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Abstract
This paper studies families of distributions T that are amenable to retentive learning, meaning
that an expert can retain users that seek to predict their future, assuming user attributes are
sampled from T and exposed gradually over time. Limited attention span is the main problem
experts face in our model. We make two contributions.

First, we formally define the notions of retentively learnable distributions and properties.
Along the way, we define a retention complexity measure of distributions and a natural class of
retentive scoring rules that model the way users evaluate experts they interact with. These rules
are shown to be tightly connected to truth-eliciting “proper scoring rules” studied in Decision
Theory since the 1950’s [McCarthy, PNAS 1956].

Second, we take a first step towards relating retention complexity to other measures of sig-
nificance in computational complexity. In particular, we show that linear properties (over the
binary field) are retentively learnable, whereas random Low Density Parity Check (LDPC) codes
have, with high probability, maximal retention complexity. Intriguingly, these results resemble
known results from the field of property testing and suggest that deeper connections between
retentive distributions and locally testable properties may exist.
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1 Introduction

Certain aspects of life – child development, love, psychological disorders, etc. – seem
comprehensible and somewhat predictable only when addressed jointly with an expert, via an
interactive process that unfolds over time. This work initiates the formal study of phenomena
that are amenable to an interactive collaborative discovery process between an expert and a
layperson. This collaboration unfolds over time, as more aspects of the phenomena become
apparent to the layperson. We model this by associating each layperson with a sequence
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12:2 The Complexity of User Retention

x = (x1, . . . , xn) sampled from some underlying distribution T , and assume that attributes of
the phenomena (entries of x) are gradually exposed over time, in response to active querying
by the layperson. The interactive process has the expert predicting the value of xi before it
is revealed to the layperson. At the time of revelation, the layperson also re-evaluates his
assessment of the expert’s utility to him: outcomes that seem “obvious” and predictable to
the user are viewed as less helpful than “surprising” and unpredictable ones. At the end of
each step, the layperson must decide whether to terminate his relationship with the expert
or continue with it.

A major factor in our study is the limited attention span that characterizes users;
consequently, the expert’s goal is to retain the layperson by constantly supplying him with
meaningful and surprising insights about the phenomena. The terms guru (instead of expert)
and follower (as opposed to layperson) better capture this dynamic so we use these terms
henceforth. The main advantage the guru has over her followers is a greater ability to
understand the phenomena, which we model by assuming the guru has a greater memory
span than her followers. Using these terms, we define a class of distributions to be retentively
learnable if a fixed constant advantage in memory span suffices for a guru to retain her
followers throughout the entire collaborative discovery process. Our main complexity result
is that the property of linearity over the binary field is retentively learnable (Theorem 10),
whereas arbitrary linear spaces are maximally non-retentive (Theorem 13). To state these
results, we first have to define our model and study its intrinsic properties. These properties
turn out to be non-trivial to study, and lead to surprising results that are of independent
interest. In particular, our first main result (Theorem 4) is a non-intuitive characterization
of retentive scoring rules in terms of proper scoring rules studied in Decision Theory.

Roadmap

Subsection 1.1 further explains, informally, the kind of guru–follower dynamics that we
aim to formalize and understand. Subsection 1.2 gives a formal description of the model.
In Subsection 1.3, we discuss the concept of retentive scoring, which allows us to describe
the collaborative discovery process in an incentive-compatible way, taking agent rationality
into account. Subsection 1.4 adds the layer of limited memory span to characterize the
discrepancies between the guru and follower, and between fellow gurus. In Subsection 1.5,
we state our main complexity results for linear propreties. Subsection 1.6 reviews the latest
related work, and finally Subsection 1.7 summarizes the main contributions and questions to
be explored in the future.

1.1 The Guru’s Problem
In today’s information society, crowd-based automated gurus gather data from users on
a voluntary basis in order to produce meaningful insights. The quality of insights greatly
depends on the amount and quality of data provided by the users, but those users have limited
attention, giving rise to the study of attention economy [12, 16]. By asking “interesting
questions” and making “meaningful predictions”, an automated guru can retain users, but
only if it “knows” how to ask “interesting” questions and provide “meaningful” feedback.

The phenomenon that motivated this research is that of early child development; the
gurus are experts in this field and the followers are parents of newborn babies [3]. For the
sake of concreteness we shall continue using this particular setting to describe our model
but it may be conveniently replaced by the reader with physicians or psychologists playing
the gurus as they interact with patients (followers) regarding a complex medical or mental
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problem, or with financial advisors as gurus and their follower clientele. In these and similar
settings, gurus and followers discuss a complex phenomenon that evolves over time, which
the followers wish to understand, and about which the guru claims to have an advantage of
“wisdom” over them.

1.2 The Collaborative Discovery model

The phenomenon about which the guru and her followers interact is modeled by a distribution
T over XΓ, where Γ is the set of properties manifested by the phenomenon and X is an
arbitrary input space. The two input spaces mentioned in this paper are the binary space
X = {0, 1} and the finite categorical space X = {0, . . . , n}. In the context of childhood
development, Γ is the set of developmental milestones like “first smile”, and each follower
(associated, for simplicity, with a parent of a single child) is represented by a sample u ∈ XΓ

that describes the ages at which that child achieved each milestone. By time t, the follower
discloses to the guru u�Γt

, the restriction of her sample u to a subset Γt ⊆ Γ. Additional
attributes of u may be revealed later in time, others might be disclosed by the follower if
prompted to do so, while certain attributes will remain forever latent.

The follower seeks the guru’s assistance in predicting “meaningful information” that is
currently unknown to the follower. The guru and follower interact over a number of rounds
but the follower will terminate the interaction if the guru is judged to be unhelpful (in a
manner formalized below). During each round of interaction, the guru makes a prediction by
announcing a distribution Pγt

over X that she claims is the true one for a latent attribute
γt 6∈ Γt; the follower has a distribution Qγ that she believes corresponds to γt. (Modern
gurus and followers are comfortable discussing probabilities rather than predicting a single
event as is the case with pre-election polling results.) The way γt is selected from Γ \ Γt and
its effect on the process is left to future work. The follower now queries γt and reports the
true value, denoted uγt

, which is derived from Nature’s “true” distribution. After each round
the follower updates the strength of her retention by the guru. We assume this strength is
given by a retention parameter rt that starts with a fixed value r0 and varies with time; once
rt turns negative the follower will be said to have lost all faith in the guru and therefore
terminate the interaction. The main objective of the guru is to maintain rt ≥ 0 for all t ≥ 0;
jumping ahead, a distribution T for which there exists a guru that, in expectation, manages
to retain followers to eternity (or until t = |Γ| for finite Γ) will be said to be r0-retainable
and the retention complexity of T will be the minimal r0 such that T is r0-retainable (see
Definitions 7, 8).

When the user updates her retention parameter at the end of round t, she uses a function
S(·, ·, ·) that is real-valued and takes three inputs: (i) the guru’s predicted distribution Pγt

;
(ii) the follower’s assessment of that distribution Qγt

; and (iii) the value uγt
that materialized,

sampled by Nature. The retention parameter at time t is given by

rt = rt−1 + S(Pγt
, Qγt

, uγt
) (1)

I Remark (Simplifying assumptions). The formula (1) makes the following assumptions on the
follower’s update rule: that it is Markovian, uses rt−1 additively and does not depend on the
follower’s identity nor on the identity of the attribute γt being predicted. Such assumptions
are common when modeling human behavior and we leave the study of more general update
functions to future work.

ITCS 2019
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1.3 Retentive Scoring Rules
The definition of the function S above, and the surprising corollaries of this definition, are
what dominates the first part of our study. We assume S belongs to a class of functions that
elicit the true beliefs of both guru and follower regarding the distribution for the attribute
γt. Truth eliciting rules are ones that incentivize (rational) players to supply the rule with
what they believe to be the truth. A famous early example of a truth eliciting rule is that
of a one-party proper scoring rule, which will be tightly related to our two-party retentive
scoring rule S, so we start with the simpler, one-party, case.

Proper (one-party) Scoring Rules

One-party proper scoring rules are used to compensate a single forecaster of Nature in a truth-
eliciting manner; these rules are studied extensively in the Decision Theory literature [17,
23, 11] and have interesting connections to the fields of estimation, information theory, and
machine learning; see [8] for a recent survey. A scoring rule receives a single forecast, which
is a distribution P over X as an input (say, this could be the temperature at noon tomorrow
at a fixed location), and scores the forecaster based on the outcome selected by Nature (the
actual temperature). A scoring rule is called proper if it is maximized by forecasting the
true distribution. We recite the definition as it appears in [23, 11]:

I Definition 1 (Proper Scoring Rule). Let P be a convex set of distributions over an arbitrary
input space X . A (one-party) scoring rule is a function s : P × X → R. The scoring rule
s is proper with respect to P if, for all R ∈ P (viewed as Nature’s true distribution), the
expected score Ex∼R [s(P, x)] is maximized over P ∈ P at P = R:

∀P ∈ P Ex∼R [s(P, x)] ≤ Ex∼R [s(R, x)] (2)

Intuitively, when the agent forecasts a distribution P ∈ P and event x ∈ X materializes,
the reward for the expert is s(P, x). To increase clarity when one-party and two-party
(retentive) scoring rules are involved, we will use a lowercase s to denote a proper (one-party)
scoring rule, and a calligraphic S to denote a retentive (two-party) one.

