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Abstract
Compression and sparsification algorithms are frequently applied in a preprocessing step before
analyzing or optimizing large networks/graphs. In this paper we propose and study a new
framework contracting edges of a graph (merging vertices into super-vertices) with the goal of
preserving pairwise distances as accurately as possible. Formally, given an edge-weighted graph,
the contraction should guarantee that for any two vertices at distance d, the corresponding
super-vertices remain at distance at least ϕ(d) in the contracted graph, where ϕ is a tolerance
function bounding the permitted distance distortion. We present a comprehensive picture of the
algorithmic complexity of the contraction problem for affine tolerance functions ϕ(x) = x/α− β,
where α ≥ 1 and β ≥ 0 are arbitrary real-valued parameters. Specifically, we present polynomial-
time algorithms for trees as well as hardness and inapproximability results for different graph
classes, precisely separating easy and hard cases. Further we analyze the asymptotic behavior
of the size of contractions, and find efficient algorithms to compute (non-optimal) contractions
despite our hardness results.
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1 Introduction

When dealing with large networks, it is often beneficial to compress or sparsify the data
to manageable size before analyzing or optimizing the network directly. To be useful, a
meaningful compression should represent salient features of the original network with good
approximation, while being much smaller in size. In this paper, we focus on a compression of
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undirected edge-weighted graphs that approximately maintains all distances between vertices
in the graph.

In this context, an extensively studied concept are spanners (e.g. [19, 3, 6, 1]). Given an
undirected graph G = (V,E) and real numbers α ≥ 1 and β ≥ 0, a subgraph H = (V,E′),
E′ ⊆ E, is an (α, β)-spanner of G if distH(u, v) ≤ α · distG(u, v) + β holds for all u, v ∈ V .
While the number of edges in a spanner may be much smaller than that of the original
graph, the number of vertices is the same for both, leaving further potential for compression
untapped. For illustration, consider the road network of Europe with about 50 million
vertices [5], any spanner of which must again have about 50 million vertices and edges.
However, to approximately represent distances in Europe’s road network one may also merge
nearby vertices into super-vertices, thus achieving a much better compression of the network.
This is akin to the visual process of zooming out of a graphical representation of the map,
where neighbored vertices fade into each other and edges between merged vertices vanish. At
a large enough zoom level, the entire network merges into a single vertex.

In this paper we propose and study a new framework for contracting networks that
formalizes this intuitive idea and makes it applicable to general graphs (even without metric
embedding). Specifically, we study a contraction problem on graphs where a subset of edges
C ⊆ E is contracted. We denote the resulting simple graph obtained from G by contracting
the edges in C and by deleting resulting loops and multiple edges, keeping only the shortest
edge between any two vertices, by G/C. For any two vertices in G, we compare their distance
in G with the distance of the corresponding super-vertices in G/C.

It is interesting to contrast this concept with graph spanners. When constructing a
spanner, the length of the removed edges is implicitly set to ∞, resulting in an overall
increase of distances. On the other hand, a contraction implicitly sets the length of the
contracted edges to zero, leading to an overall decrease of distances. For both problems, the
ultimate goal is to reduce the complexity of the network while maintaining an approximation
guarantee on the distances.

The following example shows that contractions may be better suited than spanners to
achieve this goal. In a subgraph with small radius, a spanner can at best result in a spanning
tree of the same order, while a contraction can reduce the whole subgraph to a single vertex,
while entailing a multiplicative distance distortion of similar magnitude. In addition, the
contraction may also merge many edges entering the contracted subgraph. Clearly, the
objective here is to maximize the total number of contracted and deleted edges, as this
minimizes the memory required to represent the resulting network in a computer (using e.g.
adjacency lists).

Given the results presented in this paper and the known results for spanners (discussed
in detail below), we further believe that the combination of spanners and contractions is very
powerful, promising and flexible. As the former only increases and the latter only decreases
the distances, the respective distortion guarantees provably also hold for the overall distortion.
In fact, both effects may even compensate each other. This is true regardless of the order in
which both compression operations are applied, even when they are applied repeatedly.

