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Abstract
Algorithmic fairness, and in particular the fairness of scoring and classification algorithms, has
become a topic of increasing social concern and has recently witnessed an explosion of research in
theoretical computer science, machine learning, statistics, the social sciences, and law. Much of
the literature considers the case of a single classifier (or scoring function) used once, in isolation.
In this work, we initiate the study of the fairness properties of systems composed of algorithms
that are fair in isolation; that is, we study fairness under composition. We identify pitfalls
of naïve composition and give general constructions for fair composition, demonstrating both
that classifiers that are fair in isolation do not necessarily compose into fair systems and also
that seemingly unfair components may be carefully combined to construct fair systems. We
focus primarily on the individual fairness setting proposed in [Dwork, Hardt, Pitassi, Reingold,
Zemel, 2011], but also extend our results to a large class of group fairness definitions popular in
the recent literature, exhibiting several cases in which group fairness definitions give misleading
signals under composition.
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1 Introduction

As automated decision-making extends its reach ever more deeply into our lives, there is
increasing concern that such decisions be fair. The rigorous theoretical study of fairness
in algorithmic classification was initiated by Dwork et al in [4] and subsequent works
investigating alternative definitions, fair representations, and impossibility results have
proliferated in the machine learning, economics and theoretical computer science literatures.3
The notions of fairness broadly divide into individual fairness, requiring that individuals
who are similar with respect to a given classification task (as measured by a task-specific

1 This work was supported in part by Microsoft Research and the Sloan Foundation.
2 This work was supported in part by the Smith Family Fellowship and Microsoft Research.
3 See also [20] [9] and [10], which predate [4] and are motivated by similar concerns.
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33:2 Fairness Under Composition

similarity metric) have similar probability distributions on classification outcomes; and group
fairness, which requires that different demographic groups experience the same treatment in
some average sense.

In a bit more detail, a classification task is the problem of mapping individuals to
outcomes; for example, a decision task may map individuals to outcomes in {0, 1}. A classifier
is a possibly randomized algorithm solving a classification task. In this work we initiate
the study of fairness under composition: what are the fairness properties of systems built
from classifiers that are fair in isolation? Under what circumstances can we ensure fairness,
and how can we do so? A running example in this work is online advertising. If a set of
advertisers, say, one for tech jobs and one for a grocery delivery service, compete for the
attention of users, say one for tech jobs and one for a grocery delivery service, and each
chooses fairly whether to bid (or not), is it the case that the advertising system, including
budget handling and tie-breaking, will also be fair?

We identify and examine several types of composition and draw conclusions about auditing
systems for fairness, constructing fair systems, and definitions of fairness for systems. In the
remainder of this section we summarize our results and discuss related work. A full version
of this paper, containing complete proofs of all our results, is available on ArXiv.

Task-Competitive Compositions

We first consider the problem of two or more tasks competing for individuals, motivated by
the online advertising setting described above. We prove that two advertisers for different
tasks, each behaving fairly (when considered independently), will not necessarily produce fair
outcomes when they compete. Intuitively (and as empirically observed by [17]), the attention
of individuals similarly qualified for a job may effectively have different costs due to these
individuals’ respective desirability for other advertising tasks, like household goods purchases.
That is, individuals claimed by the household goods advertiser will not see the jobs ad,
regardless of their job qualification. These results are not specific to an auction setting and
are robust to choice of “tie-breaking” functions that select among multiple competing tasks
(advertisers). Nonetheless, we give a simple mechanism, RandomizeThenClassify, that solves
the fair task-competitive classification problem using classifiers for the competing tasks, each
of which is fair in isolation, in a black-box fashion and without modification. In the Appendix
(Lemma 15) we give a second technique for modifying the fair classifier of the lower bidder
(loser of the tie-breaking function) in order to achieve fairness.

Functional Compositions

Is the “OR” of two fair clssifiers also fair? Moe generally, when can we build fair classifiers
by computing on values that were fairly obtained? Here we must understand what is the
salient outcome of the computation. For example, when reasoning about whether the college
admissions system is fair, the salient outcome may be whether a student is accepted to at
least one college, and not whether the student is accepted to a specific college4. Even if
each college uses a fair classifier, the question is whether the “OR” of the colleges’ decisions
is fair. Furthermore, an acceptance to college may not be meaningful without sufficient
accompanying financial aid. Thus in practice, we must reason about the OR of ANDs of
acceptance and financial aid across many colleges. We show that although in general there

4 In this simple example, we assume that all colleges are equally desirable, but it is not difficult to extend
the logic to different sets of comparable colleges.
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are no guarantees on the fairness of functional compositions of fair components, there are
some cases where fairness in ORs can be satisfied. Such reasoning can be used in many
applications where long-term and short-term measures of fairness must be balanced. In the
case of feedback loops, where prior positive outcomes can improve the chances of future
positive outcomes, functional composition provides a valuable tool for determining at which
point(s) fairness must be maintained and determining whether the existing set of decision
procedures will adhere to these requirements.

Dependent Compositions

There are many settings in which each individual’s classifications are dependent on the
classifications of others. For example, if a company is interviewing a set of job candidates
in a particular order, accepting a candidate near the beginning of the list precludes any
subsequent candidates from even being considered. Thus, even if each candidate actually
considered is considered fairly in isolation, dependence between candidates can result in
highly unfair outcomes. For example, individuals who are socially connected to the company
through friends or family are likely to hear about job openings first and thus be considered
for a position before candidates without connections. We show that selecting a cohort
of people – online or offline – requires care to prevent dependencies from undermining
an independently fair selection mechanism. We address this in the offline case with two
randomized constructions, PermuteThenClassify and WeightedSampling. These algorithms
can be applied in the online case, even under adversarial ordering, provided the size of the
universe of individuals is known; when this is not known there is no solution.

