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Abstract
We study density estimation for classes of shift-invariant distributions over Rd. A multidimen-
sional distribution is “shift-invariant” if, roughly speaking, it is close in total variation distance
to a small shift of it in any direction. Shift-invariance relaxes smoothness assumptions commonly
used in non-parametric density estimation to allow jump discontinuities. The different classes of
distributions that we consider correspond to different rates of tail decay.

For each such class we give an efficient algorithm that learns any distribution in the class from
independent samples with respect to total variation distance. As a special case of our general
result, we show that d-dimensional shift-invariant distributions which satisfy an exponential
tail bound can be learned to total variation distance error ε using Õd(1/εd+2) examples and
Õd(1/ε2d+2) time. This implies that, for constant d, multivariate log-concave distributions can
be learned in Õd(1/ε2d+2) time using Õd(1/εd+2) samples, answering a question of [29]. All of
our results extend to a model of noise-tolerant density estimation using Huber’s contamination
model, in which the target distribution to be learned is a (1 − ε, ε) mixture of some unknown
distribution in the class with some other arbitrary and unknown distribution, and the learning
algorithm must output a hypothesis distribution with total variation distance error O(ε) from
the target distribution. We show that our general results are close to best possible by proving
a simple Ω

(
1/εd

)
information-theoretic lower bound on sample complexity even for learning

bounded distributions that are shift-invariant.
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1 Introduction

In multidimensional density estimation, an algorithm has access to independent draws from
an unknown target probability distribution over Rd, which is typically assumed to belong
to or be close to some class of “nice” distributions. The goal is to output a hypothesis
distribution which with high probability is close to the target distribution. A number of
different distance measures can be used to capture the notion of closeness; in this work we
use the total variation distance (also known as the “statistical distance” and equivalent to
the L1 distance). This is a well studied framework which has been investigated in detail, see
e.g. the books [23, 24].

Multidimensional density estimation is typically attacked in one of two ways. In the first
general approach a parameterized hypothesis class is chosen, and a setting of parameters is
chosen based on the observed data points. This approach is justified given the belief that
the parameterized class contains a good approximation to the distribution generating the
data, or even that the parameterized class actually contains the target distribution. See
[14, 33, 39] for some well-known multidimensional distribution learning results in this line.

In the second general approach a hypothesis distribution is constructed by “smoothing”
the empirical distribution with a kernel function. This approach is justified by the belief that
the target distribution satisfies some smoothness assumptions, and is more appropriate when
studying distributions that do not have a parametric representation. The current paper falls
within this second strand.

The most popular smoothness assumption is that the distribution has a density that
belongs to a Sobolev space [42, 6, 30, 24]. The simplest Sobolev space used in this context
corresponds to having a bound on the average of the partial first “weak derivatives” of the
density; other Sobolev spaces correspond to bounding additional derivatives. A drawback
of this approach is that it does not apply to distributions whose densities have jump
discontinuities. Such jump discontinuities can arise in various applications, for example,
when objects under analysis must satisfy hard constraints.

To address this, some authors have used the weaker assumption that the density belongs
to a Besov space [7, 22, 38, 43, 3]. In the simplest case, this allows jump discontinuities as
long as the function does not change very fast on average. The precise definition, which
is quite technical (see [22]), makes reference to the effect on a distribution of shifting the
domain by a small amount.

The densities we consider. In this paper we analyze a clean and simple smoothness
assumption, which is a continuous analog of the notion of shift-invariance that has recently
been used for analyzing the learnability of various types of discrete distributions [5, 16, 21].
The assumption is based on the shift-invariance of f in direction v at scale κ, which, for a
density f over Rd, a unit vector v ∈ Rd, and a positive real value κ, we define to be

SI(f, v, κ) def= 1
κ
· sup
κ′∈[0,κ]

∫
Rd

|f(x+ κ′v)− f(x)| dx.

We define the quantity SI(f, κ) to be the worst case of SI(f, v, κ) over all directions v, i.e.
SI(f, κ) def= supv:‖v‖2=1 SI(f, v, κ). For any constant c, we define the class of densities CSI(c, d)
to consist of all d-dimensional densities f with the property that SI(f, κ) ≤ c for all κ > 0.

Our notion of shift-invariance provides a quantitative way of capturing the intuition
that the density f changes gradually on average in every direction. Several natural classes
fit nicely into this framework; for example, we note that d-dimensional standard normal
distributions are easily shown to belong to CSI(1, d). As another example, we will show later
that any d-dimensional isotropic log-concave distribution belongs to CSI(Od(1), d).
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Many distributions arising in practice have light tails, and distributions with light tails can
in general be learned more efficiently. To analyze learning shift-invariant distributions in a
manner that takes advantage of light tails when they are available, while accommodating heav-
ier tails when necessary, we define classes with different combinations of shift-invariant and tail
behavior. Given a nonincreasing function g : R+ → [0, 1] which satisfies limt→+∞ g(t) = 0,
we define the class of densities CSI(c, d, g) to consist of those f ∈ CSI(c, d) which have the
additional property that for all t > 0, it holds that Prx←f [||x− µ|| > t] ≤ g(t), where
µ ∈ Rd is the mean of the distribution f.

As motivation for its study, we feel that CSI(c, d, g) is a simple and easily understood class
that exhibits an attractive tradeoff between expressiveness and tractability. As we show, it is
broad enough to include distributions of central interest such as multidimensional isotropic
log-concave distributions, but it is also limited enough to admit efficient density estimation
algorithms.

Our density estimation framework. We recall the standard notion of density estimation
with respect to total variation distance. Given a class C of densities over Rd, a density
estimation algorithm for C is given access to i.i.d. draws from f , where f ∈ C is the unknown
target density to be learned. For any f ∈ C, given any parameter ε > 0, after making some
number of draws depending on d and ε the density estimation algorithm must output a
description of a hypothesis density h over Rd which, with high probability over the draws
from f , satisfies dTV(f, h) ≤ ε. It is of interest both to bound the sample complexity of such
an algorithm (the number of draws from f that it makes) and its running time. In the full
version of this paper [20], we show that our learning results can be extended to a challenging
model of noise-tolerant density estimation for a class C.

1.1 Results
Our main positive result is a general algorithm which efficiently learns any class CSI(c, d, g).
Given a constant c and a tail bound g, we show that any distribution in the class CSI(c, d, g)
can be learned to any error O(ε) with a sample complexity that depends on c, g, ε and d.
The running time of our algorithm is roughly quadratic in the sample complexity, and the
sample complexity is Oc,d,g(1) ·

( 1
ε

)d+2 (see Theorem 12 in Section 4 for a precise statement
of the exact bound). These bounds on the number of examples and running time do not
depend on which member of CSI(c, d, g) is being learned.

Application: Learning multivariate log-concave densities. A multivariate density function
f over Rd is said to be log-concave if there is an upper semi-continuous concave function
φ : Rd → [−∞,∞) such that f(x) = eφ(x) for all x. Log-concave distributions arise in a range
of contexts and have been well studied; see [11, 12, 3, 1, 9, 25] for work on density estimation
of univariate (discrete and continuous) log-concave distributions. In the multivariate case,
[35] gave a sample complexity lower bound (for squared Hellinger distance) which implies
that Ω(1/ε(d+1)/2) samples are needed to learn d-dimensional log-concave densities to error ε.
More recently, [29] established the first finite sample complexity upper bound for multivariate
log-concave densities, by giving an algorithm that learns any d-dimensional log-concave
density using Õd(1/ε(d+5)/2) samples. The algorithm of [29] is not computationally efficient,
and indeed, Diakonikolas et al. ask if there is an algorithm with running time polynomial
in the sample complexity, referring to this as “a challenging and important open question.”
A subsequent (and recent) work of Carpenter et al. [10] showed that the maximum likelihood
estimator (MLE) is statistically efficient (i.e., achieves near optimal sample complexity).

