals,
and additionally, all O(y/n) elements of O(1) blocks. Querying all elements of all intervals
suffices to determine (with probability 1) whether one of the blocks is unrepairable. If A is
e-far from P and does not contain unrepairable blocks, querying O(1) full blocks will catch
at least one block not satisfying P with constant probability, as desired.

For more details, see Section 3 and the preliminary Section 2 that prepares the required
infrastructure.

The optimal test

Improving the query complexity requires us to construct a system of grids — which are merely
subsets of [n] — inspired by the behavior of binary search. In comparison, the approach of
the previous test is essentially to work with a single grid.

The first (and coarsest) grid contains only the first k¥ — 1 elements and the last &k — 1
elements of [n]. In other words, it is equal to {1,...,k—1,n—k+2,...,n}. The second grid
refines the first grid — that is, it contains all elements of the first grid — and additionally, it
contains k — 1 consecutive elements whose center is /2 (whenever needed, rounding can be
done rather arbitrarily). We continue with the construction of grids recursively: To construct
grid number i + 1, we take grid number ¢ and add k — 1 elements in the middle of each block
of grid ¢ (blocks are defined as before). Note that the length of blocks is roughly halved
with each iteration. We stop the recursive construction when the length of all of the blocks
becomes no bigger than ck, where ¢ > 2 is an absolute constant.

For each block B in grid number ¢ > 1, we define its parent, denoted Par(B), as the
unique block in interval ¢ — 1 containing it. A block B in the system of grid is mazimally
unrepairable if it is unrepairable, and all blocks (of all grids in the system) strictly containing
it are repairable. It is not hard to see that different maximally unrepairable blocks have
disjoint interiors.

The main observation now is that in order to make A satisfy P, it suffices to only modify
entries in the interiors of parents of maximally unrepairable blocks. If A is e-far from P, then
the total length of these parents must therefore be Q(n) (for constant €). However, since the
length of Par(B) is roughly twice the length of B, we conclude that the total length of all
maximally unrepairable blocks is Q(n).

With this in hand, it can be verified that the following test has constant success probability.
For each grid in the system, we pick one block of the grid uniformly at random, and query
all entries of its boundary. Additionally, for the finest grid (whose block length is O(k)), we
also query all interior elements of the picked block.
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For more details, see Section 4 (which builds on the infrastructure of Section 2).

Running time in 1D

We now show that the running time of the inference step for a block of length m is m|%|9*).
Summing over all block lengths, this would imply that the total running time of the test is
n|L|OF),

The proof uses dynamic programming. Let S be an array of length m over X, and assume
that S(1),5(2),...,8(k —1) and S(m — k+2),...,5(m) are all known. For each “level”
from 1 to m — k + 1, we keep a boolean predicate for each of the |X|¥ possible patterns of
length k£ over X. These predicates are calculated as follows.

In the first level, the predicate of o0 = (o01,...,0%) evaluates to TRUE if S(1) =

o1,...,5(k — 1) = ox_1, and additionally, o ¢ F, that is, ¢ is not a forbidden pat-

tern. Otherwise, the predicate of o is set to FALSE.

For i = 2 to m — k + 1, the predicate of 0 = (01, ...,0%) in level i evaluates to TRUE if

and only if

1. c¢ F.
2. there exists ¢/ = (0,01, ...,0k_1) that evaluates to TRUE in level ¢ — 1.
Finally, the predicates in level m — k + 1 are modified as follows: for all o = (01,...,0%)

so that o; # S(m — k + j) for some j > 2, we set the predicate of ¢ to FALSE.

It is not hard to see that S is unrepairable if and only if all predicates at level m — k + 1 are
FALSE. The running time is O(m|%|°?) for a suitable constant ¢ > 0.

Generalization to higher dimensions

The generalization to higher dimensions is relatively straightforward; the main difference is
that the boundary of blocks now is much larger: blocks of size m x ... x m have boundary of
size O(kdm?~!). Thus, essentially the same proof as above (with suitable adaptations of the
definitions) yields a test with query complexity O(kdn?~!) for constant e. For the running
time, we can no longer use dynamic programming; using the naive approach of enumerating
over all possible interior elements of a block, we get that the inference time for a block of
size m X ... X m is |E|O(mdl)7 making the total running time of the test |2[O"").

