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Abstract
Spiking Neural Networks (SNN) are mathematical models in neuroscience to describe the dynam-
ics among a set of neurons that interact with each other by firing instantaneous signals, a.k.a.,
spikes. Interestingly, a recent advance in neuroscience [Barrett-Denève-Machens, NIPS 2013]
showed that the neurons’ firing rate, i.e., the average number of spikes fired per unit of time, can
be characterized by the optimal solution of a quadratic program defined by the parameters of the
dynamics. This indicated that SNN potentially has the computational power to solve non-trivial
quadratic programs. However, the results were justified empirically without rigorous analysis.

We put this into the context of natural algorithms and aim to investigate the algorithmic power
of SNN. Especially, we emphasize on giving rigorous asymptotic analysis on the performance of
SNN in solving optimization problems. To enforce a theoretical study, we first identify a simplified
SNN model that is tractable for analysis. Next, we confirm the empirical observation in the work
of Barrett et al. by giving an upper bound on the convergence rate of SNN in solving the
quadratic program. Further, we observe that in the case where there are infinitely many optimal
solutions, SNN tends to converge to the one with smaller `1 norm. We give an affirmative answer
to our finding by showing that SNN can solve the `1 minimization problem under some regular
conditions.

Our main technical insight is a dual view of the SNN dynamics, under which SNN can be
viewed as a new natural primal-dual algorithm for the `1 minimization problem. We believe that
the dual view is of independent interest and may potentially find interesting interpretation in
neuroscience.
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1 Introduction

The theory of natural algorithms is a framework that bridges the algorithmic thinking in
computer science and the mathematical models in biology. Under this framework, biological
systems are viewed as algorithms to efficiently solve specific computational problems. Seminal
works such as bird flocking [16, 17], slime systems [51, 65, 10], and evolution [38, 37]
successfully provide algorithmic explanations for different natural objects. These works
give rigorous theoretical results to confirm empirical observations, shed new light on the
biological systems through computational lens, and sometimes lead to new biologically
inspired algorithms.

In this work, we investigate Spiking Neural Networks (SNNs) as natural algorithms for
solving convex optimization problems. SNNs are mathematical models for biological neural
networks where a network of neurons transmit information by firing spikes through their
synaptic connections (i.e., edges between two neurons). Our starting point is a seminal work
of Barrett, Denève, and Machens [4], where they showed that the firing rate (i.e., the average
number of spikes fired by each neuron) of a certain class of integrate-and-fire SNNs can be
characterized by the optimal solutions of a quadratic program defined by the parameters of
SNN. Thus, the SNN can be viewed as a natural algorithm for the corresponding quadratic
program. However, no rigorous analysis was given in their work.

We bridge the gap by showing that the firing rate converges to an optimal solution of the
corresponding quadratic program with an explicit polynomial bound on the convergent rate.
Thus, the SNN indeed gives an efficient algorithm for solving the quadratic program. To
the best of our knowledge, this is the first result with an explicit bound on the convergent
rate. Previous works [58, 59, 63] on related SNN models for optimization problems are either
heuristic or only proving convergence results when the time goes to infinity (see Section 1.4
for full discussion on related works).

We take one step further to ask what other optimization problems can SNNs efficiently
solve. As our main result, we show that when configured properly, SNNs can solve the `1
minimization problem2 in polynomial time3. Our main technical insight is interpreting the
dynamics of SNNs in a dual space. In this way, SNNs can be viewed as a new primal-dual
algorithm for solving the `1 minimization problem.

In the rest of the introduction, we will first briefly introduce the background of spiking
neural networks (SNNs) and formally define the mathematical model we are working on.
Next, our results will be presented and compared with other related works. Finally, we wrap
up this section with potential future research directions and perspectives.

1.1 Spiking Neural Networks
Spiking neural networks (SNNs) are mathematical models for describing the dynamics of
biological neural networks. An SNN consists of neurons, and each of them is associated with
an intrinsic electrical charge called membrane potential. When the potential of a neuron
reaches a certain level, it will fire an instantaneous signal, i.e., spike, to other neurons and
increase or decrease their potentials.

2 The problem is defined as given A ∈ Rm×n, b ∈ Rm, and guaranteed that there is a solution to Ax = b.
The goal is finding a solution x with the smallest `1 norm. See Section 2 for formal definition.

3 The running time is polynomial in a parameter depending on the inputs. In some cases, this parameter
might cause the running to be quasi-polynomial or sub-exponential. See the full version of this paper
on arXiv for more details.
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Mathematically, the dynamic of neuron’s membrane potential in an SNN is typically
described by a differential equation, and there are many well-studied models such as the
integrate-and-fire model [35], the Hodgkin-Huxley model [27], and their variants [21, 61, 49,
26, 23, 33, 14, 22, 29, 64]. In this work, we focus on the integrate-and-fire model defined as
follows. Let n be the number of neurons and u(t) ∈ Rn be the vector of membrane potentials
where ui(t) is the potential of neuron i at time t for any i ∈ [n] and t ≥ 0. The dynamics of
u(t) can be described by the following differential equation: for each i ∈ [n] and t ≥ 0

d

dt
ui(t) =

∑
j∈[n]

−Cji(t)sj(t) + Ii(t) (1)

where the initial value of the potentials are set to 0, i.e., ui(0) = 0 for each i ∈ [n]. There
are two terms that determine the dynamics of membrane potentials as shown in (1). The
simpler term is the input charging4 I(t) ∈ Rn, which can be thought of as an external
effect on each neuron. The other term models the instantaneous spike effect among neurons.
Specifically, the −Cji(t)sj(t) term models the effect on the potential of neuron i when neuron
j fires a spike. Here C(t) ∈ Rn×n is the connectivity matrix that encodes the synapses
between neurons, where Cji(t) describes the connection strength from neuron j to neuron i.
s(t) ∈ Rn is the spike train which records the spikes of each neuron, and si(t) can be thought
of as indicating whether neuron i fires a spike at time t. To sum up, the −Cji(t)s(t) term
decreases5 the potential of neuron i by Cji(t∗) whenever neuron j fires a spike at time t∗.

