
Probabilistic Checking Against Non-Signaling
Strategies from Linearity Testing

Alessandro Chiesa
UC Berkeley, Berkeley, CA, USA
alexch@berkeley.edu

Peter Manohar
UC Berkeley, Berkeley, CA, USA
manohar@berkeley.edu

Igor Shinkar
Simon Fraser University, Vancouver, Canada
igor.shinkar@sfu.ca

Abstract
Non-signaling strategies are a generalization of quantum strategies that have been studied in phys-
ics over the past three decades. Recently, they have found applications in theoretical computer
science, including to proving inapproximability results for linear programming and to construct-
ing protocols for delegating computation. A central tool for these applications is probabilistically
checkable proofs (PCPs) that are sound against non-signaling strategies.

In this paper we prove that the exponential-length constant-query PCP construction due to
Arora et al. (JACM 1998) is sound against non-signaling strategies.

Our result offers a new length-vs-query tradeoff when compared to the non-signaling PCP of
Kalai, Raz, and Rothblum (STOC 2013 and 2014) and, moreover, may serve as an intermediate
step to a proof of a non-signaling analogue of the PCP Theorem.

2012 ACM Subject Classification Theory of computation → Computational complexity and
cryptography

Keywords and phrases probabilistically checkable proofs, linearity testing, non-signaling strate-
gies

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.25

Related Version Full version is available on the Electronic Colloquium on Computational Com-
plexity as TR18-123, https://eccc.weizmann.ac.il/report/2018/123/.

Funding This work was supported by the UC Berkeley Center for Long-Term Cybersecurity.

Acknowledgements We are grateful to Thomas Vidick for suggestions that have improved the
presentation in this paper.

1 Introduction

Probabilistically Checkable Proofs (PCPs) [3, 11, 2, 1] are proofs whose validity can be
checked by a probabilistic verifier that accesses only a few locations of the proof. PCPs have
numerous applications across the theory of computing, including to hardness of approximation
[11] and delegation of computation [19, 21].

© Alessandro Chiesa, Peter Manohar, and Igor Shinkar;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexch@berkeley.edu
mailto:manohar@berkeley.edu
mailto:igor.shinkar@sfu.ca
https://doi.org/10.4230/LIPIcs.ITCS.2019.25
https://eccc.weizmann.ac.il/report/2018/123/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Probabilistic Checking Against Non-Signaling Strategies from Linearity Testing

A seminal result, known as the PCP Theorem [2, 1], states that every language in
NTIME(T) can be probabilistically checked by a verifier that uses O(log T) random bits and
makes O(1) queries to a proof of length poly(T).1

In this paper we study PCPs that are sound against non-signaling strategies (nsPCPs).
These have recently found applications that appear out of the reach of (standard) PCPs,
including 1-round delegation of computation from falsifiable assumptions [15, 17] and hardness
of approximation for linear programming [16]. The efficiency measures achieved in known
nsPCPs appear suboptimal, which affects the quality of the corresponding applications. We
thus ask whether a non-signaling analogue of the PCP Theorem holds.

Below we explain the aforementioned notions, and then present our results in this direction.

Non-signaling strategies. Non-signaling strategies are a class of “non-local” correlations
that strictly generalize quantum strategies, and capture the minimal condition that spatially-
isolated parties cannot communicate instantaneously. They have been studied in physics for
over three decades [24, 18, 23] in order to better understand quantum entanglement.

There are two definitions, corresponding to whether the strategy is meant to represent
a function or isolated parties; the former is the relevant one for nsPCPs [15, 17].2 Given
a locality parameter k ∈ N, a k-non-signaling function F extends the notion of a function
f : D → {0, 1} as follows: it is a collection {FS}S⊆D,|S|≤k where each FS is a distribution
over {0, 1}S and, for every two subsets S1 and S2 each of size at most k, the restrictions
of FS1 and FS2 to S1 ∩ S2 are equal as distributions.3 Note that if k = |D| then F is a
distribution over functions f : D → {0, 1}.

Note that k-non-signaling functions are solutions to the linear program arising from the
k-relaxation in the Sherali–Adams hierarchy [25]. The variables are of the form XS,~b (for all
S ⊆ D of size at most k and ~b ∈ {0, 1}S) and express the probability of ~b in the distribution
FS ; consistency across subsets S and T is expressed using the natural linear constraints.4

Non-signaling PCPs. Recall that a classical PCP verifier is given oracle access to a proof
represented as a function f : D → {0, 1}. The verifier uses random bits, makes a few queries
to f , and then accepts or rejects. Completeness requires that if the statement being checked
is true then there is a function f that makes the verifier always accept. Soundness requires
that if the statement being checked is false then every function f makes the verifier reject
with high probability.

In the non-signaling setting, “proofs” are non-signaling functions rather than (classical)
functions. Soundness is correspondingly stronger: given a locality parameter k ∈ N, soundness
requires that every k-non-signaling function F makes the nsPCP verifier reject with high
probability.

1 In particular, for every language in NEXP = ∪c∈NNTIME(2n
c

), the verifier uses poly(n) random bits
and makes O(1) queries to a proof of length 2poly(n).

2 The other definition underlies the notion of multi-prover interactive proofs that are sound against
non-signaling strategies (nsMIPs). Any nsPCP gives rise to an nsMIP with similar parameters. See
[15, 17] for details.

3 A common relaxation of this condition only requires that the marginals FS1 |S1∩S2 and FS2 |S1∩S2 are
statistically close, rather than equal; a further relaxation only requires these to be computationally
close. While we only consider the standard definition (the marginals must equal) we note that [9] shows
that this is almost without loss of generality, as every statistically or computationally non-signaling
strategy is close to an (exact) non-signaling strategy.

4 In fact it suffices to only have variables of the form XS,1S since all other probabilities can be computed
from these.

A. Chiesa, P. Manohar, and I. Shinkar 25:3

Efficiency measures of a nsPCP include familiar notions such as proof length (defined as
|D|) and the verifier’s randomness and query complexity. In addition, the locality parameter k
controls how hard it is to attain soundness: the smaller k is, the larger the set of non-signaling
functions that the verifier could face. (Note that k-non-signaling implies (k−1)-non-signaling.)

There is a qualitative difference between the complexity classes captured by PCPs and
by nsPCPs; namely, while PCPs capture non-deterministic time languages, nsPCPs capture
deterministic ones. Indeed, the aforementioned PCP Theorem implies that it is NEXP-hard
to approximate the maximum acceptance probability of a PCP verifier (that uses polynomial
randomness). In contrast, computing the maximum acceptance probability of an nsPCP
verifier that uses r random bits reduces to a linear program with 2poly(rk) variables and
constraints, a problem solvable in EXP = ∪c∈NDTIME(2nc).