Nuances of group-based definitions

Many fairness definitions in the literature seek to provide fairness guarantees based on group-
level statistical properties. For example, “Equal Opportunity” [6] requires that, conditioned
on qualification, the probability of a positive outcome is independent of protected attributes
such as race or gender. Group Fairness definitions have practical appeal in that they are
possible to measure and enforce empirically without reference to a task-specific similarity
metric.5 We extend our results to group fairness definitions and we also show that these
definitions do not always yield consistent signals under composition. In particular, we
show that the intersectional subgroup concerns (which motivate [11, 7]) are exacerbated by
composition. For example, an employer who uses group fairness definitions to ensure parity
with respect to race and gender may fail to identify that “parents” of particular race and
gender combinations are not treated fairly. Task-competitive composition exacerbates this
problem, as the employers may be prohibited from even collecting parental status information,
but their hiring processes may be composed with other systems which legitimately differentiate
based on parental status.

Finally, we also show how naïve strategies to mitigate these issues in composition may
result in learning a nominally fair solution that is clearly discriminating against a socially
meaningful subgroup not officially called out as “protected,” from which we conclude that
understanding the behavior of fairness definitions under composition is critical for choosing
which definition is meaningful in a given setting.

5 However, defining and measuring qualification may require care.
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Implications of Our Results

Our composition results have several practical implications. First, testing individual com-
ponents without understanding of the whole system will be insufficient to safely draw either
positive or negative conclusions about the fairness of the system. Second, composition
properties are an important point of evaluation for any definitions of fairness or fairness
requirements imposed by law or otherwise. Failing to take composition into account when
specifying a group-based fairness definition may result in a meaningless signal under com-
position, or worse may lead to ingraining poor outcomes for certain subgroups while still
nominally satisfying fairness requirements. Third, understanding of the salient outcomes on
which to measure and enforce fairness is critical to building meaningfully fair systems. Finally,
we conclude that there is significant potential for improvement in the mechanisms proposed
for fair composition and many settings in which new mechanisms could be proposed.

1.1 Related Work
Fairness retained under post-processing in the single-task one-shot setting is central in
[22, 19, 4]. The definition of individual fairness we build upon in this work was introduced by
Dwork et al. in [4]. Learning with oracle access to the fairness metric is considered by [5, 13].
A number of group-based fairness definitions have been proposed, and Ritov et al. provide a
combined discussion of the parity-based definitions in [21]. In particular, their work includes
discussion of Hardt et al.’s Equality of Opportunity and Equal Odds definitions and Kilbertus
et al.’s Counterfactual Fairness [6, 12]. Kleinberg et al. and Chouldechova independently
described several impossibility results related to simultaneously satisfying multiple group
fairness conditions in single classification settings [14],[2].

Two concurrent lines of work aiming to bridge the gap between individual and group
consider ensuring fairness properties for large numbers of large groups and their (sufficiently
large) intersections [11, 7]. While these works consider the one-shot, single-task setting, we
will see that group intersection properties are of particular importance under composition.
Two subsequent works in this general vein explore approximating individual fairness with
the help of an oracle that knows the task-specific metric [13, 5]. Two works also consider
how feedback loops can influence fair classification, and how interventions can help [8, 18].

Several empirical or observational studies document the effects of multiple task composi-
tion. For example, Lambrecht and Tucker study how intended gender-neutral advertising
can result in uneven delivery due to high demand for the attention of certain demographics
[17]. Datta et al. also document differences in advertising based on gender, although they
are agnostic as to whether the cause is due to multiple task composition or discriminatory
behavior on the part of the advertisers or platform [3]. Whether it is truly “fair” that, say,
home goods advertisers bid more highly for the attention of women than for the attention of
men, may be debatable, although there are clearly instances in which differential targeting is
justified, such as wen advertising maternity clothes. This actuarial fairness is the industry
practice, so we pose a number of examples in this framework and analyze the implications of
composition.

2 Preliminary Definitions and Assumptions

2.1 General Terminology
We refer to classifiers as being “fair in isolation” or “independently fair” to indicate that
with no composition, the classifier satisfies a particular fairness definition. In such cases
expectation and probability are taken over the randomness of the classification procedure



C. Dwork and C. Ilvento 33:5

and, for group fairness, selection of elements from the universe. We denote the universe of
individuals relevant for a task as U , and we generally use u, v, w ∈ U to refer to universe
elements. We generally consider binary classifiers in this work, and use pw to denote the
probability of assigning the positive outcome (or simply 1) to the element w for a particular
classifier. We generally write C : U × {0, 1}∗ → {0, 1}, where {0, 1}∗ represents the random
bits of the classifier. This allows us to comfortably express the probability of positive
classification Er[C(u)] as well as the output of the classifier under particular randomness
C(u, r). In this notation, pu = Er[C(u)]. When considering the distribution on outputs of a
classifier C, we use C̃ : U → ∆({0, 1}). When two or more classifiers or tasks are compared,
we either use a subscript i to indicate the ith classifier or task, or a prime (′) to indicate the
second classifier or task. For example {C,C ′}, {Ci|i ∈ [k]}, {T, T ′}, {Ti|i ∈ [k]}.

2.2 Individual Fairness

Throughout this work, our primary focus is on individual fairness, proposed by Dwork et
al in [4]. As noted above, a classification task is the problem of mapping individuals in a
universe to outcomes.

I Definition 1 (Individual Fairness [4]). Let d : ∆(O) × ∆(O) → [0, 1] denote the total
variation distance on distributions over O6. Given a universe of individuals U , and a task-
specific metric D for a classification task T with outcome set O, a randomized classifier
C : U × {0, 1}∗ → O, such that C̃ : U → ∆(O), is individually fair if and only if for all
u, v ∈ U , D(u, v) ≥ d(C̃(u), C̃(v)).

Note that when |O| = 2 we have d(C̃(u), C̃(v)) = |Er[C(u)]− Er[C(v)]| = |pu − pv|. In
several proofs we will rely on the fact that it is possible to construct individually fair classifiers
with particular distance properties (see Lemma 16 and corollaries in the Appendix).