1.4.2 Lower bound

The property P underlying our lower bound construction consists of [n]%-arrays A over %
satisfying all of the following properties. Here we provide a construction over alphabet size
20(”d), but in Section 6 of the full version of this paper [5] we show how a simple modification
of the property can be conducted in order to decrease the size of the required alphabet to
nO@ for the proof of Theorem 3 (unfortunately, for the proof of Theorem 4 this modification
does not work).

The alphabet ¥ is of the form [n]¢ x [n]? x 227" "' where 2% is the power set of a set X.

The value of A in entry € [n]? is represented as a tuple A;(x), As(x), A3(x). We view

Aq(z), Az(z) as pointers emanating from z.

For every z € [n]? we require A;(z) = x. That is, A; points to the location of the element

itself.

There exists a special location £ = (£1,...,£4) € [n]? so that all z € [n]? point to ¢ with

their second pointer, that is, As(x) = £. We call this location the lower center of gravity.

We define an upper center of gravity as u = ({1 + 1,4a,...,44).
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A floor entry x = (x1,...,24) € [n]? satisfies 1 = 1 and a ceiling entry satisfies z; = n.
For each such floor or ceiling entry x, we pick Az(x) to be a singleton (i.e., a set with one
element).

For each floor element z, there exists a path ', from z to the lower center of gravity
. Similarly, for each ceiling element y, there is a path I'y directed towards the upper
center of gravity, u. In both cases, the path is of length O(nd). The structure of the path
depends only on its start and end points (so depends only on z and ¢ in the first case,
and y and u in the second case).

The Asz-data “flows” to the center of gravity through paths. Formally, the Az-set of
each entry y that is not a floor or ceiling entry is required to be equal to the union
U.. yer, 4s(z). In other words, the data in each location in [n]? is an “aggregation” of
the data flowing in all paths that intersect it.

Finally, we require that As(u) = Az(¢).

While P was defined above in global terms, we show that it is actually a 2-local property,
that is, all conditions specified here can be written in a 2-local way.

To prove the lower bound, we follow Yao’s minimax principle [35], defining a distribution
of arrays satisfying P, and a distribution of arrays which are Q(1)-far from satisfying P, so
that a large number of queries is required to distinguish between the distributions.

As positive examples, we take a collection of arrays A satisfying the property, and require
that all the singletons in the floor are pairwise disjoint. For negative examples (that are
1/4-far from P), we consider a collection of arrays satisfying all of the above requirements
other than the last. Instead, all singletons in the floor and the ceiling are pairwise disjoint
(so in particular, A3(¢) N Az(u) = 0).

We show that for any given x € [n]?, the expected size of Az(z) over each of the
distributions is O(d). For the one-sided error case, it is shown that one needs to know
the values of at least (n?~!) singletons to be able to distinguish between positive and
negative examples with one sided error, implying that Q(n?~!/d) queries are required to
reject negative examples with constant probability.

For the two sided error case, the argument is inspired by the birthday paradox. Very
loosely speaking, it follows from the fact that, given two unknown unordered sets A and B
of size n, one has to make Q(y/n) queries to distinguish between the case that A = B and
the case that AN B = (.

Due to space considerations, the full proofs of Theorems 3 and 4 are relegated to the full
version of this paper [5]; see Sections 5 and 6 there.

1.5 Other related work

This subsection complements Subsection 1.2, presenting other related previous works that
were not mentioned above.

General results in property testing

This paper adds to the growing list of general characterization results in property testing
of strings, images, and multi-dimensional arrays; see [1, 6] and the references within for
characterization-type results in these domains, mostly over a fixed size alphabet. In particular,
for strings, it was shown by Alon et al. [2] that any local property over a fixed size alphabet
is constant-query testable, and this paper shows that an overhead of at most O(logn) is
required when the alphabet size is unbounded.
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Hyperfiniteness

A graph is hyperfinite if, roughly speaking, it can be decomposed into constant size connected
components by deleting only a small constant fraction of the edges. Newman and Sohler
[28] investigated the problem of testing in hyperfinite graphs, showing that any property of
hyperfinite bounded degree graphs is testable with a constant number of queries. While the
graph with which we (implicitly) work — the hypergrid graph, whose vertices are in [n]¢ and
two vertices are neighbors if they differ by 1 in one coordinate — is a hyperfinite bounded
degree graph (for constant d), the results of [28] are incomparable to ours. Indeed, in our
case the vertices are inherently ordered, and it does not make sense to allow adding edges
between vertices that are not neighbors (as entries of [n]?), unlike the case in [28], where one
may add or remove edges arbitrarily between any two vertices. Still, the hyperfiniteness of
our graph seems to serve as a major reason that local properties have sublinear tests.

