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—— Abstract

We show that every set in P is strongly testable under a suitable encoding. By “strongly testable
we mean having a (proximity oblivious) tester that makes a constant number of queries and rejects
with probability that is proportional to the distance of the tested object from the property. By a
“suitable encoding” we mean one that is polynomial-time computable and invertible. This result
stands in contrast to the known fact that some sets in P are extremely hard to test, providing

”

another demonstration of the crucial role of representation in the context of property testing.
The testing result is proved by showing that any set in P has a strong canonical PCP,
where canonical means that (for YEs-instances) there exists a single proof that is accepted with
probability 1 by the system, whereas all other potential proofs are rejected with probability
proportional to their distance from this proof. In fact, we show that UP equals the class of
sets having strong canonical PCPs (of logarithmic randomness), whereas the class of sets having
strong canonical PCPs with polynomial proof length equals “unambiguous-M.A”". Actually, for
the testing result, we use a PCP-of-Proximity version of the foregoing notion and an analogous
positive result (i.e., strong canonical PCPPs of logarithmic randomness for any set in UP).

2012 ACM Subject Classification Theory of computation — Probabilistic computation
Keywords and phrases Probabilistically checkable proofs, property testing
Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.30

Related Version Full technical report hosted on ECCC [9], https://eccc.weizmann.ac.il/
report/2018/050/.

1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see,
e.g., a recent textbook [12]). Loosely speaking, property testing typically refers to super-fast
probabilistic algorithms for deciding whether a given object has a predetermined property
or is far from any object having this property. Such algorithms, called testers, obtain local
views of the object by performing queries; that is, the tested object is modeled as a function
and the testers get oracle access to this function (and thus may be expected to work in time
that is sub-linear in the size of the object).
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It is well known that property testing is very sensitive to the representation of the tested
objects, far more so than standard studies in complexity theory (cf. [12, Sec. 1.2.5]). For
example, while the adjacency matrix and the incident lists representations are equivalent as
far as complexity classes such as P are concerned, in the case of property testing there is a
significant difference between the adjacency matriz model (a.k.a. the dense graph model [13])
and the incidence graph model (a.k.a. the bounded-degree graph model [16]).

In this paper we provide another demonstration of the crucial role of representation in
the context of property testing. Specifically, in contrast to the known fact that some sets in
P are extremely hard to test (see, e.g., [15, Theorem 7]),* we show that, under a suitable
polynomial-time computable (and invertible) encoding, all sets in P are extremely easy to
test, where by “extremely easy to test” we mean having a Proximity Oblivious Tester (POT).

1.1 Our main result: a POT for an encoding of any set in P

The standard definition of a property tester refers to randomized oracle machines that
are given two parameters as explicit inputs along with oracle access to some string (or
function). The two parameters are the size parameter, representing the size of the tested
object, and a prozimity parameter, denoted €, which determines which objects are considered
far from the property® (according to a fixed metric, typically the relative Hamming distance).
Specifically, on input parameters n and e, the test is required to distinguish (with constant
probability) n-bit long strings that have the property from n-bit long strings that are e-far

from the property, where x € {0,1}" is e-far from S if for every 2’ € SN {0,1}"™ it holds that

d(z, ") e |{i € [n] : ;#x}}|/n is greater than e. (Otherwise, we say that x is e-close to S.)

The query complexity of testers is stated as a function of the two explicit parameters,
n and e. Two extreme cases are the case of query complexity n, which can be obtained
for any property, and the case that the query complexity depends only on the proximity
parameter, which is sometimes considered the yardstick for “easy testability” (see, e.g., [1, 2]).
Typically, the query complexity is Q(1/¢), and so testers of such complexity are extremely
efficient. An even more restricted case refers to one in which the tester operates by repeating
some constant-query check for O(1/¢) times, where the celebrated linearity tester of Blum,
Luby, and Rubinfeld [7] is an archetypical case. The effect of a single repetition of the
constant-query check is captured by the notion of a prozimity oblivious tester [17].

A Proximity Oblivious Tester (POT) does not obtain a proximity parameter as input,
but rather the probability gap with which it distinguishes inputs that have the property from
ones that lack the property is allowed to be a function of the distance of the tested input
from the property (defined in (1)). Further restricting ourselves to the case of one-sided
error testers, we require that the POT always accepts inputs that have the property and
rejects objects that lack the property with probability that increases with the distance of
the object from the property.® For sake of clarity, we recall that the distance of x from S,
denoted dg(x), is defined as follows

ds(x) ®  min  {d(z,2")}, (1)
z'€{0,1}l=INS

where dg(z) = 1 if {0,1}/*I NS = (.

4 This is essentially due to [13, Prop 4.1.1].

5 As usual in the area, we associate the notion of having a property with the notion of being in the (set
of objects that have the) property.

5 A two-sided error version was also studied (see [18]), but the one-sided error version that we consider
here is much better known.
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» Definition 1.1 (Proximity Oblivious Testers). 7 Let o: (0,1] — (0, 1] be monotonically

non-decreasing.® A proximity oblivious tester (POT) with detection probability function o for S

is a probabilistic oracle machine, denoted T', that makes a constant number of queries and

satisfies the following two conditions.

1. T always accepts inputs in S: For every n € N and every w € SN {0,1}", it holds that
Pr[T*(n)=1] = 1.

2. T rejects inputs that are not in S with probability that increases as a function of their
distance from S: For every n € N and every w € {0,1}"\ S, it holds that Pr[T%(n)=
0] > o(ds(w)).

The case that g is linear is of special interest; in this case the rejection probability is

proportional to the distance of the input from the set S.

Our main result asserts the existence of a POT for some encoding of any set in P.

Starting with some natural representation of a set S C {0,1}*, we consider a representation
obtained by applying an invertible encoding E: {0,1}* — {0,1}* (i.e., we require that
E is one-to-one). Furthermore, we consider the natural case in which this encoding is
polynomial-time computable and invertible. For example, we may consider an encoding
such as E(x1 -+ xy) = £121 - - - Tn Xy or encodings that map graphs in the adjacency matrix
representation to the incidence list representation.

» Theorem 1.2 (a POT for a suitable encoding of any set in P). For any S € P there
exist polynomial-time encoding and decoding algorithms E and D = E~' such that the

set 8" {E(z) : * € S} has a proximity oblivious tester of linear detection probability.
Furthermore, |E(z)| = |E(11®)| for every x, the encoding E has constant relative distance,’
and the POT runs in polylogarithmic time and has logarithmic randomness complezity.

