
Erasures vs. Errors in Local Decoding and
Property Testing
Sofya Raskhodnikova
Department of Computer Science, Boston University, USA
sofya@bu.edu

Noga Ron-Zewi
Department of Computer Science, University of Haifa, Israel
noga@cs.haifa.il

Nithin Varma
Department of Computer Science, Boston University, USA
nvarma@bu.edu

https://orcid.org/0000-0002-1211-2566

Abstract
We initiate the study of the role of erasures in local decoding and use our understanding to
prove a separation between erasure-resilient and tolerant property testing. Local decoding in the
presence of errors has been extensively studied, but has not been considered explicitly in the
presence of erasures.

Motivated by applications in property testing, we begin our investigation with local list
decoding in the presence of erasures. We prove an analog of a famous result of Goldreich and
Levin on local list decodability of the Hadamard code. Specifically, we show that the Hadamard
code is locally list decodable in the presence of a constant fraction of erasures, arbitrary close to
1, with list sizes and query complexity better than in the Goldreich-Levin theorem. We use this
result to exhibit a property which is testable with a number of queries independent of the length
of the input in the presence of erasures, but requires a number of queries that depends on the
input length, n, for tolerant testing. We further study approximate locally list decodable codes
that work against erasures and use them to strengthen our separation by constructing a property
which is testable with a constant number of queries in the presence of erasures, but requires nΩ(1)

queries for tolerant testing.
Next, we study the general relationship between local decoding in the presence of errors and

in the presence of erasures. We observe that every locally (uniquely or list) decodable code that
works in the presence of errors also works in the presence of twice as many erasures (with the
same parameters up to constant factors). We show that there is also an implication in the other
direction for locally decodable codes (with unique decoding): specifically, that the existence of
a locally decodable code that works in the presence of erasures implies the existence of a locally
decodable code that works in the presence of errors and has related parameters. However, it
remains open whether there is an implication in the other direction for locally list decodable
codes1. We relate this question to other open questions in local decoding.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near
linear time algorithms, Mathematics of computing → Coding theory

Keywords and phrases Error-correcting codes, probabilistically checkable proofs (PCPs) of prox-
imity, Hadamard code, local list decoding, tolerant testing

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.63

1 Our Hadamard result shows that there has to be some difference in parameters for some settings.

© Sofya Raskhodnikova, Noga Ron-Zewi, and Nithin Varma;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 63; pp. 63:1–63:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sofya@bu.edu
mailto:noga@cs.haifa.il
mailto:nvarma@bu.edu
 https://orcid.org/0000-0002-1211-2566
https://doi.org/10.4230/LIPIcs.ITCS.2019.63
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

63:2 Erasures vs. Errors in Local Decoding and Property Testing

Related Version A full version [36] (https://eccc.weizmann.ac.il/report/2018/195) of the
paper contains all the omitted proofs.

Funding The first and the third author were supported by National Science Foundation under
Grant No. CCF-142297.

Acknowledgements The authors are thankful to Venkatesan Guruswami for helping to tighten
the analysis of the local list erasure-decoder for the Hadamard code and also for making a
suggestion that led to Observation 4.2. The authors are grateful to Prahladh Harsha, Or Meir,
Ramesh Krishnan S. Pallavoor, Adam Smith, Sergey Yekhanin, and Avi Wigderson for useful
discussions. Last but not least, the authors express their gratitude to the sponsors and organizers
of the Workshop on Local Algorithms 2018 for making this collaboration possible.

1 Introduction

The contributions of this work are two-fold: on one hand, we initiate the investigation of
erasures in local decoding; on the other hand, we apply our understanding of local list
decoding to study the relative difficulty with which sublinear algorithms can cope with
erasures and errors in their inputs.

Intuitively, a family of codes is locally decodable in the presence of a specified type of
corruptions (erasures or errors) if there exists an algorithm that, given oracle access to a
codeword with a limited fraction of specified corruptions, can decode each desired character of
the encoded message with high probability after querying a small number of characters in the
corrupted codeword. In other words, we can simulate oracle access to the message by using
oracle access to a corrupted codeword. This notion can be extended to local list decoding
by requiring the algorithm to output a list of descriptions of local decoders. Intuitively, a
family of codes is locally list decodable in the presence of a specified type of corruptions if
there exists an algorithm that, given oracle access to a corrupted codeword w, outputs a
list of algorithms such that for each message x whose encoding sufficiently agrees with w,
there is an algorithm in the list that, given oracle access to w, can simulate oracle access
to x. In addition to the usual quantities studied in the literature on error-correcting codes
(such as the fraction of corruptions a code can handle, its rate and efficiency of decoding),
the important parameters in local decoding are the number of queries that the algorithms
make to w and, in the case of local list decoding, list size.

The notion of locally decodable codes (LDCs) arose in the 1990s, motivated by numerous
applications in complexity theory, such as program checking, probabilistically checkable
proofs, derandomization, and private information retrieval. Locally decodable codes that
work in the presence of errors have been extensively studied [2, 9, 16, 17, 35, 3, 40, 14, 13,
5]. The related notion of locally list decodable codes (LLDCs) has also received a lot of
attention [19, 38, 27, 5, 31, 29, 22, 20] and found applications in cryptography, learning
theory, average-to-worst-case reductions, and hardness amplification and derandomization.
The literature on decoding in the presence of erasures is too vast to survey here. List
decoding in the presence of erasures (without the locality restriction) has been addressed by
Guruswami [23] and Guruswami and Indyk [24]. In particular, Guruswami [23] constructed an
asymptotically good family of binary linear codes that can be list decoded from an arbitrary
fraction of erasures with lists of constant size. Even though decoding in the presence of
erasures is an important and well established problem, to the best of our knowledge, local
(unique and list) decoding from erasures has not been studied before.

https://eccc.weizmann.ac.il/report/2018/195

S. Raskhodnikova, N. Ron-Zewi, and N. Varma 63:3

Motivated by applications in property testing [18, 37], we begin our investigation of
effects of erasures with local list decoding. Our first result is a local list erasure-decoder
for the Hadamard code. Local list decodability of the Hadamard code in the presence of
errors is a famous result of Goldreich and Levin [19]. However, (local list) decoding of
the Hadamard code is impossible when the fraction of errors reaches or exceeds 1/2. In
contrast, we show that the Hadamard code is locally list decodable in the presence of any
constant fraction of erasures in [0, 1). Moreover, the list size and the query complexity for
our decoder is better than for the Goldreich-Levin decoder: for our decoder, both quantities
are inversely proportional to the fraction of input that has not been corrupted, whereas for
the Goldreich-Levin decoder they are quadratically larger and are known to be optimal for
that setting. Thus, our Hadamard decoder demonstrates that a square-root reduction in
the list size and query complexity in local list decoding can be achieved for some settings of
parameters when we move from errors to erasures.

The second thrust of our work, enabled by our local list decoding results, is investigating
the effects of adversarial corruption to inputs on the complexity of sublinear-time algorithms.
Understanding the relative difficulty of designing algorithms that work in the presence of
input errors and in the presence of input erasures is a problem of fundamental importance.
The motivation of investigating adversarial input corruption spurred the generalization of
property testing, one of the most widely studied models of sublinear-time algorithms, to
(error) tolerant testing [34] and erasure-resilient testing [12].

Erasure-resilient property testing falls between (standard) property testing and tolerant
testing. Specifically, an erasure-resilient tester for a property, in the special case when no
erasures occur, is a standard tester for this property. Also, a tolerant tester for a property
implies the existence of an erasure-resilient tester with comparable parameters for the same
property. Fischer and Fortnow [15] separated standard and tolerant testing by describing
a property that is easy to test in the standard model and hard to test tolerantly. Dixit et
al. [12] showed that the property defined by Fischer and Fortnow separates standard property
testing from erasure-resilient testing in the same sense. Dixit et al. [12] asked whether it is
possible to obtain a separation between erasure-resilient and tolerant testing.

In this work, we provide such a separation. Specifically, we describe a property of binary
strings that is easy to test in the erasure-resilient model, but hard to test tolerantly.

The key idea in our construction of the separating property is to encode sensitive regions
of strings (without which testing becomes hard) with an error correcting code. We need a
code that exhibits a difference in its local list decoding capabilities for the same fraction of
erasures and errors. Specifically, we want, for some constant α, q and L, a code that can
be decoded from an α fraction of erasures with q queries and lists of size L, but cannot be
decoded from an α fraction of errors. We first define a property where the sensitive regions
are encoded with the Hadamard code and show that it is testable in the erasure-resilient
model (with a constant number of queries), but is not testable tolerantly.

Next, we want to strengthen the separation to obtain a property that is testable with
erasures, but requires as many queries as possible to test tolerantly. In our construction, the
lower bound on the number of queries needed for tolerant testing is determined by the rate
of the code. Since the Hadamard code has low rate, we only get a polylogarithmic lower
bound on the query complexity of tolerant testing. To obtain a lower bound of nΩ(1), we
would need a code of polynomial rate. The question of whether there is a locally list erasure
decodable code (with constant α, q and L) of polynomial rate remains open. An LLDC with
such parameters is the holy grail of research on local decoding.