2.3 Group Fairness

In principle, all our individual fairness results extend to group fairness definitions; however,
there are a number of technicalities and issues unique to group fairness definitions, which
we discuss in Section 6. Group fairness is often framed in terms of protected attributes A,
such as sex, race, or socio-economic status, while allowing for differing treatment based on a
set of qualifications Z, such as, in the case of advertising, the willingness to buy an item.
Conditional Parity, a general framework proposed in [21] for discussing these definitions,
conveniently captures many of the popular group fairness definitions popular in the literature
including Equal Odds and Equal Opportunity [6], and Counterfactual Fairness [16].

I Definition 2 (Conditional Parity [21]). A random variable x satisfies parity with respect to
a conditioned on z = z if the distribution of x | (a, {z = z}) is constant in a:
Pr[x = x | (a = a, z = z)] = Pr[x = x | (a = a′, z = z)] for any a, a′ ∈ A. Similarly, x
satisfies parity with respect to a conditioned on z (without specifying a value of z) if it
satisfies parity with respect to a conditioned on z = z for all z ∈ Z. All probabilities are over
the randomness of the prediction procedure and the selection of elements from the universe.

6 [4] also considered other notions of distributional distance.
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33:6 Fairness Under Composition

3 Multiple-Task Composition

First, we consider the problem of composition of classifiers for multiple tasks where the
outcome for more than one task is decided. Multiple Task Fairness, defined next, requires
fairness to be enforced independently and simultaneously for each task.

I Definition 3 (Multiple Task Fairness). For a set T of k tasks with metrics D1, . . . ,Dk, a
(possibly randomized) system S : U × r → {0, 1}k, which assigns outputs for task i in the
ith coordinate of the output, satisfies multiple task fairness if for all i ∈ [k] and all u, v ∈ U
Di(u, v) ≥ |E[Si(u)]− E[Si(v)]| where E[Si(u)] is the expected outcome for the ith task in
the system S and where the expectation is over the randomness of the system and all its
components.

3.1 Task-Competitive Composition
We now pose the relevant problem for multiple task fairness: competitive composition.

I Definition 4 (Single Slot Composition Problem). A (possibly randomized) system S is said
to be a solution to the single slot composition problem for a set of k tasks T with metrics
D1, . . . ,Dk, if ∀u ∈ U , S assigns outputs for each task {xu,1, . . . , xu,k} ∈ {0, 1}k such that∑
i∈[k] xu,i ≤ 1, and ∀i ∈ [k], and ∀ u, v ∈ U , Di(u, v) ≥ |E[xu,i]− E[xv,i]|.

The single slot composition problem captures the scenario in which an advertising platform
may have a single slot to show an ad but need not show any ad. Imagine that this advertising
system only has two types of ads: those for jobs and those for household goods. If a person
is qualified for jobs and eager and able to purchase household goods, the system must pick
at most one of the ads to show. In this scenario, it may be unlikely that the advertising
system would choose to show no ads, but the problem specification does not require that any
positive outcome is chosen.

To solve the single-slot composition problem we must build a system which chooses at
most one of the possible tasks so that fairness is preserved simultaneously for each task, across
all elements in the universe. Clearly if classifiers for each task may independently and fairly
assign outputs without interference, the system as a whole satisfies multiple task fairness.
However, most systems will require trade-offs between tasks. Consider a naïve solution to
the single-slot problem for ads: each advertiser chooses to bid on each person with some
probability, and if both advertisers bid for the same person, the advertiser with the higher
bid gets to show her ad. Formally, we define a tie-breaking function and Task-Competitive
Composition:

I Definition 5 (Tie-breaking Function). A (possibly randomized) tie-breaking function B :
U × {0, 1}∗ × {0, 1}k → [k] ∪ {0} takes as input an individual w ∈ U and a k−bit string xw
and outputs the index of a “1” in xw if such an index exists and 0 otherwise.

For notational convenience, in the case of two tasks T and T ′, we use Bw(T ) to refer
to the probability that B chooses task T for element w if both T and T ′ return positive
classifications, and analogously define Bw(T ′).

I Definition 6 (Task-Competitive Composition). Consider a set T of k tasks, and a tie-
breaking function as defined above. Given a set C of classifiers for the set of tasks, define
yw = {yw,1, . . . , yw,k} where yw,i = Ci(w). The task-competitive composition of the set C is
defined as y∗w = B(w, yw) for all w ∈ U .
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Definition 6 yields a system S defined by S(w) = 0k if yw = 0k and S(w) = eB(w,yw) (the
B(w, yw) basis vector of dimension k) if yw 6= 0k. We evaluate its fairness by examining the
Lipschitz requirements |Pr[y∗u = i]− Pr[y∗v = i]| ≤ Di(u, v) for all u, v ∈ U and i ∈ [k].

Task-competitive composition can reflect many scenarios other than advertising, which
are discussed in greater detail in the full paper. Note that the tie-breaking function need not
encode the same logic for all individuals and may be randomized. We start by introducing
Lemma 7, which handles the simple case for a strict tie-breaking function for all individuals,
and extend to all tie-breaking functions in Theorem 8.

I Lemma 7. For any two tasks T and T ′ such that the metrics for each task (D and
D′ respectively) are not identical and are non-trivial7 on a universe U , and if there is a
strict preference for T , that is Bw(T ) = 1 ∀w ∈ U , then there exists a pair of classifiers
C = {C,C ′} which are individually fair in isolation but when combined with task-competitive
composition violate multiple task fairness.

Proof. We construct a pair of classifiers C = {C,C ′} which are individually fair in isolation
for the tasks T and T ′, but do not satisfy multiple task fairness when combined with task-
competitive composition with a strict preference for T for all w ∈ U . Task-competitive
composition ensures that at most one task can be classified positively for each element, so
our strategy is to construct C and C ′ such that the distance between a pair of individuals is
stretched for the ‘second’ task.