Recall that POTs were defined as having constant query complexity, and note that the added
conditions regarding E (i.e., being “length regular” and having constant relative distance)
only make the result potentially more appealing. Theorem 1.2 cannot be significantly
extended, since the existence of a polynomial-time tester (of arbitrary query complexity)
for {E(z) : x € S} such that F is polynomial-time computable implies that S € BPP (and
S € P follows if the tester has logarithmic randomness complexity).°

1.2 The way to our main result: strong canonical PCPPs

Theorem 1.2 is proved by using an encoding that maps the input x to a pair of the
form (C(z)!(=D TI(z)), where C is an error-correcting code, II(z) is a PCP proof that
C(z) € {C(2) : z € S}, and t(|z|) = | (x)|/|C(x)| (so that the two parts of the pair have
approximately the same length). This idea, which can be traced back to [19], works only
when the PCP system is of a certain type, as discussed next.

Unlike in [17], which considered POTs of arbitrary query complexity, here we mandate that a POT has
constant query complexity. This choice is justified by the fact that our result establishes the existence
of such POTs. Ditto regarding our choice to consider one-sided error only.

The postulate that ¢ is monotonically non-decreasing means that any input that is e-far from S is
rejected with probability at least p(€); that is, if ds(f) > € (and not only if ds(f) = €), then f is rejected
with probability at least o(e). This postulate is natural (and it can be enforced in general by redefining
o(€) < infs>c{o(d)}).

That is, for every x # y, the encodings E(z) and E(y) differ on a constant fraction of the coordinates.
10 The decision procedure maps = to E(z) and invokes the tester with proximity parameter 1/2|F(z)|. In
case F has relative distance d, invoking the tester with proximity parameter /2 will do.

9
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First, we need a PCP of Proximity (a.k.a. assignment testers), rather than a PCP. The
difference is that a PCP of Proximity does not get an explicit (main) input, but rather oracle
access to both the main input and the alleged proof. Indeed, PCPs of Proximity can be
viewed as a “property testing” variant of PCPs (or “PCP-aided variants” of property testers).
Second, valid assertions in these PCPs of Proximity must have unique valid proofs, otherwise
the mapping « — II(x) is not even well-defined. Furthermore, the PCP of Proximity should
reject (with constant probability) not only inputs (that encode) strings far from S, but also
proof-parts that are far from the corresponding (unique) valid proof. Last, to get a POT
rather than a tester that works only for constant values of the proximity parameter (i.e.,
constant € > 0), also inputs and alleged proofs that are close to being valid should be rejected
with probability that is related to their distance from a valid object. A PCP of Proximity
that satisfies all of these conditions is called strongly canonical.l!

The foregoing aspects were dealt with in [19], but only for the special case of S = {0,1}*,
where the issue was to test that the input-part is a valid codeword (with respect to code C').
Using a linear code C, this was reduced to the special case in which the set (for which the
PCP of Proximity is designed) is a linear space, but even this case was not handled in full
generality in [19]. Subsequent work [21, 14, 20] culminated in providing strongly canonical
PCPs of Proximity for any linear space, but left open the problem of providing strongly
canonical PCPs of Proximity for any set in P, let alone UP.

Recall that the class UP is defined as the subset of NP in which each YES-instance has a
unique valid proof. In this paper, we show that every set in UP has a strong canonical PCP
of Proximity. Furthermore, we provide a polynomial-time transformation of NP-witnesses
(with respect to the original NP-witness relation of the set) to valid proofs (for the resulting
PCP of Proximity).

We seize the opportunity to study the simpler case of strong canonical PCPs. Loosely
speaking, a strong canonical PCP for a set S is a PCP system in which each z € S has a
unique valid proof II(z) that is accepted with probability 1, whereas each other alleged proof
is rejected with probability that is related to its distance from II(z). We show that:

1. Every set in UP has a strong canonical PCP of logarithmic randomness, and only sets in

UP have such a PCP (see Theorem 3.1).

2. Similarly, the class of sets having (sufficiently)'? strong canonical PCPs with polynomial

proof length equals “unambiguous-M.A” (see Theorem 3.4).

All our constructions are obtained in two steps. First, we show that sets in the relevant
class have PCP systems in which each string in the set has a unique valid proof (that is
accepted with probability 1). Specifically, we show that the only proofs that are accepted
with probability 1 by these PCP systems are the images of the standard transformation
of NP-witnesses to PCP-oracles. Next, we observe that these PCP systems can be made
strongly canonical by a suitable padding of the proofs. Specifically, the padding is determined
such that the ratio of the length of the original proof over the length of the padded proof
equals the lower bound on the rejection probability of invalid proofs (under the original
PCP). Indeed, this simple observation reduces the construction of strong canonical PCPs to
the construction of PCPs that have unique valid proofs.

1 See Definition 2.2, which requires that the rejection probability of the oracle pair (,7) be related to
the maximum, over all 2’ € {0,1}*I' N S, of 8(z,z') and &(r, (z")).

12 Here we require that any alleged proof is rejected with probability that is polynomially related to its
distance from II(z) (i.e., () = poly(9)).
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Focusing on the construction of PCPs that have unique valid proofs (for sets in UP), we
note that the original PCP construction of Arora et al. [4, 3] will not do. Still, it is possible
that this construction can be modified and augmented so that it has unique valid proofs
(or even becomes a strong canonical PCP). Such an augmentation was indeed performed by
Goldreich and Sudan [19], alas only for the special case of linear spaces, and the route taken
there was quite tedious. Hence, we preferred to work with the gap amplification construction
of Dinur [8], which is more transparent. Starting with a trivial weak-PCP that has unique
valid proofs, we observe that the gap amplification operation is a parsimonious reduction,
and so we are done.

1.3 Organization

In Section 2 we recall the definitions of strong canonical PCPs and PCPPs, starting with the
basic PCP model. In Section 3 we characterize the classes of sets having strong canonical
PCPs of certain types (see Theorems 3.1 and 3.4), and obtain analogous PCPP systems
(see Theorem 3.5). The latter PCPP systems will be used in Section 4 towards establishing

Theorem 1.2. We conclude by spelling out some directions for further research (see Section 5).

2 Definitions of strong canonical PCPs and PCPPs

In this section, we recall the definitions of strong canonical PCPs and PCPPs. Essentially,
we follow the definitional approach presented in [19, Sec. 5.3] (while correcting an error in
one of the actual definitions [19, Def. 5.7]).

2.1 Preliminaries: The PCP model

We start by recalling the basic definition of Probabilistically Checkable Proofs (PCPs): These
are randomized verification procedures that are given an explicit input and oracle access
to an alleged proof m, and are aimed to verify the membership of the (main) input in a

predetermined set by making few (random) queries to the proof (see, e.g., [11, Sec. 9.3]).