Many proper scoring rules can be constructed using elementary functions, for example
the logarithmic scoring rule:

s(P, i) = log pi (3)

and Brier’s scoring rule [6]:

s(P, i) = 2pi −
∑
j

p2
j = 2pi − ‖P‖22 (4)

Retentive (Two-Party) Scoring Rules

In the spirit of proper scoring rules, we define a retentive scoring rule which involves two
parties: guru and follower. Using an axiomatic approach, we start by defining the desired
properties of such a rule:

I Definition 2 (Retentive Scoring Rule). Let P be a convex set of distributions over an
arbitrary input space X . A function S : P × P × X → R is called a retentive scoring rule if
it satisfies the following conditions:
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1. Cost of ignorance: For all distributions P ∈ P and outcomes x ∈ X ,

S(P, P, x) = −1 (5)

2. Proper scorings: for any distribution R ∈ P dictated by Nature:
a. Guru-side: For any fixed follower belief Q ∈ P, the best guru prediction P ∈ P is

Nature’s:

Ex∼R [S(P,Q, x)] ≤ Ex∼R [S(R,Q, x)] (6)

b. Follower-side: For any fixed guru prediction P ∈ P, the best follower belief Q ∈ P is
Nature’s:

Ex∼R [S(P,Q, x)] ≥ Ex∼R [S(P,R, x)] (7)

Intuitively, the cost of ignorance condition models the “attention economy” cost of
interaction, and captures the intuition that the follower will penalize gurus that are no
“smarter” than he is. For example, no guru/meteorologist will get followers by predicting
“100% chance of sun in the Sahara desert”. The predictions must be surprising to the followers.
In the formal definition, the penalty constant is normalized to −1 to simplify analysis.

The output of S is a quantity that the guru wishes to maximize, because doing so will
mean the follower is retained longer, as seen by Equation (1). Therefore, the guru-side
properness requirement (Equation (6)) implies that a rational guru will strive to report the
correct distribution used by Nature (R), if the guru knows that distribution. In other words,
we require the scoring rule to elicit truthful guru-side inputs.

Similarly, since the follower has a limited attention span, she is incentivized to judge
the guru’s quality “honestly”, and this is modeled by the follower-side properness condition
(Equation (7)); it means the follower too will supply the rule S with Nature’s distribution,
if known to her. Notice that the combination of the cost-of-ignorance and two properness
results mean that a rational guru will not offer “obvious advice” about which both guru and
follower “know the (same) truth”.

Retentive Rule Construction

One-party scoring rules give rise to two-party retentive scoring rules in a straightforward
way: Score the guru and follower separately based on Nature’s outcome using, perhaps, two
different functions, and define the retentive score as the difference between the one-party
scores minus a fixed constant (to account for the cost-of-ignorance (5)). A retentive scoring
rule of this form is said to be separable, and a special case is that of a symmetric rule, in
which both guru and follower are scored using the same (one-party) scoring rule, formally:

I Definition 3 (Symmetric Retentive Scoring Rule). A retentive scoring rule S : P×P×X → R
is called symmetric if there exists a proper one-party scoring rule s : P ×X → R such that:

S(P,Q, i) = s(P, i)− s(Q, i)− 1 (8)

Characterization

Restricting the discussion to categorical distributions, i.e., to cases where X is finite, and
assuming the retentive scoring rules are analytic, meaning that a uniformly convergent power
series expansion exists about any P ∈ P, our first main result is the following statement:

ITCS 2019
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I Theorem 4 (Retentive Scoring Rules are Symmetric). The function S : P × P × X → R
is an analytic retentive scoring rule for categorical distributions if and only if there exists a
proper and analytic scoring rule s : P × X → R such that:

S(P,Q, x) = s(P, x)− s(Q, x)− 1 (9)

We find the statement somewhat surprising because it is not intuitively clear that a
two-party retentive rule must be separable; symmetry follows rather directly from separability
and the cost-of-ignorance assumption. For the proof – given in Section 2 – we use a known
result which relates proper scoring rules to convex functions over the probability simplex.
We show that each retentive scoring rule corresponds to a solution of a system of partial
differential equations (PDEs). Solving the system and characterizing the family of solutions
yields the result (see Subsection 2.2).

1.4 Memory Span

To model the different prediction capacities of gurus and followers, the forecasting abilities of
both types of agents in the Collaborative Discovery model are characterized by a parameter
called memory span, defined below.

A variety of psychological studies could be summarized by saying that the human
short-term memory has a capacity of about “seven, plus-or-minus two” chunks, where each
chunk can be roughly defined as a collection of elementary information relating to a single
concept [18, 24]. What counts as a chunk depends on the knowledge of the person being
tested. For instance, a word is a single chunk for a speaker of the language but is many
chunks for someone who is totally unfamiliar with the language and sees the word as a
collection of phonetic segments.

In the world of child development, young parents (who usually don’t have significant
experience or formal child-development education) are likely to predict that their child will
start walking around the average time for the entire population. Child development experts,
on the other hand, usually have better ability to pick up subtle developmental signals from
observed child behavior, and provide a better prediction based on them.

In this spirit, we proceed with the formal definition. In what follows, let ∆
(
XΓ) denote

the simplex of probability distributions over XΓ and ∆(X ) is the simplex of distributions
over X .

I Definition 5 (Memory Span). Let T ∈ ∆
(
XΓ) be a distribution. An agent is said to have

memory span m ≥ 0 when its prediction Pγ ∈ ∆(X ) for coordinate γt ∈ Γ of an instance
u ∈ XΓ with disclosed parameters Γt ⊆ Γ (i.e. for which u�Γt

is known) is based on m

disclosed coordinates or less:

∀γ ∈ Γ,∃It ⊆ Γt : |It| ≤ m, Pγ = (Tγ | u�It
) (10)

where (Tγ | u�It
) is the marginal distribution of T on coordinate γ, conditioned on the event

that the coordinates It are set to u�It
.

Intuitively, this means that every prediction of an agent is based on its entire knowledge of
at most m coordinates. When m = 0, a prediction is only based on the marginal distribution
of the corresponding parameter in the entire population.
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1.4.1 Monotonicity
Our second result, stated next, says that if guru G is “smarter” than guru G′, meaning her
memory span (mg) is greater than his (m′g), the smarter guru G will also have higher success
in retaining followers, in expectation. (Whether this optimistic result holds in the real world
is highly debatable.) This result is not implied directly by the definition of the Collaborative
Discovery model, and shows that our model exhibits intuitive and desirable properties that
substantiate its theoretical appeal:

I Theorem 6 (Knowledgeable Gurus Retain Better). Let S : P × P × X → R be an analytic
retentive scoring rule, let G1, G2 be two gurus with memory spans m(1)

g ≥ m
(2)
g . Then for

any distribution T , any coordinate x, and follower with memory span mf ≤ m(2)
g :

ET [S(P1, Q, x)] ≥ ET [S(P2, Q, x)] (11)

where P1, P2 ∈ ∆(X ) are the distributional forecasts of gurus G1 and G2 respectively, and
Q ∈ ∆(X ) is the belief of the follower.

A technical discussion of the theorem and its proof are provided in Section 3.

1.4.2 Retainability as a Function of Memory Span Discrepancy
From here on we assume that the guru has memory span mg, and her follower has memory
span mf and moreoever, both parties provide to the retentive scoring rule a distribution
that is the correct marginal Tγt

| u�Jt
, conditioned on some subset of Jt ⊂ Γt of size mg

for the guru and mf for the follower, respectively. Under this assumption, notice that if
mg = mf then both parties supply the same distribution, so the cost-of-ignorance assumption
of Definition 2 means the follower will terminate the interaction within r0 steps; in other
words, ignorant gurus will not prevail. Henceforth assume mg > mf . Combining the concepts
of limited user attention, retentive scoring, and limited memory span, we can now ask: Is it
possible for the guru to retain her follower throughout the process? This leads to the concept
of retainablility:

I Definition 7 (Retentively Learnable Distribution). Let T ∈ ∆
(
XΓ), and assume |Γ| = n.

Given a retentive scoring rule S : P × P × X → R, guru memory span mg ≥ 0, follower
memory span mf ≥ 0, and an initial retention parameter r0 > 0, we say that T is retentively
learnable with respect to (S,mg,mf , r0) if there exists an ordering γ1, . . . , γn of Γ, and a
sequence of sets I1, . . . , In such for all t ∈ [n]:
1. It ⊆ {γ1, . . . , γt−1}
2. |It| ≤ mg

3. For every sequence of sets J1, . . . , Jn such that Jt ⊆ {γ1, . . . , γt−1}, |Jt| ≤ mf :

rt = r0 +
t∑

t′=1
S
((
Tγt′ | u�It′

)
,
(
Tγt′ | u�Jt′

)
, T
)
≥ 0 (12)

Intuitively, a probability distribution is retentively learnable when it is possible to
maintain a positive retention parameter throughout the process. From (12) we can see that
increasing r0 does not hurt retainability. In other words, for r′0 > r0, if a distribution is
retentively learnable with respect to (S,mg,mf , r0), then it is also retentively learnable for
(S,mg,mf , r

′
0). We know that attention is a very limited resource, so we cannot expect it

to be arbitrarily large. This leads to the following question: How large should the “initial
retention” be in order for the guru to sustain her follower throughout the collaborative
discovery process?

ITCS 2019
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I Definition 8 (Retention Complexity). The retention complexity of a distribution T ∈ ∆
(
XΓ)

with respect to (S,mg,mf ) is the minimal value of r0 such that T is retainable:

rS,mg,mf
(T ) = min {r0 | T is retainable with respect to (S,mg,mf , r0)} (13)

The discussion above leads to the following notion of retentively learnable families of
distributions and properties. Recall that a property P over alphabet X is a set of finite strings
over X . Let Pn = P∩Xn denote the set of strings in P of length n. Let NP = {n ∈ N|Pn 6= ∅}
be the set of lengths of strings that belong to P . The family of distributions induced by P is
the family of uniform distributions over Pn, defined for n ∈ NP .

