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Abstract
In the Steiner Forest problem, we are given a graph and a collection of source-sink pairs, and
the goal is to find a subgraph of minimum total length such that all pairs are connected. The
problem is APX-Hard and can be 2-approximated by, e.g., the elegant primal-dual algorithm of
Agrawal, Klein, and Ravi from 1995.

We give a local-search-based constant-factor approximation for the problem. Local search
brings in new techniques to an area that has for long not seen any improvements and might be a
step towards a combinatorial algorithm for the more general survivable network design problem.
Moreover, local search was an essential tool to tackle the dynamic MST/Steiner Tree problem,
whereas dynamic Steiner Forest is still wide open.

It is easy to see that any constant factor local search algorithm requires steps that add/drop
many edges together. We propose natural local moves which, at each step, either (a) add a
shortest path in the current graph and then drop a bunch of inessential edges, or (b) add a set of
edges to the current solution. This second type of moves is motivated by the potential function
we use to measure progress, combining the cost of the solution with a penalty for each connected
component. Our carefully-chosen local moves and potential function work in tandem to eliminate
bad local minima that arise when using more traditional local moves.

Our analysis first considers the case where the local optimum is a single tree, and shows
optimality w.r.t. moves that add a single edge (and drop a set of edges) is enough to bound
the locality gap. For the general case, we show how to “project” the optimal solution onto the
different trees of the local optimum without incurring too much cost (and this argument uses
optimality w.r.t. both kinds of moves), followed by a tree-by-tree argument. We hope both the
potential function, and our analysis techniques will be useful to develop and analyze local-search
algorithms in other contexts.
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1 Introduction

The Steiner Forest problem is the following basic network design problem: given a graph
G = (V,E) with edge-lengths de, and a set of source-sink pairs {{si, ti}}ki=1, find a subgraph
H of minimum total length such that each {si, ti} pair lies in the same connected component
of H. This problem generalizes the Steiner Tree problem, and hence is APX-hard. The
Steiner Tree problem has a simple 2-approximation, namely the minimum spanning tree
on the terminals in the metric completion; however, the forest version does not have such
obvious algorithms.

Indeed, the first approximation algorithm for this problem was a sophisticated and elegant
primal-dual 2-approximation due to Agrawal, Klein, and Ravi [1]. Subsequently, Goemans
and Williamson streamlined and generalized these ideas to many other constrained network
design problems [15]. These results prove an integrality gap of 2 for the natural cut-covering
LP. Other proofs of this integrality gap were given in [21, 7]. No better LP relaxations
are currently known (despite attempts in, e.g., [24, 25]), and improving the approximation
guarantee of 2 remains an outstanding open problem. Note that all known constant-factor
approximation algorithms for Steiner Forest were based on linear programming relaxations,
until a recent greedy algorithm [18]. In this paper, we add to the body of techniques that
give constant-factor approximations for Steiner Forest. The main result of this paper is the
following:

I Theorem 1. There is a (non-oblivious) local search algorithm for Steiner Forest with a
constant locality gap. It can be implemented to run in polynomial time.

The Steiner Forest problem is a basic network problem whose approximability has not seen
any improvements in some time. We explore new techniques to attacking the problem, with
the hope that these will give us more insights into its structure. Moreover, for many problems
solved using the constrained forest approach of [15], the only constant factor approximations
known are via the primal-dual/local-ratio approach, and it seems useful to bring in new
possible techniques. Another motivation for our work is to make progress towards obtaining
combinatorial algorithms for the survivable network design problem. In this problem, we are
given connectivity requirements between various source-sink pairs, and we need to find a
minimum cost subset of edges which provide this desired connectivity. Although we know a
2-approximation algorithm for the survivable network design problem [21] based on iterative
rounding, obtaining a combinatorial constant-factor approximation algorithm for this problem
remains a central open problem [34]. So far, all approaches of extending primal-dual or
greedy algorithms to survivable network design have only had limited success. Local search
algorithms are more versatile in the sense that one can easily propose algorithms based on
local search for various network design problems. Therefore, it is important to understand
the power of such algorithms in such settings. We take a step towards this goal by showing
that such ideas can give constant-factor approximation algorithms for the Steiner Forest
problem.

Finally, we hope this is a step towards solving the dynamic Steiner Forest problem. In
this problem, terminal pairs arrive online and we want to maintain a constant-approximate
Steiner Forest while changing the solution by only a few edges in each update. Several of the
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Figure 1 The black edges (continuous lines) are the current solution. If `� k, we should move
to the blue forest (dashed lines), but any improving move must change Ω(k) edges. Details can be
found in Section A.1.

approaches used for the Steiner Tree case (e.g., in [30, 16, 27]) are based on local-search, and
we hope our local-search algorithm for Steiner Forest in the offline setting will help solve the
dynamic Steiner Forest problem, too.

1.1 Our Techniques

One of the challenges with giving a local-search algorithm for Steiner Forest is to find the
right set of moves. Indeed, it is easy to see that simpler approaches like just adding and
dropping a constant number of edges at each step is not enough. E.g., in the example of
Figure 1, the improving moves must add an edge and remove multiple edges. (This holds even
if we take the metric completion of the graph.) We therefore consider a natural generalization
of simple edge swaps in which we allow to add paths and remove multiple edges from the
induced cycle.