In order to measure the distance distortion of the contraction, we assume a non-decreasing
tolerance function ϕ : R→ R, similar to the corresponding function for spanners, see e.g. [6].
We are interested in computing contractions that preserve distances in the following sense:
For any two vertices u and v at distance d in G, the distance of the corresponding vertices
in the contracted graph G/C must be at least ϕ(d). If this condition is satisfied, we call C
a ϕ-distance preserving contraction, or ϕ-contraction for short. Formally, the algorithmic
problem Contraction considered in this paper is to compute for a given graph G = (V,E)
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Figure 1 Top: two iterations of Contraction with ϕ(x) = 4x/5 − 3 on a tree; bottom: two
iterations of Contraction with ϕ(x) = 3x/4− 3 on a planar graph. Distances are geometric and
some contracted sets of vertices are highlighted.

with edge lengths ` : E → R>0 and a given tolerance function ϕ, a ϕ-contraction C ⊆ E

such that the number of contracted and deleted edges is maximized. We are specifically
interested in the case where the tolerance function ϕ is an affine function ϕ(x) = x/α− β for
real-valued parameters α ≥ 1 and β ≥ 0. We then simply write (α, β)-contraction instead of
ϕ-contraction. See Figure 1 for some example instances of the problem Contraction.

When considering the case of a purely multiplicative error (β = 0), a slight subtlety
has to be taken into account. Specifically, for a graph with positive edge lengths it is not
feasible to contract a single edge. Therefore, we propose a slight modification of our original
model: We say that a set C ⊆ E of edges of G is a weak ϕ-distance preserving contraction,
or weak ϕ-contraction for short, if it does not contract the entire graph and, for any two
vertices u and v at distance d in G, the distance of the corresponding vertices in G/C is
either zero or at least ϕ(d). We will refer to the corresponding algorithmic problem as
Weak Contraction. Put differently, in a weak contraction, the distances between different
super-vertices satisfy the given distortion guarantee, but for vertices belonging to the same
super-vertex, no guarantee is given.

1.1 Our results

In this paper, we present a comprehensive picture of the algorithmic complexity of the
described contraction problems. Recall that we are given an input graph with edge lengths
and tolerance function ϕ, and our goal is to compute a (weak) contraction that maximizes
the total number of contracted and deleted edges. Our main results concern affine tolerance
functions ϕ(x) = x/α− β with parameters α ≥ 1 and β ≥ 0. For the reader’s convenience,
our results are summarized in Tables 1, and 2. Within the tables and throughout this paper,
n and m denote the number of vertices and edges, respectively, of the input graph under
consideration.

ITCS 2018
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Table 1 Overview of algorithmic and hardness results presented in this paper.

Problem Graph classes
Path Tree Cycle General

Contraction

addit. (α=1), unit lg. O(n) [Th. 1 3]

affine (α, β), unit lg.
O(n) [Th. 1 1] O(n) [Th. 1 2] m

1
2−ε-inapx.a [Th. 8]

addit. (α=1)

affine (α, β)
O(n3) [Th. 2] NP-hard [Th. 6] n1−ε-inapx. [Th. 7]

Weak Contraction

additive (α=1)

affine (α, β)
O(n5) [Th. 4] NP-hardb [Th. 6]

n1−ε-inapx.c [Th. 10]

a even for bipartite graphs and β = 1
b also NP-hard for planar graphs with arb. large girth, (α, β) = (2, 0), and unit lg. (` = 1) [Th. 9].
c even if (α, β) = (3/2, 0).

Algorithmic results

We develop linear time greedy algorithms for Contraction with unit lengths on paths,
cycles, and on trees with α = 1 (Theorem 1). The first two algorithms are inspired by LP
rounding techniques, the latter algorithm relies on a structural characterization of optimal
solutions.

We present dynamic programming algorithms solving Contraction and Weak Con-
traction on trees in time O(n3) or O(n5), respectively (Theorems 2 and 4). These dynamic
programs compute optimal solutions on subtrees, in the latter case combining several Pareto
optimal solutions in a two-dimensional parameter space (hence the larger running time).

Note that instead of maximizing the number of contracted and deleted edges, we could
optimize for α or β while fixing the other parameters. The resulting problems are polynomially
equivalent to our setting, via binary search over one of the parameters.

