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Abstract
Cheeger’s inequality shows that any undirected graph G with minimum normalized Laplacian
eigenvalue λG has a cut with conductance at most O(

√
λG). Qualitatively, Cheeger’s inequality

says that if the mixing time of a graph is high, there is a cut that certifies this. However, this
relationship is not tight, as some graphs (like cycles) do not have cuts with conductance o(

√
λG).

To better approximate the mixing time of a graph, we consider a more general object. Spe-
cifically, instead of bounding the mixing time with cuts, we bound it with cuts in graphs obtained
by Schur complementing out vertices from the graph G. Combinatorially, these Schur comple-
ments describe random walks in G restricted to a subset of its vertices. As a result, all Schur
complement cuts have conductance at least Ω(λG). We show that unlike with cuts, this inequality
is tight up to a constant factor. Specifically, there is a Schur complement cut with conductance
at most O(λG).
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1 Introduction

In this paper, we give a constant-factor approximation for the minimum ratio of electrical
conductance to volume of any pair of sets S1, S2. When S1 is the complement of S2, for
example, this quantity is what is classically called the conductance of the set S1, so the
ratio that we consider is less than conductance of the graph G. We obtain this constant-
factor approximation by showing that the minimum electrical conductance-to-volume ratio is
approximated within a constant factor by λG. Thus, our quantity closes the classical

√
λG

gap present between the upper and lower bounds in Cheeger’s inequality.
In particular, we prove the following partitioning result, which relates 1/λG to effective

resistances between sets in the graph G. Think of the weighted graph G as an electrical
network, where each edge represents a conductor with electrical conductance equal to its
weight. For two sets of vertices S1 and S2, obtain a graph H by contracting all vertices in S1
to a single vertex s1 and all vertices in S2 to a single vertex s2. Let ReffG(S1, S2) denote
the effective resistance between the vertices s1 and s2 in the graph H. Then, we show the
following in Appendix A:

I Theorem 1. In any weighted graph G, there are two sets of vertices S1 and S2 for which
ReffG(S1, S2) ≥ 1/(25600λG min(volG(S1), volG(S2))). Furthermore, for any pair of sets
S′1, S

′
2, ReffG(S′1, S′2) ≤ 2/(λG min(volG(S′1), volG(S′2)).
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65:2 A Schur Complement Cheeger Inequality

1.1 Relationship to Cheeger’s Inequality
For a set of vertices S, let φS denote the total weight of edges leaving S divided by the
total degree of the vertices in S. Throughout the literature, this quantity is often called the
conductance of S. To avoid confusion with electrical conductance, we call this quantity the
fractional conductance of S. Let φG denote the minimum fractional conductance of any set S
with at most half of the volume (total vertex degree). Cheeger’s inequality for graphs [3, 2]
is as follows:

I Theorem 2 (Cheeger’s Inequality). For any weighted graph G, λG/2 ≤ φG ≤
√

2λG.

Cheeger’s inequality was originally introduced in the context of manifolds [6]. It is a
fundamental primitive in graph partitioning [20, 15] and for upper bounding the mixing time
of Markov chains [19]. Motivated by spectral partitioning, much work has been done on
higher-order generalizations of Cheeger’s inequality [13, 14]. The myriad of applications for
Cheeger’s inequality and generalizations of it [4, 21], along with the the

√
λG gap between

the upper and lower bounds, have led to a long line of work that seeks to improve the quality
of the partition found when the spectrum has certain properties (for example, bounded
eigenvalue gap [11] or when the graph has special structure [10].)