We circumvent the above difficulty by starting out with a property of binary strings that
has a tester whose queries to a sensitive region of the input are nearly uniformly distributed.
This implies that testing remains easy even if a constant fraction of the sensitive region is

ITCS 2019

63:4 Erasures vs. Errors in Local Decoding and Property Testing

corrupted. We construct a new separating property by encoding the sensitive region using a
code that is approximate locally list decodable from erasures, where an approximate locally
list decodable code (ALLDC) is defined identically to an LLDC except that the algorithms
output by a decoder for such a code simulate oracle access to strings that are close to the
original messages. We show that the resulting property can be erasure-resiliently tested using
a constant number of queries but needs nΩ(1) queries in order to be tested tolerantly, thus
obtaining a strengthened separation.

Next, we study the general relationship between local decoding in the presence of errors
and in the presence of erasures. One can observe that every LLDC that works in the presence
of errors also works in the presence of twice as many erasures (with the same parameters up
to constant factors). We ask if LLDCs or ALLDCs that work in the presence of erasures can
have significantly smaller list sizes and query complexity than LLDCs or ALLDCs of the
same rate that work in the presence of errors. We also prove that such a statement cannot
hold for the case of local unique decoding: specifically, we show that if a code is locally
unique erasure-decodable, then there exists another comparable code that is locally unique
decodable (up to minor losses in parameters).

1.1 Model Definitions and Our Results
This section contains descriptions and definitions of the codes and property testing models
we study, and also statements and discussion of our main results.

Local List Erasure-Decoding and the Hadamard Code

In this paper, we restrict our attention to binary codes. A binary code is an infinite family
of maps {Cn : Fn2 → FN2 }n∈N. The parameter n is called the message length, N is the block
length, and n/N is the rate of the code. Corruptions in codewords can either be in the form
of erasures (missing entries, denoted by the symbol ⊥) or in the form of errors (wrong values
from F2).

Recall that a local list decoder outputs a list of algorithms which give oracle access to
decoded messages or, in other words implicitly compute the decoded messages. This, and the
notion of local list erasure-decoders are formalized in the following definitions.

I Definition 1.1 (Implicit Computation). An algorithm A is said to implicitly compute x ∈ Fn2
if, for all i ∈ [n], the algorithm A on input i, outputs the ith bit of x.

I Definition 1.2 (Locally List Erasure-Decodable Codes (LLEDCs)). A family of codes {Cn :
Fn2 → FN2 }n∈N is (α, q, L)-locally list erasure-decodable if there exists a randomized algorithm
A such that, for every n ∈ N and every w ∈ (F2 ∪ {⊥})N with at most an α fraction of
erasures, the algorithm A makes at most q queries to w and outputs a list of randomized
algorithms {T1, T2, . . . , TL} such that the following hold:
1. With probability at least 2/3, for all x ∈ Fn2 such that Cn(x) agrees with w on all

nonerased bits, there exists an index j ∈ [L] such that Tj with oracle access to w

implicitly computes x.
2. For all j ∈ [L] and i ∈ [n], the expected number of queries that the algorithm Tj makes

to w on input i is at most q.

The definition of an (α, q, L)-LLDC is identical to Definition 1.2 except that the input
word has no erasures, and the list is required to contain, with probability at least 2/3,
algorithms that implicitly compute messages corresponding to codewords disagreeing with
the input word on at most an α fraction of bits. The celebrated Goldreich-Levin theorem [19]
states that the Hadamard code, defined next, is an LLDC that has an efficient decoder.

S. Raskhodnikova, N. Ron-Zewi, and N. Varma 63:5

I Definition 1.3 (Hadamard code). For a ∈ Fn2 , let Ha : Fn2 → F2 be defined as follows:
Ha(x) =

⊕
i∈[n] ai · xi for all x ∈ Fn2 . The Hadamard code, denoted by {Hn : Fn2 → F2n

2 }n∈N,
is such that for a ∈ Fn2 , the encoding Hn(a) is the string of evaluations of Ha over Fn2 .

Our first result is about the local list erasure-decodability of the Hadamard code. It is an
analogue of the Goldeich-Levin Theorem [19] for corruptions in the form of erasures.

I Theorem 1.4 (Local List Erasure-Decoder for Hadamard). There is an
(
α,Θ(1

1−α),Θ(1
1−α)

)
-

local list erasure-decoder for the Hadamard code that works for every α ∈ [0, 1).

The Goldreich-Levin theorem holds for any fraction of errors in [0, 1/2). In contrast,
our local list erasure-decoder works for any fraction of erasures less than 1. However, it is
impossible to decode the Hadamard code in the presence of 1/2 fraction of errors because
every Hadamard codeword has relative distance at most 1/2 from the all-zero codeword.
Another improvement in Theorem 1.4 as compared to Golreich-Levin is in the list size and
the query complexity: from Θ(1

(1/2−α)2) to Θ(1
1−α). Such an improvement is impossible if we

are decoding against errors as opposed to erasures. Specifically, for the list size, Blinovsky [8]
and Guruswami and Vadhan [26] show that every list decoder for every binary code that is
list decodable in the presence of an α fraction of errors must output lists of size Ω(1

(1/2−α)2).
Grinberg, Shaltiel, and Viola [21] show that the same lower bound holds for query complexity.

Separation between Erasure-Resilient and Tolerant Testing

We first describe the erasure-resilient and tolerant models of testing. A property P is a set of
strings. Given α ∈ [0, 1), a string is α-erased if at most an α fraction of its values are erasures
(denoted by ⊥). A completion of an α-erased string x ∈ {0, 1,⊥}n is a string y ∈ {0, 1}n that
agrees with x on all the positions where x is nonerased. An α-erasure-resilient ε-tester [12]
for a property P is a randomized algorithm that, given parameters α ∈ [0, 1), ε ∈ (0, 1)
and oracle access to an α-erased string x, accepts with probability at least 2/3 if x has a
completion in P and rejects with probability at least 2/3 if, in every completion of x, at least
an ε fraction of the nonerased values has to be changed to get a string in P. The property
P is α-erasure-resiliently ε-testable if there exists an α-erasure-resilient ε-tester for P with
query complexity that depends only on the parameters α and ε (but not on n).

A string x ∈ {0, 1}n is ε′-far (α-close) from (to, respectively) a property P, if the
normalized Hamming distance of x from P is at least ε′ (at most α, respectively). An
(α, ε′)-tolerant tester [34] for P is a randomized algorithm that, given parameters α ∈
(0, 1), ε′ ∈ (α, 1) and oracle access to a string x, accepts with probability at least 2

3 if x is
α-close to P and rejects with probability at least 2

3 if x is ε′-far from P. The property P is
(α, ε′)-tolerantly testable if there exists an (α, ε′)-tolerant tester for P with query complexity
that depends only on α and ε′ (but not n).

Comparison of parameters. We remark that, while comparing the two models, it is appro-
priate to compare (α, α+ ε(1− α))-tolerant testing of a property P with α-erasure-resilient
ε-testing of P for the same values of α and ε. The parameter α in both models is an upper
bound on the fraction of corruptions (erasures, or errors) that an adversary can make to an
input. An α-erasure-resilient ε-tester rejects with probability at least 2

3 if, for every way of
completing an input string, one needs to change at least an ε fraction of the remaining part
of the input to make it satisfy P. Similarly, an (α, α+ ε(1− α))-tolerant tester rejects with
probability at least 2

3 if, for every way of correcting an α fraction of the input values, one
needs to change at least an ε fraction of the remaining (1− α) fraction of the input to make
it satisfy P.

ITCS 2019

63:6 Erasures vs. Errors in Local Decoding and Property Testing

Separation. The following theorem states that there exists a property that is erasure-
resiliently testable but is not tolerantly testable. This proves that tolerant testing is, in
general, harder problem than erasure-resilient testing.

I Theorem 1.5 (Separation). There exist a property P and constants ε, α ∈ (0, 1) such that
P is α-erasure-resiliently ε-testable;
P is not (α, α+ ε(1− α))-tolerantly testable.

Approximate Local List Erasure-Decoding and Strengthened Separation. We obtain
a separation better than in Theorem 1.5 with the help of a variant of LLEDCs, called
approximate locally list erasure-decodable codes (ALLEDC). An approximate local list
erasure-decoder is identical to a local list erasure-decoder in all aspects except that the
algorithms in its list are required to implicitly compute strings that are just “close” to the
actual messages. More formally, (α, β, q, L)-ALLEDCs are defined as (α, q, L)-LLEDCs in
Definition 1.2, except that we replace “implicitly computes x” at the end of Item 1 with
“implicitly computes a string x′ ∈ Fn2 that is β-close to x”.

The definition of an (α, β, q, L)-approximate locally list decodable code (ALLDC) is
identical to that of an (α, β, q, L)-ALLEDC except that the input word has no erasures,
and the list is required to contain, with probability at least 2/3, algorithms that implicitly
compute strings that are β-close to messages corresponding to codewords which are α-close
to the input word. We observe (Observation 4.2) that every (α, β, q, L)-ALLDC is also
a (2α, β, 4q, 4L)-ALLEDC, and combine this observation with existing constructions for
ALLDCs [28, 4] to obtain efficient ALLEDCs. We use them and get our strengthened
separation.

I Theorem 1.6 (Strengthened Separation). There exist a property P ′ and constants ε, α ∈
(0, 1) such that
P ′ is α-erasure-resiliently ε-testable;
every (α, α+ ε(1− α))-tolerant tester for P ′ makes nΩ(1) queries.

Relationship between Local Erasure-Decoding and Local Decoding.

We investigate the general relationship between the erasures and errors in the context of
local unique and list decoding. We show that local (unique) decoding from erasures implies
local (unique) decoding from errors, up to some loss in parameters.

