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Abstract
We define new functions based on the Andreev function and prove that they require n3/ polylog(n)
formula size to compute. The functions we consider are generalizations of the Andreev function
using compositions with the majority function. Our arguments apply to composing a hard
function with any function that agrees with the majority function (or its negation) on the middle
slices of the Boolean cube, as well as iterated compositions of such functions. As a consequence, we
obtain n3/polylog(n) lower bounds on the (non-monotone) formula size of an explicit monotone
function by combining the monotone address function with the majority function.
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1 Introduction

We study the problem of proving lower bounds on the De Morgan formula size of explicit
functions.

While it is known that almost all Boolean functions of n variables require formula size
exponential in n, proving lower bounds on the formula size of specific functions remains a
major challenge. The current largest lower bounds on De Morgan formula size for explicitly
defined functions are of the form n3−o(1). Lower bounds for general formula size are weaker,
throughout this paper we only consider De Morgan formulas, but sometimes we just refer to
them as “formulas”.

1 Part of this work was done while visiting the Simons Institute for the Theory of Computing.
2 Supported by a Motwani Postdoctoral Fellowship and by NSF grant CCF-1763299. Part of this work

was done while visiting the Simons Institute for the Theory of Computing.

© Anna Gál, Avishay Tal, and Adrian Trejo Nuñez;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 35; pp. 35:1–35:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:panni@cs.utexas.edu
mailto:avishay.tal@gmail.com
mailto:atrejo@cs.utexas.edu
https://orcid.org/0000-0002-5658-9956 
https://doi.org/10.4230/LIPIcs.ITCS.2019.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


35:2 Cubic Formula Size Lower Bounds Based on Compositions with Majority

History

Formula size lower bounds have a long history. One of the methods for proving formula
size lower bounds is based on shrinkage of De Morgan formulas under random restrictions.
This method was introduced by Subbotovskaya [17] who gave a Ω

(
n1.5) lower bound on

the De Morgan formula size of the parity function. The lower bound for parity has been
improved by Khrapchenko [10] to Ω

(
n2). However, it is also known that Khrapchenko’s

method cannot give larger than quadratic lower bounds. The method of random restrictions
on the other hand has led to the currently known largest lower bounds on formula size.
Andreev [1] used random restrictions to prove an Ω

(
n2.5−o(1)) lower bound for a function

obtained by composing parity with an arbitrary other function f where f is specified as part
of the input. We give more formal definitions in Section 2. After improvements of the bound
by [8, 13], Håstad [5] proved a lower bound of the form n3−o(1) for the Andreev function.
Tal [18] improved the lower order terms to give a Ω

(
n3

(logn)2 log logn

)
lower bound for the

Andreev function, which is tight up to the log logn term. Tal [19] gave a slightly larger
lower bound of the form Ω

(
n3

logn(log logn)2

)
for another function introduced by Komargodski

and Raz [11]. This function is similar to the Andreev function, it still composes parity with
other functions specified as part of the input. The difference is that instead of specifying the
function f by its entire truth table as part of the input, an error correcting code is used to
derive the truth table from the input. Bogdanov [2] showed that the same Ω

(
n3

logn(log logn)2

)
lower bound can also be obtained for any “small-biased” function, that is any randomized
function whose distribution of truth tables is small biased. He also noted that standard
constructions of small biased sets yield explicit families of such functions. [3, 12] showed that
parity in Andreev’s function can be replaced with any good enough bit fixing extractor, and
the resulting function still requires n3/polylog(n) formula size.

Other than Bogdanov’s functions, the only explicit function with n3−o(1) formula size
lower bounds has been the Andreev function, and its variants using error correcting codes by
[11, 19] or bit fixing extractors [3, 12].

Dinur and Meir [4] gave a new proof of n3−o(1) formula size lower bounds for the Andreev
function, based on information theoretic arguments. The bound obtained by their argument
is of the form Ω

(
n3

2
√

log n poly log log n

)
which is weaker in the lower order terms than the bounds

of Håstad [5] and Tal [18]. But their goal was to give a proof that could possibly generalize
to other function compositions, which would be important in light of the KRW conjecture
[9] (see Section 5). Our results can be viewed as a step in this direction.