ITCS 2019
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We show that multivariate log-concave densities can be learned in polynomial time
as a special case of our main algorithmic result. We establish that any d-dimensional
near-isotropic log-concave density is Od(1)-shift-invariant. Together with well-known tail
bounds on d-dimensional log-concave densities, this easily yields that any d-dimensional
near-isotropic log-concave density belongs to CSI(c, d, g) where the tail bound function g is
inverse exponential. Theorem 12 then immediately gives a Õd(1/ε2d+2)-time algorithm for
learning near-isotropic log-concave densities. Adding a preprocessing step to reduce to the
near-isotropic case yields an algorithm that works for all log-concave densities.

While our sample complexity is quadratically larger than the optimal sample complexity
for learning log-concave distributions (from [29]), such computational-statistical tradeoffs are
in fact quite common (see, for example, the work of [8] which gives a faster algorithm for
learning Gaussian mixture models by using more samples).

A lower bound. We also prove a simple lower bound, showing that any algorithm that learns
shift-invariant d-dimensional densities with bounded support to error ε must use Ω

(
1/εd

)
examples. These densities may be thought of as satisfying the strongest possible rate of tail
decay as they have zero tail mass outside of a bounded region (corresponding to g(t) = 0 for
t larger than some absolute constant). This lower bound shows that a sample complexity of
at least 1/εd is necessary even for very structured special cases of our multivariate density
estimation problem.

1.2 Our approach
For simplicity, and because it is a key component of our general algorithm, we first describe
how our algorithm learns an ε-error hypothesis when the target distribution belongs to
CSI(c, d) and also has bounded support: all its mass is on points in the origin-centered ball of
radius 1/2.

In this special case, analyzed in Section 3, our algorithm has two conceptual stages.
First, we smooth the density that we are to learn through convolution – this is done in
a simple way by randomly perturbing each draw. This convolution uses a kernel that
damps the contributions to the density coming from high-frequency functions in its Fourier
decomposition; intuitively, the shift-invariance of the target density ensures that the convolved
density (which is an average over small shifts of the original density) is close to the original
density. In the second conceptual stage, the algorithm approximates relatively few Fourier
coefficients of the smoothed density. We show that an inverse Fourier transformation using
this approximation still provides an accurate approximation to the target density.3

Next, in Section 4, we consider the more general case in which the target distribution
belongs to the class CSI(c, d, g). Here the high-level idea of our approach is very straightfor-
ward: it is essentially to reduce to the simpler special case (of bounded support and good
shift-invariance in every direction) described above. (A crucial aspect of this transformation
algorithm is that it uses only a small number of draws from the original shift-invariant
distribution; we return to this point below.) We can then use the algorithm for the special
case to obtain a high-accuracy hypothesis, and perform the inverse transformation to obtain

3 We note that a simpler version of this approach, which only uses a smoothing kernel and does not
employ Fourier analysis, can be shown to give a similar, but quantitatively worse, results, such as a
sample complexity of essentially 1/ε2d when g(t) is zero outside of a bounded region. However, this is
worse than the lower bound of Ω(1/εd) by a quadratic factor, whereas our algorithm essentially achieves
this optimal sample complexity.
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a high-accuracy hypothesis for the original general distribution. We remark that while the
conceptual idea is thus very straightforward, there are a number of technical challenges that
must be met to implement this approach. One of these is that it is necessary to truncate
the tails of the original distribution so that an affine transformation of it will have bounded
support, and doing this changes the shift-invariance of the original distribution. Another is
that the transformation procedure only succeeds with non-negligible probability, so we must
run this overall approach multiple times and perform hypothesis selection to actually end up
with a single high-accuracy hypothesis.

In Section 5 we apply the above results to establish efficient learnability of log-concave
densities over Rd. To apply our results, we need to have (i) bounds on the rate of tail decay,
and (ii) shift-invariance bounds. As noted earlier, exponential tail bounds on d-dimensional
log-concave densities are well known, so it remains to establish shift-invariance. Using basic
properties of log-concave densities, in Section 5 we show that any d-dimensional isotropic
log-concave density is Od(1)-shift-invariant. Armed with this bound, by applying our learning
result (Theorem 12) we get that any d-dimensional isotropic log-concave density can be
learned in time Õd(1/ε2d+2), using Õd(1/εd+2) samples. Log-concave distributions are shift-
invariant even if they are only approximately isotropic. We show that general log-concave
distributions may be learned by bringing them into approximately isotropic position with a
preprocessing step, borrowing techniques from [37].

1.3 Related work

The most closely related work that we are aware of was mentioned above: Holmström and
Klemelä [30] obtained bounds similar to ours for using kernel methods to learn densities
that belong to various Sobolev spaces. As mentioned above, these results do not directly
apply for learning densities in CSI(c, d, g) because of the possibility of jump discontinuities.
Holmström and Klemelä also proved a lower bound on the sample complexity of algorithms
that compute kernel density estimates. In contrast our lower bound holds for any density
estimation algorithm, kernel-based or otherwise.

The assumption that the target density belongs to a Besov space (see [36]) makes reference
to the effect of shifts on the distribution, as does shift-invariance. We do not see any obvious
containments between classes of functions defined through shift-invariance and Besov spaces,
but this is a potential topic for further research.

Another difference with prior work is the ability of our approach to succeed in the
challenging noise-tolerant learning model. We are not aware of analyses for density estimation
of densities belonging to Sobolev or Besov spaces that extend to the noise-tolerant setting in
which the target density is only assumed to be close to some density in the relevant class.

As mentioned above, shift-invariance was used in the analysis of algorithms for learning
discrete probability distributions in [5, 16]. Likewise, both the discrete and continuous Fourier
transforms have been used in the past to learn discrete probability distributions [26, 27, 15].

2 Preliminaries

We write B(r) to denote the radius-r ball in Rd, i.e. B(r) = {x ∈ Rd : x2
1 + · · ·+ x2

d ≤ r2}.
If f is a probability density over Rd and S ⊂ Rd is a subset of its domain, we write fS to
denote the density of f conditioned on S.

ITCS 2019
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2.1 Shift-invariance

Roughly speaking, the shift-invariance of a distribution measures how much it changes
(in total variation distance) when it is subjected to a small translation. The notion of
shift-invariance has typically been used for discrete distributions (especially in the context of
proving discrete limit theorems, see e.g. [13] and many references therein). We give a natural
continuous analogue of this notion below.

I Definition 1. Given a probability density f over Rd, a unit vector v, and a positive real
value κ, we say that the shift-invariance of f in direction v at scale κ, denoted SI(f, v, κ), is

SI(f, v, κ) def= 1
κ
· sup
κ′∈[0,κ]

∫
Rd

|f(x+ κ′v)− f(x)| dx. (1)

Intuitively, if SI(f, v, κ) = β, then for any direction (unit vector) v the variation distance
between f and a shift of f by κ′ in direction v is at most κβ for all 0 ≤ κ′ ≤ κ. The factor
1
κ in the definition means that SI(f, v, κ) does not necessarily go to zero as κ gets small; the
effect of shifting by κ is measured relative to κ.