Here, we get rid of the
√
λG gap by taking a different approach. Instead of assuming

special combinatorial or spectral structure of the input graph to obtain a tighter relationship
between conductance and λG, we introduce a more general object than graph cuts that
enable a tighter approximation to λG. Instead of just considering cuts in the given graph G,
we consider cuts obtained by picking two disjoint sets of vertices S1 and S2, computing the
Schur complement of G onto S1 ∪ S2, and looking at the cut consisting of all edges between
S1 and S2 in that Schur complement. Let ρG be the minimum conductance of any such cut
(defined formally in Section 2). We show that the minimum conductance of any such cut is a
constant factor approximation to λG:

I Theorem 3. Let G be a weighted graph. Then

λG/2 ≤ ρG ≤ 25600λG

1.2 Graph Partitioning
Effective resistance in spectral graph theory has been used several times recently (for
example [16, 1]) to obtain improved graph partitioning results. 1/λG may not yield a
good approximation to the effective resistance between pairs of vertices [5]. For example,
on an n-vertex grid graph G, all effective resistances are between Ω(1) and O(logn), but
λG = Θ(1/n). Theorem 1 closes this gap by considering pairs of sets of vertices, not just
pairs of vertices.

Cheeger’s inequality is the starting point for analysis of spectral partitioning. In some
partitioning tasks, cutting the graph does not make sense. For example, spectral partitioning
is an important tool in image segmentation [18, 17]. Graph partitioning makes the most sense
in image segmentation when one wants to find an object with a sharp boundary. However,
in many images, like the one in Figure 1 on the right, objects may have fuzzy boundaries. In
these cases, it is not clear which cut an image segmentation algorithm should return.

Considering cuts in Schur complements circumvents this ambiguity. Think of an image
as a graph by making a vertex for each pixel and making an edge between adjacent pixels,
where the weight on an edge is inversely related to the disparity between the colors of the
endpoint pixels for the edge. An optimal segmentation in our setting would consist of the
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Figure 1 Spectral partitioning finds the S1-S2 cut in the left image, but may not in the right due
to the presence of many equal weight cuts. The minimum fractional conductance Schur complement
cut is displayed in both images.
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Figure 2 A tight example for the upper bound in Cheeger’s inequality. The minimum fractional
conductance of any cut in this graph is 1/8, while the fractional conductance of the illustrated Schur
complement cut on the right is 2(1/4)/(2(1/4) + 8(1)) = 1/17 < 1/8.

two sets S1 and S2 corresponding to pixels on either side of the fuzzy boundary. Computing
the Schur complement of the graph onto S1 ∪ S2 eliminates all vertices corresponding to
pixels in the boundary.

Some examples in which Cheeger’s inequality is not tight illustrate a similar phenomenon
in which there are many equally good cuts. For example, let G be an unweighted n-vertex
cycle. This is a tight example for the upper bound in Cheeger’s inequality, as no cut has
fractional conductance smaller than O(1/n) despite the fact that λG = Θ(1/n2). Instead,
divide the cycle into four equal-sized quarters and let S1 and S2 be two opposing quarters.
The Schur complement cut between S1 and S2 has fractional conductance at most O(1/n2),
which matches λG up to a constant factor.

1.3 Mixing Times of Markov Chains
Cheeger’s inequality and variants of it can be used to upper bound the relaxation time of
reversible Markov chains. The relaxation time of a reversible Markov chain is defined to
be 1/λG and approximates the mixing time of a chain up to a log(1/πmin) factor, where
πmin is the minimum stationary distribution probability. To do this, one finds a fractional
multicommodity flow that routes the demand degree(u)degree(v) for every pair of vertices

ITCS 2019
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u, v ∈ V (G). The relevant quantity is the congestion of this flow. Specifically, view a
multicommodity flow as a collection of paths P, where a flow path has flow value fp. The
congestion of the flow is defined to be

max
e∈E(G)

∑
p∈P:e∈p

|fp|

The fractional conductance of any cut can be lower bounded using the the congestion of
the flow. By the upper bound in Theorem 2, we get a lower bound on λG as well, which
in turn yields an upper bound on the relaxation time of G. However, the congestion of
the optimal fractional multicommodity flow is not a close approximation to the relaxation
time of the graph, due to the loss in both Cheeger’s inequality and in the gap between
fractional multicommodity flows and sparsest cuts. One can improve upon this by considering
a length-weighted form of congestion instead:

max
e∈E(G)

∑
p∈P:e∈p

|fp||p|

The length-weighted congestion of any multicommodity flow in G routing the right demand
is an upper bound on the relaxation time of G. For a precise statement of this, see Theorem
4.6 of [8]. This overcomes the square root present in the upper bound in Cheeger’s inequality.
However, this approach does not overcome the multicommodity flow-cut gap. In particular,
any multicommodity flow in a constant-degree random Erdos-Renyi graph has length-weighted
congestion at least Ω(log2 n) (see, for example, Section 4.1 of [9]), despite the fact that these
graphs have constant relaxation time.