If k = 2, the linear program is solvable in PSPACE [13], which is a tight upper bound [14].
For k > 2 little is known, except for a seminal result of Kalai, Raz, and Rothblum [15, 17],
which shows that for k = poly(n) it is EXP-hard to approximate a nsPCP verifier’s max-
imum acceptance probability. In more detail, every language in DTIME(T) has a verifier that
uses poly(log T) random bits and makes poly(log T) queries to a proof of length poly(T); sound-
ness holds against poly(log T)-non-signaling functions; the verifier runs in time n · poly(log T)
and space poly(log T).5

The nsPCP Conjecture. The nsPCP construction behind the above result is a whitebox
modification of early PCP constructions [4, 3], and achieves efficiency similar to those.
However, modern “PCP technology” goes well beyond these early constructions, via tools
such as proof composition [2] and proofs of proximity [10, 6], and enables better efficiency,
including the PCP Theorem. Yet, current “nsPCP technology” is limited to the above results,
and the question of whether a non-signaling analogue of the PCP Theorem holds remains
open.

I Question 1. Is it true that every language in DTIME(T) has an nsPCP verifier that
uses O(log T) random bits, makes O(1) queries, and is sound against O(1)-non-signaling
functions?
(As above, we also require that the verifier runs in time n · poly(log T) and space poly(log T).)

An affirmative answer to the above question would, e.g., improve the hardness result
for linear programming in [16], by yielding a reduction that outputs a linear program of
polynomial, rather than a quasipolynomial, size. While we do not know if an affirmative
answer exists (and we cannot prove that it does not exist), it is clear that the (very few)
tools that we have to construct and analyze nsPCPs are far from this goal. In this paper we
make headway towards this goal.

1.1 Towards a nsPCP Theorem
In [1] a key step towards the PCP Theorem is to prove a weaker result in which the proof has
exponential, rather than polynomial, size (and so the randomness complexity of the verifier is
polynomial rather than logarithmic). Namely, one proves that every language in NTIME(T)
has a PCP verifier that uses poly(T) random bits and makes O(1) queries to a proof of length
2poly(T).

5 Achieving time and space complexities that are o(T) is important for applications. This is not surprising
as every language in DTIME(T) has a trivial nsPCP verifier that runs in time T : the verifier that simply
decides the language, without asking any queries. This is unlike the case of PCPs for NTIME(T), where
time complexity is less critical.

ITCS 2019

25:4 Probabilistic Checking Against Non-Signaling Strategies from Linearity Testing

In this paper we ask whether a non-signaling analogue of this result holds for the class
DTIME(T).

I Question 2. Is it true that every language in DTIME(T) has an nsPCP verifier that uses
poly(T) random bits, makes O(1) queries, and is sound against O(1)-non-signaling functions?

We propose this question as a relaxation that, not only is interesting in its own right, but is
likely to shed light on Question 1. However, one must be careful with the precise formulation
of Question 2. If the verifier can use poly(T) random bits then it can simply decide the
language by running in time T , without making any queries. To recover a nontrivial question,
we require that in order to decide whether an instance x is in a language L ∈ DTIME(T)
the nsPCP verifier first generates queries via a poly(T)-time sampler that is input oblivious
(knows the length of x but not x itself), and then rules according to a o(T)-time decision
predicate that knows x. We stress that all PCP/nsPCP verifiers discussed in this paper are
input oblivious.

In this paper we study Question 2 by analyzing a natural candidate construction, and
ask:

Is the exponential-length O(1)-query PCP of [1] sound against O(1)-non-signaling functions?

Hereafter, we consider the complexity class DSIZE(S) (languages decidable by uniform
circuits of size S(n)) instead of the class DTIME(T) (languages decidable by machines in time
T (n)) because our results, like their classical counterparts, are most easily stated in terms of
uniform circuits. This change is only for simplicity, as DTIME(T) ⊆ DSIZE(poly(T)).

1.2 Main theorem
In this paper we prove that the exponential-length constant-query PCP construction of [1]
(without modifications) is sound against non-signaling functions. We obtain the following
theorem.

I Theorem 3 (main theorem). Every language L ∈ DSIZE(S) has an input-oblivious nsPCP
verifier that uses O(S2) random bits, makes 11 queries, and is sound against O(log2 S)-non-
signaling functions. The query sampler runs in time O(S2), and the decision predicate runs
in time O(n).

The theorem is close to answering Question 2, which asks for soundness against O(1)-non-
signaling functions. (See Table 1 for a comparison with the classical result on nondeterministic
languages.) At the same time, some may consider Ito’s algorithm [13] as evidence that
soundness against O(1)-non-signaling functions is too much to hope for. Understanding this
gap needs further research.

Our result is incomparable to the nsPCP of [15, 17], where the nsPCP verifier uses
poly(logS) random bits to make poly(logS) queries. The fact that we prove soundness
only against O(log2 S)-non-signaling functions (rather than O(1)-non-signaling functions)
is somewhat undesirable, as this implies that the corresponding nsMIP requires O(log2 S)
provers. That said, the nsMIP of [15, 17] requires many more provers: poly(logS) with the
degree in the polynomial much larger than 2. Another feature of our result is that we have
“room” to achieve smaller soundness error without using additional provers; for example, by
asking more queries to the O(log2 S) provers, we can achieve a sub-constant soundness error
of 2−O(logS).

Finally, our result is the first to demonstrate that a classical PCP construction is secure
against non-signaling functions, without any modifications. This should be compared to the
construction considered in [15, 17] that, while modeled after the PCP in [4, 3], includes
several notable modifications that are needed in the soundness proof.

A. Chiesa, P. Manohar, and I. Shinkar 25:5

Table 1 The (linear) ALMSS verifier in different PCP settings.

complexity type of soundness proof
construction reference class PCP error length randomness queries locality

ALMSS verifier [1] NSIZE(S) PCP 1− 1/36
2O(S2) O(S2) 11

n/a

+ linearity test Theorem 3 DSIZE(S) ns PCP 1− 1/107 O(log2 S)

ALMSS verifier
[1] NSIZE(S) LPCP 3/4

O(S2) O(S) 4
n/a

Theorem 4 DSIZE(S) ns LPCP 39/40 O(logS)

1.3 Main lemmas
We outline the ideas behind our theorem in Section 2. Concretely, we highlight several
statements, which we deem of independent interest, that we prove on the way to the theorem.

Recall that the exponential-length constant-query PCP in [1] is obtained in two steps.
First, construct a constant-query verifier where soundness holds as long as the proof string
is a linear function; this is known as a linear PCP. Second, use a linearity test [8] and
self-correction to compile this linear PCP into a (standard) PCP, where soundness holds
against arbitrary proofs.

Our approach follows the same two steps, but adapted to the non-signaling setting. This
also departs from the approach in [17], which does not make use of any property testing
results.

Note, however, that it is a priori not clear what is the non-signaling analogue of a linear
function. A natural attempt would be to say that a non-signaling function F is linear iff it
passes the BLR linearity test with probability 1 (where the probability is over the test and
F). But this attempt is awkward, because the definition depends on a local test, and avoids
discussing “global” structure.

A recent work [9] tells us that the right definition is to say that F is linear iff it corresponds
to a quasi-distribution over linear functions. A quasi-distribution is a probability distribution
where the weights can be any real number and are not restricted to be in [0, 1]. Quasi-
distributions over functions arise in this context because they are an equivalent description
of non-signaling functions.

In light of the above, the notion of a non-signaling linear PCP (nsLPCP) is immediate:
the definition requires soundness to hold against all linear non-signaling functions.

The first step in our proof is showing that the linear PCP verifier of [1] (the “ALMSS
verifier”), when used for deterministic computations, is sound against linear non-signaling
functions.