Let SI(f, κ) def= sup{SI(f, v, κ) : v ∈ Rd, ‖v‖2 = 1}. For any constant c we define the
class of densities CSI(c, d) to consist of all d-dimensional densities f with the property that
SI(f, κ) ≤ c for all κ > 0.

We could obtain an equivalent definition if we removed the factor 1
κ from the definition of

SI(f, v, κ), and required that SI(f, v, κ) ≤ cκ for all κ > 0. This could of course be generalized
to enforce bounds on the modified SI(f, v, κ) that are not linear in κ. We have chosen to
focus on linear bounds in this paper to have cleaner theorems and proofs.

We include “sup” in the definition due to the fact that smaller shifts can sometimes have
bigger effects. For example, a sinusoid with period ξ is unaffected by a shift of size ξ, but
profoundly affected by a shift of size ξ/2. Because of possibilities like this, to capture the
intuitive notion that “small shifts do not lead to large changes”, we seem to need to evaluate
the worst case over shifts of at most a certain size.

As described earlier, given a nonincreasing “tail bound” function g : R+ → (0, 1) which is
absolutely continuous and satisfies limt→+∞ g(t) = 0, we further define the class of densities
CSI(c, d, g) to consist of those f ∈ CSI(c, d) which have the additional property that f has
g-light tails, meaning that for all t > 0, it holds that Prx←f [||x− µ|| > t] ≤ g(t), where
µ ∈ Rd is the mean of f.

I Remark. It will be convenient in our analysis to consider only tail bound functions g that
satisfy min{r ∈ R : g(r) ≤ 1/2} ≥ 1/10 (the constants 1/2 and 1/10 are arbitrary here and
could be replaced by any other absolute positive constants). This is without loss of generality,
since any tail bound function g which does not meet this criterion can simply be replaced by
a weaker tail bound function g∗ which does meet this criterion, and clearly if f has g-light
tails then f also has g∗-light tails.

We will (ab)use the notation g−1(ε) to mean inf{t : g(t) ≤ ε}.
The complexity of learning with a tail bound g will be expressed in part using Ig

def=∫∞
0 g(

√
z) dz. We remark that the quantity Ig is the “right” quantity in the sense that the

integral Ig is finite as long as the density has “non-trivial decay”. More precisely, note that by
Chebyshev’s inequality, g(

√
z) = O(z−1). Since the integral

∫
O(z−1)dz diverges, this means

that if Ig is finite, then the density f has a decay sharper than the trivial decay implied by
Chebyshev’s inequality.
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2.2 Fourier transform of high-dimensional distributions
In this subsection we gather some helpful facts from multidimensional Fourier analysis.

While it is possible to do Fourier analysis over Rd, in this paper, we will only do Fourier
analysis for functions f ∈ L1([−1, 1]d).

I Definition 2. For any function f ∈ L1([−1, 1]d), we define f̂ : Rd → C by f̂(ξ) =∫
x∈Rd f(x) · eπi·〈ξ,x〉dx.

Next, we recall the following standard claims about Fourier transforms of functions, which
may be found, for example, in [41].

I Claim 3. For f, g ∈ L1([−1, 1]d) let h(x) =
∫
y∈Rd f(y) · g(x− y)dy denote the convolution

h = f ∗ g of f and g. Then for any ξ ∈ Rn, we have ĥ(ξ) = f̂(ξ) · ĝ(ξ).

Next, we recall Parseval’s identity on the cube.

I Claim 4 (Parseval’s identity). For f : [−1, 1]d → R such that f ∈ L2([−1, 1]d), it holds
that

∫
[−1,1]d f(x)2dx = 1

2d ·
∑
ξ∈Zd |f̂(ξ)|2.

The next claim says that the Fourier inversion formula can be applied to any sequence in
`2(Zd) to obtain a function whose Fourier series is identical to the given sequence.

I Claim 5 (Fourier inversion formula). For any g : Zd → C such that
∑
ξ∈Zd |g(ξ)2| < ∞,

the function h(x) =
∑
ξ∈Zd

1
2d · g(ξ) · eπi·〈ξ,x〉, is well defined and satisfies ĥ(ξ) = g(ξ) for all

ξ ∈ Zd.

We will also use Young’s inequality:

I Claim 6 (Young’s inequality). Let f ∈ Lp([−1, 1]d), g ∈ Lq([−1, 1]d), 1 ≤ p, q, r ≤ ∞, such
that 1 + 1/r = 1/p+ 1/q. Then ‖f ∗ g‖r ≤ ‖f‖p · ‖g‖q.

2.3 A useful mollifier
Our algorithm and its analysis require the existence of a compactly supported distribution
with fast decaying Fourier transform. Since the precise rate of decay is not very important,
we use the C∞ function b : [−1, 1]→ R+ as follows:

b(x) =

c0 · e−
x2

1−x2 if |x| < 1
0 if |x| = 1.

(2)

Here c0 ≈ 1.067 is chosen so that b is a pdf; by symmetry, its mean is 0. (This function has
previously been used as a mollifier [34, 28].) The following fact can be found in [32] (while it
is proved only for ξ ∈ Z, it is easy to see that the same proof holds if ξ ∈ R).

I Fact 7. For b : [−1, 1] → R+ defined in (2) and ξ ∈ Z \ {0}, we have that |̂b(ξ)| ≤
e−
√
|ξ| · |ξ|−3/4.

Let us now define the function bd,γ : Rd → R+ as bd,γ(x1, . . . , xd) = 1
γd ·

∏d
j=1 b(xj/γ).

Combining this definition and Fact 7, we have the following claim:

I Claim 8. For ξ ∈ Zd with ‖ξ‖∞ ≥ t, we have |b̂d,γ(ξ)| ≤ e−
√
γ·t · (γ · t)−3/4.

The next fact is immediate from (2) and the definition of bd,γ :

I Fact 9. ‖bd,γ‖∞ = (c0/γ)d and as a consequence, ‖bd,γ‖22 ≤ (c0/γ)2d.

ITCS 2019
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3 A restricted problem: learning shift-invariant distributions with
bounded support

As sketched in Section 1.2, we begin by presenting and analyzing a density estimation
algorithm for densities that, in addition to being shift-invariant, have support bounded in
B(1/2). Our analysis also captures the fact that, to achieve accuracy ε, an algorithm often
only needs the density to be learned to have shift invariance at a scale slightly finer than ε.

I Lemma 10. There is an algorithm learn-bounded with the following property: For all
constant d, for all ε, δ > 0, all 0 < κ < ε < 1/2, and all d-dimensional densities f with support
in B(1/2) such that κSI(f, κ) ≤ ε/2, given access to independent draws from f , the algorithm

runs in Od
(

1
ε2

( 1
κ

)2d log4d ( 1
κ

)
log
( 1
κδ

))
time uses Od

(
1
ε2

( 1
κ

)d log2d ( 1
κ

)
log
( 1
κδ

))
samples,

and with probability 1 − δ, outputs a hypothesis h : [−1, 1]d → R+ such that
∫
x∈Rd |f(x) −

h(x)| ≤ ε.
Further, given any point z ∈ [−1, 1]d, h(z) can be computed in time Od

(
log2d(1/κ)

κd

)
and

satisfies h(z) ≤ Od
(

log2d(1/κ)
κd

)
.