By non-triviality of D, there exist u, v such that D(u, v) 6= 0. Fix such a pair u, v and let
pu denote the probability that C assigns 1 to u, and analogously pv, p′u, p′v. We use these
values as placeholders, and show how to set them to prove the lemma.

Because of the strict preference for T , the probabilities that u and v are assigned 1 for
the task T ′ are

Pr[S(u)T ′ = 1] = (1− pu)p′u

Pr[S(v)T ′ = 1] = (1− pv)p′v
The difference between them is

Pr[S(u)T ′ = 1]− Pr[S(v)T ′ = 1] = (1− pu)p′u − (1− pv)p′v

= p′u − pup′u − p′v + pvp
′
v

= p′u − p′v + pvp
′
v − pup′u

Notice that if D′(u, v) = 0, which implies that p′u = p′v, and pu 6= pv, then this quantity is
non-zero, giving the desired contradiction for all fair C ′ and any C that assigns pu 6= pv,
which can be constructed per Corollary 18.

However, if D′(u, v) 6= 0, take C ′ such that |p′u − p′v| = D′(u, v) and denote the distance
|p′u − p′v| = m′, and without loss of generality, assume that p′u > p′v and pu < pv,

Pr[S(u)T ′ = 1]− Pr[S(v)T ′ = 1] = m′ + pvp
′
v − pup′u

Then to violate fairness for T ′, it suffices to show that pvp′v > pup
′
u. Write pv = αpu where

α > 1,

αpup
′
v > pup

′
u

7 A metric D is said to be non-trivial if there exists at least one pair, u, v ∈ U such that D(u, v) /∈ {0, 1}.

ITCS 2019
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αp′v > p′u

Thus it is sufficient to show that we can choose pu, pv such that α > p′
u

p′
v
. Constrained only

by the requirements that pu < pv and |pu − pv| ≤ D(u, v), we may choose pu, pv to obtain
an arbitrarily large α = pv

pu
by Corollary 19. Thus there exist a pair of fair classifiers C,C ′

which when combined with strictly ordered task-competitive composition violate multiple
task fairness. J

I Theorem 8. For any two tasks T and T ′ with nontrivial metrics D and D′ respectively,
there exists a set C of classifiers which are individually fair in isolation but when combined
with task-competitive composition violate multiple task fairness for any tie-breaking function.

Proof. Consider a pair of classifiers C,C ′ for the two tasks. Let pu denote the probability
that C assigns 1 to u, and analogously let pv, p′u, p′v denote this quantity for the other classifier
and element combinations. As noted before, for convenience of notation, write Bu(T ) to
indicate the preference for each (element, outcome) pair, that is the probability that given
the choice between T or the alternative outcome T ′, T is chosen. Note that in this system,
for each element Bu(T ) + Bu(T ′) = 1.

Note that if Bw(T ) = 1 ∀w ∈ U or Bw(T ′) = 1 ∀w ∈ U , the setting is exactly as described
in Lemma 7. Thus we need only argue for the two following cases:
1. Case Bu(T ) = Bv(T ) 6= 1. We can write an expression for the probability that each

element is assigned to task T :

Pr[S(u)T = 1] = pu(1− p′u) + pup
′
uBu(T )

Pr[S(v)T = 1] = pv(1− p′v) + pvp
′
vBv(T )

So the difference in probabilities is

Pr[S(u)T = 1]− Pr[S(v)T = 1] = pu(1− p′u) + pup
′
uBu(T )− pv(1− p′v)− pvp′vBv(T )

= pu − pv + pvp
′
v − pup′u + pup

′
uBu(T )− pvp′vBv(T )

= pu − pv + (pvp′v − pup′u)(1− Bu(T ))

By our assumption that Bu(T ) 6= 1, we proceed analogously to the proof of Lemma 7
choosing C ′ such that pvp′v > pup

′
u and choosing C to ensure that pu − pv = D(u, v) to

achieve unfairness for T .
2. Case Bu(T ) 6= Bv(T ). Assume without loss of generality that

Bu(T ) 6= 1. Recall the difference in probability of assignment of 1 for the first task in
terms of B:

= pu − pv + pvp
′
v(1− Bv(T ))− pup′u(1− Bu(T ))

Choose C such that pu − pv = D(u, v) (or if there is no such individually fair C, choose
the individually fair C which maximizes the distance between u and v). So it suffices to
show that we can select C ′ such that pvp′v(1− Bv(T ))− pup′u(1− Bu(T )) > 0. As before,
write pu = αpv where α > 1. We require:

pvp
′
v(1− Bv(T )) > αpvp

′
u(1− Bu(T ))

p′v(1− Bv(T )) > αp′u(1− Bu(T ))
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Writing β = (1− Bv(T ))/(1− Bu(T )) (recall that Bu(T ) 6= 1 so there is no division by
zero), we require

p′vβ > αp′u

β/α > p′u/p
′
v

Constrained only by |p′u−p′v| ≤ D′(u, v), we can choose p′u, p′v to be any arbitrary positive
ratio per Corollary 19, thus we can select a satisfactory C ′ to exceed the allowed distance.

Thus we have shown that for the cases where the tie-breaking functions are identical for u
and v and when the tie-breaking functions are different, there always exists a pair of classifiers
C,C ′ which are fair in isolation, but when combined in task-competitive compositiondo not
satisfy multiple task fairness which completes the proof. J

The intuition for unfairness in such a strictly ordered composition is that each task
inflicts its preferences on subsequent tasks, and this intuition extends to more complicated
tie-breaking functions and individuals with positive distances in both tasks. Our intuition
suggests that the situation in Theorem 8 is not contrived and occurs often in practice,
and moreover that small relaxations will not be sufficient to alleviate this problem, as the
phenomenon has been observed empirically [3, 17, 15]. We include a small simulated example
in the Appendix of the full version to illustrate the potential magnitude and frequency of
such fairness violations.