I Theorem 4. The (input oblivious) ALMSS verifier, for a given language L ∈ DSIZE(S),
uses O(S) random bits, makes 4 queries, and is sound against linear O(logS)-non-signaling
functions.

See Table 1 for a comparison with the classical result showing soundness against linear
functions.

In order to “lift” Theorem 4 to Theorem 3, we need a suitable linearity test.
The linearity test of [8] was recently analyzed in the non-signaling setting by [9], who

proved that any k-non-signaling function F that passes the linearity test with probability
1 − ε can be self-corrected to a bk/2c-non-signaling function F̂ that is 2O(k)ε-close to a
linear bk/2c-non-signaling function L. (Self-correction and closeness have precise meanings,
discussed later.) However, we cannot directly use [9]’s result, because in our theorem the
locality parameter k is required to be super-constant (k = O(logS) in Theorem 4), and thus

ITCS 2019

25:6 Probabilistic Checking Against Non-Signaling Strategies from Linearity Testing

the bound on the distance between F̂ and L is too large, even when considering only query
sets of small size. Specifically, we need the distance to be a sufficiently small constant on
query sets of size 4 (the number of queries in Theorem 4).

We solve this problem by extending the result in [9] in a black-box way and proving that
the distance between F̂ and L on a query set Q is only O(|Q|

√
ε), provided that the error ε

and L’s locality are sufficiently small. Crucially, if |Q| is constant, so is the distance between
F̂ and L. The proof of this statement involves analyzing the repeated linearity test, whose
behavior in the non-signaling setting is quite subtle when compared to the classical setting
(see Section 2.6).

I Theorem 5. Let k, k̄N and ε ∈ (0, 1/400] be such that k = Ω((k̄ + log 1
ε) · k̄). If a k-non-

signaling function F : {0, 1}n → {0, 1} passes the linearity test with probability at least 1− ε
then there exists a linear k̄-non-signaling function L : {0, 1}n → {0, 1} such that for all query
sets Q ⊆ {0, 1}n with size |Q| ≤ k̄ and for all events E ⊆ {0, 1}Q it holds that∣∣∣Pr[F̂(Q) ∈ E]− Pr[L(Q) ∈ E]

∣∣∣ ≤ O(|Q|
√
ε) .

The above result on linearity testing enables us to transform our nsLPCP, and more
generally any nsLPCP, into a corresponding nsPCP with minimal changes in parameters
(the transformation is exactly the classical compiler). This is the last key statement in the
proof of our main theorem.

I Lemma 6. For every ε ∈ [0, 1], if a language L has an nsLPCP where the verifier uses r
random bits, makes q queries, and has soundness error 1− ε against linear k-non-signaling
functions L : {0, 1}` → {0, 1}, then L has an nsPCP where the verifier uses r+O(q`) random
bits, makes O(q) queries, and has soundness error 1−Oq(ε2) against Oε(k2)-non-signaling
functions F : {0, 1}` → {0, 1}. (Furthermore, if the former is input oblivious, so is the latter.)

1.4 Enriching the toolkit for non-signaling PCPs
Progress in our understanding of PCPs has typically moved hand in hand with progress in
our understanding of low-degree testing. In particular, many PCP constructions follow this
blueprint:
(1) a low-degree test that, via only a few queries, ensures that a given proof conforms to a

specified algebraic encoding;
(2) a probabilistic test that, assuming the proof is (essentially) given in this encoding, ensures

that the statement being checked is true with high probability.

In contrast, while the nsPCP in [17] is reminiscent of this blueprint, its analysis does
not follow it, despite the fact that the construction is modeled after the PCP in [4, 3], for
which the two-step analysis is possible (in the classical setting). The lack of such general
paradigms means that we lack general design principles to construct better nsPCPs.

This state of affairs raises the intriguing question of whether a theory of low-degree testing
(and, more generally, property testing) is feasible in the non-signaling setting and, moreover,
whether one can build on it to construct nsPCPs in order to make further progress towards
Question 1.

An additional contribution of our work is to enrich the current “non-signaling toolkit”, by
demonstrating an example where the aforementioned blueprint is both possible and useful.

Namely, building on the work of [9] on linearity testing, our results provide a modular
paradigm that not only simplifies the overall analysis, thereby enabling us to assert that the
construction of [1] with no modifications is sound against non-signaling strategies, but also
(as discussed later) clarifies the technical barriers that separate us from answering Question 2.
All this suggests that our techniques will be helpful for constructing more efficient nsPCPs.

A. Chiesa, P. Manohar, and I. Shinkar 25:7

1.5 Concurrent work

In a concurrent work, Kiyoshima [20] studies the soundness of ALMSS-type PCPs against
non-signaling strategies. Kiyoshima proves that, for a sufficiently large security parameter
t (at least logarithmic in the circuit size), the t-repetition of a O(t)-query modification of
the ALMSS-verifier has soundness error negl(t) against O(t2)-non-signaling functions. In
comparison, we prove that the unmodified 11-query ALMSS PCP has soundness error O(1)
against O(log2 S)-non-signaling strategies (and also that a modification of its t-repetition has
soundness error exp(−t) for every t = Ω(logS)). While both our analysis and Kiyoshima’s
analysis avoid the use of an augmented circuit (necessarily so as it would have had exponential
size), our techniques differ. Kiyoshima conducts a direct analysis of the PCP verifier, while
we adopt a modular approach in which we first prove soundness against linear non-signaling
strategies (a simpler task), and then, building on a recent analysis of the linearity test [9],
we deduce soundness against all non-signaling strategies. We consider the modular and
simple analysis in our work to be of independent interest. Kiyoshima additionally proves
that soundness holds against computational non-signaling strategies, a relaxation where the
marginal distributions on intersections are only required to be computationally close. Our
results directly extend to computational non-signaling strategies as every computational
non-signaling strategy is close to an exact non-signaling strategy (as proved in [9]).

In another concurrent work, Holmgren and Rothblum [12] study the problem of construct-
ing PCPs/MIPs in which the prover is very efficient in time and space [7], in the non-signaling
setting. While they consider a construction that is more closely related to the PCP in [4, 3]
(honest proofs are encoded via low-degree polynomials rather than linear functions), their
soundness analysis also has the feature that it avoids the use of an augmented circuit.

1.6 Open problems

The question of whether the exponential-length constant-query PCP of [1] is sound against
O(1)-non-signaling functions remains open. A concrete approach to affirmatively answer
this question is to prove that the linear PCP verifier of [1] is sound against k-non-signaling
functions for k = O(1), rather than k = O(logS) as in Theorem 4. (Our generic compiler
from Theorem 6 would then take care of the rest.) Another intriguing possibility is that an
affirmative answer to Question 2 could come from a different exponential-size constant-query
PCP. However, the result due to [13] shows that the class of nsMIPs with 2 provers equals
PSPACE, which possibly suggests that soundness against O(1)-non-signaling functions is too
much to hope for.

Moreover, while our results can be interpreted as progress towards a non-signaling
analogue of the PCP Theorem (Question 1), it remains unclear whether such an analogue
holds, and more investigations in nsPCPs are needed. We believe that our work and our new
techniques can inform such investigations.