Specifically, for a predetermined set S C {0,1}*, on input = and oracle access to an alleged
proof m, a PCP verifier V' reads x, makes a constant number of random queries to the proof
m, and satisfies the following conditions.

Completeness: If x € S, then there exists a valid proof 7 such that V always accepts x
when given oracle access to 7; that is, Pr[V™(z)=1] = 1.

Soundness: If z ¢ S, then for every string m, with probability at least 1/2 the verifier V
rejects z when given oracle access to 7; that is, Pr[V™(z)=0] > 1/2.13

Indeed, a string 7 that makes V always accept x (i.e., that satisfies Pr[V™(z)=1] = 1) is

called a valid proof for x; the soundness condition implies that valid proofs exist only for

members of S, and the completeness condition asserts that each member of S has a valid

proof. We stress that it is not necessarily the case that the valid proofs are unique; that is,

the same x € S may have several valid proofs (with respect to a fixed verifier).

13 Actually, the constant 1/2 can be replaced by any other constant in (0, 1).
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Weak-PCPs

We shall also refer to the notion of a weak-PCP, which is defined as above with the crucial
exception that its soundness condition is extremely weak. Specifically, this weak soundness
condition only requires that for every x ¢ S and w, with positive probability, the verifier
rejects x when given oracle access to m (i.e., Pr[V™(2)=0] > 0). Indeed, an oracle machine
that on input a 3CNF and oracle access to a truth assignment to its variables checks the
values assigned to the variables of a uniformly selected clause constitutes such a trivial
weak-PCP. (Recall that Dinur’s construction [8], which we shall use, gradually transforms
such a weak-PCP into a full fledged PCP.)

2.2 Strong canonical PCPs

We focus on the special case of PCP verifiers, for a set S, with respect to which each z € §
has a unique valid proof, and call such verifiers canonical. Furthermore, we are interested in
the case that invalid proofs are not merely rejected with positive probability, but are rather
rejected with probability that is related to their distance from the (unique) valid proof. We
shall call such verifiers strongly canonical, and quantify their strength by a function o that
relates their rejection probability to the latter distance. Details follow.

We denote the empty string by A. For two strings w,w’ € {0,1}™, we let é(w,w’) denote
the relative Hamming distance between w and w’; that is, d(w, w’) = |{i € [m] : w; # wi}|/m.
For sake of convenience, we define 6(w,w’) = 1 if w and w’ have different lengths (e.g., the
distance between a non-empty string and the empty string is 1).

» Definition 2.1 (strong canonical PCPs). For a set S C {0,1}*, a monotonically non-
decreasing function g: [0,1] — [0,1] such that o(a)) = 0 if and only if « = 0, and an oracle
machine V', we say that V is a g-strong canonical PCP for S if V makes a constant number of
queries to the oracle and there exist functions ¢: N — N and II: {0,1}* — {0,1}* such that
the following conditions hold.
Canonical Completeness: For every = € S, it holds that TI(x) € {0,1}*D) and the verifier
always accepts x when given oracle access to II(x); that is, Pr[V1®) (z)=1] = 1.

Strong Canonical Soundness: For every = € {0,1}* and 7 € {0, 1}*, the verifier rejects =

when given access to the oracle m with probability at least o(d(m, II(x))), where II(x) LD

if x ¢ S (and in this case §(m,II(x)) = 1); that is, Pr[V™(x)=0] > o(6(m, I(x))).
The function g is called V’s detection probability function, and ¢ is called its proof complexity.
We say that V' is a strong canonical PCP for S if, for some g as above, V is a g-strong
canonical PCP for S.

Indeed, the foregoing conditions assert that II(x) is the unique valid proof for z € S, and
that the verifier is strongly canonical with strength p. Note that strong canonical soundness
implies (standard) soundness by the convention that o(d(m,II(x))) = (1) = Q(1) for = & S.
More generally, recall that 6(m, II(z)) = 1 if |x| # |II(z)|. The case that g is linear is of
special interest; in this case invalid proofs are rejected with probability that is proportional
to their distance from the valid proof.

2.3 Adaptation to the model of PCP of Proximity

Probabilistically checkable proofs of proximity (PCPs of Proximity, abbreviated PCPPs and
a.k.a. assignment testers) are proof systems in which the verifier has oracle access to both
its main input and an alleged proof, and is required to decide whether the main input is in
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some predetermined set or is far from any string that is in this set (cf. [5, 10]). We call such
a PCPP system strong if it rejects every NO-instance with probability that is related to the
distance of the instance from the predetermined set. For simplicity, when we say a PCPP
system, we mean a strong one.

Analogously to the case of PCPs, we consider strong canonical PCPs of Proximity!'4
(henceforth scPCPs of Proximity), which are PCPs of Proximity in which every statement
has a unique valid proof such that a statement—proof pair is rejected with probability that is
related to its distance from a true statement and its corresponding unique valid proof. The

actual definition builds on Definition 2.1, while adapting it to the proofs of proximity model.

» Definition 2.2 (strong canonical PCPs of Proximity). For a set S, a function p as in
Definition 2.1, and an oracle machine V' that accesses two oracles, we say that V' is a g-strong
canonical PCP of Proximity for S if V makes a constant number of queries to each of its
oracles and there exist functions £: N — N and II: {0,1}* — {0,1}* such that the following
conditions hold.
Canonical Completeness: For every = € S, it holds that II(x) € {0,1}*(=D) and the verifier
always accepts the pair of oracles (z,TI(x)); that is, Pr[V=>1®@) (1l*l)=1] = 1.
Strong Canonical Soundness: For every « € {0,1}* and 7 € {0, 1}*, the verifier rejects the
pair of oracles (z,7) with probability at least o(dr(x, 7)), where'®

on(x, ) def / min i {max(d(z,x"),d(m, ("))} ; (2)
z'€{0,1} =l

that is, Pr[V=7(11#1)=0] > o(6n(z, 7)).

The function g is called V’s detection probability function, and £ is called its proof complexity.

We say that V is a strong canonical PCPP for S if, for some ¢ as above, V is a g-strong
canonical PCPP for S.

We stress that the rejection probability depends on the distance of the oracle-pair (z, )
from a valid pair consisting of 2 € SN {0,1}/*l and the corresponding valid proof II(z'),
where the distance between pairs is defined as the maximum of the distance between the
corresponding elements.'® This represents the fact that we wish to reject with probability
that not only depends on the distance of the input x to a string 2’ € S, but also depends on
the distance of the alleged proof 7 to the corresponding valid proof II(z’). Indeed, proximity
oblivious testers (POTs) can be viewed as strong canonical PCPs of Proximity with proof
complexity zero.