Block tests for image properties

The works of Berman, Murzabulatov and Raskhodnikova [9] and Korman, Reichman, and
the author [7] on testing of image properties (that is, on visual properties of 2D arrays) show

that tests based on querying large consecutive blocks are useful for image property testing.

In this work, the general queries we make are quite different: we query the boundaries of
blocks of different sizes, so the queries are spherical, in the sense that a block can be seen as
a ball in the L.,-metric on vectors in [n]?, while its boundary can be be seen as the (width-k)
sphere surrounding this ball. This introduces a new type of queries shown to be useful for
image property testing.

1.6 Discussion
Small alphabets

The results in this work are alphabet independent, and in particular, they work for alphabets
over any size. An intriguing direction of research is to understand whether one can obtain
more efficient general testability results for local properties of multi-dimensional arrays over
smaller alphabets; this line of research has been conducted for specific properties of interest,
like monotonicity and convexity [4, 29]. Note that the one-sided non-adaptive lower bound
we prove here can be adapted to yield a |E|Q(1) lower bound for testing local properties over
alphabets ¥ of size smaller than n?.

The most interesting special case is that of constant-sized (and in particular, binary)
alphabets. Here, no lower bounds that depend on n are known. For the case d = 1, it is
known that all O(1)-local properties are constant query testable; this follows from a result of
Alon et al. [2], who showed that any regular language is constant-query testable. However,
it is not known whether an analogous statement holds in higher dimensions. That is, for
any d > 1, the question whether all k-local properties of [n]%-arrays over {0, 1} are e-testable
with query complexity that depends only on d, k, and e, first raised in [7] (see also [1]),
remains an intriguing open question. We believe that positive results in this front might also
shed light on the question of obtaining more efficient inference for large classes of properties,
especially over small alphabets.

Does adaptivity help?

This work does not provide any lower bounds for adaptive tests, and it will be interesting to
do so; previously investigated properties likes monotonicity yield an Q(dlogn) lower bound
[13, 17], and we believe that “data flow” type properties, somewhat similar to our lower
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bound constructions, can provide instances of 2-local properties that require at least n¢
queries, for some constant ¢ < 1, for the adaptive two-sided case.

However, it is not clear whether better lower bounds (even bounds of the type Q(n!*<))
exist. It will be very interesting to prove better upper and lower bounds for testing local
properties. Our conjecture is that any 2-local property is testable in n'*t°(M)g(d) queries
(where g(d) depends only on d), but proving a statement of this type might be very difficult.

Using the unrepairability framework in other contexts

In this work we show that the concept of unrepairability allows to unify and reprove many
property testing results on one-dimensional arrays. What about multi-dimensional arrays? for
example, can one generalize the currently known proofs for “bounded derivative” properties
(including monotonicity and Lipschitz continuity) in d dimensions to a larger class of local
properties?

Inference

As mentioned in Subsection 1.4.1, our test queries boundaries of block-like structures, and
later infers whether each block is unrepairable (recall the definition from Subsection 1.4.1).
The inference takes place without making any additional queries, and is based only on the
property P, the alphabet ¥, and the values of A in the boundary of the block.

The running time of the inference step is very large in general (although, as we have seen,
in the 1D case it can be significantly improved using dynamic programming). The naive
way to run the inference is by enumerating over all possible ways to fill the interior of the
block, and checking whether each such possibility is indeed F-free. The running time of this
method is of order |E|O(”d) in general for d > 1, and is exponential in n even if |3| = 2.

