
Approximate Clustering with Same-Cluster
Queries∗

Nir Ailon†1, Anup Bhattacharya‡2, Ragesh Jaiswal3, and
Amit Kumar4

1 Technion, Haifa, Israel
nailon@cs.technion.ac.il

2 Department of Computer Science and Engineering,
Indian Institute of Technology Delhi India
anupb@cse.iitd.ac.in

3 Department of Computer Science and Engineering,
Indian Institute of Technology Delhi, India
rjaiswal@cse.iitd.ac.in

4 Department of Computer Science and Engineering,
Indian Institute of Technology Delhi, India
amitk@cse.iitd.ac.in

Abstract
Ashtiani et al. proposed a Semi-Supervised Active Clustering framework (SSAC), where the
learner is allowed to make adaptive queries to a domain expert. The queries are of the kind “do
two given points belong to the same optimal cluster?", where the answers to these queries are
assumed to be consistent with a unique optimal solution. There are many clustering contexts
where such same cluster queries are feasible. Ashtiani et al. exhibited the power of such queries by
showing that any instance of the k-means clustering problem, with additional margin assumption,
can be solved efficiently if one is allowed to make O(k2 log k+ k logn) same-cluster queries. This
is interesting since the k-means problem, even with the margin assumption, is NP-hard.

In this paper, we extend the work of Ashtiani et al. to the approximation setting by showing
that a few of such same-cluster queries enables one to get a polynomial-time (1+ε)-approximation
algorithm for the k-means problem without any margin assumption on the input dataset. Again,
this is interesting since the k-means problem is NP-hard to approximate within a factor (1+c) for
a fixed constant 0 < c < 1. The number of same-cluster queries used by the algorithm is poly(k/ε)
which is independent of the size n of the dataset. Our algorithm is based on the D2-sampling
technique, also known as the k-means++ seeding algorithm. We also give a conditional lower
bound on the number of same-cluster queries showing that if the Exponential Time Hypothesis
(ETH) holds, then any such efficient query algorithm needs to make Ω

(
k

poly log k

)
same-cluster

queries. Our algorithm can be extended for the case where the query answers are wrong with
some bounded probability. Another result we show for the k-means++ seeding is that a small
modification of the k-means++ seeding within the SSAC framework converts it to a constant
factor approximation algorithm instead of the well known O(log k)-approximation algorithm.

1998 ACM Subject Classification I.5.3 Clustering

Keywords and phrases k-means, semi-supervised learning, query bounds

Digital Object Identifier 10.4230/LIPIcs.ITCS.2018.40

∗ A full version of the paper is available at [3], https://arxiv.org/abs/1704.01862
† Nir Ailon and Ragesh Jaiswal acknowledge the support of ISF-UGC India-Israel Joint Research Grant

2014.
‡ Anup Bhattacharya acknowledges the support of TCS graduate fellowship at IIT Delhi.

© Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar;
licensed under Creative Commons License CC-BY

9th Innovations in Theoretical Computer Science Conference (ITCS 2018).
Editor: Anna R. Karlin; Article No. 40; pp. 40:1–40:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.40
https://arxiv.org/abs/1704.01862
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Approximate Clustering with Same-Cluster Queries

1 Introduction

Clustering is extensively used in data mining and is typically the first task performed when
trying to understand large data. Clustering basically involves partitioning given data into
groups or clusters such that data points within the same cluster are similar as per some
similarity measure. Clustering is usually performed in an unsupervised setting where data
points do not have any labels associated with them. The partitioning is done using some
measure of similarity/dissimilarity between data elements. In this paper, we extend the work
of Ashtiani et al. [6] who explored the possibility of performing clustering in a semi-supervised
active learning setting for center based clustering problems such as k-median/k-means. In
this setting, which they call Semi-Supervised Active Clustering framework or SSAC in short,
the clustering algorithm is allowed to make adaptive queries of the form: “ do two points
from the dataset belong to the same optimal cluster?”, where query answers are assumed
to be consistent with a unique optimal solution. Ashtiani et al. [6] started the study of
understanding the strength of this model. Do hard clustering problems become easy in this
model? They explored such questions in the context of center-based clustering problems.
Center based clustering problems such as k-means are extensively used to analyze large data
clustering problems. Let us define the k-means problem in the Euclidean setting.

I Definition 1 (k-means problem). Given a dataset X ⊆ Rd containing n points, and a
positive integer k, find a set of k points C ⊆ Rd (called centers) such that the following cost
function is minimized: Φ(C,X) =

∑
x∈X minc∈C D(x, c), where D(x, c) denotes the squared

Euclidean distance between x and c. That is, D(x, c) = ||x− c||2.

Note that the k optimal centers c1, . . . , ck of the k-means problem define k clusters of
points in a natural manner. All points for which the closest center is ci belong to the ith
cluster. This is also known as the Voronoi partitioning and the clusters obtained in this
manner using the optimal k centers are called the optimal clusters. Note that the optimal
center for the 1-means problem for any dataset X ⊆ Rd is the centroid of the dataset denoted
by µ(X) def.=

∑
x∈X

x

|X| . This means that if X1,, Xk are the optimal clusters for the k-means
problem on any dataset X ⊆ Rd and c1, ..., ck are the corresponding optimal centers, then
∀i, ci = µ(Xi). The k-means problem has been widely studied and various facts are known
about this problem. The problem is tractable when either the number k of clusters or the
dimension d is equal to 1. However, when k > 1 or d > 1, then the problem is known to be
NP-hard [16, 32, 28]. There has been a number of works of beyond the worst-case flavour
for the k-means problem in which it is typically assumed that the dataset satisfies some
separation condition, and then the question is whether this assumption can be exploited to
design algorithms with better guarantees for the problem. Such studies have led to different
definitions of separation and also some interesting results for datasets that satisfy these
separation conditions (e.g., [30, 11, 8]). Ashtiani et al. [6] explored one such separation
notion that they call the γ-margin property.

I Definition 2 (γ-margin property). Let γ > 1 be a real number. Let X ⊆ Rd be any
dataset and k be any positive integer. Let PX = {X1, . . . , Xk} denote k optimal clusters for
the k-means problem. Then this optimal partition of the dataset PX is said to satisfy the
γ-margin property iff for all i 6= j ∈ {1, . . . , k} and x ∈ Xi and y ∈ Xj , we have:

γ · ||x− µ(Xi)|| < ||y − µ(Xi)||.

Qualitatively this means that every point within some cluster is closer to its own cluster center
than a point that does not belong to this cluster. This seems to be a very strong separation

N. Ailon, A. Bharracharya, R. Jaiswal, and A. Kumar 40:3

property. Ashtiani et al. [6] showed that the k-means clustering problem is NP-hard even
when restricted to instances that satisfy the γ-margin property for γ =

√
3.4 ≈ 1.84. Here is

the formal statement of their hardness result.

I Theorem 3 (Theorem 10 in [6]). Finding an optimal solution to the k-means objective
function is NP-hard when k = Θ(nε) for any ε ∈ (0, 1), even when there is an optimal
clustering that satisfies the γ-margin property for γ =

√
3.4.

In the context of the k-means problem, the same-cluster queries within the SSAC
framework are decision questions of the form: Do points x, y such that x 6= y belong to the
same optimal cluster? 1 Following is the main question explored by Ashtiani et al. [6]:
Under the γ-margin assumption, for a fixed γ ∈ (1,

√
3.4], how many queries must be made

in the SSAC framework for k-means to become tractable?
Ashtiani et al. [6] addressed the above question and gave a query algorithm. Their

algorithm, in fact, works for a more general setting where the clusters are not necessarily
optimal. In the more general setting, there is a target clustering X̄ = X̄1, . . . , X̄k of the given
dataset X ⊆ Rd such that these clusters satisfy the γ-margin property (i.e., for all i, x ∈ X̄i,
and y /∈ X̄i, γ · ||x−µ(X̄i)|| < ||y−µ(X̄i)||), and the goal of the query algorithm is to output
the clustering X̄. Here is the main result of Ashtiani et al.

I Theorem 4 (Theorems 7,8 in [6]). Let δ ∈ (0, 1), γ > 1. Let X ⊆ Rd be any dataset with n
points, k be a positive integer, and X1, . . . , Xk be any target clustering of X that satisfies the
γ-margin property. Then there is a query algorithm A that makes O

(
k logn+ k2 log k+log 1/δ

(γ−1)4

)
same-cluster queries and with probability at least (1− δ), outputs the clustering X1, . . . , Xk.
The running time of algorithm A is O

(
kn logn+ k2 log k+log 1/δ

(γ−1)4

)
.