I Definition 9 (Retentively Learnable Distributions and Properties). Let D = {Ti}i∈I be a
family of categorical distributions, where each Ti is supported on strings of length ni over
alphabet X (the set I may be infinite). Let S : P × P × X → R be a scoring rule as in
Definition 3. We say D is retentively learnable with respect to S if there exist constants r0
and mg > mf such that each Ti ∈ D is retainable with respect to (S,mg,mf , r0).

Similarly, a property P ⊂ X ∗ is said to be retentively learnable with respect to S if the
family of distributions induced by P is retentively learnable.

Our main complexity result is the following. Recall that the property of linear functions
over F2 is the set of functions f : Fk2 → F2 that satisfy f(x+y) = f(x)+f(y) for all x, y ∈ Fk2 .
For this property we have NP = {n = 2k|k ∈ N}.

I Theorem 10 (Linear functions are retentively learnable). The property of linear functions
over the two-element field F2 is retentively learnable.

We elaborate on this result, and related ones, next.

1.5 The Retention Complexity of Linear Spaces
To initiate the study of the retentive learning within the context of computational complexity,
a natural starting point is that of uniform distributions over linear spaces; linearity is the
first object of study in other notable fields of complexity, like property testing [5, 13] and
PAC learning [25].

Consider a realization of the model in which each attribute ranges over a binary space,
i.e., XΓ = {0, 1}n. The Binary Attributes model describes a universe where each attribute is
either present or not for a given user.

We start by redefining the problem using finite-field linear algebra, and then study the
retention complexity of several natural families of linear codes, including the Walsh-Hadamard
codes and the family of random Low Density Parity Check (LDPC) codes.

In particular, identify {0, 1} with the two-element finite field F2 and consider a uniform
distribution U over a linear space U ⊆ Fn2 . Let U⊥ denote the space dual to U . Let d(U)
denote the Hamming distance of U (and d(U⊥) is its dual distance), recalling that distance
is equal to the minimum Hamming weight of a non-zero word in U (or U⊥, respectively).
We assume the guru has infinite memory span and the follower has memory span 0. (The
study of the general case of 0 < mf < mg < ∞ is left for future work.) This means the
follower’s distribution for each i ∈ [n] is the uniform distribution on F2 (this assumes U is
not constant on any i ∈ [n]).

We shall use a retentive scoring rule denoted Sbin, that has expected value 1 when the
guru can predict the next coordinate exactly, i.e., when the value of that coordinate depends
linearly on the values of coordinates exposed thus far, and has expected value −1 otherwise,
when the distribution on that coordinate is linearly independent of all previously revealed
bits.
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The following result sets the bounds for our study of retention complexity in this setting,
establishing a connection between the retention complexity of U and its algebraic properties:

I Lemma 11 (Retention Complexity Bounds for Linear Spaces). For a uniform distribution U
over a linear space U ⊆ F2

n with unbounded guru memory span and zero follower memory
span, the retention complexity satisfies:

d
(
U⊥
)
− 1 ≤ r(Sbin,∞,0)(U) ≤ dim (U) (14)

Next, we show that the both bounds are tight. We begin by showing that a uniform
distribution over codewords of the Walsh-Hadamard (WH) code achieves the lower retention
complexity bound:

I Lemma 12 (Walsh-Hadamard Retention Complexity). For all k ∈ N, a k-dimensional
Walsh-Hadamard code satisfies:

r(Sbin,2,0)(WH) = 2 (15)

As the n-dimensional Walsh-Hadamard code represents the set of linear functions over
F2
n, proving this lemma will also imply Theorem 10.
Finally, we show that a random LDPC code achieves the upper bound (up to multiplicative

constants) with high probability, implying that collaborative discovery can be very hard on
arbitrary linear spaces:

I Theorem 13 (LDPC Retention Complexity). For a proper choice of constants c, d > 0 and
sufficiently large n, the retention complexity of a random (c, d)-regular LDPC code over Fn2
is linear with high probability:

r(Sbin,∞,0)(LDPC) =
w.h.p

Ω(dim (LDPC)) (16)

The proofs of these results are provided in Subsection 4.2. The most technically challenging
one is the third one and relies on the lower bounds for the testability of random LDPC
codes of [4].

1.6 Related work
The study of reputation systems is interested in ranking gurus in “meaningful” ways, and is
highly investigated empirically and theoretically; cf. [20, 21] and references therein. Closest
in rigour to our approach are the papers by (i) Ban and Linial [2] which uses the theory of
random processes to identify situations where gurus (called “experts” there) can be robustly
ranked, assuming user participation continues indefinitely, and (ii) Chan et al. [7] that
classifies interactive crowd-computation games using a small list of modeling parameters.

In the context of machine learning, the task of detecting users who are likely to stop
participating in a voluntary system is known as churn prediction. For this task, machine
learning algorithms are trained to recognize typical usage patterns and predict the likelihood
of a termination [26, 9]. Even though general machine learning models provide good “black-
box” churn predictors when trained correctly, gaining deep understanding of the underlying
phenomena might be challenging.

Comparing our model to prior work, there are two main differences. First, our aim is to
model the dynamics of long-term interaction between a follower and her guru about a single
complex phenomenon of interest, asking when do followers abandon their gurus. Second, we

ITCS 2019
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are interested in the mathematical properties of phenomena that are prone to collaborative
discovery, meaning that for these phenomena a “good” guru will successfully instruct her
followers from start to end without losing their attention and faith. This motivation is
somewhat similar to that taken in the field of Property Testing [13] which attempts to
understand which properties are amenable to “testing”.

1.7 Discussion of main contributions and future directions
The properties of retentive scoring rules, the effect of memory span discrepancy on the
retention of followers, and the study of retention complexity of specific distributions are the
main topics of this work.

We point out a few questions that emerge from the paper:
1. The gurus and followers studied here are assumed to have optimal knowledge of the

distribution, up to their memory span limit. In particular, a guru with infinite memory
span does not need to learn the distribution at all. However, in most realistic settings
the distribution is unknown, leading to the question of learning distributions in a way
that also maintains good retention properties. For instance, suppose the distribution is
an unknown linear space U with retention complexity r. What is the minimal number of
followers with initial retention parameter r0 > r (say, r0 = 2 · r) that will be “spent” or
“lost” by the guru before she learns enough about U to fully retain new followers? This
particular question is highly relevant to automated gurus that seek to attract users while
maintaining high reputation (e.g., high app-store ratings).

2. The gurus and followers used here are computationally unbounded (or, more precisely,
bounded only by attention span). Realistically, the computational complexity of com-
puting marginals and evaluating which new attribute γt to interact about will be highly
non-trivial.

3. Walsh-Hadamard codes are locally testable, correctable and decodable, while random
LDPC codes have none of these properties; moreover, the retention complexity for both
families of codes is approximately equal to their query complexity (for testability and
correctability). This leads to our first question: Are there tighter connections between
retention complexity and query complexity of locally testable/correctable codes? Do all
q-query locally testable (or correctable) codes have retention complexity f(q) for some
function that depends only on q and is independent of n (input size)? Likewise, it seems
interesting to ask whether retention complexity is related to basic machine learning
measures like VC dimension.

2 Retentive Scoring

In this section we study retentive scoring rules, and prove Theorem 4.

2.1 Preliminaries and Notations
Categorical Probability Distributions

Recall that a categorical distribution is a discrete probability distribution that describes the
possible results of a random event that can take one of K possible outcomes. In this section,
we assume P is a convex set of categorical distributions with K = (n+ 1) possible outcomes,
i.e. X = {0, . . . , n}. We define the number of possible outcomes as n + 1 instead of n to
simplify later calculations.
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In addition, recall that the space of categorical distributions with (n+ 1) possible outcomes
is equivalent to the n-dimensional simplex:

P ⊆ ∆n =
{

(p0, . . . , pn) ∈ Rn+1 |
∑
i

pi = 1;∀i : pi ≥ 0
}

(17)

where pi is the probability of categorical event i.

Expected Score Notation

Recall Definition 2. Following the conventions of the proper scoring literature, and given
probability distributions P,Q,R ∈ P, we denote the expected retentive score as:

S(P,Q,R) ≡ Ei∼R [S(P,Q, i)] (18)

To avoid difficulties in (18), we will assume S(P,Q,R) exists and is finite. Similarly, for
one-party scoring rules, the common notation of expected score is:

s(P,R) ≡ Ei∼R [s(P, i)] (19)

The analysis below will use both the single event notation S(P,Q, i) and the expected score
notation S(P,Q,R) (and similarly for one-party scoring rules). To avoid confusion, we will
always use upper-case letters to denote random variables and lower-case letters to denote
events.
I Remark (Scoring Rules on Infinite Sample Spaces). Similar to proper (one-party) scoring
rules, it is possible to define retentive scoring rules on infinite sample spaces using measure-
theoretic tools. Computers are finite, and therefore many applications can be modeled as
finite-dimensional categorical distributions. In this work we consider the finite sample space
for concreteness and simplicity, and leave the rigorous measure-theoretic analysis to future
work.

Characterization of Proper Scoring Rules

One of the fundamental results in the research of proper scoring rules is the characterization
theorem, first stated by [17], which defines a correspondence between proper scoring rules and
convex functions over the probability simplex. We start with some preliminary definitions,
and proceed with the characterization theorem itself:

I Definition 14 (Subgradient). A function ∇∗G : P → Rn+1 is a subgradient of G at the
point P if the following inequality holds for all Q ∈ P :

G(Q) ≥ G(P ) + 〈∇∗G(P ), (Q− P )〉 (20)

where 〈·, ·〉 denotes the euclidean inner product over Rn+1: 〈X,Y 〉 =
∑n
i=0 xiyi.

I Remark (Subgradients of Differentiable Functions). If G is differentiable at P ∈ P then G
has a unique subgradient at P and it equals the gradient ∇G =

(
∂G
∂p0

, . . . , ∂G∂pn

)
at P .