However, for many natural properties, inference can be done much more efficiently. For
example, in monotonicity testing, the inference amounts to checking that no pair of boundary
entries violates the monotonicity. Our lower bound constructions depict other properties
where inference is efficient: it is not hard to show that the running time of inference in both
cases is O(ke~/4n?=1), which is sublinear in n? for a wide range of parameters.

Thus, we believe that understanding inference better — including tasks such as character-
izing properties in which inference can be done efficiently, and understanding the inference
time of specific properties of interest — would be an interesting direction for future research.

1.7 Property testing notation

The property testing notation we use along the paper is standard. Given a property P of
[n]? J4-array
A, a two-sided error e-test must accept A with probability at least 2/3 if A satisfies P, and
reject with probability 2/3 if A is e-far from P (meaning that the relative Hamming distance
of A from P is at least ¢, that is, we need to modify at least en? values in A to make it
satisfy P). A one-sided error test is defined similarly, but it must accept if A satisfies P. A
test is non-adaptive if it makes all of its queries in advance (prior to receiving any of the

-arrays over X, a proximity parameter e > 0, and query access to an unknown [n

queried values), and adaptive otherwise.

Organization

In Sections 2, 3 and 4 we prove the upper bounds: Section 2 is devoted to the infrastructure
needed for the proof, Section 3 presents a simple but non-optimal test, and finally, Section 4
presents the optimal test and proves Theorems 1 and 2.
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Due to space considerations, the proofs of the lower bounds are given in Sections 5 and 6
of the full version of this paper [5].

2 The grid structure

In this section we present the grid-like structure in [n]? that we utilize for our tests.

» Definition 5 (Interval partition). A subset I C [n] is an interval if its elements are
consecutive, that is, if I = {x,2+1,...,z+y} for some x € [n] and y > 0. For any ¢ > 0, we
denote the set of the smallest ¢ elements of I by I[: ¢] and also define I[¢+1:] =T\ I[: £].
In the degenerate case that |I| < ¢, we define I[: £] to be equal to I.

For 1 < w < n, an (n,w)-interval partition is a partition of [n] into a collection of disjoint
intervals Z = (Iy,...,I;) where the number of elements in each interval I; is either w or
w + 1, and for any ¢ < j, all elements of I; are smaller than those in I;.

» Lemma 6. For any positive integer n and 0 < i < logn, there exists an (n, |n/2*])-interval
partition I; containing exactly 2¢ intervals, so that the family {I}zu:og n] satisfies the following.

For any i > j and interval I € Z;, there exists an interval I' € Z; satisfying I C I'.

Proof. For any i define n; = [n/2'|; observe that ng = n and n; 11 = |n;/2] for any i. We
prove the lemma by induction on i, starting by defining Zo = ([n]). Given Z; = (I1,...,I%;)
in which all intervals are of length n; or n; + 1, we define Z;; as follows. Each I; €1, is
decomposed into two intervals Iéj'_ll, I;}'l where |I§j_11|, |I§;L1| € {nit1,ni41 + 1}, and all
elements of I;;Lll are smaller than all elements of Ié;“l; observe that such a decomposition is
indeed always possible. Now define Z;,1 = (I{‘Jrl7 .. ,Iéirll). Clearly, the intervals of Z;11
satisfy the last condition of the lemma. <

In particular, we conclude that for any positive integer w and any n > w there exists an
integer w/2 < w’ < w for which an (n,w’)-interval partition exists.

» Definition 7 ((n,d, k, w)-grid). Let 2 < w < n be integers for which an (n,w)-interval
partition Z = (Iy,...,I;) exists. For integers 2 < k < w and d > 1, the (d-dimensional)
(n,d, k,w)-grid induced by Z is the set

t
G =< (x1,...,2q4) € [n]? | i €[d] such that z; € U L k—1]

j=1

We denote the family of all (n,d, k, w)-grids by G(n,d, k,w). As we have seen in Lemma 6,
the family G(n, d, k,w) is non-empty for any w = |n/2¢| satisfying w > k.

» Definition 8 (G-block, Boundary, Closure). Two tuples z = (x1,...,2zq4) and y = (Y1, .-, Yd)
in [n]¢ are considered neighbors if Zle |z; —y;| = 1. Given a grid G € G(n,d, k,w), consider
the neighborhood graph of non-grid entries, i.e., the graph whose set of vertices is V = [n]¢\ G
and two entries are connected if they are neighbors. A G-block B is a connected component
of this graph, and the closure of B is

B = {(ml,...,xd) € [n)* | 3(y1,-..,ya) € B such that Vi € [d] |z; —yi| < k:}

Note that B C B. Define the boundary of the block B as 0B = B\ B.