The above result is a witness to the power of the SSAC framework. We extend this line of
work by examining the power of same-cluster queries in the approximation algorithms domain.
Our results do not assume any separation condition on the dataset (such as γ-margin as
in [6]) and they hold for any dataset.

Since the k-means problem is NP-hard, an important line of research work has been to
obtain approximation algorithms for the problem. There are many efficient approximation
algorithms for the k-means problem, for example [25, 26]. Ahmadian et al. [2] gave a 6.357-
approximation algorithm for the k-means problem. A simple approximation algorithm that
gives an O(log k) approximation guarantee in expectation is the k-means++ seeding algorithm
(also known as D2-sampling algorithm) by Arthur and Vassilvitskii [5]. This algorithm is
commonly used in solving the k-means problem in practice. As far as approximation schemes
or in other words (1 + ε)-approximation algorithms (for arbitrary small ε < 1) are concerned,
the following is known: It was shown by Awasthi et al. [9] that there is some fixed constant
0 < c < 1 such that there cannot exist an efficient (1 + c) factor approximation unless
P = NP. This result was improved by Lee et al. [27] where it was shown that it is NP-hard
to approximate the k-means problem within a factor of 1.0013. However, when either k or d
is a fixed constant, then there are Polynomial Time Approximation Schemes (PTAS) for the
k-means problem.2 Addad et al. [15] and Friggstad et al. [19] gave PTASs for the k-means
problem in constant dimension. For fixed constant k, various PTASs are known [26, 18, 23, 24].
Following is the main question that we explore in this work:

1 If the optimal solution is not unique, the same-cluster query answers are assumed to be consistent with
respect to any fixed optimal clustering.

2 This basically means an algorithm that runs in time polynomial in the input parameters but may run
in time exponential in 1/ε.

ITCS 2018

40:4 Approximate Clustering with Same-Cluster Queries

For arbitrary small ε > 0, how many same-cluster queries must be made in an efficient
(1 + ε)-approximation algorithm for k-means in the SSAC framework? The running
time should be polynomial in all input parameters such as n, k, d and also in 1/ε.

Note that this is a natural extension of the main question explored by Ashtiani et al.
[6]. Moreover, we have removed the separation assumption on the data. We provide an
algorithm that makes poly(k/ε) same-cluster queries and runs in time O(nd · poly(k/ε)).
More specifically, here is the formal statement of our main result:

I Theorem 5 (Main result: query algorithm). Let 0 < ε ≤ 1/2. Let X ⊆ Rd, and k be
any positive integer. Then there is a query algorithm A that runs in time O(ndk9/ε4), and
with probability at least 0.99, outputs a center set C such that Φ(C,X) ≤ (1 + ε) ·∆k(X).
Moreover, the number of same-cluster queries used by A is O(k9/ε4). Here ∆k(X) denotes
the optimal value of the k-means objective function.

Note that unlike Theorem 4, our bound on the number of same-cluster queries is independ-
ent of the size of the dataset. We find this interesting and the next natural question we ask
is whether this bound on the number of same-cluster queries is tight in some sense. In other
words, does there exist a query algorithm in the SSAC setting that gives (1+ε)-approximation
in time polynomial in n, k, d and makes significantly fewer queries than the one given in the
theorem above? We answer this question in the negative by establishing a conditional lower
bound on the number of same-cluster queries under the assumption that ETH (Exponential
Time Hypothesis) [20, 21] holds. The formal statement of our result is given below.

I Theorem 6 (Main result: query lower bound). If the Exponential Time Hypothesis (ETH)
holds, then there exists a constant c > 1 such that any c-approximation query algorithm for
the k-means problem that runs in time poly(n, d, k) makes at least k

poly log k queries.

1.1 Faulty query setting
The existence of a same-cluster oracle that answers such queries perfectly may be too strong
an assumption. A more reasonable assumption is the existence of a faulty oracle that can
answer incorrectly but only with bounded probability. Our query approximation algorithm
can be extended to the setting where answers to the same-cluster queries are faulty. More
specifically, we can get wrong answers to queries independently but with probability at most
some constant q < 1/2. Also note that in our model the answer for a same-cluster query
does not change with repetition. This means that one cannot ask the same query multiple
times and amplify the probability of correctness. We obtain (1 + ε)-approximation guarantee
for the k-means clustering problem in this setting. The main result is given as follows.

I Theorem 7. Let 0 < ε ≤ 1/2. Let X ⊆ Rd, and k be any positive integer. Consider a faulty
SSAC setting where the response to every same-cluster query is incorrect with probability
at most some constant q < 1/2. In such a setting, there is a query algorithm AE that
with probability at least 0.99, outputs a center set C such that Φ(C,X) ≤ (1 + ε) ·∆k(X).
Moreover, the number of same-cluster queries used by AE is O(k15/ε8).

The previous theorems summarise the main results of this work which basically explores
the power of same-cluster queries in designing fast (1 + ε)-approximation algorithms for the
k-means problem. We will give the proofs of the above theorems in Sections 3, 4, and 5.
There are some other simple and useful contexts, where the SSAC framework gives extremely
nice results. One such context is the popular k-means++ seeding algorithm. This is an

N. Ailon, A. Bharracharya, R. Jaiswal, and A. Kumar 40:5

extremely simple sampling based algorithm for the k-means problem that samples k centers
in a sequence of k iterations. We show that within the SSAC framework, a small modification
of this sampling algorithm converts it to one that gives constant factor approximation
instead of O(log k)-approximation [5] that is known. This is another witness to the power
of same-cluster queries. We discuss this result in Section 2. Some of the basic techniques
involved in proving our main results will be introduced while discussing this simpler context.

1.2 Other related work
Clustering problems have been studied in various semi-supervised settings. Basu et al. [12]
explored must-link and cannot-link constraints in their semi-supervised clustering formulation.
In their framework, must-link and cannot-link constraints were provided explicitly as part of
the input along with the cost of violating these constraints. They gave an active learning
formulation for clustering in which an oracle answers whether two query points belong to
the same cluster or not, and gave a clustering algorithm using these queries. However, they
work with a different objective function and there is no discussion on theoretical bounds on
the number of queries. In contrast, in our work we consider the k-means objective function
and provide bounds on approximation guarantee, required number of adaptive queries, and
the running time. Balcan and Blum [10] proposed an interactive framework for clustering
with split/merge queries. Given a clustering C = {C1, . . .}, a user provides feedback by
specifying that some cluster Cl should be split, or clusters Ci and Cj should be merged.
Awasthi et al. [7] studied a local interactive algorithm for clustering with split and merge
feedbacks. Voevodski et al. [34] considered one versus all queries where query answer for
a point s ∈ X returns distances between s to all points in X. For a k-median instance
satisfying (c, ε)-approximation stability property [11], the authors found a clustering close to
true clustering using only O(k) one versus all queries. Vikram and Dasgupta [33] designed an
interactive bayesian hierarchical clustering algorithm. Given dataset X, the algorithm starts
with a candidate hierarchy T , and an initially empty set C of constraints. The algorithm
queries user with a subtree T |S of hierarchy T restricted to constant sized set S ⊂ X of
leaves. User either accepts T |S or provides a counterexample triplet ({a, b}, c) which the
algorithm adds to its set of constraints C, and updates T . They consider both random and
adaptive ways to select S to query T |S .

1.3 Our Techniques
We now give a brief outline of the new ideas needed for our results. Many algorithms for
the k-means problem proceed by iteratively finding approximations to the optimal centers.
One such popular algorithm is the k-means++ seeding algorithm [5]. In this algorithm, one
builds a set of potential centers iteratively. We start with a set C initialized to the empty
set. At each step, we sample a point with probability proportional to the square of the
distance from C, and add it to C. Arthur and Vassilvitskii [5] showed that if we continue
this process till |C| reaches k, then the corresponding k-means solution has expected cost
O(log k) times the optimal k-means cost. Aggarwal et al. [1] showed that if we continue
this process till |C| reaches βk, for some constant β > 1, then the corresponding k-means
solution (where we actually open all the centers in C) has cost which is within constant
factor of the optimal k-means cost with high probability. Ideally, one would like to stop when
size of C reaches k and obtain a constant factor approximation guarantee. We know from
previous works [5, 14, 13] that this is not possible in the classical (unsupervised) setting.
In this work, we show that one can get such a result in the SSAC framework. A high-level

ITCS 2018

40:6 Approximate Clustering with Same-Cluster Queries

way of analysing the k-means++ seeding algorithm is as follows. We first observe that if we
randomly sample a point from a cluster, then the expected cost of assigning all points of
this cluster to the sampled point is within a constant factor of the cost of assigning all the
points to the mean of this cluster. Therefore, it suffices to select a point chosen uniformly at
random from each of the clusters. Suppose the set C contains such samples for the first i
clusters (of an optimal solution). If the other clusters are far from these i clusters, then it is
likely that the next point added to C belongs to a new cluster (and perhaps is close to a
uniform sample). However to make this more probable, one needs to add several points to C.
Further, the number of samples that needs to be added to C starts getting worse as the value
of i increases. Therefore, the algorithm needs to build C till its size becomes O(k log k). In
the SSAC framework, we can tell if the next point added in C belongs to a new cluster or
not. Therefore, we can always ensure that |C| does not exceed k. To make this idea work,
we need to extend the induction argument of Arthur and Vassilvitskii [5] – details are given
in Section 2.