Our Results

In this paper we obtain n3/ polylog(n) lower bounds on a new class of functions. First we
consider an extension of the Andreev function which we call “Generalized Andreev function
with Majority”, using the majority function instead of parity in the function compositions.
We define the function formally in Section 2. As far as we know this function has not been
studied before, and previous approaches do not directly work to obtain our bounds.

Next we extend our results to composing a hard function with any function that agrees
with the majority function (or its negation) on the middle slices of the Boolean cube, as well
as iterated compositions of such functions. Since parity agrees with majority on the two
middle slices of the Boolean cube, our argument also applies to parity (the original Andreev
function), and composing parity with majority in various ways.
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As another consequence, we prove n3/polylog(n) lower bounds on the (non-monotone)
formula size of the monotone function obtained by combining the monotone address function
of Wegener [21] with the majority function.

It was pointed out to us by Pavel Pudlak [14], that for any function f : {0, 1}n → {0, 1},
one can construct a function f ′ : {0, 1}2n → {0, 1} that is monotone, and has formula size at
least as large as f . Consider inputs of the form (x, y) where x, y ∈ {0, 1}n and simply let
f ′(x, y) = 1 on all inputs of Hamming weight greater than n, f ′(x, y) = 0 on all inputs of
Hamming weight less than n, and f ′(x, y) = f(x) on inputs (x, y) with Hamming weight n.
Observe that f ′ has formula size at least as large as f : identifying for each i ∈ {1, . . . , n}
the literals xi and ¬yi, and similarly ¬xi and yi, we get f from f ′. However, as far as we
know, our results give the first super-quadratic formula size lower bound with a direct proof
for an explicitly defined monotone function.

Our argument gives a formal proof that the monotone formula size of the majority function
is at least nΓmon/ polylogn, where Γmon denotes the shrinkage exponent of monotone formulas
under random restrictions. It is a long standing open problem to determine the value of
Γmon. It is also open to obtain tight bounds on the formula size of majority, both in the
monotone and non-monotone case. The current best lower bound for both monotone and
non-monotone formulas computing majority of n bits is Ω(n2). The best upper bound on
the De Morgan formula size of majority on n bits is O

(
n3.91) [16]. Considering monotone

formulas for majority, the best upper bound remains the O
(
n5.3) bound by Valiant [20].

Håstad [5] noted that determining the value of Γmon is likely to yield improved lower bounds
on the monotone formula size of the majority function. Our results make this connection
explicit, independently of how the value Γmon is obtained.

Our argument is based on random restrictions and analyzing the shrinkage of formula
size under restrictions. However, the main obstacle in applying previous arguments is that
we need random restrictions that leave each Majority undetermined. Previously considered
restrictions are far from achieving this. Instead of standard random restrictions, we use
“staged” random restrictions, and adjust their results to enforce more structure. The idea
of building restrictions in stages appears before in [7, 3, 12]. The main difference in our
approach is that we maintain the structure of the composed hard function with majority
after each stage by performing some clean-up procedure.

In addition to worst case formula size lower bounds, average case lower bounds have been
shown in [3, 11, 12, 19]. These bounds are quantitatively weaker than the n3−o(1) worst
case bounds but provide high probability versions of the shrinkage results under certain
structured random reductions. Tal [19] has shown that average case bounds can be used to
obtain stronger worst case bounds, and in fact the current largest lower bounds of the form
Ω
(

n3

logn(log logn)2

)
by Tal [19] and Bogdanov [2] were obtained this way.

2 Definitions and Background

Given an n-bit string ~x = (x1, . . . , xn) ∈ {0, 1}n, let wt(~x) denote the Hamming weight of ~x,
defined as

wt(~x) = |{i : xi = 1}|

Let Bn = {f : {0, 1}n → {0, 1}} denote the set of all Boolean functions on n bits.
Given a bm-bit string ~x, we can interpret ~x as a b×m matrix with rows ~x1, . . . , ~xb of m

bits each. If f ∈ Bb and g ∈ Bm are arbitrary functions, let f ◦ g : {0, 1}b×m → {0, 1} denote

ITCS 2019
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their composition, defined as

(f ◦ g)(~x1, . . . , ~xb) = f(g(~x1), . . . , g(~xb))

Given a function f ∈ Bn, let tt(f) denote the truth table of f , defined as the string of
length 2n specifying the output of f on all strings ~x ∈ {0, 1}n in lexicographic order. We use
f and tt(f) interchangeably when f is an input to another function.