11:13
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The above notions can naturally be defined with Cartesian products. Recall that the
Cartesian product of sets X7,..., X4, denoted H;l:l Xjor X; x...x Xj, is the set of all
tuples (z1,...,2q4) with z; € X; for any j € [d]. Let G € G(n,d, k,w) be the grid induced
by the interval partition Z = (I3, ..., ;). It is not difficult to verify that any G-block B can
be defined as a Cartesian product B = Hj:1 I;;[k: ] for some intervals I;,,...,I;, € T (not
necessarily different).

B and 0B can also be defined accordingly, as we detail next. For k as above, define
I; = 1;Uliq]: k—1] for any 1 < i < ¢, where we take ;1 = () for consistency. Also define
olL; =L\ Llk: | = L[: k—1]UIi1[: k — 1]. With these in hand, we have

d d
Iilk: ] E:Hf-j; 8B:UK><...><Iij71><8Iij><I X ...x1I;,
j=1

41
1 j=1

d
B =

Jj=
Recall that |I;;| € {w,w + 1} for any j, implying that |Ii_7. [k ]| <w+2—kand }IT]| <w+k.
Also note that |91;,| < 2(k — 1). Thus,

Bl < (w+2—k)*; B < (w+k)*; 0B < 2d(k —1)- (w+ k)", (2)

where the inequality on |0B| holds since each set in the union expression in (1) is of size at
most (2k — 2)(w + k)41,

The following observation is a direct consequence of (1).
» Observation 9. Let G € G(n,d, k,w). The boundary of any G-block is contained in G.
» Lemma 10. For any G € G(n,d,k,w), any width-k subarray of an [n]?
exactly one G-block B. Moreover, the subarray is contained in B.

-array intersects

Proof. Let Z = (I1,...,I;) be the interval partition inducing G. Suppose that the subarray
S is in location (aq,...,aq) where a; € I;; for some iy, ...,1q not necessarily distinct. In
other words, the set of entries in S is ]_[?:1 S; where S; = {aj,a; +1,...,a; + k — 1} for
any j € [d]. We argue that S is contained in B, where B = I, [k: ] x ... x I, [k: ]: The fact
that a; € I;; implies that a; +1,...,a; +k—1€ I;; Ul;, y1[: k—1]. It follows from (1) that
S C B. From Observation 9 we conclude that S does not intersect any block other than B,
and it remains to show that S intersects B. Indeed, for any 1 < j < d, the fact that a; € I;;
implies that one of the elements aj,...,a; + k — 1 must be contained in I;;[k: ]. Denoting
this element by b;, we conclude that (bi,...,b;) € SN B. <

3 Testing with grid queries

In this section we prove the following upper bound for all k-local properties; its proof serves
as a warm-up towards proving the main upper bound of Theorem 1.

» Theorem 11. Any k-local property of [n]¢-arrays over any alphabet is e-testable with
d d 1
one-sided error using no more than 2(d 4+ 1)n?~ T k71 ¢~ 71 non-adaptive queries.

1/d — o(n).

The rest of the section is dedicated to the proof of the theorem. We may assume that
d

The upper bound of Theorem 11 is sublinear in the size of the array as long as k/e

k < €'/n /4, as otherwise the expression in the statement of the theorem is larger than n
and the proof follows trivially by querying all [n]? entries of the given input array. Under
this assumption, it holds that 2k < nd/(d+1)f1/(d+1)1/(d+1),
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» Definition 12 (Unrepairable block). Let A be an [n]%-array over ¥, and let G € G(n, d, k, w).
A G-block B is (P, A)-unrepairable (or simply unrepairable, if P and A are clear from context)
if any [n]%-array A’ over 3 that satisfies A’(z) = A(z) for any x € OB, including the case
A’ = A, contains an F-copy in B. Otherwise, the block B is said to be (P, A)-repairable.