We now explain the ideas for the PTAS for k-means. We consider the special case of
k = 2. Let X1 and X2 denote the optimal clusters with X1 being the larger cluster. Inaba et
al. [22] showed that if we randomly sample about O(1/ε) points from a cluster, and let µ′
denote the mean of this subset of sampled points, then the cost of assigning all points in the
cluster to µ′ is within (1 + ε) of the cost of assigning all these points to their actual mean
(whp). Therefore, it is enough to get uniform samples of size about O(1/ε) from each of the
clusters. Jaiswal et al. [23] had the following approach for obtaining a (1 + ε)-approximation
algorithm for k-means (with running time being nd · f(k, ε), where f is an exponential
function of k/ε) – suppose we sample about O(1/ε2) points from the input, call this sample
S. It is likely to contain at least O(1/ε) from X1, but we do not know which points in S
are from X1. Jaiswal et al. addressed this problem by cycling over all subsets of S. In the
SSAC model, we can directly partition S into S ∩ X1 and S ∩ X2 using |S| same-cluster
queries. Having obtained such a sample S, we can get a close approximation to the mean of
X1. So assume for sake of simplicity that we know µ1, the mean of X1. Now we are faced
with the problem of obtaining a uniform sample from X2. The next idea of Jaiswal et al. is
to sample points with probability proportional to square of distance from µ1. This is known
as D2-sampling. Suppose we again sample about O(1/ε2) such points, call this sample S′.
Assuming that the two clusters are far enough (otherwise the problem only gets easier), they
show that S′ will contain about O(1/ε2) points from X2 (with good probability). Again, in
the SSAC model, we can find this subset by |S′| queries – call this set S′′. However, the
problem is that S′′ may not represent a uniform sample from X2. For any point e ∈ X2, let
pe denote the conditional probability of sampling e given that a point from X2 is sampled
when sampled using D2-sampling. They showed pe is at least ε

m , where m denotes the size
of X2. In order for the sampling lemma of Inaba et al. [22] to work, we cannot work with
approximately uniform sampling. The final trick of Jaiswal et al. was to show that one can
in fact get a uniform sample of size about O(ε|S′′|) = O(1/ε) from S′′. The idea is as follows
– for every element e ∈ S′′, we retain it with probability ε

pem
(which is at most 1), otherwise

we remove it from S′′. It is not difficult to see that this gives a uniform sample from X2.
The issue is that we do not know m. Jaiswal et al. again cycle over all subsets of S′ – we
know that there is a (large enough) subset of S′ which will behave like a uniform sample
from X2. In the SSAC framework, we first identify the subset of S′ which belongs to X2,
call this S′′ (as above). Now we prune some points from S′′ such that the remaining points
behave like a uniform sample. This step is non-trivial because as indicated above, we do
not know the value m. Instead, we first show that pe lies between ε

m and 2
m for most of the

N. Ailon, A. Bharracharya, R. Jaiswal, and A. Kumar 40:7

Table 1 k-means++ seeding algorithm (left) and its adaptation in the SSAC setting (right).

k-means++(X,k) Query-k-means++(X, k)

- Randomly sample a point x ∈ X - Randomly sample a point x ∈ X

- C ← {x} - C ← {x}

- for i = 2 to k - for i = 2 to k

- Sample x ∈ X using distribution - for j = 1 to dlog ke

D, where D(x) = Φ(C,{x})
Φ(C,X) - Sample x ∈ X using distribution

- C ← C ∪ {x} D, where D(x) = Φ(C,{x})
Φ(C,X)

- return(C) - if (NewCluster(C, x))

{C ← C ∪ {x}; break}

- return(C)

NewCluster(C, x)

- If (∃c ∈ C s.t. SameCluster(c, x)) return(false)

- else return(true)

points of X2. Therefore, S′′ is likely to contain such a nice point, call it v. Now, for every
point e ∈ S′′, we retain it with probability εpe

2pv
(which we know is at most 1). This gives

a uniform sample of sufficiently large size from X2. For k larger than 2, we generalize the
above ideas using a non-trivial induction argument.

2 k-means++ within SSAC framework

The k-means++ seeding algorithm, also known as the D2-sampling algorithm, is a simple
sampling procedure that samples k centers in k iterations. The description of this algorithm
is given below.

The algorithm picks the first center randomly from the set X of points and after having
picked the first (i− 1) centers denoted by Ci−1, it picks a point x ∈ X to be the ith center
with probability proportional to minc∈Ci−1 ||x−c||2. The running time of k-means++ seeding
algorithm is clearly O(nkd). Arthur and Vassilvitskii [5] showed that this simple sampling
procedure gives an O(log k) approximation in expectation for any dataset. Within the SSAC
framework where the algorithm is allowed to make same-cluster queries, we can make a
tiny addition to the k-means++ seeding algorithm to obtain a query algorithm that gives
constant factor approximation guarantee and makes only O(k2 log k) same-cluster queries.
The description of the query algorithm is given in Table 1 (see right). In iteration i > 1,
instead of simply accepting the sampled point x as the ith center (as done in k-means++
seeding algorithm), the sampled point x is accepted only if it belongs to a cluster other than
those to which centers in Ci−1 belong (if this does not happen, the sampling is repeated
for at most dlog ke times). Here is the main result that we show for the query-k-means++
algorithm.

I Theorem 8. Let X ⊆ Rd be any dataset containing n points and k > 1 be a positive
integer. Let C denote the output of the algorithm Query-k-means++(X, k). Then

E[Φ(C,X)] ≤ 24 ·∆k(X),

ITCS 2018

40:8 Approximate Clustering with Same-Cluster Queries

where ∆k(X) denotes the optimal k-means cost on dataset X. Furthermore, the algorithm
makes O(k2 log k) same-cluster queries and runs in time O(nkd+ k log k logn+ k2 log k).

The bound on the number of same-cluster queries is trivial from the algorithm description.
For the running time, it takes O(nd) time to update the distribution D which is updated k
times. This accounts for the O(nkd) term in the running time. Sampling an element from a
distribution D takes O(logn) time (if we maintain the cumulative distribution etc.) and at
most O(k log k) points are sampled. Moreover, determining whether a sampled point belongs
to an uncovered cluster takes O(k) time. So, the overall running time of the algorithm is
O(nkd+ k log k logn+ k2 log k). The proof of the above theorem may be found in the full
version of the paper available at [3].

3 Query Approximation Algorithm (proof of Theorem 5)

As mentioned in the introduction, our query algorithm is based on the D2-sampling based
algorithm of Jaiswal et al. [23, 24]. The algorithm in these works give a (1 + ε)-factor
approximation for arbitrary small ε > 0. The running time of these algorithms are of the
form nd · f(k, ε), where f is an exponential function of k/ε. We now show that it is possible
to get a running time which is polynomial in n, k, d, 1/ε in the SSAC model. The main
ingredient in the design and analysis of the sampling algorithm is the following lemma by
Inaba et al. [22].

I Lemma 9 ([22]). Let S be a set of points obtained by independently sampling M points
uniformly at random with replacement from a point set X ⊂ Rd. Then for any δ > 0,

Pr
[
Φ({µ(S)}, X) ≤

(
1 + 1

δM

)
·∆1(X)

]
≥ (1− δ).