Hardness results

We complement these algorithms by several hardness results. First we consider the purely
additive case where α = 1. We show that here both Contraction and Weak Contraction
are NP-hard on cycles for any fixed β > 0, by a reduction of a variant of Partition
(Theorem 6). As mentioned before, both problems can be solved efficiently on graphs without
cycles, and there is a linear time algorithm for Contraction on cycles with unit lengths.
By reductions from Clique we show that both the general as well as the unit lengths case
of Contraction with α = 1 are hard to approximate within factors of n1−ε or m1/2−ε,
respectively (Theorem 7 and Theorem 8).

Further we consider the purely multiplicative case where β = 0 (here Contraction
is trivial). We show that in this case Weak Contraction is NP-hard on planar graphs
with arbitrarily large girth and unit length edges by a reduction from a special case of
Planar 3SAT (Theorem 9). Since these graphs are locally tree-like, this result constitutes
another rather sharp separation from the polynomially solvable tree case. Furthermore, we
show that the problem is hard to approximate within a factor of n1−ε by a reduction from
Independent Set (Theorem 10).
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Table 2 Overview of asympotic bounds presented in this paper.

Contraction with unit lg. (`=1) # of edges in G/C Time Reference

(α, β) = (2k − 1, 1) n1+1/k O(m) [Th. 11]
(α, β) = (2 log2 n− 1, 1) 2n O(m) [Cor. 12]
(α, β) = (k − 1, 1) Ω(n1+1/k) — [Th. 14]
(α, β) = (1, k) m− km/(2n) O(m) [Th. 15 1]
(α, β) = (1, k) O(n2/k) O(m) [Th. 15 2]
(α, β) = (1,O(1)) Ω(n4/3−o(1)) — [1]
Contraction with unit lg. (`=1)
and min. degree D # of vertices in G/C Time Reference

(α, β) = (5, 1) n/D O(m) [Th. 16]
(α, β) = (k, 1) Ω(n/(kD)) — [Th. 17]

Asymptotic bounds
We now discuss our asymptotic bounds for contractions. In this setting, we are interested
in (non-optimal) contractions for graphs with unit lengths that can be computed efficiently
despite the above-mentioned hardness results. We prove that for any k ≥ 1 any graph G has
a (2k − 1, 1)-contraction C such that G/C has at most n1+1/k edges, and such a contraction
can be computed in time O(m) (Theorem 11) by successively growing clusters around center
vertices. Assuming Erdős’ girth conjecture, we show a corresponding (not tight) lower bound
(Theorem 14).

For a purely additive error, we observe two simple (1, k)-contractions that can be computed
in O(m) time (Theorem 15). We show that for any even integer 0 ≤ k ≤ n, the edges incident
to the k/2 vertices of highest degrees form a (1, k)-contraction with objective value at least
km/(2n), which is asymptotically best possible for paths. Another (1, k)-contraction C is
implicitly used by Bernstein and Chechik in their faster deterministic algorithm for dynamic
shortest paths in dense graphs [8]. For any number 0 < k ≤ n, it consists of the edges
incident to two vertices of degree at least n/k, and G/C has O(n2/k) edges. Both of these
contractions can be computed in O(m) time. Further we note that the main result in [1]
implies that for all ε > 0, any contraction C such that G/C has O(n4/3−ε) edges does not
admit a constant additive error.

One possible advantage of contraction compared to spanners is the potentially significant
reduction of vertices as well as edges, e.g. reducing the complexity of performing algorithmic
tasks in the smaller graph. To ground this intuition, we exhibit a contraction that significantly
reduces the number of vertices in any graph with minimum degreeD to O(n/D) (Theorem 16).
We also present a lower bound (Theorem 17) showing that we cannot guarantee o(n/D)
vertices, even if we allow larger approximation error.

1.2 Comparison with previous results
There are several models aiming to compress graphs while preserving distances. They differ
by their choice of compression operation, such as replacing the graph by a subgraph or minor,
and by whether the aim is to preserve all or only certain distances.

