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Abstract
In recent years, the polynomial method from circuit complexity has been applied to several funda-
mental problems and obtains the state-of-the-art running times (e.g., R. Williams’s n3/2Ω(

√
logn)

time algorithm for APSP). As observed in [Alman and Williams, STOC 2017], almost all appli-
cations of the polynomial method in algorithm design ultimately rely on certain (probabilistic)
low-rank decompositions of the computation matrices corresponding to key subroutines. They
suggest that making use of low-rank decompositions directly could lead to more powerful algo-
rithms, as the polynomial method is just one way to derive such a decomposition.

Inspired by their observation, in this paper, we study another way of systematically construct-
ing low-rank decompositions of matrices which could be used by algorithms – communication pro-
tocols. Since their introduction, it is known that various types of communication protocols lead
to certain low-rank decompositions (e.g., P protocols/rank, BQP protocols/approximate rank).
These are usually interpreted as approaches for proving communication lower bounds, while in
this work we explore the other direction.

We have the following two generic algorithmic applications of communication protocols:
Quantum Communication Protocols and Deterministic Approximate Counting.
Our first connection is that a fast BQP communication protocol for a function f implies
a fast deterministic additive approximate counting algorithm for a related pair counting
problem. Applying known BQP communication protocols, we get fast deterministic additive
approximate counting algorithms for Count-OV (#OV), Sparse Count-OV and Formula of
SYM circuits. In particular, our approximate counting algorithm for #OV runs in near-linear
time for all dimensions d = o(log2 n). Previously, even no truly-subquadratic time algorithm
was known for d = ω(logn).
Arthur-Merlin Communication Protocols and Faster Satisfying-Pair Algorithms.
Our second connection is that a fast AMcc protocol for a function f implies a faster-than-
bruteforce algorithm for f -Satisfying-Pair. Using the classical Goldwasser-Sisper AM protocols
for approximating set size, we obtain a new algorithm for approximate Max-IPn,c logn in time
n2−1/O(log c), matching the state-of-the-art algorithms in [Chen, CCC 2018].

We also apply our second connection to shed some light on long-standing open problems in
communication complexity. We show that if the Longest Common Subsequence (LCS) problem
admits a fast (computationally efficient) AMcc protocol (polylog(n) complexity), then polynomial-
size Formula-SAT admits a 2n−n1−δ time algorithm for any constant δ > 0, which is conjectured
to be unlikely by a recent work [Abboud and Bringmann, ICALP 2018]. The same holds even
for a fast (computationally efficient) PHcc protocol.
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1 Introduction

Recent works have shown that the polynomial method, a classical technique for proving circuit
lower bounds [41, 45], can be useful in designing efficient algorithms [48, 50, 6, 10, 8, 36, 7].

At a very high level, these algorithms proceed as follows: (1) identify a key subroutine of
the core algorithm which has a certain low-degree polynomial representation; (2) replace that
subroutine by the corresponding polynomials, and reduce the whole problem to a certain
batched evaluation problem of sparse polynomials; (3) embed that polynomial evaluation prob-
lem to multiplication of two low-rank (rectangular) matrices, and apply the fast rectangular
matrix multiplication algorithm [26].

As [9] point out. In term of step (3), these algorithms are ultimately making use of the
fact that the corresponding matrices of some circuits or subroutines have low probabilistic
rank. [9] suggest that the probabilistic rank, or various low-rank decompositions of matrices
in general1, could be more powerful than the polynomial method, and lead to more efficient
algorithms, as the polynomial method is just one way to construct them.

It has been noted for a long time that communication protocols are closely related to
various notions of rank of matrices. To list a few: deterministic communication complexity
is lower bounded by the logarithm of the rank of the matrix [37]; quantum communication
complexity is lower bounded by the logarithm of the approximate rank of the matrix [16, 19];
UPP communication complexity is equivalent to the logarithm of the sign-rank of the
matrix [40].

These connections are introduced (and usually interpreted) as methods for proving
communication complexity lower bounds (see, e.g. the survey by Lee and Shraibman [35]),
but they can also be interpreted in the other direction, as a way to systematically construct
low-rank decompositions of matrices.

In this paper, we explore the connection between different types of communication
protocols and low-rank decompositions of matrices and establish several applications in
algorithm design. For all these connections, we start with an efficient communication
protocol for a problem F , which implies an efficiently constructible low-rank decomposition
of the corresponding communication matrix of F , from which we can obtain fast algorithms.

In fact, in our applications of quantum communication protocols, we also consider k-party
protocols, and our algorithms rely on the approximate low-rank decomposition of the tensor
of the corresponding communication problem. To the best of our knowledge, this is the first
time that approximate tensor rank is used in algorithm design (approximate rank has been
used before, see e.g. [11, 18, 13, 12] and the corresponding related works section).2

1 A low probabilistic rank implies a probabilistic low-rank decomposition of the matrix.
2 We remark that a concurrent work [52] makes algorithmic use of non-negative tensor approximate rank

to construct an optimal data structure for the succinct rank problem.

https://doi.org/10.4230/LIPIcs.ITCS.2019.23
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1.1 Quantum Communication Protocols and Deterministic
Approximate Counting

Our first result is a generic connection between quantum communication protocols and
deterministic approximate counting algorithms.

I Theorem 1. (Informal) Let X ,Y be finite sets and f : X × Y → {0, 1} be a Boolean
function. Suppose f has a quantum communication protocol P3 with complexity C(P) and
error ε. Then there is a classical deterministic algorithm C that receives A ⊆ X , B ⊆ Y as
input, and outputs a number E such that∣∣∣∣∣∣

∑
(x,y)∈A×B

f(x, y)− E

∣∣∣∣∣∣ ≤ ε · |A| · |B|.
Furthermore, C runs in (|A|+ |B|) · 2O(C(P)) time.

We remark here that there is a simple randomized algorithm running in sub-linear time via
random-sampling. Thus the above algorithm is indeed a derandomization of that randomized
algorithm.

The above theorem can also be easily generalized to the (number-in-hand) k-party case.
See Section 2.5 for the definition of the multiparty quantum communication model.

I Theorem 2. (Informal) Let X1,X2, . . . ,Xk be finite sets and f : X1,X2, . . . ,Xk → {0, 1}
be a Boolean function. Suppose f has a k-party quantum communication protocol P with
complexity C(P) and error ε. Then there is a classical deterministic algorithm C that receives
X1 ⊆ X1, X2 ⊆ X2, . . . , Xk ⊆ Xk as input, and outputs a number E such that∣∣∣∣∣∣

∑
x1∈X1,x2∈X2,...,xk∈Xk

f(x1, x2, . . . , xk)− E

∣∣∣∣∣∣ ≤ ε ·
k∏
i=1
|Xi|.

