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—— Abstract

We consider the problem of designing and analyzing differentially private algorithms that
can be implemented on discrete models of computation in strict polynomial time, motivated
by known attacks on floating point implementations of real-arithmetic differentially private al-
gorithms (Mironov, CCS 2012) and the potential for timing attacks on expected polynomial-time
algorithms. We use a case study: the basic problem of approximating the histogram of a cat-
egorical dataset over a possibly large data universe X. The classic Laplace Mechanism (Dwork,
McSherry, Nissim, Smith, TCC 2006 and J. Privacy & Confidentiality 2017) does not satisfy
our requirements, as it is based on real arithmetic, and natural discrete analogues, such as the
Geometric Mechanism (Ghosh, Roughgarden, Sundarajan, STOC 2009 and SICOMP 2012), take
time at least linear in |X|, which can be exponential in the bit length of the input.

In this paper, we provide strict polynomial-time discrete algorithms for approximate his-
tograms whose simultaneous accuracy (the maximum error over all bins) matches that of the
Laplace Mechanism up to constant factors, while retaining the same (pure) differential privacy
guarantee. One of our algorithms produces a sparse histogram as output. Its “per-bin accuracy”
(the error on individual bins) is worse than that of the Laplace Mechanism by a factor of log |X|,
but we prove a lower bound showing that this is necessary for any algorithm that produces a
sparse histogram. A second algorithm avoids this lower bound, and matches the per-bin accuracy
of the Laplace Mechanism, by producing a compact and efficiently computable representation of
a dense histogram; it is based on an (n+ 1)-wise independent implementation of an appropriately
clamped version of the Discrete Geometric Mechanism.
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1 Introduction

Differential Privacy [11] is by now a well-established framework for privacy-protective
statistical analysis of sensitive datasets. Much work on differential privacy involves an
interplay between statistics and computer science. Statistics provides many of the (non-
private) analyses that we wish to approximate with differentially private algorithms, as well
as probabilistic tools that are useful in analyzing such algorithms, which are necessarily
randomized. From computer science, differential privacy draws upon a tradition of adversarial
modeling and strong security definitions, techniques for designing and analyzing randomized
algorithms, and considerations of algorithmic resource constraints (such as time and memory).

Because of its connection to statistics, it is very natural that much of the literature on
differential privacy considers the estimation of real-valued functions on real-valued data
(e.g. the sample mean) and introduces noise from continuous probability distributions (e.g.
the Laplace distribution) to obtain privacy. However, these choices are incompatible with
standard computer science models for algorithms (like the Turing machine or RAM model)
as well as implementation on physical computers (which use only finite approximations to
real arithmetic, e.g. via floating point numbers). This discrepancy is not just a theoretical
concern; Mironov [21] strikingly demonstrated that common floating-point implementations
of the most basic differentially private algorithm (the Laplace Mechanism) are vulnerable
to real attacks. Mironov shows how to prevent his attack with a simple modification to
the implementation, but this solution is specific to a single differentially private mechanism
and particular floating-point arithmetic standard. His solution increases the error by a
constant factor and is most likely more efficient in practice than the algorithm we will use to
replace the Laplace Mechanism. However, he provides no bounds on asymptotic running
time. Gazeau, Miller and Palamidessi [13] provide more general conditions for which an
implementation of real numbers and a mechanism that perturbs the correct answer with
noise maintains differential privacy. However, they do not provide an explicit construction
with bounds on accuracy and running time.

From a theoretical point of view, a more appealing approach to resolving these issues
is to avoid real or floating-point arithmetic entirely and only consider differentially private
computations that involve discrete inputs and outputs, and rational probabilities, as first
done in [10]. Such algorithms are realizable in standard discrete models of computation.
However, some such algorithms have running times that are only bounded in expectation
(e.g. due to sampling from an exponential distribution supported on the natural numbers),
and this raises a potential vulnerability to timing attacks. If an adversary can observe
the running time of the algorithm, it learns something about the algorithm’s coin tosses,
which are assumed to be secret in the definition of differential privacy. (Even if the time
cannot be directly observed, in practice an adversary can determine an upper bound on
the running time, which again is information that is implicitly assumed to be secret in the
privacy definition.)

Because of these considerations, we advocate the following principle:

Differential Privacy for Finite Computers:
We should describe how to implement differentially private algorithms on discrete
models of computation with strict bounds on running time (ideally polynomial in the
bit length of the input) and analyze the effects of those constraints on both privacy
and accuracy.

Note that a strict bound on running time does not in itself prevent timing attacks, but
once we have such a bound, we can pad all executions to take the same amount of time.
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Also, while standard discrete models of computation (e.g. randomized Turing machines) are
defined in terms of countable rather than finite resources (e.g. the infinite tape), if we have a
strict bound on running time, then once we fix an upper bound on input length, they can
indeed be implemented on a truly finite computer (e.g. like a randomized Boolean circuit).

In many cases, the above goal can be achieved by appropriate discretizations and trunca-
tions applied to a standard, real-arithmetic differentially private algorithm. However, such
modifications can have a nontrivial price in accuracy or privacy, and thus we also call for a
rigorous analysis of these effects.

In this paper, we carry out a case study of achieving “differential privacy for finite
computers” for one of the first tasks studied in differential privacy, namely approximating
a histogram of a categorical dataset. Even this basic problem turns out to require some
nontrivial effort, particularly to maintain strict polynomial time, optimal accuracy and pure
differential privacy when the data universe is large.

We recall the definition of differential privacy.

» Definition 1.1 ([11]). Let M : X™ — R be a randomized algorithm. We say M is
(g, 6)-differentially private if for every pair of neighboring datasets D and D’ (datasets
differing on one row) and every subset S C R

PrM(D) € S] < € - Pr[M(D") € S|+ 4

We say an (e, §)-differentially private algorithm satisfies pure differential privacy when
0 = 0 and say it satisfies approximate differential privacy when § > 0.