Proof. Let 0 < γ := κ√
d
, and let us define q = f ∗ bd,γ . (Here ∗ denotes convolution and

bd,γ is the mollifier defined in Section 2.3.) We make a few simple observations about q:
(i) Since γ ≤ 1/2, we have that q is a density supported on B(1).
(ii) Since d is a constant, a draw from bd,γ can be generated in constant time. Thus given

a draw from f , one can generate a draw from q in constant time, simply by generating
a draw from bd,γ and adding it to the draw from f .

(iii) By Young’s inequality (Claim 6), we have that ‖q‖2 ≤ ‖f‖1 · ‖bd,γ‖2. Noting that f is
a density and thus ‖f‖1 = 1 and applying Fact 9, we obtain that ‖q‖2 is finite. As a
consequence, the Fourier coefficients of q are well-defined.

Preliminary analysis. We first observe that because bd,γ is supported on [−γ, γ]d, the
distribution q may be viewed as an average of different shifts of f where each shift is by a
distance at most γ

√
d ≤ κ. Fix any direction v and consider a shift of f in direction v by

some distance at most γ
√
d ≤ κ. Since κSI(f, κ) ≤ ε/2, we have that the variation distance

between f and this shift in direction v is at most ε/2. Averaging over all such shifts, it
follows that dTV(q, f) ≤ ε/2.

Next, we observe that by Claim 3, for any ξ ∈ Zd, we have q̂(ξ) = f̂(ξ) · b̂d,γ(ξ). Since
f is a pdf, |f̂(ξ)| ≤ 1, and thus we have |q̂(ξ)| ≤ |b̂d,γ(ξ)|. Also, for any parameter k ∈ Z+,
define Ck = {ξ ∈ Zd : ‖ξ‖∞ = k}. Let us fix another parameter T (to be determined later).
Applying Claim 8, we obtain∑

ξ:‖ξ‖∞>T

|q̂(ξ)|2 ≤
∑

ξ:‖ξ‖∞>T

|b̂d,γ(ξ)|2 ≤
∑
k>T

∑
ξ:‖ξ‖∞=k

|b̂d,γ(ξ)|2

≤
∑
k>T

|Ck| · e−2·
√
γ·k · (γ · k)−3/2 ≤

∑
k>T

(2k + 1)d · e−2·
√
γ·k · (γ · k)−3/2.

An easy calculation shows that if T ≥ 4d2

γ · ln
2
(
d
γ

)
, then

∑
ξ:‖ξ‖∞>T |q̂(ξ)|

2 ≤ 2(2T +

1)d · e−2·
√
γ·T · (γ · T )−3/2. If we now set T to be 4d2

γ · ln2
(
d
γ

)
+ 1

γ · ln2
(

8
ε

)
, then∑

ξ:‖ξ‖∞>T |q̂(ξ)|
2 ≤ ε2

8 .



A. De, P.M. Long, and R. A. Servedio 28:9

The algorithm. We first observe that for any ξ ∈ Zd, the Fourier coefficient q̂(ξ) can be
estimated to good accuracy using relatively few draws from q (and hence from f , recalling
(ii) above). More precisely, as an easy consequence of the definition of the Fourier transform,
we have:

I Observation 11. For any ξ ∈ Zd, the Fourier coefficient q̂(ξ) can be estimated to within
additive error of magnitude at most η with confidence 1− β using O(1/η2 · log(1/β)) draws
from q.

Let us define the set Low of low-degree Fourier coefficients as Low = {ξ ∈ Zd : ‖ξ‖∞ ≤ T}.
Thus, |Low| ≤ (2T +1)d. Thus, using S = O(η−2 · log(T/δ)) draws from f , by Observation 11,
with probability 1− δ, we can compute a set of values {û(ξ)}ξ∈Low such that

For all ξ ∈ Low, |û(ξ)− q̂(ξ)| ≤ η. (3)

Recalling (ii), the sequence {û(ξ)}ξ∈Low can be computed in O(|S| · |Low|) time. Define
û(ξ) = 0 for ξ ∈ Zd \ Low. Combining (3) with this, we get∑

ξ∈Zd

|û(ξ)− q̂(ξ)|2 ≤
∑
ξ∈Low

|û(ξ)− q̂(ξ)|2 +
∑
ξ 6∈Low

|û(ξ)− q̂(ξ)|2

≤
∑
ξ∈Low

|û(ξ)− q̂(ξ)|2 + ε2

8 |Low| · η2 + ε2

8 ≤ (2T + 1)d · η2 + ε2

8 .

Thus, setting η as η2 = (2T + 1)−d · ε
2

8 , we get that
∑
ξ∈Zd |û(ξ)− q̂(ξ)|2 ≤ ε2

4 . Note that by
definition û : Zd → C satisfies

∑
ξ∈Zd |û(ξ)|2 <∞. Thus, we can apply the Fourier inversion

formula (Claim 5) to obtain a function u : [−1, 1]d → C such that∫
[−1,1]d

|u(x)− q(x)|2dx = 1
2d ·

( ∑
ξ∈Zd

|û(ξ)− q̂(ξ)|2
)
≤ ε2

4 · 2d , (4)

where the first equality follows by Parseval’s identity (Claim 4). By the Cauchy-Schwarz
inequality,

∫
[−1,1]d |u(x) − q(x)|dx ≤

√
2d ·

√∫
[−1,1]d |u(x)− q(x)|2dx. Plugging in (4), we

obtain
∫

[−1,1]d |u(x)−q(x)|dx ≤ ε
2 . Let us finally define h (our final hypothesis), h : [−1, 1]d →

R+, as follows: h(x) = max{0,Re(u(x))}. Note that since q(x) is a non-negative real value
for all x, we have∫

[−1,1]d
|h(x)− q(x)|dx ≤

∫
[−1,1]d

|u(x)− q(x)|dx ≤ ε

2 . (5)

Finally, recalling that we previously proved dTV(f, q) ≤ ε
2 , it follows that

∫
[−1,1]d |h(x) −

f(x)|dx ≤ ε.

Complexity analysis. We now analyze the time and sample complexity of this algorithm as
well as the complexity of computing h. First of all, observe that plugging in the value of γ and

recalling that d is a constant, we get that T = 4d2

γ · ln
2
(
d
γ

)
+ 1

γ · ln
2
(

8
ε

)
= O

(
log2(1/κ)

κ

)
.

Combining this with the choice of η we get that the algorithm uses

S = O

(
1
η2 · log

(
|Low|
δ

))
= O

(
1
η2 · log

(
T

δ

))
= O

 (2T + 1)d · log
(
T
δ

)
ε2


= Od

(
1
ε2

(
1
κ

)d
log2d

(
1
κ

)
log
(

1
κδ

))
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draws from p. Next, as we have noted before, computing the sequence {û(ξ)} takes time

O(S · |Low|) = Od

(
1
ε2

(
1
κ

)d
log2d

(
1
κ

)
log
(

1
κδ

)
T d
)

= Od

(
1
ε2

(
1
κ

)2d
log4d

(
1
κ

)
log
(

1
κδ

))
.