Let ⊕m : {0, 1}m → {0, 1} denote the parity function on m bits.
Let Majm : {0, 1}m → {0, 1} denote the majority function on m bits, defined as

Majm(~x) =
{

1 if wt(~x) ≥
⌈
m
2
⌉

0 otherwise

2.1 Andreev Function
Let An : {0, 1}n × {0, 1}n → {0, 1} denote the Andreev function on 2n bits. Let b = logn
and m = n/b = n/ logn. If f ∈ Bb, then |tt(f)| = 2b = 2logn = n.

The function An takes two inputs: an n-bit string representing the truth table of a
function f on b bits, and an n-bit string ~x, interpreted as a b×m matrix with rows ~x1, . . . , ~xb.
Then,

An(f, ~x) = (f ◦ ⊕m)(~x) = f(⊕m(~x1), . . . ,⊕m(~xb))

2.2 Generalized Andreev Function
Let b = logn and m = n/b as before. If gm ∈ Bm is an arbitrary function on m bits, then let
Agm
n : {0, 1}n × {0, 1}n → {0, 1} denote the generalized Andreev function on 2n bits, defined

analogously by

Agm
n (f, ~x) = (f ◦ gm)(~x) = f(gm(~x1), . . . , gm(~xb))

In particular, An = A⊕m
n .

LetMn : {0, 1}n × {0, 1}n → {0, 1} denote the generalized Andreev function with Majm
in place of gm. That is

Mn(f, ~x) = AMajm
n (f, ~x) = (f ◦Majm)(~x) = f(Majm(~x1), . . . ,Majm(~xb))

If f ∈ Bb is a fixed function, defineMn,f : {0, 1}n → {0, 1} as

Mn,f (~x) =Mn(f, ~x)

or equivalently,Mn,f = f ◦Majm.

2.3 De Morgan Formulas
Formulas are tree-like circuits, that is circuits where each gate has fan-out at most one. A
De Morgan formula is a formula that uses only AND, OR and negation gates, where the
gates have fan-in at most 2. Let f ∈ Bn be an arbitrary function. Define L(f) to be the
formula complexity of f , which is the minimum number of leaves required by any De Morgan
formula computing f .

It is known that almost all Boolean functions on n variables require De Morgan formula
size at least 2n

2 logn [15].
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2.4 Random Restrictions and Shrinkage
Consider a function f ∈ Bn and let S = {x1, . . . , xn} denote the variables of f . A restriction
on S is a function ρ : S → {0, 1, ?}. Let fdρ denote the function obtained from f by fixing
inputs xi to ρ(xi) if ρ(xi) 6= ?, which depends only on the inputs xi for which ρ(xi) = ?.
Given arbitrary functions g ∈ Bm and f ∈ Bn for m ≤ n, we say that f computes g as a
sub-function if g can be achieved as a restriction of f .

A random p-restriction on S is a randomly generated restriction ρ where

Pr(ρ(xi) = ?) = p

Pr(ρ(xi) = 0) = Pr(ρ(xi) = 1) = 1− p
2

uniformly and independently for all xi ∈ S. Let Rp denote the distribution of all uniformly
generated random p-restrictions.

Subbotovskaya [17] proved that for any Boolean function f ∈ Bn it holds that

E
ρ∼Rp

[
L
(
fdρ
)]

= O
(
pΓ L(f)

)
for Γ = 3/2. The constant Γ is called the shrinkage exponent, which is the largest number
for which the statement is true. After several improvements [8, 13], Håstad [5] proved that
Γ = 2. The following version is due to Tal [18].