3.2 Simple Fair Multiple-task Composition
Fortunately, there is a general purpose mechanism for the single slot composition problem
which requires no additional information in learning each classifier and no additional coordin-
ation between the classifiers.8 The rough procedure for RandomizeThenClassify (Algorithm 1)
is to fix a fair classifier for each task, fix a probability distribution over the tasks, sample a task
from the distribution, and then run the fair classifier for that task. RandomizeThenClassify
has several nice properties: it requires no coordination in the training of the classifiers, it
preserves the ordering and relative distance of elements by each classifier, and it can be
implemented by a platform or other third party, rather than requiring the explicit cooperation
of all classifiers. The primary downside of RandomizeThenClassify is that it reduces allocation
(the total number of positive classifications) for classifiers trained with the expectation of
being run independently.

4 Functional Composition

In Functional Composition, the outputs of multiple classifiers are combined through logical
operations to produce a single output for a single task. A significant consideration in
functional composition is determining which outcomes are relevant for fairness and at which
point(s) fairness should be measured. For example, (possibly different) classifiers for admitting
students to different colleges are composed to determine whether the student is accepted to
at least one college. In this case, the function is “OR”, the classifiers are for the same task,
and hence conform to the same metric, and this is the same metric one might use for defining

8 See section Appendix Section 6.4 in the full version for another mechanism which requires coordination
between the classifiers.
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fairness of the system as a whole. Alternatively, the system may compose the classifier for
admission with the classifier for determining financial aid. In this case the function is “AND”,
the classifiers are for different tasks, with different metrics, and we may use scholastic ability
or some other appropriate output metric for evaluating overall fairness of the system.

4.1 Same-task Functional Composition
In this section, we consider the motivating example of college admissions. When secondary
school students apply for college admission, they usually apply to more than one institution
to increase their odds of admission to at least one college. Consider a universe of students U
applying to college in a particular year, each with intrinsic qualification qu ∈ [0, 1], ∀u ∈ U .
We define D(u, v) = |qu − qv| ∀u, v ∈ U. C is the set of colleges and assume each college
Ci ∈ C admits students fairly with respect to D. The system of schools is considered OR-fair
if the indicator variable xu, which indicates whether or not student u is admitted to at least
one school, satisfies individual fairness under this same metric. More formally,

I Definition 9 (OR Fairness). Given a (universe, task) pair with metric D, and a set of
classifiers C we define the indicator

xu =
{

1 if
∑
Ci∈C Ci(x) ≥ 1

0 otherwise

which indicates whether at least one positive classification occurred. Define x̃u = Pr[xu =
1] = 1−

∏
Ci∈C(1− Pr[Ci(u) = 1]). Then the composition of the set of classifiers C satisfies

OR Fairness if D(u, v) ≥ d(x̃u, x̃v) for all u, v ∈ U .

The OR Fairness setting matches well to tasks where individuals primarily benefit from
one positive classification for a particular task.9 As mentioned above, examples of such tasks
include gaining access to credit or a home loan, admission to university, access to qualified
legal representation, access to employment, etc.10 Although in some cases more than one
acceptance may have positive impact, for example a person with more than one job offer
may use the second offer to negotiate a better salary, the core problem is (arguably) whether
or not at least one job is acquired.

Returning to the example of college admissions, even with the strong assumption that
each college fairly evaluates its applicants, there are still several potential sources of unfairness
in the resulting system. In particular, if students apply to different numbers of colleges or
colleges with different admission rates, we would expect that their probabilities of acceptance
to at least one college will be different. The more subtle scenario from the perspective of
composition is when students apply to the same set of colleges.

Even in this restricted setting, it is still possible for a set of classifiers for the same task
to violate OR fairness. The key observation is that for elements with positive distance,
the difference in their expectation of acceptance by at least one classifier does not diverge
linearly in the number of classifiers included in the composition. As the number of classifiers
increases, the probabilities of positive classification by at least one classifier for any pair
eventually converge. However, in practice, we expect students to apply to perhaps five or 10
colleges, so it is desirable to characterize when small systems are robust to such composition.

9 We may conversely define NOR Fairness to take ¬xu, and this setting more naturally corresponds to
cases where not being classified as positive is desirable.

10 [1] considers what boils down to AND-fairness for Equal Opportunity and presents an excellent collection
of evocative example scenarios.
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I Theorem 10. For any (universe, task) pair with a non-trivial metric D, there exists a set
of individually fair classifiers C which do not satisfy OR Fairness, even if each element in U
is classified by all Ci ∈ C.

The proof of Theorem 10 follows from a straightforward analysis of the difference in
probability of at least one positive classification.11 The good news is that there exist
non-trivial conditions for sets of small numbers of classifiers where OR Fairness is satisfied:

I Lemma 11. Fix a set C of fair classifiers, and let xw for w ∈ U be the indicator variable
as in Definition 9. If E[xw] ≥ 1/2 for all w ∈ U , then the set of classifiers C ∪ {C ′} satisfies
OR fairness if C ′ satisfies individual fairness under the same metric and Pr[C ′(w) = 1] ≥ 1

2
for all w ∈ U .

This lemma is useful for determining that a system is free from same-task divergence, as
it is possible to reason about an “OR of ORs”, and more generally an “OR” of any fair
components of sufficient weight.

Functional composition can also be used to reason about settings where classification
procedures for different tasks are used to determine the outcome for a single task. For example,
in order to attend a particular college, a student must be admitted and receive sufficient
financial aid to afford tuition and living expenses. Financial need and academic qualification
clearly have different metrics, and in such settings, a significant challenge is to understand
how the input metrics relate to the relevant output metric. Without careful reasoning about
the interaction between these tasks, it is very easy to end up with systems which violate
individual fairness, even if they are constructed from individually fair components. (See
Section 4.2 in the full version for more details.)

