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Abstract
Testing monotonicity of a Boolean function f : {0, 1}n → {0, 1} is an important problem in
the field of property testing. It has led to connections with many interesting combinatorial
questions on the directed hypercube: routing, random walks, and new isoperimetric theorems.
Denoting the proximity parameter by ε, the best tester is the non-adaptive Õ(ε−2√n) tester
of Khot-Minzer-Safra (FOCS 2015). A series of recent results by Belovs-Blais (STOC 2016)
and Chen-Waingarten-Xie (STOC 2017) have led to Ω̃(n1/3) lower bounds for adaptive testers.
Reducing this gap is a significant question, that touches on the role of adaptivity in monotonicity
testing of Boolean functions.

We approach this question from the perspective of parametrized property testing, a concept re-
cently introduced by Pallavoor-Raskhodnikova-Varma (ACM TOCT 2017), where one seeks to un-
derstand performance of testers with respect to parameters other than just the size. Our result is
an adaptive monotonicity tester with one-sided error whose query complexity is O(ε−2I(f) log5 n),
where I(f) is the total influence of the function. Therefore, adaptivity provably helps monoton-
icity testing for low influence functions.
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1 Introduction

Monotonicity testing of Boolean functions f : {0, 1}n → {0, 1} is a classic problem in property
testing that has been extensively studied over the last two decades [11, 8, 6, 2, 4, 3, 9, 1, 5].
Consider the coordinate-wise partial order over {0, 1}n, denoted by ≺. A function f is
monotone if ∀x, y ∈ {0, 1}n where x ≺ y, f(x) ≤ f(y). The distance between two functions
f, g is Prx[f(x) 6= g(x)], where x is u.a.r in {0, 1}n. The distance of f to monotonicity is the
minimum distance of f to a monotone g. Typically, we say that f is ε-far if the distance to
monotonicity is at least ε.

The goal of monotonicity testing is to design efficient (poly(n)) randomized procedures
that distinguish monotone functions from those that are far from monotone. Formally, given
query access to f and a proximity parameter ε > 0, a monotonicity tester is a (randomized)
procedure that accepts if f is monotone, and rejects if f is ε-far from being monotone. Both
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the above guarantees should hold with probability at least 2/3. A tester has one-sided error
if it always accepts a monotone function, or equivalently, always provides a certificate of
rejection. A tester is called non-adaptive if all the queries can be made without seeing any
of the answers. On the other hand, if the tester’s queries depend on previous answers, the
tester is adaptive. As we explain below, the power of adaptivity is the central open question
in Boolean monotonicity testing.

Raskhodnikova [11], Goldreich et al. [8], and Dodis et al. [6] initiated the study of
monotonicity testing by describing aO(n/ε)-query non-adaptive, one-sided tester. Their “edge
tester” repeats this simple procedure O(n/ε) times: sample a random edge of the hypercube
and test for a monotonicity violation among its endpoints. Chakrabarty and Seshadhri [2]
described the first o(n)-query tester, by proving connections between monotonicity testing
and directed isoperimetry theorems. Their “path tester” performs random walks on the
directed hypercube. Chen-Servedio-Tan [4] gave a tighter analysis to get an Õ(n5/6ε−4)
bound. In a remarkable result, Khot, Minzer, and Safra [9] (henceforth KMS) prove that the
path tester works in Õ(

√
n/ε2) queries. This was achieved by a deep isoperimetric result, a

directed analog of Talagrand’s isoperimetry theorem [12].
Fischer et al. [7] had proven an Ω(

√
n) lower bound for non-adaptive, one-sided testers.

Using sophisticated techniques, Chen-De-Servedio-Tan [3] proved an Ω(n1/2−δ) (for any fixed
δ > 0) lower bound for non-adaptive, two-sided testers. All in all, this nearly resolves the
non-adaptive complexity of monotonicity testing.

In a major recent advance, Belovs-Blais [1] proved the first polynomial lower bound of
Ω̃(n1/4) for any adaptive tester. This was further improved by Chen-Waingarten-Xie [5]
to Ω̃(n1/3). These are highly non-trivial results. Belovs-Blais also gave a O(logn) query
adaptive monotonicity tester for the class of regular linear threshold functions (LTFs), the
hard functions of Chen et al. [3]. This underscores the challenge of proving adaptive lower
bounds and leaves a tantalizing open question. Can adaptivity always help in Boolean
monotonicity testing over the hypercube?

We approach this question from the perspective of parametrized property testing, a concept
recently introduced by Pallavoor-Raskhodnikova-Varma [10]. One seeks to understand the
performance of testers with respect to parameters other than just the size of the domain. If
one can beat existing lower bounds (for some settings of the parameters), this gives insight
into the hardest functions for monotonicity testing.