Theorem 3 yields a upper lower bound on the relaxation time of a reversible Markov
chain. Unlike the bounds discussed in the previous paragraph, it is tight up to a constant
factor on all graphs. We do not know of a lower bound for Schur complement cut fractional
conductance analogous to multicommodity flows for standard cuts.

2 Preliminaries

Graph theory. Consider an undirected, connected graph H with edge weights {cHe }e∈E(H),
m edges, and n vertices. Let V (H) and E(H) denote the vertex and edge sets of H re-
spectively. For two sets of vertices A,B ⊆ V (H), let EH(A,B) denote the set of edges in
H incident with one vertex in A and one vertex in B and let cH(A,B) :=

∑
e∈EH (A,B) c

H
e .

For a set of edges F ⊆ E(H), let cH(F ) :=
∑
e∈F c

H
e . For a set of vertices A ⊆ V (H),

let ∂HA := EH(A, V (H) \ A). For a vertex v ∈ V (H), let ∂Hv := ∂H{v} denote the
edges incident with v in H and let cHv :=

∑
e∈∂Hv

cHe . For a set of vertices A ⊆ V (H), let
volH(A) :=

∑
v∈A c

H
v . When A and B are disjoint, let H/(A,B) denote the graph with

all vertices in A identified to one vertex a and all vertices in B identified to one vertex
b. Formally, let H/(A,B) be the graph with V (H/(A,B)) = (V (H) \ (A ∪ B)) ∪ {a, b},
embedding f : V (H) → V (H/(A,B)) with f(u) := a if u ∈ A, f(u) := b if u ∈ B, and
f(u) := u otherwise, and edges {f(u), f(v)} for all {u, v} ∈ E(H). Let H/A := H/(A, ∅).

Laplacians. Let DH be the n × n diagonal matrix with rows and columns indexed by
vertices in H and DH(v, v) = cHv for all v ∈ V (H). Let AH be the adjacency matrix of H;
that is the matrix with AH(u, v) = cHuv for all u, v ∈ V (H). Let LH := DH − AH be the
Laplacian matrix of H. Let NH := D

−1/2
H LHD

−1/2
H denote the normalized Laplacian matrix
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of H. For a matrix M , let M† denote the Moore-Penrose pseudoinverse of M . For subsets A
and B of rows and columns of M respectively, let M [A,B] denote the |A| × |B| submatrix
of M restricted to those rows and columns. For a set of vertices S ∈ V (H), let 1S denote
the indicator vector for the set S. For two vertices u, v ∈ Rn, let χuv := 1{u} − 1{u}. When
the graph is clear from context, we omit H from all of the subscripts and superscripts of H.
For a vector x ∈ Rn, let xS ∈ RS denote the restriction of x to the coordinates in S.

Let λH denote the smallest nonzero eigenvalue of NH . Equivalently,

λH := min
x∈Rn:xTD

1/2
H

1V (H)=0

xTNHx

xTx

For any set of vertices X ⊆ V (H), let

LSchur(H,X) := LH [X,X]−LH [X,V (H) \X]LH [V (H) \X,V (H) \X]−1LH [V (H) \X,X]

where brackets denot submatrices with the indexed rows and columns. The following fact
applies specifically to Laplacian matrices:
I Remark (Fact 2.3.6 of [12]). For any graph H and any X ⊆ V (H), LSchur(H,X) is the
Laplacian matrix of an undirected graph.