Here µ(S) denotes the geometric centroid of the set S. That is µ(S) =
∑

s∈S
s

|S|

Our algorithm Query-k-means is described in Table 2. It maintains a set C of potential
centers of the clusters. In each iteration of step (3), it adds one more candidate center to the
set C (whp), and so, the algorithm stops when |C| reaches k. For sake of explanation, assume
that optimal clusters are X1, X2, . . . , Xk with means µ1, . . . , µk respectively. Consider the
ith iteration of step (3). At this time |C| = i−1, and it has good approximations to means of
i− 1 clusters among X1,Xk. Let us call these clusters covered. In Step (3.1), it samples
N points, each with probability proportional to square of distance from C (D2-sampling).
Now, it partitions this set, S, into S ∩X1, . . . , S ∩Xk in the procedure UncoveredCluster,
and then picks the partition with the largest size such that the corresponding optimal
cluster Xj is not one of the (i− 1) covered clusters. Now, we would like to get a uniform
sample from Xj – recall that S ∩ Xj does not represent a uniform sample. However, as
mentioned in the introduction, we need to find an element s of Xj for which the probability
of being in sampled is small enough. Therefore, we pick the element in S ∩Xj for which
this probability is smallest (and we will show that it has the desired properties). The
procedure UncoveredCluster returns this element s. Finally, we choose a subset T of S∩Xj

in the procedure UniformSample. This procedure is designed such that each element of Xj

has the same probability of being in T . In step (3.4), we check whether the multi-set T is of
a desired minimum size. We will argue that the probability of T not containing sufficient
number of points is very small. If we have T of the desired size, we take its mean and add it
to C in Step (3.6).

We now formally prove the approximation guarantee of the Query-k-means algorithm.

N. Ailon, A. Bharracharya, R. Jaiswal, and A. Kumar 40:9

Table 2 Approximation algorithm for k-means(top-left frame). Note that µ(T) denotes the
centroid of T and D2-sampling w.r.t. empty center set C means just uniform sampling. The
algorithm UniformSample(X,C, s) (bottom-left) returns a uniform sample of size Ω(1/ε) (w.h.p.)
from the optimal cluster to which point s belongs.

Constants: N = (212)k3

ε2 , M = 64k
ε
, L = (223)k2

ε4

Query-k-means(X, k, ε) UncoveredCluster(C, S,R)

(1) R← ∅ - For all i ∈ {1, ..., k}: Si ← ∅

(2) C ← ∅ - i← 1

(3) for i = 1 to k - For all y ∈ R: {Si ← y; i++}

(3.1) D2-sample a multi-set S of N points - For all s ∈ S:

from X with respect to center set C - If (∃j, y s.t. y ∈ Sj &

(3.2) s← UncoveredCluster(C, S,R) SameCluster(s, y))

(3.3) T ← UniformSample(X,C, s) - Sj ← Sj ∪ {s}

(3.4) If (|T | < M) continue - else

(3.5) R← R ∪ {s} - Let i be any index s.t. Si is empty

(3.6) C ← C ∪ µ(T) - Si ← {s}.

(4) return(C) - Let Si be the largest set such that i > |R|.

UniformSample(X,C, s) - Let s ∈ Si be the element with smallest

- T ← ∅ - value of Φ(C, {s}) in Si.

- For i = 1 to L: - return(s)

- D2-sample a point x from X with

respect to center set C

- If (SameCluster(s, x))

- With probability
(

ε
128 ·

Φ(C,{s})
Φ(C,{x})

)
add x in multi-set T

- return(T)

I Theorem 10. Let 0 < ε ≤ 1/2. Let X ⊆ Rd, and k be any positive integer. There
exists an algorithm that runs in time O(ndk9/ε4), and with probability at least 1

4 , outputs a
center set C such that Φ(C,X) ≤ (1 + ε) ·∆k(X). Moreover, the algorithm makes O(k9/ε4)
same-cluster queries.

Note that the success probability of the algorithm may be boosted by repeating it a
constant number of times. This will also prove our main theorem (that is, Theorem 5). We
will assume that the dataset X satisfies (k, ε)-irreducibility property defined next. We will
later drop this assumption using a simple argument and show that the result holds for all
datasets. This property was also used in some earlier works [26, 23].

I Definition 11 (Irreducibility). Let k be a positive integer and 0 < ε ≤ 1. A given dataset
X ⊆ Rd is said to be (k, ε)-irreducible iff

∆k−1(X) ≥ (1 + ε) ·∆k(X).

Qualitatively, what the irreducibility assumption implies is that the optimal solution for
the (k − 1)-means problem does not give a (1 + ε)-approximation to the k-means problem.

ITCS 2018

40:10 Approximate Clustering with Same-Cluster Queries

The following useful lemmas are well known facts.

I Lemma 12. For any dataset X ⊆ Rd and a point c ∈ Rd, we have:

Φ({c}, X) = Φ(µ(X), X) + |X| · ||c− µ(X)||2.

I Lemma 13 (Approximate Triangle Inequality). For any three points p, q, r ∈ Rd, we have

||p− q||2 ≤ 2(||p− r||2 + ||r − q||2)

Let X1, ..., Xk be optimal clusters of the dataset X for the k-means objective. Let
µ1, ..., µk denote the corresponding optimal k centers. That is, ∀i, µi = µ(Xi). For all i, let

mi = |Xi|. Also, for all i, let ri =
∑

x∈Xi
||x−µi||2

mi
. The following useful lemma holds due to

irreducibility. The lemma is the same as Lemma 4 from [23].

I Lemma 14. For all 1 ≤ i < j ≤ k, ||µi − µj ||2 ≥ ε · (ri + rj).

Consider the algorithm Query-k-means in Figure 2. Let Ci = {c1, ..., ci} denote the set
of centers at the end of the ith iteration of the for loop. That is, Ci is the same as variable
C at the end of iteration i. We will prove Theorem 10 by inductively arguing that for every
i, there are i distinct clusters for which centers in Ci are good in some sense. Consider the
following invariant:

P(i): There exists a set of i distinct clusters Xj1 , Xj2 , ..., Xji such that

∀r ∈ {1, ..., i},Φ({cr}, Xjr) ≤
(

1 + ε

16

)
·∆1(Xjr).

Note that a trivial consequence of P (i) is Φ(Ci, Xj1 ∪ ...∪Xji
) ≤ (1 + ε

16) ·
∑i
r=1 ∆1(Xjr

).
We will show that for all i, P (i) holds with probability at least (1− 1/k)i. Note that the
theorem follows if P (k) holds with probability at least (1− 1/k)k. We will proceed using
induction.

The base case P (0) holds since C0 is the empty set. For the inductive step, assuming that
P (i) holds with probability at least (1− 1/k)i for some arbitrary i ≥ 0, we will show that
P (i+ 1) holds with probability at least (1− 1/k)i+1. We condition on the event P (i) (that
is true with probability at least (1− 1/k)i). Let Ci and Xj1 , ..., Xji

be as guaranteed by the
invariant P (i). For ease of notation and without loss of generality, let us assume that the
index jr is r. So, Ci gives a good approximation w.r.t. points in the set X1 ∪X2 ∪ ∪Xi

and these clusters may be thought of as “covered" clusters (in the approximation sense).
Suppose we D2-sample a point p w.r.t. center set Ci. The probability that p belongs to
some “uncovered cluster" Xr where r ∈ [i + 1, k] is given as Φ(Ci,Xr)

Φ(Ci,X) . If this quantity is
small, then the points sampled using D2 sampling in subsequent iterations may not be
good representatives for the uncovered clusters. This may cause the analysis to break down.
However, we argue that since our data is (k, ε)-irreducible, this does not occur. The following
lemma is the same as Lemma 5 from [23].

I Lemma 15. Φ(Ci,Xi+1∪...∪Xk)
Φ(Ci,X) ≥ ε

4 .

The following simple corollary of the above lemma will be used in the analysis later.

I Corollary 16. There exists an index j ∈ {i+ 1, ..., k} such that Φ(Ci,Xj)
Φ(Ci,X) ≥

ε
4k .

N. Ailon, A. Bharracharya, R. Jaiswal, and A. Kumar 40:11

The above corollary says that there is an uncovered cluster which will have a non-
negligible representation in the set S that is sampled in iteration (i+ 1) of the algorithm
Query-k-means. The next lemma shows that conditioned on sampling from an uncovered
cluster l ∈ {i+ 1, ..., k}, the probability of sampling a point x from Xl is at least ε

64 times
its sampling probability if it were sampled uniformly from Xl (i.e., with probability at least
ε
64 ·

1
ml

). 3

I Lemma 17. For any l ∈ {i+ 1, ..., k} and x ∈ Xl, Φ(Ci,{x})
Φ(Ci,Xl) ≥

ε
64 ·

1
ml

.