3  On the existence of strong canonical PCPs and PCPPs

Our first result is a characterization of the class of sets having strong canonical PCPs
of logarithmic randomness. It turns out that this class equals UP. Recall that the class
UP is defined as the subset of AP in which each YEs-instance has a unique valid proof;
that is, S € UP if there exists a polynomially-bounded relation R that is recognizable in
polynomial-time such that for every x € S there exists a unique w € R(x) = {y : (z,y) € R}
whereas R(z) =0 if z € S.

14 Alternatively, we use the term strongly canonical.

15 Recall that II(z") N\ if o/ ¢ S, and in this case §(m, II(z")) = 1.

16 That is, we effectively define 6(({z,v), (z’,y’)) as max(d(z,z'),5(y,y’)). Taking the sum of the latter
distances (or their average) would have been as good, since QTM < max(a, ) < a+ f.
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» Theorem 3.1 (UP and strong canonical PCPs). The set S has a strong canonical PCP of
logarithmic randomness if and only if S € UP. Furthermore, the resulting PCP is p-strong for
o(a) = a/4 and there exists a polynomial-time transformation of NP-witnesses for S € UP
to valid proofs for the resulting PCP.

Proof. The necessary condition is quite straightforward: Let V be a strong canonical PCP
of logarithmic randomness for S, and assume for simplicity that its proof complexity is
polynomial. Now, define R = {(z,n) : Pr[V™(z) =1] = 1}, and observe that membership
in R can be decided in polynomial-time by trying all possible random choices of V. Hence,
S = {z : R(z) # 0} is in NP, and the hypothesis that the valid proofs (with respect
to V) are unique implies that S € UP. In the general case (i.e., when the proof length
may be super-polynomial), one may consider the “effective proofs” (i.e., the values of 7
at locations that are read by V on some random choices). That is, in this case, we define
R = {(z,(I(x),71(s))) : Pr[V7(z)=1] = 1}, where I(x) is the set of locations that are in the
“effective proof” (i.e., locations that V(x) probes with positive probability).

Note that the foregoing argument holds also for very weak PCP systems, provided that they

have logarithmic randomness complexity and unique valid proofs. That is, we only used the

hypothesis that for every = € S, there exists a unique 7 such that p, () o Pr[V™(z)=1] =1,

and capitalized on the fact that it is feasible to compute p,(7) exactly.

Turning to the opposite direction, we show that each S € UP has a strong canonical
PCP of logarithmic randomness by presenting such a PCP for USAT and recalling that each
set in UP is reducible to USAT via a parsimonious reduction (see, e.g., [11, Ex 2.29]). Recall
that USAT is the promise problem in which YES-instances are 3CNF formulas with a unique
satisfying assignment and NO-instances are formulas with no satisfying assignments. (Actually,
we need to define PCPs for promise problems and state, as well as prove, Proposition 3.2
in this more general setting, but we avoid doing so while commenting that the extension is
straightforward.)!”

The key observation is that it suffices to show a PCP for S in which each = € S has
a unique valid proof. This is the case because such PCPs can be transformed into strong
canonical ones, as stated next.

» Proposition 3.2 (deriving strong canonical PCPs from PCPs with unique valid proofs). Let
V' be a PCP system of logarithmic randomness complexity for S, and suppose that for every
x € S there exists a unique 7w such that Pr[V™(xz) =1] = 1. Then, there exist a strong
canonical PCP of logarithmic randomness for S and a polynomial-time transformation of
valid proof with respect to V' to valid proofs for the resulting PCP. Furthermore, the resulting
PCP is p-strong for o(a)) = a/4 and its proof complexity is 2" - £, where r and £ are the
randomness and proof complexity of V.

Proof. Again, we may assume, without loss of generality, that V has polynomial proof
complexity, since we can efficiently determine all relevant locations (i.e., those queried under
any choice of randomness) without making any queries.

Letting IT be the function mapping instances to their canonical proofs, as in Definition 2.1,
we define II'(z) = 1(2T(|II)_1)'2(|m|)H(x) e {0, 1}2T<‘z‘)'€("’|) if II(z) # X and I'(z) = A
otherwise. Note that, for every z € S and 7 € {0,1}*(#D it holds that

§(1@ P =D-Llah) 17 () < 27D,

17 Specifically, the canonical soundness condition has to be satisfied only for inputs that satisfy the promise,
whereas the canonical completeness condition is stated for the YES-instances only.
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which means that invalid proofs for z € S are extremely close to valid proofs, and so it
suffices to reject them with tiny probability. This suggests the following verifier, which on
input @ € {0,1}™ and access to oracle 7’ € {0, 1}27'(7”‘@("), selects uniformly at random one
of the following two tests and performs it.

1. The verifier selects at random i € [(2"(™) — 1) - £(n)], and accepts if and only if the i*" bit

of 7’ equals 1.

2. The verifier invokes V' on input z, while providing it with oracle access to the £(n)-bit

long suffix of 7/, and outputs the verdict of V.

Turning to the analysis, we first note that if z ¢ S, then (by virtue of V') the resulting verifier
rejects x with probability at least % . %, regardless of the identity of the oracle n’. Hence,
from this point on we assume x € S, and let II(z) denote the unique valid proof with respect
to V.

Now, let 7’ = (w, ) € {0, I}ZTW'Z(”) such that |7| = ¢(n). Observe that, on input z and
access to 7', the new verifier rejects with probability that is lower-bounded by (half) the
fraction of 0’s in w, since with probability 1/2 this verifier test whether the (27(™) —1)-£(n)-bit
long prefix equals the all-1 string. Next, recall that, for any = € {0, 1}6(”), it holds that

7 = 1@ =D s 22D _cloge to IT(z) = 127 =D-UMI(z), since §(r,I(z)) < 1.

Hence, rejecting m” with probability at least % 277 gsuffices when 7 # II(x). It follows
that a generic ' = (w,7) # I'(x) # X is rejected with probability

%.5(w,1<2”")*1>'f<">)+%~2*T<”> > %-5(w,1<2r<")*1>'f<”>)+%~2*T<“>-(s(w,n(x))
1 1
> S o) 4 56 T (@),

where the second inequality uses §(w, 12" =D4M)) > §(wr, 1" =DM 1) = §(x' 1) and
§(m, I(z)) = 2rleh. 5@ =1ty @=Ly
ozl (" 1T (z)).
Using (7, 7") 4+ o(x” , I’ (z)) > 6(n',I'(x)), it follows that, on input 2 and access to 7', the

new verifier rejects with probability at least §(#’, II'(z))/2, which means that it constitutes a
strong canonical PCP for S. Indeed, the PCP is p-strong for o(a) = /4.8 <

In light of Proposition 3.2, it suffices to show a PCP of logarithmic randomness and
unique valid proofs for USAT. This PCP is constructed by merely following the construction of

Dinur [8], while noting that her gap amplification transformation is a parsimonious reduction.