Furthermore, C runs in (|X1|+ |X2|+ . . .+ |Xk|) · 2O(C(P)) time.

Sketching Algorithms

In fact, Theorem 2 implies a stronger sketching algorithm. Given subsets X1, X2, . . . , Xk,
the algorithm first computes a w = 2O(C(P)) size sketch ski from each Xi in O(|Xi| ·w) time
deterministically, and the number E can be computed from these ski’s in O(k · w) time.

The sketch computed by the algorithm is in fact a vector in Rw, and it satisfies a
nice additive property. That is, the sketch of X1 t X2 (union as a multi-set) is simply
sk(X1) + sk(X2).

Applying existing quantum communication protocols, we obtain several applications of
Theorem 1 and Theorem 2.

1.1.1 Set-Disjointness and Approximate #OV and #k-OV
We first consider the famous Set-Disjointness problem (Alice and Bob get two vectors u
and v in {0, 1}d correspondingly, and want to determine whether 〈u, v〉 = 0), which has an
efficient quantum communication protocol [1] with communication complexity O(

√
d).

3 We need some technical condition on P, see Corollary 29 for details.

ITCS 2019
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The corresponding count problem for Set-Disjointness is the counting version of the
Orthogonal Vectors problem (OV), denoted as #OVn,d. In this problem, we are given two
sets of n vectors S, T ⊆ {0, 1}d, and the goal is to count the number of pairs u ∈ S, v ∈ T
such that 〈u, v〉 = 0.

Applying the quantum communication protocol for Set-Disjointness and Theorem 2,
we immediately get an algorithm for the approximate version of #OV.

I Theorem 3. For any d and any constant ε > 0, #OVn,d can be approximated determin-
istically with additive error ε · n2 in n · 2O(

√
d) time. In particular, it runs in n1+o(1) time

when d = o(log2 n).

Comparison with [22]

[22] gives a deterministic exact counting algorithm for #OVn,c logn, which runs in n2−O(1/ log c)

time. Note that their running time is n2−o(1) when d = ω(logn), while our algorithm only
achieves an additive approximation, but runs in near-linear time for all d = o(log2 n).

Another closely related problem, Counting Partial Match, is the problem that given
n query strings from {0, 1, ?}d (? is a “don’t care”) and n strings from {0, 1}d, and the goal
is to count the number of matching string and query pairs.

Using known reductions between Partial Match and OV (see, e.g., Section 2 in [6]),
together with the approximate counting algorithm for #OV, we can also solve Counting
Partial Match approximately in the same running time.

The approximate counting algorithm for #OV can be easily generalized to solve #k-OV,
which is the problem that given k sets of n vectors X1, X2, . . . , Xk ⊆ {0, 1}d, and count the
number of k-tuples u1 ∈ X1, u2 ∈ X2, . . . , uk ∈ Xk such that 〈u1, u2, . . . , uk〉 = 0.4

Applying Theorem 2 and observe that the 2-party Set-Disjointness protocol in [1] can be
easily generalized to solve the k-party case (in k-party Set-Disjointness, there are k players
getting u1, u2, . . . , uk respectively, and they want to determine whether 〈u1, u2, . . . , uk〉 = 0),
we obtain the following approximate counting algorithm for #k-OV.

I Theorem 4. For any integers k, d and any constant ε > 0, #k-OVn,d can be approximated
deterministically with additive error ε ·nk in n ·2O(k

√
d) time. In particular, it runs in n1+o(1)

time when k is a constant and d = o(log2 n).

I Remark. We remark that similar algorithms with slightly worse running time (n · dO(
√
d)

time for additive approximation to #OVn,d) can also be derived using the polynomial
method. However, we think our new algorithms via quantum communication protocols have
the following extra benefits: (1) our algorithm is slightly faster, with a running time of
n · 2O(

√
d); (2) our algorithm is derived via a general connection. Once the connection is set

up, the algorithm follows in an elegant and black-box way. We hope this general connection
could stimulate more applications of quantum communication protocols.

1.1.2 Sparse Set-Disjointness and Approximate Sparse #OV
Next we consider a sparse version of Set-Disjointness, in which Alice and Bob get two
sparse vectors u, v ∈ {0, 1}m≤d5, and want to decide whether 〈u, v〉 = 0.

4 the generalized inner product of k vectors, is defined as 〈u1, u2, . . . , uk〉 =
∑d

i=1

∏k

j=1(uj)i.
5 We use {0, 1}m

≤d to denote all Boolean vectors of length m with at most d ones.
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Using the famous quantum-walk algorithm for Element Distinctness [14], there is an
O(d2/3 logm) communication protocol for sparse Set-Disjointness, which is much better
than the O(

√
m) protocol for Set-Disjointness when m� d.

Applying this protocol and Theorem 1, we can give an algorithm for a sparse version of
#OV, denoted as #Sparse-OVn,m,d, in which we are given sets A,B ⊆ {0, 1}m≤d of n vectors,
and the goal is to count the number of distinct (a, b) ∈ A×B such that 〈a, b〉 = 0. Formally,
we have:

I Theorem 5. For integers n,m, d and any constant ε > 0, #Sparse-OVn,m,d can be approx-
imated deterministically with additive error ε · n2 in

n · 2O(d2/3 log(m))

time. In particular, when m = poly(d) and d = o

((
logn

log logn

)1.5
)
, it runs in n1+o(1) time.

We remark that it is possible to improve Theorem 5 via the polynomial method. Again,
we emphasize that our focus here is to provide direct applications of our general framework,
with the hope that it could stimulate more applications of quantum communication protocols
in the classical settings.

1.1.3 Approximate Counting for Formula ◦ SYM Circuits
Finally, we apply our algorithm to approximately count solutions (i.e., satisfying assignments)
to a class of circuits, for which no non-trivial algorithms were previously known.

A Formula ◦ SYM circuit of size m is a formula with {AND,OR,NOT} basis on m SYM
gates6 at the bottom. Using the quantum query algorithm for Formula Evaluation [15]
and the split-and-list technique, we obtain the following deterministic approximate counting
algorithm for Formula ◦ SYM circuits:

I Theorem 6. For any constant ε > 0, the number of solutions to a Formula ◦ SYM
circuit of size m can be approximated deterministically within ε · 2n additive error in
2O(n1/2m1/4+o(1)

√
logn+logm) time. In particular, when m = n2−δ for some δ > 0, the

running time is 2o(n).