I Definition 1.7 (Locally Erasure-Decodable Codes (LEDCs)). A code family {Cn : Fn2 →
FN2 }n∈N is (α, q)-locally erasure-decodable if there exists an algorithm A that, given an index
i ∈ [n] and oracle access to an input word w ∈ ({⊥} ∪ F2)N with at most α fraction of
erasures, makes at most q queries to w and outputs xi with probability at least 2

3 .

An (α, q)-locally decodable code (LDC) is defined similarly to an (α, q)-LEDC except
that the input word w contains at most α fraction of errors instead of erasures. We observe
(Observation 6.4) that an LDC is also locally erasure-decodable from (nearly) twice as many
erasures. We also show that constant-query LEDCs are constant-query locally decodable (up
to constant loss in parameters).

I Theorem 1.8. For every α ∈ [0, 1), if a code family {Cn : Fn2 → FN2 }n∈N is (α, q)-locally
erasure-decodable, then it is (α

O(q2·81q) , O(q · 9q)) locally decodable.

S. Raskhodnikova, N. Ron-Zewi, and N. Varma 63:7

We note that although our final code has small decoding radius (that is, it tolerates only
a small fraction of errors), the decoding radius can be amplified to any constant arbitrarily
close to 1/4 at the cost of increasing the query complexity and encoding length by a constant
factor. Specifically, using a local version of the AEL transformation [1] (see [30, Lemma 3.1]),
one can amplify the decoding radius to any constant arbitrarily close to 1/2 at the cost of
increasing the query complexity, alphabet size, and length by constant factors. The alphabet
then can be reduced back to binary by encoding the binary representation of each alphabet
symbol with the Hadamard code. The length will grow by another constant factor, and using
a local version of the GMD decoder [30, Corollary 3.9], one can show that final decoding
radius is arbitrarily close to 1/4 and query complexity grows only by a constant factor.

1.2 Open Questions
The main open question raised by our work is whether local list decoding is significantly
easier in terms of the query complexity, the list size, or the rate of codes when corruptions
are in the form of erasures. The same question can be asked about approximate local list
decoding. Our local list erasure-decoder for the Hadamard code shows that there is some
advantage for having erasures over errors, in terms of the list size and query complexity,
for some settings of parameters. A positive or negative answer to this question, combined
with our result on the equivalence of errors and erasures in the local decoding regime, will
enhance the understanding of whether local list decoding is an inherently more powerful
model when compared to local decoding.

2 Local List Erasure-Decoding of the Hadamard Code

In this section, we describe a local list erasure-decoder for the Hadamard code and prove
Theorem 1.4. We follow the style of the proof of the Goldreich-Levin theorem given in a
tutorial by Luca Trevisan [39] on the applications of coding theory to complexity.

Proof of Theorem 1.4. For b1, b2 ∈ F2, let b1⊕ b2 denote the XOR of b1 and b2. For vectors
x, y ∈ Fn2 , let x� y denote the bitwise XOR of x and y. Let ek ∈ Fn2 denote the kth standard
basis vector. A codeword of the Hadamard code Hn (see Definition 1.3) is the string of all
evaluations of a linear function mapping Fn2 to F2. A function f : Fn2 → F2 ∪{⊥} is α-erased,
if f evaluates to ⊥ on at most α fraction of its domain. Our local list erasure-decoder,
described in Algorithm 1, gets a parameter α ∈ [0, 1) as its input and has oracle access to an
α-erased linear function f : Fn2 → F2 ∪ {⊥} (or, equivalently, oracle access to an α-erased
codeword of Hn) .

Let t = dlog2(1+ 12
1−α)e. Consider z1, z2, . . . , zt ∈ Fn2 sampled uniformly and independently

at random. For a nonempty set S ⊆ [t], let zS denote
⊙

i∈S zi. Let zφ denote ~0. For any
two nonempty sets R,S ⊆ [t] such that R 6= S, the vectors zR and zS are independently and
uniformly distributed in Fn2 . Recall that for a string a ∈ Fn2 , let Ha : Fn2 → {0, 1} denotes
the Hadamard encoding (see Definition 1.3) of a.

Let a ∈ Fn2 be such that for all x ∈ Fn2 where f(x) 6=⊥, the functions Ha and f agree with
each other. There exists some iteration of Step 5 of Algorithm 1 such that bi = Ha(zi) for
all i ∈ B. Let T and A denote the algorithms whose descriptions are generated in Steps 12
and 7 of this iteration respectively.

First, we show that for x distributed uniformly in Fn2 , the algorithm A on input x,
returns Ha(x) with probability at least 2

3 . Fix x ∈ Fn2 . Consider a set S ⊆ [t] such
that f(x � zS) 6=⊥. According to the description of A, we get, A(x) = (⊕j∈S∩Bbj) ⊕

ITCS 2019

63:8 Erasures vs. Errors in Local Decoding and Property Testing

Algorithm 1 Local List Erasure-Decoder for the Hadamard code.
Input: α ∈ [0, 1); oracle access to α-erased linear function f : Fn2 → F2 ∪ {⊥}
1: Let t = dlog2(1 + 12

1−α)e.
2: Choose z1, z2, . . . , zt ∈ Fn2 uniformly and independently at random.
3: Let zS ←

⊙
i∈S zi for all nonempty S ⊆ [t]. Let zφ ← ~0.

4: Set B ← {i ∈ [t] : f(zi) =⊥}.
5: for all b1, b2, . . . , b|B| ∈ {0, 1} do define
6: . Description of the local decoder Tb1,...,b|B| follows.
7: function Ab1,...,b|B|

8: input: x ∈ Fn2 ; oracle access to f : Fn2 → F2 ∪ {⊥}
9: for all S ⊆ [t] do

10: if f(x�zS) 6=⊥ then return (
⊕

j∈S∩B bj)⊕ (
⊕

j∈S∩([t]\B) f(zj))⊕f(x�zS).

11: Return ⊥.
12: function Tb1,...,b|B|

13: input: k ∈ [n]; oracle access to f : Fn2 → F2 ∪ {⊥}
14: repeat
15: Pick y ∈ Fn2 uniformly and independently at random.
16: u← Ab1,...,b|B|(y � ek), v ← Ab1,...,b|B|(y).
17: if v 6=⊥ and u 6=⊥ then return u⊕ v.
18: Return the descriptions of Tb1,...,b|B| for all b1, b2, . . . , b|B| ∈ {0, 1}.

(
⊕j∈S∩([t]\B)f(zj)

)
⊕ f(x� zS) = (⊕j∈S∩BHa(zj))⊕

(
⊕j∈S∩([t]\B)Ha(zj)

)
⊕Ha(x� zS) =

(⊕j∈SHa(zj))⊕Ha(x)⊕ (⊕j∈SHa(zj)) = Ha(x).
Let α? ≤ α denote the fraction of erasures in f . For each S ⊆ [t] and x ∈ Fn2 , we have

that f(x� zS) 6=⊥ with probability equal to 1− α?, since x� zS is uniformly distributed
in Fn2 . Define an indicator random variable ZS = 1(f(x� ZS) 6=⊥). Then E[ZS] = 1− α?
and Var(ZS) = (1 − α?) · α?. Note that the collection {x � zS |S ⊆ [t], S 6= ∅} is pairwise
independent, and hence the collection {ZS |S ⊆ [t], S 6= ∅} is also pairwise independent.

Let Z =
∑
S⊆[t]:S 6=∅ ZS . The random variable Z denotes the number of nonerased values

among f(x� zS) over all nonempty S ⊆ [t]. The event that ∀S ⊆ [t], S 6= ∅, f(x� zS) =⊥ is
equivalent to the event that Z < 1. Also, E[Z] =

∑
S⊆[t],S 6=∅ E[ZS] = (1− α?) · (2t − 1) and

Var[Z] =
∑
S⊆[t],S 6=∅Var[ZS] = (2t − 1) · α?(1− α?). By Chebyshev’s inequality,

Pr[Z < 1] = Pr[E[Z]− Z > E[Z]− 1]

≤ Pr
[
E[Z]− Z >

(1− α?) · (2t − 1)
2

]
≤ 4Var(Z)

(1− α?)2 · (2t − 1)2 ≤
1
3 .

The last inequality follows from our setting of t. Therefore, for x distributed uniformly
in Fn2 , the algorithm A on input x, returns Ha(x) with probability at least 2

3 .
We now prove that T implicitly computes a ∈ Fn2 and that the expected number of

queries that it makes to f is Θ(1
1−α). It is clear that the output of T on input k is always

a[k] = Ha(y � ek)⊕Ha(y) = Ha(ek). The number of queries made by T to A is a geometric
random variable with success probability ≥ 1

3 . Hence, the expected number of queries made
by T to A is at most 3. Since the query complexity of A is at most 2t, the expected number of
queries made to f in one invocation of T is Θ(2t), that is, Θ(1

1−α). The number of algorithms
whose descriptions are generated is also at most 2t, which is, Θ(1

1−α). J

S. Raskhodnikova, N. Ron-Zewi, and N. Varma 63:9

3 Separation

In this section, we describe a property P that is erasure-resiliently testable using a constant
number of queries, but not tolerantly testable using a constant number of queries, and prove
Theorem 1.5. In fact, we prove the following (more general) statement and show that it
implies Theorem 1.5.

I Theorem 3.1. Let ε? ∈ (0, 1
100) be a constant. There exists a property P ⊆ {0, 1}∗ such

that
for every α ∈ [0, 3ε?