Our main result is the existence of adaptive monotonicity testers parametrized by the
total influence, I(f). Letting D be the uniform distribution over all pairs (x, y) at Hamming
distance 1, I(f) := n · Pr(x,y)∼D[f(x) 6= f(y)].

I Theorem 1. Consider the class of functions f : {0, 1}n → {0, 1} with total influence at
most I. There exists a one-sided, adaptive monotonicity tester for this class with query
complexity O(Iε−2 log5 n).

A claim of KMS (Theorem 9.1 in [9]) implies that if I(f) > 6
√
n, then the edge

tester is itself a O(n/I(f))) tester. Combined with Theorem1, one gets an adaptive
Õ(min(I(f), n/I(f))ε−2)-query tester. The trade-off point is basically

√
n, the maximum

possible influence of a monotone function.

1.1 Perspective on Theorem 1
When I(f)�

√
n, Theorem1 beats the lower bounds of [7, 3]. Indeed, the lower bound

of Fischer et al. [7] holds for constant influence functions, and so adaptivity is crucial
for a result like Theorem1. As mentioned earlier, it was known that adaptivity helps for
the structured class of regular LTFs [1]. What is intriguing about Theorem1 is that no
strong structural assumption is required to get o(

√
n) query testers.
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All adaptive lower bound constructions have functions with influence Θ(
√
n) [1, 5]. In

light of Theorem1, this is perhaps no accident. Theorem1 shows that this is the hard
regime for monotonicity testing.
The o(n) non-adaptive testers are obtained by directed random walks in the hypercube.
One starts at a random x and walks “up” (consistent with the partial order) the hypercube
to reach some y. Then, the tester compares f(x), f(y) to detect non-monotonicity. (The
intermediate vertices in the random walk are not queried, and this is crucial for getting
the o(n) bound.) The algorithm of Theorem1 is fundamentally different; it performs
standard, undirected random walks on the hypercube. The endpoints might not even be
comparable, so only querying these is of no use. This is exactly where adaptivity helps,
since we can perform binary search to find violations in this path. This leads to a better
monotonicity tester for functions with influence o(

√
n).

1.2 Proof Idea
The o(n) testers of [2, 4, 9] perform random walks on the directed hypercube with orientation
corresponding to the partial order, and query the function at the endpoints of this walk. Their
analysis shows that if the function is ε-far from being monotone, then there is a significant
probability of encountering a violation. At a high level, one of the main observations of
[2, 4, 9] is that “longer” walks lead to higher chances of catching a violation. However, the
vast majority of vertices in the hypercube have Hamming weight n/2 ± Θ(

√
n). For the

purposes of monotonicity testing, one can assume that vertices outside these middle layers
do not participate in any violations to monotonicity. Each step of a directed walk increments
the Hamming weight, and thus the walk length can be at most Θ(

√
n). This

√
n is precisely

what shows up in the final bound of KMS.
Our insight is that one can perform an analogous analysis as above for random walks on

the undirected hypercube Hn. These walks can have length ω(
√
n). Suppose we perform

an `-step random walk (on Hn) from x that ends at y. Note that with high probability,
x and y will not be comparable. Nonetheless, if f(x) 6= f(y), then the walk has passed
through an influential edge. The power of adaptivity is that we can find such an influential
edge through binary search. This idea of using binary search is indeed also present in a
O(logn)-query algorithm of Belovs and Blais [1] for adaptive monotonicity testers for regular
linear threshold functions.

However, we are not interested in finding an influential edge but rather a violated edge.
Fix a violated edge (u, v). Our insight is to lower bound the probability that (u, v) is the
unique influential edge in the undirected random walk. In this scenario, binary search is
guaranteed to find a violation. There are two opposing forces here. First, the probability that
(u, v) at all appears in the random walk grows as `/n. On the other hand, the probability
that this is the unique influential edge decreases with `; indeed, this probability depends
on the influence of f . A fairly simple calculation shows that for all but an `I(f)/n fraction
of “bad” vertices, an `-length from a vertex encounters no influential edge with constant
probability. Putting these together, we see that setting ` ∼ n/I(f) would lead to a good
probability of catching a violation; note that if I(f)�

√
n, the desired length of the walk

would indeed be �
√
n.

The only fly in the above ointment is if all the violated edges were concentrated on the
bad vertices. This is where we invoke the connection between distance to monotonicity and
isoperimetry; the directed Talagrand inequality of KMS essentially precludes this scenario
by showing that violated edges need to be “spread apart”. The actual math is more subtle.
KMS gives a trade-off between the concentration of the violated edges and the number of
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violated edges. If all violated edges are incident only on a few vertices, then there must be a
lot of violated edges. The latter is where the edge-tester, which is nothing but a length 1
random walk, works. This analysis is similar to what is done in KMS.