2 Techniques

We outline the techniques used to prove our results. First, in Section 2.1, we explain the
transformation from a nsLPCP to a corresponding nsPCP. Next, in Sections 2.2 to 2.5 we
discuss the nsLPCP on which we apply this transformation, namely, the ALMSS verifier
[1]. Finally, in Section 2.6, we discuss linearity testing with low error, which underlies the
transformation.

ITCS 2019

25:8 Probabilistic Checking Against Non-Signaling Strategies from Linearity Testing

2.1 From nsLPCP to nsPCP
We discuss the transformation from nsLPCP to nsPCP (Theorem 6). We first recall the
classical transformation from LPCP to PCP, and then explain how to achieve its non-signaling
analogue.

The classical case. The classical transformation from LPCP to PCP relies on the following
tools.

Testing linearity. Given a boolean function f : {0, 1}` → {0, 1}, the linearity test draws
random x, y ∈ {0, 1}` and checks that f(x) + f(y) = f(x+ y) [8]. If the test passes with
probability 1− ε, then f is ε-close to a linear function f∗ : {0, 1}` → {0, 1} [8, 5].
Self-correction. Given f that is ε-close to a linear function f∗, one can create a probabilistic
oracle O that, given any x ∈ {0, 1}`, returns f∗(x) with probability 1− 2ε. Namely, O
samples a random z ∈ {0, 1}`, queries f on z+x and z, and answers with f(z+x)− f(z).

The above tools imply a transformation from LPCP to PCP: given access to an arbitrary
function f : {0, 1}` → {0, 1}, the PCP verifier runs the linearity test and then runs the LPCP
verifier by self-correcting each of its queries. If the LPCP verifier makes q queries and has
soundness error γ, then the resulting PCP verifier makes 3 + 2q queries and has soundness
error max{1− ε, γ+ 2qε}, where ε is (a bound on) the distance of f to linear functions. This
soundness error is bounded by 1− 1−γ

2q+1 (the maximum is when the two terms equal), which
is bounded away from 1.

If desired, the soundness error can be made arbitrarily close to γ by repeating the linearity
test. Given a parameter t, the repeated linearity test samples xi, yi ∈ {0, 1}` for each i ∈ [t]
and checks that f(xi) + f(yi) = f(xi + yi) for all i ∈ [t]. Now, the PCP verifier makes 3t+ 2q
queries and has soundness error max{(1− ε)t, γ + 2qε}, which for suitable ε and t = Oγ,ε(q)
is arbitrarily close to γ.

The non-signaling case. We follow the structure of the classical transformation. However,
the non-signaling case not only calls for a different analysis but also raises a problem that we
must solve.

The linearity test in the non-signaling setting has the following guarantee [9]: if F is a
k-non-signaling function such that Prx,y,F [F(x) + F(y) = F(x+ y)] ≥ 1− ε then F can be
self-corrected (in the natural way) to a (k/2)-non-signaling function F̂ that is 2O(k)ε-close to
a linear non-signaling function L. Note that self-correction is already part of the conclusion.

The above result appears sufficient for compiling a nsLPCP verifier into a corresponding
nsPCP verifier. Namely, given a k-non-signaling function F : {0, 1}` → {0, 1}, the nsPCP
verifier checks that F(x) + F(y) = F(x+ y) for random x, y ∈ {0, 1}` and also checks that
the nsLPCP verifier accepts F̂ . Analogously to before, if the nsLPCP verifier makes q queries
and has soundness error γ against linear (k−3

2)-non-signaling functions, then the resulting
PCP verifier makes 3 + 2q queries and has soundness error max{1− ε, γ + 2O(k)ε} against
arbitrary k-non-signaling functions.

However, our analysis of the ALMSS verifier (the nsLPCP that we use) will require
locality k = Ω(logN), which means that the additive term 2O(k)ε grows with N . This
precludes achieving a constant soundness error with constant query complexity.

The foregoing motivates the problem of testing linearity of non-signaling functions with
low error : how do we ensure that F̂ is sufficiently close to a linear non-signaling function L?
We stress that while in the classical case improving the “quality” of the self-correction has a
straightforward solution (repeat the linearity test, and do self-correction), in the non-signaling
case this problem is quite involved. Moreover, we do not wish to modify in any way the
classical compiler, and thus relying on additional queries (even if only a constant number
depending on q and ε) is not an option.

A. Chiesa, P. Manohar, and I. Shinkar 25:9

We discuss our solution to this problem later on in Section 2.6, thereby providing the
missing ingredient of our compiler from nsLPCP to nsPCP. In the meantime, in Sections 2.2
to 2.5, we discuss how we prove that the ALMSS verifier is secure against linear non-signaling
functions.

2.2 The linear ALMSS verifier against linear non-signaling functions

Our goal is to establish that the linear PCP verifier of [1] (the “ALMSS verifier”) is sound
against linear non-signaling functions, and thus prove that every language L ∈ DSIZE(S)
has a constant-query nsLPCP verifier that is sound against linear O(logS)-non-signaling
functions. Note that we invoke the ALMSS verifier on deterministic (DSIZE) computations,
rather than on nondeterministic (NSIZE) computations as in the classical case. We now
recall the ALMSS verifier.

Let L ∈ DSIZE(S) be a language, and let {Cn}nN be a uniform boolean circuit family
of size N := S(n) that decides L (for all x ∈ {0, 1}n, x ∈ L iff Cn(x) = 1). Hereafter we
omit the subscript in Cn as it is clear from context. Given an input x, one can express the
condition “C(x) = 1” as a system of simple equations over C’s wires W ; the variables are
w = (w1, . . . , wN), one per wire. We use the convention that the input wires are w1, . . . , wn
and the output wire is wN . To ensure input consistency we need that wj = xj for every
j ∈ {1, . . . , n}; to ensure correct gate computations we need that, for every j ∈ {n+1, . . . , N},
wj is the correct combination of the variables used to compute it (e.g., if wj is the output of
an AND gate with inputs wj1 and wj2 then the equation is wj = wj1 · wj2); to ensure that
the output is 1 we need that wN = 1. This can be summarized as a system of M := N + 1
equations {Pj(w) = cj}j∈[M], where P1, . . . , PM are quadratic polynomials (each involving
at most three variables in w) and c1, . . . , cM are boolean constants.

The ALMSS verifier is given below. We overload notation and use Pj to also denote
the upper triangular matrix in {0, 1}N2 such that Pj(w) = 〈Pj ,w⊗w〉; that is, if Pj(w) =∑N
i=1 aiwi +

∑
1≤i<i′≤N ai,i′wiwi′ , then Pj has ai in the diagonal entry (i, i) and ai,i′ in the

entry (i, i′), for 1 ≤ i < i′ ≤ N . Also, for a ∈ {0, 1}N , Da is the diagonal matrix in {0, 1}N2

whose diagonal is a.

The ALMSS verifier, given input x ∈ {0, 1}n and oracle access to a linear non-signaling
function L : {0, 1}N2 → {0, 1}, works as follows:
1. Use the circuit C and input x to construct the matrices P1, . . . , PM ∈ {0, 1}N

2 and
constants c1, . . . , cM ∈ {0, 1}, which represent the computation of C on x.