16) and ε ∈ (3ε?
4(1−α) , 1), the property P can be α-erasure-resiliently

ε-tested using O(1
ε(1−2α)) queries.

for all α ∈ (ε
?

8 , 1) and ε′ ∈ (α, ε? − (ε?)2

4), the query complexity of (α, ε′)-tolerant testing
P on inputs of length N is Ω̃(logN).

3.1 Description of the Separating Property P
The property P is defined in terms of a propertyR that is hard to test in the standard property
testing model [18, 37], a probabilistically checkable proof system (PCP of proximity [6, 11]2)
for the problem of testing R, and the Hadamard code. We discuss them below. The idea
of using PCPs of proximity in separating property testing models comes from the work of
Fischer and Fortnow [15]. Our contribution is to use locally list decodable codes in this
context.

Given a Boolean formula φ over n variables, letRφ ⊆ {0, 1}n denote the set of all satisfying
assignments to φ, represented as n-bit strings. Ben-Sasson, Harsha and Raskhodnikova [7]
showed that for infinitely many n ∈ N, there exists a 3CNF formula φn on n variables such
that every tester for Rφn requires Ω(n) queries.

I Lemma 3.2 ([7]). There exists a parameter ε? ∈ (0, 1) and a countably infinite set ℵ ⊆ N
such that for all n ∈ ℵ, there exists a 3CNF formula φn with n variables and Θ(n) clauses
such that every ε?-tester for Rφn has query complexity Ω(n).

As mentioned before, another important ingredient in the description of the separating
property P is a probabilistically checkable proof system for property testing problems, called
PCP of proximity, defined and studied independently by Ben-Sasson et al. [6] and Dinur and
Reingold [11]. PCPs of proximity were further studied by Dinur [10] and Meir [32, 33].

I Definition 3.3 (PCP of proximity [6, 11]). Given a property Pn ⊆ {0, 1}n, the PCP of
proximity (PCPP) for Pn is a randomized algorithm V that takes a parameter ε ∈ (0, 1] as
input, gets oracle access to a string y ◦ π, where y ∈ {0, 1}n is the input and π ∈ {0, 1}m is
the proof, and satisfies the following:

if y ∈ Pn, then, for some π, the algorithm V always accepts y ◦ π;
if y is ε-far from Pn, then, for every π, the algorithm V rejects y ◦ π with probability at
least 2

3 .

A result by Dinur [10, Corollary 8.4] states that there are efficient PCPPs (over a small
constant alphabet Σ) for testing properties (over Σ) that are decidable using polynomial-sized
circuits. By representing the symbols in Σ using the binary alphabet, we obtain the following.

2 PCPs of proximity are referred to as assignment testers by Dinur and Reingold [11]. Ben-Sasson et
al. [6] and Dinur and Reingold [11] defined these objects concurrently and independently in order to
obtain simpler and more efficient PCP constructions.

ITCS 2019

63:10 Erasures vs. Errors in Local Decoding and Property Testing

I Lemma 3.4 ([10]). If Pn ⊆ {0, 1}n is a property decidable by a circuit of size s(n),
then there exists a PCPP V that works for every ε ∈ (0, 1], uses a proof of length at
most s(n) · polylog s(n), and has query complexity O(1

ε). Moreover, the queries of V are
nonadaptive.

I Claim 3.5. There exists a constant c > 0 such that for every large enough n ∈ N, there
exists a PCPP V for the property Rφn that works for all ε ∈ (0, 1], uses a proof of length at
most cn · polylog n, and has query complexity O(1

ε).

The following is the definition of our separating property P . At a high level, the definition
says that, for all n ∈ ℵ, a string of length O(2n·polylog n) satisfies P if its first part is the
repetition of a string y satisfying R, and the second part is the encoding (by the Hadamard
code) of y concatenated with a proof π that makes the algorithm V in Claim 3.5 accept.

I Definition 3.6 (Separating Property P). Let ε? ∈ (0, 1) be as in Lemma 3.2. For n ∈ ℵ,
let p(n) ≤ cn · polylog n denote the length of proof that the algorithm V in Claim 3.5 has
oracle access to. A string x ∈ {0, 1}N of length N = 4

ε? · 2
n+p(n) satisfies P if:

1. The first (4
ε? − 1) · 2n+p(n) bits of x (called the plain part of x) consist of (4

ε? − 1) · 2n+p(n)

n

repetitions of a string y ∈ Rφn of length n, for φn from Lemma 3.2.
2. The remaining bits of x (called the encoded part of x) form the Hadamard encoding of a

string y ◦ π(y) of length n+ p(n), where ◦ denotes the concatenation operation on strings.
The string y ∈ {0, 1}n is the same as the one in the description of the plain part. The
string π(y) ∈ {0, 1}p(n) is a proof such that the algorithm V (from Claim 3.5) accepts
when given oracle access to y and π(y).

3.2 Proof of Theorem 3.1

In this section, we prove Theorem 3.1, which in turn implies Theorem 1.5. Lemmas 3.7
and 3.10 prove the first and second parts of Theorem 3.1, respectively. The erasure-resilient
tester for P first obtains a list of (implicit) decodings of the encoded part (see Definition 3.6)
of an input string x ∈ {0, 1}N using the local list erasure-decoder guaranteed by Theorem 1.4.
If x ∈ P, with high probability, at least one of the algorithms implicitly computes (see
Definition 1.1) the string y ◦π(y), where y is such that the plain part of x (see Definition 3.6)
consists of repetitions of y, and π(y) is a proof string such that the algorithm V (from
Claim 3.5) accepts upon oracle access to y ◦ π(y). In case x is ε-far from P we show that for
every algorithm T output by the local list erasure-decoder, the string y′ ◦ π(y′) implicitly
computed by T is such that, (1) either the plain part of x is far from being the repetitions of
y′, (2) or y′ is far from R (in which case, the algorithm V from Claim 3.5 rejects when given
oracle access to y′ ◦ π(y′)). To show that tolerant testing of P is hard, we reduce ε?-testing
of Rφn to it. Specifically, given oracle access to a string y ∈ {0, 1}n that we want to ε?-test,
we simulate oracle access to a string x ∈ {0, 1}N such that the plain part of x consists of
repetitions of y, and every bit in the encoded part of x is 0. Since every Hadamard codeword
has an equal number of 0s and 1s, the string x can be thought of as having 0.5 fraction of
“errors” in the encoded part. If y ∈ Rφn , then the string x is close to being in P, as the
errors are only in the encoded part of x and the length of the encoded part is a small fraction
of the length of x. If y is far from Rφn , then x is also far from P, since the plain part of x,
whose length is a large fraction of the length of x, is the repetitions of y. Thus, the decision
of a tolerant tester for P on x can be used to test y for Rφn , implying that the complexity
of tolerant testing of P is equal to the complexity of testing Rφn .

S. Raskhodnikova, N. Ron-Zewi, and N. Varma 63:11

Algorithm 2 Erasure-resilient tester for separating property P.
Input: α, ε ∈ (0, 1), N = 4

ε? · 2
(n+p(n)); oracle access to x ∈ {0, 1,⊥}N

1: Set s← (4
ε? − 1) · 2(n+p(n))/n, ε′ ← ε(1− 2α)/3.

2: Set Q← C/(ε(1− 2α)) for a large enough constant C.
3: Accept whenever the number of queries exceeds Q.
4: Let T1, T2, . . . , TL be the list of algorithms returned by a (3

4 , q, L)-local list erasure-
decoder for the Hadamard code (Algorithm 1), given oracle access to x[sn+ 1..N], the
encoded part of x.

5: for each k ∈ [L] do
6: . Check if the plain part of x is the repetition of y, where y denotes the first n bits of the

decoding (given by Tk) of the encoded part of x.
7: repeat

⌈
9 logL
ε(1−2α)

⌉
times:

8: Pick a ∈R [n], i ∈R [s].
9: if x[(i− 1)n+ a] 6=⊥ and Tk(a) 6= x[(i− 1)n+ a] then
10: Discard the current k
11: . Check if the string y ∈ Rφn , where y denotes the first n bits of the decoding (by Tk) of

the encoded part of x.
12: repeat d4 logLe times:
13: Run V , from Claim 3.5, with input ε′ and oracle access to Tk.
14: Discard the current k if V rejects.
15: Reject if every k ∈ [L] is discarded; otherwise, accept.

We first prove the existence of an efficient erasure-resilient tester for P. An α-erased
string x is ε-far from a property P if there is no way to complete x to a string that satisfies
P without changing at least an ε fraction of the nonerased values in x.

I Lemma 3.7. Let ε? ∈ (0, 1) be as in Lemma 3.2. For every α ∈ [0, 3ε?
16), and every

ε ∈ (3ε?
4(1−α) , 1), the property P can be α-erasure-resiliently ε-tested using O(1

ε(1−2α)) queries.

Proof. The erasure-resilient tester for P is described in Algorithm 2. The query complexity
of the tester is evident from its description. We now prove that the tester, with probability
at least 2

3 , accepts strings in P and rejects strings that are ε-far from P.
Let ℵ, ε? ∈ (0, 1) be as in Lemma 3.2. Fix n ∈ ℵ and let p(n) and N be as in Definition 3.6.

Let s denote (4
ε?−1)· 2

n+p(n)

n . Consider a string x ∈ {0, 1}N that we want to erasure-resiliently
test for P. As in Definition 3.6, we refer to the substring x[1 . . . sn] as the plain part of x
and the substring x[sn+ 1 . . . N] as the encoded part of x.