To compute the function u (and hence h) at any point x ∈ [−1, 1]d takes time O(|Low|) =
Od

(
log2d(1/κ)

κd

)
. This is because the Fourier inversion formula (Claim 5) has at most O(|Low|)

non-zero terms.
Finally, we prove the upper bound on h. If the training examples are x1, ..., xS , then for

any z ∈ [−1, 1]d, we have

h(z) ≤ |u(z)| =

∣∣∣∣∣∣
∑
ξ∈Low

1
2d · û(ξ) · eπi·〈ξ,z〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
ξ∈Low

1
2d ·

(
1
S

S∑
t=1

eπi〈ξ,xt〉

)
· eπi·〈ξ,z〉

∣∣∣∣∣∣
≤ |Low|

2d = Od

(
log2d(1/κ)

κd

)
,

completing the proof. J

4 Density estimation for densities in CSI(c, d, g)

Fix any nonincreasing tail bound function g : R+ → [0, 1] which satisfies limt→+∞ g(t) = 0
and min{r ∈ R : g(r) ≤ 1/2} ≥ 1/10 and any constant c ≥ 1. In this section we prove the
following theorem which gives a density estimation algorithm for the class of distributions
CSI(c, d, g):

I Theorem 12. For any c, g as above and any d ≥ 1, there is an algorithm with the following
property: Let f be any target density (unknown to the algorithm) which belongs to CSI(c, d, g).
Given any error parameter 0 < ε < 1/2 and confidence parameter δ > 0 and access to
independent draws from f , the algorithm with probability 1 − O(δ) outputs a hypothesis
h : [−1, 1]d → R≥0 such that

∫
x∈Rd |f(x)− h(x)| ≤ O(ε).

The algorithm runs in Oc,d
((

(g−1(ε))2d ( 1
ε

)2d+2 log4d
(
g−1(ε)
ε

)
log
(
g−1(ε)
εδ

)
+ Ig

)
log 1

δ

)
time and uses Oc,d

((
(g−1(ε))d

( 1
ε

)d+2 log2d
(
g−1(ε)
ε

)
log
(
g−1(ε)
εδ

)
+ Ig

)
log 1

δ

)
samples.

4.1 Outline of the proof
Theorem 12 is proved by a reduction to Lemma 10. The main ingredient in the proof of
Theorem 12 is a “transformation algorithm” with the following property: given as input
access to i.i.d. draws from any density f ∈ CSI(c, d, g), the algorithm constructs parameters
which enable draws from the density f to be transformed into draws from another density,
which we denote r. The density r is obtained by approximating f after conditioning on a
non-tail sample, and scaling the result so that it lies in a ball of radius 1/2.

Given such a transformation algorithm, the approach to learn f is clear: we first run
the transformation algorithm to get access to draws from the transformed distribution r.
We then use draws from r to run the algorithm of Lemma 10 to learn r to high accuracy.
(Intuitively, the error relative to f of the final hypothesis density is O(ε) because at most
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O(ε) comes from the conditioning and at most O(ε) from the algorithm of Lemma 10.)
We note that while this high-level approach is conceptually straightforward, a number of
technical complications arise; for example, our transformation algorithm only succeeds with
some non-negligible probability, so we must run the above-described combined procedure
multiple times and perform hypothesis testing to identify a successful final hypothesis from
the resulting pool of candidates.

The rest of this section is organized as follows: In Section 4.2 we give various necessary
technical ingredients for our transformation algorithm. We state and prove the key results
about the transformation algorithm in Section 4.3, and we use the transformation algorithm
to prove Theorem 12 in Section 4.4.

4.2 Technical ingredients for the transformation algorithm
As sketched earlier, our approach will work with a density obtained by conditioning f ∈ SI(c, d)
on lying in a certain ball that has mass close to 1 under f . While we know that the original
density f ∈ SI(c, d) has good shift-invariance, we will further need the conditioned distribution
to also have good shift-invariance in order for the learn-bounded algorithm of Section 3 to
work. Thus we require the following simple lemma, which shows that conditioning a density
f ∈ SI(c, d) on a region of large probability cannot hurt its shift invariance too much.

I Lemma 13. Let f ∈ SI(c, d) and let B be a ball such that Prx∼f [x ∈ B] ≥ 1− δ where
δ < 1/2. If fB is the density of f conditioned on B, then, for all κ > 0, SI(fB , κ) ≤ 4δ

κ + 2c.

Proof. Let v be any unit vector in Rd. Note that f can be expressed as (1− δ)fB + δ · ferr
where ferr is some other density. As a consequence, for any κ > 0, using the triangle
inequality we have that∫

x

|f(x)− f(x+ κv)|dx ≥ (1− δ)
∫
x

|fB(x)− fB(x+ κv)|dx

− δ
∫
x

|ferr(x)− ferr(x+ κv)|dx.

Since f ∈ CSI(c, d) the left hand side is at most cκ, whereas the subtrahend on the right hand
side is trivially at most 2δ. Thus, we get

∫
x
|fB(x)− fB(x+ κv)|dx ≤ 2δ

1−δ + cκ
1−δ , completing

the proof. J

If f is an unknown target density then of course its mean is also unknown, and thus we
will need to approximate it using draws from f . To do this, it will be helpful to convert our
condition on the tails of f to bound the variance of ||x− µ||, where x ∼ f.

I Lemma 14. For any f ∈ CSI(c, d, g), we have Ex∼f [||x− µ||2] ≤ Ig.

Proof. We have Ex∼f [||x− µ||2] =
∫∞

0 Prx∼f [||x− µ||2 ≥ z] dz ≤
∫∞

0 g(
√
z) dz = Ig. J

The following easy proposition gives a guarantee on the quality of the empirical mean:

I Lemma 15. For any f ∈ CSI(c, d, g), if µ ∈ Rd is the mean of f and µ̂ is its empirical
estimate based on M samples, then for any t > 0 we have Pr

[
||µ− µ̂||2 ≥ t

]
≤ Ig

Mt .

Proof. If x1, . . . ,xM are independent draws from f , then

E[||µ− µ̂||2] = E
[∣∣∣∣µ− x1 + . . .+ xM

M

∣∣∣∣2] =
M∑
i=1

1
M2 E

[∣∣∣∣µ− xi∣∣∣∣2] = Ig
M
,

where the last inequality is by Lemma 14. Applying Markov’s inequality on the left hand
side, we get the stated claim. J
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4.3 Transformation algorithm
I Lemma 16. There is an algorithm compute-transformation such that given access to
samples from f ∈ CSI(c, d, g) and an error parameter 0 < ε < 1/2, the algorithm takes
O(Ig) samples from f and with probability at least 9/10 produces a vector µ̃ ∈ Rd and a
real number t with the following properties: (1) For Bt = {x : ||x − µ̃|| ≤

√
t}, we have

Prx∼f [x ∈ Bt] ≥ 1 − ε; (2) t = O(g−1(ε)2); (3) For all κ > 0, the density fBt
satisfies

SI(fBt
, κ) ≤ 4ε

κ + 2c.

Proof. For M = 100Ig, the algorithm compute-transformation simply works as follows: set
µ̃ to be the empirical mean of the M samples, and t = 2((g−1(ε))2 + 1/10). (Note that
since min{r ∈ R : g(r) ≤ 1/2} ≥ 1/10 we have t = Θ(g−1(ε)2).). Let µ denote the true
mean of f . First, by Lemma 15, with probability at least 0.9, the empirical mean µ̂ will
satisfy ||µ− µ̂||2 ≤ 1

10 . Let us assume for the rest of the proof that this happens; fix any such
outcome and denote it µ̃.