2. Draw random s ∈ {0, 1}M , u, v,∈ {0, 1}N , and query L on the set
{
∑M
j=1 sjPj , Du, Dv, u⊗ v}.

3. Check that L(
∑M
j=1 sjPj) =

∑M
j=1 sjcj and that L(Du)L(Dv) = L(u⊗ v).

If C(x) = 1, the honest proof is the linear function π : {0, 1}N2 → {0, 1} where π(Z) :=
〈w⊗w, Z〉 =

∑
i,i′∈[N] wiwi′ · Zi,i′ where wi is now the value of the i-th wire in the compu-

tation of C on x.
The challenge is to prove that the ALMSS verifier is sound against linear non-signaling

functions. Namely, we must show that if there is a linear non-signaling function L that is
accepted with good probability then x ∈ L, or equivalently that C(x) = 1. We discuss this
in the next sub-sections.

ITCS 2019

25:10 Probabilistic Checking Against Non-Signaling Strategies from Linearity Testing

2.3 A linear local assignment generator suffices
The first step in our soundness analysis shows that, to establish that C(x) = 1, it suffices to
construct a linear local assignment generator with sufficiently small error.

A linear k-local assignment generator for (C, x) with error ε is a linear k-non-signaling
function A : {0, 1}N → {0, 1} that individually satisfies each of the M constraints with
probability 1− ε (over the randomness of A). Namely,
(a) for each i ∈ {1, . . . , n}, Pr[A(ei) = xi] ≥ 1− ε;
(b) for each i ∈ {n + 1, . . . , N}, if wi is the output of a unary gate g with input wj then

Pr[A(ei) = g(A(ej))] ≥ 1 − ε, else if wi is the output of a binary gate g with inputs
wj1 , wj2 then Pr[A(ei) = g(A(ej1),A(ej2))] ≥ 1− ε;

(c) Pr[A(eN) = 1] ≥ 1− ε.
(Here ei is the i-th vector in the standard basis.)

I Lemma 7 (informal). If there exists a k-local assignment generator for (C, x) with error ε
for k = Ω(logN) and ε = O(1

N logN), then C(x) = 1.

We sketch the proof of this lemma. The transcript of the computation of C on x is
the unique correct assignment to all the wires. We say that a wire wi ∈W of C is correct
whenever A(ei) equals the value contained in this transcript; more generally, we say that
a vector z ∈ {0, 1}N is correct if A(z) equals the value of z in the linear extension of the
transcript. Below, we partition C’s wires W into layers W1, . . . ,WH according to depth.
(We assume layered circuits.)

As a warmup, suppose for now that k ≥ N . The probability that all wires in W1 are
correct is at least 1 − |W1| ε, and the probability that all the gates are correct is at least
1−

∑H
h=2 |Wh| ε. Therefore by union bound, the probability that all wires in the circuit are

correct is at least 1−
∑H
h=1 |Wh| ε, because if all the input wires are correct and all the gates

are computed correctly, then all the wires in the circuit are correct. In particular, we deduce
that the output wire is correct with probability 1−

∑H
h=1 |Wh| ε = 1− |W | ε = 1−Nε. Since

the output wire is 1 with probability 1−ε, and ε = O(1
N), we conclude that Pr[C(x) = 1] > 0,

and thus C(x) = 1.
The above argument requires that k ≥ N , because we have to simultaneously “view”

assignments to all wires in the circuit. While the argument can be easily modified so that we
only require k to be at least twice the width of C, the latter may still be much larger than
O(logN).

Using the linearity of A, however, we can modify the argument to merely require
k = Ω(logN). For each layer h, we define an event Eh such that if Eh holds, then any wire
in layer h is correct with high probability. In the warmup above Eh is the event “all wires in
layer h− 1 are correct”; in our proof Eh is the event “t random linear combinations of wires
in layer h are correct”. Given a wire wi in layer h, we can bound the event “A(ei) is incorrect
and Eh holds” as follows. If A(ei) is incorrect, then all linear combinations of wires in layer h
can be split into pairs z and z+ ei, and exactly one of A(z) and A(z+ ei) is incorrect. Hence,
the probability that a random linear combination of wires in layer h is correct, given that
A(ei) is incorrect, is at most 1/2, and so Pr[Eh |A(ei) is incorrect] ≤ 2−t, since the t random
linear combinations are independent. Using Bayes’s rule (and an additional assumption
that Pr[Eh] ≥ 1/2), we deduce that Pr[A(ei) is incorrect | Eh] is small. We then proceed
inductively on the layers as before.

The argument above requires that ε = O(1
N logN). One may wonder whether a similar

result could be proved with, say, ε = O(1). We additionally prove that our analysis is almost
tight, in that an error of ε = O(logN

N) is necessary, regardless of how large the locality k is.
See the full version of this paper for details.

A. Chiesa, P. Manohar, and I. Shinkar 25:11

Local assignment generators in prior works. Local assignment generators appear in prior
works on nsPCPs [17, 22], but our notion is qualitatively different, as we now explain.

Prior works consider local assignment generators for an augmented circuit Caug rather
than for C itself. (See Section 1.5 for a discussion of concurrent work that avoids augmented
circuits.) Informally, Caug not only contains C as a sub-circuit but also low-degree extensions
of C’s layers as well as subcircuits computing all low-degree tests on these. The wires
contained in these additional subcircuits are what enables defining an event Eh on which to
condition for each layer.

The analogue of the augmented circuit Caug in our setting, however, has exponential
size, and thus we cannot use it. Namely, we would have to encode each layer of C via the
Hadamard code (all linear combinations of wires in the layer) and then compute all possible
linear tests on these.

Instead, our assumption that the local assignment generator is a linear non-signaling
function implies that we do not have to construct an augmented circuit. Namely, the linear
combinations that we use to define the event Eh are implicitly available due this linearity,
and so there is no need to augment C (nor, in particular, to introduce any gates that evaluate
linearity tests).

The assumption that the local assignment generator is linear is justified by the fact
that a different part of our construction (the linearity test in our generic compiler) ensures
the non-signaling function is (close to) linear. Overall, this separation not only avoids the
aforementioned issues of using augmented circuits, but also simplifies the analysis of the local
assignment generator.

2.4 Constructing the linear local assignment generator
Given a k-non-signaling function L : {0, 1}N2 → {0, 1} that is accepted by the ALMSS
verifier with probability at least 1− ε, we can obtain a linear k-local assignment generator
A : {0, 1}N → {0, 1} with error O(ε) by “restricting L to its diagonal”. Namely, in order to
query A at v ∈ {0, 1}N , we query L at Dv ∈ {0, 1}N

2 , where Dv is the diagonal matrix that
has v as its diagonal.

We show that, since L is accepted with probability at least 1 − ε, L must satisfy any
individual constraint Pj(w) = cj with probability at least 1−O(ε), and this directly implies
that the linear local assignment generator A has error O(ε). (See the full version of this
paper for details.)

The discussion so far already gives us a weak bound on the soundness error of the ALMSS
verifier, namely 1−O(1

N logN). Indeed, for k = O(logN) and ε = O(1
N logN), we can apply

the lemma above (in Section 2.3) to conclude that C(x) = 1.
However, our goal is to show that the ALMSS verifier (as is) has constant soundness

error, and doing so requires more technical work, which we discuss next.