Local Moves: Our first task is to find the “right” moves that add/remove many edges in
each “local” step. At any step of the algorithm, our algorithm has a feasible forest, and
performs one of these local moves (which are explained in more detail in Section 3):

edge/set swaps: Add an edge to a tree in the current forest, and remove one or more
edges from the cycle created.
path/set swaps: Instead of one edge, add a set of edges to connect two vertices from
the same tree T in the current forest, creating exactly one cycle, then remove edges from
the cycle. The set of edges shall be a shortest path in the graph where all trees except T
are contracted.
connecting moves: Connect some trees of the current forest by adding edges between
them.

At the end of the algorithm, we apply the following post-processing step to the local optimum:
clean-up: Delete all inessential edges. (An edge is inessential if dropping it does not
alter the feasibility of the solution.)

Given these local moves, the challenge is to bound the locality gap of the problem: the ratio
between the cost of a local optimum and that of the global optimum.

The Potential. The connecting moves may seem odd, since they only increase the length of
the solution. However, a crucial insight behind our algorithm is that we do not perform local
search with respect to the total length of the solution. Instead we look to improve a different
potential φ. (In the terminology of [3, 23], our algorithm is a non-oblivious local search.)
The potential φ(T ) of a tree T is the total length of its edges, plus the distance between the
furthest source-sink pair in it, which we call its width. The potential of the forest A is the
sum of the potentials of its trees. We only perform moves that cause the potential of the
resulting solution to decrease.

ITCS 2018



31:4 A Local-Search Algorithm for Steiner Forest

In Section A.2 we give an example where performing the above moves with respect to the
total length of the solution gives us local optima with cost Ω(logn) ·OPT — this example is
useful for intuition for why using this potential helps. Indeed, if we have a forest where the
distance between two trees in the forest is much less than both their widths, we can merge
them and reduce the potential (even though we increase the total length). So the trees in a
local optimum are “well-separated” compared to their widths, an important property for our
analysis.

The Proof. We prove the constant locality gap in two conceptual steps.
As the first step, we assume that the local optimum happens to be a single tree. In this

case we show that the essential edges of this tree T have cost at most O(OPT)—hence the
final removal of inessential edges gives a good solution. To prove this, we need to charge our
edges to OPT’s edges. However, we cannot hope to charge single edges in our solution to
single edges in OPT—we need to charge multiple edges in our solution to edges of OPT. (We
may just have more edges than OPT does. More concretely, this happens in the example
from Figure 1, when ` = Θ(k) and we are at the black tree and OPT is the blue forest.) So
we consider edge/set swaps that try to swap some subset S of T ’s edges for an edge f of
OPT. Since such a swap is non-improving at a local optimum, the cost of S is no more than
that of f . Hence, we would like to partition T ’s edges into groups and find an O(1)-to-1 map
of groups to edges of OPT of no less cost. Even if we cannot find an explicit such map, it
turns out that Hall’s theorem is the key to showing its existence.

Indeed, the intuition outlined above works out quite nicely if we imagine doing the local
search with respect to the total length instead of the potential. The main technical ingredient
is a partitioning of our edges into equivalence classes that behave (for our purposes) “like
single edges”, allowing us to apply a Hall-type argument. This idea is further elaborated in
Section 4.1. However, if we go back to considering the potential, an edge/set swap adding f
and removing S may create multiple components, and thus increase the width part of the
potential. Hence we give a more delicate argument showing that similar charging arguments
work out: basically we now have to charge to the width of the globally optimal solution as
well. A detailed synopsis is presented in Section 4.2.

The second conceptual step is to extend this argument to the case where we can perform
all possible local moves, and the local optimum is a forest A. If OPT’s connected components
are contained in those of A, we can do the above analysis for each A-component separately.
So imagine that OPT has edges that go between vertices in different components of A. We
simply give an algorithm that takes OPT and “projects” it down to another solution OPT′ of
comparable cost, such that the new projected solution OPT′ has connected components that
are contained in the components of A. We find the existence of a cheap projected solution
quite surprising; our proof crucially uses the optimality of the algorithm’s solution under
both path/set swaps and connecting moves. A summary of our approach is in Section 5.

Polynomial-time Algorithm. The locality gap with respect to the above moves is at most
46. The swap moves can be implemented in polynomial time, and connecting moves can be
approximated to within constant factors. Indeed, a c-approximation for weighted k-MST
gives a 23(1 + c) + ε-guarantee for the local search algorithm. Applying a weighted version
of Garg’s 2-approximation [13, 14] yields c = 2. The resulting approximation guarantee is 69
(compared to 96 for [18]).
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1.2 Related Work

Local search techniques have been very successful for providing good approximation guarantees
for a variety of problems: e.g., network design problems such as low-degree spanning
trees [12], min-leaf spanning trees [29, 33], facility location and related problems, both
uncapacitated [26, 4] and capacitated [31], geometric k-means [22], mobile facility location [2],
and scheduling problems [32]. Other examples can be found in, e.g., the book of Williamson
and Shmoys [34]. More recent are applications to optimization problems on planar and
low-dimensional instances [10, 6]. In particular, the new PTAS for low dimensional k-means
in is based on local search [9, 11].