We have ||x− µ̃||2 ≤ 2(||x− µ||2 + ||µ− µ̃||2) ≤ 2(||x− µ||2 + 1/10) and so

Pr
x∈f

[||x− µ̃||2 > t] ≤ Pr
x∈f

[2(||x− µ||2 + 1/10) > t] = Pr[‖x− µ‖2 ≥ g−1(ε)] ≤ ε.

Applying Lemma 13 completes the proof. J

The following proposition elaborates on the properties of the output of the transformation
algorithm.

I Lemma 17. Let f ∈ CSI(c, d, g), ε > 0, µ̃ ∈ Rd, and t ∈ R satisfy the properties stated
in Lemma 16. Consider the density fscond defined by fscaled(x) def= 2

√
t · f

(
2
√
t · (x+ µ̃)

)
and fscond(x) def= fscaled,B(1/2)(x) where fscaled,B(1/2) is the result of conditioning fscaled on
membership in B(1/2). Then the density fscond(x) satisfies the following properties: (1) The
density fscond is supported in the ball B(1/2); (2) For all ε < 1/2 and κ > 0, the density
fscond satisfies SI(fscond, κ) ≤ 4ε

κ + 4c
√
t.

Proof. First, it is easy to verify that function fscond defined above is indeed a density. Item
1 is enforced by fiat. Now, for any direction v, we have

SI(fscaled, v, κ) = 1
κ
· sup
κ′∈[0,κ]

∫
Rd

|fscaled(x+ κ′v)− fscaled(x)| dx

= 2
√
t

κ
· sup
κ′∈[0,κ]

∫
Rd

∣∣∣f(2
√
t(x+ κ′v))− f(2

√
tx)
∣∣∣ dx.

Using a change of variables, u = 2
√
tx, we get

SI(fscaled, v, κ) = 1
κ
· sup
κ′∈[0,κ]

∫
Rd

∣∣∣f(u+ κ′2
√
tv)− f(u)

∣∣∣ du
= 1
κ
· sup
κ′∈[0,2

√
tκ]

∫
Rd

|f(u+ κ′v)− f(u)| du

= 2
√
t · SI(f, v, 2

√
tκ) ≤ 2c

√
t. (6)

The last inequality uses that f ∈ CSI(c, d, g). Inequality (6) implies that fscaled ∈
CSI(2c

√
t, d, g). Now, Prx∼fscaled(x ∈ B(1/2)) = Prx∼f (x ∈ Bt) ≥ 1 − ε, so applying

Lemma 13 completes the proof. J
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4.4 Proof of Theorem 12
We are now ready to prove Theorem 12. Consider the following algorithm, which we call
construct-candidates:
1. Run the transformation algorithm compute-transformation D := O(ln(1/δ)) many times

(with parameter ε each time). Let (µ̃(i), t) be the output that it produces on the i-th run,
where t = O(g−1(ε)2).

2. For each i ∈ [D], let B(i)
t = {x : ||x− µ̃|| ≤

√
t} and f (i)

scond be the density defined from
(µ̃(i), t) as in Lemma 17.

Before describing the third step of the algorithm, we observe that given the pair (µ̃(i), t)
it is easy to check whether any given x ∈ Rd belongs to B(i)

t . If Prx∼f [x ∈ B(i)
t ] ≥ 1/2, then

with probability at least 1/2 a draw from f can be used as a draw from f
B

(i)
t
. In this case,

via rejection sampling, it is easy to very efficiently simulate draws from f
(i)
scond given access to

samples from f (the average slowdown is at most a factor of 2). Note that if (µ̃(i), t) satisfies
the properties of Lemma 16, then Prx∼f [x ∈ B(i)

t ] ≥ 1 − ε and we fall into this case. On
the other hand, if Prx∼f [x ∈ B(i)

t ] < 1/2, then it may be inefficient to simulate draws from
f

(i)
scond. But any such i will not satisfy the properties of Lemma 16, so if rejection sampling is
inefficient to simulate draws from f

(i)
scond then we can ignore such an i in what follows. With

this in mind, the third and fourth steps of the algorithm are as follows:
3. For each i ∈ [D],4 run the algorithm learn-bounded using m samples from f

(i)
scond, where

m = m(ε, δ, d) is the sample complexity of learn-bounded from Lemma 10. Let h(i)
scond be

the resulting hypothesis that learn-bounded outputs.
4. Finally, for each i ∈ [D] output the hypothesis obtained by inverting the mapping of

Lemma 17, i.e.

h(i)(x) def= 1
2
√
t
· h(i)

scond

(
1

2
√
t
· (x− µ̃(i))

)
. (7)

Thus the output of construct-candidate is a D-tuple of hypotheses (h(1), . . . , h(D)).

We now analyze the construct-candidate algorithm. Given Lemma 16 and Lemma 17, it is
not difficult to show that with high probability at least one of the hypotheses that it outputs
has error O(ε) with respect to f :

I Lemma 18. With probability at least 1−O(δ), at least one h(i) has
∫
x
|h(i)(x)− f(x)|dx ≤

O(ε).

Proof. It is immediate from Lemma 16 and the choice of D that with probability 1− δ at
least one triple (µ̃(i), t) satisfies the properties of Lemma 16. Fix i′ to be an i for which this
holds.

Given any i ∈ [D], it is easy to carry out the check for whether rejection sampling is
too inefficient in simulating f (i)

scond in such a way that algorithm learn-bounded will indeed
be run to completion (as opposed to being terminated) on f (i′)

scond with probability at least
1 − δ, so we henceforth suppose that indeed learn-bounded is actually run to completion
on f

(i′)
scond. Since (µ̃(i′), t) satisfies the properties of Lemma 16, by Lemma 17, taking

4 Actually, as described above, this and the fourth step are done only for those i for which rejection
sampling is not too inefficient in simulating draws from f

(i)
scond given draws from f ; for the other i’s, the

run of learn-bounded is terminated.
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κ = min{ε/2, ε/(4g−1(ε)c)}) the density f (i′)
scond satisfies the required conditions for Lemma 10

to apply with that choice of κ. The following simple proposition, proved in the long version
of this paper [20], implies that h(i) is likewise O(ε)-close to fBt :

I Proposition 19. Let f and g be two densities in Rd and let x 7→ A(x−z) be any invertible
linear transformation over Rd. Let fA(x) = det(A) ·f(A(x−z)) and gA(x) = det(A) ·g(A(x−
z)) be the densities from f and g under this transformation. Then dTV(f, g) = dTV(fA, gA).

It remains only to observe that by property 1 of Lemma 16 the density fBt is ε-close
to f , and then by the triangle inequality we have that h(i) is O(ε)-close to f . This gives
Lemma 18. J

Tracing through the parameters, it is straightforward to verify that the sample and time
complexities of construct-candidates are as claimed in the statement of Theorem 12. These
sample and time complexities dominate the sample and time complexities of the remaining
portion of the algorithm, the hypothesis selection procedure discussed below.