The spike train s(t) is determined by the spike events, which are in turn determined by the
spiking rule. A typical spiking rule is the threshold rule. Specifically, let η > 0 be the spiking
threshold, the threshold rule simply says that neuron i fires a spike at time t if and only if
ui(t) > η. Next, record the timings when neuron i fires a spike as 0 ≤ t(i)1 < t

(i)
2 < . . . and

let ki(t) be the number of spikes within time [0, t]. An important statistics of the dynamics
is the firing rate defined as xi(t) := ki(t)/t for neuron i ∈ [n] at time t, namely, the average
number of spikes of neuron i up to time t. The last thing we need for specifying s(t) is the
spike shape, which can be modeled as a function δ : R≥0 → R. Intuitively, the spike shape
describes the effect of a spike, and standard choices of δ could be the Dirac delta function or
a pulse function with an exponential tail. Now we can define si(t) =

∑
1≤s≤ki(t) δ(t− t

(i)
s ) to

be the spike train of neuron i at time t.
We provide the following example to illustrate the SNN dynamics introduced above.

I Example 1. Let n = 2, η = 1, and δ be the Dirac delta function such that for any ε > 0,∫ ε
0 δ(t)dt = 1 and δ(t) ≥ 0 for any t ≥ 0. Let both external charging and connectivity matrix

be static, i.e., I(t) = I and C(t) = C for any t ≥ 0, and consider

C =
(

1 0
−0.1 1

)
, I =

(
0.1
0

)
, and u(0) =

(
0
0

)
.

In Figure 1, we simulate this SNN for 500 seconds. We can see that neuron 1 fires a
spike every ten seconds while neuron 2 fires a spike every one hundred seconds. As a result,
the firing rate of neuron 1 will gradually converge to 0.1 and that of neuron 2 will go to 0.01.

In general, both the input charging vector I(t) and the connectivity matrix C(t) can evolve
over time, in which the change of I(t) models the variation of the environment and the change
of Cji(t) captures the adaptive learning behavior of the neurons to the environmental change.

4 Also known as input signal or input current.
5 If Cji(t∗) < 0, then the potential of neuron i actually increases by |Cji(t∗)|.
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Figure 1 The example of SNN with two neurons. In (a), we describe the dynamic of this SNN.
Note that the effect of spikes is the negation of the synapse encoded in the connectivity matrix C.
In (b), we plot the membrane potential vectors u(t). In (c), we plot the timings when neurons fire a
spike. One can see that neuron 1 fires a spike every ten seconds while neuron 2 fires a spike every
one hundred seconds. In (d), we plot the firing rate vector x(t). One can see that the firing rate of
neuron 1 will gradually converge to 0.1 and that of neuron 2 will go to 0.01.

Understanding how synapses evolve over time (i.e., synapse plasticity) is a very important
subject in neuroscience. However, in this work, we follow the choice of Barrett et al. [4] and
consider static SNN dynamics, where both the input charging I(t) and the synapses C(t) are
constants. Although this is a special case compared to the general model in (1), we justify
the choice of static SNN by showing that SNN already exhibits non-trivial computational
power even in this restricted model.

As in Barrett et al. [4], we focus on static SNN and view it as a natural algorithm for
optimization problems. Specifically, given an instance to the optimization problem, the goal
is to configure a static SNN (by setting its parameters) so that the firing rate converge to an
optimal solution efficiently. In this sense, the result of Barrett et al. [4] can be interpreted as
a natural algorithm for certain quadratic programs. In our eyes, the solution being encoded
as the firing rate is an interesting and peculiar feature of the SNN dynamics. Also, the
dynamics of a static SNN can be viewed as a simple distributed algorithm with a simple
communication pattern. Specifically, once the dynamics is set up, each neuron only needs to
keep track of its potential and communicate with each other through spikes.

1.2 Our Results

Barrett et al. [4] gave a clean characterization of the firing rates by the network connectivity
and input signal. Concretely, they consider static SNN where both the connectivity matrix
C ∈ Rn×n and the external charging I ∈ Rn do not change with time. They argued that the
firing rate would converge to the solution of the following quadratic program.

minimize
x∈Rn

‖Cx− I‖2
2

subject to xi ≥ 0, ∀i ∈ [n].
(2)
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They supported this observation by giving simulations on the so called tightly balanced
networks and yielded pretty accurate predictions in practice. Also, they heuristically explained
the reason how they came up with the quadratic program. However, no rigorous theorem
had been proved on the convergence of firing rate to the solution of this quadratic program.

To give a theoretical explanation for the discovery of [4], we start with a simpler SNN
model to enable the analysis.

The simple SNN model. In the simple SNN model, we make two simplifications on the
general model in (1).

First, we pick the shape of spike to be the Dirac delta function. That is, let δ(t) = 1t=0
and thus si(t) = 1ui(t)>η. This simplification saves us from complicated calculation while
the Dirac delta function still captures the instantaneous behavior of a spike.

Second, we consider the connectivity matrix C in the form C = α · A>A where α > 0
is the spiking strength and A ∈ Rm×n is the Cholesky decomposition of C. The reason
for introducing α is to model the height of the Dirac delta function. Mathematically, it is
redundant to have both α and C since the model remains the same when combining α with
C. However, as we will see in the next subsection, separating α and C is meaningful as C
corresponds to the input of the computational problem and α is the parameter that one can
choose to configure an SNN to solve the problem.

In this work, we focus on the algorithmic power of SNN in the following sense. Given
a problem instance, one configures a SNN and sets the firing rate x(t) to be the output at
time t. We say this SNN solves the problem if x(t) converges to the solution of the problem.