I Theorem 2.1 (Shrinkage Lemma [18]). Let f ∈ Bn be an arbitrary function. Then, ∀p > 0,

E
ρ∼Rp

[
L
(
fdρ
)]
≤ O

(
1 + p2 L(f)

)
(1)

I Corollary 2.2. Let f ∈ Bn be an arbitrary function. Then, ∃c > 0 such that for ∀p > 0
and large enough n,

Pr
ρ∼Rp

(
L
(
fdρ
)
≥ 10c(1 + p2 L(f))

)
≤ 1

10 (2)

Proof. Let c > 0 be chosen such that Eρ∼Rp

[
L
(
fdρ
)]
≤ c(1 + p2 L(f)). Then, by Markov’s

inequality: Prρ∼Rp

(
L
(
fdρ
)
≥ 10c(1 + p2 L(f))

)
≤ 1

10 . J

2.5 Concentration Inequalities
We use the following result on bounds of sums of random variables.

I Theorem 2.3 (Hoeffding’s Inequality [6]). Let X1, . . . , Xn be independent random variables
such that ai ≤ Xi ≤ bi for 1 ≤ i ≤ n and let X =

∑n
i=1Xi. Then,

Pr
(∣∣∣X − E[X]

∣∣∣ ≥ t) ≤ 2 exp
(

−2t2∑n
i=1(bi − ai)2

)
(3)

3 Composition with Majority

Let Mn be the generalized Andreev function with majority. Let b = logn and
m = n/b = n/ logn and assume b,m ∈ N. Let h ∈ Bb be a function of maximum for-
mula complexity and considerMn,h = h ◦Majm. SinceMn,h is a sub-function ofMn, we

ITCS 2019
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have L(Mn) ≥ L(Mn,h) = L(h ◦Majm). Thus, it suffices to prove a lower bound on the
formula complexity of h ◦Majm. Indeed, this will be our strategy (which is standard when
proving lower bounds for Andreev-type functions). Our main result is the following general
theorem, that may also be applied in other scenarios.

I Theorem 3.1 (Formula Size of Composition with Majority). Let b,m ∈ N and h ∈ Bb be
non-constant. Then,

L(h ◦Majm) ≥ L(h) ·m2/polylog(b ·m)

Since the hardest functions on b = logn bits have formula complexity at least n
2 log logn

[15], Theorem 3.1 implies that

L(Mn) ≥ L(h ◦Majm) ≥ L(h) ·m2/ polylog(b ·m) ≥ n3/ polylog(n)

The rest of this section is devoted to the proof of Theorem 3.1.

Warmup

Let n = mb. The input ~x = (x1, . . . , xn) is divided into b contiguous blocks B1, . . . , Bb of
m variables each. In order to apply a random restriction based argument to h ◦Majm, we
wish to prove that there exists a restriction ρ that leaves each Majm undetermined and the
resulting formula shrinks by a factor of Ω(m2/ polylog(bm)).

A single majority is left undetermined by ρ if the absolute difference between the number
of variables assigned 0 and 1 is at most the number of unassigned variables. Otherwise, the
majority value is already set and there are not enough remaining variables to flip it.

3.1 Random p-Restrictions
Previous random restriction based arguments typically use random p-restrictions defined in
Section 2.4. We start by some observations about them. Let ρ ∈ Rp be a random p-restriction
on S = {x1, . . . , xn} and let Bi = {xi1 , . . . , xim} be a fixed block of the input.

Let Xik and Yik for 1 ≤ k ≤ m be the following random variables:

Xik =
{

1 if ρ(xik ) = ?

0 otherwise
Yik =


1 if ρ(xik ) = 0
−1 if ρ(xik ) = 1

0 if ρ(xik ) = ?

Then,

Xi =
m∑
k=1

Xik

E[Xi] =
m∑
k=1

E[Xik] = mp

Yi =
m∑
k=1

Yik

E[Yi] =
m∑
k=1

E[Yik] = 0

We note that Xi and Yi are not necessarily independent, since for any ` ≥ 0

Xi ≥ ` =⇒ |Yi| ≤ m− `

Since 0 ≤ Xik ≤ 1, Theorem 2.3 gives:

Pr
ρ∈Rp

(|Xi −mp| > t) ≤ 2 exp(−2t2/m)
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To obtain lower bounds of the form L(h) · m2

polylog(mb) by a single round of p-restrictions,
one would need p = O(polylog(mb)/m), thus Xi = Θ(polylog(mb)) would hold with high
probability. Since |Yi| is typically Ω(

√
m), it is likely that Majm(Bidρ) is constant.