Proof. Let t ∈ {1, ..., i} be the index such that x is closest to ct among all centers in Ci. We
have:

Φ(Ci, Xl) = ml · rl +ml · ||µl − ct||2 (using Lemma 12)
≤ ml · rl + 2ml · (||µl − µt||2 + ||µt − ct||2) (using Lemma 13)

≤ ml · rl + 2ml · (||µl − µt||2 + ε

16 · rt) (using invariant and Lemma 12)

Also, we have:

Φ(Ci, {x}) = ||x− ct||2 ≥ ||x− µt||2

2 − ||µt − ct||2 (using Lemma 13)

≥ ||µl − µt||2

8 − ||µt − ct||2 (since ||x− µt|| ≥ ||µl − µt||/2)

≥ ||µl − µt||2

8 − ε

16 · rt (using invariant and Lemma 12)

≥ ||µl − µt||2

16 (using Lemma 14)

Combining the inequalities obtained above, we get the following:

Φ(Ci, {x})
Φ(Ci, Xl)

≥ ||µl − µt||2

16 ·ml ·
(
rl + 2||µl − µt||2 + ε

8 · rt
)

≥ 1
16 ·ml

· 1
(1/ε) + 2 + (1/8) ≥

ε

64 ·
1
ml

This completes the proof of the lemma. J

With the above lemmas in place, let us now get back to the inductive step of the proof.
Let J ⊆ {i+ 1, ..., k} denote the subset of indices (from the uncovered cluster indices) such
that ∀j ∈ J, Φ(Ci,Xj)

Φ(Ci,X) ≥
ε

8k . For any index j ∈ J , let Yj ⊆ Xj denote the subset of points in
Xj such that ∀y ∈ Yj , Φ(Ci,{y})

Φ(Ci,Xj) ≤
2
mj

. That is, Yj consists of all the points such that the
conditional probability of sampling any point y in Yj , given that a point is sampled from
Xj , is upper bounded by 2/mj . Note that from Lemma 17, the conditional probability of
sampling a point x from Xj , given that a point is sampled from Xj , is lower bounded by
ε
64 ·

1
mj

. This gives the following simple and useful lemma.

I Lemma 18. For all j ∈ {i+ 1, ..., k} the following two inequalities hold:
1. Φ(Ci,Yj)

Φ(Ci,X) ≥
ε

128 ·
Φ(Ci,Xj)
Φ(Ci,X) , and

2. For any y ∈ Yj and any x ∈ Xj, ε
128 · Φ(Ci, {y}) ≤ Φ(Ci, {x}).

3 This is Lemma 6 from [23]. We give the proof for self-containment.

ITCS 2018

40:12 Approximate Clustering with Same-Cluster Queries

Proof. Inequality (1) follows from the fact that |Yj | ≥ mj/2, and Φ(Ci,{y})
Φ(Ci,Xj) ≥

ε
64 ·

1
mj

for all
y ∈ Xj . Inequality (2) follows from the fact that for all x ∈ Xj ,

Φ(Ci,{x})
Φ(Ci,Xj) ≥

ε
64 ·

1
mj

and for
all y ∈ Yj , Φ(Ci,{y})

Φ(Ci,Xj) ≤
2
mj

. J

Let us see the outline of our plan before continuing with our formal analysis. What we
hope to get in line (3.2) of the algorithm is a point s that belongs to one of the uncovered
clusters with index in the set J . That is, s belongs to an uncovered cluster that is likely
to have a good representation in the D2-sampled set S obtained in line (3.1). In addition
to s belonging to Xj for some j ∈ J , we would like s to belong to Yj . This is crucial for
the uniform sampling in line (3.3) to succeed. We will now show that the probability of s
returned in line (3.2) satisfies the above conditions is large.

I Lemma 19. Let S denote the D2-sample obtained w.r.t. center set Ci in line (3.1) of the
algorithm.

Pr[∃j ∈ J such that S does not contain any point from Yj] ≤
1
4k .

Proof. We will first get bound on the probability for a fixed j ∈ J and then use the union
bound. From property (1) of Lemma 18, we have that for any j ∈ J , Φ(Ci,Yj)

Φ(Ci,X) ≥
ε

128 ·
ε

8k =
ε2

(210)k . Since the number of sampled points is N = (212)k3

ε2 , we get that the probability that S
has no points from Yj is at most 1

4k2 . Finally, using the union bound, we get the statement
of the lemma. J

I Lemma 20. Let S denote the D2-sample obtained w.r.t. center set Ci in line (3.1) of the
algorithm and let Sj denote the representatives of Xj in S. Let max = arg maxj∈{i+1,...,k} |Sj |.
Then Pr[max /∈ J] ≤ 1

4k .

Proof. From Corollary 16, we know that there is an index j ∈ {i + 1, ..., k} such that
Φ(Ci,Xj)
Φ(Ci,X) ≥

ε
4k . Let α = N · ε4k . The expected number of representatives from Xj in S is at

least α. So, from Chernoff bounds, we have:

Pr[|Sj | ≤ 3α/4] ≤ e−α/32

On the other hand, for any r ∈ {i+ 1, ..., k} \ J , the expected number of points in S from
Xr is at most ε

8k ·N = α/2. So, from Chernoff bounds, we have:

Pr[|Sr| > 3α/4] ≤ e−α/24

So, the probability that there exists such an r is at most k·e−α/24 by union bound. Finally, the
probability that max /∈ J is at most Pr[|Sj | ≤ 3α/4] + Pr[∃r ∈ {i+ 1, ..., k} \ J ||Sr| > 3α/4]
which is at most 1

4k due to our choice of N = (212)k3

ε2 . J

From the previous two lemmas, we get that with probability at least (1 − 1
2k), the s

returned in line (3.2) belongs to Yj for some j ∈ J . Finally, we will need the following claim
to argue that the set T returned in line (3.3) is a uniform sample from one of the sets Xj for
j ∈ {i+ 1, ..., k}.

I Lemma 21. Let S denote the D2-sample obtained w.r.t. center set Ci in line (3.1) and s
be the point returned in line (3.2) of the algorithm. Let j denote the index of the cluster to
which s belongs. If j ∈ J and s ∈ Yj, then with probability at least (1− 1

4k), T returned in
line (3.3) is a uniform sample from Xj with size at least 64k

ε .

N. Ailon, A. Bharracharya, R. Jaiswal, and A. Kumar 40:13

Proof. Consider the call to sub-routine UniformSample(X,Ci, s) with s as given in the
statement of the lemma. If j is the index of the cluster to which s belongs, then j ∈ J and
s ∈ Yj . Let us define L random variables Z1, ..., ZL one for every iteration of the sub-routine.
These random variables are defined as follows: for any r ∈ [1, L], if the sampled point x
belongs to the same cluster as s and it is picked to be included in multi-set S, then Zr = x,
otherwise Zr = ⊥. We first note that for any r and any x, y ∈ Xj , Pr[Zr = x] = Pr[Zr = y].
This is because for any x ∈ Xj , we have Pr[Zr = x] = Φ(Ci,{x})

Φ(Ci,X) ·
ε

128 ·Φ(Ci,{s})
Φ(Ci,{x}) = ε

128 ·
Φ(Ci,{s})
Φ(Ci,X) .

It is important to note that
ε

128 ·Φ(Ci,{s})
Φ(Ci,{x}) ≤ 1 from property (2) of Lemma 18 and hence valid

in the probability calculations above.
Let us now obtain a bound on the size of T . Let Tr = I(Zr) be the indicator variable

that is 1 if Zr 6= ⊥ and 0 otherwise. Using the fact that j ∈ J , we get that for any r:

E[Tr] = Pr[Tr = 1] = ε

128 ·
∑
x∈Xj

Φ(Ci, {s})
Φ(Ci, X) ≥ ε

128 ·
ε

8k ·
ε

64 = ε3

(216)k .

Given that L = 223k2

ε4 , applying Chernoff bounds, we get the following:

Pr
[
|T | ≥ 64k

ε

]
= 1−Pr

[
|T | ≤ 64k

ε

]
≥
(

1− 1
4k

)
This completes the proof of the lemma. J

Since a suitable s (as required by the above lemma) is obtained in line (3.2) with
probability at least (1− 1

2k), the probability that T obtained in line (3.3) is a uniform sample
from some uncovered cluster Xj is at least (1− 1

2k) · (1− 1
4k). Finally, the probability that

the centroid µ(T) of the multi-set T that is obtained is a good center for Xj is at least
(1− 1

4k) using Inaba’s lemma. Combining everything, we get that with probability at least
(1− 1

k) an uncovered cluster will be covered in the ith iteration. This completes the inductive
step and hence the approximation guarantee of (1 + ε) holds for any dataset that satisfies
the (k, ε)-irreducibility assumption. For the number of queries and running time, note that
every time sub-routine UncoveredCluster is called, it uses at most kN same cluster queries.
For the subroutine UniformSample, the number of same-cluster queries made is L. So, the
total number of queries is O(k(kN + L)) = O(k5/ε4). More specifically, we have proved the
following theorem.