Simple SNN solves the non-negative least squares. As mentioned, Barrett et al. [4]
identified a connection between the firing rate of SNN with integrate-and-fire neurons and a
quadratic programming problem (2). They gave empirical evidence for the correctness of this
connection, however, no theoretical guarantee had been provided. Our first result confirms
their observation by giving the first theoretical analysis. Specifically, when C = A>A and
I = A>b, the firing rate will converge to the solution of the following non-negative least
squares problem.

minimize
x∈Rn

‖Ax− b‖2
2

subject to xi ≥ 0, ∀i ∈ [n].
(3)

I Theorem 1 (informal). Given A ∈ Rm×n, b ∈ Rm, and ε > 0. Suppose A satisfies some
regular conditions6. Let x(t) be the firing rate of the simple SNN with 0 < α ≤ α(A) where
α(A) is a function depending on A. When t ≥ Ω(

√
n

ε·‖b‖2
),7 x(t) is an ε-approximate solution8

for the non-negative least squares problem of (A,b).

The formal statement and the proof for the theorem are provided in the Section 4 of the
full version of this paper. To the best of our knowledge, this is the first9 theoretical result on
the analysis of SNN with an explicit bound on the convergence rate and shows that SNN
can be implemented as an efficient algorithm for an optimization problem.

6 More details about the regular conditions will be discussed in Section 3.3 of the full version.
7 The Ω(·) and the O(·) later both hide the dependency on some parameters of A. See Section 3.3 of the

full version for more details.
8 See Definition 3 for the formal definition of ε-approximate solution.
9 See Section 1.4 for comparisons with related works.

ITCS 2019
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Simple SNN solves the `1 minimization problem. In addition to solving the non-negative
least squares problem, as our main result, we also show that the simple SNN is able to solve
the `1 minimization problem, which is defined as minimizing the `1 norm of the solutions of
Ax = b. `1 minimization problem is also known as the basis pursuit problem proposed by
Chen et al. [18]. The problem is widely used for recovering sparse solution in compressed
sensing, signal processing, face recognition etc.

Before the discussion on `1 minimization, let us start with a digression on the two-sided
simple SNN for the convenience of future analysis.

d

dt
u(t) = −α ·A>As(t) +A>b

where si(t) = 1ui(t)>η − 1ui(t)<−η. Note that the two-sided SNN is a special case of the
one-sided SNN in the sense that one can use the one-sided SNN to simulate the two-sided
SNN as follows. Given a two-sided SNN described above with connectivity matrix C = A>A

and external charging I = A>b. Let C ′ =
(
A>A −A>A

−A>A A>A

)
and I′ =

(
A>b
−A>b

)
. Intuitively, this

can be thought of as duplicating each neuron and flip its connectivities with other neurons.
To solve the `1 minimization problem, we simply configure a two-sided SNN as follows.

Given an input (A,b), let C = A>A and I = A>b. Now, we have the following theorem.

I Theorem 2 (informal). Given A ∈ Rm×n, b ∈ Rm, and ε > 0. Suppose A satisfies some
regular conditions. Let x(t) be the firing rate of the two-sided simple SNN with 0 < α ≤ α(A)
where α(A) is a function depending on A. When t ≥ Ω(n

3

ε2 ), x(t) is an ε-approximate
solution10 for the `1 minimization problem of (A,b).

See Theorem 7 for the formal statement of this theorem. As we will discuss in the next
subsection, under the dual view of the SNN dynamics, the simple two sided SNN can be
interpreted as a new natural primal-dual algorithm for the `1 minimization problem.

1.3 A Dual View of the SNN Dynamics
The main techniques in this work is the discovery of a dual view of SNN. Recall that the
dynamic of a static SNN can be described by the following differential equation.

d

dt
u(t) = −α · Cs(t) + I

where u(0) = 0 the parameters C and I can be represented as C = A>A and I = A>b for
some A ∈ Rm×n and b ∈ Rm. For simplicity, we pick the firing threshold η = 1 here. Let us
call the dynamics of u(t) the primal SNN. Now, the dual SNN, can be defined as follows.

d

dt
v(t) = −α ·As(t) + b

where v(0) = 0 and s(t) defined as the usual way. At first glance, this merely looks like a
simple linear transformation, Nevertheless, the dual SNN provides a nice geometric view for
the SNN dynamics as follows.

At each update in the dynamics, there are two terms affecting the dual SNN v(t): the
external charging b · dt and the spiking effect −α ·As(t). First, the external charging b · dt
can be thought of as a constant force that drags that dual SNN in the direction b.

10 See Definition 4 for the formal definition of ε-approximate solution.
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Figure 2 These are examples of the geometric interpretation of the dual SNN. In (a), we have
one neuron where A1 = [ 1

2 1]>. In this case, neuron i would not fire as long as the dual SNN v(t)
stays in the gray area. In (b), we consider a SNN with 3 neurons where A1 = [1 0]>, A2 = [0 1]>,
and A3 = [ 2

3
2
3 ]>. One can see that the effect of spikes on dual SNN is a jump in the direction of

the normal vector of the wall(s).

Table 1 Comparison of the geometric view of primal and dual SNNs.

Primal SNN u(t) Dual SNN v(t)

Spiking rule ui(t) > 1 A>i v(t) > 1

Spiking effect −α ·A>Ai −α ·Ai

To explain the effect of spikes in the dual view, let us start with an geometric view for the
spiking rule. Recall that neuron i fires a spike at time t if and only if ui(t) > 1. In the language
of dual SNN, this condition is equivalent to A>i v(t) > 1. Let Wi = {v ∈ Rm : A>i v = 1}
be the wall of neuron i, the above observation is saying that neuron i will fire a spike once
it penetrates the wall Wi from the half-space {v ∈ Rm : A>i v ≤ 1}. See Figure 2 for an
example. After neuron i fires a spike, the spiking effect on the dual SNN v(t) would be a
−α ·Ai term, which corresponds to a jump in the normal direction of Wi. See Figure 2 for
an example.