All that is left is to identify a good hypothesis from the pool of D candidates. This can
be carried out rather straightforwardly using well-known tools for hypothesis selection. Many
variants of the basic hypothesis selection procedure have appeared in the literature, see e.g.
[44, 18, 2, 17, 19]). The following is implicit in the proof of Proposition 6 from [19]:

I Proposition 20. Let D be a distribution with support contained in a set W and let
Dε = {Dj}Mj=1 be a collection of M hypothesis distributions over W with the property that
there exists i ∈ [M ] such that dTV(D,Di) ≤ ε. There is an algorithm SelectD which is
given ε and a confidence parameter δ, and is provided with access to (i) a source of i.i.d.
draws from D and from Di, for all i ∈ [M ]; and (ii) a (1 + β) “approximate evaluation
oracle” evalDi(β), for each i ∈ [M ], which, on input w ∈W , deterministically outputs D̃β

i (w)
such that the value Di(w)

1+β ≤ D̃β
i (w) ≤ (1 + β) ·Di(w). Further, (1 + β)2 ≤ (1 + ε/8). The

SelectD algorithm has the following behavior: It makes m = O
(
(1/ε2) · (logM + log(1/δ))

)
draws from D and from each Di, i ∈ [M ], and O(m) calls to each oracle evalDi

, i ∈ [M ].
It runs in time poly(m,M) (counting each call to an evalDi oracle and draw from a Di

distribution as unit time), and with probability 1−δ it outputs an index i? ∈ [M ] that satisfies
dTV(D,Di?) ≤ 6ε.

As suggested above, the remaining step is to apply Proposition 20 to the list of candidate
hypothesis h(i) which satisfies the guarantee of Lemma 18. However, to bound the sample and
time complexity of running the procedure Proposition 20, we need to bound the complexity
both of sampling from {h(i)}i∈[D] as well as of constructing approximate evaluation oracles
for these measures.5 In fact, we will first construct densities out of the measures {h(i)}i∈[D]
and show how to both efficiently sample from these measures as well as construct approximate
evaluation oracles for these densities.

Towards this, let us now define Hmax as follows: Hmax = maxi∈[D] maxz∈[−1,1]n h
(i)
scond(z).

From Lemma 10 (recall that Lemma 10 was applied with κ = min{ε/2, ε/(4g−1(ε)c)}) we get

that Hmax = Oc,d

((
g−1(ε)
ε

)d
log2d g−1(ε)

ε

)
. We will carry out the rest of our calculations in

terms of Hmax.

5 Note that while h(i) are forced to be non-negative and thus can be seen as measures, they need not
integrate to 1 and thus need not be densities.
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I Observation 21. For any i ∈ [D],
∫
x∈[−1,1]d h

(i)
scond(x)dx can be estimated to additive

accuracy ±ε and confidence 1− δ in time Od
(
H2

max
ε2 · log(1/δ)

)
.

Proof. First note that it suffices to estimate the quantity Ex∈[−1,1]d [h(i)
scond(x)] to additive

error ε/2d. However, this can be estimated using the trivial random sampling algorithm.
In particular, as h(i)

scond(x) ∈ [0, Hmax], the variance of the simple unbiased estimator for
Ex∈[−1,1]d [h(i)

scond(x)] is also bounded by H2
max. This finishes the proof. J

Note that, while the algorithm of Observation 21 does random sampling, this sampling is
not from f , so it adds nothing to the sample complexity of the learning algorithm.

Next, for i ∈ [D], let us define the quantity Zi to be Zi =
∫
x
h(i)(x)dx. Since the functions

h(i) and h(i)
scond are obtained from each other by linear transformations (recall (7)), we get

that 2
√
tZi =

∫
x
h

(i)
scond

(
1

2
√
t
· (x− µ̃(i))

)
dx. We now define the functions H(i) and H(i)

scond as

H(i)(x) = h(i)(x)
Zi

and H
(i)
scond(x) =

h
(i)
scond( 1

2
√

t
·(x−µ̃(i)))

Zi
· 1

2
√
t
. Observe that the functions H(i)

and H(i)
scond are densities (i.e. they are non-negative and integrate to 1). First, we will show

that it suffices to run the procedure SelectD on the densities H(i). To see this, note that
Lemma 18 says that there exists i ∈ [D] such that h(i) satisfies

∫
x
|h(i)(x) − f(x)| = O(ε).

For such an i, Zi ∈ [1−O(ε), 1 +O(ε)]. Thus, we have the following corollary.

I Corollary 22. With probability at least 1−δ, at least one H(i) satisfies
∫
x
|H(i)(x)−f(x)| =

O(ε). Further, for such an i, Zi ∈ [1−O(ε), 1 +O(ε)].

Thus, it suffices to run the procedure SelectD on the candidate distributions {H(i)}i∈[D].
The next proposition shows that the densities {H(i)}i∈[D] are samplable.

I Proposition 23. A draw from the density H(i)(x) can be sampled in time O(Hmax/Zi).

Proof. First of all, note that it suffices to sample from H
(i)
scond since H(i) and H

(i)
scond are

linear transformations of each other. However, sampling from H
(i)
scond is easy using rejection

sampling. More precisely, the distribution H(i)
scond is supported on [−1, 1]d. We sample from

H
(i)
scond as follows:

1. Let C = [−1, 1]d × [0, Hmax]. Sample a uniformly random point z′ = (z1, . . . , zd+1) from
C.

2. If zd+1 ≤ h(i)
scond(z1, . . . , zd), then return the point z = (z1, . . . , zd).

3. Else go to Step 1 and repeat.
Now note that conditioned on returning a point in step 2, the point z is returned with
probability proportional to h(i)

scond(z). Thus, the distribution sampled by this procedure is
indeed H(i)

scond(z). To bound the probability of success, note that the total volume of C is
2d ×Hmax. On the other hand, step 2 is successful only if z′ falls in a region of volume Zi.
This finishes the proof. J

The next proposition says that if Zi ≥ 1/2, then there is an approximate evaluation oracle
for the density H(i).

I Proposition 24. Suppose Zi ≥ 1/2. Then there is a (1 +O(ε))- approximate evaluation
oracle for H(i) which can be computed at any point w in time O

(
H2

max
ε2

)
.
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Proof. Note that we can evaluate h(i) at any point w exactly and thus the only issue is to
estimate the normalizing factor Zi. Note that since Zi ≥ 1/2 , estimating Zi to within an
additive O(ε) gives us a (1 +O(ε)) multiplicative approximation to Zi and hence to H(i)(w)
at any point w. However, by Observation 21, this takes time O

(
H2

max
ε2

)
, concluding the

proof. J

We now apply Proposition 20 as follows.
1. For all i ∈ [D], estimate Zi using Observation 21 up to an additive error ε. Let the

estimates be Ẑi.
2. Let us define Sfeas = {i ∈ [D] : L̂i ≥ 1/2}.
3. We run the routine SelectD on the densities {H(i)}i∈Sfeas . To sample from a density H(i),

we use Proposition 23. We also construct a β = ε/32 approximation oracle for each of
the densities H(i) using Proposition 24. Return the output of SelectD.

The correctness of the procedure follows quite easily. Namely, note that Corollary 22 implies
that there is one i such that both Zi ∈ [1−O(ε), 1 +O(ε)] and

∫
x
|H(i)(x)− f(x)| = O(ε).

Thus such an i will be in Sfeas. Thus, by the guarantee of SelectD, the output hypothesis is
O(ε) close to f .