As discussed before, graph spanners are a concept closely related to contractions, where
the length of removed edges is set to ∞ rather than to 0. Our results highlight further
intrinsic similarities of the two models. Like contractions, spanners are NP-hard to compute
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optimally (see [19, 18]). While the spanner literature considers the problem of minimizing the
number of remaining edges, we analyze the objective of maximizing the number of contracted
edges, prohibiting a direct comparison of the respective inapproximability results. We note
however that approximation algorithms for spanner problems have been studied extensively,
even though strong lower bounds are known. For instance, computing (2, 0)-spanners in
unweighted graphs is Θ(logn)-hard to approximate ([16, 15]), for further references see
e.g. [11].

Despite these negative results, it is still possible to obtain powerful asymptotic guarantees
in both models. In particular, our (2k−1, 1)-contraction with O(n1+1/k) edges for unweighted
graphs has a clear analogy to the classic (2k−1, 0)-spanner with the same number of edges [3]
(note that the additive error of 1 in our result is strictly necessary, as discussed above). There
is, however, a major difference between the two results: whereas the (2k − 1, 0)-spanner can
trivially be shown to be optimal assuming Erdős’ girth conjecture, applying this conjecture to
the contraction model only yields a lower bound of n1+1/(2k) edges for a (2k−1, 1)-contraction.
Closing this gap thus remains as an interesting open problem in the contraction model, whose
solution would likely yield further insight into the relationship to spanners.

It is interesting to note that the clustering yielding our (2k − 1, 1)-contraction was
previously used in [19] to obtain a (4r+ 1, 0)-spanner of the same density. On the other hand,
no deterministic linear time algorithm computing a (2k − 1, 0)-spanner is known, though [7]
achieves randomized linear time. Meanwhile our (2k − 1, 1)-contraction can be constructed
deterministically in linear time.

There are also spanner results that significantly sparsify unweighted graphs at the cost
of a purely additive error, as a (1,2)-spanner with O(n3/2) edges [2], or a (1,6)-spanner
with O(n4/3) edges [6]. We do not know if analogous results are possible in the contraction
model. The incompressibility result in [1] mentioned above implies the same lower bound
for spanners as for contractions and every other distance oracle with additive error: For
every ε > 0 any spanner of size O(n4/3−ε) does not admit a constant additive error. Finally,
for spanners there are results that combine multiplicative and additive error, such as the
(k, k − 1)-spanner of [6].

Gupta [14] considered the problem of approximating a tree metric on a subset of the
vertices by another tree, and gave a linear time algorithm computing an 8-approximation.
As Chan et al. [9] observed later, on complete binary trees a solution of minimum distortion
is always achieved by a minor (with possibly different edge lengths) of the input tree, so
this seems to be the first investigation of contractions that approximate graph distances.
Krauthgamer et al. [17] considered an extension to general graphs, studying the size of
minors preserving all distances between a given terminal set of fixed size. Cheung et al. [10]
introduced a multiplicative distortion to this model. As here no two terminals may be merged,
these approaches cannot compress a graph at all if every vertex is a terminal.

1.3 Outline of this paper

In Section 2 we introduce important definitions and notations that will be used throughout
this paper. In Sections 3–6 we formally state our results, in exactly the same order as they
were discussed in Section 1.1 before. Due to the limited space in this extended abstract, we
will only mention the main steps and ideas needed to prove a few selected theorems. Full
proofs can be found in the preprint [12].
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2 Preliminaries

Throughout this paper we consider simple undirected graphs G (without parallel edges or
loops). We let V (G) and E(G) denote the vertex and edge set of G, respectively, and we
define n(G) := |V (G)| and m(G) := |E(G)|. If the context is clear, we simply write V , E,
n and m. We also use the notation [n] := {1, 2, . . . , n}. We assume that G is connected,
otherwise the contraction problem can be solved independently for each connected component.
Edge lengths are given by a function ` : E → R>0. The distance dist`(u, v) between two
vertices u and v is the length of a shortest path between u and v in G with respect to `.

Given a subset of edges C ⊆ E, we denote the resulting simple graph obtained from G

by contracting the edges in C, deleting resulting loops and keeping only the shortest edge
between any two vertices by G/C. We denote the number of deleted loops and multi-edges
by ∆(C) (thus m(G/C) = m(G) − |C| − ∆(C)). Instead of contracting a set C ⊆ E of
edges in G, setting their edge lengths to zero has the same effect on the distances in the
resulting graph. This is somewhat cleaner conceptually, so we will often adopt this viewpoint.
Specifically, we let `C be the new length function that assigns 0 to every edge in C, and that
is equal to the original edges lengths ` on the edges E \ C.