I Remark. We stress that proving a soundness error of even 1−O(1
N logN) is a non-trivial

statement. This is in contrast to the classical setting, where if an assignment satisfies an
1− ε fraction of the M = N + 1 constraints for ε < 1/M , then, trivially, all constraints are
satisfied.

2.5 The ALMSS verifier has constant soundness error
Our goal is to prove that the ALMSS verifier has constant soundness error. In a first step
(Section 2.5.1), we use the soundness error proved above (Section 2.4) to show that the
t-repeated ALMSS verifier has soundness error γ when t = Ω(logN + log 1

γ). In a second

ITCS 2019

25:12 Probabilistic Checking Against Non-Signaling Strategies from Linearity Testing

step (Section 2.5.2), we prove that the basic ALMSS verifier (no repetitions) has constant
soundness error. The second step is generic and of independent interest: we prove that if
a t-repeated verifier has soundness error exp(−t), then the corresponding basic verifier has
soundness error O(1).

2.5.1 The t-repeated ALMSS verifier has soundness error exp(−t)
While in the classical setting reducing soundness error via simple repetition is straightforward
(t-wise repetition reduces soundness error from δ to δt), in the non-signaling setting simple
repetition does not work.6 Indeed, consider the non-signaling function (in fact, distribution)
that, with probability 1− ε, answers the verifier’s queries in an accepting way, and otherwise
answers randomly. This non-signaling function is accepted by the t-repeated verifier with
probability ≈ 1− ε, which is about the same as the probability that it is accepted by a single
verifier.

However, this example provides intuition for how one circumvents this issue. Informally,
we would like to extract the “1− ε good part” that satisfies the verifier, and drop the “ε bad
part”. We follow a technique used in [17] and, instead of arguing about the probability that
L passes the t-repeated verifier, we argue that the non-signaling function L conditioned on
passing the t-repeated verifier passes the basic verifier with high probability. Indeed, in the
aforementioned example, conditioning on at least one test passing removes the “ε bad part”
injected by the distribution, and intuitively extracts the part of L that is passing the verifier.
An interesting feature of our analysis of the verifier is that our conclusion is about the basic
verifier, not the relaxed t-repeated verifier, which plays a major role in the analysis in [17].7
This is a qualitative difference in our analysis arising from our use of property testing (not
present in [17]), which also simplifies the analysis.

In more detail, let L′ denote the linear non-signaling function that equals L when
conditioned on passing the t-repeated verifier. Namely, if E is the (random) event that L
passes the t-repeated verifier, then for any S ⊆ {0, 1}n (of some maximal size) and ~b ∈ {0, 1}S ,
we define

Pr
[
L′(S) = ~b

]
:= Pr

[
L(S) = ~b | E

]
= Pr[L(S) = ~b ∧ E]

Pr[E] . (1)

We then prove that L′ passes the basic verifier with probability at least 1− 1/Pr[E]
exp(t) .

The proof uses a generic lemma stating that, if we run t+ d independent tests, then the
probability that at most r out of the first d tests pass and all of the last t tests pass is at
most (d

t+d)r+1. A naive application of this lemma (with r = 0 and d = 1) shows that L′

passes the basic verifier with probability at least 1− 1/Pr[E]
(t+1) . This is not enough, because

(using Pr[E] ≥ γ) we would require t = Ω(N logN · 1
γ) to prove soundness, which is again

far too many repetitions.
However, we leverage the linearity of L to deduce the stronger guarantee, as we now

explain. We want to bound the probability that L′ does not pass the basic verifier, which
means we need to bound the probability that L fails exactly the first test of t+ 1 independent
tests. We do this by arguing this individually for each of the two types of tests made by

6 Even if simple repetition were to reduce soundness error from δ to δt, then to get δt = γ when
δ = 1−O(1

N logN) we would need to repeat t = Ω(N logN + log 1
γ) times, which requires too large of a

locality k for the analysis.
7 The relaxed t-repeated verifier runs t tests and accepts if a large fraction of them pass.

A. Chiesa, P. Manohar, and I. Shinkar 25:13

the ALMSS verifier: the tensor test “L(Du)L(Dv) = L(u ⊗ v)” and the satisfiability test
“L(
∑M
j=1 sjPj) =

∑M
j=1 sjcj”. We will explain our techniques in the case of the satisfiability

test; the same techniques work for the tensor test, but the algebra is messier.
In the case of the satisfiability test, we split the “special” test (i.e., the first one) into d

pairs of tests, such that each individual test is random, but each pair is correlated so that if
both tests in some pair pass, then the original test passes. Specifically, we draw d random
vectors s(1), . . . , s(d) ∈ {0, 1}M , and then we split the test “L(

∑M
j=1 sjPj) =

∑M
j=1 sjcj” into

the d pairs of tests

“L

 M∑
j=1

(sj + s
(i)
j)Pj

 =
M∑
j=1

(sj + s
(i)
j)cj” and “L

 M∑
j=1

s
(i)
j Pj

 =
M∑
j=1

s
(i)
j cj” .

This allows us to apply the lemma with d = O(t), and r = O(t), which shows that L′ passes
the basic verifier with probability at least 1− 1/Pr[E]

exp(t) , an exponential decrease in t.
The above analysis shows soundness error of γ for the t-repeated verifier, for t =

O(logN + log 1
γ). Indeed, by the above argument, the conditioned function L′ passes the

basic verifier with probability 1− 1
γ exp(−t) = 1−O(1

N logN), by choice of t. The analysis
in the previous section (Section 2.4) then implies that C(x) = 1, proving soundness of the
t-repeated verifier.

Setting γ = exp(−t), the discussion so far merely shows that the t-wise repetition of the
ALMSS verifier, which makes 4t queries, has soundness error exp(−t) when t = Ω(logN);
moreover, we get no conclusions for t = o(logN). But we still did not conclude anything
about the soundness of a single invocation of the 4-query ALMSS verifier. We next discuss
how to handle this case.

2.5.2 Back to the 4-query ALMSS verifier

We establish that the ALMSS verifier has constant soundness error by proving a generic
lemma. The lemma states that, for any PCP verifier V, if the t-repeated verifier Vt has
soundness error exp(−t), then V has soundness error O(1). Since we have already argued that
the t-repeated ALMSS verifier has soundness error exp(−t) for t = Ω(logN), we can conclude
that the basic ALMSS verifier has soundness error O(1), against O(logN)-non-signaling
linear functions.

In the classical case, the proof of this generic fact is trivial: a (classical) function passes
a PCP verifier V with probability δ if and only if it passes the t-repeated verifier Vt with
probability δt. However, in the non-signaling case, it is not clear what one can say because
a non-signaling function can provide correlated answers across repetitions. Nevertheless,
we are able to lower bound the probability that Vt accepts by a quantity that is almost δt
(which is, in particular, almost tight).

To our knowledge, we are the first to relate the soundness of V to the soundness of Vt.
Generic statements in prior works (starting with [15]) have related the soundness of Vt to
the soundness of the t-repeated relaxed verifier (which accepts if a vast majority of the t
tests pass), but did not provide conclusions about the basic verifier V.

2.6 Testing linearity with low error

Below we discuss linearity testing with low error (Theorem 5) in more detail.