The geometric interpretation described above is the main advantage of using dual SNN.
Specifically, this gives us a clear picture of how spikes affect the SNN dynamics. Namely,
neuron i fires a spike if and only if the dual SNN v(t) penetrates the wall Wi and then v(t)
jumps back in the normal direction of Wi. Note that this connection would not hold in the
primal SNN. In primal SNN u(t), neuron i fires a spike if and only if ui(t) > 1 while the
effect on u(t) is moving in the direction −A>Ai. See Table 1 for a comparison.

Dual view of SNN as a primal-dual algorithm for `1 minimization problem. First, let us
write down the `1 minimization problem and its dual.

minimize
x∈Rn

‖x‖1

subject to Ax = b.

maximize
v∈Rm

b>v

subject to ‖A>v‖∞ ≤ 1.

ITCS 2019
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Now we observe that the dual dynamics can be viewed as a variant of the projected
gradient descent algorithm to solve the dual program. Before the explanation, recall that for
the `1 minimization problem, we are considering the two-sided SNN for convenience. Indeed,
without the spiking term, v(t) simply moves towards the gradient direction b of the dual
objective function b>v. For the spike term −α · As(t), note that si(t) 6= 0 (i.e., neuron i
fires) if and only if |A>i v(t)| = |ui(t)| > 1, which means that v(t) is outside the feasible
polytope {v : ‖A>v‖∞ ≤ 1} of the dual program. Therefore, one can view the role of the
spike term as projecting v(t) back to the feasible polytope. That is, when the dual SNN
v(t) becomes infeasible, it triggers some spikes, which maintains the dual feasibility and
updates the primal solution (the firing rate). To sum up, we can interpret the simple SNN
as performing a non-standard projected gradient descent algorithm for the dual program of
`1 minimization in the dual view of SNN.

With this primal-dual view in mind, we analyze the SNN algorithm by combining tools
from convex geometry and perturbation theory as well as several non-trivial structural lemmas
on the geometry of the dual program of `1 minimization. One of the key ingredients here is
identifying a potential function that (i) upper bounds the error of solving `1 minimization
problem and (ii) monotonously converges to 0. More details will be provided in Section 3.

1.4 Related Work
We compare this research with other related works in the following four aspects.

Computational power of SNN. Recognized as the third generation of neural networks [45],
the theoretical foundation for the computability of SNN had been built in the pioneering
works of Maass et al. [43, 45, 46, 48] in which SNN was shown to be able to simulate
standard computational models such as Turing machines, random access machines (RAM),
and threshold circuits.

However, this line of works focused on the universality of the computational power
and did not consider the efficiency of SNN in solving specific computational problems. In
recent years, a line of exciting research have reported the efficiency of SNN in solving
specific computational problems such as sparse coding [68, 62, 63], dictionary learning [36],
pattern recognition [19, 32, 6], and quadratic programming [4]. These works indicated the
advantage of SNN in handling sparsity as well as being energy efficient and inspired real-world
applications [5]. However, to the best of our knowledge, no theoretical guarantee on the
efficiency of SNN had been provided. For instance, Tang et al. [62, 63] only proved the
convergence in the limit result for SNN solving sparse coding problem instead of giving an
explicit convergence rate analysis. The main contribution in this work is giving a rigorous
guarantee on the convergence rate of the computational power of SNN.

The number of spikes versus the timing of spikes. In this work, we mainly focus on the
firing rate of SNN. That is, we only study the computational power with respect to the
number of spikes. Another important property of SNN is the timing of spikes.

The power of the timing of spikes had been reported since the 90s from some experi-
mental evidences indicating that neural systems might use the timing of spikes to encode
information [1, 28, 54]. From then on, a bunch of works have been focused on the aspect
of time as a basis of information coding both from theoretical [52, 45, 48, 66] and experi-
mental [25, 7, 34] sides. It is generally believed that the timing of spikes is more powerful
then the firing rate [67, 56, 53]. Other than the capacity of encoding information, the timing
of spikes has also been studied in the context of computational power [67, 44, 45, 24] and
learning [12, 3, 60]. See the survey by Paugam et al. [53] for a thorough discussion.
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While the timing of spikes is conceived as an important source of the power of SNN, in
this work we simply focus on the firing rate and already yield some non-trivial findings in
terms of the computational power. We believe that our work is still in the very beginning
stage of the study of the computational power of SNN. Investigating how does the timing of
spikes play a role is an interesting and important future direction. Immediate open questions
here would be how could the timing of spikes fit into our study? What’s the dual view of the
timing of spikes? Can the timing of spikes solve the optimization problems more efficiently?
Can the timing of spikes solve more difficult problems?

SNN with randomness. While most of the literature focused on deterministic SNN, there
is also an active line of works studying the SNN model with randomness11 [2, 57, 20, 15, 30,
47, 31, 40, 41, 42, 39].

Buesing et al. [15] used noisy SNN to implement MCMC sampling and Jonke et al. [30,
47, 31] further instantiated the idea to attack NP-hard problems such as traveling salesman
problem (TSP) and constraint satisfaction problem (CSP). Concretely, their noisy SNN
has a randomized spiking rule and the firing pattern would form a distribution over the
solution space whereas the closer a solution is to the optimal solution, the higher the
probability it is sampled. They got nice experimental performance in terms of solving
empirical instance approximately. They also pointed out that their noisy SNN has the
potential to be implemented energy-efficiently in practice.

Lynch, Musco, and Parter [41] studied the stochastic SNNs with a focus on the Winner-
Take-All (WTA) problem. Their sequence of works [40, 41, 42, 39] gave the first asymptotic
analysis for stochastic SNN in solving WTA, similarity testing, and neural coding. They
view SNNs as distributed algorithms and derived computational tradeoff in running time
and network size.