Recall that a real-valued function G : P → R is convex if: G((1− λ)P + λQ) ≤
(1− λ)G(P ) + λG(Q) for all P,Q ∈ P and λ ∈ [0, 1].

I Lemma 15 ([15], Theorem 2.1). G : P → R is convex if and only if it has a subgradient
∇∗G at each point P ∈ P.
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I Theorem 16 (McCarthy’s Theorem, [11]). A scoring rule s : P × Ω→ R is proper relative
to P if and only if there exists a convex, real-valued function G on P such that:

s(P, i) = G(P )− 〈∇∗G(P ), P 〉 − (∇∗G)i (21)

where (∇∗G)i is the ith component of (∇∗G).

We also define the Generalized Entropy as the convex function which is induced by the
proper scoring rule:

I Definition 17 (Generalized Entropy). The convex function G(P ) = s(P, P ) induced by a
proper scoring rule s is called the generalized entropy function of s.

Note that a convex general entropy function exists for every proper scoring rule by Theorem 16.
For the logarithmic scoring rule defined in (3), the associated general entropy function is
the additive inverse of the Shannon entropy: G(P ) =

∑n
i=0 pi log pi. Additional information-

theoretic quantities can be generalized using proper scoring rules. See [8] for a recent
review.

2.2 Separability of Retentive Scoring Rules
In this section, we prove that every proper retentive scoring rule can be written as the
difference between two proper scoring rules. Recall Theorem 4:

I Theorem 4 (Retentive Scoring Rules are Symmetric). The function S : P × P × X → R
is an analytic retentive scoring rule for categorical distributions if and only if there exists a
proper and analytic scoring rule s : P × X → R such that:

S(P,Q, x) = s(P, x)− s(Q, x)− 1 (9)

The proof has several steps:
1. We verify that symmetric retentive scoring rules are indeed proper (Lemma 18).
2. Conversely, we first define the notion of a separable scoring rule, which is a rule which can

be written as the difference between two one-party scoring rules. Given a retentive scoring
rule, we use the proper scoring characterization theorem (Theorem 16) to construct a
system of partial differential equations which describes the constraints that must be
satisfied by such a rule (Lemma 20). We then solve the characterizing system of partial
differential equations (Lemma 21), and show that every possible solution corresponds to
a separable retentive scoring rule (Lemma 22).

3. Finally, we show that every separable retentive scoring rule with constant cost of ignorance
is also symmetric, proving the theorem.

We proceed by stating and proving the lemmas, and conclude the section by proving the
theorem itself.

Preliminaries

The proofs of Lemma 18 and Lemma 20 rely on the formalism of proper scoring rules and
retentive scoring rules. The proof of Claim 21 relies on basic results from the theory of
quasi-linear partial differential equations (refer to [19] for a thorough introduction). For
D ⊆ Rn, we will refer to a function f : D → R as analytic if its Taylor expansion about
x ∈ D converges to f(x) for all x ∈ D. We use ei ∈ Rn to denote the ith vector of the
standard basis. The gradient of a differentiable function g(x,y) : Rn × Rn → R with respect

to x ∈ Rn is denoted by ∂g
∂x ≡

(
∂g
∂x1

, . . . , ∂g
∂xn

)T
.
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2.2.1 Symmetric Rules are Retentive
I Lemma 18. Let S : P × P × X → R be a scoring rule. If there is a proper scoring rule
s : P × X → R such that: S(P,Q, i) = s(P, i)− s(Q, i)− 1, then S(P,Q, i) is retentive.

Proof. Let P,Q,R ∈ P. Using (8), the expected score S(P,Q,R) is:

S(P,Q,R) = s(P,R)− s(Q,R)− 1 (22)

s is proper, and therefore s(P,R) ≤ s(R,R). Plugging into (22) we obtain:

S(P,Q,R) ≤ s1(R,R)− s2(Q,R) = S(R,Q,R) (23)

satisfying (6). Similarly, s2 is also proper, and therefore:

S(P,Q,R) ≥ s1(P,R)− s2(R,R) = S(P,R,R) (24)

satisfying (6). For Q = P we get S(P, P, i) = −1 for all i ∈ X , and therefore S is retentive
according to Definition 2. J

2.2.2 Retentive Rules are Separable
We start by formally defining the notion of a separable scoring rule:

I Definition 19 (Separable Retentive Scoring Rule). A proper retentive scoring rule S :
P ×P ×Ω→ R is called separable if there exists two proper scoring rules s1, s2 : P ×Ω→ R
such that:

S(P,Q, i) = s1(P, i)− s2(Q, i) (25)

We also say that a two-party scoring rule is proper if it satisfies (6), (7). In the following
lemma, we say that a bi-variate function G : P × P → R is convex with respect to its first
argument if G(P,Q) is a convex function of P for any constant Q ∈ P ; convexity with respect
to the second argument is similarly defined by switching the roles of P and Q.

I Lemma 20 (Characterization by subgradients). A two-party scoring rule S is proper with
respect to class P if and only if there exist two functions G,H : P × P → R such that:
1. G(P,Q) is convex with respect to P .
2. H(P,Q) is convex with respect to Q.
3. For all P,Q,R ∈ P:

G+ 〈∇∗PG, (R− P )〉 = −
(
H +

〈
∇∗QH, (R−Q)

〉)
(26)

where ∇∗PG is a subgradient of G(P,Q) with respect to its first argument, and ∇∗QH is a
subgradient of H(P,Q) with respect to its second argument.

Proof. For the first direction, let S(P,Q, i) be a proper retentive scoring rule, and define
sQ(P, i) ≡ S(P,Q, i). Using (6) we obtain that sQ(P,R) ≤ sQ(R,R). Therefore sQ is proper,
and according to Theorem 16 there exists a convex function GQ : P → R that depends on Q,
such that:

sQ(P, i) = GQ(P )− 〈∇∗GQ(P ), P 〉+ (∇∗GQ(P ))i (27)
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where (∇∗GQ(P ))i is ith entry of ∇∗GQ at point P . Similarly, define sP (Q, i) ≡ S(P,Q, i).
By the same reasoning and using (7) we obtain that −sP is proper, and therefore there exists
a convex function HP : P → R such that:

−sP (Q, i) = HP (Q)− 〈∇∗HP (Q), Q〉+ (∇∗HP (Q))i (28)

Define G(P,Q) ≡ GQ(P ) and H(P,Q) ≡ HP (Q). Note that G is convex with respect to
P and H is convex with respect to Q, satisfying conditions 1, 2. Let R ∈ P. Using the fact
that sP (P,R) = sQ(Q,R), we can combine (27), (28) to obtain:

G+ 〈∇∗PG, (R− P )〉 = −
(
H +

〈
∇∗QH, (R−Q)

〉)
(29)

satisfying condition 3.
Conversely, let G,H be the functions which satisfy the three conditions above. Define:

sQ(P, i) ≡ G− 〈∇∗PG,P 〉+ (∇∗PG)i (30)

sP (Q, i) ≡ −
(
H −

〈
∇∗QH,H

〉
+
(
∇∗QH

)
i

)
(31)

Note that sQ = −sP by equation (26), and that sP and −sQ are proper by Theorem 16.
Define S(P,Q, i) = sQ(P, i) = −sP (Q, i). sQ is proper, and therefore S(P,Q,R) ≤

S(R,Q,R), satisfying the properness condition in (6). Similarly, the properness of −sP
implies S(P,R,R) ≤ S(P,Q,R), satisfying (7), and therefore S is proper. J

The following lemma contains a solution of a partial differential equation that will assist
us in solving the characterizing equations of proper retentive scoring rules. We obtain the
solution using basic tools from the theory of partial differential equations, and the proof is
given in Appendix A for completeness:

I Claim 21. Let D ⊆ Rn such that x,y ∈ D. For every analytic function u : D ×D → R
satisfying the equation

u(x,y)−
n∑
i=1

(yi − xi)
∂u(x,y)
∂xi

= 0 (32)

there exist functions α1, . . . , αn : D → R such that:

u(x,y) =
n∑
i=1

αi(y)(yi − xi) (33)

The following lemma is the heart of this part of the proof of Theorem 4 .

I Lemma 22 (Proper Retentive Rules are Separable). Let S : P × P × X → R be a retentive
scoring rule. If S is a proper retentive scoring rule with analytic generalized entropy functions,
then there exist two functions s1, s2 : P × Ω→ R such that S(P,Q, i) = s1(P, i)− s2(Q, i).

Proof outline:
1. Given a proper retentive scoring rule, Lemma 20 implies the existence of two generalized

entropy functions G,H : P × P → R related by equation (26).
2. We choose a parametrization for points on the simplex ∆n, and use it to define (26) in

the convex domain D =
{

(x1, . . . , xn) ∈ Rn+ |
∑
i xi ≤ 1

}
.

3. We simplify the resulting equation, and solve it using Claim 21.
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4. Applying the correspondence established in Theorem 16 between convex functions on the
simplex and proper scoring rules, we show that the generalized entropy functions G,H
induce a separable scoring rule.

Following the conventions of multivariate calculus, in the proof we will use the · symbol
to denote the euclidean inner product over Rn: x · y =

∑n
i=1 xiyi. In addition, the proof

employs terms from the theory of multivariate convex analysis: Given a non-empty convex
subset S ⊆ Rn, its affine hull Aff(S) is the smallest affine set containing S. A relative
interior point is a member of the set {x ∈ S : ∃ε > 0, Nε(x) ∩Aff(S) ⊆ S}, where Nε(x) is
the ε-ball around point x. Refer to [22] for an introduction to convex analysis. In the proof,
we also use the gradient theorem for line integrals, which is a common generalization of the
fundamental theorem of calculus. We recall it here without proof. Refer to Wikipedia entry
[14] for discussion and proof:

I Claim 23 (Gradient Theorem). Let ϕ : U ⊆ Rn → R and γ is any curve from p to q.
Then:

ϕ (q)− ϕ (p) =
∫
γ[p,q]

∇ϕ(r) · dr (34)

Proof of Lemma 22. Let S be a proper retentive scoring rule. By Lemma 20, there exist two
functions G,H : P × P → R such that G(P,Q) is convex with respect to its first argument,
H(P,Q) is convex with respect to its second argument, and equation (26) is satisfied.