» Proposition 3.3 (PCPs with unique valid proofs for USAT). There exists a PCP system
of logarithmic randommness for USAT such that for every satisfiable formula there exists a
unique valid proof with respect to this system. Furthermore, there exists a polynomial-time

transformation of satisfying assignments for the input formula to valid proofs for the resulting
PCP.

Proof. Let ¥ be an m-clause 3CNF formula over n variables, promised to have at most one
satisfying assignment. Let Vj be the trivial weak-PCP system with soundness 1/m, in which
the oracle is allegedly the unique satisfying assignment of 1, and the verifier checks that

8 The factor of 1/4 is due to the case that ¢ S, which is rejected with probability at least 1/4.
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this assignment satisfies a random clause of . By construction, Vj has unique valid proofs.
Applying the gap amplification transformation of Dinur [8] to Vj, we obtain a PCP system
V of logarithmic randomness for USAT.

As stated above, the crucial point is showing that the aforementioned transformation is
a parsimonious reduction. The argument is detailed in our technical report [9, Appendix
AlJ; it consists of showing that gap amplification is a one-to-one transformation, and that
the only valid proofs with respect to the resulting proof system are those in the range of
the transformation. These facts are demonstrated by closely inspecting each of the four
steps in the gap amplification procedure: degree reduction, “expanderization”, powering,
and alphabet reduction. We show that each of these steps satisfies the two aforementioned
properties, where in the analysis of the alphabet reduction step we assume that it is performed
by composition with a PCPP that has unique valid proofs. Such a PCPP is immediately
implied by the Hadamard code (alternatively, by the long code); see details in [9, Appendix
A 4] <

Combining Proposition 3.2 and 3.3, the theorem follows. <

A detour: A variant of Theorem 3.1

Our next result is a characterization of the class of sets having strong canonical PCPs of
polynomial proof length. It turns out that this class equals “unambiguous-M.A" (denoted
UMA, and defined next). Recall that the class M.A consists of all sets having a non-
interactive probabilistic proof system; that is, S € M.A if there exists a polynomially-bounded
relation R that is recognizable in coRP such that S = {z : Jw (z,w) € R}.?® We define
UMA as the subset of M A in which the non-interactive proof system has unique valid proofs;
that is, S € UMA if there exists a polynomially-bounded relation R that is recognizable in
cORP such that for every x € S there exists a unique w € R(z) = {y : (x,y) € R}, whereas
R(z)=0if = ¢ S. (Note that in this case |R(z)| < 1 for every z.)

» Theorem 3.4 ({MA and strong canonical PCPs). The set S has a poly-strong canonical
PCP of polynomial proof complexity if and only if S € UM.A.

Above, recall that by poly-strong we mean g-strong with respect to p(d) = 6. We stress
that, unlike in Theorem 3.1, here we do not know whether a p-strong canonical PCP with
arbitrary o for S implies that S € UM.A. The point is that invalid proofs of length ¢ are
only guaranteed to be rejected with probability at least o(1/¢), which may be negligible. On
the other hand, the existence of poly-strong canonical PCP (of polynomial-length) for S,
implies S € UM.A, which in turn is shown to imply that S has a g-strong canonical PCP (of
polynomial-length) with a linear o (i.e., o(a) = Q(a)).

Proof. We follow the outline of the proof of Theorem 3.1, while introducing several relevant
modifications. For example, in the proof of the necessary condition we can no longer assume
that the PCP has logarithmic randomness; instead we directly use the hypothesis that the
PCP has polynomial proof complexity, and derive a verification procedure that places the set
in U MA (rather than in YP). Furthermore, using the hypothesis that the PCP is poly-strong,
we infer that invalid proofs are rejected with noticable probability (i.e., probability at least
0(1/£) = poly(1/£). This fact allows for the rejection of invalid proofs by invoking the PCP

19 This perfect completeness version of M.A equals the non-perfect one in which R is only required to be
recognizable in BPP (see [11, Ex. 6.12 (2)]).
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verifier polynomially many times. Specifically, let V' be a p-strong canonical PCP of proof
complexity ¢ = poly for S, and define R = {(z,7) : Pr[V™(z)=1] = 1}. Then, R € coRP,
by letting the decision procedure emulate O(1/9(1/¢(|z|))) = poly(|z|) executions of V™ (x),
and accept if and only if all executions accepted. Hence, S = {x : R(z)#0} is in MA, and

the hypothesis that the valid proofs (with respect to V) are unique implies that S € UM.A.

Turning to the opposite direction, we show that each S € UMA has a poly-strong
canonical PCP of polynomial proof length, by using a randomized reduction of S to USAT
(or rather to a promise problem in the corresponding class UP). Let R be the binary
relation guaranteed by the definition of Y M.A, and suppose, without loss of generality, that
R C Upnen({0,1}™ x {0,1}?(™) for some polynomial p. Let p’ be a polynomial that upper
bounds the randomness complexity of the decision procedure for R, and let D’ denote the
residual decision predicate of that procedure; that is, D/ (z,w) denotes the verdict on input
(z,w) when using randomness r € {0, 1}?'("+2(")  Recall that for (z,w) & R, it holds that
Pr,.[D](z,w)=1] <1/2, and it follows that, for every z and w ¢ R(z) = {y : (z,y) € R},

Prrl,erme{O,l}p’(n#—p(n)) [VZ € [m] D7/"1 (.’E, 'lU) = 1] S 2°™,
Note that if we pick m = p(n) + 2 , then an application of a union bound implies that, for
every = € {0,1}", it holds

Pr rm€{0,1}p’(wx+p(n>>[3w ¢ R(z) Vi€ [m] D;i (z,w)=1] < 1/4.