Previously, even no non-trivial deterministic approximate counting algorithms for AND ◦
SYM circuits were known. A recent line of works [31, 32, 44], culminating in [39], construct a
PRG for ANDm ◦ THR circuits with seed length poly(logm, δ−1) · logn, using which one can
obtain a quasi-polynomial time deterministic approximate counting algorithm for polynomial
size AND ◦THR circuits. However, their PRG constructions rely on the fact that the solution
set of an ANDm ◦ THR circuit is a polytope, while the solution set of an AND ◦ SYM circuit
may not have such a nice geometric structure.

In fact, the only property we need for SYM gates is that they admit an efficient classical
k-party communication protocol when the inputs are divided to k players (each player sends
the contribution of her part). Our algorithm actually works for the following more general
problem.

I Problem 1. Given k sets of n vectors X1, X2, . . . , Xk ⊆ {0, . . . , r}d and d functions
f1, f2, . . . , fd where each fi is from [r]k to {0, 1}, and a Boolean formula F : {0, 1}d → {0, 1}
of O(1) fan-in. Count the number of k-tuples u1 ∈ X1, u2 ∈ X2, . . . , uk ∈ Xk such that

F(f1(u1,1, u2,1, . . . , uk,1), f2(u1,2, u2,2, . . . , uk,2), . . . , fd(u1,d, u2,d, . . . , uk,d)) = 1.

6 A SYM gate is a gate whose output only depends on the number of ones in the input.

ITCS 2019
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I Theorem 7. For any constant ε > 0, the above problem can be solved deterministically in
n · 2O(d1/2+o(1)·k(log d+log r)) time, within ε · nk additive error.

1.2 Arthur-Merlin Communication Protocols and a New Approximate
Max-IP Algorithm

Our second connection is an algorithmic application of AMcc protocols. We first define AMcc

protocols formally.

I Definition 8. An Arthur-Merlin communication protocol (AMcc) Π for a partial function
F : X × Y → {0, 1,⊥}7 proceeds as follows:

Alice holds input x ∈ X and Bob holds input y ∈ Y.
Alice and Bob toss some public coins jointly and send the random string r ∈ {0, 1}∗ to
Merlin (r is called the random challenge).
Based on x, y and the random challenge r, Merlin sends Alice and Bob a proof ψ, and
Alice and Bob decide to accept or not independently and deterministically. We require
the following conditions:

If F (x, y) = 1, with probability 1− ε over the random challenge r, there is a proof ψ
from Merlin such that Alice and Bob both accept.
If F (x, y) = 0, with probability 1− ε over the random challenge r, there is no proof ψ
from Merlin such that Alice and Bob both accept.

We call the parameter ε the error of the protocol Π. Moreover, we say the protocol is
computationally efficient if Alice and Bob’s behavior can be computed in polynomial-time
w.r.t. their input lengths.

We show that for any function F , a low-complexity and computationally efficient AMcc

protocol implies a faster algorithm for the corresponding F -Satisfying-Pair problem (defined
below).

For a partial function F : X × Y → {0, 1,⊥}, where X and Y are two sets, we define
F -Satisfying-Pairn as the problem that given two sets A ⊆ X and B ⊆ Y of size n, distinguish
between the following two cases: (1) There is an (x, y) ∈ A×B such that F (x, y) = 1. (2)
For all (x, y) ∈ A×B, F (x, y) = 0.

I Theorem 9 (Algorithms from AMcc protocols). Let F : X × Y → {0, 1,⊥} be a partial
function. Suppose there is a computationally efficient AMcc protocol for F with commu-
nication complexity T and error ε. Then for n such that 2T ≤ (

√
εn)0.1, there is an

O
(
εn2 · polylog(n) + n · 2T

)
time randomized algorithm for F -Satisfying-Pairn.

1.2.1 A New Algorithm for Approximate Max-IP
The first application of Theorem 9 is a new algorithm for approximate Maximum Inner
Product. We use Max-IPn,d to denote the problem that given sets A,B ⊆ {0, 1}d with size n,
compute Max(A,B) := max(a,b)∈A×B〈a · b〉.

To phrase this as an F -Satisfying-Pair problem, we first define the following gap inner
product problem.

7 F (x, y) = ⊥ means F (x, y) is undefined.
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I Definition 10 (Multiplicative-Gap Inner Product). Consider the following problem, denoted
as Gap-Inner-Productd, Alice and Bob hold strings x, y ∈ {0, 1}d respectively, and they are
given an integer τ . They want to distinguish between the following two cases: (Yes) x ·y ≥ 2τ ;
(No) x · y ≤ τ .

Adapting the classical Goldwasser-Sisper AM protocol for approximating set size [28], we
can derive an efficient AMcc protocol for Gap-Inner-Productd.

I Lemma 11 (AMcc protocol for Gap-Inner-Productd). There is an AMcc protocol which solves
Gap-Inner-Productd with error ε and communication complexity log

(
d

≤O(log ε−1)
)
.8

Applying Theorem 9, the following algorithm for approximating Max-IP follows directly,
matching the previous best algorithm in [23].

I Corollary 12. There is an algorithm for computing a 2-approximation to Max-IPn,c logn,
which runs in n2−1/O(log c) time.

I Remark. The constant 2 in Corollary 12 can be replaced by any other constant κ > 1.
We remark here that a direct application of the Goldwasser-Sisper protocol and parallel

repetition leads to a communication protocol with communication complexity O(log d log ε−1),
which is slightly worse than Lemma 11. In particular, such a protocol only gives an algorithm
with running time n2−1/O(log d), which is worse than n2−1/O(log c) when c� d = c logn. In
order to get the improved complexity in Lemma 11, we make use of a clever sampling scheme
using Poisson distributions, see Section 4.1 for details.

1.2.2 Evidences that Longest Common Subsequence and Edit Distance
do not Have Fast AMcc Protocols

It has been a long-standing open problem in communication complexity to prove an ω(logn)
AMcc lower bound for any explicit function [17, 29, 30]—it is consistent with our current
knowledge that all known natural communication problems have O(logn) AMcc protocols.

We consider two natural communication problems here, LCScc
d and Edit-Distcc

d , in which
Alice and Bob hold strings x, y ∈ {0, 1}d respectively, and are given an integer τ . Their goal
is to decide whether LCS(x, y) ≥ τ (Edit-Distance(x, y) ≥ τ).