Let Schur(H,X) denote the graph referred to in Remark 2. Schur complementation
commutes with edge contraction and deletion and is associative:

I Theorem 4 (Lemma 4.1 of [7], statement from [12]). Given H, S ⊆ V (H), and any edge e
with both endpoints in S,

Schur(H \ e, S) = Schur(H,S) \ e

and, for any pair of vertices x, y ∈ S,

Schur(H/{x, y}, S) = Schur(H,S)/{x, y}

I Theorem 5. Given H and two sets of vertices X ⊆ Y ⊆ V (H), Schur(Schur(H,Y ), X) =
Schur(H,X).

The following property follows from the definition of Schur complements:
I Remark. Let H be a graph and S ⊆ V (H). Let I := Schur(H,S). For any x ∈ RV (H)

that is supported on S with xT1V (H) = 0,

xTL†Hx = xTSL
†
IxS

The weight of edges in this graph can be computed using the following folklore fact, which
we prove for completeness:

I Theorem 6. For two disjoint sets C,D ⊆ V (H), let I := Schur(H,C ∪D). Then

cI(C,D) = 1
χTcdL

†
H/(C,D)χcd

Proof. By definition, cI(C,D) = cI/(C,D)({c}, {d}). By Theorem 4, I/(C,D) =
Schur(H/(C,D), {c, d}). By Remark 2, cSchur(H/(C,D),{c,d})({c}, {d}) = 1

χT
cd
L†

H/(C,D)χcd
. Com-

bining these equalities gives the desired result. J

ITCS 2019
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We also use the following folklore fact about electrical flows, which we prove for the sake
of completeness:

I Theorem 7. For two vertices s, t ∈ V (H),

χTstL
†
Hχst = 1

minp∈RV (H):ps≤0,pt≥1 p
TLHp

Proof. We first show that

χTstL
†
Hχst = 1

minp∈RV (H):ps=0,pt=1 p
TLHp

Taking the gradient of the objective pTLHp shows that that the optimal p are the potentials
for an electrical flow with flow conservation at all vertices besides s and t. Therefore, p is
proportional to L†Hχst + γ1 for some γ ∈ R. The constant of proportionality is χTstL

†
Hχst

since the s-t potential drop in p is 1. Therefore,

min
p∈RV (H):ps=0,pt=1

pTLHp =
(

L†Hχst

χTstL
†
Hχst

)T
LH

(
L†Hχst

χTstL
†
Hχst

)

= 1
χTstL

†
Hχst

The desired result follows from the fact that in the optimal p, all potentials are between
0 and 1 inclusive. J

Notions of fractional conductance. For a set of vertices A ⊆ V (H), let

φHA := cH(∂H(A))
min(volH(A), volH(V (H) \A))

be the fractional conductance of A. Let

φH := min
A⊆V (H):A6=∅

φHA

be the fractional conductance of H.
For two disjoint sets of vertices A,B ⊆ V (H), let I := Schur(H,A ∪B) and

ρHA,B := cI(A,B)
min(volI(A), volI(B))

be the Schur complement fractional conductance of the pair of sets (A,B). Define the Schur
complement fractional conductance of the graph H to be

ρH := min
A,B⊆V (H):A∩B=∅,,A 6=∅,B 6=∅

ρHA,B

It will be helpful to deal with the quantities

σHA,B := cI(A,B)
min(volH(A), volH(B))

and

σH := min
A,B⊆V (H):A∩B=∅,A 6=∅,B 6=∅

σHA,B

as well, which we call the mixed fractional conductances of (A,B) and H respectively.
The following will be useful in relating ρHA,B to σHA,B :
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I Proposition 8. For any two sets X ⊆ Y ⊆ V (H), let I := Schur(H,Y ). Then,

volI(X) ≤ volH(X)

Proof. It suffices to show this result when |X| = 1 because vol is a sum of volumes (degrees)
of vertices in the set. Furthermore, by Theorem 5, it suffices to show the result when
|Y | = |V (H)| − 1. Let v be the unique vertex in H outside of Y and let u be the unique
vertex in X. Then, by definition of the Schur complement,

volI(X) = cIu

=
∑

w∈V (I)

cIuw

=
∑

w∈V (I)

(
cHuw + cHuvc

H
vw

cHv

)