In this paper, we study the problem of estimating the histogram of a dataset D € A™,
which is the vector ¢ = ¢(D) € N¥, where ¢, is the number of rows in D that have value
x. Histograms can be approximated while satisfying differential privacy using the Laplace
Mechanism, introduced in the original paper of Dwork, McSherry, Nissim and Smith [11].
Specifically, to obtain (g, 0)-differential privacy, we can add independent noise distributed
according to a Laplace distribution, specifically Lap(2/¢), to each component of ¢ and
output the resulting vector ¢. Here Lap(2/¢) is the continuous, real-valued random variable
with probability density function f(z) that is proportional to exp(—e - |z|/2). The Laplace
Mechanism also achieves very high accuracy in two respects:

Per-Query Error: For each bin z € X, with high probability we have |, — ¢;| < O(1/e).
Simultaneous Error: With high probability, we have max, [¢, — ¢;| < O(log(|X|)/e).

Note that both of the bounds are independent of the number n of rows in the dataset, and
so the fractional error vanishes linearly as n grows.

Simultaneous error is the more well-studied notion in the differential privacy literature,
but we consider per-query error to be an equally natural concept: if we think of the
approximate histogram ¢ as containing approximate answers to the |X| different counting
queries corresponding to the bins of X', then per-query error captures the error as experienced
by an analyst who may be only interested in one or a few of the bins of ¢. The advantage
of considering per-query error is that it can be significantly smaller than the simultaneous
error, as is the case in the Laplace Mechanism when the data universe X is very large. It is
known that both of the error bounds achieved by the Laplace Mechanism are optimal up to
constant factors; no (e, 0)-differentially private algorithm for histograms can achieve smaller
per-query error or simultaneous error [17, 2].

Unfortunately, the Laplace Mechanism uses real arithmetic and thus cannot be implemen-
ted on a finite computer. To avoid real arithmetic, we could use the Geometric Mechanism
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[14], which adds noise to each component of ¢ according to the 2-sided geometric distri-
bution, Geo(2/¢), which is supported on the integers and has probability mass function
f(2) x exp(—e¢ - |z|/2). However, this mechanism uses integers of unbounded size and thus
cannot be implemented on a finite computer. Indeed, while the algorithm can be implemented

€/2 and hence all

with a running time that is bounded in expectation (after reducing € so that e
the probabilities are rational numbers), truncating long executions or allowing an adversary
to observe the actual running time can lead to a violation of differential privacy. Thus, as
first described by Dwork, Kenthapadi, McSherry, Mironov and Naor [10], it is better to
restrict the output of the mechanism to a binary representation of fixed length in order to
avoid small tail probabilities. Similarly, we work with the Truncated Geometric Mechanism
of Ghosh, Roughgarden and Sundararajan [14], where we clamp each noisy count ¢, to the
interval [0,n]. We observe that the resulting probability distribution of é,, supported on
{0,1,...,n}, can be described explicitly in terms of ¢, € and n, and it can be sampled in
polynomial time using only integer arithmetic (after ensuring e/? is rational). Thus, we

obtain:

» Theorem 1.2 (Bounded Geometric Mechanism, informal statement of Thm. 5.1). For every
finite X, n and ¢ € (0,1], there is an (g,0)-differentially private algorithm M : X™ —
{0,1,...,n}* for histograms achieving:

Per-query error O(1/¢).

Simultaneous error O(log(|X])/e).

Strict running time O ((|X|/e) -log® n) + O(nlogn - log | X))

We note that while we only consider our particular definition of per-query accuracy,
namely that with high probability |¢; — ¢;| < O(1/¢), Ghosh et al. [14] proved that the
output of the Bounded Geometric Mechanism can be used (with post-processing) to get
optimal expected loss with respect to an extremely general class of loss functions and arbitrary
priors. The same result applies to each individual noisy count ¢, output by our mechanism,
since each bin is distributed according to the Bounded Geometric Mechanism (up to a
modification of € to ensure rational probabilities).

The Bounded Geometric Mechanism is not polynomial time for large data universes
X. Indeed, its running time (and output length) is linear in |X|, rather than polynomial
in the bit length of data elements, which is log |X|. To achieve truly polynomial time, we
can similarly discretize and truncate a variant of the Stability-Based Histogram that was
introduced by Korolova, Kenthapadi, Mishra and Ntoulas [19], and explicitly described by
Bun, Nissim and Stemmer [4]. This mechanism only adds Lap(2/¢) noise to the nonzero
components of ¢, and then retains only the noisy values ¢é, that are larger than a threshold
t = ©(log(1/d)/e). Thus, the algorithm only outputs a partial histogram, i.e. counts ¢, for a
subset of the bins x, with the rest of the counts being treated as zero. By replacing the use
of the Laplace Mechanism with the (rational) Bounded Geometric Mechanism as above, we
can implement this algorithm in strict polynomial time:

» Theorem 1.3 (Stability-Based Histogram, formal statement omitted from this version). For
every finite X, n, € € (0,1] and 6 € (0,1/n), there is an (e, 9)-differentially private algorithm
M:x" —={0,1,...,n}S% for histograms achieving:

Per-query error O(1/¢) on bins with true count at least O(log(1/d)/e).

Simultaneous error O(log(1/6)/¢).

Strict running time O((n/¢) -log(1/6)) + O(nlogn - log|X|).

Notice that the simultaneous error bound of O(log(1/0)/¢) is better than what is achieved
by the Laplace Mechanism when § > 1/|X|, and is known to be optimal up to constant



V. Balcer and S. Vadhan

factors in this range of parameters. The fact that this error bound is independent of the data
universe size |X'| makes it tempting to apply even for infinite data domains X. However, we
note that when X is infinite, it is impossible for the algorithm to have a strict bound on
running time (as it needs time to read arbitrarily long data elements) and thus is vulnerable
to timing attacks and is not implementable on a finite computer.

Note also that the per-query error bound only holds on bins with large enough true count
(namely, those larger than our threshold t); we will discuss this point further below.