Our Theorem 9 shows that if LCScc or Edit-Distcc admit low-complexity and computa-
tionally efficient AMcc protocols, it would imply non-trivial algorithms for the corresponding
F -Satisfying-Pair problem. By a known reduction in [3], that would, in turn, implies non-
trivial algorithms for Formula-SAT9—much faster than the current state-of-the-art [47]!
Therefore, at least for these two problems, constructing low-complexity AMcc protocol could
be hard, which may also be viewed as an evidence that they do not have efficient AMcc

protocols.

I Theorem 13. If LCScc
d admits computationally efficient AMcc protocols with complexity

polylog(d), then Formula-SAT of polynomial-size formulas admits an 2n−n1−δ time algorithm
for any constant δ > 0. The same holds for Edit-Distcc in place of LCScc.

The state-of-the-art algorithm for Formula-SAT runs in o(2n) time only when the formula
size is smaller than n3 [47]. It is even purposed as a hypothesis that no 2n/nω(1) time
algorithm exists for n3+Ω(1)-size Formula-SAT in [2]. Therefore, our results imply that if
LCScc or Edit-Distcc admits fast (computationally efficient) AMcc protocols, then that would
refute the hypothesis in [2]:

8
(

n
≤m

)
denotes

∑m

i=0

(
n
i

)
.

9 Formula-SAT is the problem that deciding whether a given formula is satisfiable.

ITCS 2019
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I Corollary 14. Under the following hypothesis10, LCScc
d and Edit-Distcc

d do not admit com-
putationally efficient AMcc protocols with complexity polylog(d):

There is a constant δ > 0 such that Formula-SAT of polynomial-size formulas requires
2n−n1−δ time.

In the full version of this paper, we show that the above corollary can be generalized to
hold for computationally efficient PHcc protocols (see the full version for a formal definition).
Formally, we have:

I Theorem 15. Under the same hypothesis as in Corollary 14, LCScc
d and Edit-Distcc

d do not
admit computationally efficient PHcc protocols with complexity polylog(d).

1.3 Related Works

1.3.1 Communication Protocols and Fine-Grained Complexity

Recently, since the breakthrough work of [5], communication protocols have been applied to
fine-grained complexity, and several tight conditional hardness results are proved for many
fundamental approximate problems in P [5, 33, 4, 23, 24, 25, 43].

Among these works, the most related one is [23], in which the author also makes use of the
BQPcc protocol for Set-Disjointness for a different purpose. In [23], the BQPcc protocol is
used to established a reduction from OV to approximate {−1, 1}-Max-IP11, thereby showing
the SETH-hardness of approximating {−1, 1}-Max-IP. On the other hand, in this work we
use BQPcc protocols directly for algorithmic purposes.

1.3.2 Other Algorithmic Applications of Approximate Rank

Alon studies the approximate rank of the identity matrix In in [11]. It is shown that it is
at least Ω

(
logn

ε2 log(1/ε)

)
and at most O

(
logn
ε2

)
. Built upon this result, several applications

in geometry, coding theory, extremal finite set theory and the study of sample spaces
supporting nearly independent random variables are derived. The lower bound also has
applications in combinatorial geometry and in the study of locally correctable codes over real
and complex numbers, as shown in [18]. In [13, 12], several bounds on approximate rank are
derived, together with applications of approximate rank in approximating Nash Equilibria,
approximating densest bipartite subgraph and covering convex bodies.

2 Preliminaries

2.1 Fast Rectangular Matrix Multiplication

Similar to previous algorithms using the polynomial method (see, e.g., [50, 10, 6]), our
algorithms also make use of algorithms for fast rectangular matrix multiplication.

I Theorem 16 ([26, 27]). There is an N2 · polylog(N) time algorithm for multiplying two
matrices A and B with size N ×Nα and Nα ×N , where α > 0.172.

10which is much weaker than the hypothesis in [2]
11 a variant of Max-IP with vectors in {−1, 1}d instead of {0, 1}d
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2.2 Random Variables and Poisson Distributions
Throughout the paper, we use X ' Y to mean that X and Y have the same distribution.
We use X � Y to denote stochastic dominance, i.e., X � Y iff for any t ∈ R, Pr[X ≥ t] ≥
Pr[Y ≥ t].

We use Pois(λ) to denote a Poisson distribution with parameter λ. We will need the
following two facts about Poisson distributions. The proof can be found in the full version.

I Lemma 17. Suppose {Xi}ni=1 is a set of independent random variables with Xi ∼ Pois(λi),
then

∑n
i=1Xi ∼ Pois (

∑n
i=1 λi) .

I Lemma 18. Pr [Pois(λ) ≥ 1.2λ] ≤ e−0.01λ and Pr [Pois(λ) ≤ 0.8λ] ≤ e−0.01λ.

2.3 Tensor Ranks
In this paper we are interested in the approximate tensor rank with respect to the `∞ norm.
For more on approximate tensor rank with respect to other norms and their applications,
see [46] and the references therein. Now we introduce some relevant definitions.

I Definition 19. We say a tensor T ∈ Rn1×n2×...×nk is simple if T = v1 ⊗ v2 ⊗ . . . ⊗ vk
where vi ∈ Rni .

I Definition 20. For a tensor T ∈ Rn1×n2×...×nk , its rank(T ) is defined to be the smallest
integer r such that T =

∑r
i=1Ar and Ai is simple for all i ∈ [r].

I Definition 21. For a tensor T ∈ Rn1×n2×...×nk , the approximate rank of T is defined as
follows: rankε(T ) = min{rank(S) | ‖T − S‖∞ ≤ ε}. Here ‖ · ‖∞ is the entry-wise `∞-norm
of a tensor.

2.4 Quantum Query Complexity
In this section we recall some previous results on quantum query complexity. Here we
emphasize the number of qubits used by the algorithms, which will be crucial when simulating
them using classical algorithms.

I Definition 22. In the Formula Evaluation problem, we are given a formula F with
{AND,OR,NOT} basis and O(1) fan-in on n variables x1, x2, . . . , xn. In each query, the
algorithm gets the value of xi, where i ∈ [n] is determined by the algorithm. The goal is to
evaluate the formula.

I Theorem 23 ([15]). The Formula Evaluation problem can be solved in O(n1/2+o(1))
queries using O(polylog(n)) qubits, with failure probability at most 1/3.

I Remark. There is an optimal O(n1/2) query algorithm for Formula Evaluation [42].
However, that query algorithm doesn’t fit in our applications here for two reasons: (1) the
algorithm needs O(n) qubits, which is too much for classical simulation; (2) the algorithm
is not computationally efficient and it takes too much time to compute the corresponding
unitary transformation.