We now bound the sample complexity and time complexity of this hypothesis selection
portion of the algorithm. First of all, the number of samples required from f for running
SelectD is O((1/ε2) · (log(1/δ) + d2 log d + log log(1/δ)) = O((1/ε2) · (log(1/δ) + d2 log d).
This is clearly dominated by the sample complexity of the previous parts. To bound the
time complexity, note that the time complexity of invoking the sampling oracle for any
H(i) (i ∈ Sfeas) is dominated by the time complexity of the approximate oracle which is
2O(d) ·H2

max/ε
2. The total number of calls to the sampling as well as evaluation oracle is

upper bounded by 1
ε2 (D logD+D log(1/δ)). Plugging in the value of Hmax as well as D, we

see that the total time complexity is dominated by the bound in the statement of Theorem 12.
This finishes the proof.

5 Efficiently learning multivariate log-concave densities

In this section we present our main application, which is an efficient algorithm for learning
d-dimensional log-concave densities. We prove the following:

I Theorem 25. There is an algorithm with the following property: Let f be a unknown
log-concave density over Rd Given any error parameter ε > 0 and confidence parameter
δ > 0 and access to independent draws from f , the algorithm with probability 1− δ outputs a
hypothesis density h : Rd → R≥0 such that

∫
x∈Rd |f(x)− h(x)| ≤ O(ε). The algorithm runs

in time Od
(( 1

ε

)2d+2 log7d ( 1
ε

)
log
( 1
εδ

)
log 1

δ

)
and uses Od

(( 1
ε

)d+2 log4d ( 1
ε

)
log
( 1
εδ

)
log 1

δ

)
samples.

We will establish Theorem 25 in two stages. First, we will show that any log-concave f
that is nearly isotropic in fact belongs to a suitable class CSI(c, d); given this, the theorem
follows immediately from Theorem 12 and a straightforward tracing through of the resulting
time and sample complexity bounds. Then, we will reduce to the near-isotropic case, similarly
to what was done in [37, 4].

First, let us state the theorem for the well-conditioned case. For this, the following
definitions will be helpful.
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I Definition 26. Let Σ and Σ̃ be two positive semidefinite matrices. We say that Σ and
Σ̃ are C-approximations of each other (denoted by Σ ≈C Σ̃) if for every x ∈ Rn such that
xT Σ̃x 6= 0, we have 1

C ≤
xT Σx
xT Σ̃x

≤ C.

I Definition 27. Say that the probability distribution is C-nearly-isotropic if its covariance
matrix C-approximates I, the d-by-d identity matrix.

I Theorem 28. There is an algorithm with the following property: Let f be a unknown
C-nearly-isotropic log-concave density over Rd, where C and d are constants.

Given any error parameter ε > 0 and confidence parameter δ > 0 and access to in-
dependent draws from f , the algorithm with probability 1 − δ outputs a hypothesis den-
sity h : Rd → R≥0 such that

∫
x∈Rd |f(x) − h(x)| ≤ O(ε). The algorithm runs in time

OC,d

(( 1
ε

)2d+2 log7d ( 1
ε

)
log
( 1
εδ

)
log 1

δ

)
and uses OC,d

(( 1
ε

)d+2 log4d ( 1
ε

)
log
( 1
εδ

)
log 1

δ

)
sam-

ples.

By Theorem 12, Theorem 28 is an immediate consequence of the following theorem on
the shift-invariance of near-isotropic log-concave distributions.

I Theorem 29. Let f be a C-nearly-isotropic log-concave density in Rd, for constants C
and d. Then, for g(t) = e−Ω(t), there is a constant c1 = OC,d(1) such that f ∈ CSI(c1, d, g).

Proof. The fact that f has e−Ω(t)-light tails directly follows from Lemma 5.17 of [37], so it
remains to prove that there is a constant c1 such that f ∈ CSI(c1, d). Because membership in
CSI(c1, d) requires that a condition be satisfied for all directions v, rotating a distribution
does not affect its membership in CSI(c1, d).

Choose a unit vector v and κ > 0. By rotating the distribution if necessary, we may
assume that v = e1, and our goal of showing that SI(f, e1, κ) ≤ c1 is equivalent to showing
that

∫
|f(x)− f(x+ κ′e1)|dx ≤ c1κ for all κ′ ≤ κ.

We bound the integral of the LHS as follows. Fix some value of x′ def= (x2, . . . , xd).
Let us define Lx′

def= {(x1, x2, . . . , xd) : x1 ∈ R} to be the line through (0, x2, . . . , xd) and
(1, x2, . . . , xd). Since the restriction of a concave function to a line is concave, the restriction
of a log-concave distribution to a line is log-concave. Since∫

|f(x)− f(x+ κ′e1)| dx =
∫
x′

∫
x1

|f(x1, x2, ..., xd)− f(x1 + κ′, x2, ..., xd)| dx1dx
′ (8)

we are led to examine the one-dimensional log-concave measure f(·, x2, ..., xd). The following
will be useful for that.

I Claim 30. Let ` : R → R be a log-concave measure. Then,
∫
|`(t) − `(t + h)|dt ≤

3h ·maxt∈R `(t).

Proof. Log-concave measures are unimodal (see [31]). Let z be the mode of `, so that ` is
non-decreasing on the interval [−∞, z] and non-increasing in [z,∞]. We have∫

|`(t)− `(t+ h)| dt

=
∫ z−h

−∞
|`(t)− `(t+ h)| dt+

∫ z

z−h
|`(t)− `(t+ h)| dt+

∫ ∞
z

|`(t)− `(t+ h)| dt
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=
∫ z−h

−∞
`(t+ h)− `(t) dt+

∫ z

z−h
|`(t)− `(t+ h)| dt+

∫ ∞
z

`(t)− `(t+ h) dt

(since z is the mode of `)

=
∫ z

z−h
`(t) dt+

∫ z

z−h
|`(t)− `(t+ h)| dt+

∫ z+h

z

`(t) dt ≤ 3hmax
t∈R

`(t). J

Returning to the proof of Theorem 29, applying Claim 30 with (8), we get∫
|f(x)− f(x+ κ′e1)| dx ≤ 3κ′

∫
x′

(
max
x1∈Lx′

f(x1, x
′)
)
dx′. (9)

Now, since an isotropic log-concave distribution g satisfies g(x) ≤ K exp(−‖x‖) for an
absolute constant K (see Theorem 5.1 of [40]), our C-nearly-isotropic log-concave distribution
f satisfies f(x) ≤ CdK exp(−‖x‖) = OC,d(exp(−‖x‖)). Plugging this into (9), we get∫

|f(x)− f(x+ κ′e1)| dx ≤ OC,d(κ′)
∫
x′

(
max
x1∈Lx′

exp(−‖(x1, x
′)‖)
)
dx′

≤ OC,d(κ′)
∫
x′

exp(−‖x′‖) dx′.

Since the integral converges, this finishes the proof. J

To learn log-concave distributions that are not C-nearly-isotropic, using techniques from
[37], we preprocess the data to bring it into isotropic position, and then apply Theorem 29.
The details are in the long version of this paper [20].

6 Learning shift-invariant densities over Rd with bounded support
requires Ω(1/εd) samples

The following lower bound is proved in the long version of this paper [20].

I Theorem 31. Given d ≥ 1, there is a constant cd = Θ(
√
d) such that the following holds:

For all sufficiently small ε, let A be an algorithm with the following property: given access to
m i.i.d. samples from an arbitrary (and unknown) finitely supported density f ∈ CSI(cd, d),
with probability at least 99/100, A outputs a hypothesis density h such that dTV(f, h) ≤ ε.

Then m ≥ Ω((1/ε)d).
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