=

 ∑
w∈V (I)

cHuw

+ cHuv
cHv

 ∑
w∈V (I)

cHvw


≤

 ∑
w∈V (I)

cHuw

+ cHuv

= cHu

= volH(X)

as desired. J

To prove the upper bound, we given an algorithm for constructing a low fractional
conductance Schur complement cut. The following result is helpful for making this algorithm
take near-linear time:

I Theorem 9 (Theorem 8.2 of [23]). Given a graph H, there is a Õ(m)-time algorithm that
produces a vector x← ApxFiedler(H) ∈ RV (H) with xTD1/2

H 1V (H) = 0 for which

xTNHx ≤ 2λHxTx

3 Lower bound

We now show the first inequality in Theorem 3, which follows from the following lemma by
Proposition 8, which implies that σG ≤ ρG.

I Lemma 10.

λG ≤ 2σG

Proof. We lower bound the Schur complement fractional conductance of any pair of disjoint
sets A,B ⊆ V (G). Let I := Schur(G,A∪B). Let P be the (A∪B)×(A∪B) diagonal matrix
with P (u, u) = cGu for each u ∈ A ∪B. We start by lower bounding the minimum nonzero
eigenvalue λ of the matrix P−1/2LIP

−1/2. Let λmax(M) denote the maximum eigenvalue of
a symmetric matrix M . By definition of the Moore-Penrose pseudoinverse,

1/λ = λmax(P 1/2L†IP
1/2)

ITCS 2019
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By Remark 2,

λmax(P 1/2L†IP
1/2) ≤ λmax(N†G) = 1/λG

Therefore, λ ≥ λG. We now plug in a test vector. Let

z := P 1/2
(

1A
volG(A) −

1B
volG(B)

)
zT (P 1/21V (I)) = 0, so

λG ≤ λ

= min
x∈RA∪B :xTP 1/21V (I)=0

xT (P−1/2LIP
−1/2)x

xTx

≤ zT (P−1/2LIP
−1/2)z

zT z

= cI(A,B) ((1/volG(A)) + (1/volG(B)))2

(volG(A)/volG(A)2) + (volG(B)/volG(B)2)

= cI(A,B)volG(A ∪B)
volG(A)volG(B)

≤ 2σGA,B J

4 Upper bound

We now show the second inequality in Theorem 3:

I Lemma 11.

ρG ≤ 25600λG

To prove this lemma, we need to find a pair of sets A and B with low Schur complement
fractional conductance:

I Lemma 12. There is a near-linear time algorithm SweepCut(G) that takes in a graph
G with λG ≤ 1/25600 and outputs a pair of nonempty sets A and B with the following
properties:

(Low Schur complement fractional conductance) σGA,B ≤ 640λG
(Large interior) φGA ≤ 1/4 and φGB ≤ 1/4

We now prove Lemma 11 given Lemma 12:

Proof of Lemma 11 given Lemma 12. Let I := Schur(G,A ∪ B). For any two vertices
u, v ∈ A∪B, cIuv ≥ cGuv. Therefore, volI(A) ≥ 2

∑
u,v∈A c

G
uv and volI(B) ≥ 2

∑
u,v∈B c

G
uv. By

the “Large interior” guarantee of Lemma 12, 2
∑
u,v∈A c

G
uv ≥ (3/4)volG(A) and

2
∑
u,v∈B c

G
uv ≥ (3/4)volG(B). Therefore,

ρGA,B ≤ 4/3σGA,B ≤ 1280λG

by the “Low Schur complement weight” guarantee when λG ≤ 1/25600, as desired. When
λG > 1/25600, the lemma is trivially true, as desired. J
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Now, we implement SweepCut. The standard Cheeger sweep examines all thresholds
q ∈ R and for each threshold, computes the fractional conductance of the cut ∂S≤q of
edges from vertices with eigenvector coordinate at most q to ones greater than q. Instead,
the algorithm SweepCut examines all thresholds q ∈ R and computes an upper bound
(a proxy) for the σGS≤q/2,S≥q

for each positive q and σGS≤q,S≥q/2
for each negative q. Let

Iq := Schur(G,S≥q ∪ S≤q/2) for q > 0 and Iq := Schur(G,S≤q ∪ S≥q/2). Let κq(y) :=
min(q,max(q/2, y)) for q > 0 and κq(y) = min(q/2,max(q, y)) for q ≤ 0. The proxy is the
following quantity, which is defined for a specific shift of the Rayleigh quotient minimizer
y ∈ RV (G).