5 Dependent Composition

Thus far, we have restricted our attention to the mode of operation in which classifiers
act on the entire universe of individuals at once and each individual’s outcome is decided
independently. In practice, however, this is an unlikely scenario, as classifiers may be acting
as a selection mechanism for a fixed number of elements, may operate on elements in arbitrary
order, or may operate on only a subset of the universe. In this section, we consider the case
in which the classification outcomes received by individuals are not independent. Slightly
abusing the term “composition,” these problems can be viewed as a composition of the
classifications of elements of the universe. We roughly divide these topics into Cohort
Selection problems, when a set of exactly n individuals must be selected from the universe,
and Universe Subset problems, when only a subset of the relevant universe for the task
is under the influence of the classifier we wish to analyze or construct. Within these two
problems we consider several relevant settings:

Online versus offline: Advertising decisions for online ads must be made immediately upon
impression and employers must render employment decisions quickly or risk losing out on
potential employees or taking too long to fill a position.

Random versus adversarial ordering: The order in which individuals apply for an open job
may be influenced by their social connections with existing employees, which impacts
how quickly they hear about the job opening.

11 See Appendix Section 4 in the full version for the complete proof.
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Known versus unknown subset or universe size: An advertiser may know the average num-
ber of interested individuals who visit a website on a particular day, but be uncertain on
any particular day of the exact number.

Constrained versus unconstrained selection: In many settings there are arbitrary con-
straints placed on selection of individuals for a task which are unrelated to the qualification
or metric for that task. For example, to cover operating costs, a college may need at least
n/2 of the n students in a class to be able to pay full tuition.

In dependent composition problems, it is important, when computing distances between
distributions over outcomes, to pay careful attention to the source of randomness. Taking
inspiration from the experiment setup found in many cryptographic definitions, we formally
define two problems, Universe Subset Classification and Cohort Selection, (included in
Definitions 13 and 14 in the Appendix). In particular, it is important to understand the
randomness used to decide an ordering or a subset, as once an ordering or subset is fixed,
reasoning about fairness is impossible, as a particular individual may be arbitrarily included
or excluded.

5.1 Basic Offline Cohort Selection
First we consider the simplest version of the cohort selection problem: choosing a cohort
of n individuals from the universe U when the entire universe is known and decisions are
made offline. A simple solution is to choose a permutation of the elements in U uniformly at
random, and then apply a fair classifier C until n are selected or selecting the last few elements
from the end of the list if n have not yet been selected. With some careful bookkeeping, we
show that this mechanism is individually fair for any individually fair input classifier. (See
Algorithms 2 and 3 in the Appendix below; a complete analysis is included in Appendix
Section 6 in the full version.)

5.2 More complicated settings
In this extended abstract, we omit a full discussion of the more complicated dependent
composition scenarios, but briefly summarize several settings to build intuition.

I Theorem 12. If the ordering of the stream is adversarial, but |U | is unknown, then there
exists no solution to the online cohort selection problem.

The intuition for the proof follows from imagining that a fair classification process exists for
an ordering of size n and realizing that this precludes fair classification of a list of size n+ 1,
as the classification procedure cannot distinguish between the two cases.

Constrained cohort selection

Next we consider the problem of selecting a cohort with an external requirement that some
fraction of the selected set is from a particular subgroup. That is, given a universe U ,
and p ∈ [0, 1], and a subset A ⊂ U , select a cohort of n elements such that at least a p
fraction of the elements selected are in A. This problem captures situations in which external
requirements cannot be ignored. For example, if a certain budget must be met, and only
some members of the universe contribute to the budget, or if legally a certain fraction of
people selected must meet some criterion (as in, demographic parity). In the full version, we
characterize a broad range of settings where the constrained cohort selection problem cannot
be solved fairly.
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To build intuition, suppose the universe U is partitioned into sets A and B, where
n/2 = |A| = |B|/5. Suppose further that the populations have the same distribution on
ability, so that the set B is a “blown up” version of A, meaning that for each element u ∈ A
there are 5 corresponding elements Vu = {vu,1, ..., vu,5} such that D(u, vu,i) = 0, 1 ≤ i ≤ 5,
∀u, u′ ∈ A Vu ∩ Vu′ = ∅, and B = ∪u∈AVu. Let p = 1

2 . The constraint requires all of A to be
selected; that is, each element of A has probability 1 of selection. In contrast, the average
probability of selection for an element of B is 1

5 . Therefore, there exists v ∈ B with selection
probability at most 1/5. Letting u ∈ A such that v ∈ Vu, we have D(u, v) = 0 but the
difference in probability of selection is at least 4

5 . We give a more complete characterization
of the problem and impossibilities in the full version in Appendix Section 6.3 .

6 Extensions to Group Fairness

In general, the results discussed above for composition of individual fairness extend to group
fairness definitions; however, there are several issues and technicalities unique to group
fairness definitions which we now discuss.

Technicalities

Consider the following simple universe: for a particular z ∈ Z, group B is unimodal, having
only elements with medium qualification qm, while group A is bimodal, with half of its
elements having low qualification ql and half having high qualification qh. Choosing ph = 1,
pm = .75, and pl = .5 satisfies Conditional Parity for a single application. However, for the
OR of two applications, the squares diverge (.9375 6= .875), violating conditional parity (see
Figure 1). Note, however, that all of the individuals with z = z have been drawn closer
together under composition, and none have been pulled further apart. This simple observation
implies that in some cases we may observe failures under composition for conditional parity,
even when individual fairness is satisfied. In order to satisfy Conditional Parity under
OR-composition, the classifier could sacrifice accuracy by treating all individuals with z = z

equally. However, this necessarily discards useful information about the individuals in A to
satisfy a technicality.

Subgroup Subtleties

There are many cases where failing to satisfy conditional parity under task-competitive
composition is clearly a violation of our intuitive notion of group fairness. However, conditional
parity is not always a reliable test for fairness at the subgroup level under composition. In
general, we expect conditional parity based definitions of group fairness to detect unfairness
in multiple task compositions reasonably well when there is an obvious interaction between
protected groups and task qualification, as observed empirically in [17] and [3]. For example,
let’s return to our advertising example where home-goods advertisers have no protected
set, but high-paying jobs have gender as a protected attribute. Under composition, home-
goods out-bidding high-paying jobs ads for women will clearly violate the conditional parity
condition for the job ads (see Figure 2).