I Definition 24. In the Element Distinctness problem, we are given n elements X =
(x1, x2, ..., xn) ∈ [m]n. In each query, the algorithm gets the value of xi, where i ∈ [n] is
determined by the algorithm. The goal is to decide whether there are two distinct indices
i 6= j such that xi = xj .

I Theorem 25 ([14]). The Element Distinctness problem can be solved in O(n2/3)
queries using O(n2/3 logm) qubits, with failure probability at most 1/3.
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2.5 Multiparty Quantum Communication Protocols
In this section, we give our definition of multiparty quantum communication protocols.

Let X1,X2, . . . ,Xk be finite sets and f : X1,X2, . . . ,Xk → {0, 1} be a function. In a
k-part quantum communication protocols, there are k players P1, P2, . . . , Pk, together with
a Hilbert space H = H1 ⊗H2 ⊗ . . .⊗Hk ⊗H. Here Hi serves as the inner working space
for player Pi, and H is the communication channel between all the players. Each player Pi
receives an input xi ∈ Xi and the goal is to determine f(x1, x2, . . . , xk).

Now we give the formal definition of a k-party quantum communication protocol.

I Definition 26. A k-part quantum communication protocol P = P(x1, x2, . . . , xk) is a
sequence of r unitary transforms P = (Up1

1 (xp1), Up2
2 (xp2), . . . , Uprr (xpr )), such that:

Upii (xpi) is a unitary transform acting on Hpi ⊗Hi where Hi is a subspace spanned by
some qubits of H12. That is, it is the action of pi-th player Ppi , who is in charge of the
i-th turn.
The sequence p1, p2, . . . , pr, and H1, H2, . . . ,Hr are fixed and do not depend on x1, . . . , xk.
In other words, Hi corresponds to the qubits in the channel H that player Ppi will modify
during its action in the i-th turn, and all players take actions in a fixed, predefined order.
The communication complexity of P is defined to be C(P) =

∑r
i=1 log(dim(Hi)). The

space complexity of Pi is defined to be Si(P) = log(dim(Hi ⊗H)).

For a protocol P = (Up1
1 (xp1), Up2

2 (xp2), . . . , Uprr (xpr )), we say P computes f with error
ε if we measure the first qubit in H on the state Uprr (xpr) · U

pr−1
r−1 (xpr−1) · . . . · Up2

2 (xp2) ·
Up1

1 (xp1) · |0〉, we get f(x1, x2, . . . , xk) with probability at least 1− ε, for all x1 ∈ X1, x2 ∈
X2, . . . , xk ∈ Xk.
I Remark. We remark that our definition here is more complicated than the usual definition
of quantum communication protocols in the literature (see, e.g., [34]), but nonetheless, it is
equivalent to them. We choose to formulate it in such a way because it is easier to describe
the classical simulation of quantum communication protocols for low approximate rank
decompositions, and the simulation of quantum query algorithms (see below).

2.5.1 Simulating Quantum Query Algorithm in Quantum
Communication Protocols

Quantum communication protocols can be built upon quantum query algorithms (see, e.g.,
[20]). Here we give an example to show how to simulate a quantum query algorithm for
Formula Evaluation to construct a quantum communication protocol for the communi-
cation problem corresponding to Problem 1, under our definition.

In the corresponding k-party communication problem, there are k players, and the i-th
player Pi is given a vector ui ∈ [r]d. There are d functions f1, f2, . . . , fd where each fi
is from [r]k to {0, 1}, and a Boolean formula F : {0, 1}d → {0, 1} of O(1) fan-in. Set
v(i) = fi(u1,i, u2,i, . . . , uk,i). Their goal is to compute F(v(1), v(2), . . . , v(d)).

Now we show how to construct a quantum communication protocol for the above problem.

I Example 27. Assume that the first player runs a quantum query algorithm for the
Formula Evaluation problem. For the simulation, we only need to implement the follow-
ing query gate Ov: |i〉 |b〉 → |i〉 |b⊕ v(i)〉, where i is the index of a variable written in binary
form and v(i) is the corresponding input bit to F .

12 i.e., Upi
i (xpi) does not alter qubits other than those in Hpi ⊗Hi.
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We first specify the channel, H is defined as H index ⊗Houtput ⊗H1 ⊗ · · · ⊗Hk. H index
and Houtput together simulate the query gate, and Hi is the place for player Pi to write her
number.

In the beginning, all qubits in H are |0〉. When the first player wants to apply Ov on
some qubits in H1, it first swaps the qubits containing i and b in H1 with H index and Houtput
in H.

Each player Pj in turn reads i in H index and writes the value of uj,i to qubits in Hj . Note
that each player can write the value of uj,i to qubits in Hj using a unitary transformation
since all qubits in Hj are |0〉 at the beginning, by assumption.

Now, given the value of i and u1,i, u2,i, . . . , uk,i, the first player maps |i〉 |b〉 to |i〉 |b⊕ v(i)〉
via a unitary transformation. Now the gate Ov is implemented, but we still have to clean
up the garbages in Hj ’s, and set them back to |0〉’s. This can be done by applying reverse
transforms of all applied unitary transformation, in the reverse order.

The communication complexity of this protocol is O(Q · k(log d+ log r)), where Q is the
query complexity of the quantum query algorithm. Also, using the algorithm in Theorem 23,
the communication complexity of this protocol is O(n1/2+o(1) · k(log d+ log r)).

3 Approximate Counting Algorithms from Quantum Communication
Protocols

Let X1,X2, . . . ,Xk be finite sets and f : X1,X2, . . . ,Xk → {0, 1} be a function. Let
Mf ∈ {0, 1}|X1|×|X2|×...×|Xk| denote the Boolean tensor whose (x1, x2, . . . , xk) entry is
f(x1, x2, . . . , xk). The following connection between 2-party quantum communication com-
plexity and approximate rank is first observed in [21]. This result can be generalized to the
k-party case to get the following theorem. Full details can be found in the full version of this
paper.

I Theorem 28. Let X1,X2, . . . ,Xk be finite sets and f : X1,X2, . . . ,Xk → {0, 1} be a
Boolean function. Suppose there exists a k-party efficient quantum communication protocol
P, such that P gives the correct answer with probability at least 1− ε on every input, then
rankε(Mf ) ≤ 2O(C(P)), or equivalently, there exist simple tensors A1, A2, . . . , A2O(C(P)) such
that∥∥∥∥∥∥Mf −

2O(C(P))∑
i=1

Ai

∥∥∥∥∥∥
∞

≤ ε.

In the full version of this paper, we further show how to use classical deterministic
algorithms to simulate quantum communication protocols. Notice that here the time
complexity depends on the space complexity of the quantum communication protocol to use.