A disadvantage of the Stability-based Histogram is that it sacrifices pure differential
privacy. It is natural to ask whether we can achieve polynomial running time while retaining
pure differential privacy. A step in this direction was made by Cormode, Procopiuc, Srivastava
and Tran [9]. They observe that for an appropriate threshold ¢t = ©(log(|X|)/¢), if we run
the Bounded Geometric Mechanism and only retain the noisy counts &, that are larger than
t, then the expected number of bins that remain is less than n + 1. Indeed, the expected
number of bins we retain whose true count is zero (“empty bins”) is less than 1. They
describe a method to directly sample the distribution of the empty bins that are retained,
without actually adding noise to all |X'| bins. This yields an algorithm whose output length
is polynomial in expectation. However, the output length is not strictly polynomial, as there
is a nonzero probability of outputting all |X’| bins. And it is not clear how to implement the
algorithm even in expected polynomial time, because even after making the probabilities
rational, they have denominators of bit length linear in |X’|.

To address these issues, we consider a slightly different algorithm. Instead of trying
to retain all noisy counts ¢, that are larger than some fixed threshold ¢, we retain the
n largest noisy counts (since there are at most n nonzero true counts). This results in

a mechanism whose output length is always polynomial, rather than only in expectation.

However, the probabilities still have denominators of bit length linear in |X|. Thus, we show
how to approximately sample from this distribution, to within an arbitrarily small statistical
distance d, at the price of a poly(log(1/d)) increase in running time. Naively, this would
result only in (¢, 0(d))-differential privacy. However, when § is significantly smaller than
1/|R|, where R is the range of the mechanism, we can convert an (g, d)-differentially private
mechanism to an (e, 0)-differentially private mechanism by simply outputting a uniformly
random element of R with small probability. (A similar idea for the case that |R| = 2
has been used in [18, 5].) Since our range is of at most exponential size (indeed at most

polynomial in bit length), the cost in our runtime for taking 6 < 1/|R| is at most polynomial.

With these ideas we obtain:

» Theorem 1.4 (Pure DP Histogram in Polynomial Time, informal statement of Thm. 6.6).

For every finite X, n and € € (0,1], there is an (g,0)-differentially private algorithm
M: X" —{0,1,...,n}<% for histograms achieving:

Per-query error O(1/e) on bins with true count at least O(log(|X|)/e).

Simultaneous error O(log(|X])/e).

Strict running time O(n? - log® |X| + (n/¢) - log® | X|).

It is an open problem as to whether or not we can improve the nearly quadratic dependence
in running time on n to nearly linear while maintaining the sparsity, privacy and accuracy
guarantees achieved in Theorem 1.4.

Both Theorems 1.3 and 1.4 only retain per-query error O(1/¢) on bins with a large enough
true count. In the full version of the paper [1], we also prove a lower bound showing that
this limitation is inherent in any algorithm that outputs a sparse histogram (as both of these
algorithms do).
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» Theorem 1.5 (Lower Bound on Per-Query Error for Sparse Histograms). Suppose that there
is an (g,8)-differentially private algorithm M : X™ — {0,1,...,n}* for histograms that
always outputs histograms with at most n' nonempty bins and has per-query error at most E
on all bins. Then

min{log |X|,1og(1/6)}
R

provided that € > 0, €2 > 6 > 0 and |X| > (n')?.

This lower bound is similar in spirit to a lower bound of [2], which shows that no (g, 0)-
differentially private PAC learner for “point functions” (functions that are 1 on exactly one
element of the domain) can produce sparse functions as hypotheses.

To bypass this lower bound, we can consider algorithms that produce succinct descriptions
of dense histograms. That is, the algorithm can output a polynomial-length description of a
function ¢ : X — [0,n] that can be evaluated in polynomial time, even though X may be of
exponential size.

We show that this relaxation allows us to regain per-query error O(1/¢).

» Theorem 1.6 (Polynomial-Time DP Histograms with Optimal Per-Query Accuracy, informal
statement of Thm. 7.2). For every finite X, n and ¢ € (0, 1], there is an (g,0)-differentially
private algorithm M : X™ — H for histograms (where H is an appropriate class of succinct
descriptions of histograms) achieving:

Per-query error O(1/¢).

Simultaneous error O(log(|X])/e).

Strict running time O(n) - O((1/€%) - (log® n + log” | X))

Evaluation time O(n) - O((1/¢) - (logn + log | X])).

The algorithm is essentially an (n 4 1)-wise independent instantiation of the Bounded
Geometric Mechanism. Specifically, we release a function h : X — {0,1}" selected from
an (n + 1)-wise independent family of hash functions, and for each = € X, we view h(z)
as coin tosses specifying a sample from the Bounded Geometric Distribution. That is,
we let S : {0,1}" — [0,n] be an efficient sampling algorithm for the Bounded Geometric
Distribution, and then ¢, = S(h(x)) is our noisy count for . The hash function is chosen
randomly from the family conditioned on values ¢, for the nonempty bins x, which we obtain
by running the actual Bounded Geometric Mechanism on those bins. The (n + 1)-wise
independence ensures that the behavior on any two neighboring datasets (which together
involve at most n + 1 distinct elements of X') are indistinguishable in the same way as in
the ordinary Bounded Geometric Mechanism. The per-query accuracy comes from the fact
that the marginal distributions of each of the noisy counts are the same as in the Bounded
Geometric Mechanism. (Actually, we incur a small approximation error in matching the
domain of the sampling procedure to the range of a family of hash functions.)