However, suppose that, in response to gender disparity caused by task-competitive
composition, classifiers iteratively adjust their bids to try to achieve Conditional Parity.
This may cause them to learn themselves into a state that satisfies Conditional Parity with
respect to gender, but behaves poorly for a socially meaningful subgroup (see Figure 3.) For
example, if home goods advertisers aggressively advertise to women who are new parents
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Figure 1 An illustration of the shift in groups from a single classification to the OR of two
applications of the same classifier. Although the two groups originally had the same mean probability
of positive classification, this breaks down under OR composition.

Figure 2 A. When the two tasks are related, one will ‘claim’ a larger fraction of one gender
than another, leading to a smaller fraction of men remaining for classification in the other task
(shown in blue). Conditional parity will detect this unfairness. B. When the tasks are unrelated,
one task may ‘claim’ the same fraction of people in each group, but potentially select a socially
meaningful subgroup, eg parents. Conditional parity will fail to detect this subgroup unfairness,
unless subgroups, including any subgroups targeted by classifiers composed with, are explicitly
accounted for.

(because their life-time value (Z) to the advertiser is the highest of all universe elements),
then a competing advertiser for jobs, noticing that its usual strategy of recruiting all people
with skill level z′ = z′ equally is failing to reach enough women, bids more aggressively on
women. By bidding more aggressively, the advertiser increases the probability of showing ads
to women (for example by outbidding low-value competition), but not to women who are bid
for by the home goods advertiser (a high-value competitor), resulting in a high concentration
of ads for women who are not mothers, while still failing to reach women who are mothers.
Furthermore, the systematic exclusion of mothers from job advertisements can, over time,
be even more problematic, as it may contribute to the stalling of careers. In this case, the
system discriminates against mothers without necessarily discriminating against fathers.

Although problematic (large) subgroup semantics are part of the motivation for [11, 7] and
exclusion of subgroups is not only a composition problem, the added danger in composition
is that the features describing this subset may be missing from the feature set of the jobs
classifier, rendering the protections proposed in [11] and [7] ineffective. In particular, we
expect that sensitive attributes like parental status are unlikely to appear (or are illegal to
collect) in employment-related training or testing datasets, but may be legitimately targeted
by other competing advertisers.
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(a) Initial equal targeting of qualified men and
women results in violation of conditional parity, as
there are unequal rates of ads shown (blue).

(b) By increasing the targeting of women, the jobs
advertiser “fixes” conditional parity at the coarse
group level.

(c) At the subgroup level, it’s clear that the lack
of conditional parity is due to “losing” all of the
new parent women to the home-goods advertiser.

(d) New targeting strategy increases ads shown to
non new-parent women, but continues to exclude
new parent women.

Figure 3 Home-goods advertisers aggressively target mothers, out-bidding the jobs advert-
iser. When the jobs advertiser bids more aggressively on “women” (b) the overall rate of ads
shown to “women” increases, but mothers may still be excluded (d), so Pr[ad |qualified, woman] >

Pr[ad | qualified, mother].
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of objective functions. Second, it preserves the ordering of elements by each classifier.
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Pr[RandomizeThenClassify(v)i = 1]. Finally, it can be implemented by a platform or other
third party, rather than requiring the explicit cooperation of all classifiers. The primary down-
side of RandomizeThenClassify is that it drastically reduces allocation (the total number of
positive classifications) for classifiers trained with the expectation of being run independently.
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Algorithm 1 RandomizeThenClassify.
Input: universe element u ∈ U , set of fair classifiers C (possibly for distinct tasks)
operating on U , probability distribution over tasks X ∈ ∆(C)
x← 0|C|
Ct ∼ X
if Ct(u) = 1 then
xt = 1

end if
return x

Algorithm 2 PermuteThenClassify.
Input: n← the number of elements to select
C ← a classifier C : U × {0, 1}∗ → {0, 1}
π ∼ S|U | a random permutation from the symmetric group on |U |
L← π(U) An ordered set of elements
M ← ∅
while |M | < n: do
u← pop(L)
if C(u) = 1 then
M ←M ∪ {u}

end if
if n− |M | ≥ |L| then
// the end condition
M ←M ∪ {u}

end if
end while
return M

A.2 Algorithms for Cohort Selection
PermuteThenClassify, Algorithm 2, works through a list initialized to a random permutation
π(U), classifying elements one at a time and independently until either (1) n elements have
been selected or (2) the number of remaining elements in the list equals the number of
remaining spots to be filled. Case (2) is referred to as the “end condition”. Elements in the
“end condition” are selected with probability 1.

WeightedSampling, Algorithm 3, chooses sets of elements with probability proportional to
their weight under a fair classifier. This prevents the arbitrary behavior of the end condition
in case the classifier is poorly tuned for the specific number of desired elements.

A.3 Universe Subset Problems
I Definition 13 (Universe Subset Classification Problem). Given a universe U , let Y be a
distribution over subsets of U . Let X = {X (V )}V⊆U be a family of distributions, one
for each subset of U , where X (V ) is a distribution on permutations of the elements of
V . Let Π(2U ) denote the set of permutations on subsets of U . Formally, for a system
S : Π(2U )× {0, 1}∗ → U∗, we define Experiment(S, X , Y, u) as follows:
1. Choose r ∼ {0, 1}∗

2. Choose V ∼ Y
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Algorithm 3 WeightedSampling.
Input: n← the number of elements to select
C ← a classifier C : U × r → {0, 1}
L← the set of all subsets of U of size n
for l ∈ L do
w(l)←

∑
u∈l E[C(u)] // set the weight of each set

Define X ∈ ∆(L) such that ∀l ∈ L, the weight of l under X is w(l)∑
l′∈L

w(l′)

M ∼ X // Sample a set of size n according to X
end for
return M

3. Choose π ∼ X (V )
4. Run S on π with randomness r, and output 1 if u is selected (positively classified).

The system S is individually fair and a solution to the Universe Subset Classification
Problem for a particular (X ,Y) pair if for all u, v ∈ U ,

|E[Experiment(S,X ,Y, u)]− E[Experiment(S,X ,Y, v)]| ≤ D(u, v)

Note that for any distinct individuals u, v ∈ U , in any given run of the experiment V may
contain u, v, neither or both.