Assume that x ∈ P. Since α < 3ε?/16, the fraction of erasures in the encoded part of
x is at most 3/4. Hence, by Theorem 1.4, with probability at least 2/3, there exists an
algorithm Tk computed in Step 4 of Algorithm 2, such that Tk implicitly computes the string
y ◦ π ∈ {0, 1}n+p(n), where y ∈ Rφn , the plain part of x can be completed to a repetition of
y, and π is a proof such that the algorithm V (from Claim 3.5) accepts when given oracle
access to y ◦ π. Therefore k is not discarded in either Step 10 or Step 14. Thus, the tester
will accept with probability at least 2/3.

Now, assume that x is ε-far from P. Let E denote the event that the number of queries
made by the tester does not exceed its query budget. We will first show that, conditioned on
E, the tester rejects x with probability at least 4/5.

Let N1 denote the set of nonerased points in the plain part of x and N2 denote those
in the encoded part and let N denote the set of nonerased points in x. Even if all of at
most Nα erased points in x are in the plain part of x, the total number of nonerased points

ITCS 2019

63:12 Erasures vs. Errors in Local Decoding and Property Testing

in plain part of x, which is |N1|, is at least sn − Nα. Since, for large enough n, we have
N ≤ 2sn by Definition 3.6, we can see that |N1| ≥ sn(1 − 2α). We first prove two claims
about the plain part of x, that is, x[1 . . . sn].

I Claim 3.8. The plain part of x is 2ε
3 -far from being s repetitions of a string y ∈ Rφn .

From Claim 3.8, it follows that at least 2ε·|N1|
3 ≥ 2ε·sn(1−2α)

3 nonerased points need to be
changed in the plain part of x for it to be s repetitions of a string y ∈ Rφn .

I Claim 3.9. For every y ∈ {0, 1}n, if the plain part of x can be changed to s repetitions of
y by modifying less than ε·sn(1−2α)

3 nonerased values, then y is ε(1−2α)
3 -far from Rφn .

Fix k ∈ [L]. Let y′ ∈ {0, 1}n be the first n bits from the left in the decoding, using Tk, of
the encoded part of x. We will show that the algorithm discards k with high probability. We
split the analysis into two cases.

Case I: Suppose we need to change at least ε|N1|
3 ≥ ε·sn(1−2α)

3 nonerased points in the plain
part of x for it to become s repetitions of y′. We show that in this case, Steps 7-10
discard k with probability at least 9

10L . A point (i − 1)n + a for i ∈ [s] and a ∈ [n]
is called a witness if x[(i − 1)n + a] 6=⊥ and x[(i − 1)n + a] 6= y′[a]. Since we need to
change at least ε · sn(1− 2α)/3 nonerased points in the plain part of x for it to become
s repetitions of y′, there are at least ε · sn(1 − 2α)/3 witnesses in the plain part of x.
In each iteration of Steps 7-10, the point selected is a witness with probability at least
ε·sn(1−2α)

3sn = ε·(1−2α)
3 . Thus, in d 9 logL

ε(1−2α)e iterations, Algorithm 2 finds a witness (and
discards k) with probability at least 9/10L.

Case II: In this case, we assume that we can change less than ε · sn(1− 2α)/3 nonerased
points in the plain part of x and make it s repetitions of y′. Then, by Claim 3.9, y′ is
ε ·(1−2α)/3-far from Rφn . Let ε′ = ε·(1−2α)

3 . By Claim 3.5, for every proof π ∈ {0, 1}p(n),
the algorithm V (from Claim 3.5), on input ε′ and oracle access to y′ ◦π (obtained via Tk),
rejects (causing k to be discarded) with probability at least 2/3. Thus, the probability
that tester fails to discard k in d4 logLe independent iterations of Steps 12-14 is at most
1/16L.

Therefore, the probability that the tester fails to discard k is at most 1
10L + 1

16L < 1
5L .

By the union bound, the probability that Algorithm 2 fails to discard some k ∈ [L] is at
most 1/5. Thus, conditioned on the event E that the number of queries made by the tester
does not exceed its query budget, with probability at least 4/5, the tester rejects.

We bound the probability of E by first showing that the expected number of queries made
by Algorithm 2 is O(1

ε(1−2α)) and then applying Markov’s inequality. Hence, the probability
that the tester accepts x that is ε-far from P is at most 1/3. J

I Lemma 3.10. Let ε? ∈ (0, 1) be as in Lemma 3.2. For every α ∈ (ε
?

8 , 1) and ε′ ∈
(α, ε? − (ε?)2

4), the query complexity of (α, ε′)-tolerant testing P on strings of length N is
Ω̃(logN).

Proof. Let ℵ, ε? ∈ (0, 1) be as in Lemma 3.2. We will prove the lemma by showing a
reduction from ε?-testing of Rφn . Fix n ∈ ℵ and let p(n) and N be as in Definition 3.6. Let
s denote (4

ε? − 1) · 2n+p(n)

n .
Consider a string y ∈ {0, 1}n that we want to ε?-test for Rφn . Let x ∈ {0, 1}N be the

string where the first sn bits of x are s repetitions of y and the remaining bits are all 0s. We
refer to the substring x[1 . . . sn] as the plain part of x and the substring x[sn+ 1 . . . N] as
the encoded part of x.

S. Raskhodnikova, N. Ron-Zewi, and N. Varma 63:13

Assume that A is an (α, ε′)-tolerant tester for P. We now describe an ε?-tester A′ for
Rφn that has the same query complexity as A. Given oracle access to y ∈ {0, 1}n, the tester
A′ runs the tester A on the string x ∈ {0, 1}N and accepts if and only if A accepts, where x
is constructed from y as described above. Observe that one can simulate a query to x by
making at most one query to y.

If y ∈ Rφn , then x is α-close to P. Observe that the encoded part of x needs to be
changed in at most 1/2 fraction of its positions in order to make it the encoding of a string
y ◦ π, where π is a proof that makes a PCP of proximity for testing Rφn accept. This follows
from the fact that the normalized weight of every nonzero codeword in the Hadamard code
is 1/2. Thus, the fraction of bits in x that needs to be changed in order to make it satisfy P
is at most 1

2 ·
N−sn
N = ε?

8 , which is less than α. Therefore, by definition, A′ will accept x
with probability at least 2/3.

If y is ε?-far from Rφn , then x needs to be changed in at least ε? · sn positions to make
it satisfy P. From this, one can observe that x is (ε? − (ε?)2

4)-far from P. Hence, for all
ε′ < ε? − (ε?)2

4 , we have that A will reject x with probability at least 2/3, and therefore A′
will reject y with probability at least 2/3.

Thus, we have shown that the query complexity of (α, ε′)-tolerant testing P is at least the
query complexity of ε?-testing Rφn . Hence, the query complexity of (α, ε′)-tolerant testing
P is Ω(n), which is equal to Ω̃(logN). J

Proof of Theorem 1.5. For every 0 < ε? < 1/100, the system of constraints on α, ε ∈ (0, 1)
(by Theorem 3.1) has a feasible solution with α = ε?/6 and ε = 4ε?/5. J

4 Approximate Local List Erasure-Decoding

In this section, we prove the existence of an approximate locally list erasure-decodable code
(ALLEDC) with inverse polynomial rate. Our starting point is an approximate locally list
decodable code (ALLDC) due to Impagliazzo et al. [28]. To this code, we apply Observation 4.2
which states that every ALLDC that works in the presence of errors also works in the presence
of twice as many erasures (with the same parameters up to constant factors).

I Theorem 4.1 ([28] as restated by [4]). For every γ, β > 0, there exists a number f(γ, β) > 0
and a code family {Ck : Fk2 → Ff(γ,β)k5

2 }k∈N that is a (γ, β,O(log(1/β)
(1

2−γ)3), O(1
(1

2−γ)2))-ALLDC.

I Observation 4.2. If a code family {Ck : Fk2 → Fn2}k∈N is an (α, β, q, L)-ALLDC, it is also
a (2α, β, 4q, 4L)-ALLEDC.

Applying Observation 4.2 to Theorem 4.1, we get the ALLEDCs that we need.

I Lemma 4.3. Let c3 > 0 be a constant. For every γ, β > 0, there exists a number f(γ, β) > 0
and a code family {Ck : Fk2 → {0, 1}f(γ,β)k5}k∈N that is a (γ, β, c3 log(1/β)

(1−γ)3 , c3
(1−γ)2)-ALLEDC.

5 Strengthened Separation

In this section, we describe a property P ′ that can be erasure-resiliently tested using a
constant number of queries, but for which every tolerant tester has query complexity nΩ(1),
and prove Theorem 1.6. The following theorem implies Theorem 1.6.

ITCS 2019

63:14 Erasures vs. Errors in Local Decoding and Property Testing

I Theorem 5.1. There exists a property P ′ and constants ε? ∈ (0, 1), c2 > 1 such that,
For every ε ∈

(
ε?

8 , 1
)

and α ∈ (0, ε?

57600·c2
), property P ′ can be α-erasure-resiliently

ε-tested using a constant number of queries,
For every α ∈ (ε?

57600·c2+2ε? , 1), and ε′ ∈
(
α, 28800·c2·ε?

28800·c2+ε?

)
, every (α, ε′)-tolerant tester for

P ′ on inputs of length N has query complexity NΩ(1).