I Corollary 29. Let X1,X2, . . . ,Xk be finite sets and f : X1,X2, . . . ,Xk → {0, 1} be a Boolean
function. Suppose there exists a k-party efficient quantum communication protocol P, such
that P gives the correct answer with probability at least 1 − ε on every input, and all the
unitary transformation used in the P can be constructed in polynomial time (with respect to
their sizes) by a deterministic classical algorithm. Then there exists k deterministic classical
algorithms AX1 ,AX2 , . . . ,AXk such that AXiruns in 2O(C(P)+Si(P)) time, receives xi ∈ Xi as
input and outputs a vector AXi(xi) ∈ R2O(C(P)) , and for any x1 ∈ X1, x2 ∈ X2, . . . , xk ∈ Xk,

−ε ≤ 〈AX1(x1),AX2(x2), . . . ,AXk(xk)〉 − f(x1, x2, . . . , xk) ≤ ε.
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Based on Corollary 29, for any Boolean function f : X1,X2, . . . ,Xk → {0, 1} with an
efficient efficient quantum communication protocol, there also exists an efficient approximate
counting algorithm for f .

I Theorem 30. Let X1,X2, . . . ,Xk be finite sets and f : X1,X2, . . . ,Xk → {0, 1} be a Boolean
function. Suppose there exists a k-party efficient quantum communication protocol P, such
that P gives the correct answer with probability at least 1 − ε on every input, and all the
unitary transformation used in the P can be constructed in polynomial time (with respect to
their sizes) by a deterministic classical algorithm. Then there exists a classical deterministic
algorithm C that receives X1 ⊆ X1, X2 ⊆ X2, . . . , Xk ⊆ Xk as input, and outputs a number E
such that∣∣∣∣∣∣

∑
x1∈X1,x2∈X2,...,xk∈Xk

f(x1, x2, . . . , xk)− E

∣∣∣∣∣∣ ≤ ε ·
k∏
i=1
|Xi|.

Furthermore, C runs in
∑k
i=1 |Xi| · 2C(P)+Si(P) time.

Proof. For all xi ∈ Xi we first use AXi in Corollary 29 to calculate AXi(xi) ∈ R2O(C(P)) , in∑k
i=1 |Xi| · 2C(P)+Si(P) time. Then we directly output〈 ∑

x1∈X1

AX1(x1),
∑
x2∈X2

AX2(x2), . . . ,
∑

xk∈Xk

AXk(xk)
〉
.

The correctness simply follows from the fact that for all (x1, x2, . . . , xk) ∈
∏
i Xi,

−ε ≤ 〈AX1(x1),AX2(x2), . . . ,AXk(xk)〉 − f(x1, x2, . . . , xk) ≤ ε. J

I Remark. The algorithm described above is actually a sketching algorithm. We may define
the sketch for Xi as ski(Xi) =

∑
xi∈Xi AXi(xi) ∈ R2O(C(P)) and the number E can be

computed from these ski’s. This sketching algorithm satisfies a nice additive property, i.e.,
the sketch of A tB (union as a multi-set) is simply ski(A) + ski(B).
Now we give approximate counting algorithms for concrete problems, using Theorem 30.

3.1 Counting the k-Tuples of Orthogonal Vectors
The goal of this section is to prove the following theorem.

Reminder of Theorem 4. For any integers k, d and any constant ε > 0, #k-OVn,d can be
approximated deterministically with additive error ε · nk in n · 2O(k

√
d) time. In particular, it

runs in n1+o(1) time k is a constant and d = o(log2 n).
We first consider quantum communication protocols for the following function f .

I Definition 31. Let X1 = X2 = . . . = Xk = {0, 1}d and

f(x1, x2, . . . , xk) =
{

1 if 〈x1, x2, . . . , xk〉 = 0
0 otherwise

.

The corresponding communication problem can be solved using the quantum communication
protocol in [1] with communication complexity O(k

√
d) and space complexity O(polylog(d)),

with constant failure probability. If we use the algorithm in Theorem 30, together with the
efficient quantum communication protocol mentioned above, we can then deterministically
count the number of k-tuples of orthogonal vectors, in time n ·2O(k·

√
d) time, with an additive

ε · nk error.
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3.2 Counting the Pairs of Orthogonal Sparse Vectors
The goal of this section is to prove the following theorem.

Reminder of Theorem 5. For integers n,m, d and any constant ε > 0, #Sparse-OVn,m,d
can be approximated deterministically with additive error ε · n2 in

n · 2O(d2/3 log(m))

time. In particular, when m = poly(d) and d = o

((
logn

log logn

)1.5
)
, it runs in n1+o(1) time.

Again we consider quantum communication protocols for the following function f .

I Definition 32. Let X = Y = {0, 1}m≤d and

f(x, y) =
{

1 if 〈x, y〉 = 0
0 otherwise

.

The corresponding communication problem can be solved with communication complexity
O(d2/3 logm), by simulating the quantum query algorithm in Theorem 25 for Element
Distinctness. Too see the connection, let S = {i | xi = 1} and T = {i | yi = 1}. We will
have f(x, y) = 1 if and only if all elements in S t T (union as a multi-set) are distinct. Now,
using the algorithm in Theorem 30, together with the efficient quantum communication
protocol mentioned above, we can deterministically count the number of orthogonal pairs in
S and T , in n · 2O(d2/3 log(m)) time, with an additive ε · nk error.

3.3 Counting Solutions to Formula ◦ SYM Circuits
The goal of this section is to solve the following problem.

Reminder of Problem 1. Given k sets of n vectors S1, S2, . . . , Sk ⊆ {0, . . . , r}d and d

functions f1, f2, . . . , fd where each fi is from {0, . . . , r}k to {0, 1}, and a Boolean formula
F : {0, 1}d → {0, 1} of O(1) fan-in. Count the number of k-tuples u1 ∈ S1, u2 ∈ S2, . . . , uk ∈
Sk such that

F(f1(u1,1, u2,1, . . . , uk,1), f2(u1,2, u2,2, . . . , uk,2), . . . , fd(u1,d, u2,d, . . . , uk,d)) = 1.

Reminder of Theorem 7. For any constant ε > 0, the above problem can be solved
deterministically in n · 2O(d1/2+o(1)·k(log d+log r)) time, within ε · nk additive error.

The corresponding k-party communication problem can be solved by a quantum commu-
nication protocol with communication complexity O(d1/2+o(1) ·k(log d+log r)), by simulating
the quantum query algorithm for Formula-Evaluation in Theorem 23. For details see Example
27. By our framework, this implies an approximate counting algorithm to the problem
mentioned above in time n · 2O(d1/2+o(1)·k(log d+log r)), with an additive ε · nk error.