Local search algorithms have also been very successful in practice – e.g., the widely
used Lin-Kernighan heuristic [28] for the travelling salesman problem, which has been
experimentally shown to perform extremely well [19].

Imase and Waxman [20] defined the dynamic Steiner tree problem where vertices ar-
rive/depart online, and a few edge changes are performed to maintain a near-optimal solution.
Their analysis was improved by [30, 16, 17, 27], but extending it to Steiner Forest remains
wide open.

2 Preliminaries

Let G = (V,E) be an undirected graph with non-negative edge weights de ∈ R≥0. Let
n := |V |. For W ⊆ V , let G[W ] = (W,E[W ]) be the vertex-induced subgraph, and for
F ⊆ E, G[F ] = (V [F ], F ) the edge-induced subgraph, namely the graph consisting of the
edges in F and the vertices contained in them. A forest is a set of edges F ⊆ E such that
G[F ] is acyclic.

For a node set W ⊆ V and an edge set F ⊆ E, let δF (W ) denote the edges of F leaving
W . Let δF (A : B) := δF (A) ∩ δF (B) for two disjoint node sets A,B ⊆ V be the set of edges
that go between A and B. For forests F1, F2 ⊆ E we use δF (F1 : F2) := δF (V [F1] : V [F2]).
We may drop the subscript if it is clear from the context.

Let T ⊆ {{v, v̄} | v, v̄ ∈ V } be a set of terminal pairs. Denote the shortest-path distance
between u and ū in (G, d) by distd(u, ū). Let nt be the number of terminal pairs. We
number the pairs according to non-decreasing shortest path distance (ties broken arbitrarily).
Thus, T = {{u1, ū1}, . . . , {unt , ūnt}} and i < j implies distd(ui, ūi) ≤ distd(uj , ūj). This
numbering ensures consistent tie-breaking throughout the paper. We say that G = (V,E),
the weights d and T form a Steiner Forest instance. We often use A to denote a feasible
Steiner forest held by our algorithm and F to denote an optimal/good feasible solution to
which we compare A.

Width. Given a connected set of edges E′, the width w(E′) of E′ is the maximum
distance (in the original graph) of any terminal pair connected by E′: i.e., w(E′) =
max{u,ū}∈T,u,ū∈V [E′] distd(u, ū). Notice that w(E′) is the width of the pair {ui, ūi} with
the largest i among all pairs in V [E′]. We set index(E′) := max{i | ui, ūi ∈ V [E′]}, i.e.,
w(E′) = distd(uindex(E′), ūindex(E′)).

For a subgraph G[F ] = (V [F ], F ) given by F ⊆ E with connected components E1, . . . ,
El ⊆ F , we define the total width of F to be the sum w(F ) :=

∑l
i=1 w(Ei) of the widths

of its connected components. Let d(F ) :=
∑
e∈F de be the sum of edge lengths of edges

in F and define φ(F ) := d(F ) + w(F ). By the definition of the width, it follows that
d(F ) ≤ φ(F ) ≤ 2d(F ).

ITCS 2018
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Figure 2 Our different moves. Black solid edges are not changed by the move. Blue dashed edges
are added by the move. Red curled edges are removed by the move.

3 The Local Search Algorithm

Our local-search algorithm starts with a feasible solution A, and iteratively tries to improve
it. Instead of looking at the actual edge cost d(A), we work with the potential φ(A) and
decrease it over time.

In the rest of the paper, we say a move changing A into A′ is improving if φ(A′) < φ(A).
A solution A is <move>-optimal with respect to a certain kind of move and with respect to a
set of edges F if no move of that kind consisting of edges from F is improving.

Swaps. Swaps are moves that start with a cycle-free feasible solution A, add some edges
and remove others to get to another cycle-free feasible solution A′.

The most basic swap is: add an edge e creating a cycle, remove an edge f from this cycle.
This is called an edge/edge swap (e, f).
We can slightly generalize this: add an edge e creating a cycle, and remove a subset
S of edges from this cycle C(e). This is called the edge/set swap (e, S). Edge/edge
swaps are a special case of edge/set swaps, so edge/set swap-optimality implies edge/edge
swap-optimality.
There may be many different subsets of C(e) we could remove. A useful fact is that if
we fix some edge f ∈ C(e) to remove, this uniquely gives a maximal set R(e, f) ⊆ C(e)
of edges that can be removed along with f after adding e without violating feasibility.
Indeed, R(e, f) contains f , and also all edges on C(e) that can be removed in A∪{e}\{f}
without destroying feasibility. (See Lemma 13 in the full version for a formalization.)
Moreover, given a particular R(e, f), we could remove any subset S ⊆ R(e, f). If we were
doing local search w.r.t. d(A), there would be no reason to remove a proper subset. But
since the local moves try to reduce φ(A), removing a subset of R(e, f) may be useful. If
e1, . . . , e` are the edges in R(e, f) in the order they appear on C(e), we only need swaps
where S consists of edges ei, . . . , ej that are consecutive in the above order. There are
O(n2) sets S ⊆ R(e, f) that are consecutive.1 Moreover, there are at most n− 1 choices
for e and O(n) choices for f , so the number of edge/set swaps is polynomial.
A further generalization: we can pick two vertices u, v lying in some component T ,
add a shortest-path between them (in the current solution, where all other components
are shrunk down to single points, and the vertices/edges in T \ {u, v} are removed).
This creates a cycle, and we want to remove some edges. We now imagine that we
added a “virtual” edge {u, v}, and remove a subset of consecutive edges from some