In this work, we consider the SNN model without randomness and thus is incomparable
with the above SNN models with randomness. It is an interesting direction to apply the dual
view of deterministic SNN to SNN with randomness.

Locally competitive algorithms. Inspired by the dynamics of biological neural networks,
Ruzell et al. designed the locally competitive algorithms (LCA) [55] for solving the Lasso
(least absolute shrinkage and selection operator) optimization problem12, which is widely
used in statistical modeling. Roughly speaking, LCA is also a dynamics among a set of
artificial neurons which continuously signal their potential values (or a function of the values)
to their neighboring neurons. There are two main differences between SNN and LCA. First,
the neuron in SNN fires discrete spikes while the artificial neuron in LCA produces continuous
signal. Next, the neurons’ potentials in LCA will converge to a fixed value, which is the
output of the algorithm. In contrast, in SNN, only the neurons’ firing rates may converge
instead of their potentials.

Nevertheless, there is a spikified version of LCA introduced by Shapero et al. [58, 59] called
spike LCA (S-LCA) in which the continuous signals are replaced with discrete spikes. S-LCA
is almost the same as the SNN we are considering except a shrinkage term13. Recently,
Tang et al. [63] showed that the firing rate of S-LCA indeed converges to a variant of

11 SNN model with noise is also known as stochastic SNN or noisy SNN depending on how the randomness
involves in the model.

12Note that Lasso is equivalent to the Basis Pursuit De-Noising (BPDN) program under certain parameters
transformation.

13That is, the potential of each neuron will drop with rate proportional to the current potential value.

ITCS 2019
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Lasso problem14 in the limit. These works also experimentally demonstrated the efficient
convergence of S-LCA and its advantage of fast identifying sparse solutions with potentially
competitive practical performance to other Lasso algorithms (e.g., FISTA [5]). However,
there is no proof of convergence rate, and thus no explicit complexity bound of S-LCA.

1.5 Future Works and Perspectives
In this work, we give a theoretical study on the algorithmic power of SNN. Specifically, we
focus on the firing rate of SNN and confirm an empirical analysis by Barrett et al. [4] with
a convergence theorem (i.e., Theorem 1). Furthermore, we discover a dual view of SNN
and show that SNN is able to solve the `1 minimization problem (i.e., Theorem 2). In the
following, we give interpretations to our results and point out future research directions.

First, how to interpret the dual dynamics of SNN? In this work, we discover the dual
SNN based on mathematical convenience. Is there any biological interpretation?

Second, push further the analysis of simple SNN. We believe the parameters we get in
the main theorems are not optimal. Is it possible to further sharpen the upper bound? We
think this is both theoretically and practically interesting because both non-negative least
squares and `1 minimization are important problems that have been well-studied studied
in the literature. Comparing the running time complexity or parallel time complexity of
SNN algorithm with other algorithms could also be of theoretical interest and might inspire
new algorithm with better complexity. Also, for practical purpose, having better parameters
would give more confidence in implementing SNN as a natural algorithm.

Third, further investigate the potential of SNN dynamics as natural algorithms. The
question is two-folded: (i) What algorithms can SNN implement? (ii) What computational
problems can SNN solve? It seems that SNN is good at dealing with sparsity. Could it
be helpful in related computational tasks such as fast Fourier transform (FFT) or sparse
matrix-vector multiplication? It is interesting to identify optimization problems and class of
instances where SNN algorithm can outperform other algorithms.

Finally, explore the practical advantage of SNN dynamics as natural algorithms. The
potential practical time efficiency, energy efficiency, and simplicity for hardware implementa-
tion have been suggested in several works [50, 8, 9]. It would be exciting to see whether SNN
has nice performance on practical applications such as compressed sensing, Lasso, and etc.

Organization. The rest of the paper is organized as follows. Preliminaries are provided in
Section 2. In Section 3, we formally present the dual view of SNN and give a proof sketch
for the convergence theorem for `1 minimization problem. The full proofs for Theorem 1 and
Theorem 2 are provided in the full version of this paper available on arXiv.

2 Preliminaries

In Section 2.1, we build up some notations for the rest of the paper. In Section 2.2, we define
two optimization problems and the corresponding convergence guarantees.

2.1 Notations
For any n ∈ N, denote [n] = {1, 2, . . . , n} and [±n] = {±1,±2, . . . ,±n}. Let x,y ∈ Rn be
two vectors. |x| ∈ Rn denotes the entry-wise absolute value of x, i.e., |x|i = |xi| for any
i ∈ [n]. x � y refers to entry-wise comparison, i.e., xi ≤ yi ∀i ∈ [n].

14 In this variant, all the entries in matrix A is non-negative.
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Let A be an m× n real matrix. For any i ∈ [n], denote the ith column of A as Ai and its
negation to be A−i, i.e., A−i = −Ai. When A is positive semidefinite, we define the A-norm
of a vector x ∈ Rn to be ‖x‖A :=

√
x>Ax. Let A† to be the pseudo-inverse of A. Define

the maximum eigenvalue of A as λmax(A) := maxx∈Rn: ‖x‖2=1 ‖x‖A, the minimum non-zero
eigenvalue of A to be λmin(A) := 1/(maxx∈Rn: ‖x‖2=1 ‖x‖A†), and the condition number of
A to be κ(A) := λmax(A)/λmin(A). If we do not specified, the following λmax, λmin, and κ
are the eigenvalues and condition number of the connectivity matrix C = A>A. For any
b ∈ Rm, we denote bA to be the projection of b on the range space of A.

2.2 Optimization problems

In this subsection, we are going to introduce two optimization problems: non-negative least
squares and `1 minimization.

2.2.1 Non-negative least squares

I Problem 1 (non-negative least squares). Let m,n ∈ N. Given A ∈ Rm×n and vector
b ∈ Rm, find x ∈ Rn that minimizes ‖b−Ax‖2

2/2 subject to xi ≥ 0 for all i ∈ [n].