As far as we know, the only other use of limited independence in constructing differentially
private algorithms is a use of pairwise independence by [2] in differentially private PAC
learning algorithms for the class of point functions. Although that problem is related to
the one we consider (releasing a histogram amounts to doing “query release” for the class
of point functions, as discussed below), the design and analysis of our algorithm appears
quite different. (In particular, our analysis seems to rely on (n + 1)-wise independence in an
essential way.)
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Another potential interest in our technique is as another method for bypassing limitations
of synthetic data for query release. Here, we have a large family of predicates Q = {q :
X — {0,1}}, and are interested in differentially private algorithms that, given a dataset
D = (z1,...,z,) € X™, output a “summary” M(D) that allows one to approximate the
answers to all of the counting queries ¢(D) =, q(z;) associated with predicates ¢ € Q. For
example, if Q is the family of point functions consisting of all predicates that evaluate to 1
on exactly one point in the data universe X', then this query release problem amounts to
approximating the histogram of D. The fundamental result of Blum, Ligett, and Roth [3]
and successors show that this is possible even for families @ and data universes X’ that are
of size exponential in n. Moreover, the summaries produced by these algorithms has the
form of a synthetic dataset — a dataset D € X" such that for every query g € Q, we have
¢(D) ~ q(D). Unfortunately, it was shown in [24] that even for very simple families Q of
queries, such correlations between pairs of binary attributes, constructing such a differentially
private synthetic dataset requires time exponential in the bit length log |X| of data universe
elements. Thus, it is important to find other ways of representing approximate answers to
natural families Q of counting queries, which can bypass the inherent limitations of synthetic
data, and progress along these lines was made in a variety of works [15, 7, 16, 23, 6, 12]. Our
algorithm, and its use of (n+ 1)-wise independence, can be seen as yet another representation
that bypasses a limitation of synthetic data (albeit a statistical rather than computational
one). Indeed, a sparse histogram is simply a synthetic dataset that approximates answers to
all point functions, and by Theorem 1.5, our algorithm achieves provably better per-query
accuracy than is possible with synthetic datasets. This raises the question of whether similar
ideas can also be useful in bypassing the computational limitations of synthetic data for
more complex families of counting queries.

2 Preliminaries

Throughout this paper, let N be the set {0,1,...}, Ny be the set {1,2,...} and N~! be the
set {1/n:n € N;}. For n € Ny, let [n] denote the set {0,...,n} and [n]; denote the set
{1,...,n}. (Notice that |[n]| = n+ 1 while |[n]+| = n.) Given a set A and finite set B, we
define A” to be the set of length | B| vectors over A indexed by the elements of B.

2.1 Histograms

For z € X, the point function ¢, : X" — N is defined to count the number of occurrences
of z in a given dataset, i.e. ¢,(D) = [{i € [n]+ : D; = z}|. In this paper we focus on
algorithms for privately releasing approximations to the values of all point functions, also
known as a histogram. A histogram is a collection of bins, one for each element z in the
data universe, with the 2*" bin consisting of its label = and a count c, € N.

2.1.1 Representations

The input to our algorithms is always a dataset (i.e. an element D € X™) and the outputs
represent approximate histograms. We consider the following histogram representations as
our algorithms’ outputs:

A vector in N*., We use {é,},cx to denote a histogram where ¢, € N is the approximate

count for the element x.

A partial vector h € (X x N)* such that each element x € X appears at most once in h

with each pair (x,¢;) € X x N interpreted as element x having approximate count ¢,.
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Elements x not listed in the partial vector are assumed to have count ¢, = 0. Implicitly,
an algorithm can return a partial vector by releasing bins for a subset of X.!

A data structure, encoded as a string, which defines a function h : X — N where h(z),
denoted h,, is the approximate count for z € X and h, is efficiently computable given this
data structure (e.g. time polynomial in the length of the data structure). In Section 7, this
data structure consists of the coeflicients of a polynomial, along with some parameters.

Each representation is able to express any histogram over X'. The difference between
them is the memory used and the efficiency of computing a count. For example, computing
the approximate count for x € X, when using the data structure representation is bounded
by the time it takes to compute the associated function. But when using partial vectors, one
only needs to iterate through the vector to determine the approximate count.

We define the following class of histograms. Let H,, n/ (X) C N? be the set of all histograms
over X with integer counts in [0,n] (or N when n = 00) and at most n’ of them nonzero. By
using partial vectors each element of H,, ,,»(X) can be stored in O(n - (logn + log|X])) bits,
which is shorter than the vector representation when n’ = o(|X|/ log |X]).

2.1.2 Accuracy

In order to preserve privacy, our algorithms return histograms with noise added to the counts.
Therefore, it is crucial to understand their accuracy guarantees. So given a dataset D € X™
we compare the noisy count ¢, = M(D), of x € X (the count released by algorithm M)
to its true count, ¢, (D). We focus on the following two metrics:

» Definition 2.1. A histogram algorithm M : X" — N¥ has (a, 3)-per-query accuracy
if

VDeX™ Yz eX PrM(D), —c,(D)|<a]>1-7

» Definition 2.2. A histogram algorithm M : X™ — N* has (a, #)-simultaneous accur-
acy if

VD e X" PrVze X |[M(D)y—c(D)|<a]>1-p

Respectively, these metrics capture the maximum error for any one bin and the maximum
error simultaneously over all bins. However, we may not always be able to achieve as good
per-query accuracy as we want. So we will also use the following relaxation which bounds
the error only on bins with large enough true count.

» Definition 2.3. A histogram algorithm M : X" — N¥ has (a, 3)-per-query accuracy
on counts larger than t if

VD e X" Vx € X st. ¢p(D) >t Pr[M(D)y —c(D)|<a]>1-p

2.2 Probability Terminology

» Definition 2.4. Let Z be an integer-valued random variable. The probability mass
function of Z, denoted fz, is the function fz(z) = Pr[Z = z] for all z € Z. The cumulative
distribution function of Z, denoted Fz, is the function Fz(z) = Pr[Z < z] for all z € Z.
The support of Z, denoted supp(Z), is the set of elements for which f(z) # 0.

1 Note that the order in which bins are released can result in a breach of privacy (e.g. releasing the bins
of elements in the dataset before the bins of elements not in the dataset). As a result, our algorithms
always sort the released bins according to a predefined ordering based only on X.
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» Definition 2.5. Let Y and Z be random variables taking values in discrete range R. The
total variation distance between Y and Z is defined as

1
A(Y, Z) :%;ém[YGA] —Pr[Z € A]| = i-gJPr[Z:a} — Pr[Y = 4|
2.2.1 Sampling

Because we are interested in the computational efficiency of our algorithms we need to
consider the efficiency of sampling from various distributions.

A standard method for sampling a random variable is via inverse transform sampling.

Let Unif(A) denote the uniform distribution over the set A.

» Lemma 2.6. Let U ~ Unif((0,1]). Then for any integer-valued random variable Z we
have F;"(U) ~ Z where F;"(u) is defined as min{z € supp(Z) : Fz(z) > u}.

If Z, the random variable we wish to sample, has finite support we can compute the

inverse cumulative distribution by performing binary search on supp(Z) to find the minimum.