1 In fact, we only need five different swaps (e, S) for the following choices of consecutive sets S: The set
S = {f}, the complete set S = R(e, f), and three sets of the form S = {e1, . . . , ei}, S = {ei+1, . . . , ej}
and S = {ej+1, . . . , e`} for specific indices i and j. How to obtain the values for i and j is explained in
Section 4.1.
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R({u, v}, f) ⊆ C({u, v}), just as if we’d have executed an edge/set swap with the “virtual”
edge {u, v}. We call such a swap a path/set swap (u, v, S).
Some subtleties: Firstly, the current solution A may already contain an edge {u, v}, but
the uv-shortest-path we find may be shorter because of other components being shrunk.
So this move would add this shortest-path and remove the direct edge {u, v}—indeed,
the cycle C(uv) would consist of two parallel edges, and we’d remove the actual edge
{u, v}. Secondly, although the cycle contains edges from many components, only edges
within T are removed. Finally, there are a polynomial number of such moves, since there
are O(n2) choices for u, v, O(n) choices for f , and O(n2) consecutive removal sets S.

Note that edge/set swaps never decrease the number of connected components of A, but
path/set swaps may increase or decrease the number of connected components.

Connecting moves. Connecting moves reduce the number of connected components by
adding a set of edges that connect some of the current components. Formally, let Gall

A be
the (multi)graph that results from contracting all connected components of A in G, deleting
loops and keeping parallel edges. A connecting move (denoted conn(T )) consists of picking a
tree in Gall

A , and adding the corresponding edges to A. The number of possible connecting
moves can be large, but we can show that an approximation for k-MST is sufficient to obtain
an approximate connecting move that works appropriately (see full version).

Note that connecting moves cause d(A′) > d(A), but since our notion of improvement is
with respect to the potential φ, such a move may still cause the potential to decrease.

In addition to the above moves, the algorithm runs the following post-processing step at
the end.

Clean-up. Remove the unique maximal edge set S ⊆ A such that A \ S is feasible, i.e.,
erase all unnecessary edges. This might increase φ(A), but it will never increase d(A).

Checking whether an improving move exists is polynomial except for connecting moves,
which we can do approximately. Thus, the local search algorithm can be made to run in
polynomial time by using standard methods (see full version).

4 In Which the Local Optimum is a Single Tree

We want to bound the cost of a forest that is locally optimal with respect to the moves
defined above. To start, let us consider a simpler case: suppose we were to find a single
tree T that is optimal with respect to just the edge/edge and edge/set swaps. (Recall that
edge/set swaps add an edge and remove a consecutive subset of the edges on the resulting
cycle, while maintaining feasibility. Also, recall that optimality means that no such moves
cause the potential φ to decrease.) Our main result of this section is the following:

I Corollary 2. Let G = (V,E) be a graph, let de be the cost of edge e ∈ E and let T ⊆ V ×V
be a set of terminal pairs. Let A,F ⊆ E be two feasible Steiner forests for (G, d,T) with
V [A] = V [F]. Assume that A is a tree and that A is swap-optimal with respect to F and φ
under edge/edge and edge/set swaps. Denote by A′ the modified solution where all inessential
edges have been dropped from A. Then,

d(A′) ≤ 10.5 · d(F) + w(F) ≤ 11.5 · d(F).

The actual approximation guarantee is 42 for this case: indeed, Corollary 2 assumes
V [A] = V [F], which can be achieved (by taking the metric completion on the terminals) at
the cost of a factor 2.

ITCS 2018
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The intuition here comes from a proof for the optimality of edge/edge swaps for the
Minimum Spanning tree problem. Let A be the tree produced by the algorithm, and F the
reference (i.e., optimal or near-optimal) solution, with V [A] = V [F]. Suppose we were looking
for a minimum spanning tree instead of a Steiner forest: one way to show that edge/edge
swaps lead to a global optimum is to build a bipartite graph whose vertices are the edges of
A and F, and which contains edge (e, f) when f ∈ F can be swapped for e ∈ A and de ≤ df .
Using the fact that all edge/edge swaps are non-improving, we can show that there exists a
perfect matching between the edges in A and F, and hence the cost of A is at most that of F.

Our analysis is similar in spirit. Of course, we now have to (a) consider edge/set swaps,
(b) do the analysis with respect to the potential φ instead of just edge-lengths, and (c) we
cannot hope to find a perfect matching because the problem is NP-hard. These issues make
the proofs more complicated, but the analogies still show through.

4.1 An approximation guarantee for trees and d

In this section, we conduct a thought-experiment where we imagine that we get a connected
tree on the terminals which is optimal for edge/set swaps with respect to just the edge lengths,
not the potential. In very broad strokes, we define an equivalence relation on the edges of A,
and show a constant-to-1 cost-increasing map from the resulting equivalence classes to edges
of F—again mirroring the MST analysis—and hence bounding the cost of A by a constant
times the cost of F. The analysis of the real algorithm in Section 4.2 builds on the insights
we develop here.