A tolerance function is a non-decreasing function ϕ : R → R. Roughly speaking, this
function describes by how much the distance between two vertices may drop when contracting
edges (i.e., setting edge lengths to zero). Formally, given a graph G with edge lengths `
and a tolerance function ϕ, we say that a subset of edges C ⊆ E is a ϕ-distance preserving
contraction or ϕ-contraction for short, if

dist`C
(u, v) ≥ ϕ(dist`(u, v)) (1)

holds for any two vertices u and v in G. Similarly, we say that C is a weak ϕ-distance
preserving contraction or weak ϕ-contraction for short, if (1) or dist`C

(u, v) = 0 holds for any
two vertices u and v, and if the graph (V,C) is disconnected (equivalently, if G/C is not a
single vertex). The last condition prevents solutions C ⊆ E for which the graph is contracted
to a single vertex. If ϕ(x) = x/α− β, then we simply write (weak) (α, β)-contraction instead
of (weak) ϕ-contraction.

An instance of the problem Contraction or Weak Contraction is a triple (G, `, ϕ),
where G is the underlying graph, ` the length function and ϕ the tolerance function, and the
objective is to find a (weak) ϕ-distance preserving contraction C ⊆ E, such that

Φ(C) := |C|+ ∆(C) = m(G)−m(G/C) (2)

is maximized. This quantity equals the number of edges we save when going from G to G/C.
Note that for instance on trees we have Φ(C) = |C| for any (weak) contraction C.

In this context we sometimes refer to a set of edges that forms a (weak) contraction as a
feasible solution, and to a (weak) contraction of maximum size as an optimal solution.

Note that our contraction model is well-behaved in the sense that successively solving
(Weak) Contraction with general tolerance functions ϕ and ψ yields a feasible solution
with respect to the composition ψ ◦ ϕ (see for a proof [12]).

3 Greedy algorithms

In this section we summarize our results on greedy algorithms that allow solving several
special cases of the problem Contraction with affine tolerance function ϕ(x) = x/α− β in
linear time. The proof of the three cases in Theorem 1 can be found in [12].

ITCS 2018
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I Theorem 1. We can solve Contraction in time O(n) in the following three cases:
(i) Paths with ` = 1 and ϕ(x) = x/α− β, α, β ≥ 1.
(ii) Cycles with ` = 1 and ϕ(x) = x/α− β, α ≥ 1, β ≥ 0.
(iii) Trees with ` = 1 and ϕ(x) = x− β, β ≥ 0.

Generalizing cases 1 and 3, in the next section we will present polynomial time algorithms
for the general case on trees (with somewhat larger running times). In contrast to the
algorithmic result for unit length cycles in case 2, we will see in Section 5 that Contraction
is NP-hard on cycles with general edge lengths, even with α = 1.

4 Dynamic programs for general trees

In this section we consider the problem of computing (weak) contractions for trees T = (V,E)
with affine tolerance function ϕ(x) = x/α − β. Recall that on trees we have f(C) = |C|
for every (weak) contraction C. In the following we present the main steps of our dynamic
programming approach for solving these problems, first for the problem Contraction and
then for Weak Contraction. Full proofs are deferred to [12].

I Theorem 2. We can solve Contraction on trees with ϕ(x) = x/α− β, α ≥ 1 and β ≥ 0
in time O(n3).

The idea is to root the tree T at an arbitrary vertex, and to decompose the problem by
splitting T into rooted subtrees at every vertex. Specifically, let v be a vertex of T , and T1
and T2 subtrees of T rooted at v that only have the vertex v in common. Now consider an
optimal contraction C on T , and let C1 and C2 be the subsets of C on T1 or T2, respectively.
Clearly, C1 and C2 are feasible contractions on their subtrees. Furthermore, the set C2 has
maximum size under the condition that its union with C1 forms a feasible contraction (and
vice versa).