I Remark. Recall that the least squares problem is defined as finding x that minimize
‖b−Ax‖2. That is, the non-negative least squares is a restricted version of the least squares
problem. Nevertheless, one can use a non-negative least squares solver to solve the least
squares problem by setting A′ =

(
A>A −A>A

−A>A A>A

)
and b′ =

( b
−b
)
where (A,b) is the instance

of least squares and (A′,b′) is the instance of non-negative least squares.

The SNN algorithm might not solve the non-negative least squares problem exactly
and thus we define the following notion of solving the non-negative least squares problem
approximately.

I Definition 3 (ε-approximate solution to non-negative least squares). Let m,n ∈ N and ε > 0.
Given A ∈ Rm×n and b ∈ Rm. We say x is an ε-approximate solution to the non-negative
least squares problem of (A,b) if ‖Ax−Ax∗‖2 ≤ ε‖b‖2 where x∗ is an optimal solution.

2.2.2 `1 minimization

I Problem 2 (`1 minimization). Let m,n ∈ N. Given A ∈ Rm×n and b ∈ Rm such that
there exists a solution to Ax = b. The goal of `1 minimization is to solve the following
optimization problem.

minimize
x∈Rn

‖x‖1

subject to Ax = b.

Similarly, we do not expect SNN algorithm to solve the `1 minimization exactly. Thus,
we define the notion of solving the `1 minimization problem approximately as follows.

I Definition 4 (ε-approximate solution to `1 minimization). Let m,n ∈ N and ε > 0. Given
A ∈ Rm×n and b ∈ Rm. Let OPT`1 denote the optimal value of the `1 minimization problem
of (A,b). We say x ∈ Rn is an ε-approximate solution of the `1 minimization problem of
(A,b) if ‖b−Ax‖2 ≤ ε · ‖b‖2 and ‖x‖1 −OPT`1 ≤ ε ·OPT`1 .
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2.3 Karush-Kuhn-Tucker conditions

Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient conditions for the
optimality of optimization problems under some regular assumptions. Consider the following
optimization program.

minimize
x∈Rn

f(x)

subject to gi(x) ≤ 0, ∀i = 1, 2, . . .m,
hj(x) = 0, ∀j = 1, 2, . . . , k,

(4)

where f, g1, . . . , gm, h1, . . . , hk are convex and differentiable. Let v ∈ Rm and µ ∈ Rk be the
dual variables. KKT conditions give necessary and sufficient conditions for (x,v,µ) be a
pair of primal and dual optimal solutions.

I Theorem 5 (KKT conditions, Chapter 5.5.3 in [13]). (x,v,µ) are a pair of primal and dual
optimal solutions for (4) if and only if the following conditions hold.

x is primal feasible, i.e., gi(x) ≤ and hj(x) = 0 for all i ∈ [m] and j ∈ [k].
(v,µ) is dual feasible, i.e., vi ≥ 0 for all i ∈ [m].
The Lagrange multiplier vanishes, i.e., ∇f(x) +

∑
i∈[m] vi∇gi(x) +

∑
j∈[k] µj∇hj(x) = 0.

(x,v,µ) satisfy complementary slackness, i.e., vifi(x) ≥ 0 for all i ∈ [m].

2.4 Perturbation theory

Perturbation theory, sometimes known as sensitivity analysis, for optimization problems
concerns the situation where the optimization program is perturbed and the goal is to give a
good estimation for the optimal solution. See a nice survey by Bonnans and Shapiro [11]. In
the following we state a special case for convex optimization program with strong duality.

I Theorem 6 (perturbation, Chapter 5.6 in [13]15). Given the following two optimization
programs where the strong duality holds and there exists feasible dual solution.

minimize
x

f(x)

subject to gi(x) ≤ 0, ∀i = 1, 2, . . . ,m,
hj(x) = 0, ∀j = 1, 2, . . . , k.

(5)

minimize
x

f(x)

subject to gi(x) ≤ ai, ∀i = 1, 2, . . . ,m,
hj(x) = bj , ∀j = 1, 2, . . . , k.

(6)

Let OPToriginal be the optimal value of the original program (5) and OPTperturbed be
the optimal value of the perturbed program (6). Let (v∗,µ∗) ∈ Rm × Rk be the optimal dual
solution of the perturbed program (6). We have

OPToriginal ≥ OPTperturbed + a>v∗ + b>µ∗.

15Note that we switch the original and perturbed programs in the statement in [13].
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3 A simple SNN algorithm for `1 minimization

In this section, we focus on the discovery of the dual view of simple SNN and how it can be
viewed as a primal-dual algorithm for solving the `1 minimization problem.

Recall that for the `1 minimization problem, we are working on the two-sided simple
SNN for the convenience of future analysis. That is,

d

dt
u(t) = −α ·A>As(t) +A>b,

where si(t) = 1ui(t)>η − 1ui(t)<−η. To solve the `1 minimization problem, we configure
a two-sided simple SNN as follows. Given an input (A,b), let C = A>A and I = A>b.
However, currently it is unclear how does the above simple SNN dynamics relate to the `1
minimization problem.

minimize
x∈Rn

‖x‖1

subject to Ax = b.
(7)

Interesting, the connection between simple SNN and the `1 minimization problem happens
in the dual program of the `1 minimization problem. Before we formally explain this
connection, let us write down the dual program of (7).

maximize
v∈Rm

b>v

subject to ‖A>v‖∞ ≤ 1.
(8)

Let us try to make some geometric observations on (8). First, the objective of the dual
program is to maximize the inner product with b, which is quite related to the external
charging of SNN since we take I = A>b. Next, the feasible region of the dual program is a
polytope (or a polyhedron) defined by the intersection of half-spaces {v ∈ Rm : A>i v ≤ 1}
and {v ∈ Rm : −A>i v ≤ 1} for each i ∈ [n] where Ai denotes the ith column of A.