When P , Q and R are categorical random variables with n+1 possible outcomes, equation
(26) is defined over the n-dimensional simplex ∆n. Let D =

{
(x1, . . . , xn) ∈ Rn+ |

∑
i xi ≤ 1

}
.

Each point P on the simplex can be represented by a vector P = (p0, . . . , pn) ∈ Rn+1
+ such

that
∑n
i=0 pi = 1. To simplify the constraints, we define a bijection f : ∆n → D as follows:

f(P ) ≡ (p1, . . . , pn) ∈ Rn (35)

f−1(x) ≡
(

1−
n∑
i=1

xi, x1, . . . , xn

)
∈ ∆n (36)

using this bijection, we represent each point on the simplex using a n-dimensional vector in
the domain. Denote: P ≡ f−1(x), Q ≡ f−1(y), R ≡ f−1(z), f(P) ≡ {f(P ) | P ∈ P}.

Using this correspondence, we also define g(x,y) ≡ G(P,Q), h(x,y) ≡ H(P,Q). The
assumption that G,H are analytic implies that the gradients of each function coincide with
their corresponding subgradients (See Remark 2.1).

We will now write (26) using the new parametrization. Let x,y, z ∈ f(P). For the
left-hand side of (26) we obtain:

∂g

∂x · (z− x) =
n∑
i=1

∂g

∂xi
(zi − xi) (37)

[Calculate the derivative of g using the chain rule]

=
n∑
i=1

(
∂G

∂pi
− ∂G

∂p0

)
(zi − xi) (38)

[Rearrange the summations]

= ∂G

∂p0

n∑
i=1

(−zi + xi) +
n∑
i=1

∂G

∂pi
· (zi − xi) (39)
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= ∂G

∂p0

((
1−

n∑
i=1

zi

)
−

(
1−

n∑
i=1

xi

))
+

n∑
i=1

∂G

∂pi
· (zi − xi) (40)

[Use the definition of x, z]

=
n∑
i=0

∂G

∂pi
(ri − pi) (41)

= ∇G · (R− P ) (42)

A similar argument on the right-hand side of (26) shows that ∇H ·(R−Q) = h+ ∂h
∂y ·(z− y),

and therefore the system defined in (26) is equivalent to:

∀x,y, z ∈ f(P) : g + ∂g

∂x · (z− x) = −
(
h+ ∂h

∂y · (z− y)
)

(43)

We will now simplify (43) using its linear properties. Denote the affine hull of f(P) by
Aff(f(p)) ≡ v0 + V , and assume v0 is a relative interior point. Taking z = v0 in equation
(43) yields:

g + ∂g

∂x · (v0 − x) = −
(
h+ ∂h

∂y · (v0 − y)
)

(44)

Similarly, denote the ith basis vector of V by v̄i. For any i ∈ [dimV ], taking z = v0 + v̄i in
equation (43), with appropriate scaling of v̄i such that z ∈ f(P), yields:

∀i ∈ [dimV ] : g + ∂g

∂x · (v0 + v̄i − x) = −
(
h+ ∂h

∂y · (v0 + v̄i − y)
)

(45)

Subtracting (44) from (45) we obtain:

∀i ∈ [dimV ] : ∂g(x,y)
∂x · v̄i = −∂h(x,y)

∂y · v̄i (46)

thus ∂g(x,y)
∂x and −∂h(x,y)

∂y are equal component-wise, and therefore ∂g(x,y)
∂x + ∂h(x,y)

∂y is
orthogonal to the affine hull:

∀v ∈ V :
(
∂g(x,y)
∂x + ∂h(x,y)

∂y

)
· v = 0 (47)

Note that (z− x), (z− y), (y− x) ∈ V . Substitute (47) back into (43) to obtain:

g + ∂g

∂x · (y− x) = −h (48)

Apply ∂
∂y on both sides to get:

∂g

∂y + ∂

∂y

n∑
i=1

∂g

∂xi
(yi − xi) = −∂h

∂y (49)

And using (47) again we obtain:

∂

∂y

n∑
i=1

∂g

∂xi
(yi − xi) = 0 (50)
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Which is equivalent to:

∀k ∈ [n] : ∂g

∂yk
+

n∑
i=1

(yi − xi)
∂

∂xi

∂g

∂yk
= 0 (51)

This is a system of n independent first-order partial differential equations for each element
in ∂g

∂y . Using Claim 21, we obtain the general solution for each k:

∀k ∈ [n] ,∃αk,1, . . . , αk,n : ∂g

∂yk
=

n∑
i=1

αk,i(y)(yi − xi) (52)

Packing back the equations to vector form, we define a matrix operator A : D → Rn×n such
that Ai,j [y] = αk,i(y). The system in (52) in now be compactly represented using matrix
multiplication:

∂g

∂y = A [y] (y− x) (53)

We now use the correspondence established in Theorem 16 to show that the generalized
entropy functions G,H induce a separable scoring rule. Applying the gradient theorem (34)
along the curve γ(t) = 0 + ty for t ∈ [0, 1] yields:

g(x,y)− g(x,0) =
∫ 1

0

(
yT
(
∂g

∂y

∣∣∣∣
x,ty

))
dt (54)

=
∫ 1

0

(
yTA [ty] (ty− x)

)
dt (55)

Denote ψ(x) ≡ g(x,0) and ϕ(x,y) ≡
∫ 1

0
(
yTA [ty] (ty− x)

)
dt. Note that ϕ(x,y) is a linear

function of x. The scoring rule which corresponds to g is given by Theorem 16:

S(x,y, z) =g(x,y) + ∂g(x,y)
∂x · (z− x) (56)

=ψ(x) + ∂ψ(x)
∂x · (z− x)︸ ︷︷ ︸
≡s1

+ϕ(x,y) + ∂ϕ(x,y)
∂x · (z− x)︸ ︷︷ ︸
≡s2

(57)

The terms denoted by s1 only depend on x and z, and therefore s1 = s1(x, z). In addition,
ϕ(x,y) is a linear function of x and therefore both ∂ϕ(x,y)

∂x and
(
ϕ(x,y)− ∂ϕ(x,y)

∂x · x
)
do

not depend on x, thus s2 = s2(y, z). The scoring rule S(x,y, z) can therefore be written in
the following form:

S(x,y, z) = s1(x, z)− s2(y, z) (58)

and applying the reverse transformation from x,y, z ∈ D to P,Q,R ∈ P implies the
separability of the original scoring rule S. J

2.2.3 Concluding the Proof
We can now conclude the section by proving the characterization theorem for retentive
scoring rules. For the final proof, recall Definition 3 of symmetric retentive rules.
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Proof of Theorem 4. Given a proper scoring rule s : P × X → R such that S(P,Q, i) =
s(P, i)− s(Q, i)− 1, we can apply Lemma 18 to show that S(P,Q, i) is retentive. Conversely,
given an analytic retentive scoring rule, we can apply Lemma 22 and obtain s1, s2 such that
S(P,Q, i) = s1(P, i) − s2(Q, i). The rule S is retentive, and therefore satisfies (5). for all
P ∈ P and Q = P we obtain:

S(P, P, i) = s1(P, i)− s2(P, i) = −1 (59)

and therefore s1(P, i) = s2(P, i)− 1 for all P , proving that S is symmetric. J

3 Monotonicity

In this section we show that expected retention score in each round grows with the size of
memory span, proving Theorem 6:

I Theorem 6 (Knowledgeable Gurus Retain Better). Let S : P × P × X → R be an analytic
retentive scoring rule, let G1, G2 be two gurus with memory spans m(1)

g ≥ m
(2)
g . Then for

any distribution T , any coordinate x, and follower with memory span mf ≤ m(2)
g :

ET [S(P1, Q, x)] ≥ ET [S(P2, Q, x)] (11)

where P1, P2 ∈ ∆(X ) are the distributional forecasts of gurus G1 and G2 respectively, and
Q ∈ ∆(X ) is the belief of the follower.

The proof will require a definition and a lemma: We first define the notion of Localized
Expected Gain (Definition 24), which is a set function that quantifies the expected score
for different choices of prior data. We then show that this function is monotone by proving
Lemma 25, and use the result to prove the theorem itself.

Preliminaries

We denote the jointly distributed vector by (X1, . . . , Xn) ∼ T . The marginal distribution of
coordinate i is denoted by Xi. For t ∈ [n] and I ⊆ [n] such as t /∈ I, the marginal value of
coordinate t conditioned on the event X�I = x�I is denoted by (Xt | xI). When probability
calculations are involved, we will omit the harpoon notation for brevity, and xI and x�I will
be used interchangeably.