We thus identified two quality parameters of solutions on rooted subtrees that we need
to consider as possible parts of optimal contractions in T : One is their size, the other is
whether they can be combined with other partial solutions in the rest of T , when growing
subtrees towards the root. To quantify this seemingly unwieldy second parameter, we observe
that a solution C ⊆ E is feasible if and only if for any two vertices u and v of T we have
loadC,α(u, v) ≤ β, where the load between u and v is defined as

loadC,α(u, v) := dist`(u, v)/α− dist`C
(u, v).

(recall (1)). For any vertex v of T we further define the load of T at v as

loadC,α(T, v) := max{loadC,α(u, v) : u ∈ V }.

Note that loadC,α(T, v) ≥ 0, as we have loadC,α(v, v) = 0. The following lemma justifies that
this definition is the correct second quality parameter.

I Lemma 3. Consider a partition of T into two subtrees T1 and T2 that only have a
vertex v ∈ V in common. Then C ⊆ E is a feasible solution for the instance (T, `, ϕ) of
the problem Contraction if and only if the following two conditions hold: C ∩ E(T1) and
C ∩E(T2) are feasible solutions for the instances (T1, `, ϕ) and (T2, `, ϕ) respectively; and we
have loadC,α(T1, v) + loadC,α(T2, v) ≤ β.

Our strategy is to recursively find all contractions on subtrees, that for some fixed size
between 1 and n minimize the load. To this end, we choose an arbitrary root vertex r of T ,
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and starts by considering rooted subtrees consisting of single leaves. We then grows these
subtrees towards the root r using two operations: Either two subtrees T1 and T2 with the
same root v as before are joined (keeping the root v), or a subtree T ′ containing all successors
of its root v in T is extended by adding the edge that leads from v to its parent vertex u
in T (in this case, u becomes the new root). Let T ∗ be the resulting joined or extended
subtree arising from the respective operation, and let C be any contraction on T ∗. In case of
a join-operation we have

loadC,α(T ∗, v) = max{loadC,α(T1, v), loadC,α(T2, v)}, (4a)

and the size of C is simply the sum of the sizes of the subsets of C on T1 and T2. In case of
an extend-operation we have

loadC,α(T ∗, v) =
{

max{loadC,α(T ′, u) + `(v, u)/α, if {u, v} ∈ C,
max{loadC,α(T ′, u)− (1− 1/α)`(v, u), 0}, otherwise,

(4b)

and the size of C is either equal to the size of the subset of C on T ′ in the second case, or
one more in the first case.

These formulas indicate a monotone behavior of our two parameters, which allows us
to compute the necessary partial solutions on T ∗ by combining the previously computed
partial solutions of its subtrees. Furthermore they allow us to compute our parameters for
the combined sets.

This yields the dynamic programming algorithm for Contraction referred to in The-
orem 2. A similar approach also works for the problem Weak Contraction.

I Theorem 4. We can solve Weak Contraction on trees with ϕ(x) = x/α − β, α ≥ 1
and β ≥ 0 in time O(n5).

Here, our task is complicated by the fact that the combinability of solutions on subtrees
cannot be captured by one single parameter. As we need to keep track of pairs of vertices
whose distances remain positive when contracting a set of edges C ⊆ E, we define the weak
load of a rooted tree T at one of its vertices v by

wloadC,α(T, v) := max{loadC,α(u, v) : u ∈ V and dist`C
(u, v) > 0},

allowing us to formulate the following combinability criterion analogous to Lemma 3 from
before.

I Lemma 5. Let T , T1, T2 and v be as in Lemma 3. Then C ( E is a feasible solution for
the instance (T, `, ϕ) of the problem Weak Contraction if and only if the following two
conditions hold: For i = 1, 2, either C contains every edge of Ti or C ∩ E(Ti) is a feasible
solution for the instance (Ti, `, ϕ) of Weak Contraction; and we have

loadC,α(T1, v) + wloadC,α(T2, v) ≤ β and wloadC,α(T1, v) + loadC,α(T2, v) ≤ β. (5)

We now proceed similarly by computing sets of solutions on rooted subtrees of T that
are optimal with respect to the three parameters size, load and weak load. In particular, for
any fixed size we compute a Pareto front of subsolutions of that size, minimizing both load
and weak load. The key step for getting an efficient algorithm is to prove that these Pareto
fronts have polynomial, in fact even linear, size (this is not clear a priori, as the number
of feasible solutions on subtrees can be exponential). Using that the weak load has similar
monotonicity properties and recursive formulas as stated in (4) for the load, we thus arrive
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at an efficient dynamic program. As our algorithm computes O(n2) Pareto fronts of size
O(n) at every vertex, and we can combine optimal solutions from two such fronts in time
O(n), we get an additional factor of n2 in the running time compared to our first dynamic
program, giving an overall running time of O(n5).