This method removes the need to compute the inverse function of the cumulative distribution
function. If in addition, the cumulative distribution function of Z can be represented by

rational numbers, then we only need to sample from a discrete distribution instead of (0, 1].

» Lemma 2.7. Let Z be an integer-valued random wvariable with finite support and has
all probabilities of its cumulative distribution function expressible as rational numbers with
denominator d. Then F,;'(U) ~ Z where U ~ (1/d) - Unif([d] ) and F;'(u) is defined as
min{z € supp(Z) : Fz(z) > u}.

2.2.2 Order Statistics

» Definition 2.8. Let Z,...,Z, be integer-valued random variables. The ¢-th order
statistic of Z;,...,Z, denoted Z;) is the i-th smallest value among 71, ..., Z,.

» Lemma 2.9. Let Zy,...,7Z; be i.i.d. integer-valued random variables with cumulative

distribution function F'. Then Fz, (2) = (F(z))e and

1 if 2> v
Fz|20sm=visr Ziy=ve(2) = Fzy1 20120041 (2) = {(F(Z)/F(viﬂ))i otherwise
foralll <i<?l and vip1 < vipe < ... < v all in the support of Z;.
From this lemma, we can iteratively sample random variables distributed identically to
Ztys Z(t—1),- - - L) without having to sample all £ of the original random variables.

2.3 Model of Computation

We analyze the running time of our algorithms with respect to the w-bit word RAM
model taking w logarithmic in our input length, namely w = O(logn + loglog | X|). In this
model, memory accesses and basic operations (arithmetic, comparisons and logical) on w-bit

words are constant time. In addition, we assume the data universe X = [m] for some m € N.
Some parameters to our algorithms are rational. We represent rationals by pairs of integers.

Some of our algorithms will use numbers that span many words. And one of our
algorithms operates on finite fields Fy where d = 223 for some ¢ € N. We will use the fact
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that Fy ~ Fo[z] /(223 + 23" + 1) [20] to provide an explicit representation of Fy. For ease
of notation, we make the following assumptions on running time: (i) multiplying two z-bit
numbers is O(x) [25], (i) multiplying two elements of Fq is O(logd) [22], (iii) multiplying
two degree ¢ polynomials over Fq is O(q - logd) [22], (iv) evaluating a degree ¢ polynomial
over Fy is O(q) - O(log d) [25] and (v) polynomial interpolation of ¢ distinct points over Fy is
O(q - log? d) [25].

Our algorithms require randomness so we assume that they have access to an oracle that
when given a number d € N, returns a uniformly random integer between 1 and d inclusive.

Finally, for representing histograms as partial vectors, we will assume internally to the
algorithms that they are stored as red-black trees. This will allow us to insert and search for
elements in O(logn - log |X|) time [8]. However, when releasing a partial vector we return a
list of bins using an in-order traversal of tree as the tree’s structure could violate privacy.

3 A General Framework for Implementing Differential Privacy

In this section, we outline a basic framework for implementing a pure differentially private
algorithm M on a finite computer with only a small loss in privacy and possibly a small loss
in accuracy. It can be broken down into the following steps:

1. Start by discretizing the input and output of M so that they can only take on a finite
number of values (e.g. rounding a real-valued number to the nearest integer in some finite
set). Depending on how utility is measured, the loss in accuracy by discretizing may be
acceptable.

2. Then find an algorithm M’ that runs on a finite computer and approximates the output
distribution of the discretized version of M to within “small” statistical distance. Notice
that M’ is only guaranteed to satisfy approximate differential privacy and may not satisfy
pure differentially privacy. (This step may requires a non-trivial amount of work. For
one example, see Theorem 6.5.)

3. Finally, provided that the statistical distance of the previous step is small enough, by
mixing M’ with uniformly random output (from the discretized and finite output space),
the resulting algorithm satisfies pure differentially privacy.

We will use this framework several times in designing our algorithms. Here we start
by formalizing Step 3. That is, for algorithms whose output distribution is close in total
variation distance to that of a pure differentially private algorithm, we construct an algorithm
satisfying pure differentially privacy by mixing it with random output inspired by similar
techniques in [18, 5].

Algorithm 1 M}, 5 (D) for D € X" where R is discrete and finite, an algorithm
M X" — R, a distribution D over R and v € N~!

1. With probability 1 — v release M'(D).
2. Otherwise release an element sampled from the distribution D.

» Lemma 3.1. Suppose that there is an (g,0)-differentially private algorithm M : X™ — R
such that A (M(D), M'(D)) < § for all input datasets D € X™ with parameter § € [0,1).
Then the algorithm M3, p ., + X™ — R has the following properties:

(e, 0)-differential privacy whenever

sl
ge -anin{Pr [Z:r]} (1)
ee+1 1—v rerR \Z~D
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Running time O(log(1/v)) + Time(M’) + Time(D) where Time(D) is the time to sample
from the distribution D.

By taking v and ¢ small enough and satisfying (1), the algorithm M p ., satisfies pure
differential privacy and has nearly the same utility as M (due to having a statistical distance
at most v + 0 from M) while allowing for a possibly more efficient implementation since we
only need to approximately sample from the output distribution of M.

To maximize the minimum in (1), one can take D ~ Unif(R). However, it may the case
that sampling this distribution exactly is inefficient and we are willing to trade needing a
smaller J to maintain pure differentially privacy for a faster sampling algorithm.

4 Counting Queries

Before discussing algorithms for privately releasing histograms, we show how to privately
answer a single counting query using only integers of bounded length. While there exist
known algorithms for this problem [10, 21|, our algorithms have additional properties that
will be used to construct histogram algorithms in later sections. In general, counting queries
have as input the dataset D € X™ and the bin x to query. However, we will take the true
count, ¢, (D), as the input to our counting query algorithms. When constructing histogram
algorithms in later sections, this will allow us to improve the running time as we will only
need to iterate through the dataset once to determine all true counts prior to answering any
counting query. In addition, we would like to keep track of the randomness used by our
algorithms so we write that as an explicit second input. As a result, we have the following
definitions:

» Definition 4.1. Let n,d € N.. We say an algorithm M : [n] x [d]+ — [n] is (&, )-
differentially private for counting queries if the algorithm M : {0,1}" — [n] defined
as M(D) = M(X_"_, D;,U) where U ~ Unif([d]) is (¢, §)-differentially private.