5.1 Description of the Separating Property P ′

The property P ′ is very similar to the property P that we used in our first separation (see
Definition 3.6). Like a string that satisfies P, a string that satisfies P ′ can also be thought
of as consisting of a plain part (that contains the repetition of a string y ∈ Rφn) and an
encoded part. The encoded part of a string in P is the Hadamard encoding of a string y ◦ π,
where π is a proof that makes the algorithm V from Claim 3.5 accept. However, the encoded
part of a string satisfying P ′ is the encoding of a string π′, where π′ is a proof (whose length
is asymptotically equal to |π|) that makes a ‘smoothed ’ PCPP accept. In addition, the
encoding uses an ALLEDC (from Section 4) instead of the Hadamard code.

We first describe the ‘smoothed ’ PCPP used in our construction. The following lemma
by Ben-Sasson et al. [6] and Guruswami and Rudra [25] states that algorithms making
nonadaptive queries can be transformed into algorithms that make nearly uniform queries.

I Lemma 5.2 ([25, 6]). For every nonadaptive algorithm T , there exists a mapping ϕ :
{0, 1}∗ → {0, 1}∗ and an algorithm T ′ satisfying the following:

For every x ∈ {0, 1}∗, the decision of T with oracle access to x is identical to the decision
of T ′ with oracle access to ϕ(x). Moreover, 3|x| < |ϕ(x)| ≤ 4|x|, and the number of
queries that T ′ makes to ϕ(x) is at most twice the number of queries that T makes to x.
Given oracle access to x′ ∈ {0, 1}n, each query of T ′ is to location j ∈ [n] with probability
at most 2/n.

Combining Lemma 3.4 with Lemma 5.2 (along with the fact that R = {Rφn}n∈ℵ can be
decided using linear-sized circuits), we get the required ‘smoothed ’ PCPP for R.

I Lemma 5.3. Let c1 > 0, c2 > 1 be constants. The property Rφn has a PCPP V that works
for all ε ∈ (0, 1], gets oracle access to an input y of length n and a proof π of length at most
c1n · polylog n, and makes at most c2

ε queries. Moreover, the queries of V are nonadaptive
and satisfy the following:

Each query V makes to y is to any particular location of y with probability at most 2/n.
Each query V makes to π is to any particular location of π with probability at most 2/|π|.

The following is the definition of our separating property P ′. Note that the encoded part
of a string satisfying P ′ contains the encoding of a proof as well as the complement of that
encoding. This is done in order to equalize the number of 0s and 1s in the encoded part.

I Definition 5.4 (Separating Property P ′). Let ℵ and ε? ∈ (0, 1) be as in Lemma 3.2. Let
c1 > 0, c2 > 1 be as in Lemma 5.3 and c3 > 0 be as in Lemma 4.3. Let m = 28800·c2

ε? ,
γ = 1

2 + ε?

57600·c2
and β = ε?

9000c2·
⌈

ln 6c3
(1−γ)2

⌉ . For n ∈ ℵ, let p(n) ≤ c1 · n · polylog n denote

the length of the proof that makes the algorithm V in Lemma 5.3 accept. Let f(·, ·) be as
in Lemma 4.3. Let C = {Ck}k∈N be the (γ, β, c3 log(1/β)

(1−γ)3 , c3
(1−γ)2)-ALLEDC from Lemma 4.3.

A string x ∈ {0, 1}N of length N = (m+ 1) · 2f(γ, β) · (p(n))5 satisfies P ′ if the following
conditions hold:

S. Raskhodnikova, N. Ron-Zewi, and N. Varma 63:15

1. The firstm·2f(γ, β)·(p(n))5 bits of x (called the plain part of x) consist ofm· 2f(γ,β)·(p(n))5

n

repetitions of a string y ∈ Rφn of length n, for Rφn from Lemma 3.2.
2. The remaining 2f(γ, β) · (p(n))5 bits of x is called the encoded part. Its first half is the

encoding, using C, of a string π ∈ {0, 1}p(n) such that the PCPP V in Lemma 5.3 accepts
when given oracle access to y ◦ π. The second half of the encoded part is the complement
of its first half.

5.2 Proof of Strengthened Separation
In this section, we prove Theorem 5.1. Lemmas 5.5 and 5.9 together imply the first and
second parts of Theorem 5.1, respectively. The high level idea of the proof of Lemma 5.5
is very similar to that of Lemma 3.7. The differences arise mainly because of the way the
encoded parts of strings satisfying P and P ′ differ. The erasure-resilient tester for P could
first check whether the plain part is a repetition of the ‘decoded input’, and then check
whether the ‘decoded input’ is in R with the help of the ‘decoded PCPP proof’. Since the
encoded part of P ′ is the encoding of just a PCPP proof, this is not possible. Instead,
the erasure-resilient tester for P ′ samples a uniformly random nonerased point u from the
plain part and uses the ‘block’ from which u is obtained as a ‘candidate input’ y. It then
checks whether the plain part is a repetition of y and also checks whether y ∈ R using the
‘approximately decoded proof’. In case a string is α-erased and ε-far from P ′, we show that
the ‘candidate input’ y that we sample is cα-erased and c′ε-far from R, for some constants
c, c′. Hence, the smoothed PCPP verifier rejects.

I Lemma 5.5. Let ε? ∈ (0, 1) be as in Lemma 3.2 and c2 > 1 be as in Lemma 5.3. For every
ε ∈

(
ε?

8 , 1
)
and α ∈ (0, ε?

57600·c2
), the property P ′ is α-erasure-resiliently ε-testable using a

constant number of queries.

Proof. The erasure-resilient tester is presented in Algorithm 3. Let m denote 28800 · c2/ε?.
Let γ = 1/2 + ε?/57600c2, β = ε?

9000c2·
⌈

ln 6c3
(1−γ)2

⌉ , q = c3 log(1/β)
(1−γ)3 , and L = c3/(1 − γ)2. For

n ∈ ℵ, consider a string x ∈ {0, 1}N , where N = (m+ 1) · 2f(γ, β) · (p(n))5. The plain part of
x is m times larger than the encoded part. Let s denote the number m · 2f(γ, β) · (p(n))5/n.

Assume that x satisfies P ′. Since x satisfies P ′, the plain part of x is completable to
the repetitions of some y ∈ Rφn . Therefore, Steps 5-9 never reject. By definition of P ′, the
first half of the encoded part of x is the encoding (using the (γ, β, q, L)-ALLED code C from
Lemma 4.3) of a proof π(y) ∈ {0, 1}p(n) such that the PCPP V with oracle access to y ◦ π(y)
always accepts. The second half of the encoding is the complement of the first half. The
fraction of erasures in the encoded part (even if all of the erasures were there) is at most
(m+ 1)α. Therefore, the fraction of erasures in either the first half or the second half of the
encoded part is at most (m+ 1) · α = 1/2 + 1/2m = γ.

By the definition of a (γ, β, q, L)-ALLED code, with probability at least 2/3, one of
the algorithms T1, T2, . . . , TL returned by the approximate local list decoder provides oracle
access to π(y) with at most β fraction of errors. Let Tk be that algorithm. The tester discards
this k only if an erroneous point is queried in some iteration of Steps 14-18. Since each proof
query of V (in Step 17) is made to a specific index in the proof with probability at most
2/|p(n)| and the string decoded by Tk is β-erroneous, by the union bound over queries of V ,
the probability of V querying an erroneous point is at most 2β · c2·75

24ε . Hence, by the union
bound, the probability that the tester discards k is at most 1

3 + 2 · 6 · dln 6Le · c2·75
24ε · β ≤

2
5 ,

where the inequality follows from our setting of β. Hence, Step 19 does not reject with
probability at least 3/5. That is, the tester accepts x with probability at least 3/5.

ITCS 2019

63:16 Erasures vs. Errors in Local Decoding and Property Testing

Algorithm 3 Erasure-resilient tester for separating property P ′.
Input: α, ε ∈ (0, 1), N = (m+ 1) · 2f(γ, β) · (p(n))5; oracle access to x ∈ {0, 1,⊥}N

1: Set s← m · 2f(γ,β)·(p(n))5

n , q ← c3 log(1/β)
(1−γ)3 , and L← c3

(1−γ)2 .

2: Set the query budget Q← 30 ·
(
d 432
ε e ·

2
1−(m+1)α + Ld6 ln 6Le · c2·75

24ε · q
)
.

3: Accept whenever the number of queries exceeds Q.
4: . Steps 5-9 check that the plain part of x is the repetition of a string y ∈ {0, 1}n.
5: repeat d 432

ε e times:
6: Repeatedly sample a uniformly random point u from the plain part until x[u] 6=⊥.
7: Let u be (i− 1)n+ a for i ∈ [s] and a ∈ [n].
8: Repeatedly sample j ∈ [s] uniformly at random until x[(j − 1)n+ a] 6=⊥ .
9: Reject if x[(i− 1)n+ a] 6= x[(j − 1)n+ a].

10: . In order to query the i-th bit of the encoding, we query the i-th bits of both the first and
second halves of the encoded part. We set the i-th bit of the encoding to the i-th bit of the
first half if that is nonerased, and to the complement of the i-th bit of second half if that is
nonerased. If both are erased, we set the i-th bit of the encoding to ⊥.

11: Run the decoder for the (γ, β, q, L)-ALLED code (Lemma 4.3) with oracle access to the
encoded part of x. Let A1, A2, . . . , AL be the list of algorithms it returns.