Since one p-restriction cannot shrink the formula size sufficiently and leave each majority
undetermined, we will build such a restriction incrementally instead.

3.2 Staged p-Restrictions
Proof of Theorem 3.1. Let c′ be a large constant to be defined later. We first deal with the
case that L(h) ≤ 2c′. Then, since for non-constant h, Majm (or its negation) is a sub-function
of h ◦Majm and since L(Majm) ≥ Ω(m2) ([10]) we get

L(h ◦Majm) ≥ L(Majm) ≥ Ω(m2) ≥ Ω(L(h) ·m2)

which completes the proof in this case. In the following, we shall assume that L(h) > 2c′.
We define the following procedure that runs in t stages: in the j-th stage, we generate

a pj-restriction ρj such that, with high probability, the formula has enough unrestricted
variables to balance the number of 0’s and 1’s and leave enough variables unrestricted for
stage j + 1.

Setting Up Parameters

We set

m1 = m

and

mj+1 = m0.6
j

for j ≥ 1 as long as mj ≥ log5(4b). Let t be the last j such that mj ≥ log5(4b). A small
calculation shows that t ≤ 2 log logm. For j = 1, . . . , t we set

pj = 4m−0.4
j = 4mj+1/mj

Shrinkage In t Stages

Denote by ϕ1 = h ◦Majm. For j = 1, . . . , t, we show how to construct ϕj+1 over variables
Sj+1 from ϕj over Sj . We show by induction that ϕj+1 = h ◦Majmj+1 (up to a renaming of
the variables) and that

L(ϕj+1) ≤ c ·
(
mj+1

mj

)2
· L(ϕj),

for some large enough universal constant c > 0.
Let j ∈ {1 . . . , t}. Let ρj ∈ Rpj

be a random pj-restriction over Sj . Let

Xj
i =

mj∑
k=1

Xj
ik Y ji =

mj∑
k=1

Y jik

for i = 1, . . . , b be defined analogously as in the previous section for block Bi. Then,

E
[
Xj
i

]
= mjpj = 4mj+1

ITCS 2019
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Let Ej,i denote the event that
∣∣∣Xj

i −mjpj

∣∣∣ ≤ 1
4mjpj and let Fj,i denote the event that∣∣∣Y ji ∣∣∣ ≤ 1

2mjpj . By Theorem 2.3, using the assumption mj ≥ log5(4b),

Pr
ρj∈Rpj

(Ej,i) ≥ 1− 2e−2
m2

j+1
mj = 1− 2e−2m0.2

j ≥ 1− 1
4b (4)

Pr
ρj∈Rpj

(Fj,i) ≥ 1− 2e−2
(2mj+1)2

4mj = 1− 2e−2m0.2
j ≥ 1− 1

4b (5)

By Corollary 2.2, there exists some constant c′ > 0 such that

Pr
ρj∈Rpj

(
L
(
ϕjdρj

)
≤ c′(1 + p2

j L(ϕj))
)
≥ 0.9

Let Hj denote the event that L
(
ϕjdρj

)
≤ c′ · (1 + p2

j · L(ϕj)). Thus Pr[Hj ] ≥ 0.9. By the
union bound, there exists a restriction ρj for which Hj and all Ej,i, Fj,i for i = 1, . . . , b hold
simultaneously. Fix such a restriction ρj . Now, since Ej,i holds, then

Xj
i ≥

3
4mjpj

Since Fj,i also holds, then we can make the number of 0’s and 1’s equal by fixing at most
1
2mjpj variables appropriately, leaving at least 1

4mjpj = mj+1 unrestricted variables in the
block. We restrict the remaining variables further to leave exactly mj+1 unrestricted variables
by assigning an equal number of them 0 and 1 in some arbitrary process. Take ϕj+1 to be
the restricted function.