I Definition 24 (Localized Expected Gain). Let (X1, . . . , Xt) ∼ D ∈ ∆(X t) be a set of t
jointly-distributed random variables, let I ⊆ [t− 1], and let s : ∆(X )×X → R be a proper
(one-party) scoring rule. The localized expected gain is a set function f : 2[t−1] → R defined
as follows:

∀I ⊆ [t− 1] : f(I) ≡ E(x1,...,xt)∼D [s((Xt|xI), xt)] (60)

Intuitively, the localized expected gain function f(I) describes the expected score when
X�I is being used as a prior. For example, for the log scoring rule s(P, i) = log pi defined in
(3), the associated expected localized gain function is:

flog(I) =
∑
xI

Pr (xI)
∑
xt

Pr (xt | xI) log Pr (xt | xI) = −H(Xt | XI) (61)

which is the additive inverse of the conditional entropy of Xt given XI .
We now show that this function is also monotone for general proper scoring rules, which

means that expected scores don’t decrease when adding prior information, or “more knowledge
doesn’t hurt“ regardless of the proper scoring rule being used:
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I Lemma 25. f is a monotone set function:

∀I ⊆ J ⊆ [t− 1] : f(I) ≤ f(J) (62)

Proof. We start with the definition of f(I):

f(I) = E(x1,...,xt)∼D [s((Xt|xI), xt)] (63)

=
∑

x[t−1],xt

Pr
(
x[t−1], xt

)
s((Xt|xI), xt) (64)

[Decompose Pr
(
x[t−1], xt

)
using the law of total probability]

=
∑

x[t−1],xt

Pr (xJ) Pr (xt | xJ) Pr
(
x[t−1]\J | xt, xJ

)
s((Xt|xI), xt) (65)

[s does not depend on y[t]\J . Rearrange the summation]

=
∑
xJ

Pr (xJ)
∑
xt

Pr (xt | xJ)s((Xt|xI), xt)
∑

x[t−1]\J

Pr
(
x[t−1]\J | xt, xJ

)
(66)

[The rightmost factor is equal to 1]

=
∑
xJ

Pr (xJ)
∑
xt

Pr (xt | xJ)s((Xt|xI), xt) (67)

Using the definition of expected one-party score defined in (19), we obtain that the rightmost
factor in (67) is the expected score of P = (Xt | xI) when the reference distribution is
R = (Xt | xJ):

f(I) =
∑
xJ

Pr (xJ)s((Xt|xI), (Xt|xJ)) (68)

We can now use the properness of s (see Definition 1) to obtain:

f(I) ≤
∑
xJ

Pr (xJ)s((Xt|xJ), (Xt|xJ)) (69)

and apply steps (63),...,(67) in reverse order to obtain∑
xJ

Pr (xJ)s((Xt|xJ), (Xt|xJ)) = f(J) (70)

proving that f(I) ≤ f(J). J

Using Lemma 25 we can generalize the result to retentive scoring rules, and prove the
monotonicity theorem for retentive scoring rules:

Proof of Theorem 6. Guru 1 has memory span m1
g, and therefore P1 = (T | u�I1) such that

|I1| = m1
g. Similarly, for guru 2 we obtain P2 = (T | u�I2) such that |I2| = m2

g and for the
follower Q = (T | u�J) such that |J | = mf .
S is analytic, and therefore symmetric according to Theorem 4. Denote S(P,Q, i) =

s(P, i)− s(Q, i)− 1. Taking the expectation over T we obtain:

ET [S(P,Q, i)] = ET [s(P, i)]− ET [s(Q, i)]− 1 (71)

Using Definition 24 we obtain:

ET [S(P,Q, i)] = f(I)− f(J)− 1 (72)
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When m1
g ≥ m2

g and under the optimal choice of I1, there exists I ′1 such that I2 ⊆ I ′1 and
f(I ′1) ≤ f(I1). Applying Lemma 25 we obtain:

ET [S(P1, Q, i)] = f(I1)− f(J)− 1 (73)
≥ f(I ′1)− f(J)− 1 (74)
≥ f(I2)− f(J)− 1 (75)
= ET [S(P2, Q, i)] (76)

and therefore ET [S(P1, Q, i)] ≥ ET [S(P2, Q, i)]. J

4 The Binary Attributes Model

Under the Binary Attributes model, the universe of users is modeled using a k-dimensional
linear subspace of Fn2 .

U = span {ū1, . . . , ūk} (77)

where ū1, . . . , ūk ∈ Fn2 are a choice of basis vectors for the subspace. Under this realization
of the Collaborative Discovery model, each user is represented using an n-dimensional binary
vector, formally Xn = Fn2 .

Preliminaries

This section will assume familiarity with basic linear algebra over finite fields. A view
I ⊆ [n] of a vector u ∈ Fn2 , denoted by u�I , is a linear projection of u to the subspace
VI = span {ei | i ∈ I}. Similar to the previous section, we omit the harpoon notation when
complex conditional probability expressions are involved. Given a vector space U , its dual
space is defined as the set of linear constraints: U⊥ ≡ {v ∈ Fn2 | ∀u ∈ U : 〈u, v〉 = 0}. The
support of a vector u ∈ U is the of coordinates that contain non-zero elements: support(u) =
{i | ui 6= 0}. We denote the hamming distance of a vector u ∈ U by d(u) = |support(u)|.
The hamming distance of the space U is defined as d(U) = minu∈U\{0} d(u).

4.1 User Types as a Linear Subspace
We follow with a rigorous definition of the process under the Binary Attributes realization:

Initialization

At the start of the Collaborative Discovery process, the type of user u is picked uniformly
from U , all the coordinates are undisclosed, and the initial retention parameter is r0. We
will denote the uniform random variable over the linear space by U ∼ Uniform(U).

Prediction Rounds

During each round, the expert picks a coordinate i and provides a prediction distribution
P ∈ ∆({0, 1}) for its value. The retentive scoring function for this realization of the model
is:

Sbin(P,Q, x) = 2 log2 px − 2 log2 qx − 1 (78)
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where x ∈ {0, 1}. Sbin can be represented as Sbin(P,Q, x) = s(Q, x) − s(Q, x) − 1, where
s(P, x) = 2 log2 px is the logarithmic scoring rule defined in (3), and therefore Sbin is
symmetric according to Definition 3.

We’ll proceed to show that Sbin has very intuitive properties. To do that, we start with a
few basic claims about the structure of this probability space. The claims can be proved
using basic linear algebra and probability. Proofs are included in Appendix B:

I Claim 26. Let I ⊆ [n]. For every vector uI ∈ UI :

Pr (UI = uI) = 2− dim (UI) (79)

For the following claim, recall that a singleton distribution is a probability distribution in
which a single outcome has probability 1.

I Claim 27. Let I ⊆ [n] and m ∈ [n] \ I, and assume a vector u ∈ Fn2 has been picked
uniformly at random from a vector space U . Pr (um | uI) is a singleton distribution if and
only if em ∈ U⊥�[n]\I .

I Claim 28. Let U be a linear space over F2
n, and let I ⊆ [n],m ∈ [n] \ I. em ∈ U⊥�[n]\I if

and only if dim (U�I) = dim
(
U�I∪{m}

)
.

Using this framework, we now have enough tools to characterize the dynamics of scoring
rule we defined:

I Lemma 29 (Binary Attributes Scoring Rule Dynamics). For a uniform distribution U over a
linear space U without constant bits, the retention score for a collaborative discovery process
with infinite expert locality and zero layperson locality is given by:

Sbin((Xm | xI), Xm,U) =
{

1 em ∈ U⊥�[n]\I

−1 otherwise
(80)

=
{

1 dim
(
U�I∪{m}

)
= dim (U�I)

−1 dim
(
U�I∪{m}

)
= dim (U�I) + 1

(81)

Proof. When em /∈ U⊥�[n]\I , we get that dim
(
U�{m}

)
= 1, allowing us to apply Claim 26

and obtain Pr (um = 0 | uI) = 1
2 .

When em ∈ U⊥�[n]\I there exists v ∈ U⊥, I ′ ⊆ I such that support(v) = I ′ ∪ {m}.
Claim 27 implies that um is determined given uI .

Combining the results, we obtain for all I ⊆ [n],m /∈ I:

Pr (um = 0 | uI) ∈
{
{0, 1} em ∈ U⊥�[n]\I{ 1

2
}

otherwise
(82)

There are no constant bits in U , and therefore dimU�{m} = 1 for all m ∈ [n]. By Claim 26
we obtain that the marginal distribution for each coordinate is uniform, and therefore a
layperson with zero locality will always predict a uniform distribution.

Plugging (82) into the definition of Sbin in equation (78), the score for the first case is
log2

1
2·0.52 = 1, and the score for the second case is log2

0.52

2·0.52 = −1, leading to equation (80).
The transition from (80) to (81) is given by Claim 28. J
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4.2 Retention Complexity of Linear Codes
We will now apply the notion of retention complexity introduced in Definition 8 to the Binary
Attributes model. We will first show that there exist non-trivial upper and lower bounds for
retention complexity in this realization of the Collaborative Discovery model, and then show
that the bounds are tight. Recall Lemma 11:

I Lemma 30 (Retention Complexity Bounds for Linear Spaces). For a uniform distribution U
over a linear space U ⊆ F2

n with unbounded guru memory span and zero follower memory
span, the retention complexity satisfies:

d
(
U⊥
)
− 1 ≤ r(Sbin,∞,0)(U) ≤ dim (U) (14)

Proof of Lemma 11. The retention parameter at the end of each round t is defined according
to equation (1):

rt = r0 +
t∑
i=1
Sbin((Xσi | xIi), Xσi ,U) (83)

For the lower bound, observe that U⊥�[n]\It
does not contain any singleton element when

|It| ≤ d
(
U⊥
)
− 2. Since |It| ≤ t− 1 by definition, we can combine the inequalities and obtain

that no punctured-dual-space singleton exists when t ≤ d
(
U⊥
)
− 1. We can now apply

Lemma 29 and obtain that Sbin((Xσi | xIi), Xσi ,U) = −1 for all i ∈ {1, . . . , t}. Plugging
into the retention parameter at time t = d

(
U⊥
)
− 1:

rt = r0 +
d(U⊥)−1∑

i=1
(−1) = r0 −

(
d
(
U⊥
)
− 1
)

(84)

And the positivity constraint on rt implies that r0 ≥
(
d
(
U⊥
)
− 1
)
.