12: . Steps 13-19 check that y ∈ Rφn using the PCPP V on decoded proofs.
13: for each k ∈ [L] do
14: repeat d6 ln 6Le times:
15: Repeatedly sample a uniformly random point u from the plain part until x[u] 6=⊥.
16: Let u be (i− 1)n+ a for i ∈ [s] and a ∈ [n].
17: Run the PCPP V (guaranteed by Lemma 5.3) with proximity parameter 24ε

75 ,
and oracle access to x[(i− 1)n+ 1, . . . , (i− 1)n+ n] as the input string and the string
decoded by Tk as the proof.

18: Discard the current k if all query answers to V are nonerased and V rejects.
19: Reject if every k ∈ [L] is discarded; otherwise, accept.

Assume now that x is ε-far from P ′. Let Npl denote the set of nonerased points in the
plain part of x. Let Nen denote the set of nonerased points in the encoded part of x. Let αpl
denote the fraction (with respect to sn) of erased points in the plain part. Let E denote the
event that the number of queries made by the tester does not exceed the query budget Q.

I Claim 5.6. The probability that Algorithm 3 exceeds its query budget is at most 1/30.

We now analyze the probability that Algorithm 3 rejects, conditioned on E.

Case I: the plain part of x is ε/144-far from being the repetitions of every y ∈ {0, 1}n.
Let εpl denote the fraction of points (with respect to |Npl|) in Npl whose values need

to be changed in order to make the plain part a repetition of some string y ∈ {0, 1}n. Let
Sa = {(i− 1)n+ a : i ∈ [s]} for all a ∈ [n]. We use the term a-th segment to refer to the set
Sa. For all a ∈ [n], we have |Sa| = s. For all a ∈ [n], let αa = |{u ∈ Sa : x[u] =⊥}|/s denote
the fraction of points in Sa that are erased. Let Na ⊆ Sa denote the set of nonerased points
in the a-th segment. Let εa for all a ∈ [n] denote the fraction of points in Na whose values
need to be changed in order to satisfy x[u] = x[v] for all u, v ∈ Sa such that both x[u] and
x[v] are nonerased.

S. Raskhodnikova, N. Ron-Zewi, and N. Varma 63:17

For every a ∈ [n] and u ∈ Na, the number of v ∈ Na such that x[u] 6= x[v], is at least
εa · |Na|. Let Ga for all a ∈ [n] denote the (good) event that the tester samples a point from
Na in Step 6. Let F denote the event that the tester rejects in a single iteration Steps 5-9.
Hence,Pr[F |E] =

∑
a∈[n] Pr[Ga|E] ·Pr[F |Ga, E] ≥

∑
a∈[n]

|Na|
|Npl| · εa = εpl ≥ ε/144. Therefore,

conditioned on E, in at least 432/ε iterations, the tester will reject with probability at least
19/20. Hence, the algorithm accepts with probability at most 1/20 + Pr[E] ≤ 1/20 + 1/30 ≤
2/5, since Pr[E] ≤ 1/30. Thus, the algorithm rejects with probability at least 3/5.

Case II: the plain part of x is ε/144-close to being repetitions of a string y∗ ∈ {0, 1}n.

I Claim 5.7. The string y∗ is ε/2-far from Rφn .

Let Bi = {(i− 1)n+ a : a ∈ [n]} for all i ∈ [s]. We use the term i-th block to refer to the set
Bi. For all i ∈ [s], we have, |Bi| = n. Let αi = |{u ∈ Bi : x[u] =⊥}|/n for all i ∈ [s] denote
the fraction of points in Bi that are erased. Let Ni ⊆ Si denote the set of nonerased points
in the i-th block. Let εi for all i ∈ [s] denote the fraction of points in Ni whose values need
to be changed in order to satisfy x[(i− 1)n+ a] = y∗[a] for all a ∈ [n].

Fix k ∈ [L]. We show that Algorithm 3 discards k with high probability. Consider a
single iteration of Steps 15-18. Let y′ denote the (partially erased) string represented by
the block that Algorithm 3 samples in Step 15. Let G1 denote the (good) event that y′ is
ε/6-close to y∗. Let G2 denote the (good) event that y′ has at most 48α fraction of erasures.

I Claim 5.8. Conditioned on G1 and G2, the string y′ is 24ε/75-far from Rφn .

The PCPP V , with proximity parameter 24ε
75 , is run on y′ and the proof decoded by Tk.

Let B1 denote the (bad) event that the PCPP V obtains an erased bit as the answer to some
query. Let B2 denote the (bad) event that V accepts. By Lemma 5.3, each query of V to
the input part is made to each input index with probability at most 2

n uniformly distributed
among the n input indices. Hence Pr[B1|E,G1, G2], the probability that some input query
is made to an erased point, is at most c2·75

24ε · 96α. The probability that the V accepts (even
if there were no erased query answers) is Pr[B2|E,G1, G2] and is, by Definition 3.3, at most
1/3. Thus, the probability that the PCPP accepts, conditioned on E, G1, and G2, is by the
union bound, at most c2·75

24ε · 96α+ 1
3 ≤

1
24 + 1

3 , where the inequality follows from our setting
of ε and α.

To bound the probability that the PCPP accepts in a single iteration of Steps 15-18, we
now evaluate Pr[G1] and Pr[G2]. Let the random variable X denote the relative Hamming
distance of y′ from y∗. Then, E[X] =

∑
i∈[s]

|Ni|
|Npl| · εi = εpl ≤ ε

144 . By Markov’s inequality,
Pr[G1] = Pr[X ≥ ε

6] ≤ E[X]/(ε/6) ≤ 1/24. To bound Pr[G2], let the random variable Y
denote the fraction of erasures in y′. We first show that E[Y] = αpl. Even if all the erasures
were in the plain part, αpl ≤ αN

sn ≤ α · (1 + 1
m). Again, by an application of Markov’s

inequality, we get Pr[G2] = Pr[Y > 48α] ≤ E[Y]
48α ≤

1+ 1
m

48 ≤ 1/24.
Therefore, conditioned on E, the probability that the PCPP accepts in one iteration

of Steps 15-18 is at most Pr[B1|E,G1, G2] + Pr[B2|E,G1, G2] + Pr[G2] + Pr[G1] ≤ 1
24 +

1
3 + 1

24 + 1
24 ≤

2
3 . That is, conditioned on E, for a fixed k ∈ [L], in d6 ln 6Le independent

repetitions of Steps 15-18, the probability that the PCPP does not discard k is at most(
1− 1

3
)d6 ln 6Le ≤ 1

36L2 . Hence, conditioned on E, the probability that for some k ∈ [L],
Steps 14-18 accepts is, by the union bound, at most 1/36L. Thus, if x is in Case II, the
probability that the tester accepts is at most, 1

36L + Pr[E] ≤ 1
36L + 1

30 ≤
2
5 , where Claim 5.6

shows that Pr[E] is at most 1/30. J

ITCS 2019

63:18 Erasures vs. Errors in Local Decoding and Property Testing

Next, we show that it is hard to tolerant test P ′. The proof of Lemma 5.9 is identical to the
proof of Lemma 3.10 up to change in parameters and is hence omitted.

I Lemma 5.9. Let ε? ∈ (0, 1) be as in Lemma 3.2 and c2 > 1 be as in Lemma 5.3. For every
α ∈ (ε?

57600·c2+2ε? , 1), and ε′ ∈
(
α, 28800·c2·ε?

28800·c2+ε?

)
, every (α, ε′)-tolerant tester for P ′ requires

Ω̃(N0.2) queries.

Proof of Theorem 1.6. For sufficiently small ε?, setting α = ε?

57600·c2+ε? and ε = 57599
57600·c2+2ε?

satisfies all the constraints on ε and α imposed by Theorem 5.1. J

6 Local Erasure-Decoding Versus Local Decoding

In this section, we prove Theorem 1.8 and an observation that if a code is locally decodable, it
is also locally erasure-decodable up to (nearly) twice as many erasures. To prove Theorem 1.8,
we first make the local erasure-decoder for {Cn}n∈N nonadaptive. We then show that every
LEDC with a nonadaptive decoding algorithm is such that uncorrupted codewords can be
locally decoded using an algorithm that queries nearly uniformly distributed codeword indices
(Claim 6.2). We then use this ‘smoothness’ property (see Definition 6.1) to show that the
code family is locally decodable from a smaller fraction of errors than erasures (Claim 6.3).

I Definition 6.1 (Smooth Locally Decodable Codes). A code family {Cn : Fn2 → FN2 }n∈N is
(q, η)-smooth locally decodable if there exists a (0, q)-local erasure-decoder A (see Defini-
tion 1.7) that, given oracle access to an uncorrupted codeword w ∈ FN2 , and input i ∈ [n], is
such that for all j ∈ [N], the probability that A queries j is at most η.

I Claim 6.2. For every α ∈ [0, 1), if a code Cn : Fn2 → FN2 is (α, q)-locally erasure-decodable,
then Cn is (q′, η)-smooth locally decodable, where q′ = 18q · 9q−1, and η = q′/αN .

I Claim 6.3. For every α ∈ [0, 1), if a code Cn : Fn2 → FN2 is (q, q/αN)-smooth locally
erasure-decodable, then Cn is (α/12q2, 72q)-locally decodable.

Proof of Claim 6.2. Let A be an (α, q)-local erasure-decoder for Cn. We first design a
nonadaptive local erasure-decoder A1 for Cn that makes a higher number of queries than
A. Consider a (partially erased) codeword w ∈ ({⊥} ∪ F2)N that has at most α fraction
of erasures. The algorithm A1, on oracle access to w and an input i ∈ [n], has 18 · 9q−1

independent iterations. In each iteration, A1 simulates A, guesses the answers to the first
q − 1 queries made by A, and decides the q-th query of A based on these guesses. A′ then
queries w on the q queries made by A in the simulation. If all the query answers agree with
the guesses, the decoder A1 stores the output of A as the output of the current iteration.
Otherwise, it stores a uniformly random bit as the output of the current iteration. Finally,
A1 outputs the majority value output among all iterations.