5 Hardness and inapproximability

In this section we state our NP-hardness and inapproximability results for the problems
Contraction and Weak Contraction. All proofs throughout this section can be found
in [12].

We start by considering the purely additive case, where α = 1. Recall that we can
compute maximum size (weak) contractions in polynomial time on trees with arbitrary edge
lengths (Theorem 2), and on cycles with unit length edges (Theorem 12). In contrast to
that, our next result asserts that both problems are NP-hard on cycles with arbitrary edge
lengths, even with α = 1.

I Theorem 6. For any fixed β > 0, the problems Contraction and Weak Contraction
with tolerance function ϕ(x) = x− β, β ≥ 0, are NP-hard on cycles.

It proceeds by a reduction from a variant of the Partition problem. Via inapproximability
of the Clique problem (see [21]), we extend this result in the following two ways:

I Theorem 7. For all β, ε > 0 it is NP-hard to approximate the problem Contraction
with ϕ = x− β, β ≥ 0 to within a factor of n1−ε.

I Theorem 8. For all ε > 0 it is NP-hard to approximate Contraction with ϕ = x− 1
on bipartite graphs with unit lengths (` = 1) to within a factor of m1/2−ε.

The next two theorems capture our results for the purely multiplicative case, where β = 0
(recall that Contraction is trivial in this case). To state the first result, recall that the
girth of a graph is the length of the shortest cycle.

I Theorem 9. For any g ≥ 2, the problem Weak Contraction with tolerance function
ϕ(x) = x/2, is NP-hard for planar graphs with girth at least 3g and unit length edges ` = 1.

The proof of Theorem 9 uses a reduction from a variant of Planar 3SAT.

I Theorem 10. For all ε > 0 it is NP-hard to approximate Weak Contraction with
ϕ = 2x/3 to within a factor of n1−ε.

The proof of Theorem 10 proceeds via a reduction from Independent Set.

6 Asymptotic bounds

In this section we show how to compute contractions for graphs that are not optimal, but
can be computed efficiently despite our hardness results from the previous section. In this
vein, the main results of this section are Theorem 11 and the corresponding (not tight) lower
bound (Theorem 14). Further we consider the factor by which a contraction can reduce the
number of vertices (Theorem 16 and Theorem 17). Throughout this section, we assume all
graphs to have unit length edges ` = 1.

I Theorem 11. Let k ≥ 1 be a real number. Any graph G with unit length edges has a
(2k − 1, 1)-contraction C such that the contracted graph G/C has at most n1+1/k edges, and
such a contraction can be computed in time O(m).
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Recall that here and throughout, n and m denote the number of vertices and edges of the
input graph G, not of the contracted graph G/C. Setting k := log2 n in Theorem 11 yields
the following corollary.

I Corollary 12. Any graph G with unit length edges has a (2 log2 n − 1, 1)-contraction C

such that the contracted graph G/C has at most 2n edges, and such a contraction can be
computed in time O(m).

To prove Theorem 11, we use a clustering approach as presented in [4], yielding the next
lemma. For any real number r ≥ 1, we define an r-partition of a graph G = (V,E) as a
set of clusters Pi ⊆ V , i ∈ [l], with corresponding cluster centers pi ∈ Pi, where the Pi are
required to form a partition of the vertex set V and where dist`(pi, u) ≤ r − 1 for all u ∈ Pi
and i ∈ [l]. We denote the resulting r-partition by P := {(pi, Pi) : i ∈ [l]}. We write ρ(P )
for the number of pairs 1 ≤ i < j ≤ l for which Pi and Pj are connected by at least one edge,
and we refer this quantity as the density of P .

I Lemma 13. Let r ≥ 1 be a real number. Any graph G with unit length edges has an
r-partition P with density ρ(P ) ≤ n1+1/r, and such a partition can be computed in time
O(m).