I Definition 14 (Cohort Selection Problem). The Cohort Selection Problem is identical to
the Universe Subset Classification Problem, except the system is limited to choosing exactly
n individuals.

I Lemma 15. Given an instance of the universe subset classification problem (Definition
13) where Y assigns positive weight to all elements w ∈ U , the following procedure applied
to any individually fair classifier C which solely controls outcomes for a particular task will
result in fair classification under the input distribution Y.
Procedure: for each w ∈ U , let qw denote the probability that w appears in V . Let
qmin = minw qw. For each element w ∈ V , with probability qmin/qw classify w normally,
otherwise output the default for no classification.

Proof. Let u = argminw(qw). Then u will be classified positively with probability puqmin
where probability is taken over Y and C. All other elements v ∈ V will be classified positively
with probability qv(qmin/qv)pv = pvqmin. As positive classification by C is the only way to
get a positive outcome for the task, reasoning about |pv − pu| is sufficient to ensure fairness.
Therefore, if |pv−pu| ≤ D(u, v), then the distance under this procedure is also ≤ D(u, v). J

A.4 Construction of Fair Classifiers
I Lemma 16. Let V be a (possibly empty) subset of U . If there exists a classifier C :
V ×{0, 1}∗ → {0, 1} such that D(u, v) ≥ d(C̃(u), C̃(v)) for all u, v ∈ V , then for any x ∈ U\V
there exists classifier C ′ : V ∪ {x} × {0, 1}∗ → {0, 1} such that D(u, v) ≥ d(C̃(u), C̃(v)) for
all u, v ∈ U , which has identical behavior to C on V .

Proof. For V = ∅, any value px suffices to fairly classify x. For |V | = 1, choosing any px
such that |pv − px| ≤ D(v, x) for v ∈ V suffices.
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Algorithm 4 FairAddition(D, V, pt, C, x).
Input: metric D for universe U , a subset V ⊂ U , target probability pt, an individually
fair classifier C : V × {0, 1}∗ → {0, 1}, a target element x ∈ U\V to be added to C.
Initialize L← V

p̂x ← pt
for l ∈ L do
dist← D(l, x)
if dist < pl − p̂x then
p̂x ← pl − dist

else if dist < p̂x − pl then
p̂x ← pl + dist

end if
end for
return p̂x

For |V | ≥ 2, apply the procedure outlined in Algorithm 4 taking pt to be the probability
of positive classification of x’s nearest neighbor in V under C. As usual, we take pw to be
the probability that C positively classifies element w.

Notice that Algorithm 4 only modifies p̂x, and that p̂x is only changed if a distance
constraint is violated. Thus it is sufficient to confirm that on each modification to p̂x,
no distance constraints between x and elements in the opposite direction of the move are
violated.

Without loss of generality, assume that p̂x is decreased to move within an acceptable
distance of u, that is p̂x ≥ pu. It is sufficient to show that for all v such that pv > p̂x that
no distances are violated. Consider any such v. By construction p̂x − pu = D(u, x), and
pv − pu ≤ D(u, v). From triangle inequality, we also have that D(u, v) ≤ D(u, x) +D(x, v).
Substituting, and using that pv ≥ p̂x ≥ pu:

D(u, v) ≤ D(u, x) +D(x, v)

D(u, v)−D(u, x) ≤ D(x, v)

D(u, v)− (p̂x − pu) ≤ D(x, v)

(pv − pu)− (p̂x − pu) ≤ D(u, v)− (p̂x − pu) ≤ D(x, v)

pv − p̂x ≤ D(x, v)

Thus the fairness constraint for x and v is satisfied, and C ′ is an individually fair classifier
for V ∪ {x}. J

Lemma 16 allows us to build up a fair classifier in time O(|U |2) from scratch, or to add
to an existing fair classifier for a subset. We state several useful corollaries:

I Corollary 17. Given a subset V ⊂ U and a classifier C : V × {0, 1}∗ → {0, 1} such
that D(u, v) ≥ d(C̃(u), C̃(v)) for all u, v ∈ V , there exists an individually fair classifier
C ′ : U ×{0, 1}∗ → {0, 1} which is individually fair for all elements u, v ∈ U and has identical
behavior to C on V .

Corollary 17 follows immediately from applying Algorithm 4 to each element of U\V in
arbitrary order.
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I Corollary 18. Given a metric D, for any pair u, v ∈ U , there exists an individually fair
classifier C : U × {0, 1}∗ → {0, 1} such that d(C̃(u), C̃(v)) = D(u, v).

Corollary 18 follows simply from starting from the classifier which is fair only for a particular
pair and places them at their maximum distance under D and then repeatedly applying
Algorithm 4 to the remaining elements of U . From a distance preservation perspective, this
is important; if there is a particular ‘axis’ within the metric where distance preservation is
most important, then maximizing the distance between the extremes of that axis can be very
helpful for preserving the most relevant distances.

I Corollary 19. Given a metric D and α ∈ R+, for any pair u, v ∈ U , there exists an
individually fair classifier C : U × {0, 1}∗ → {0, 1} such that pu/pv = α, where pu = E[C(u)]
and likewise pv = E[C(v)].

Corollary 19 follows from choosing pu/pv = α without regard for the difference between pu
and pv, and then adjusting. Take β|pv − pu| = D(u, v), and choose p̂u = βpu and p̂v = βpv
so that |βpv − βpu| = β|pv − pu| ≤ D(u, v), but the ratio βpu

βpv
= pu

pv
= α remains unchanged.
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