In any particular iteration, the probability that A1 outputs the correct answer in that
iteration, is at least 3q−1−1

3q−1 · 1
2 + 1

3q−1 · 2
3 , which is equal to 1

2 + 1
6·3q−1 . Hence, using standard

arguments, the probability that A1 outputs the correct answer after 18 · 9q−1 independent
iterations, is at least 2/3. The query complexity of A1 is 18q · 9q−1, which we denote by q′.

We now use A1 to construct A2, a (q′, q′

αN)-smooth local decoder for Cn. Consider an
uncorrupted codeword w = Cn(x) for x ∈ Fn2 . For each i ∈ [n], let Si denote the set consisting
of indices in [N] that get queried by A1 (on input i) with probability more than q′

αN . Since∑
j∈[N] Pr[ACn(x)

1 (i) queries j] = q′, we have |Si| ≤ α ·N . On input i ∈ [n] and oracle access
to w = Cn(x), the algorithm A2 simulates A1 in the following way. If A1 queries j′ ∈ Si, the
algorithm A2 does not query j′ and assumes that w[j′] =⊥. Thus, A2 is a (q′, q′

αN)-smooth
local decoder for Cn. J

S. Raskhodnikova, N. Ron-Zewi, and N. Varma 63:19

Proof of Claim 6.3. Consider a (q, q
αN)-smooth local decoder A for Cn. We will construct

an (α
12q2 , 72q)-local decoder A′ for Cn. Algorithm A′, on input i ∈ [n] and oracle access to

a word w with at most α
12q2 fraction of errors, performs 72 independent repetitions of A

and outputs the majority value output among all the iterations. Let x ∈ Fn2 be such that
y = Cn(x) is the codeword closest to w. If A is run on input i with oracle access to y, then
for at least 2

3 fraction of the sequences of its random coin tosses, A returns xi correctly.
When A is run on input i with oracle access to w, by the union bound and the smoothness
of A, at most q · α

12q2 ·N · q
αN = 1

12 fraction of sequences of its random coin tosses result in
an erroneous position being queried. Hence, the probability that A, on input i and oracle
access to w, returns xi correctly is at least 2

3 −
1
12 . Hence, the probability that A′ outputs xi

correctly is at least 2/3. The query complexity of A′ is 72q. J

I Observation 6.4. Every (α, q)-locally decodable code Cn : Fn2 → FN2 is also (2α− ρ, 72q)-
locally erasure-decodable, where ρ = 2 ·

√
ln(12) · α/N .

References
1 Noga Alon, Jeff Edmonds, and Michael Luby. Linear Time Erasure Codes with Nearly

Optimal Recovery. In Proceedings of FOCS 1995, pages 512–519, 1995.
2 László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking Computations

in Polylogarithmic Time. In Proceedings of STOC 1991, pages 21–31, 1991.
3 Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-Francois Raymond. Breaking the

O(n1/(2k−1)) Barrier for Information-Theoretic Private Information Retrieval. In Proceed-
ings of FOCS 2002, pages 261–270, 2002.

4 Avraham Ben-Aroya, Klim Efremenko, and Amnon Ta-Shma. A Note on Amplifying the
Error-Tolerance of Locally Decodable Codes. Electronic Colloquium on Computational
Complexity (ECCC), 17:134, 2010.

5 Avraham Ben-Aroya, Klim Efremenko, and Amnon Ta-Shma. Local List Decoding with a
Constant Number of Queries. In Proceedings of FOCS 2010, pages 715–722, 2010.

6 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding. SIAM J. Comput.,
36(4):889–974, 2006.

7 Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3CNF Properties Are
Hard to Test. SIAM J. Comput., 35(1):1–21, 2005.

8 Volodia M. Blinovsky. Bounds for codes in the case of list decoding of finite volume.
Problems of Information Transmission, 22(1):7–19, 1986.

9 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-Testing/Correcting with Applica-
tions to Numerical Problems. J. of Computer and System Sciences, 47(3):549–595, 1993.

10 Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.
11 Irit Dinur and Omer Reingold. Assignment Testers: Towards a Combinatorial Proof of the

PCP Theorem. SIAM J. Comput., 36(4):975–1024, 2006.
12 Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta, and Nithin M. Varma. Erasure-

Resilient Property Testing. SIAM J. Comput., 47(2):295–329, 2018.
13 Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching Vector Codes. SIAM J.

Comput., 40(4):1154–1178, 2011.
14 Klim Efremenko. 3-Query Locally Decodable Codes of Subexponential Length. SIAM J.

on Computing, 41(6):1694–1703, 2012.
15 Eldar Fischer and Lance Fortnow. Tolerant Versus Intolerant Testing for Boolean Proper-

ties. Theory of Computing, 2(9):173–183, 2006.

ITCS 2019

63:20 Erasures vs. Errors in Local Decoding and Property Testing

16 Peter Gemmell, Richard J. Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson.
Self-testing/correcting for polynomials and for approximate functions. In Proceedings of
STOC 1991, pages 32–42, 1991.

17 Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Information
Processing Letters, 43(4):169–174, 1992.

18 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property Testing and its Connection
to Learning and Approximation. J. ACM, 45(4):653–750, 1998.

19 Oded Goldreich and Leonid A. Levin. A Hard-Core Predicate for all One-Way Functions.
In Proceedings of STOC 1989, pages 25–32, 1989.

20 Sivakanth Gopi, Swastik Kopparty, Rafael Mendes de Oliveira, Noga Ron-Zewi, and
Shubhangi Saraf. Locally Testable and Locally Correctable Codes Approaching the Gilbert-
Varshamov Bound. In Proceedings of SODA 2017, pages 2073–2091, 2017.

21 Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by adaptive
procedures with advice, and lower bounds on hardness amplification proofs. In FOCS,
2018. URL: https://eccc.weizmann.ac.il/report/2018/061.

22 Alan Guo and Swastik Kopparty. List-Decoding Algorithms for Lifted Codes. IEEE Trans.
Information Theory, 62(5):2719–2725, 2016.

23 Venkatesan Guruswami. List decoding from erasures: bounds and code constructions. IEEE
Trans. Information Theory, 49(11):2826–2833, 2003.

24 Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Trans. Information Theory, 51(10):3393–3400, 2005.

25 Venkatesan Guruswami and Atri Rudra. Tolerant Locally Testable Codes. In Proceedings
of RANDOM 2005, pages 306–317, 2005.

26 Venkatesan Guruswami and Salil P. Vadhan. A Lower Bound on List Size for List Decoding.
IEEE Trans. Information Theory, 56(11):5681–5688, 2010.

27 Dan Gutfreund and Guy N. Rothblum. The Complexity of Local List Decoding. In Pro-
ceedings of RANDOM 2008, pages 455–468, 2008.

28 Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform
Direct Product Theorems: Simplified, Optimized, and Derandomized. SIAM J. Comput.,
39(4):1637–1665, 2010.

29 Swastik Kopparty. List-Decoding Multiplicity Codes. Theory of Comput., 11:149–182, 2015.
30 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-Rate Locally

Correctable and Locally Testable Codes with Sub-Polynomial Query Complexity. J. ACM,
64(2):11:1–11:42, 2017.

31 Swastik Kopparty and Shubhangi Saraf. Local List-Decoding and Testing of Random Linear
Codes from High Error. SIAM J. Comput., 42(3):1302–1326, 2013.

32 Or Meir. Combinatorial PCPs with Efficient Verifiers. Comp. Complexity, 23(3):355–478,
2014.

33 Or Meir. Combinatorial PCPs with Short Proofs. Comp. Complexity, 25(1):1–102, 2016.
34 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance

approximation. J. Comput. Syst. Sci., 72(6):1012–1042, 2006.
35 Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In

Proceedings of STOC 1994, pages 194–203. ACM Press, 1994.
36 Sofya Raskhodnikova, Noga Ron-Zewi, and Nithin Varma. Erasures versus Errors in Local

Decoding and Property Testing. Electronic Colloquium on Computational Complexity
(ECCC), 2018. URL: https://eccc.weizmann.ac.il/report/2018/195.

37 Ronitt Rubinfeld and Madhu Sudan. Robust Characterizations of Polynomials with Ap-
plications to Program Testing. SIAM J. Comput., 25(2):252–271, 1996.

38 Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom Generators without the
XOR Lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

https://eccc.weizmann.ac.il/report/2018/061
https://eccc.weizmann.ac.il/report/2018/195

S. Raskhodnikova, N. Ron-Zewi, and N. Varma 63:21

39 Luca Trevisan. Some Applications of Coding Theory in Computational Complexity. CoRR,
cs.CC/0409044, 2004. arXiv:cs/0409044.

40 Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. J. of
the ACM, 55(1):1:1–1:16, 2008.

ITCS 2019

http://arxiv.org/abs/cs/0409044

	Introduction
	Model Definitions and Our Results
	Open Questions

	Local List Erasure-Decoding of the Hadamard Code
	Separation
	Description of the Separating Property P
	Proof of Theorem 3.1

	Approximate Local List Erasure-Decoding
	Strengthened Separation
	Description of the Separating Property P'
	Proof of Strengthened Separation

	Local Erasure-Decoding Versus Local Decoding