Note that the (un)repairability of a block B is determined solely by the values of A on 9B,
and that an unrepairable block always contains an F-copy. These two facts inspire the
following lemma, which serves as the conceptual core behind the test of Theorem 11.

» Lemma 13. Suppose that A is an [n]%-array that is e-far from satisfying a k-local property

P(F), and let G € G(n,d, k, w) where w > k. Then at least one of the following holds.
There exists a (P, A)-unrepairable G-block.
For at least an e-fraction of the G-blocks B, there is an F-copy in B.

Proof. Suppose that the first condition does not hold, that is, all G-blocks are (P, A)-
repairable. By Lemma 10, every F-copy is contained in the closure of some G-block.

Let C denote the collection of all G-blocks B such that A contains an F-copy in B. By
the repairability, the values of A in each block B € C can be modified so that after the
modification, A will not contain an F-copy in B. We stress that the modifications for each
block B appear only in B itself and do not modify entries on the grid, so by Lemma 10, they
cannot create new F-copies in the closure of other blocks.

After applying all of the above modifications to A, we get an F-free array, i.e., an
array that satisfies P. A was initially e-far from P, and the number of entries in each
block is bounded by (w + 2 — k)¢ < w?, implying that at least an e-fraction of the blocks
belong to C. <

Proof of Theorem 11. We may assume that k9/e < n?/2, otherwise our test may trivially

query all n¢ entries of A. Our (non-adaptive) test T picks W = [p@/(d+D g1/ (d+1)1/(d+1) | >

2k, and an integer w satisfying k < W/2 < w < W, for which an (n,w)-interval partition

exists. T' now makes the following queries.

1. T queries all entries of an arbitrarily chosen grld G 6 G(n, d k,w). The number of entries
in any grid is at most dn®(k — 1) /w < 2dn®~ T T T

2. T chooses a collection B of 2/e G-blocks uniformly at random and queries all entries in
these blocks. Since each block contains at most (w + 2 — k)¢ < W% entries, the total
number of queries is bounded by 2W¢9 /e < 2n4~ @41 ;71 ¢ 71 . Note that the boundaries
of all blocks are queried in the first step (since they are contained in the grid). Thus, for
any block B € B, the test queries all entries of B.

The total number of queries in the above two steps is 2(d + l)nd_ﬁkﬁe_#l.

After querying all entries of the grid (and in particular, the whole boundaries of all of

the blocks), T can determine for every G-block B whether it is (P, A)-unrepairable or not.

T rejects if at least one of the blocks is unrepairable or if it found an F-copy in B for some
B € B, and accepts otherwise. The test has one-sided error, since an unrepairable block
must contain an F-copy. In view of Lemma 13, T rejects arrays A that are e-far from P
with probability at least 2/3: If A satisfies the first condition of Lemma 13, then T always
rejects. If the second condition holds, the probability that none of the 2/e closures B for
B € B contains an F-copy is bounded by (1 — €)?/¢ < e=2, so T rejects with probability at
least 1 —e™2 > 2/3. <
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4 Systems of grids and testing with spherical queries

In this section we prove Theorems 1 and 2. We do so by considering a system of grids with
varying block sizes, defined as follows.

» Definition 14. Let d > 0 and 2 < k < w < n be integers. An (n,d, k,w)-system of grids
is an (r + 1)-tuple (Go, Gy, ..., G,) of grids, for r(n,w) = |log(n/w)], so that
Gi € G(n,d, k,|n/2"%]) for any 0 < i < 7.
Go 2 Gy 2 ...2 G, (as subsets of [n]?). In particular, for any i < j < r, any G;-block
B is contained in a G,-block B’, and we say that B’ is an ancestor of B. Specifically, the
G;+1-block containing B is called the parent of B and denoted by Par(B). For the only
G,-block, B,, we define Par(B,.) as the whole domain [n].
r(n,w) was chosen so that w < n/2" < 2w, making G a G(n,d, k, w’)-grid for w < w' < 2w.
As we shall see, when working with such a system, unrepairability of blocks can be handled
in a query-efficient way. The following lemma asserts that such a system of grids exists for
any suitable choice of parameters.

» Lemma 15. An (n,d, k,w)-system of grids exists for alld >0 and 2 < k <w < n.