» Definition 4.2. Let n,d € N;. We say M : [n] x [d]+ — [n] has (a, B)-accuracy if for
all ¢ € [n], Pr[[M(c,U) — ¢| <a] > 1— 3 where U ~ Unif([d]+).

» Definition 4.3. Let n,d € Ny and M : [n] x [d]; — [n] be deterministic. Let the
scaled cumulative distribution function of M at 0 denoted F4 be the function
Fq i [n] = [d]y defined as F(2) = d - Faq(0,0)(2) where U ~ Unif([d] ) for all z € [n].

4.1 The Geometric Mechanism

As shown by Dwork, McSherry, Nissim and Smith [11], we can privately release a counting
query by adding appropriately scaled Laplace noise to the count. Because our algorithm’s
outputs are counts, we do not need to use continuous noise and instead use a discrete
analogue, as in [10, 14].

We say an integer-valued random variable Z follows a two-sided geometric distri-
bution with scale parameter s centered at ¢ € Z (denoted Z ~ ¢+ Geo(s)) if its
probability mass function fz(z) is proportional to e~1*=¢l/. It can be verified that fz and
its cumulative distribution function Fz are

s 1) e lem2)/s if 2 <e
(L) L eleels Fy(z) = ¢/ *1 N
z) = e z) =
fz(2) (61/5 1 2(2) 1— A - e (7975 otherwise

for all z € Z. When c is not specified, it is assumed to be 0.
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Now, we state the counting query algorithm using discrete noise, formally studied in [14].
We will not keep track of the randomness used by this algorithm, but to match our syntax
for counting query algorithms we use a dummy parameter.

Algorithm 2 GeometricMechanism, .(c, 1) for ¢ € [n] where n € N and ¢ > 0

1. Return ¢ set to ¢ + Geo(2/¢) clamped to the interval [0,n]. i.e.

0 ifZ<0
c=qn ifZ>n where Z = ¢+ Geo(2/¢).

Z otherwise

» Theorem 4.4. Let n € Ni and € > 0. Then GeometricMechanism, . : [n] X [1]+ — [n]
has the following properties:
GeometricMechanism, . s (¢/2,0)-differentially private for counting queries [14].
GeometricMechanism, . has (a, 8)-accuracy for 8 € (0,1) and a = [(2/¢) - In(1/5)].

As presented above, this algorithm needs to store integers of unbounded size since
Geo(2/¢) is unbounded in magnitude. As noted in [14], by restricting the generated noise
to a fixed range we can avoid this problem. However, even when the generated noise is
restricted to a fixed range, generating this noise via inverse transform sampling may require
infinite precision. By appropriately choosing e, the probabilities of this noise’s cumulative
distribution function can be represented with finite precision, and therefore generating this
noise via inverse transform sampling only requires finite precision.

» Theorem 4.5. Letn € Ny, c € N"! and € = 2-In (1 + 2718/ € (4/9 - ¢,e]. Then
there is a deterministic algorithm GeoSample,, _ : [n] x [d] — [n] where logd = O(n-log(1/¢))
with the following properties:
GeoSample,, .(c,U) ~ GeometricMechanism, z(c,1) where U ~ Unif([d]) for all c € [n].
Thus, GeoSa;rnplen’6 is (€/2,0)-differentially private for counting queries and has (a, 3)-
accuracy for B € (0,1) and a = [(2/€) - In(1/5)].
GeoSample, . has running time O (n -log(1/¢)).
For all z € [n], Feosanp1e, _(2) can be computed in time O(n -log(1/e)).

4.2 Approximating Geometric Noise to Release Counting Queries
Faster

Notice that GeoSample, . has running time at least linear in n. This is due to evaluating a
(scaled) cumulative distribution function operating on integers with bit length €(n). We can
improve the running time by approximately sampling from a two-sided geometric distribution.
Small tail probabilities are dropped to reduce the number of required bits to represent
probabilities to logarithmic in n. And then to recover pure differential privacy, following
Lemma 3.1, we mix with uniformly random output.

» Theorem 4.6. Let n € N+, 6,7y € N~ and & = 2 - In(1 + 27 198/9)1) ¢ (4/9 - ¢,¢].

Then there is a deterministic algorithm FastSample,, . . : [n] x [d]+ — [n] where logd =
O(1/e) - log(n/v) with the following properties:
FastSample, _ . is (¢/2,0)-differentially private for counting queries.

For every B > v, FastSample,, . . has (a,3)-accuracy for a = [(2/€) - In(1/(8 —7))].
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FastSample, . has running time O((1/¢) -log®n + (1/¢) - logn - log(1/7)).
For all z € [n], Frastsanpre. . _(2) can be computed in time O((1/<) -log(n/7)).

n,e,y

5 Generalization of the Laplace Mechanism

As shown by Dwork, McSherry, Nissim and Smith [11], we can privately release a histogram
by adding independent and appropriately scaled Laplace noise to each bin. Below we state a
generalization guaranteeing privacy provided the counting query algorithm used is private
and the released counts are independent.

Algorithm 3 BasicHistogram,, 4(D) for D € X", M : [n] x [d]; — [n] and A C X

1. Compute ¢, (D) for all z € A.

2. For each z € A, do the following;:
a. Sample u, uniformly at random from [d].
b. Let ¢, = M(cp(D), uz).
c. Release (z,¢,).

The output of this algorithm is a collection of bins (z, ¢,) representing a partial vector.

» Theorem 5.1. Let A C X and M : [n] x [d]+ — [n] be (¢/2,0)-differentially private for
counting queries and have (a, 8)-accuracy. Then BasicHistogram,, 4 : X" — N4 has the
following properties:

BasicHistogram,, 4 is (¢,0)-differentially private.

For all D € X™, we have

Vr € A Pr[|(BasicHistogram, 4(D)), —c:(D)| <a]>1- 8

In particular, BasicHistogram,, y(D) has (a,f)-per-query accuracy.
For oall D € X™, we have

Pr[Vx € A [(BasicHistogramy 4(D))s —c:(D)| <a] >1—|A]-B

In particular, BasicHistogram,, y has (a,|X|- B)-simultaneous accuracy.
Running time O(nlogn -log |X| + |A| - (logn - log|X| + logd + Time(M))).