Here we mention one application to the approximate counting algorithm above.

Reminder of Theorem 6. For any constant ε > 0, the number of solutions to a Formula ◦
SYM circuit of size m can be approximated deterministically within ε · 2n additive error in
2O(n1/2m1/4+o(1)

√
logn+logm) time. In particular, when m = n2−δ for some δ > 0, the running

time is 2o(n).
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Proof of Theorem 6. Consider a Formula ◦ SYM circuit C : {0, 1}n → {0, 1} with m sym-
metric gates X1, X2, . . . , Xm and a Boolean formula F of O(1) fan-in. Here we slightly abuse
of notation by regarding Xi as a function that maps the number of inputs bits with value one
to an output in {0, 1}. We can approximately count the number of solutions to C as follows.

We split the n inputs bits into s groups, each with n/s input bits. Then for each group,
we enumerate all the 2n/s possible assignments to the n/s input bits. We create a vector
in {0, . . . , n/s}m for each possible assignment, where the i-th entry is simply the number
of ones in the assignment which is an input bit to the i-th symmetric gate Xi. Now, the
number of solutions to the circuit C, is simply the same as Problem 1, by setting

fi(u1,i, u2,i, . . . , uk,i) = Xi(u1,i + u2,i + . . .+ uk,i).

The total time complexity would be 2n/s ·2O(m1/2+o(1)·s(logm+log(n/s))), with an additive ε ·2n
error. Setting s = n1/2

m1/4+o(1)
√

logn+logm
, the final time complexity would be

2O(n1/2m1/4+o(1)
√

logn+logm). J

4 Algorithms from Arthur-Merlin Communication Protocols

In this section, we prove our algorithmic applications of AMcc protocols. We first show faster
AMcc protocols for F imply faster F -Satisfying-Pair algorithms.

Reminder of Theorem 9. Let F : X × Y → {0, 1,⊥} be a partial function. Suppose there
is a computationally efficient AMcc protocol for F with communication complexity T and
error ε. Then for n such that 2T ≤ (

√
εn)0.1, there is an O

(
εn2 · polylog(n) + n · 2T

)
time

randomized algorithm for F -Satisfying-Pairn.

Proof. We first assume n < 1
10
√
ε
. After drawing a random challenge, for each element x ∈ X

and y ∈ Y we construct a Boolean vector AX (x) and AY(y) of length 2T , where each the i-th
entry indicates whether Alice (Bob) accepts when receiving the proof i from Merlin. Here
we regard i as a Boolean string of length T via a natural bijection between [2T ] and {0, 1}T .

According to the guarantee of an AMcc protocol, for each x ∈ X and y ∈ Y , when F (x, y) =
1, with probability at least 1− ε over the random challenge, we have 〈AX (x),AY(y)〉 > 0,
and when F (a, b) = 0 we have 〈AX (x),AY(y)〉 > 0 with probability at most ε over the
random challenge.

By a union bound on all pairs of elements in A and B, we have with probability at least
0.99, for all a ∈ A and b ∈ B, 〈AA(a),AB(b)〉 > 0 if and only if F (a, b) = 1. Consequently,
with probability at least 0.99,〈∑

a∈A
AA(a),

∑
b∈B

AB(b)
〉
> 0

if and only if there exist a ∈ A and b ∈ B such that F (a, b) = 1.
For general n = |A| = |B|, we first split A and B into O(

√
εn) groups, each with at most

1
10
√
ε
elements. I.e., we assume A =

⋃g
i=1Ai and B =

⋃g
i=1Bi such that g = O(

√
εn) and

|Ai|, |Bi| ≤ 1
10
√
ε
. For each i, j ∈ [g], we use the algorithm mentioned above to calculate two

vectors
∑
a∈Ai AA(a) and

∑
b∈Bj AB(b). We writeMA ∈ R2T×g to denote the matrix∑

a∈A1

AA(a),
∑
a∈A2

AA(a), · · · ,
∑
a∈Ag

AA(a)


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andMB ∈ R2T×g to denote the matrix∑
b∈B1

AB(b),
∑
b∈B2

AB(b), · · · ,
∑
b∈Bg

AB(b)

 .
Since 2T ≤ (

√
εn)0.1 ≤ O(g0.1), we can use the rectangular matrix multiplication algorithm in

Theorem 16 to calculateMT
AMB in O(g2 · polylog(g)) = O(εn2 polylog(n)) time. We repeat

this procedure for O(logn) times. For any i, j ∈ [g], by standard concentration bounds, with
probability at least 1− poly(n), there exist a ∈ Ai and b ∈ Bj such that F (a, b) = 1 if and
only if the majority of the O(logn) repetitions satisfies (MT

AMB)i,j > 0. Applying union
bound again over all i, j ∈ [g], we can now solve F -Satisfying-Pairn by checking whether there
exist i and j such that the majority of the O(logn) repetitions satisfies (MT

AMB)i,j > 0.
The overall algorithm runs in O(εn2 · polylog(n)) time and succeeds with high probability,
as stated. J

4.1 A New Algorithm for Approximate Max-IP
The first application of Theorem 9 is to use the Goldwasser-Sisper AM protocol [28] for
approximating set size to obtain a new algorithm for approximating Max-IP.

We first need the following adaption of [28], which has a better dependence on ε.

Reminder of Lemma 11. There is an AMcc protocol for Gap-Inner-Productd with error ε
and communication complexity log

(
d

≤O(log ε−1)
)
.

Proof. Recall that x, y ∈ {0, 1}d are the inputs hold by Alice and Bob respectively.
Let X = {i | xi = 1} and Y = {i | yi = 1}. The problem is equivalent to determine

whether |X ∩ Y | ≥ 2τ or |X ∩ Y | ≤ τ . Here we give an AMcc communication protocol with
error ε and communication complexity log

(
d

≤O(log ε−1)
)
.

In the communication protocol, Alice and Bob first generate i.i.d. random variables
pi ∼ Pois(k/τ) for each i ∈ [d], for a parameter k = Θ(log(1/ε)) to be determined later. When
|X ∩Y | ≥ 2τ , Merlin finds an arbitrary set S ⊆ X ∩Y of size O(k) such that

∑
i∈S pi ≥ 1.6k,

and then sends it to Alice and Bob. Upon receiving S, Alice (Bob) decides to accept or reject
by checking whether S ⊆ X (S ⊆ Y ) and

∑
i∈S pi ≥ 1.6k. The communication complexity

of this protocol is upper bounded by log
(

d
≤O(log ε−1)

)
since |S| ≤ 1.6k = O(log(1/ε)).