Proof. Consider the family of interval partitions Zo, ..., Z|jogr ) Obtained by Lemma 6. For
each 0 < i < r(n,w) define G; as the (n,d, k, |n/2"~%])-grid induced by Z,._;. It is not hard
to verify that (Go,...,G,) satisfies all requirements of an (n,d, k, w)-system of grids. <

For the rest of the section, fix a k-local property P(F) of [n]¢-arrays over ¥, as well as
an [n]%-array A over ¥. Consider an (n,d, k, w)-system of grids (Gy,...,G,) constructed as
described in the proof of Lemma 15, where w will be determined later. (For now it suffices
to require, as usual, that 2 < k < w < n.)

We say that a G;-block B is a (P, A)-witness if one of the following holds.

i =0 and the array A contains an F-copy in the closure B.

i >0 and B is (P, A)-unrepairable.

Recall that the closure of unrepairable blocks cannot be F-free, so the closure of any witness
block contains an F-copy. We say that a witness block B is mazimal if all of its ancestors
are not witnesses, that is, they are repairable.

» Observation 16. Any (P, A)-witness is contained in a mazimal (P, A)-witness.

We define the mazimal witness family VW as the set of all maximal (P, A)-witness blocks.
Obviously, the blocks in W might come from different G;’s

» Observation 17. B; N By = () for any two blocks By, By € W.

» Lemma 18. All F-copies in A are fully contained in |Jgcy B.

Proof. Let I be an F-copy in A. By Lemma 10, F' is contained in the closure of a unique
Go-block Bp; hence, Br is a (P, A)-witness. From Observation 16 we have Bp C B’ for
some maximal (P, A)-witness B’. We conclude that F € B C B'. <

» Lemma 19. One can make A satisfy P by only modifying entries of A in |Jgcy, Par(B).

Proof. Fix B € W. B is a maximal (P, A)-witness, so Par(B) is repairable.! Thus,
One can make Par(B) F-free by only modifying entries inside Par(B). By Lemma 10,

! Note that when B = B, is the maximal witness considered, Par(B) is [n]¢; the latter is repairable for
any non-empty property.
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width-k subarrays that are not fully contained in Par(B) are left unchanged. Therefore,
this modification does not create any new F-copies in A. Seeing that all F-copies in A
are originally contained in (Jzeyy B € Ugeyy Par(B), applying these modifications for all
B € W deletes all F-copies in A without creating new ones, so in the end of the process A
satisfies P. |

We may assume that k < €'/9n/10, as otherwise the expression in the theorem is Q(n?).

We choose w = 2k, working with an (n, d, k, 2k)-system of grids from now on. A very useful
consequence of this choice of w is that here the parent of a block B cannot be much larger
than B itself.

» Lemma 20. Let (Go, Gy, ...,G,) be an (n,d, k, 2k)-system of grids. Then for any0 <i <r
and any G;-block B it holds that | Par(B)|/|B| < 3¢.

Proof. For i = r this is trivial. Now fix ¢ < r and let B be a G;-block. Recall that, following
(1), one can write B = H?:l I;;[k: | where each interval I;; (for j € [d]) is of size at least

2k > 4. On the other hand, we can also write Par(B) = HJ 1 Iz’ [k: ] where I}, D I;; for any
J

J € [d]. It is not hard to verify that [I],| < 2|;;| + 1 most hold and so
J

|ParB|:ﬁ|f£;\—(k— ﬁ |+1—(k—1)< 2.2k —k+2 d<3d
|B| j:1| i | — (k e i | —(k—=1) — \ 2k—k+1
where the second inequality holds since |I;,| > 2k for any j. <

The next corollary follows immediately from Lemmas 19 and 20.

» Corollary 21. Suppose that A is e-far from P. Then the total number of entries in the
blocks of W is at least e(n/3)<.

We are now ready for the proof of the main upper bound of this paper, Theorem 1.