For the upper bound, assume without loss of generality that the first k = dim (U)
coordinates of U are linearly independent, and set σi = i, Ii = {1, . . . , (i− 1)} for all
i ∈ {1, . . . , k}. Observe that:

dim (U�Ii) =
{
i− 1 1 ≤ i ≤ k
k k < i

(85)

Applying Lemma 29 we get:

Sbin((Xσi
| xIi

), Xσi
,U) =

{
−1 1 ≤ i ≤ k
1 k < i

(86)

Hence for r0 = k we get rt ≥ 0 for all t ∈ {1, . . . , n}. J

In the asymptotic setting it is common to consider n, k →∞. In this case, d
(
U⊥
)
can

stay constant, forming a large gap between the bounds. We will proceed to show that the
upper and lower bounds are indeed tight in the asymptotic setting.

4.2.1 Linear Functions are Retentively Learnable
Let n = 2k−1. Given a binary message x ∈ {0, 1}k, the Walsh-Hadamard code (WH) encodes
the message into a codeword WH(x) using an encoding function WH : {0, 1}k → {0, 1}n,
such that for every y ∈

(
{0, 1}k \

{
0k
})

, the yth coordinate of WH(x) is equal to (x · y).
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Walsh-Hadamard is the space of linear functions over Fn2 . Note that we slightly deviate
from the common definition by omitting the 0th coordinate which is always equal to zero.
It is a

[
2k − 1, k, 2k−1]

2 locally-correctable code with q = 2 queries. See [1] for a thorough
discussion of Walsh-Hadamard codes and its applications in theoretical computer science.

We will show that a uniform distribution over the k-dimensional WH code achieves the
retention complexity lower bound for all k ∈ N. Recall Lemma 12:

I Lemma 31 (Walsh-Hadamard Retention Complexity). For all k ∈ N, a k-dimensional
Walsh-Hadamard code satisfies:

r(Sbin,2,0)(WH) = 2 (15)

In order to prove the lemma, we first characterize the constraints of the WH code
(Claim 32, Claim 33), and then use the results to construct an explicit formula for the
retention score when the Sbin retentive score rule is being used (Lemma 34), giving an upper
bound for r(Sbin,3,0)(WH) which is equal to the lower bound we established in Lemma 11.
Proofs for the claims can be found in Appendix B.

I Claim 32. Let y(1), . . . , y(m) ∈
(
{0, 1}k \

{
0k
})

.

(
m∑
i=1

ey(i)

)
∈WH⊥ ⇐⇒

m∑
i=1

y(i) = 0 (87)

I Claim 33.

d
(

WH⊥
)

= 3 (88)

I Lemma 34. Let k > 0, and let u be a uniformly-sampled vector from the k-dimensional
WH code. Set a natural ordering over the coordinates (γt = t for t ∈

{
1, . . . , 2k − 1

}
), and

set a sequence of subsets:

It =
{{

2blog2 tc, t− 2blog2 tc
}

t > 2, and t is not a power of 2
∅ otherwise

For collaborative discovery with respect to S = Sbin, mg = 2, mf = 0 and r0 = 2, the ordering
γt and sequence of sets It satisfies:

rt = t− 2blog2 tc (89)

for all 1 ≤ t < 2k.

Proof. By induction:
For the base case t ∈ {1, 2}. According to the definition, γ1 = 1, γ2 = 2, and I1 = I2 = ∅.

We use Claim 33 and an argument similar to the one in Lemma 11 to show that there’s no
singleton in the punctured dual-space in the first two rounds. The guess in the first two
rounds will therefore be a uniform one, and r1 = 1, r2 = 0. Indeed we can substitute 0, 1
into (89) see that 1− 2blog2 1c = 1 and 1− 2blog2 2c = 1.

For t > 2, assume the retention parameter formula holds for t− 1, and consider the two
following cases:
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When t is not a power of two, it can be represented as the XOR between two preceding
coordinates, for example t′ = 2blog2 tc and t′′ = t − 2blog2 tc. Note that It = {t′, t′′},
and that |It| = 2, satisfying the mg = 2 memory span constraint. Using Claim 32 we
obtain that et is a singleton in the punctured dual-space, and therefore rt = rt−1 + 1
by Lemma 29. Using the induction hypothesis and the fact that blog2 tc = blog2 (t− 1)c
when t is not a power of two, we obtain:

rt = rt−1 + 1
= (t− 1)− 2blog2 (t− 1)c+ 1
= t− 2blog2 tc

When t is a power of two, it cannot be represented as the XOR between preceding
coordinates, as for all of them the index of the most significant bit is strictly less
than log2 t. By Lemma 29 we obtain that rt = rt−1 − 1, and using the fact that
blog2 tc = blog2 (t− 1)c+ 1 when t is a power of two we indeed get:

rt = rt−1 − 1
= (t− 1)− 2blog2 (t− 1)c − 1
= t− 2blog2 tc J

I Remark (Non-punctured Walsh-Hadamard). In the non-punctured Walsh-Hadamard code,
the 0th coordinate is not omitted, and always equal to zero. Offsetting the sequences in
Lemma 34 can show that the same upper bound also holds for the non-punctured version of
the Walsh-Hadamard code.

Combining the results proves Lemma 12:

Proof of Lemma 12. Lemma 34 shows an upper bound of 2 for the retention complexity
of WH. Lemma 11, together Claim 33, tells us that this is also the lower bound for the
retention complexity in this case, and therefore r(Sbin,2,0)(WH) = 2. J

We can now conclude and prove Theorem 10. Recall the theorem statement:

I Theorem 10 (Linear functions are retentively learnable). The property of linear functions
over the two-element field F2 is retentively learnable.

Proof of Theorem 10. For linear functions over Fn2 , the corresponding family of categorical
distributions is D = {Un}n=2k , where Ui is the family of uniform distributions over the
non-punctured Walsh-Hadamard code. Lemma 34 shows that each Ui is retainable with
respect to (Sbin, 2, 0, 2). J

4.2.2 Random LDPC Codes are Asymptotically Hard to Retain
Let G = (L,R,E) be a bipartite multigraph with |L| = n, |R| = m. Associate a distinct
Boolean variable xi with any i ∈ L. For each j ∈ R, let N(j) ⊆ L be the set of neighbors of
j. The jth constraint is Aj(x1, . . . , xn) =

∑
i∈N(j) xi mod 2. The code defined by G is:

C(G) = {x ∈ {0, 1}n | ∀j ∈ [m] : Aj(x) = 0}

A random (c, d)-regular LDPC code of length n is obtained by taking C(G) for a random
(c, d)-regular G with n left vertices. Random LDPC codes were first described and analyzed
by [10]. We will show that a randomly chosen LDPC code asymptotically achieves the upper
bound for retention complexity with high probability. Recall Theorem 13:
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I Theorem 13 (LDPC Retention Complexity). For a proper choice of constants c, d > 0 and
sufficiently large n, the retention complexity of a random (c, d)-regular LDPC code over Fn2
is linear with high probability:

r(Sbin,∞,0)(LDPC) =
w.h.p

Ω(dim (LDPC)) (16)

I Definition 35 ((q, µ) code locality, [4]). A linear space V is (q, µ)-local if every v ∈ V that
is a sum of at least µm basis vectors has d(v) ≥ q.

The following lemma shows that a random LDPC code has (q, µ)-locality with high
probability for a proper choice of parameters:

I Lemma 36 ([4], Lemma 3.6). Fix odd integer c ≥ 7 and constants µ, δ, d > 0 satisfying:

µ ≤ c−2

100 ; δ < µc; d >
2µc2

(µc − δ)2 (90)

Then, for all sufficiently large n, with high probability for a random (c, d)-regular graph
G with n left vertices and m = c

dn right vertices, the corresponding LDPC code C(G) is
linearly-independent, and (δn, µ)-local.

I Remark 37 (A Proper Choice of Parameters). For our proof of Theorem 13, the constants in
(90) need be chosen such that δ − 2µc

d ≥ 0.
Such a choice of random code parameters is indeed possible: For example, by fixing c ≥ 7

and taking µ = c−2

100 , δ = (µc − ε0), d = 8µc2

(µc−δ)2 we get:

δ − 2µc
d

= µc − ε0 − 2 µc
8µc2

(µc−δ)2

= µc − ε0 −
ε2

0
4c

Which is strictly larger than zero for all 0 < ε0 < 2c
(√

1 + µc

c − 1
)
.

We now use this to prove Theorem 13:

Proof of Theorem 13. Fix odd integer c ≥ 7 and constants µ, ε, δ, d > 0 satisfying equation
(90) and δ ≥ µc

d . See Remark 37 for a specific choice of such constants. Let V be a random
LDPC code of dimension n corresponding to this choice of constants. Assume that n is large
enough to satisfy Lemma 36. Assume by contradiction that r0 ≤ n

(
δ − 2µc

d

)
− 1, and the

Collaborative Discovery process lasts until round n. Set t = bδnc − 1.
At the end of round t, the coordinates It ⊆ [n] are disclosed. Denote by n− the number

of times a uniform distribution was predicted by the expert. Using Lemma 29, the total
retention accumulated at the end of round t is equal to:

rt = r0 − n− + (t− n−) (91)

rt ≥ 0, and therefore n− ≤ t+r0
2 . Using Lemma 29 again, we obtain that n− = dim (V�It).

In addition, the dimensions of a vector space and its dual sum up to t, hence dim
(

(V�It)
⊥
)

=

(t− n−) ≥ t−r0
2 . This gives us a lower bound for dim

(
(V�It

)⊥
)
.