Some Definitions. The crucial equivalence relation is defined as follows: For edges e, f ∈ A,
let Te,f be the connected component of A \ {e, f} that contains the unique e-f -path in A.
We say e and f are compatible w.r.t. F if e = f or if there are no F-edges leaving Te,f , and
denote it by e ∼cp f . One can show that ∼cp is an equivalence relation (see full version).
We denote the set of its equivalence classes by S.

An edge is essential if dropping it makes the solution infeasible. If T1, T2 are the connected
components of A \ {e}, then e is called safe if at least one edge from F crosses between T1
and T2. Observe that any essential edge is safe, but the converse is not true: safe edges can
be essential or inessential. However, it turns out that the set Su of all unsafe edges in A

forms an equivalence class of ∼cp. Hence, all other equivalence classes in S contain only safe
edges. Moreover, these equivalence classes containing safe edges behave like single edges in
the sense of the following lemma. For a proof of the lemma, see Lemma 14 in the full version.

I Lemma 3. Let S ∈ S\{Su} be an equivalence class of safe edges. It holds that:
1. S lies on a path in A.
2. For any edge f ∈ F, either S is completely contained in the fundamental cycle CA(f)

obtained by adding f to A, or S ∩ CA(f) = ∅.
3. If (A \ {e}) ∪ {f} is feasible, and e belongs to equivalence class S, then (A \ S) ∪ {f} is

feasible. (This last property also trivially holds for S = Su.)

Charging. We can now give the bipartite-graph-based charging argument sketched above.

I Theorem 4. Let I = (V,E,T, d) be a Steiner Forest instance and let F be a feasible solution
for I. Furthermore, let A ⊆ E be a feasible tree solution for I. Assume that V [F] = V [A].
Let ∆ : S→ R be a cost function that assigns a cost to all S ∈ S. Suppose that ∆(S) ≤ df
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for all pairs of S ∈ S \ {Su} and f ∈ F such that the cycle in A ∪ {f} contains S. Then,∑
S∈S\{Su}

∆(S) ≤ 7
2 ·
∑
f∈F

df .

Proof. Construct a bipartite graph H = (A∪B,E(H)) with nodes A := {aS | S ∈ S\{Su}}
and B := {bf | f ∈ F}. Add an edge {aS , bf} whenever f closes a cycle in A that contains
S. By our assumption, if {aS , bf} ∈ E(H) then ∆(S) ≤ df . Suppose that we can show that
7
2 · |N(X)| ≥ |X| for all X ⊆ A, where N(X) ⊆ B is the set of neighbors of nodes in X2.
By a generalization of Hall’s Theorem, this condition implies that there is an assignment
α : E → R+ such that

∑
e∈δH(a) α(e) ≥ 1 for all a ∈ A and

∑
e∈δH(b) α(e) ≤ 7

2 for all b ∈ B.
Hence∑

S∈S\{Su}

∆(S) ≤
∑

S∈S\{Su}

∑
e∈δH(aS)

α(e)∆(S)

=
∑
f∈F

∑
e∈δH(bf )

α(e)∆(S) ≤
∑
f∈F

∑
e∈δH(bf )

α(e)df ≤
7
2
∑
f∈F

df .

It remains to show that 7
2 · |N(X)| ≥ |X| for all X ⊆ A. To that aim, fix X ⊆ A and define

S′ := {S | aS ∈ X}. In a first step, contract all e ∈ U :=
⋃
S∈S\S′ S in A, and denote

the resulting tree by A′ := A�U .3 Note that edges in each equivalence class are either all
contracted or none are contracted. Also note that all unsafe edges are contracted, as Su /∈ S′.
Apply the same contraction to F to obtain F′ := F�U , from which we remove all loops and
parallel edges. Notice that A′ does not contain loops and parallel edges, since we contracted
a subset of A. Furthermore, A′ is a tree, while F′ can contain cycles.

Let f ∈ F′. Since A′ is a tree, f closes a cycle C in A′ containing at least one edge
e ∈ A′. Denoting the equivalence class of e by Se, observing that all edges in A′ are safe,
and using Lemma 3, statement 2, we get that cycle C contains Se. Hence the node bf ∈ B
corresponding to f belongs to N(aSe) ⊆ N(X). Thus, |N(X)| ≥ |F′| and it remains to show
that 7

2 |F
′| ≥ |X|.

We want to find a unique representative for each aS ∈ X. So we select an arbitrary root
vertex r ∈ V [A′] and orient all edges in A′ away from r. Every non-root vertex now has
exactly one incoming edge. Every equivalence class S ∈ S′ consists only of safe edges, so it
lies on a path. Consider the two well-defined endpoints which are the outermost vertices of
S on this path. For at least one of them, the unique incoming edge must be an edge in S.
We represent S by one of the endpoints which has this property and call this representative
rS . Let R ⊆ V [A′] be the set of all representative nodes. Since every vertex has an unique
incoming edge, S 6= S′ implies that rS 6= rS′ . Hence |R| = |S′| = |X|. Moreover, let R1
and R2 be the representatives with degrees 1 and 2 in A′, and L be the set of leaves of
A′. As the number of vertices of degree at least 3 in a tree is bounded by the number of
its leaves, the number of representatives of degree at least 3 in A′ is bounded by |L|. So
|X| ≤ |R1|+ |R2|+ |L|.