4.1 Proof of Theorem 1

As before, we may assume that & < ¢*/4n/10. For larger k, the expression in the theorem dom-
inates n? and thus becomes trivial. Consider the (n,d, k, 2k)-system of grids (G, G, ..., G,)
mentioned above. For any 0 < i < r, define 6; = |B; N W|/|B;|, where B; is the set of all
G;-blocks. In other words, §; is the fraction of maximal witnesses among the G;-blocks.
By Corollary 21, if A is e-far from P then >;_,d; > ¢/3%. Define v’ = |log(e'/9n/k)| > 1
noting that G, € G(n,d, k,w,) with w,» > 2k - 2" > ¢'/dp. Thus, the total number of
blocks in B, is bounded by (n/w,)% < 1/e.

1/d

The test

We iterate the following basic step 2 - 3¢/e times.
1. Pick B € By uniformly at random and query all entries of B.
2. For any 1 <14 <7/, pick B € B; uniformly at random and query all entries of Beo, 9B-
Finally, the test rejects if and only if at least one of the blocks B picked during the process is
a (P, A)-witness. (Recall that querying all boundary entries of a G;-block for ¢ > 0 suffices
to determine whether it is unrepairable, and thus a witness.)

The test is clearly non-adaptive, and has one-sided error: It only rejects if it finds a
witness. As we have seen earlier, all witnesses contain an F-copy.
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The test is canonical in the following sense. The choice of queries in every basic step
depends only on n,d, k, and (weakly) on €, and is independent of the property P or the
alphabet 3. To determine which entries constitute a block, it suffices to know the parameters
of the block, that depend only on n, d, k; the dependence in € is only taken into account in
the choice of r’. The test only considers P in order to determine whether each queried block
is a witness.

Analysis

Suppose that A is e-far from P. If §; > 0 for some ¢ > 7’ then it must hold that §,» > 0 as
well (since any unrepairable G;-block most contain an unrepairable G;-block for any i’ < ).
By the choice of v/, we must have §,» > 1/|B,,| > € in this case. If the above doesn’t hold,

r’—1

then §; = 0 for any i > r/, implying that "' " §; > ¢/3%. Therefore, in both cases, we have

Siiodi = /37,

The probability that a random B;-block is a witness is at least J;, and t/herefore the
probability that a single basic step leads to a rejection of A is at least >.._,d; > €/3%.
Running 2 - 3¢ /e independent iterations of the basic step ensures that the test will accept A

with probability at most (1 — e/?)d)23d/€ <e 2 < 2/3, as desired.

Query complexity

For d = 1, the query complexity of each basic step is O(kr’): The test queries B for a single
block B € By, and the boundaries of v’ larger blocks. Considering the parameters of our
system of grids, we have |B| < 4k and so |B| < 6k. On the other hand, the boundary of each
of the larger blocks is of size at most 2k — 2. Therefore, the total query complexity for the
1D test is O(kr’/e) = O (£ log (en/k)) as desired.

For d > 1, consider a single basic step, and for any 0 < 7 < 7’ let B; € B; be the
Gi-block picked in this step. From (2) we have |By| < (6k)¢, while for any i > 0 we have
|0B;| < 2d(k — 1)(4k - 2° + k)?' = O(d - (4k)? - 2(¢=1%). Note that the last expression
grows exponentially with (d — 1)i, so the total number of queries in a single basic step is
O((6k)® +d - (4k)?2(d=17")  Plugging in r’/, we have 2(d=1r" = %nd_l. As the test runs
O(39/¢) iterations of the basic step, we conclude that the total query complexity is bounded
by ¢?ke=1/4nd=1 for an absolute constant ¢ > 0, completing the proof of Theorem 1.

4.2 Proximity oblivious test

The proof of Theorem 2 follows by a very simple modification of the proof of Theorem 1.
The desired proximity oblivious test (POT) is the so called “basic step” from the above test,
with r replacing r’ (since ' depends on €). The POT rejects if it infers that one of the blocks
queried is a witness, like the above test. Its query complexity is O(kr) = O(klogn/k) for
d = 1. In the case d > 1, the query complexity is dominated by the size of 0B,., which is
bounded by O(dknd—1).

Clearly this POT has one-sided error, and its queries do not depend on the property P
and the alphabet ¥ (on the other hand, they do depend on n,d, k). Using the notation of
the previous subsection and denoting by €4 the Hamming distance of a given input A from
P, we get (exactly as in the beginning of Subsection 4.1) a rejection probability of at least
>0 > €a/3% for A, which is linear in €4 for fixed d. This concludes the proof.
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