ĉIq (S≥q, S≤q/2) := 4
q2

∑
e=uv∈E(G)

cGe (κq(yu)− κq(yv))2

for q > 0 and

ĉIq (S≤q, S≥q/2) := 4
q2

∑
e=uv∈E(G)

cGe (κq(yu)− κq(yv))2

for q ≤ 0. We now show that this is indeed an upper bound:

I Proposition 13. For all q > 0,

cIq (S≤q/2, S≥q) ≤ ĉIq (S≤q/2, S≥q)

For all q ≤ 0,

cIq (S≤q, S≥q/2) ≤ ĉIq (S≤q, S≥q/2)

Proof. We focus on the q > 0, as the reasoning for the q ≤ 0 case is the same. By Theorems
6 and 7,

cIq (S≤q/2, S≥q) = min
p∈RV (G):pa≤0∀a∈S≤q/2,pa≥1∀a∈S≥q

pTLGp

The vector p with pa := 2
qκq(ya)−1 for all vertices a ∈ V (G) is a feasible solution to the above

optimization problem with objective value ĉIq (S≤q/2, S≥q). This is the desired result. J

This proxy allows us to relate Schur complement conductances together across different
thresholds q in a similar proof to the proof of the upper bound of Cheeger’s inequality given
in [22]. One complication in our case is that Schur complements for different values of q
overlap in their eliminated vertices. Our choice of ≤ q/2, ≥ q plays a key role here (as
opposed to ≤ 0, ≥ q, for example) in ensuring that the overlap is small. We now give the
algorithm SweepCut:

ITCS 2019
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Algorithm 1: SweepCut(G).
Input: A graph G with λG ≤ 1/25600
Output: Two sets of vertices A and B satisfying the guarantees of Lemma 12

1 z ← vector with zTNGz ≤ 2λGzT z and zT (D1/2
G 1V (G)) = 0

2 x← D
−1/2
G z

3 y ← x− α1V (G) for a value α such that volG({v : yv ≤ 0}) ≥ volG(V (G))/2 and
volG({v : yv ≥ 0}) ≥ volG(V (G))/2

4 foreach q ∈ R do
5 S≥q ← vertices with yv ≥ q
6 S≤q ← vertices with yv ≤ q
7 end
8 foreach q > 0 do
9 if (1) ĉIq (S≤q/2, S≥q) ≤ 640λG min(volG(S≤q/2), volG(S≥q))), (2)

cG(∂S≥q/2) ≤ 1/4volG(S≥q), and (3) φS≥q
≤ 1/4 then

10 return (S≤q/2, S≥q)
11 end
12 end
13 foreach q ≤ 0 do
14 if (1) ĉIq (S≥q/2, S≤q) ≤ 640λG min(volG(S≥q/2), volG(S≤q))), (2)

cG(∂S≥q/2) ≤ 1/4volG(S≤q), and (3) φS≤q
≤ 1/4 then

15 return (S≤q, S≥q/2)
16 end
17 end

Our analysis relies on the following key technical result, which we prove in Appendix B:

I Proposition 14. For any a, b ∈ R,∫ ∞
0

(κq(a)− κq(b))2

q
dq ≤ 10(a− b)2

Proof of Lemma 12.
Algorithm well-definedness. We start by showing that SweepCut returns a pair of sets.