Now, consider the randomized mapping of z € {0,1}" to (z,71,...,7m ), denoted ¥, where
m = p(n) +2 and the ;s are selected uniformly and independently in {0, 1} ("+7(m) " Recall
that |R(z)| < 1 for any z. Now, let P (standing for promise) denote the set of tuples
(#,71,...,rm) for which Vi € [m] D, (x,w)=1 holds only for w € R(x), and S’ denote the set
of tuples (z,71,...,7,) with € S. Then, it holds that Pr[¥(z) € P] > 3/4 and Pr[¥(z) €
S'ex e8] =1 for each z, where W(x) is as defined above.?’ Letting R'(z,71,...,7m) = R(x),
observe that for every (x,rq,....,7,) € P it holds that w € R/(z,r1,....,7,) if and only
if Vi € [m] D, (z,w)=1. Hence, the promise problem (PN S’, P\ S’) is in the class of
promise problems associated with UP, and we can apply the PCP of Theorem 3.1 to it.
Furthermore, recall that the function II’ (which generates the canonical proof) used to
construct the strong canonical PCP system in Theorem 3.1 denoted V’, assigns to the input
(x,71,...,7m) € PN S’ the unique proof 1w such that R(z) = {w}, where ¢ is polynomial
in |(#,71,...,7m)|. Combining ¥ with V' yields a PCP system for S that, on input z and
oracle access to 7, invokes V' on input ¥(z) and provides V' with oracle access to w. The
corresponding verifier, denoted V', has the following features:

It (i.e., V') has polynomial proof complexity.

This feature is inherited from the proof complexity of V' and the fact that |¥(x)| =

poly (Jz]).

It satisfies canonical completeness with respect to the function IT such that II(z) = 1w if

and only if R(z) = {w}. Indeed, II(z) = II'(¥(x)) holds whenever ®(z) € PN S".

This is the case because Pr[¥(z)eS’] =1 for any z € S, and 1'w = IT'(x, 71, ..., 7,) and

R(z) = {w} hold for any (z,71,...,7m) € PNS’. (We also use the canonical completeness

of V')

20 That is, ¥(x) is uniformly distributed over {(x,r1, o Tm(e))) © Vi€ Im(|z])] 7 € {0, l}p/(‘zlﬂ’('zl))}
and m(n) = p(n) + 2.
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It satisfies canonical soundness with respect to the foregoing function II. Furthermore,
invalid proofs are rejected with probability that is proportional to their distabce from the
valid proof.
This is the case because Pr[¥(z) € P] > 3/4 for any z, and in that case the strong
canonical soundness of V' beats in. The furthermore clause follows by the fact that V' is
a ¢'-strong canonical PCP for ¢/'(a) = a/4.
Hence, V is a (3¢'/4)-strong canonical PCP (of polynomial proof complexity) for S. Note
that (typically) V uses super-logarithmic randomness complexity.?! |

Strong canonical PCPs of Proximity

Next, we adapt the proof of the positive direction of Theorem 3.1 to the PCPP model.

» Theorem 3.5 (UP and strong canonical PCPPs). Every set in UP has a strong canonical
PCP of Prozimity of logarithmic randomness and linear detection probability function. Fur-
thermore, there exists a polynomial-time transformation of NP-witnesses for membership in
the set to valid proofs for the resulting PCP.

Indeed, the positive direction of Theorem 3.1 follows from Theorem 3.5 by applying the
latter to the set S" = {C(x) : z € S}, where C is a good error correcting code. Note that
the claimed PCP system (for S) emulates the input-oracle of the PCPP system (for S’) by
applying C' to its own input z, and emulating the proof-oracle of the PCPP system by using
its own proof-oracle. The canonical soundness of the PCP system (for S) follows from the
canonical soundness of the PCPP system (for S’), since in the case that x ¢ S it holds that
the relative distance of C'(z) from the set S’ is a constant.

Proof. The construction and its analysis are analogous to those in the proof of Theorem 3.1,
except that here we start with a trivial weak-PCPP for the set S € UP, use (parsimonious) gap
amplification for PCPPs (see [9, Appendix A.5]), and apply a PCPP version of Proposition 3.2.
Details follow.

Starting with the PCPP analogue of Proposition 3.3, we use a similar construction except
that we apply it to a fixed 3CNF (which is generated based on the input length only). Recall
that the construction consists of two steps: First, we construct a trivial weak-PCPP with
unique proofs, and then we apply the gap amplification procedure to it (obtaining a PCPP
with unique proofs).

Specifically, in the first step, we reduce the verification of the claim x € S to the
satisfiability of a fixed 3CNF by an assignment that extends x, where the formula is derived
by the standard Cook—Levin reduction of S to 3SAT. The fixed formula has main variables X
(which are set by the assignment «) and auxiliary variables Y (which represent the NP-witness
for  as well as intermediate gate-values in the corresponding computation), and the question
is whether this formula is satisfiable by an assignment in which X = z. (Note that when
x € S there is a unique assignment y to Y such that the assignment (X,Y") = (z,y) satisfies
the fixed formula.) The first step is completed by observing that the forgoing formula yields
a trivial weak-PCPP (with small but noticeable soundness) that is given oracle access to the
input z (i.e., x is the input-oracle) as well as to a proof that corresponds to an assignment
to the auxiliary variables. This PCPP has unique valid proofs.

21 This is inherited from the super-logarithmic length of the proofs employed by the MA system (or, altern-
atively, from its super-logarithmic randomness complexity). Note that MA systems with logarithmic
proof length (resp., logarithmic randomness) exist only for coRP (resp., N'P).
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In the second step, we apply the gap amplification procedure, which treats the foregoing
PCPP execution as a 2CSP instance such that some variables of the 2CSP are identified
with the bits of the input-oracle and the other variables represent various auxiliary values.
The set of variables that represents bits of the input-oracle will remain intact throughout
the entire process of gap amplification (see[9, Appendix A.5]). Hence, when viewing the
resulting 2CSP as a PCPP, the input-oracle of the resulting PCPP equals the input-oracle
of the original (trivial) PCPP. Observing (as in the proof of Proposition 3.3) that the gap
amplification process maintains the number of valid proofs for each input (see [9, Appendix
A 5]), we obtain a PCPP with unique proofs for S.

Next, we turn to establish a PCPP analogue of Proposition 3.2. This version asserts
a transformation of PCPPs with unique proofs to strong canonical PCPPs, and its proof
is obtained by a straightforward adaptation of the original (PCP) version.?? Using the
notation of Proposition 3.2, the crux of the analysis is that the pair of oracles (x,n’), where
z € {0,1}" (such that SN{0,1}" # 0)2 and 7’ = (w,7) € {0, 1} =D-LW+EM) g pejected
with probability at least

min  {max(Q(5(z,2')),0.5 - 6(w, 1" =DMy L o5 27 (=D) L 5(r TI()))}, (3)
2'€Sn{0,1}n
where the foregoing lower bound of Q(é(x, z")) follows from the soundness of the original
PCPP system outlined above. As shown in the proof of Proposition 3.2, it holds that
§(w, 1@ =120y 4 9=r(l2D) . §(x TI(2")) > §(x’,II'(2')), which implies that (3) is lower-
bounded by Q(dr(z, 7). <

4  The testing result

With strong canonical PCPs of Proximity (as provided by Theorem 3.5) at our disposal, it is
quite straightforward to obtain a proximity oblivious tester for a suitable encoding of any set
in P. Such an encoding incorporates copies of the target object as well as a corresponding
PCPP-oracle that attests its membership in the set. To be meaningful, this encoding should
be polynomial-time computable and invertible.2* One may also require that the encoding is
“length regular” (i.e., equal length strings have an equal encoding length) and has a constant
relative distance, but this seems less essential.