We now show that every v ∈ R2∪L is incident to an edge in F′. First, consider any v ∈ L
and let e be the only edge in A′ incident to v. As e is safe, there must be an edge f ∈ F′

2 Notice that N(X) is a set of nodes, in contrast to δ(X), which is the set of edges leaving X.
3 Formally, we define the graph G[T ]/e = (V [T ]/e, T/e) for a tree T by V [T ]/e := V [T ] ∪ {uv} \ {u, v}

and T/e := T \ δ({u, v}) ∪ {{w, uv} | {u,w} ∈ T ∨ {v, w} ∈ T} for an edge e = {u, v} ∈ E, then set
G/U := G/e1/e2/ . . . /ek for U = {e1, . . . , ek} and let T/U be the edge set of this graph. If U ⊆ T ,
then the contraction causes no loops or parallel edges, otherwise, we delete all loops or parallel edges.
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incident to v. Now consider any rS ∈ R2 and let e1, e2 ∈ A′ be the unique edges incident
to rS . Because rS is the endpoint of the path corresponding to the equivalence class S, the
edges e1 and e2 are not compatible. Hence there must be an edge f ∈ F′ incident to rS .
Because R2 and L are disjoint and every edge is incident to at most two vertices, we conclude
that |F′| ≥ (|R2|+ |L|)/2. This implies that |X| ≤ |R1|+ |R2|+ |L| ≤ 2L+ |R2| ≤ 4|F|. We
can get a slightly better bound below by showing that |F′| ≥ 2

3 |R1|.
Let C be the set of connected components of F′ in G�U . Let C′ := {T ∈ C | |V [T ]∩R1| ≤

2} and C′′ := {T ∈ C | |V [T ] ∩R1| > 2}. Note that no representative rS ∈ R1 is a singleton
as every leaf of A′ is incident to an edge of F′. We claim that |T | ≥ |V [T ] ∩ R1| for every
T ∈ C′. Assume by contradiction that this was not true and let T ∈ C′ with |T | < |V (T )∩R1|.
This means that V [T ] ∩R1 contains exactly two representatives rS , rS′ ∈ R1 and T contains
only the edge {rS , rS′}. Let e ∈ S and e′ ∈ S′ be the edges of A′ incident to rS and rS′ ,
respectively. As e and e′ are not compatible, there must be an edge f ∈ F′ with exactly
one endpoint in {rS , rS′}, a contradiction as this edge would be part of the connected
component T . We conclude that |T | ≥ |V [T ] ∩R1| for every T ∈ C′. Additionally, we have
that |T | ≥ |V [T ]| − 1 ≥ 2

3 |V [T ]| for all T ∈ C′′ as |V [T ]| > 2. Therefore,

|F′| =
∑
T∈C
|T | ≥

∑
T∈C′

|V [T ] ∩R1|+
∑
T∈C′′

2
3 |V [T ] ∩R1| ≥

2
3 |R1|.

The three bounds together imply |X| ≤ |R1|+ |R2|+ |L| ≤ 3
2 |F
′|+ 2|F′| = 7

2 |F
′|. J

We obtain the following corollary of Theorem 4.

I Corollary 5. Let I = (V,E,T, d) be a Steiner Forest instance and let OPT be a solution
for I that minimizes d(OPT) =

∑
e∈OPT de. Let A ⊆ E be feasible tree solution for I that

does not contain inessential edges. Assume V [A] = V [OPT]. If A is edge/edge and edge/set
swap-optimal with respect to OPT and d, then it holds that

∑
e∈A de ≤ (7/2) ·

∑
e∈OPT de.

Proof. Since there are no inessential edges, Su = ∅. We set ∆(S) :=
∑
e∈S de for all S ∈ S.

Let f ∈ OPT be an edge that closes a cycle in A that contains S. Then, (A \ {e}) ∪ {f} is
feasible for any single edge e ∈ S because it is still a tree. Statement 3 of Lemma 3 implies
that (A \ S) ∪ {f} is also feasible. Thus, we consider the swap that adds f and deletes S.
It was not improving with respect to d, because A is edge/set swap-optimal with respect
to edges from OPT and d. Thus, ∆(S) =

∑
e∈S de ≤ df , and we can apply Theorem 4 to

obtain the result. J

4.2 An approximation guarantee for trees and φ

We now consider the case where a connected tree A is output by the algorithm when
considering the edge/set swaps, but now with respect to the potential φ (instead of just the
total length as in the previous section). These swaps may increase the number of components,
which may have large widths, and hence edge/set swaps that are improving purely from the
lengths may not be improving any more. This requires a more nuanced analysis, though
relying on ideas we have developed in the previous section.