Since Hj holds, we get

L(ϕj+1) ≤ L
(
ϕjdρj

)
≤ c′ · (1 + p2

j · L(ϕj))

However, since h is a sub-function of ϕj+1 and since we assumed that L(h) > 2c′, we get
that c′ < 1

2 L(ϕj+1). Thus,

L(ϕj+1) < 1
2 L(ϕj+1) + c′ · p2

j · L(ϕj)

which implies that L(ϕj+1) < 2c′ · p2
j · L(ϕj) and we get

L(ϕj+1) ≤ 2c′ ·
(

4mj+1

mj

)2
· L(ϕj) = c ·

(
mj+1

mj

)2
· L(ϕj)

for any j ∈ {1, . . . , t} by setting c = 2c′ · 16. Overall, we get

L(ϕt+1) ≤ ct ·
(mt+1

m

)2
· L(ϕ)

Since h is a sub-function of ϕt+1, the formula size of ϕt+1 is at least L(h), which gives

L(ϕ) ≥ c−t ·
(

m

mt+1

)2
· L(h)

Using mt+1 < log5(4b) and t ≤ 2 log logm we get

L(ϕ) ≥ c−2 log logm ·
(

m

log5(4b)

)2
· L(h) ≥ L(h) ·m2/ polylog(b ·m) J
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In the above proof, we only use two facts about the majority function. First, we use
that the values of the m-bit majority function are 0 on inputs ~x with Hamming weight
wt(~x) =

⌈
m
2
⌉
− 1 and 1 on inputs with wt(~x) =

⌈
m
2
⌉
. In addition, (at the beginning of our

proof) we use that L(Majm) ≥ Ω(m2) [10]. Thus our argument extends to any function with
these two properties. It turns out that the first condition we need implies the second. Let
gm ∈ Bm be any function such that gm(~x) = 0 when wt(~x) =

⌈
m
2
⌉
− 1, and gm(~x) = 1 when

wt(~x) =
⌈
m
2
⌉
. Then by Khrapchenko’s theorem [10] the De Morgan formula size of gm is at

least Ω(m2).
One can also think of such functions as a partial function that generalizes both Majority

and Parity. We obtain the following.

I Theorem 3.2. Let m = n
logn and let gm ∈ Bm be any function such that gm(~x) = 0 when

wt(~x) =
⌈
m
2
⌉
− 1, and gm(~x) = 1 when wt(~x) =

⌈
m
2
⌉
. Then,

L(Agm
n ) ≥ n3/ polylog(n)

4 Consequences

4.1 Composition with Other Threshold Functions
We also obtain lower bounds for compositions with arbitrary threshold functions Thm,k instead
of Majm. We use that Th2k+1,k is a subfunction of Thm,k. Fixing arbitrary m− (2k + 1) bits
to 0 in each block, our results immediately imply that L(h ◦ Thm,k) ≥ L(h) ·k2/polylog(k, b).
We get stronger bounds by noticing that fixing the m− (2k + 1) heaviest variables in each
block, the formula shrinks by a factor of (2k + 1)/m. Thus, we get

L(h ◦ Thm,k) ≥ L(h) ·m · k/polylog(k, b)

This implies the following:

I Theorem 4.1. Let m = n
logn and k ≤ m/2. Then

L
(
AThm,k
n

)
≥ n2 · k/ polylog(n)

4.2 Iterated Compositions
Since the composed function “Parity of Parities” is just Parity, considering iterated composi-
tions in place of Parity in the original lower bound arguments for Andreev function did not
give new functions. But taking iterated compositions of Majorities yield new functions, such
as “Majority of Majorities”, “Parity of Majorities”, “Majority of Parities” and so on. Our
results extend to the generalized Andreev function with iterated compositions in place of gm.
We obtain additional functions with cubic formula size lower bounds.