It is important to note that the privacy guarantee only holds when A is fixed and does not
depend on the dataset D. The choice of parameterizing by A will be convenient in defining
more complex histogram algorithms later.

M Running Time (a, B)-Per-Query  (a, 8)-Simul.
GeometricMechanism n/a g In %W g In %W
GeoSample O(|X| - n -log(1/e)) (2% In %“ (2% In ‘%‘—‘
FastSample o] ((|X\/e) - log? n) +O(n) - log|X| (2—95 In %—‘ B’—Eln %]

Figure 1 The running time and errors of BasicHistogram,, , for the counting query algorithms
of Section 4. Values shown are for a (g, 0)-differentially private release. For FastSample, we take
v = B/(2|X]) and assume § > 1/n°®),
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By taking M = GeometricMechanism, BasicHistogram,, y is identically distributed to
the Truncated Geometric Mechanism of Ghosh, Roughgarden and Sundararajan [14] which
achieves per-query and simultaneous accuracy with error up to constant factors matching
known lower bounds for releasing a private histogram [17, 2].

6 Improving the Running Time

In this section, we present an algorithm whose running time depends only poly-logarithmically
on the universe size while maintaining pure differential privacy based on the observation that
most counts are 0 when n < |X|; this is the same observation made by Cormode, Procopiuc,
Srivastava and Tran [9] to release private histograms that are sparse in expectation.

6.1 Sparse Histograms

We start by reducing the output length of BasicHistogram,, , to release only the bins with
the heaviest (or largest) counts (interpreted as a partial vector).

Algorithm 4 KeepHeavy , (D) for D € X" where M : [n] x [d]4 — [n]

1. Let {(v,¢;)}zex = BasicHistogram, y(D).
2. Let z1,...,2,41 be the elements of X with the largest counts in sorted order, i.e.

oy > gy > >0 > max Ca

41
! 2EX\{Z 1,0 g1 }

3. Release h = {(x,&;) :x € X and &, > ¢y, } € Hnn(X).

Observe that the output length has been improved to O(n- (log |X|+logn)) bits compared
to the O(|X| - (log | X| +logn)) bits needed to represent the outputs of BasicHistogram,, y.

» Theorem 6.1. Let M : [n] x [d]; — [n] be (¢/2,0)-differentially private for counting quer-
ies such that BasicHistogram,, , has (a1, B)-per-query accuracy and (az, B)-simultaneous
accuracy with ay < ap. Then KeepHeavy ,, : X — Hy n(X) has the following properties:

(e, 0)-differential privacy.
(a1,208)-per-query accuracy on counts larger than 2as.

(2az, B)-simultaneous accuracy.

Unlike BasicHistogram,, y, by taking M = GeoSample, the algorithm KeepHeavy ,,
achieves (O(log(1/5)/e), B)-per-query accuracy only on counts larger than O(log(|X|/5)/e).
This loss is necessary for any algorithm that outputs a sparse histogram by Theorem 1.5.

However, as described KeepHeavy still requires adding noise to the count of every bin.
The following algorithm KH' : X" — H,, ,,(X) simulates KeepHeavy by generating a candidate
set of heavy bins from which only the heaviest are released. This candidate set is constructed
from all bins with nonzero true count and a sample representing the bins with a true count
of 0 that have the heaviest noisy counts.
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Algorithm 5 KH,(D) for D € X™ where M : [n] x [d]+ — [n] and |X| > 2n + 12

ol o\

[&,]

Let A={z € X :¢cy(D) >0} and m = |X\ 4]
Let {(z,¢:)}zea = BasicHistogram,, 4(D).

Pick a uniformly random sequence (qo, ..., ¢n) of distinct elements from X \ A.

Sample (Gqy, . .., Eq, ) from the joint distribution of the order statistics (Z(;), - s Z(m—n))
where Z1, ..., Zy are i.i.d. M(0,U) random variables with U ~ Unif([d]).

Sort the elements of AU {qo,...,qn} as T1,...,T|4|4ns1 Such that &, > ... > ¢, -

Release h = {(z,¢,) 1w € {z1,..., 2.} and & > &, } € Hnn(X).3

» Proposition 6.2. KH), (D) is identically distributed to KeepHeavy ,,(D).

In order to sample from the order statistics used by KH),, we construct an algorithm using

inverse transform sampling similar to the counting query algorithms of Section 4.

» Proposition 6.3. Let n,d € Ny and F : [n] — [d]+ such that F is non-decreasing and
F(n)=d. Let m € Ny such that m >n+ 1. Let Zy,...,Zy,, be i.i.d. random variables over
[n] with cumulative distribution function F(z)/d for all z € [n]. Then the following algorithm

OrdSample.(m) is identically distributed to the top n+1 order statistics (Z(my; - - -, Z(m-n))-

Also, OrdSample i.(m) has running time O(nlogn) - (O(m -log d) + Time(F)).

Algorithm 6 OrdSample(m) for m € Ny such that m > n + 1 where F': [n] — [d]+

Let v_1 = n.

For i € [n], do the following:

a. Sample u; uniformly at random from [F(v)™ 4.

b. Using binary search find the smallest 2 € [v;_1] such that F(2)™~% > u;. Call it v;.
Return (vo, ... vy).

Now from KH' we replace sampling from the joint distribution of the order statistics with

the explicit sampling algorithm OrdSample to get the following algorithm.

2 |X| > 2n + 1 ensures that |X \ A| > n -+ 1. One can use BasicHistogram, (D, M) when |X| < 2n.
3 If instead M had real-valued range this last step is equivalent to releasing the n heaviest bins. However,

in the discrete case, where ties can occur, from the set AU {z1,...,2zn} we cannot determine all bins
with a count tied for the n-th heaviest as there may be many other noisy counts tied with ¢, . As a
result, we only output the bins with a strictly heavier count than ¢z, _,.
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Algorithm 7 KH}, 5 (D) for D € X", M : [n] x [d]y — [n], /1 € N™" and |X| > 4n

1. Construct a sequence @ of [(4n + 2)/f1] elements sampled uniformly at random from X'.
If Q has less than 2n + 1 distinct elements release an empty histogram and stop.*

Let A={z € X :¢z(D) >0} and m = |X \ A].