It will be convenient to introduce the following notation before we move on. For i ∈ [n],
let A−i = −Ai. Let [±n] = {±1,±2, . . . ,±n}. Thus, the feasible polytope of the dual
program is defined by the intersection of half-spaces defined by A>j v ≤ 1 for all j ∈ [±n]. We
call this polytope the dual polytope16. Moreover, for each j ∈ [±n], we call the hyperplane
{v : A>j v = 1} the wall Wj of the dual polytope. See Figure 3 for examples.

Now, the key observation is that by a linear transformation, the dynamics of simple SNN
has a natural interpretation in the dual space. We call it the dual SNN defined as follows.

3.1 Dual SNN
We first recall the simple SNN dynamics which we call the primal SNN from now on. For
convenience, we set the threshold parameter η = 1. For any t ≥ 0,

u(t+ dt) = u(t)− α ·A>A · s(t) +A>b · dt. (9)

Now, we define the dual SNN v(t) ∈ Rm as follows. Let v(0) = 0 and for each t ≥ 0, define

v(t+ dt) = v(t)− α ·As(t) + b · dt. (10)

16 In the case where the feasible region of the dual program is not bounded, it is a dual polyhedron. For
the convenience of the presentation, we usually assume the feasible region is bounded.
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Figure 3 This is examples of the geometric interpretation of the dual program of `1 minimization
problem. In (a), we have n = 1 where A1 = [ 1

3 1]>. In this case, the gray area, i.e., the feasible
region of the dual program, is unbounded. In (b), we have n = 3 where A1 = [1 0]>, A2 = [0 1]>,
and A3 = [ 2

3
2
3 ]>. In this case, the gray area is bounded and thus called dual polytope.

Let us make some remarks about the connection between the primal and dual SNNs. First,
it can be immediately seen that u(t) = A>v(t) for each t ∈ N from (9) and (10). That is,
given v(t), it is easy to get u(t) by multiplying u(t) with A> on the left. It turns out that
the other direction also holds. For each t ∈ N, we have v(t) = (A>)†u(t), where (A>)† is the
pseudo-inverse of A>. The reason is because the primal SNN u(t) lies in the column space
of A. Thus, the two dynamics are in fact isomorphic to each other.

Now let us understand the dynamics of dual SNN in the dual space Rm. At each timestep,
there are two terms, i.e., the external charging b · dt and the spiking effect −αAs(t), that
affect the dual SNN v(t). The external charging can be thought of as a constant force that
drags that dual SNN in the direction b. See Figure 4. This coincides with the objective
function of the dual program (8) and thus the external charging can then be viewed as taking
a gradient step towards solving (8).

Nevertheless, to solve (8), one need to make sure the solution v is feasible, i.e., v should lie
in the dual polytope. Interestingly, this is exactly what the spike is doing! Recall that neuron
i fires a spike if |ui(t)| > 1 (recall that we set η = 1), which corresponds to |A>i v(t)| > 1 in
the dual space. Thus, the spike term has the following nice geometric interpretation: if v(t)
“exceeds” the wall Wj for some j ∈ [±n], then neuron |j| fires a spike and v(t) is “bounced
back” in the normal direction of the wall Wj in the sense that v(t) is subtracted by α ·Aj .
See Figure 4 for example.

Therefore, one can view the dual SNN as performing a variant of projected gradient
descent algorithm for the dual program of `1 minimization problem. Specifically, to maintain
the feasibility, the vector is not projected back to the feasible region as usual, but is “bounced
back” in the normal direction of the wallWj corresponding to the violated constraint A>j v ≤ 1.
An advantage of this variant is that the “bounced back” operation is simply subtraction
of α · Aj , which is significantly more efficient than the orthogonal projection back to the
feasible region. On the other hand, note that the dynamics might not exactly converge to the
optimal dual solution vOPT. Intuitively, the best we can hope for is that v(t) will converge
to a small neighboring region of vOPT(assuming the spiking strength α is sufficiently small).
The above intuition of viewing dual SNN as a projected gradient descent algorithm for the
dual program of the `1-minimization problem will be formally proved in the full version of
this paper.
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Figure 4 This is examples of the geometric interpretation of the dual We consider the same
matrix A as in Figure 3 and b = [0.1 0.4]>. In (a), one can see that the external charging b points
the direction that dual SNN is moving. In (b), one can see that the effect of spikes on dual SNN is a
jump in the direction of the normal vector of the wall.

The primal-dual connection. So far we have informally seen that the dual SNN can be
viewed as solving the dual program of the `1-minimization problem. However, this does not
immediately give us a reason why the firing rate would converge to the solution of the primal
program. It turns out that there is a beautiful connection between the dual SNN and firing
rate through the Karush-Kuhn-Tucker (KKT) conditions (see Section 2.3) and perturbation
theory (see Section 2.4).

We now discuss some intuitions about how the dual solution translates to the primal
solution. To jump into the core idea, let us consider an ideal scenario where the dual SNN
v(t) is already very close to the optimal dual solution vOPT for the dual program of the
`1 minimization problem. Since vOPT is the optimal solution and thus it must lie on the
boundary of the dual polytope. Let Γ ⊆ [±n] be the set of walls that vOPT touches. That
is, j ∈ Γ if and only if A>j vOPT = 1. Now, let xOPT denote the optimal primal solution of
the `1 minimization problem. Observe that by the complementary slackness in the KKT
conditions, for each i ∈ [n], we have xOPT

i > 0 (resp. xOPT
i < 0) if i ∈ Γ (resp. −i ∈ Γ) and

xOPT
i = 0 if i,−i 6∈ Γ. To summary, this is saying that Γ contains the coordinates that are

non-zero in the primal optimal solution xOPT. See Figure 5 for an example.
With this observation, once the dual SNN v(t) is very close to the optimal dual solution

vOPT and stays nearby, only those neurons correspond to Γ would fire spikes. In other words,
the firing rate of the non-zero coordinates in the primal optimal solution xOPT will remain
non-zero due to the spikes while the other coordinates will gradually go to zero.