I Theorem 22. Let 0 < ε ≤ 1/2, k be any positive integer, and X ⊆ Rd such that X is (k, ε)-
irreducible. Then Query-k-means(X, k, ε) runs in time O(ndk5/ε4) and with probability at
least (1/4) outputs a center set C such that Φ(C,X) ≤ (1+ε) ·∆k(X). Moreover, the number
of same-cluster queries used by Query-k-means(X, k, ε) is O(k5/ε4).

To complete the proof of Theorem 10, we must remove the irreducibility assumption in
the above theorem. We do this by considering the following two cases:
1. Dataset X is (k, ε

(4+ε/2)k)-irreducible.
2. Dataset X is not (k, ε

(4+ε/2)k)-irreducible.

In the former case, we can apply Theorem 22 to obtain Theorem 10. Now, consider the
latter case. Let 1 < i ≤ k denote the largest index such that X is (i, ε

(1+ε/2)k)-irreducible,
otherwise i = 1. Then we have:

∆i(X) ≤
(

1 + ε

(4 + ε/2)k

)k−i
·∆k(X) ≤

(
1 + ε

4

)
·∆k(X).

ITCS 2018

40:14 Approximate Clustering with Same-Cluster Queries

This means that a (1 + ε/4)-approximation for the i-means problem on the dataset X gives
the desired approximation for the k-means problem. Note that our approximation analysis
works for the i-means problem with respect to the algorithm being run only for i steps in line
(3) (instead of k). That is, the centers sampled in the first i iterations of the algorithm give
a (1 + ε/16)-approximation for the i-means problem for any fixed i. This simple observation
is sufficient for Theorem 10.

Note since Theorem 22 is used with value of the error parameter as O(ε/k), the bounds
on the query and running time get multiplied by a factor of k4.

4 Query Lower Bound (proof of Theorem 6)

In this section, we will obtain a conditional lower bound on the number of same-cluster
queries assuming the Exponential Time Hypothesis (ETH). This hypothesis has been used to
obtain lower bounds in various different contexts (see [29] for reference). We start by stating
the Exponential Time Hypothesis (ETH).

I Hypothesis 23 (Exponential Time Hypothesis (ETH)[20, 21]). There does not exist an
algorithm that can decide whether any 3-SAT formula with m clauses is satisfiable with
running time 2o(m).

Since we would like to obtain lower bounds in the approximation domain, we will need a
gap version of the above ETH hypothesis. The following version of the PCP theorem will be
very useful in obtaining a gap version of ETH.

I Theorem 24 (Dinur’s PCP Theorem [17]). For some constants ε, d > 0, there exists a
polynomial time reduction that takes a 3-SAT formula ψ with m clauses and produces another
3-SAT formula φ with m′ = O(m polylog m) clauses such that:

If ψ is satisfiable, then φ is satisfiable,
if ψ is unsatisfiable, then val(φ) ≤ 1− ε, and
each variable of φ appears in at most d clauses.

Here val(φ) denotes the maximum fraction of clauses of φ that are satisfiable by any assign-
ment.

The following new hypothesis follows from ETH and will be useful in our analysis.

I Hypothesis 25. There exists constants ε, d > 0 such that the following holds: There does
not exist an algorithm that, given a 3-SAT formula ψ with m clauses with each variable
appearing in at most d clauses, distinguishes whether ψ is satisfiable or val(ψ) ≤ (1 − ε),
runs in time 2Ω(m

poly log m).

The following simple lemma follows from Dinur’s PCP theorem given above.

I Lemma 26. If Hypothesis 23 holds, then so does Hypothesis 25.

We now see a reduction from the gap version of 3-SAT to the gap version of the Vertex
Cover problem that will be used to argue the hardness of the k-means problem. The next
result is a standard reduction and can be found in a survey by Luca Trevisan [31].

I Lemma 27. Let ε, d > 0 be some constants. There is a polynomial time computable
function mapping 3-SAT instances ψ with m variables and where each variable appears in at
most d clauses, into graphs Gψ with 3m vertices and maximum degree O(d) such that if ψ
is satisfiable, then Gψ has a vertex cover of size at most 2m and if val(ψ) ≤ (1− ε), then
every vertex cover of Gψ has size at least 2m(1 + ε/2).

N. Ailon, A. Bharracharya, R. Jaiswal, and A. Kumar 40:15

We formulate the following new hypothesis that holds given that hypothesis 25 holds.
Eventually, we will chain all these hypothesis together.

I Hypothesis 28. There exists constants ε, d > 0 such that the following holds: There
does not exist an algorithm that, given a graph G with n vertices and maximum degree d,
distinguishes between the case when G has a vertex cover of size at most 2n/3 and the case
when G has a vertex cover of size at least 2n

3 · (1 + ε), runs in time 2Ω(n
poly log n).

The following lemma is a simple implication of Lemma 27

I Lemma 29. If Hypothesis 25 holds, then so does Hypothesis 28.

We are getting closer to the k-means problem that has a reduction from the vertex cover
problem on triangle-free graphs [9]. So, we will need reductions from vertex cover problem
to vertex cover problem on triangle-free graphs and then to the k-means problem. These two
reductions are given by Awasthi et al. [9].

I Lemma 30 (Follows from Theorem 21 [9]). Let ε, d > 0 be some constants. There is a
polynomial-time computable function mapping any graph G = (V,E) with maximum degree d
to a triangle-free graph Ĝ = (V̂ , Ê) such that the following holds:
|V̂ | = poly(d, 1/ε) · |V | and maximum degree of vertices in Ĝ is O(d3/ε2), and(

1− |V C(G)|
|V |

)
≤
(

1− |V C(Ĝ)|
|V̂ |

)
≤ (1 + ε) ·

(
1− |V C(G)|

|V |

)
.

Here V C(G) denote the size of the minimum vertex cover of G.

We can formulate the following hypothesis that will follow from Hypothesis 28 using the
above lemma.

I Hypothesis 31. There exists constants ε, d > 0 such that the following holds: There does
not exist an algorithm that, given a triangle-free graph G with n vertices and maximum degree
d, distinguishes between the case when G has a vertex cover of size at most 2n

3 and the case
when G has a vertex cover of size at least 2n

3 · (1 + ε), runs in time 2Ω(n
poly log n).

The next claim is a simple application of Lemma 30.

I Lemma 32. If Hypothesis 28 holds, then so does Hypothesis 31.

Finally, we use the reduction from the vertex cover problem in triangle-free graphs to the
k-means problem to obtain the hardness result for the k-means problem. We will use the
following reduction from Awasthi et al. [9].

I Lemma 33 (Theorem 3 [9]). There is an efficient reduction from instances of Vertex Cover
(in triangle free graphs) to those of k-means that satisfies the following properties:

if the Vertex Cover instance has value k, then the k-means instance has cost at most
(m− k)
if the Vertex Cover instance has value at least k(1 + ε), then the optimal k-means cost is
at least m− (1− Ω(ε))k. Here ε is some fixed constant > 0.

Here m denotes the number of edges in the vertex cover instance.

The next hypothesis follows from Hypothesis 31 due to the above lemma.

I Hypothesis 34. There exists constant c > 1 such that the following holds: There does not
exist an algorithm that gives an approximation guarantee of c for the k-means problem that
runs in time poly(n, d) · 2Ω(k

poly log k).

ITCS 2018

40:16 Approximate Clustering with Same-Cluster Queries

I Lemma 35. If Hypothesis 31 holds, then so does Hypothesis 34.

Now using Lemmas 26, 29, 32, and 35, get the following result.

I Lemma 36. If the Exponential Time Hypothesis (ETH) holds then there exists a constant
c > 1 such that any c-approximation algorithm for the k-means problem cannot have running
time better than poly(n, d) · 2Ω(k

poly log k).

This proves Theorem 6 since if there is a query algorithm that runs in time poly(n, d, k)
and makes k

poly log k same-cluster queries, then we can convert it to a non-query algorithm
that runs in time poly(n, d) · 2

k
poly log k in a brute-force manner by trying out all possible

answers for the queries and then picking the best k-means solution.