Now we prove the correctness by considering the following two cases.
Case 1: |X ∩ Y | ≥ 2τ . For this case, we have

∑
i∈X∩Y pi ∼ Pois(|X∩Y |·k/τ) � Pois(2k).

Thus by Lemma 18, with probability at least 1 − eΩ(k),
∑
i∈X∩Y pi ≥ 1.6k. Since for

each pi > 0 we must have pi ≥ 1, with probability at least 1− eΩ(k), there exists a set
S ⊆ X ∩ Y of size O(k) such that

∑
i∈S pi ≥ 1.6k.

Case 2: |X ∩ Y | ≤ τ . For this case, we have
∑
i∈X∩Y pi ∼ Pois(|X ∩Y | · k/τ) � Pois(k).

Thus by Lemma 18, with probability at least 1− eΩ(k),
∑
i∈X∩Y pi ≤ 1.2k. When both

Alice and Bob accept, it must be the case that S ⊆ X ∩ Y and
∑
i∈S pi ≥ 1.6k. However

when |X ∩ Y | ≤ τ , with probability at least 1− eΩ(k),
∑
i∈X∩Y pi ≤ 1.2k. Thus there is

no S such that both Alice and Bob accept, with probability at least 1− e−Ω(k).
The lemma follows by setting k to be a large enough multiple of log(1/ε). J

By Theorem 9 and the above lemma, Corollary 12 follows from a binary search over τ .

Reminder of Corollary 12. There is an algorithm for computing a 2-approximation to
Max-IPn,c logn, which runs in n2−1/O(log c) time.
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4.2 Consequence of Fast AMcc Protocols for LCS and Edit-Distance
Next we discuss the consequences of LCS and Edit-Distance having efficient AMcc protocols.
We first introduce some classical notations about the communication complexity classes
(see [17, 30]). We say a function family F = {Fd : {0, 1}d×{0, 1}d → {0, 1,⊥}}d∈N is in AMcc

if AMcc(Fd) = polylog(d) (we use AMcc(Fd) to denote the AMcc communication complexity
for Fd with error 1/3).

We also say F is AMcc
eff if for all d ∈ N, Fd admits a computationally efficient AMcc

protocol with error 1/3 and complexity polylog(d).
Now we prove the consequence of a function family F ∈ AMcc

eff .

I Corollary 33 (Consequence of F ∈ AMcc
eff). Let F = {Fd : {0, 1}d×{0, 1}d → {0, 1,⊥}}d∈N

be a partial function family. If F ∈ AMcc
eff , then there is an n2/2log1−δ n time algorithm for

Fpolylog(n)-Satisfying-Pairn, for any constant δ > 0.

Proof. By standard repetition arguments, there exists an AMcc communication protocol
with communication complexity polylog(d) log(1/ε) and failure probability 1− ε. In order to
invoke Theorem 9 we need to make sure

2polylog(d) log(1/ε) = 2polyloglog(n) log(1/ε) < n0.1,

and thus we can set ε = 2− log1−δ/2 n. For this choice of ε we will then get an n2/2log1−δ/2 n ·
polylog(n) ≤ n2/2log1−δ n time algorithm for Fpolylog(n)-Satisfying-Pairn, which completes the
proof. J

Recall that in LCScc
d (Edit-Distcc

d ), Alice and Bob hold strings x, y ∈ {0, 1}d respec-
tively, and are given an integer τ . Their goal is to decide whether LCS(x, y) is at least τ
(Edit-Distance(x, y) is at least τ). Now we are ready to prove Theorem 13.

Reminder of Theorem 13. If LCScc
d admits computationally efficient AMcc protocols with

complexity polylog(d), then Formula-SAT of polynomial-size formulas admits an 2n−n1−δ

time algorithm for any constant δ > 0. The same holds for Edit-Distcc in place of LCScc.
We will only discuss LCScc here, the proof for Edit-Distcc follows exactly the same. We

first introduce the reduction from [3] (see also [2]).

I Theorem 34 (Implicit in [3]). For a given formula F with n input variables and size s, let
a ∈ {0, 1}n/2 be an assignment to first n/2 variables in F and b ∈ {0, 1}n/2 be an assignment
to last n/2 variables in F . There exists an algorithm A which outputs G(a) ∈ {0, 1}poly(s)

and G(b) ∈ {0, 1}poly(s) such that for a fixed integer Y (Y depends on F),
LCS(G(a), G(b)) = Y if a� b is a satisfying assignment to F ;
LCS(G(a), G(b)) ≤ Y − 1 if a� b is not a satisfying assignment to F .

Proof of Theorem 13. For a given formula F of size s = poly(n), we first enumerate all
2n/2 possible assignments to first n/2 variables in F and all possible assignments to last
n/2 variables in F . For each a ∈ {0, 1}n/2 corresponding to an assignment to first n/2
variables in F and b ∈ {0, 1}n/2 corresponding to an assignment to last n/2 variables in F ,
we calculate G(a) and G(b) using Theorem 34. Note that all G(a)’s and G(b)’s have length
poly(s) = poly(n).

Now suppose LCScc ∈ AMcc
eff for τ = Y . Applying Corollary 33 with all possible G(a)’s

and G(b)’s, we can solve Formula-SAT in 2n−n1−δ time for any constant δ > 0. J
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Open Problems and Future Directions

Here we list a few interesting open problems stemming from this work.
In this work, we applied BQPcc and AMcc protocols for the algorithmic purpose. Can we
find algorithmic applications of other communication protocols?
Or less ambitiously, can we find more interesting algorithmic applications with other
known BQPcc or AMcc protocols? (this could even be a motivation to find new BQPcc or
AMcc protocols!)
Our additive approximation algorithm for #OV runs in near-linear time when d =
o(log2 n). Is it possible to design a near-linear time algorithm for d = no(1) dimensions?
Note that by a simple Chernoff bound, there is a deterministic n1+o(1) time algorithm
with n1+o(1) advice for additive approximations to #OV. So there is a hope to construct
such an algorithm.
Our results show that under the hypothesis of [2], LCScc and Edit-Distcc do not admit
computationally efficient AMcc or PHcc protocols. Can one prove that unconditionally?
Is it possible to connect these algorithms from AMcc or PHcc protocols to R. Williams’
algorithmic approach to circuit lower bounds [49, 51, 38]? In particular, can one show
unconditionally that, there is a function f in NEXP (or even NTIME[2polylog(n)]), which
doesn’t admit polylog(n) complexity AMcc or PHcc protocols?
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