Here is the high-level summary of this section. Consider some equivalence class S ∈
S\{Su} of safe edges, let `(S) be the number of edges in S. The edges lie on a path, hence
for an appropriate numbering e1, . . . , e`(S), the situation looks like this:

w0 v1 . . . w1 v2 . . . wi−1 vi . . . w`(S)−1 v`(S)e1 e2 ei
e`(S)
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Notice that removing the `(S) edges forms `(S) + 1 connected components. We let InS be
set of the “inner” components (the ones containing v1, . . . , v`(S)−1), and InS′ be the inner
components except the two with the highest widths. Just taking the definition of φ, and
adding and subtracting the widths of these “not-the-two-largest” inner components, we get

φ(A) = w(A) +
∑
e∈Su

de +
∑

S∈S\{Su}

( `(S)∑
i=1

dei −
∑

K∈InS′

w(K)
)

︸ ︷︷ ︸
≤10.5·d(F) (first proof step)

+
∑

S∈S\{Su}

∑
K∈InS′

w(K)

︸ ︷︷ ︸
≤w(F) (second proof step)

.

As indicated above, the argument has two parts. For the first summation, look at the cycle
created by adding edge f ∈ F to our solution A. Suppose class S is contained in this cycle.
We prove that edge/set swap optimality implies that

∑`(S)
i=1 dei

−
∑
K∈InS′ w(K) is at most

3df . (Think of this bound as being a weak version of the facts in the previous section, which
did not have a factor of 3 but did not consider weights in the analysis.) Using this bound in
Theorem 4 from the previous section gives us a matching that bounds the first summation by
3 · (7/2) · d(F). A couple of words about the proofs: the bound above follows from showing
that three different swaps must be non-improving, hence the factor of 3. Basically, we break
the above path into three at the positions of the two components of highest width, since for
technical reasons we do not want to disconnect these high-width components. Details are in
§7.1 in the full version.

For the second summation, we want to sum up the widths of all the “all-but-two-widest”
inner components, over all these equivalence classes, and argue this is at most w(F). This is
where our notions of safe and compatible edges comes into play. The crucial observations are
that (a) given the inner components corresponding to some class S, the edges of some class
S′ either avoid all these inner components, or lie completely within some inner component;
(b) the notion of compatibility ensures that these inner components correspond to distinct
components of F, so we can get more width to charge to; and (c) since we don’t charge to
the two largest widths, we don’t double-charge these widths. The details are in §7.3 in the
full version.

5 In Which the Local Optimum may be a Forest

The main theorem. In the general case, both A and F may have multiple connected
components. We assume that the distance function d is a metric. The first thing that comes
to mind is to apply the previous analysis to the components individually. Morally, the main
obstacle in doing so is in the proof of Theorem 4: There, we assume implicitly that no edge
from F goes between connected components of A.4 This is vacuously true if A is a single
tree, but may be false if A is disconnected. In the following, our underlying idea is to replace
F-edges that cross between the components of A by edges that lie within the components
of A, thereby re-establishing the preconditions of Theorem 4. We do this in a way that F
stays feasible, and moreover, its cost increases by at most a constant factor. This allows us
to prove that the local search has a constant locality gap.

Reducing to local tree optima. Suppose F has no inessential edges to start. Then we
convert F into a collection of cycles (shortcutting non-terminals), losing a factor of 2 in

4 More precisely, we need the slightly weaker condition that for each node t ∈ V [A], there is an F-edge
incident to t that does not leave the connected component of A containing t.
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Figure 3 The charging argument with four components A1, A4, A5 and A7 of A. The area of each
component corresponds to its width. On the left. A cycle in F. In the middle. The corresponding circuit
(non-simple cycle) in GA. On the right. A suitable decomposition into connecting moves.

the cost. Now observe that each “offending” F-edge (i.e., one that goes between different
components of A) must be part of a path P in F that connects some s, s̄, and hence starts
and ends in the same component of A. This path P may connect several terminal pairs, and
for each such pair s, s̄, there is a component of A that contains s and s̄. Thus, P could be
replaced by direct connections between s, s̄ within the components of A. This would get
rid of these “offending” edges, since the new connections would stay within components of
A. The worry is, however, that this replacement is too expensive. We show how to use
connecting tree moves to bound the cost of the replacement.

Consider one cycle from F, regarded as a circuit C in the graph GA where the connected
components A1, . . . , Ap of A are shrunk to single nodes, i.e., C consists of offending edges.
The graph GA might contain parallel edges and C might have repeated vertices. So C is
a circuit, meaning that it is a potentially non-simple cycle, or, in other words, a Eulerian
multigraph. The left and middle of Figure 3 are an example.

Index the Aj ’s such that w(A1) ≤ · · · ≤ w(Ap) and say that node j in GA corresponds to
Aj . Suppose C visits the nodes v1, . . . , v|C|, v1 (where several of these nodes may correspond
to the same component Aj) and that component Aj is visited nj times by C. In the worst
case, we may need to insert nj different s, s̄ connections into component Aj of A, for all j.
The key observation is that the total cost of our direct connections is at most

∑|C|
i=1 niw(Ai).

We show how to pay for this using the length of C.5
To do so, we use optimality with respect to all moves, in particular connecting moves.

The idea is simple: We cut C into a set of trees that each define a valid connecting move. For
each tree, the connecting move optimality bounds the widths of some components of A by the
length of the tree. E.g., w(A1)+w(A4) is at most the length of the tree connecting A1, A4, A5
in Figure 3. Observe that we did not list w(A5): Optimality against a connecting move with
tree T relates the length of T to the width of all the components that T connects, except for
the component with maximum width. We say a tree pays for Aj if it hits Aj , and also hits
another Aj of higher width. So we need three properties: (a) the trees should collectively
pack into the edges of the Eulerian multigraph C, (b) each tree hits each component Aj at
most once, and (c) the number of trees that pay for Aj is at least nj .