1.3 Preliminaries
We use Hn to denote the standard (undirected) hypercube graph on {0, 1}n, where all pairs
at Hamming distance 1 are connected. An edge (x, y) of Hn is influential, if f(x) 6= f(y). The
number of influential edges is precisely I(f) · 2n−1. An influential edge (x, y) is a violating
edge if x ≺ y, f(x) = 1, and f(y) = 0. Our tester will perform random walks of Hn. Note
that Hn is regular, so this is a symmetric Markov Chain.

We crucially use the central result of KMS, which is obtained as a consequence of the
directed analogue of Talagrand’s isoperimetric theorem.

I Lemma 2 (Lemma 7.1 in [9], paraphrased). Given any Boolean function f : {0, 1}n → {0, 1}
that is ε-far from being monotone, there exists a subgraph G = (A,B,E) of the hypercube
and parameters σ ∈ (0, 1), d ∈ N such that

Each edge (a, b) ∈ E with a ∈ A and b ∈ B is a violating edge.
The degree of each vertex in B is exactly d and the degree of each vertex in A is at most
2d.
|B| = σ · 2n.
σ2d = Ω(ε2/ log4 n).

2 Tester and Analysis

Let f : {0, 1}n → {0, 1} be a Boolean function over the hypercube with total influence I(f).

Algorithm 1 Adaptive Monotonicity Tester for Boolean Functions.
Input: A Boolean function f : {0, 1}n → {0, 1} and a parameter ε ∈ (0, 1)
1. Choose k ∈R {0, 1, 2, . . . , dlogne} uniformly at random. Set ` := 2k.
2. Choose x ∈ {0, 1}n uniformly at random.
3. Perform an `-length random walk p on Hn starting from x to reach y ∈ {0, 1}n.
4. If f(x) 6= f(y):

a. Perform binary search on p to find an influential edge (u, v) ∈ p.
b. REJECT if (u, v) is a monotonicity violation.

5. ACCEPT.

Theorem1 follows directly from the following theorem by repeating the above subroutine the
appropriate number of times. Note that the subroutine above does not need to know I(f).

I Theorem 3. If f is ε-far from being monotone, then the algorithm described in Algorithm 1
rejects with probability Ω

(
ε2

I(f) log5 n

)
.

I Definition 4. Given a positive integer `, a vertex x ∈ {0, 1}n is denoted `-sticky if an
`-length random walk from x on Hn contains no influential edges with probability ≥ 1/2. A
vertex is called non-`-sticky otherwise. An edge is `-sticky if both endpoints are `-sticky.

I Observation 5. If a vertex x is `-sticky and `′ < `, then x is `′-sticky as well.

I Lemma 6. The fraction of non-`-sticky vertices of a hypercube is at most 2`·I(f)
n .
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Proof. Given x ∈ {0, 1}n and a positive integer ` > 0, define the random variable Zx,` that
is the number of influential edges in a random walk of length ` starting from x. Therefore, x
is non-`-sticky iff Pr[Zx,` > 0] > 1/2. Let N denote the set of non-`-sticky vertices.

Since Zx,` is non-negative and integer valued we get Pr[Zx,` > 0] ≤ E[Zx,`].

|N |/2n < 2
2n
∑
x∈N

Pr[Zx,` > 0] < 2
2n

∑
x∈{0,1}n

Pr[Zx,` > 0] ≤ 2
2n

∑
x∈{0,1}n

E[Zx,`] (1)

The RHS above is precisely twice the expected number of influential edges encountered
in an `-length random walk starting from the uniform distribution on Hn. Let P` denote
the uniform distribution on `-length paths in Hn. For p ∼ P`, pt denotes the tth edge in
p, and let χ(e) be the indicator for edge e being influential. The RHS of (1) is equal to
2Ep∼P`

[
∑
t≤` χ(pt)] = 2

∑
t≤` Ep∼P`

[χ(pt)]. Since the uniform distribution is stationary for
random walks on Hn, the distribution induced on pt is the uniform distribution on edges in
Hn. Thus, Ep∼P`

[χ(pt)] = I(f)/n and the RHS of (1) is 2` · I(f)/n. J

For any integer ` > 0, let F` be the set of `-sticky violating edges. That is,

F` := {(x, y) ∈ Hn : (x, y) is violating and, x, y are `-sticky}

I Lemma 7. If ` is the length of the random walk chosen in Step 1, then Algorithm 1 rejects
with probability Ω

(
`
n ·
|F`|
2n

)
.