Assume, for the sake of contradiction, that SweepCut does not return a pair of sets. Let
Iq := Schur(G,S≥q ∪ S≤q/2) for q > 0 and Iq := Schur(G,S≤q ∪ S≥q/2) for q ≤ 0. By
the contradiction assumption, for all q > 0,

volG(S≥q) ≤
ĉIq (S≥q, S≤q/2)

640λG
+ 4cG(∂S≥q) + 4cG(∂S≤q/2)

and for all q < 0,

volG(S≤q) ≤
ĉIq (S≤q, S≥q/2)

640λG
+ 4cG(∂S≤q) + 4cG(∂S≥q/2)

Since
∑
v∈V (G) c

G
v xv = 0,∑

v∈V (G)

cGv x
2
v ≤

∑
v∈V (G)

cGv y
2
v
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Now, we bound the positive yv and negative yv parts of this sum separately. Negating y
shows that it suffices to bound the positive part. Order the vertices in S≥0 in decreasing
order by yv value. Let vi be the ith vertex in this ordering, let k := |S≥0|, yk+1 := 0,
yi := yvi , ci := cGvi

, and Si := {v1, v2, . . . , vi} for each integer i ∈ [k]. Then

∑
v∈S≥0

cGv y
2
v =

k∑
i=1

ciy
2
i

=
k∑
i=1

(volG(Si)− volG(Si−1))y2
i

=
k∑
i=1

volG(Si)(y2
i − y2

i+1)

= 2
∫ ∞

0
volG(S≥q)qdq

By our volume upper bound from up above,

2
∫ ∞

0
volG(S≥q)qdq

≤ 2
∫ ∞

0

ĉIq (S≥q, S≤q/2)
640λG

qdq + 8
∫ ∞

0
cG(∂S≥q)qdq + 8

∫ ∞
0

cG(∂S≤q/2)qdq

= 2
∫ ∞

0

ĉIq (S≥q, S≤q/2)
640λG

qdq + 8
∫ ∞

0
cG(∂S≥q)qdq + 8

∫ ∞
0

cG(∂S>q/2)qdq

= 2
∫ ∞

0

ĉIq (S≥q, S≤q/2)
640λG

qdq + 40
∫ ∞

0
cG(∂S≥q)qdq

Substitution and Proposition 14 show that

2
∫ ∞

0
volG(S≥q)qdq ≤ 8

∑
e=uv∈E(G)

cGe

∫ ∞
0

(
(κq(yu)− κq(yv))2

640λGq
+ 51q∈[yu,yv]q

)
dq

≤ 8
∑

e=uv∈E(G)

cGe

(
10

640λG
(yu − yv)2 + 5|y2

u − y2
v |
)

By Cauchy-Schwarz,

8
∑

e=uv∈E(G)

cGe

(
10

640λG
(yu − yv)2 + 5|y2

u − y2
v |
)

≤ 1
8λG

∑
e=uv∈E(G)

cGe (yu − yv)2

+ 40
√ ∑
e=uv∈E(G)

cGe (yu − yv)2
√ ∑
e=uv∈E(G)

cGe (yu + yv)2

≤ 1
4
∑

v∈V (G)

cGv x
2
v

+ 80
√
λG

√ ∑
v∈V (G)

cGv x
2
v

√ ∑
v∈V (G)

cGv y
2
v
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But since
∑
v∈V (G) c

G
v x

2
v ≤

∑
v∈V (G) c

G
v y

2
v and λG < 1/25600,

1
4
∑

v∈V (G)

cGv x
2
v + 80

√
λG

√ ∑
v∈V (G)

cGv x
2
v

√ ∑
v∈V (G)

cGv y
2
v <

1
2
∑

v∈V (G)

cGv y
2
v .

Negating y shows that
∑
v∈S≤0

cGv y
2
v < 1/2

∑
v∈V (G) c

G
v y

2
v as well. But these statements

cannot both hold; a contradiction. Therefore, SweepCut must output a pair of sets.