» Theorem 1.2 (restated). For any S € P there exist polynomial-time encoding and decoding

algorithms E and D = E~! such that the set S’ o {E(x) : x € S} has a proximity
oblivious tester of linear detection probability. Furthermore, |E(z)| = |E(11#))| for every x,
the encoding E has constant relative distance, and the POT runs in polylogarithmic time and
has logarithmic randomness complexity.

22 Alternatively, the current version can be derived as a special case of Proposition 5.3.

21 §N{0,1}™ = 0, then (z,7’) is rejected with probability at least (1), and the claim follows (since in
this case o (x, ') = 1).

24 The following examples illustrate that restricting the complexity of the encoding is essential for the
meaningfulness of Theorem 1.2. Suppose, for example, that for some m : N — N it holds that
[SNn{0,1}" = 2™ and consider the length preserving bijection E that maps the elements of
SN {0,1}" to 0" ™™ {0,1}™™ Then, testing {E(z) : = € S} amounts to selecting uniformly
i € [n — m(n)] and checking that the i*" bit of the n-bit long input equals 0. More generally, assuming
that both S and S = {0,1}* \ S are infinite, and letting idxs(w) denote the index of w € S (e.g.,
according to the standard lexicographical order), consider the bijection E such that E(z) =y if z € S
(resp., z € S) and idxs(z) = idxr(y) (resp., idxg(z) = idx5(y)), where T' = Upmen{0, 1}2m+1 Then,
testing {E(z) : x € S} =T is trivial.
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Recall that proximity oblivious testers (POTs) were defined as having constant query
complexity, and that their detection probability function represents a lower bound on their
rejection probability as a function of the distance of the tested object from the property.

Proof. Let C: {0,1}* — {0,1}* be an arbitrary systematic code (i.e., x is a prefix of C(x))

of relative distance, say, 1/8 such that the mapping x — C(x) can be computed in polynomial

time. Consider a strong canonical PCPP for the set C(S5) o {C(x) : x € S}, as guaranteed

by Theorem 3.5, and let II(C(x)) denote the (unique) valid proof for C(x) € C(S). The

basic idea is to combine the input and proof oracles of the PCPP into a single codeword that

will be accessed by the POT as an oracle; in order to maintain the soundness guarantee, it is
important that each part of the combined codeword will have approximately the same length.

Since the proof-oracle is typically longer, this requires repeating the input-oracle sufficiently

many times.

Recalling that |II(C(x))| = ¢(|C(z)|) for some polynomial ¢, we proceed to present the
claimed algorithms.

The encoding function E: On input x € {0,1}*, we let n = |C(z)| and ¢ = ¢(n)/n. Then,
E(x) = C(x)'r such that 7 = TI(C(x)) if € S, and © = 1(™) otherwise.

The encoding can be computed in polynomial time, since the canonical proof II(C(z)) can
be computed in polynomial time because S € P (and C is polynomial-time computable).
(Formally, the reader may think of S as being in UP by virtue of the witness relation
R = {(z,z): x € S}, and recall that given an NP-witness one can efficiently obtain the
corresponding proof-oracle.)

The code C and the repetitions are used to create and maintain distance; that is,
0(E(x),E(x") > 0.5-§(C(x),C(z")) > 1/16 for every two distinct x, 2’ of equal length.

The decoding function D: On input y € {0, 1}*, the algorithm outputs z if |y| = 2¢(n) and
y = C(x)™/"TI(C(z)), and outputs a special failure symbol otherwise. Specifically, the
algorithm first determines n = ¢=!(|y|/2), then determines k such that n = |C(1¥)|, and
finally sets « as the k-bit long prefix of y (and verifies that y = C(z)*™/"TI(C(z)) holds).
Note that checking that the suffix of y is the canonical proof II(C(x)) can be done in
polynomial time, since z is a prefix of y and Il o C' is polynomial-time computable.

The tester T: On input y € {0, 1}%(”), the tester parses y into (wi,...,w, ) such that
|wi] = -+ = |w¢] = n and |7| = €(n). Tt first checks at random that the w;’s are all
identical to wy, by selecting a random 4 € [t] and comparing a random position in w; and
wy. Next, it invokes the (strong canonical) PCPP verifier, providing it with access to the
input-oracle w; and the proof-oracle .

We first note that D(E(z)) = z for every x. Next, we show that T is a POT for the set

S’ = {E(z) : x € S}. Observe, on the one hand, that for every y € S’, it holds that

y = E(z) = C(2)'TI(C(z)) for some x € S, and the tester T" accepts y with probability 1 (by

virtue of the perfect completeness of the PCPP verifier). On the other hand, turning to the

case of y ¢ S” and letting y = (w1, ..., ws, w) € {0, 1} ) we consider three cases (where
below, by “far” we mean being at relative distance Q(dg:(y))).

1. If (wq, ..., w;) is far from w!, then y is rejected with proportional probability by the first
check of T

2. If (y is close to w! but) wy is far from C(.S), then y is rejected with proportional probability
by the (strong canonical) PCPP verifier (which is invoked with input-oracle wy).

3. If wy is close to C(x) € C(S) but 7 is far from the canonical proof TI(C(z)), then y is
rejected with proportional probability by the (strong canonical) PCPP verifier (which is
invoked with input-oracle w; and the proof-oracle ).
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(Here we use the fact that if w; is close to C(x), then it is far from C(2’) for any
a2’ # x. Hence, min, {max(é(wy,w"),é(m, M(w’))} equals min, cg{max(d(wy,C(z")),
0(m, II(C(«")))}, which equals max(1/8,(m, II(C(x)))}.)

Hence, T is a POT (of linear detection probability) for S’. <

5 Directions for further research

The begging question is whether a result like Theorem 1.2 can be proved when using an
encoding function of smaller stretch, where the stretch of E: {0,1}* — {0,1}* is the function
that maps n to |E(1™)|. Specifically, which sets S satisfy the conclusion of Theorem 1.2 with
respect to an encoding of almost linear stretch?

Recalling that our proof of Theorem 1.2 is pivoted at the existence of strong canonical
PCPs of Proximity, it is natural to ask which sets have a strong canonical PCP of Proximity
of almost-linear proof complexity. We believe that USAT has such a PCP of Proximity, and
suggest establishing this conjecture as an open problem.