ITCS 2019

25:14 Probabilistic Checking Against Non-Signaling Strategies from Linearity Testing

Warmup: distributions. We have discussed (in Section 2.1) how to test linearity with low
error in the classical setting. In order to illustrate some of the difficulties that arise in
the non-signaling setting, we first discuss a special case of it: testing linearity against a
distribution over functions.

First, suppose that D is a distribution over functions f : {0, 1}n → {0, 1} that passes the
linearity test with probability 1−ε. The self-correction D̂ that on input x ∈ {0, 1}n samples a
random z ∈ {0, 1}n and outputs D̂(x) = D(z+x)−D(z) is 2ε-close to a distribution over linear
functions D∗, namely, for every x ∈ {0, 1}n it holds that

∣∣∣Pr[D̂(x) = 1]− Pr[D∗(x) = 1]
∣∣∣ ≤ 2ε.

Indeed, consider the distribution D∗ that samples f ← D and outputs any linear function
f∗ closest to f .8 Then, for every function f and x ∈ {0, 1}n, the probability over a
random z ∈ {0, 1}n that f∗(z) = f(z) and f∗(z + x) = f(z + x) is at least 1− 2εf , where
εf := 1 − Prx,y[f(x) + f(y) = f(x + y)]. Denoting by df denotes the probability that D
samples the function f , we conclude that

∣∣∣Pr[D∗(x) = 1]− Pr[D̂(x) = 1]
∣∣∣ ≤∑f 2εf ·df = 2ε.

Next, suppose that we seek a self-correction of D that is δ-close to a distribution over
linear functions, for δ � 2ε. One idea is to follow the same strategy as in the case of a single
function: repeat the linearity test and then do self-correction. This idea, however, does not
work now.

Consider the distribution D = (1− ε) ·0 + ε ·1, i.e., the distribution that with probability
1− ε answers according to the all-zeros function (a linear function), and with probability ε
according to the all-ones function (a function maximally far from linear functions). While D
passes the linearity test with probability 1−ε, D also passes the t-repeated linearity test with
probability 1− ε. In other words, if D passes the t-repeated linearity test with probability
1− ε, we can still only conclude that D̂ is 2ε-close to linear, independent of t.

While repeating the test does not increase the rejection probability, it can still be used to
improve the quality of self-correction, by considering a different notion of self-correction that
penalizes functions in the support of D that are far from linear. Concretely, consider the
distribution Dt that equals D when conditioned on the event that the t-repeated linearity test
passes, and then define D̂t to be the self-correction of Dt. That is, D̂t samples f from Dt
and answers any query x ∈ {0, 1}n by sampling z ∈ {0, 1}n and returning f(z + x)− f(z).
We claim that D̂t is very close to linear.

Indeed, suppose that D passes the t-repeated test with probability γ > 0, and let c > 1
be a parameter. A function f sampled from Dt is ln c

t -close to linear with probability at least
γ−1/c
γ = 1− 1

γc .
9 Setting c := t/ log t, the probability that Dt outputs a function f that is

log t−log log t
t -far from linear is at most log t

γt . Therefore, by applying the argument from the
beginning of this subsection, we conclude that D̂t is Oγ(log t

t)-close to a distribution over
linear functions.

We can further reduce the distance to be exponentially small in t by performing self-
correction t times: D̂t(x) now samples z1, . . . , zt ∈ {0, 1}n, and outputs the majority of
{D(zi + x)−D(zi)}i∈[t] conditioned on the event that the t-repeated linearity test passes.
By setting c := 2t/10 in the discussion above, we conclude that if we sample f from Dt, then
f is 0.1-close to a linear function f∗ with probability 1 − 1

γ2t/10 . In particular, for every
x ∈ {0, 1}n it holds that Przi

[f∗(zi) = f(zi) ∧ f∗(zi + x) = f(zi + x)] ≥ 0.8, and so the
probability that the majority value of {D(zi + x)−D(zi)}i∈[t] is not equal to f∗(x) is 2−O(t).
In sum, the t-repeated self-correction conditioned on the event that the t-repeated linearity
test passes yields us a distribution that is 1

γ 2−O(t)-close to linear.

8 Recall that if f is 0.25-close to linear functions then f∗ is unique. We do not rely on uniqueness.
9 The t-repeated linearity test accepts a function f that is ln c

t -far from linear with probability at most
(1− ln c

t)t ≤ 1
c .

A. Chiesa, P. Manohar, and I. Shinkar 25:15

The non-signaling case. The case of non-signaling strategies is similar to the case of
distributions in that the analysis of the self-correction involves conditioning over a certain
event. Yet, the conclusions and steps of the proof are quite different. Informally, this is
because non-signaling functions are quasi-distributions (probabilities can be negative), which
prevents us from doing a straightforward analysis such as the one above. We now discuss
how we address this.

Suppose that we have a k-non-signaling function F : {0, 1}n → {0, 1} that passes the
linearity test with probability 1−ε. The result of [9] proves that the self-correction F̂ defined
as F̂(x) := F(z+x)−F(z) (where z is chosen randomly from {0, 1}n) is 2O(k)ε-close to linear.
This is too large in our setting as we have k = O(logN), and we would like the distance to
be O(ε). Instead, we prove a slightly different guarantee from [9]. Namely, we show that
there is a linear non-signaling function L, such that on every set S, F̂ is O(|S|

√
ε)-close to L.

Unlike in the result of [9], our distance now decays with |S|, and is in particular independent
of k. This is sufficient for our purposes, since we set |S| = 4, the number of queries made by
the ALMSS verifier.

In our proof, we consider a different self-correction F t that, unlike F̂ , is only used in the
analysis and is not used by the compiler. First, we show that F t passes the linearity test
with probability 1− exp(−t), and so the result of [9] implies that F t is very close to a linear
non-signaling function. Then, we relate F t and F̂ to show that F̂ is O(

√
ε)-close to a linear

non-signaling function.
Informally, the self-correction F t equals F with the standard self-correction procedure

repeated t times, conditioned on F passing (1−
√
ε)t of t repetitions of the linearity test. In

more detail, given a subset S ⊆ {0, 1}n, F t(S) is the following distribution. For each x ∈ S,
sample uniform and independent z(1)

x , . . . , z
(t)
x ∈ {0, 1}n conditioned on satisfying the same

linear dependencies as in S; for instance, if S = {x, y, x+ y}, then z(i)
x + z

(i)
y = z

(i)
x+y holds for

all i. Then F t assigns to each x ∈ S the value MAJi∈[t]{F(z(i)
x + x)−F(z(i))} conditioned

on the event that F passes at least (1−
√
ε)t of t repetitions of the basic linearity test. We

note that if F is linear, then F t ≡ F̂ ≡ F .
The first part of the analysis uses a lemma that informally states that by conditioning

on F passing most of the t-repeated linearity tests, we force the conditioned F to behave
“close” to linear. Specifically, letting b(i)

x = F(zi + x)−F(zi), we get that with probability
1− exp(−t) there is a bit bx that equals b(i)

x for at least 3t
4 of the i’s (so the majority is a

vast majority), which implies that F t(x) = bx, and analogously for y and x+ y. Then, via a
similar argument, we show that with probability 1− exp(−t) for at least 3t

4 of the i’s it holds
that b(i)

x + b
(i)
y = b

(i)
x+y. By union bound, these events hold simultaneously, and so we conclude

that F t satisfies F t(x) + F t(y) = F t(x+ y) with probability 1− exp(−t). We then invoke
the result of [9] and conclude that F̂ is very close to some linear non-signaling function L.