I Theorem 4.2. Let Gm denote the set of functions gm ∈ Bm such that gm(~x) = 0 when
wt(~x) =

⌈
m
2
⌉
− 1, and gm(~x) = 1 when wt(~x) =

⌈
m
2
⌉
; or the other way around, that is

gm(~x) = 1 when wt(~x) =
⌈
m
2
⌉
− 1, and gm(~x) = 0 when wt(~x) =

⌈
m
2
⌉
.

Let m = n
logn and let u ≥ 2 and v ≥ 2 be integers such that uv = m. For any functions

fu ∈ Gu and gv ∈ Gv

L
(
Afu◦gv
n

)
≥ n3/ polylog(n)

ITCS 2019



35:10 Cubic Formula Size Lower Bounds Based on Compositions with Majority

Proof. Let h ∈ Blogn be a function of maximum formula complexity. By Theorem 3.1

L(h ◦ fu) ≥ L(h) · u2/ polylog(b · u)

where b = logn. Let b′ = b · u. By Theorem 3.1

L(h ◦ fu ◦ gv) ≥ L(h ◦ fu) · v2/ polylog(b′ · v)

Thus,

L(h ◦ fu ◦ gv) ≥ L(h) · u2

polylog(b · u) ·
v2

polylog(b · u · v) ≥ L(h) · m2

polylog(n) ≥
n3

polylog(n) J

The argument extends to repeated iterations. As the proof shows, we lose a polylog(n)
factor from the n3 lower bound at each iteration.

4.3 Cubic Formula Size Lower Bounds for an Explicit Monotone
Function

A function h : {0, 1}b → {0, 1} is called a slice function if on inputs ~z ∈ {0, 1}b, h(~z) = 1 if
wt(~z) ≥

⌊
b
2
⌋

+ 1, and h(~z) = 0 if wt(~z) <
⌊
b
2
⌋
. Note that every slice function is monotone,

and slice functions differ from each other only on inputs in the middle layer of the Boolean
cube, that is on inputs with weight exactly

⌊
b
2
⌋
.

The monotone address function defined by Wegener [21] takes b + n input bits where
n =

(
b
b b

2c
)
. The n bits are interpreted to specify a slice function h on b bits. We denote by

h both the n-bit string and the slice function specified by it. Then, on input (z, h) where
z ∈ {0, 1}b and h ∈ {0, 1}n, the output of the monotone address function is h(z). Note that
the monotone address function itself is monotone.

We are now ready to define a monotone function that requires cubic formula size. Let
n =

(
b
bb/2c

)
, and let m = n/b. Similarly to the Generalized Andreev Function, we define a

function Fn : {0, 1}n × {0, 1}n → {0, 1} on 2n bits.
The function Fn takes two inputs: an n-bit string representing a slice function h on b

bits, and an n-bit string ~x, interpreted as a b×m matrix with rows ~x1, . . . , ~xb. Then,

Fn(h, ~x) = (h ◦Majm)(~x) = h(Majm(~x1), . . . ,Majm(~xb))

We can further generalize this as follows: If gm ∈ Bm is an arbitrary function on m bits,
then let Fgm

n : {0, 1}n × {0, 1}n → {0, 1} denote the function on 2n bits, defined analogously
by

Fgm
n (h, ~x) = (h ◦ gm)(~x) = h(gm(~x1), . . . , gm(~xb))

In particular, Fn = FMajm
n . Note that for any monotone function gm, the function Fgm

n is
also monotone.

Since the number of De Morgan formulas of size s on b input bits is at most (cb)s for
some constant c [15], and the number of different slice functions on b input bits is 2n where
n =

(
b
bb/2c

)
, by a standard counting argument, there are slice functions on b bits that require

formula size at least Ω( n
log b ) = Ω( n

log logn ).
This implies the following bound on the formula size of the monotone function Fn.

I Theorem 4.3.

L(Fn) ≥ n3/ polylog(n)
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4.4 Monotone Formula Size of Majority
Our results highlight again the question of determining the shrinkage exponent for monotone
formulas, raised by Håstad [5]. It was pointed out by Håstad [5], that determining the
shrinkage exponent for monotone formulas could potentially yield improved lower bounds
on the monotone formula size of the Majority function. Our results make this connection
explicit, without any dependence on how the value of the shrinkage exponent is obtained.
More precisely, our arguments imply the following.