5 Query Approximation Algorithm with Faulty Oracle

In this section, we describe how to extend our approximation algorithm for k-means clustering
in the SSAC framework when the query oracle is faulty. That is, the answers to the same-
cluster queries may be incorrect. Let us denote the faulty same-cluster oracle as OE . We
consider the following error model: for a query with points u and v, the query answer
OE(u, v) is wrong independently with probability at most q where q is a constant strictly less
than 1/2. More specifically, if u and v belong to the same optimal cluster, then OE(u, v) = 1
with probability at least (1− q) and OE(u, v) = 0 with probability at most q. Similarly, if u
and v belong to different optimal clusters, then OE(u, v) = 1 with probability at most q and
OE(u, v) = 0 with probability at least (1− q).

The modified algorithm giving (1 + ε)-approximation for k-means with faulty oracle OE
is given in Table 3. Let X1, . . . , Xk denote the k optimal clusters for the dataset X. Let
C = {c1, . . . , ci} denote the set of i centers chosen by the algorithm at the end of iteration
i. Let S denote the sample obtained using D2-sampling in the (i+ 1)st iteration. The key
idea for an efficient (1 + ε)-approximation algorithm for k-means in the SSAC framework
with a perfect oracle was the following. Given a sample S, we could compute using at most
k|S| same-cluster queries the partition S1, . . . , Sk of S among the k optimal clusters such
that Sj = S ∩Xj for all j. In the following, we discuss how to achieve this partitioning of S
among k optimal clusters when the oracle OE is faulty.

We reduce the problem of finding the partitions of S among the optimal clusters to
the problem of recovering dense (graph) clusters in a stochastic block model (SBM). An
instance of an SBM is created as follows. Given any arbitrary partition V1, . . . , Vk of a set
V of vertices, an edge is added between two vertices belonging to the same partition with
probability at least (1− q) and between two vertices in different partitions with probability
at most q. We first construct an instance I of an SBM using the sample S. By querying
the oracle OE with all pairs of points u, v in S, we obtain a graph I on |S| vertices, where
vertices in I correspond to the points in S, and an edge exists in I between vertices u and v
if OE(u, v) = 1. Since oracle OE errs with probability at most q, for any u, v ∈ Sj for some
j ∈ [k], there is an edge between u and v with probability at least (1− q). Similarly, there is
an edge (u, v) ∈ I for any two points u ∈ Sy and v ∈ Sz, y 6= z belonging to different optimal
clusters with probability at most q. Note that the instance I created in this manner would
be an instance of an SBM. Since q < 1/2, this procedure, with high probability, creates more
edges between vertices belonging to the same partition than the number of edges between
vertices in different partitions. Intuitively, the partitions of S would correspond to the dense
(graph) clusters in the SBM instance I, and if there were no errors, then each partition would
form a clique in I. One way to figure out the partitions S1, . . . , Sk would be to retrieve the

N. Ailon, A. Bharracharya, R. Jaiswal, and A. Kumar 40:17

Table 3 Approximation algorithm for k-means (top-left frame) using faulty oracle. Note that
µ(T) denotes the centroid of T and D2-sampling w.r.t. empty center set C means just uniform
sampling. The algorithm UniformSample(X,C, s) (bottom-left) returns a uniform sample of size
Ω(1/ε) (w.h.p.) from the optimal cluster in which point s belongs.

Constants: N = (213)k3

ε2 , M = 64k
ε
, L = (223)k2

ε4

Faulty-Query-k-means(X, k, ε) UncoveredCluster(C, S,R)

(1) R← ∅ - For all i ∈ {1, ..., k}: Si ← ∅

(2) C ← ∅ - i← 1

(3) for i = 1 to k - For all y ∈ R: {Si ← y; i++}

(3.1) D2-sample a multi-set S of N points - T1, . . . , Tl= PartitionSample(S)

from X with respect to center set C - for j = 1, . . . , l

(3.2) s← UncoveredCluster(C, S,R) - if IsCovered(C, Tj) is FALSE

(3.3) T ← UniformSample(X,C, s) - if ∃t such that St = ∅, then St = Tj

(3.4) If (|T | < M) continue - Let Si be the largest set such that i > |R|

(3.5) R← R ∪ {s} - Let s ∈ Si be the element with smallest

(3.6) C ← C ∪ µ(T) value of Φ(C, {s}) in Si

(4) return(C) - return(s)

UniformSample(X,C, s)

- S ← ∅

- For i = 1 to L: PartitionSample(S)

- D2-sample point x ∈ X w.r.t center set C - Construct SBM instance I by querying

- U = U ∪ {x} OE(s, t) ∀s, t ∈ S

- T1, . . . , Tl = PartitionSample(U) - Run cluster recovery algorithm of

- for j = 1, . . . , l Ailon et al. [4] on I

- If (IsCovered(s, Tj) is TRUE) - Return T1, . . . , Tl for l < k

- ∀x ∈ Tj , with probability IsCovered(C,U)(
ε

128 ·
Φ(C,{s})
Φ(C,{x})

)
add x in multi-set S - for c ∈ C

- return (S) - if for majority of u ∈ U , OE(c, u) = 1

- Return TRUE

- Return FALSE

dense (graph) clusters from the instance I. Ailon et al. [4] gave a randomized algorithm to
retrieve all large clusters of any SBM instance. Their algorithm on a graph of n vertices
retrieves all clusters of size at least

√
n with high probability. Their main result in our

context is given as follows.

I Lemma 37 ([4]). There exists a polynomial time algorithm that, given an instance of a
stochastic block model on n vertices, retrieves all clusters of size t least Ω(

√
n) with high

probability, provided q < 1/2.

We use Lemma 37 to retrieve the large clusters from our SBM instance I. We also need
to make sure that the sample S is such that its overlap with at least one uncovered optimal

ITCS 2018

40:18 Approximate Clustering with Same-Cluster Queries

cluster is large, where an optimal cluster Sj for some j is uncovered if C ∩ Sj = ∅. More
formally, we would require the following: ∃j ∈ [k] such that |Sj | ≥ Ω(

√
|S|), and Xj is

uncovered by C. From Corollary 16, given a set of centers C with |C| < k, there exists
an uncovered cluster such that any point sampled using D2-sampling would belong to that
uncovered cluster with probability at least ε

4k . Therefore, in expectation, D2-sample S would
contain at least ε

4k |S| points from one such uncovered optimal cluster. In order to ensure that
this quantity is at least as large as

√
|S|, we need |S| = Ω(16k2

ε2). Our bounds for N and L,
in the algorithm, for the size of D2-sample S satisfy this requirement with high probability.
This follows from a simple application of Chernoff bounds.

I Lemma 38. For D2-sample S of size at least 212k2

ε2 , there is at least one partition Sj =
S ∩Xj among the partitions returned by the sub-routine PartitionSample corresponding to
an uncovered cluster Xj with probability at least (1− 1

16k).

Proof. From Corollary 16, for any point p sampled using D2-sampling, the probability that
point p belongs to some uncovered cluster Xj is at least ε

4k . In expectation, the number of
points sampled from uncovered cluster Xj is E[|Sj |] = ε|S|

4k = 210k
ε . Exact recovery using

Lemma 37 requires |Sj | to be at least 26k
ε . Using Chernoff bounds, the probability of this

event is at least (1− 1
16k). J

Following Lemma 38, we condition on the event that there is at least one partition
corresponding to an uncovered cluster among the partitions returned by the sub-routine
PartitionSample. Next, we figure out using the sub-routine IsCovered which of the
partitions returned by PartitionSample are covered and which are uncovered. Let T1, . . . , Tl
be the partitions returned by PartitionSample where l < k. Sub-routine IsCovered
determines whether a cluster is covered or uncovered in the following manner. For each
j ∈ [l], we check whether Tj is covered by some c ∈ C. We query oracle OE with pairs (v, c)
for v ∈ Tj and c ∈ C. If majority of the query answers for some c ∈ C is 1, we say cluster Tj
is covered by C. If for all c ∈ C and some Tj , the majority of the query answers is 0, then
we say Tj is uncovered by C. Using Chernoff bounds, we show that with high probability
uncovered clusters would be detected.

I Lemma 39. With probability at least (1 − 1
16k), all covered and uncovered clusters are

detected correctly by the sub-routine IsCovered.