Runtime. Computing z takes Õ(m) time by Theorem 9. Therefore, it suffices to show that
the foreach loops can each be implemented in O(m) time. This implementation is similar
to the O(m)-time implementation of the Cheeger sweep.
We focus on the first foreach loop, as the second is the same with q negated. First, note
that the functions φS≥q

, cG(∂S≥q/2), and volG(S≥q) of q are piecewise constant, with
breakpoints at q = yu and q = 2yu for each u ∈ V (G). Furthermore, these functions can
be computed for all values in O(m) time using an O(m)-time Cheeger sweep for each
function.
Therefore, it suffices to compute the value of ĉIq (S≤q/2, S≥q) for all q ≥ 0 that are local
minima in O(m) time. Let h(q) := ĉIq (S≤q/2, S≥q). Notice that the functions h(q) and
h′(q) are piecewise quadratic and linear functions of q respectively, with breakpoints
at q = yu and q = 2yu. Using five O(m)-time Cheeger sweeps, one can compute the
q2, q and 1 coefficients of h(q) and the q and 1 coefficients of h′(q) between all pairs
of consecutive breakpoints. After computing these coefficents, one can compute the
value of each function at a point q in O(1) time. Furthermore, given two consecutive
breakpoints a and b, one can find all points q ∈ (a, b) with h′(q) = 0 in O(1) time. Each
local minimum for h is either a breakpoint or a point with h′(q) = 0. Since h and h′ have
O(n) breakpoints, all local minima can be computed in O(n) time. h can be evaluated at
all of these points in O(n) time. Therefore, all local minima of h can be computed in
O(m) time. Since the algorithm does return a q, some local minimum for h also suffices,
so this implementation produces the desired result in O(m) time.

Low Schur complement fractional conductance. By Proposition 13,

cIq (S≥q, S≤q/2) ≤ ĉIq (S≥q, S≤q/2)

Therefore, cIq (S≥q, S≤q/2) ≤ 640λG min(volG(S≥q), volG(S≤q/2)) for q ≥ 0 by the foreach
loop if condition. Repeating this reasoning for q < 0 yields the desired result.

Large interior. By definition of α, volG(S≥q) ≤ volG(S≤q/2) for q > 0. Since cG(∂S≤q/2) ≤
1/4volG(S≥q), φS≤q/2 ≤ 1/4, as desired. J
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A Proof of Theorem 1

Proof of Theorem 1. For any two sets of vertices S1, S2 in a graph G,

ReffG(S1, S2) min(volG(S1), volG(S2)) = 1
σGS1,S2

Therefore, the desired result follows from Lemmas 11 and 10. J

B Proof of Proposition 14

Proof of Proposition 14. Without loss of generality, suppose that a ≤ b. We break the
analysis up into cases:

Case 1: a ≤ 0. In this case, κq(a) = q/2 for all q ≥ 0, so

∫ ∞
0

(κq(a)− κq(b))2

q
dq =

∫ b

0

(q/2− q)2

q

+
∫ 2b

b

(q/2− b)2

q
dq

+
∫ ∞

2b

(q/2− q/2)2

q
dq

= b2

8 +
∫ 2b

b

(q/4− b+ b2/q)dq

= b2

2 − b
2 + b2(ln 2)

≤ 10(a− b)2

as desired.
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Case 2: a > 0 and b ≤ 2a. In this case,∫ ∞
0

(κq(a)− κq(b))2

q
dq =

∫ a

0

(q − q)2

q
dq

+
∫ b

a

(a− q)2

q
dq

+
∫ 2a

b

(a− b)2

q
dq

+
∫ 2b

2a

(q/2− b)2

q
dq

+
∫ ∞

2b

(q/2− q/2)2

q
dq

≤
∫ 2b

a

(a− b)2

q
dq

= (a− b)2 ln(2b/a)
≤ (a− b)2 ln 4 ≤ 10(a− b)2

as desired.
Case 3: a > 0 and b > 2a. In this case,∫ ∞

0

(κq(a)− κq(b))2

q
dq =

∫ a

0

(q − q)2

q
dq

+
∫ 2a

a

(a− q)2

q
dq

+
∫ b

2a

(q/2− q)2

q
dq

+
∫ 2b

b

(q/2− b)2

q
dq

+
∫ ∞

2b

(q/2− q/2)2

q
dq

≤
∫ 2b

a

(q/2− q)2

q
dq

≤ b2/2
≤ 2(a− b)2 ≤ 10(a− b)2

as desired. J
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