For the proof of Lemma 13 we refer the reader to [12]. With Lemma 13 in hand, we are
now ready to prove Theorem 11.

Proof of Theorem 11. Given G = (V,E), we first compute a k-partition P into l clusters
as described by Lemma 13. We define the set C of contracted edges as the union of all edges
within the clusters, C := {{u, v} ∈ E : u, v ∈ Pi for some i ∈ [l]}. We thus contract each
cluster into a single vertex and remove from every set of resulting parallel edges all but a
single edge.

We proceed to show that C is a (2k − 1, 1)-contraction, i.e., we show that dist`C
(u, v) ≥

dist`(u, v)/(2k − 1) − 1 for all u, v ∈ V . Consider two vertices u ∈ Pi and v ∈ Pj , where i
and j might be equal. Let Qu,v be the shortest path from u to v in G with edge lengths
`C (all edges from C receive length zero). The length d of Qu,v is the number of edges on
that path that connect different clusters. Note that Qu,v enters and leaves each of the d+ 1
visited clusters at most once, using at most 2k − 2 edges in every cluster, so in G (where all
edges have unit lengths) we get dist`(u, v) ≤ d+ (d+ 1)(2k − 2).

Combining these observations we obtain

dist`C
(u, v) = d ≥ d− 1

2k − 1 = d+ (d+ 1)(2k − 2)
2k − 1 − 1 ≥ dist`(u, v)

2k − 1 − 1,

proving the claim. It remains to show that the contracted graph G/C has at most n1+1/k

edges, which is an immediate consequence of the upper bound m(G/C) = ρ(P ) ≤ n1+1/k

given by Lemma 13. This completes the proof of the theorem. J

Erdős’ girth conjecture [13] asserts that there exist graphs with Ω(n1+1/k) edges and
girth 2k+ 1. It has been verified for k = 1, 2, 3, 5 [20] and the strongest spanner lower bounds
depend on it. We use the conjecture to derive the following (not tight) lower bound. For the
proof we refer to [12].

I Theorem 14. Assuming Erdős’ girth conjecture, there exists for any integer k ≥ 2 a graph
G such that any (k − 1, 1)-contraction of G results in a graph G/C with Ω(n1+1/k) edges.

Turning to the case of a purely additive error, we observe two simple (1, k)-contractions.
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I Theorem 15. Let G be a graph with unit length edges.
(i) For any even integer 0 ≤ k ≤ n, the set of edges incident to the k/2 vertices of highest

degrees is a (1, k)-contraction C in G with Φ(C) ≥ km/(2n).
(ii) For any real number 0 < k ≤ n, the set of edges incident to two vertices of degree at

least n/k is a (1, k)-contraction C in G such that G/C has O(n2/k) edges.
These contractions can be computed in time O(m).

As mentioned in the introduction, Bernstein and Chechik used the contraction in The-
orem 15 2 in their dynamic shortest paths algorithm [8].

Note that the information theoretic lower bound in [1] implies that for all ε > 0, any
contraction C such that G/C has O(n4/3−ε) edges does not admit a constant additive error.

In contrast to spanners, contractions also reduce the number of vertices. Unfortunately,
for constant distortion it is impossible to guarantee more than a constant-factor reduction in
this parameter, as the example of a path shows. The same problem applies to general dense
graphs, since they could still contain a long path within them. That being said, it seems
likely that in practice contractions can lead to significant vertex reductions in many dense
graphs. We ground this practical intuition with a theoretical result for the special case of
graphs with large minimum degree.

I Theorem 16. Let D be an integer. Any graph G with unit length edges and minimum
degree at least D has a (5, 1)-contraction C such that the contracted graph G/C has at most
n/D vertices, and such a contraction can be computed in time O(m).

To see that we cannot guarantee less than n/D vertices, even with larger approximation
error, consider the graph G that consists of n/D isolated D-cliques. We now show that even
if G is connected, we cannot guarantee o(n/D) vertices in the contracted graph, even if we
allow a larger (constant) approximation error.

I Theorem 17. Let D and k be integers. There exists a graph G with minimum degree D
such that any (k, 1)-contraction C results in a graph G/C with Ω(n/(kD)) vertices.

The proofs of the two previous theorems are deferred to [12].
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