Proof. Fix an edge (u, v) ∈ F`. Let p = (e1, . . . , e`) be the edges of a random walk p. Each
edge et for 1 ≤ t ≤ ` is a uniformly sampled random edge of Hn. Therefore, for any fixed
edge (u, v), Pr[et = (u, v)] = 1

n·2n−1 .
Now, given 1 ≤ t ≤ `, define Etu,v to be the event that the tth edge of p is (u, v) and no

other edge of p is influential. Define Eu,v to be the disjoint union ∨`t=1Etu,v. Observe that for
two distinct edges (u, v) and (u′, v′) in F`, the events Eu,v and Eu′,v′ are disjoint. Therefore,

Pr[Algorithm 1 rejects for length `] ≥ Pr[
∨

(u,v)∈F`

Eu,v] =
∑

(u,v)∈F`

Pr[Eu,v] (2)

The inequality follows since if Eu,v occurs then the end points of p must have differing values
and binary search on p will return the violation (u, v). The equality follows since the events
are mutually exclusive.

Consider the event Etu,v. For this event to occur, et must be (u, v). Consider the conditional
probability Pr[Etu,v | et = (u, v)]. Let Fu be the event that a (t− 1)-length random walk from
u contains no influential edges, and let Fv be the event that an independent (`− t)-length
random walk from v contains no influential edges.

I Claim 8. Pr[Etu,v | et = (u, v)] = Pr[Fu ∧ Fv] = Pr[Fu] · Pr[Fv]

Proof. Conditioned on et = (u, v), the distribution of the first (t− 1) steps of the random
walk is the uniform distribution of (t − 1)-length paths that end at u. This is the same
distribution of the (t− 1)-length random walk starting from u. The distribution of the last
(`− t) steps, conditioned on et = (u, v), is the (`− t)-length random walk starting from v. J
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Since (u, v) is an `-sticky edge, by Obs 5 and Definition 4, Pr[Fu] ≥ 1/2 and Pr[Fv] ≥ 1/2.
The proof is completed by plugging the following bound into (2).

Pr[Eu,v] =
∑̀
t=1

Pr[Etu,v] =
∑̀
t=1

Pr[et = (u, v)] · Pr[Etu,v | et = (u, v)]

= 2
n · 2n

∑̀
t=1

Pr[Etu,v | et = (u, v)] ≥ `

4n · 2n J

We complete the proof of Theorem3.

Proof of Theorem 3. Let G = (A,B,E), σ, d be as in Lemma2.
Case 1: nσ

16I(f) ≤ 1.
In this case, we argue that the edge tester succeeds. More precisely, consider the setting of
the algorithm described in Algorithm 1 that sets ` = 1, that is, the tester checks whether
a random edge of Hn is a violation. This setting occurs with probability Ω(1/ logn).
The number of violated edges is at least σd2n, the number of edges in G = (A,B,E) (as
defined in Lemma2). Since σ2d = Ω(ε2/ log4 n), |E| = Ω( ε2

log4 n
· 2n

σ ). Since the number
of edges of the hypercube is Θ(n2n), we get that the probability Algorithm 1 obtains a
violation is Ω( ε2

log5 n
· 1
nσ ). By assumption, nσ

16I(f) ≤ 1, so this probability is Ω( ε2

I(f) log5 n
).

Case 2: nσ
16I(f) > 1.

In this case, there exists a non-negative power of 2 (call it `∗) such that σ
16 <

`∗·I(f)
n ≤ σ

8 .
Let A′ and B′ be the subset of A and B that are `∗-sticky. Let E′ ⊆ E be the edges with
end points in A′ and B′. Note that any edge of E′ ⊆ F`∗ . By Lemma 6, we get that the
fraction of non-`∗-sticky vertices is at most 2`∗ · I(f)/n ≤ σ/4. Since the degree of any
vertex in G in Lemma 2 is ≤ 2d,

|F`∗ | ≥ |E′| ≥ |E| − (2d) · σ · 2
n

4 = σd2n

2 .

The probability the algorithm chooses ` = `∗ is 1/logn. Lemma 7 gives us

Pr[Algorithm rejects] ≥ 1
logn · Pr[Algorithm rejects|` = `∗]

≥ 1
logn ·

(
`∗

n
· |F`

∗ |
2n

)
(by Lemma 7)

≥ 1
logn ·

`∗

n
· σd2

≥ 1
I(f) ·

(
σ2d

32 logn

)
(plugging `∗ ≥ σn/(16 · I(f)))

= Ω
(

ε2

I(f) log5 n

)
(by Lemma 2) J
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