(V�It
)⊥ consists of vectors v ∈ V ⊥ such that support(v) ⊆ It. The conditions of Lemma 36

are satisfied by our choice of constants, and we can apply it to obtain that V ⊥ of the random
code we picked is (δn, µ)-local with high probability, and therefore every v ∈ V ⊥ that is a
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sum of at least c
dµn dual basis vectors has d(v) ≥ δn. For t < δn, all the vectors of (V�It)

⊥

are a sum of c
dµn basis vectors at most, hence dim

(
V ⊥I
)
≤ c

dµn, implying an upper bound
for dim

(
(V�It

)⊥
)
.

Combining the bounds we obtain:

t− r0

2 ≤ dim
(

(V�It
)⊥
)
<
c

d
µn (92)

For t = bδnc − 1 and r0 ≤ n
(
δ − 2µc

d

)
− 1 we have:

t− r0

2 ≥
(δn− 1)−

(
n
(
δ − 2µc

d

)
− 1
)

2 = c

d
µn (93)

Leading to a contradiction, since the lower bound in equation (92) must be greater than the
upper bound. From this we get r0 > n

(
δ − 2µc

d

)
, and therefore r0 = Ω(n) = Ω(dim (V )). J
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A Retentive Scoring Appendices

I Claim 21. Let D ⊆ Rn such that x,y ∈ D. For every analytic function u : D ×D → R
satisfying the equation

u(x,y)−
n∑
i=1

(yi − xi)
∂u(x,y)
∂xi

= 0 (32)

there exist functions α1, . . . , αn : D → R such that:

u(x,y) =
n∑
i=1

αi(y)(yi − xi) (33)

Proof of Claim 21. u(x,y) is analytic in D, and therefore it has a unique representation as
a convergent power series about (y,y):

u(x) =
∞∑

j1,...,j2n=0
cj1,...,j2n

n∏
k=1

(yk − xk)jk

2n∏
k′=n+1

y
jk′
k′ (94)

Note that (y − x)∂(y−x)a

∂x = −a(y − x)a for all a ∈ R, and therefore:

n∑
i=1

(yi − xi)
∂

∂xi

n∏
k=1

(yk − xk)jk = −
n∑
i=1

ji

n∏
k=1

(yk − xk)jk (95)
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Using the above, we obtain for (32):

0 = u+
n∑
i=1

(yi − xi)
∂u

∂xi
(96)

[Use (94) to represent the rightmost term as a power series]

= u+
n∑
i=1

(yi − xi)
∂

∂xi

 ∞∑
j1,...,j2n=0

cj1,...,j2n

n∏
k=1

(yk − xk)jk

2n∏
k′=n+1

y
jk′
k′

 (97)

[Derivative operator does not affect the factors that don’t depend on x]

= u+
∞∑

j1,...,j2n=0
cj1,...,j2n

2n∏
k′=n+1

y
jk′
k′

(
n∑
i=1

(yi − xi)
∂

∂xi

n∏
k=1

(yk − xk)jk

)
(98)

[Apply the derivative using (95)]

= u+
∞∑

j1,...,j2n=0
cj1,...,j2n

2n∏
k′=n+1

y
jk′
k′

(
−

n∑
i=1

ji

)
n∏
k=1

(yk − xk)jk (99)

[Use (94) to represent the leftmost term as a power series]

=
∞∑

j1,...,j2n=0
cj1,...,j2n

(
1−

n∑
i=1

ji

) 2n∏
k′=n+1

y
jk′
k′

n∏
k=1

(yk − xk)jk (100)

If a convergent power series is equal to zero, then all its coefficients must be equal to zero as
well. From (100) we obtain:

∀j1, . . . , jn ∈ N : cj1,...,jn

(
1−

n∑
i=1

ji

)
= 0 (101)

Therefore cj1,...,jn
= 0 when

∑n
i=1 ji 6= 1, and analytic solutions for (32) can only contain

linear coefficients of (yi − xi) in their series expansion. Let k ∈ [n]. when jk = 1 we denote
cj1,...,j2n

≡ ck,jn+1,...,j2n
. Plug back into the series representation (94) to obtain:

u(x) =
n∑
i=1

 ∞∑
jn+1,...,j2n=0

ci,jn+1,...,j2n

2n∏
k′=n+1

y
jk′
k′

(yi − xi) (102)

Denoting αi(y) ≡
(∑∞

jn+1,...,j2n=0 ci,jn+1,...,j2n

∏2n
k′=n+1 y

jk′
k′

)
leads to the linear represen-

tation of u in (33). J

B Binary Attributes Appendices

B.1 The Binary Attributes Model
I Claim 26. Let I ⊆ [n]. For every vector uI ∈ UI :

Pr (UI = uI) = 2− dim (UI) (79)

Proof of Claim 26. Without loss of generality assume that I = {1, . . . , |I|}, and choose a
basis U = span {ū1, . . . , ūk} which is diagonalized. Each vector in U can be represented as
linear combination of basis elements. By definition, only only the first dim (UI) diagonalized
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basis vectors have support in I, and therefore every vector in UI can be written as a linear
combination of the view of the first dimUI basis vectors of U :

∀uI ∈ UI ,∃α1, . . . , αdim (UI) : uI =
dim (UI)∑
i=1

αi(ūi)�I (103)

Picking u at random is equivalent to choosing each αi uniformly, or equivalently, picking(
α1, . . . , αdim (UI)

)
∼ Uniform

(
{0, 1}dim (UI)

)
. From this correspondence it follows that

Pr (uI) = Pr
(
α1, . . . , αdim (UI)

)
= 2− dim (UI). J

I Claim 27. Let I ⊆ [n] and m ∈ [n] \ I, and assume a vector u ∈ Fn2 has been picked
uniformly at random from a vector space U . Pr (um | uI) is a singleton distribution if and
only if em ∈ U⊥�[n]\I .

Proof of Claim 27. When em ∈ U⊥�[n]\I there exists a vector v ∈ U⊥ and I ′ ⊆ I such that
support(v) = {m} ∪ I ′. v is a dual-space vector, and therefore

∑
i∈I′ ui + um = 0. The value

um ∈ {0, 1} is completely determined by the values of uI′ , and therefore Pr (um | uI) is a
singleton distribution.

Conversely, observe that restricting a vector to a subset of coordinates I ⊆ [n] can be
viewed as a linear projection operation PI ≡

∑
i∈I eie

T
i . Let v ∈ U be a vector for which

vI = uI . The set of vectors u′ ∈ U for which u′I = uI is an affine subspace U ′ of U :

U ′ = v + V ′ = {v + v′ | v′ ∈ U,PIv′ = 0} (104)

Note that V ′ is a linear subspace of U , and therefore:

(V ′)⊥ = span
(
U⊥ ∪ {ei | i ∈ I}

)
(105)

Using the assumption that Pr (um | uI) is a singleton distribution, we get that the m-
th coordinate is constant in U ′, and therefore P{m}V ′ = 0, and em ∈ (V ′)⊥. denote
U⊥ = span

{
ū⊥1 , . . . , ū

⊥
n−k

}
. Using (105) we can write em as a linear combination of spanning

set elements:

em =
|I|∑
i=1

αiei +
n−k∑
j=1

βj ū
⊥
j (106)

Restricting the view to coordinates [n] \ I, the terms in the first sum vanish, yielding:

em = P[n]\Iem =
n−k∑
j=1

βjP[n]\I ū
⊥
j (107)

We have shown that it’s possible to write em as a linear combination of punctured dual space
elements, hence em ∈ U⊥�[n]\I . J

I Claim 28. Let U be a linear space over F2
n, and let I ⊆ [n],m ∈ [n] \ I. em ∈ U⊥�[n]\I if

and only if dim (U�I) = dim
(
U�I∪{m}

)
.

Proof of Claim 28. Assume a uniform distribution over U , then em ∈ U⊥�[n]\I , if and only
if Pr (um | uI) is a singleton distribution by Claim 27.

According to the law of total probability, Pr (um | uI) is a singleton distribution if and
only if the following marginal distributions are equal: Pr

(
uI∪{m}

)
= Pr (uI).

Using Claim 26 we obtain that the two probabilites are equal if and only if dim (U�I) =
dim

(
U�I∪{m}

)
. J
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B.2 Retention Complexity of the Walsh-Hadamard Code

I Claim 32. Let y(1), . . . , y(m) ∈
(
{0, 1}k \

{
0k
})

.(
m∑
i=1

ey(i)

)
∈WH⊥ ⇐⇒

m∑
i=1

y(i) = 0 (87)

Proof of Claim 32. By definition,
(∑m

i=1 ey(i)
)
∈ WH⊥ if and only if

(∑m
i=1 ey(i)

)
· u = 0

for all u ∈ WH. For an arbitrary u, let w ∈ {0, 1}k such that u = WH(w). Plug into the
definition of WH and obtain:(

m∑
i=1

ey(i)

)
· u =

m∑
i=1

uy(i)

=
m∑
i=1

w · y(i)

= w ·

(
m∑
i=1

y(i)

)

Observe that the inner product is equal to zero for all u ∈WH if and only if w ·
(∑m

i=1 y
(i))

for all w ∈ {0, 1}k. This happens if and only if
(∑m

i=1 y
(i)) = 0, proving our claim. J

I Claim 33.

d
(

WH⊥
)

= 3 (88)

Proof of Claim 33. By Claim 32, the vectors corresponding to the support of each constraint
in WH⊥ must have their XORs equal to zero.

0k /∈
(
{0, 1}k \

{
0k
})

, and therefore there are no constraints of size 1, and we have

d
(

WH⊥
)
> 1. Similarly, for all x, y ∈

(
{0, 1}k \

{
0k
})

such that x 6= y we get x+ y 6= 0,

and therefore there are no constraints of size 2, and d
(

WH⊥
)
> 2.

Taking x 6= y and z = x+ y gives 3 coordinates with corresponding vectors that sum up
to zero, and therefore d

(
WH⊥

)
≤ 3 according to Claim 32. Combining the conclusions we

obtain d
(

WH⊥
)

= 3. J
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