» Problem 5.1 (almost-linear length strong canonical PCPPs). Show that USAT has a strong
canonical PCP of Proximity of almost-linear proof complexity. Furthermore, show that valid
proofs for this PCPP can be constructed in polynomial-time when given the input formula
and a satisfying assignment to it.

Recall that 3SAT has a PCP of Proximity of almost-linear proof complexity: We refer to the
PCPP system of Dinur [8], which builds upon the work of Ben-Sasson and Sudan [6]. A
possible route towards resolving Problem 5.1 is to show that this PCPP is a strong canonical
PCPP, or can be transformed into such a PCPP at moderate cost (i.e., increasing the proof
complexity by a poly-logarithmic factor). We actually believe that such a transformation
is needed, since we believe that the PCPP of [8] is almost there (i.e., it satisfies a relaxed
form of being strongly canonical (detailed below)), and that the extra step can be made by a
generalization (of a PCPP version) of Proposition 3.2.

In order to detail this idea, we need a refinement of Definition 2.2. In this refinement, the
rejection probability is not lower-bounded by a function of the maximum of the distances
§(z,z’) and 6(m,II(x)), but is rather the maximum of two (potentially) different functions
applied to the two distances. Maybe more importantly, we allow these functions to depend
also on the input length.

» Definition 5.2 (Definition 2.2, refined). Let o1, 0p : N X [0,1] — [0, 1] be monotonically
non-decreasing in their second argument such that gr(n,a) =0 (resp., gp(n,a) =0) if and
only if @« = 0. For a set S C {0,1}* and an oracle machine V' that accesses two oracles, we
say that V is a (o1, op)-strong canonical PCP of Proximity for S if V' makes a constant number
of queries to each of its oracles and there exist functions ¢ : N — N and I : {0,1}* — {0,1}*
such that the following conditions hold.

Canonical Completeness: As in Definition 2.2.2°

Strong Canonical Soundness: For every x € {0,1}* and 7 € {0, l}m””'), the verifier rejects

the pair of oracles (z,7) with probability at least

Cmin{max(or(lal, 8(z, 7)), gp [, 8, I} 0
x'€{0,1}1=l

25 That is, for every = € S, it holds that II(z) € {0, l}mg”|> and the verifier always accepts the pair of
oracles (z,I(x)); i.e., PrV®M@ (qlzhy=1] = 1.
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We say that V is a strong canonical PCP of Proximity for S if both g7 and gp are oblivious
of the length parameter (i.e., if o1(n,a) = o1’ (a) for some o1’ : [0,1] = [0, 1], and ditto for
op), and say that V' is a semi-strong canonical PCP of Proximity for S if o; is oblivious of the
length parameter. As in Definition 2.2, ¢ is called the proof complexity of V.

Indeed, Definition 2.2 is obtained as a special case by letting o1 (n,a) = gp(n, o) = o(«) for
0:[0,1] — [0,1]. We conjecture that the PCPP system of Dinur [8], which builds on the work
of Ben-Sasson and Sudan [6], yields a semi-strong canonical PCP of Proximity of logarithmic
randomness and almost linear proof complexity for USAT, and that the corresponding function
op has the form gp(n, @) = a/poly(logn). If this is indeed the case, then using the following
transformation, which generalizes Proposition 3.2, yields a strong canonical PCP of Proximity
of almost-linear proof complexity for USAT, which in turn resolves Problem 5.1.

» Proposition 5.3 (deriving strong canonical PPCPs from semi-strong ones). Let V be a
(01, 0p)-strong canonical PCPP system of logarithmic randomness complexity and proof
complexity £ for S, and suppose that o1(n,a) = o(a) < a and gp(n, ) = gp(n) - a for some
0p : N — (0,1]. Then, there exists a p-strong canonical PCP of logarithmic randomness and
proof complexity £/op for S. Furthermore, there exists a polynomial-time transformation of
valid proofs with respect to V' to wvalid proofs for the resulting PCP.

Note that the PCPP analogue of Proposition 3.2 follows as a special case by observing that
any canonical PCPP system (i.e., one that has unique valid proofs) of randomness complexity
r is an (o1, op)-strong canonical PCPP, where g; is oblivious of the length parameter and
op(n, ) =277,

Proof. We observe that the proof of Proposition 3.2 can be adapted and generalized as follows.
Again, we may assume, without loss of generality, that V' has polynomial proof complexity,
and let t(n) = 1/04(n). Letting IT be as in Definition 2.2, we define IT'(z) = 1) =D-£(=D](z)
if TI(x) # A, and II'(z) = X otherwise. Analogously to the proof of Proposition 3.2, we
consider the following verifier, which given oracle access to an input € {0,1}" and an
alleged proof 7’ € {0, 1}“”)'4(”), selects uniformly at random one of the following two tests
and performs it.

1. The verifier selects at random 4 € [(t(n) — 1) - £(n)], and accepts if and only if the i'" bit
of 7’ equals 1.

2. The verifier invokes V on input = and the ¢(n)-bit long suffix of 7. That is, V’s queries
to the input-oracle are answered by the input-oracle of the new verifier, whereas V’s
queries to the proof-oracle are answered by accessing the suffix of the proof-oracle of the
new verifier (i.e., query i € [¢(n)] is answered by querying the location (¢(n) —1)-4(n) +1
in 7).

Turning to the analysis, we first note that if SN {0,1}" = @, then (z,7’) is rejected with

probability at least §(1) = Q(1), and the claim follows. Hence, we may assume that

SN{0,1}" # 0. Letting ' = (w, ) € {0, 1} =1L +4n) " we infer that the pair of oracles

(z,7') € {0,1}" x {0, 1}*()4(") is rejected with probability at least

min  {max(g(8(x,2")),0.5 - §(w, 1TV L 05. o (n) - §(m, TI(2)))}.
z’eSn{0,1}n

Observing that
§(w, 1=V 4 gp (n) - 6(m, T(2))
> (5(11)7'&', 1t(n)—1)<£(n)ﬂ,) + Q{:(n) . t(n) . 5(1t(n)—1)-£(n)ﬂ_’ 1t(n)—1).2(n)H(x/))
_ 5(71_/7 1t(n)—1)»€(n)ﬂ_) + 5(1t(n)—1)~€(n)7_(_7 H/({IT/))

v
=
=]\
=
&)
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it follows that (x,7’) is rejected with probability at least

min  {max(o(6(z,2")),0.5 - §(x', 11" (z")))}.

a’€SN{0,1}n

Using o(a) < a, it follows that the new verifier is a 0.5¢-strong canonical PCPP of proof

complexity ¢/ 0. <
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