In the second step, we relate F̂ to F t by claiming that if Pr[F(x)+F(y) = F(x+y)] ≥ 1−ε,
then F̂ and F t are close in some precise sense. We first observe that if we run the t-
repeated linearity test, i.e., choose x(1), y(1), . . . , x(t), y(t) and check that F(x(i)) +F(y(i)) =
F(x(i) + y(i)) for every i, then a simple Markov argument shows that with high probability,
most of the linearity tests are satisfied. For instance, with probability 1−

√
ε at least (1−

√
ε)t

of the i’s satisfy the linear constraint. This means that the event conditioned on in the
definition of F t is a large event. We also know from the first part of the analysis that, with high
probability, the conditioning causes most of the evaluations of F(z(i)

x +x)−F(z(i)
x) to output

the same value. Intuitively, this implies that F̂ is close to F t, via the following reasoning.
Since F t conditions on a large event, it is close to the corresponding self-correction that does
not condition at all. Since the majority taken over the evaluations of F(z(i)

x + x)−F(z(i)
x)

ITCS 2019

25:16 Probabilistic Checking Against Non-Signaling Strategies from Linearity Testing

when computing F t is a vast majority, with high probability F̂ (which is a sample from one
of the elements the majority is over) will agree with the vast majority. This allows us to
conclude that for any set S, F̂ will be O(|S|

√
ε)-close to F t.

See the full version of this paper for details.

References
1 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

verification and the hardness of approximation problems. Journal of the ACM, 45(3):501–
555, 1998. Preliminary version in FOCS ’92.

2 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization
of NP. Journal of the ACM, 45(1):70–122, 1998. Preliminary version in FOCS ’92.

3 László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computa-
tions in polylogarithmic time. In Proceedings of the 23rd ACM Symposium on Theory of
Computing, STOC ’91, pages 21–32, 1991.

4 László Babai, Lance Fortnow, and Carsten Lund. Non-Deterministic Exponential Time has
Two-Prover Interactive Protocols. Computational Complexity, 1:3–40, 1991. Preliminary
version appeared in FOCS ’90.

5 Mihir Bellare, Don Coppersmith, Johan Håstad, Marcos A. Kiwi, and Madhu Sudan. Lin-
earity testing in characteristic two. IEEE Transactions on Information Theory, 42(6):1781–
1795, 1996.

6 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding. SIAM Journal on
Computing, 36(4):889–974, 2006.

7 Nir Bitansky and Alessandro Chiesa. Succinct Arguments from Multi-Prover Interactive
Proofs and their Efficiency Benefits. In Proceedings of the 32nd Annual International
Cryptology Conference, CRYPTO ’12, pages 255–272, 2012.

8 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-Testing/Correcting with Applic-
ations to Numerical Problems. Journal of Computer and System Sciences, 47(3):549–595,
1993.

9 Alessandro Chiesa, Peter Manohar, and Igor Shinkar. Testing Linearity against Non-
Signaling Strategies. In Proceedings of the 33rd Annual Conference on Computational
Complexity, CCC ’18, pages 17:1–17:37, 2018.

10 Irit Dinur and Omer Reingold. Assignment Testers: Towards a Combinatorial Proof of the
PCP Theorem. In Proceedings of the 45th IEEE Symposium on Foundations of Computer
Science, FOCS ’04, pages 155–164, 2004.

11 Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996.
Preliminary version in FOCS ’91.

12 Justin Holmgren and Ron Rothblum. Delegation With (Nearly) Optimal Time/Space Over-
head. In Proceedings of the 59th IEEE Symposium on Foundations of Computer Science,
FOCS ’18, pages ???–???, 2018.

13 Tsuyoshi Ito. Polynomial-Space Approximation of No-Signaling Provers. In Proceedings of
the 37th International Colloquium on Automata, Languages and Programming, ICALP ’10,
pages 140–151, 2010.

14 Tsuyoshi Ito, Hirotada Kobayashi, and Keiji Matsumoto. Oracularization and Two-Prover
One-Round Interactive Proofs against Nonlocal Strategies. In Proceedings of the 24th IEEE
Annual Conference on Computational Complexity, CCC ’09, pages 217–228, 2009.

15 Yael Kalai, Ran Raz, and Ron Rothblum. Delegation for Bounded Space. In Proceedings
of the 45th ACM Symposium on the Theory of Computing, STOC ’13, pages 565–574, 2013.

A. Chiesa, P. Manohar, and I. Shinkar 25:17

16 Yael Tauman Kalai, Ran Raz, and Oded Regev. On the Space Complexity of Linear
Programming with Preprocessing. In Proceedings of the 7th Innovations in Theoretical
Computer Science Conference, ITCS ’16, pages 293–300, 2016.

17 Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In Proceedings of the 46th ACM Symposium on Theory
of Computing, STOC ’14, pages 485–494, 2014. Full version available at https://eccc.
weizmann.ac.il/report/2013/183/.

18 Leonid A Khalfin and Boris S Tsirelson. Quantum/classical correspondence in the light of
Bell’s inequalities. Foundations of physics, 22(7):879–948, 1992.

19 Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the
24th Annual ACM Symposium on Theory of Computing, STOC ’92, pages 723–732, 1992.

20 Susumu Kiyoshima. No-signaling Linear PCPs. In Proceedings of the 16th Theory of
Cryptography Conference, TCC ’18, pages 67–97, 2018.

21 Silvio Micali. Computationally Sound Proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2000. Preliminary version appeared in FOCS ’94.

22 Omer Paneth and Guy Rothblum. On Zero-Testable Homomorphic Encryption and Pub-
licly Verifiable Non-Interactive Arguments. In Proceedings of the 15th Theory of Crypto-
graphy Conference, TCC ’17, 2017.

23 Sandu Popescu and Daniel Rohrlich. Quantum nonlocality as an axiom. Foundations of
Physics, 24(3):379–385, 1994.

24 Peter Rastall. Locality, Bell’s theorem, and quantum mechanics. Foundations of Physics,
15(9):963–972, 1985.

25 Hanif D. Sherali and Warren P. Adams. A Hierarchy of Relaxations between the Continuous
and Convex Hull Representations for Zero-One Programming Problems. SIAM Journal on
Discrete Mathematics, 3(3):411–430, 1990.

ITCS 2019

https://eccc.weizmann.ac.il/report/2013/183/
https://eccc.weizmann.ac.il/report/2013/183/

	Introduction
	Towards a nsPCP Theorem
	Main theorem
	Main lemmas
	Enriching the toolkit for non-signaling PCPs
	Concurrent work
	Open problems

	Techniques
	From nsLPCP to nsPCP
	The linear ALMSS verifier against linear non-signaling functions
	A linear local assignment generator suffices
	Constructing the linear local assignment generator
	The ALMSS verifier has constant soundness error
	The t-repeated ALMSS verifier has soundness error exp(-t)
	Back to the 4-query ALMSS verifier

	Testing linearity with low error