Assume that we found such a tree packing. For circuit C, if Aj? is the component with
greatest width hit by C, then using connecting move optimality for all the trees shows that∑

j:Aj hit by C,j 6=j?

nj w(Aj) ≤ d(C).

5 We also need to take care of the additional width of the modified solution, but this is the easier part.
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Figure 4 A flower graph. Even though the graph is a non-simple cycle, we can easily decompose
it into trees that pay for each j 6= 6 at least nj times (1 is payed for 7 = n1 + 1 times).

In fact, even if we have c-approximate connection-move optimality, the right-hand side just
gets multiplied by c. But what about nj?w(Aj?)? We can cut C into sub-circuits, such
that each subcircuit C ′ hits Aj? exactly once. To get this one extra copy of w(Aj?), we
use path/set swap optimality which tells us that the missing connection cannot be more
expensive than the length of C. Thus, collecting all our bounds (see Lemma 36 in the full
version), adding all the extra connections to F increases the cost to at most 2(1 + c)d(F):
the factor 2 to make F Eulerian, (1 + c) to add the direct connections, using c-approximate
optimality with respect to connecting moves and optimality with respect to path/set swaps.
§B.2 in the full version discusses that c ≤ 2.

Now each component Aj of A can be treated separately, i.e., we can use Corollary 2
on each Aj and the portion of F that falls into Aj . By combining the conclusions for all
connected components, we get that

d(A′)
Cor. 2
≤ 10.5d(F′) + w(F′) ≤ 11.5d(F′) ≤ 23(1 + c) · d(F) ≤ 69 · d(F)

for any feasible solution F. This proves Theorem 1.

Obtaining a decomposition into connecting moves. It remains to show how to take C
and construct the set of trees. If C had no repeated vertices (it is a simple cycle) then taking
a spanning subtree would suffice. And even if C has some repeated vertices, decomposing it
into suitable trees can be easy: E.g., if C is the “flower” graph on n vertices, with vertex 1
having two edges to each vertex 2, . . . , n. Even though 1 appears multiple times, we find a
good decomposition (see Figure 4). Observe, however, that breaking C into simple cycles
and than doing something on each simple cycle would not work, since it would only pay 1
multiple times and none of the others.

The flower graph has a property that is a generalization of a simple cycle: We say that C
is minimally guarded if (a) the largest vertex is visited only once (b) between two occurrences
of the same (non-maximal) vertex, there is at least one larger number. The flower graph
and the circuit at the top of Figure 5 have this property. Indeed, every minimally guarded
circuit can be decomposed suitably. The full algorithm is provided as Algorithm 1 in the full
version. It iteratively finds trees that pay for all (non maximal) j with j ≤ z for increasing
z. Figure 5 shows how the set of trees M5 is converted into M6 in order to pay for all
occurrences of 6. Intuitively, we look where 6 falls into the trees in M5. Up to one occurrence
can be included in a tree. If there are more occurrences, the tree has to be split into multiple
trees appropriately. §8.1.2 in the full version contains the details of the algorithm and its
correctness.

Finally, we go from minimally guarded circuits to arbitrary C by extracting subcircuits
in a recursive fashion (see Lemma 35 in the full version).
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Figure 5 Two iterations of an example run of the Algorithm 1 in the full version.
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A Notes on simpler local search algorithms

A.1 Adding an edge and removing a constant number of edges
Let ` and k < ` be integers and consider Figure 6. Notice that adding a single edge and
removing k edges does not improve the solution. However, the current solution costs more
than `2/k and the optimal solution costs less than 2`, which is a factor of `/(2k) better.

s1 s2 t2 s3 t3 . . . s` t` t1

`
k 1 `

k 1 1 `
k

`

Figure 6 A bad example for edge/set swaps that remove a constant number of edges.

A.2 Regular graphs with high girth and low degree
Assume that G is a degree-3 graph with girth g = c logn like the graph used in Chen et al. [8].
Such graphs can be constructed, see [5]. Select a spanning tree F in G which will be the
optimal solution. Let E′ be the non-tree edges, notice that |E′| ≥ n/2, and let M be a
maximum matching in E′. Because of the degrees, we know that |M | ≥ n/10. The endpoints
of the edges in M form the terminal pairs T. Set the length of all edges in F to 1 and the
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length of the remaining edges to g/4. The solution F is feasible and costs n− 1. The solution
M costs Ω(logn).

Assume we want to remove an edge e = {v, w} ∈M and our swap even allows us to add
a path to reconnect v and w (in the graph where M\{e} is contracted). Let P be such a
path. Since M is a matching, at most every alternating edge on P is in M . Thus, we have to
add |P |/2− 1 ≥ g/2− 1 edges of length one at a total cost that is larger than the cost g/4
of e. Thus, no d-improving swap of this type exists (note that, in particular, path/set swaps
are not d-improving for M). As a consequence, any oblivious local search with constant
locality gap needs to sport a move that removes edges from multiple components of the
current solution. In order to restrict to local moves that only remove edges from a single
component, we therefore introduced the potential φ.
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