Proof. We find the probability that any partition Tj for j ∈ [l] is detected correctly as
covered or uncovered. Then we use union bound to bound the probability that all clusters
are detected correctly. Recall that each partition returned by PartitionSample has size at
least |Tj | ≥ 26k

ε for j ∈ [l]. We first compute for one such partition Tj and some center c ∈ C,
the probability that majority of the queries OE(v, c) where v ∈ Tj are wrong. Since each
query answer is wrong independently with probability q < 1/2, in expectation the number of
wrong query answers would be q|Tj |. Using Chernoff bound, the probability that majority of
the queries is wrong is at most e−

26k
3ε (1− 1

2q)2
. The probability that the majority of the queries

is wrong for at least one center c ∈ C is at most ke−
26k
3ε (1− 1

2q)2
. Again using union bound all

clusters are detected correctly with probability at least (1− k2e−
26k
3ε (1− 1

2q)2
) ≥ (1− 1

16k). J

With probability at least (1− 1
8k), given a D2-sample S, we can figure out the largest

uncovered optimal cluster using the sub-routines PartitionSample and IsCovered. The
analysis of Algorithm 3 follows the analysis of Algorithm 2. For completeness, we compute
the probability of success, and the query complexity of the algorithm. Note that s in line (3.2)

N. Ailon, A. Bharracharya, R. Jaiswal, and A. Kumar 40:19

of the Algorithm 3 is chosen correctly with probability (1− 1
4k)(1− 1

8k). The uniform sample
in line (3.3) is chosen properly with probability (1− 1

4k)(1− 1
8k). Since, given the uniform

sample, success probability using Inaba’s lemma is at least (1− 1
4k), overall the probability

of success becomes (1− 1
k). For query complexity, we observe that PartitionSample makes

O(k
6

ε8) same-cluster queries to oracle OE , query complexity of IsCovered is O(k
4

ε4). Since
PartitionSample is called at most k times, total query complexity would be O(k

7

ε8). Note
that these are bounds for dataset that satisfies (k, ε)-irreducibility condition. For general
dataset, we will use O(ε/k) as the error parameter. This causes the number of same-cluster
queries to be O(k15/ε8). This proves the main result in Theorem 7.

6 Conclusion and Open Problems

This work explored the power of the SSAC framework defined by Ashtiani et al. [6] in the
approximation algorithms domain. We showed how a simple modification of k-means++
seeding algorithm in SSAC framework gives a constant factor approximation for k-means.
Furthermore, we obtained an efficient (1 + ε)-approximation algorithm for the k-means
problem within the SSAC framework. This is interesting because it is known that such an
efficient algorithm is not possible in the classical model unless P = NP.

Our results encourage us to formulate similar query models for other hard problems. If
the query model is reasonable (as is the SSAC framework for center-based clustering), then
it may be worthwhile to explore its powers and limitations as it may be another way of
circumventing the hardness of the problem. For instance, the problem closest to center-based
clustering problems such as k-means is the correlation clustering problem. The query model
for this problem may be similar to the SSAC framework. It will be interesting to see if
same-cluster queries allow us to design efficient approximation algorithms for correlation
clustering problem for which hardness results similar to that of k-means are known.

References

1 Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means
clustering. In APPROX-RANDOM, pages 15–28. Springer, 2009.

2 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees
for k-means and euclidean k-median by primal-dual algorithms. CoRR, abs/1612.07925,
2016. arXiv:1612.07925.

3 Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Approximate clustering
with same-cluster queries. CoRR, abs/1704.01862, 2017. arXiv:1704.01862.

4 Nir Ailon, Yudong Chen, and Huan Xu. Iterative and active graph clustering using trace
norm minimization without cluster size constraints. Journal of Machine Learning Research,
16:455–490, 2015.

5 David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1027–1035. Society for Industrial and Applied Mathematics, 2007.

6 Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster
queries. In Advances in neural information processing systems, pages 3216–3224, 2016.

7 Pranjal Awasthi, Maria-Florina Balcan, and Konstantin Voevodski. Local algorithms for
interactive clustering. In ICML, pages 550–558, 2014.

8 Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under perturbation
stability. Information Processing Letters, 112(1):49–54, 2012.

ITCS 2018

http://arxiv.org/abs/1612.07925
http://arxiv.org/abs/1704.01862

40:20 Approximate Clustering with Same-Cluster Queries

9 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
Hardness of Approximation of Euclidean k-Means. In 31st International Symposium on
Computational Geometry (SoCG 2015), volume 34, pages 754–767, 2015.

10 Maria-Florina Balcan and Avrim Blum. Clustering with interactive feedback. In ALT,
pages 316–328. Springer, 2008.

11 Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Approximate clustering without
the approximation. In Proceedings of the twentieth annual ACM-SIAM symposium on
Discrete algorithms, pages 1068–1077, 2009.

12 Sugato Basu, Arindam Banerjee, and Raymond J Mooney. Active semi-supervision for
pairwise constrained clustering. In Proceedings of the 2004 SIAM international conference
on data mining, pages 333–344. SIAM, 2004.

13 Anup Bhattacharya, Ragesh Jaiswal, and Nir Ailon. Tight lower bound instances for k-
means++ in two dimensions. Theoretical Computer Science, 634:55–66, 2016.

14 Tobias Brunsch and Heiko Röglin. A bad instance for k-means++. Theoretical Computer
Science, 505:19–26, 2013.

15 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approx-
imation schemes for k-means and k-median in euclidean and minor-free metrics. In Irit
Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 353–364.
IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.46.

16 Sanjoy Dasgupta. The hardness of k-means clustering. Technical report, Department of
Computer Science and Engineering, University of California, San Diego, 2008.

17 Irit Dinur. The pcp theorem by gap amplification. Journal of the ACM (JACM), 54(3):12,
2007.

18 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A ptas for k-means clustering
based on weak coresets. In Proceedings of the twenty-third annual symposium on Compu-
tational geometry, pages 11–18. ACM, 2007.

19 Zachary Friggstad, Mohsen Rezapour, and Mohammad R Salavatipour. Local search yields
a ptas for k-means in doubling metrics. In Foundations of Computer Science (FOCS), 2016
IEEE 57th Annual Symposium on, pages 365–374. IEEE, 2016.

20 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62:367–375, 2001.

21 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63:512–530, 2001.

22 Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted voronoi diagrams and
randomization to variance-based k-clustering. In Proceedings of the tenth annual symposium
on Computational geometry, pages 332–339. ACM, 1994.

23 Ragesh Jaiswal, Amit Kumar, and Sandeep Sen. A simple d2-sampling based ptas for
k-means and other clustering problems. Algorithmica, 70(1):22–46, 2014.

24 Ragesh Jaiswal, Mehul Kumar, and Pulkit Yadav. Improved analysis of d2-sampling based
ptas for k-means and other clustering problems. Information Processing Letters, 115(2):100–
103, 2015.

25 Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silver-
man, and Angela Y Wu. A local search approximation algorithm for k-means clustering. In
Proceedings of the eighteenth annual symposium on Computational geometry, pages 10–18.
ACM, 2002.

26 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for
clustering problems in any dimensions. Journal of the ACM (JACM), 57(2):5, 2010.

27 Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproxim-
ability for k-means. Information Processing Letters, 120:40–43, 2017.

http://dx.doi.org/10.1109/FOCS.2016.46

N. Ailon, A. Bharracharya, R. Jaiswal, and A. Kumar 40:21

28 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means
problem is np-hard. Theoretical Computer Science, 442:13–21, 2012.

29 Pasin Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest k-
subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 954–961. ACM, 2017.

30 Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effect-
iveness of lloyd-type methods for the k-means problem. Journal of the ACM (JACM),
59(6):28, 2012.

31 Luca Trevisan. Inapproximability of combinatorial optimization problems. CoRR,
cs.CC/0409043, 2004. URL: http://arxiv.org/abs/cs.CC/0409043.

32 Andrea Vattani. The hardness of k-means clustering in the plane. Technical report, De-
partment of Computer Science and Engineering, University of California San Diego, 2009.

33 Sharad Vikram and Sanjoy Dasgupta. Interactive bayesian hierarchical clustering. In
International Conference on Machine Learning, pages 2081–2090, 2016.

34 Konstantin Voevodski, Maria-Florina Balcan, Heiko Röglin, Shang-Hua Teng, and Yu Xia.
Efficient clustering with limited distance information. CoRR, abs/1408.2045, 2014. arXiv:
1408.2045.

ITCS 2018

http://arxiv.org/abs/cs.CC/0409043
http://arxiv.org/abs/1408.2045
http://arxiv.org/abs/1408.2045

	Introduction
	Faulty query setting
	Other related work
	Our Techniques

	k-means++ within SSAC framework
	Query Approximation Algorithm (proof of Theorem 5)
	Query Lower Bound (proof of Theorem 6)
	Query Approximation Algorithm with Faulty Oracle
	Conclusion and Open Problems