At this point, we have seen that (i) the dual SNN can be viewed as a projected gradient
descent algorithm for the dual program of `1 minimization problem and (ii) the dual solution
(resp. dual SNN) and primal solution (resp. firing rate) have a natural connection through
the KKT conditions. Now, let us formally state the main theorem of this section about
simple SNN solving `1 minimization problem.

I Theorem 7. Given A ∈ Rm×n and b ∈ Rm where all the row of A has unit norm. Let
γ(A) be the niceness parameter17 of A. Suppose γ(A) > 0 and there exists a solution to
Ax = b. There exists a polynomial α(·) such that for any t ≥ 0, let x(t) be the firing rate

17The niceness parameter is formally defined in Definition 4 of the full version of this paper.
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Figure 5 This is an example based on Figure 3 and Figure 4. In this example, A1 = [1 0]>,
A2 = [0 1]>, A3 = [ 2

3
2
3 ]>, and b = [0.1 0.4]>. The optimal dual solution is vOPT = [ 1

2 1]> as
shown in the figure. Thus, by the above definition we have Γ = {2, 3}. By the KKT conditions, we
then know that only the 2nd and 3rd coordinate of the optimal primal solution are non-zero. Indeed,
the optimal primal solution is xOPT = [0 3

10
3

20 ]>.

of the simple SNN with C = A>A, I = A>b, η = 1, 0 < α ≤ α( γ(A)
n·λmax

). Let OPT`1 be the
optimal value of the `1 minimization problem. For any ε > 0, when t ≥ Ω( m2·n·‖b‖2

2
ε2·λmin·OPT`1 ),

then x(t) is an ε-approximate solution to the `1 minimization problem for (A,b).

Two remarks on the statement of Theorem 7. First, we consider the continuous SNN
instead of the discrete SNN, which is of interest for simulation on classical computer. In
discrete SNN, the step size is some non-negligible ∆t > 0 instead of dt. The main reason
for considering continuous SNN is that this significantly simplify the proof by avoiding a
huge amount of nasty calculations. We suspect that the proof idea would hold for discrete
SNN with discretization parameter ∆t ≤ ∆t( γ(A)

n·λmax
) for some polynomial ∆t(·). Second, the

parameters in Theorem 7 have not been optimized and we believe all the dependencies can
be improved. Since the parameters highly affect the efficiency of SNN as an algorithm for `1
minimization problem, we pose it as an interesting open problem to study what are the best
dependencies one can get.

3.2 Overview of the proof for Theorem 7
The proof for Theorem 7 consists of two main steps as mentioned in the previous subsection.
The first step argues that the dual SNN v(t) would converge to the neighborhood of the
optimal dual solution vOPT. The second step is connecting the dual solution (i.e., the dual
SNN) to the primal solution (i.e., the firing rate). In the subsection, we sketch the proof for
Theorem 7 while some lemmas and definitions might not appear in this conference version
and can found in the full version of this paper.

In the first step, we try to identify a potential function18 that captures how close is v(t)
to the optimal dual solution vOPT. It turns out that this is not an easy task since the effect
of spikes makes the behavior of dual SNN very non-monotone. We conquer the difficulty
via a technique that we call ideal coupling (see Definition 6 and Figure 7 in the full version).

18Potential function is widely used in the analysis of many gradient-descent based algorithm. The difficulty
lies in the search of a good potential function for the algorithm.
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Theorem 7
(SNN solves `1 minimization problem)

Lemma 3.11
(convergence of `2 error)

Lemma 3.12
(`2 error upper bounds `1 error)

KKT conditions PerturbationLemma 3.5
(unchaged after spikes)

Lemma 3.8
(strict improvement)

Definition 4
(niceness of input matrix)

Definition 6
(ideal coupling)

Definition 8
(auxiliary SNN)

Figure 6 Overview of the proof for Theorem 7. The missing lemmas and definitions can be found
in the full version of this paper.

The idea is associating the dual SNN v(t) with an ideal SNN videal(t) for every t ≥ 0 such
that the ideal SNN would have smoother behavior comparing to the spiking phenomenon
in the dual SNN. We will formally define the ideal SNN in Section 3.4 of the full version.
There are two advantages of using ideal SNN instead of handling dual SNN directly: (i)
Ideal SNN is smoother than dual SNN in the sense that it would not change after spikes (see
Lemma 3.5 in the full version). Further, by introducing some auxiliary processes (i.e., the
auxiliary SNNs defined in Definition 8 in the full version), we are able to identify a potential
function that is strictly improving at any moment and measures how well the dual SNN
has been solving the `1 minimization problem (see Lemma 3.8 in the full version). (ii) ideal
SNN is naturally associated with an ideal solution (defined in Definition 7 in the full version)
which is easier to analyze than the firing rate. Using these good properties of ideal SNN, we
can prove in Lemma 3.11 (in the full version) that the `2 residual error of the ideal solution
will converge to 0.

After we are able to show the convergence of the `2 residual error in Lemma 3.11 (in the
full version), we move to the second step where the goal is showing that the `1 norm of the
solution is also small. We look at the KKT conditions of the `1 minimization problem and
observe that the primal and dual solutions of SNN satisfy the KKT conditions of a perturbed
program of the `1 minimization problem. Finally, combine tools from perturbation theory,
we can upper bound the `1 error of the ideal solution by its `2 residual error in Lemma 3.12
(in the full version).

Theorem 7 then follows from Lemma 3.11 and Lemma 3.12 (in the full version) with
some special cares on how to transform everything for ideal solution to the firing rate. See
Figure 6 for an overall structure of the proof for Theorem 7.

The full proof for Theorem 7 and other technical details are all provided in the full version
of this paper.
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