I Theorem 4.4. Let Γmon denote the shrinkage exponent of monotone formulas. Then
Lmon(Majn) ≥ nΓmon/ polylogn, where Lmon denotes monotone formula complexity.

Proof. To see this, notice that our argument in the proof of Theorem 3.1 can also be carried
out when b = 1 and h : {0, 1}1 → {0, 1} is the identity function, that is h ◦Majm = Majm,
and we apply our staged restrictions on just one block.

Let Γ = Γmon. Then by definition,

E
ρ∼Rp

[
Lmon

(
fdρ
)]

= O
(
1 + pΓ Lmon(f)

)
Let c′ be a constant such that

E
ρ∼Rp

[
Lmon

(
fdρ
)]
≤ c′ · (1 + pΓ Lmon(f))

Let m1 = m = n. As in the proof of Theorem 3.1, we set mj+1 = m0.6
j for j ≥ 1. Let t

be the last j such that mj ≥ 32 and Lmon

(
Majmj+1

)
≥ 2c′ both hold. (Recall that b = 1,

thus log5(4b) = 25 = 32.)
A small calculation shows that t ≤ 1

log(10/6) log logm ≤ 2 log logm. For j = 1, . . . , t we
set pj = 4m−0.4

j = 4mj+1/mj .
As in the proof of Theorem 3.1, our staged restrictions ensure that ϕj = Majmj

. Similarly
to our previous argument, setting c = 2c′ · 16, and using that

Lmon(ϕj+1) = Lmon

(
Majmj+1

)
≥ 2c′

for j = 1, . . . , t, we get

Lmon(ϕt+1) ≤ ct ·
(mt+1

m

)Γ
· Lmon(ϕ1)

Thus, we obtain

Lmon(Majn) ≥ c−t ·
(

n

mt+1

)Γ
· Lmon

(
Majmt+1

)
By the definition of t above, at least one of mt+1 < 32 or Lmon

(
Majmt+2

)
< 2c′

must hold. The latter implies that mt+2 < 2c′, hence mt+1 = m
10/6
t+2 < (2c′)10/6 and for

c′′ = max
{

32, (2c′)10/6} we have mt+1 < c′′. Since mt ≥ 32 we also have mt+1 ≥ 8. Using
8 ≤ mt+1 < c′′ and t ≤ 2 log logm we get

Lmon(Majn) ≥ c−2 log logm ·
( n
c′′

)Γ
· Lmon

(
Majmt+1

)
≥ nΓ/ polylogn J
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5 Future Directions

A possible extension of our result would be to verify the KRW conjecture [9] for composing
arbitrary functions with the majority function. The KRW conjecture essentially states
that the formula size of composed functions is the product of their formula sizes, e.g.
L(h ◦ g) ≥ Ω(L(h) ·L(g)). The conjecture has been verified for composing arbitrary functions
with parity. Unfortunately, getting asymptotically tight bounds on the formula size of majority
is still open. Currently, the best upper bound on the De Morgan formula size of majority is
O
(
n3.91) [16]. Our lower bound would verify the conjecture for composing arbitrary functions

with majority if L(Majn) = O
(
n2).

Another interesting direction is studying the average-case hardness of the Generalized
Andreev function with Majority. Here, we expect a different behavior than the standard
Andreev function that is hard to compute on 1/2 + exp(−nΩ(1)) fraction of the inputs [11]
(under the uniform distribution). ForMn we could not hope to get such strong average-case
hardness, as we argue next. Observe that a Majority function on the {x1, . . . , xm} agrees
with the dictator function of x1 on 1/2 + Ω(1/

√
m) fraction of the inputs. Replacing each

majority inMn with the appropriate dictator yields the address function, which has formula
complexity Θ(n). A small calculation shows that that a linear size formula (computing the
address function) has agreement at least 1/2 + Ω(1/

√
m)logn ≥ 1/2 + 2− log2(n) with Mn.

We conjecture that getting a much better agreement withMn, say 1/2 + 1/ poly(n), or even
1/2 + 2−o(log2 n), requires almost cubic formula complexity.
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