Let {(z,¢:)}zea = BasicHistogram,, 4(D).

Let (qo, .- .,qn) be the first n + 1 distinct elements of @ not in A.

Let (¢, - -,Cq,) = OrdSample, (m).

Sort the elements of AU {qo,...,qn} as T1,...,2|a|4n41 such that é;, > ... > ¢
Release h = {(z,¢;) 1@ € {@1,...,xp} and ¢, > Gy, } € Hpn(X).

TIAl4n+1"

NoaokrweDbd

» Theorem 6.4. Let deterministic M : [n] x [d]+ — [n] be (£/2,0)-differentially private for
counting queries such that BasicHistogram, (D, M) has (a1, B2)-per-query accuracy and
(az, B2)-simultaneous accuracy with a1 < as. Then KH’/’\A’B1 t X" = Hp o (X) has the following
properties:

(e, 0)-differential privacy.

(a1, B1 + 20B2)-per-query accuracy on counts larger than 2as.

(2a9, B1 + B2)-simultaneous accuracy.

This algorithm only has an output of length O(n - (log|X|+ logn)). However, its running
time depends polynomially on |X| since sampling the m'" order statistic, Cq,, Using OrdSample
takes time at least linear in m > |X| — n. Indeed, this is necessary since the distribution of
the order statistic Z(,,) has probabilities that are exponentially small in m.

6.2 An Efficient Approximation

To remedy the inefficiency of KH” we consider an efficient algorithm that approximates the
output distribution of KH”.

» Theorem 6.5. Let 31,6 € N~ and M : [n]x[d]+ — [n] be (¢/2,0)-differentially private for
counting queries. Then there evists an algorithm SparseHistogram, s s: X" — Hpn(X)
with the following properties:

A(KH, 5, (D), SparseHistogram,, 5 5(D)) <6 for all D € X™.

SparseHistogram,, 5 s is (€, (e + 1) - §)-differentially private.

Moreover, for 1 > l/logo(l) n the running time of SparseHistogram, 4 5 is

O(n) - (log |X| - O(log d + log(1/8) +log | X|)) + O(nlogn) - (Time(M) + Time(Fq))

Note that this algorithm only achieves (¢, O(4))-differential privacy. By reducing ¢, the
algorithm better approximates KH”| at the cost of increasing running time (polynomial in the
bit length of 4). Notice that KH” passes an argument to OrdSample that results in OrdSample
exponentiating an integer, which represents the numerator of a fraction a/b = F(z)/F(v),
to a power i > |X| — 2n. To improve the efficiency of OrdSample, we want to ensure that

4 Along with step 4, this process allows us to generate n + 1 distinct elements of X' \ A with running
time that has a nearly linear dependence on n (whenever 81 > 1/1log®® n) at the cost of an additive
increase in failure probability. However, if we are willing to accept a nearly quadratic dependence on n,
we can always sample the distinct elements instead of just with high probability.
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the numbers it uses do not exceed some maximum s with bit length polynomial in n and
log | X'|. We achieve this by approximating s - (a/b)* using repeated squaring and truncating
each intermediate result to keep its bit length manageable. This process results in sampling
the order statistics to within a statistical distance of §.

Now, we convert SparseHistogram,, ; s to a pure differentially private algorithm by
mixing it with random output following Lemma 3.1.

Algorithm 8 PureSparseHistogram,, . 5, 5,(D) for D € X™ where M : [n] x [d]+ — [n],
g,B1,B2 € Nt and |X| > 4n

1. With probability 1 — (3 release SparseHistogram,, 5 s(D) with

5 1 "
s=5 5 (57m)

2. Otherwise
a. Draw (z1,...x,) uniformly at random from X'.
b. Let @ be the set of distinct elements from (z1,...,2y,).
c. For each ¢ € @), sample &, uniformly at random from [n].
d. Release h = {(q,¢;) : ¢ € Q and é; > 0} € Hy, »(X).

» Theorem 6.6. Let ¢, /31,32 € N1 and deterministic M : [n] x [d]+ — [n] be (£/2,0)-
differentially private for counting queries such that BasicHistogram, , has (a1, B3)-per-
query accuracy and (az, f3)-simultaneous accuracy with a; < as.

Then PureSparseHistogramy, . 5 s, : X" — Hpn(X) has the following properties:

(e, 0)-differential privacy.

(a1, B1 + 282 + 233)-per-query accuracy on counts larger than 2as.

(2ag, B1 + 202 + B3)-simultaneous accuracy.

For 81 > 1/10g0(1) n and B2 > 1/0(2"), the running time is

O(n? -log? | X| +n - log(d/e) - log | X|) + O(nlogn) - (Time(M) + Time(Fr))

M Running Time (a, B)-Per-Query on c(D) >t (a, )-Simultaneous
GeoSample O (n2 -log? |X|) [2% In %—| 2. {2% In %] 2. (2—95 In %]
FastSample 10} (n2 - log? |X|)) {2% In %—I 2. {2% In %-I 2. (2% In %—I

Figure 2 The running time and errors of SparseHistogra.mM@B/G,B/G(D) for the counting query
algorithms of Section 4. For per-query accuracy, the first value is the error a and the second value is
the threshold ¢. Values shown are for a (g, 0)-differentially private release. We assume € > 1/0(n)
and 8 > 1/10g®® n. For FastSample, we take v = 3/(4|X]).

7 Better Per-Query Accuracy via Compact, Non-Sparse
Representations

In this section, we present a histogram algorithm whose running time is poly-logarithmic in
|X], but, unlike Algorithm &, is able to achieve (O(log(1/8)/¢), 8)-per query accuracy. It
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will output a histogram from a properly chosen family of succinctly representable histograms.
This family necessarily contains histograms that have many nonzero counts to avoid the
lower bound of Theorem 1.5.

7.1 The Family of Histograms

We start by defining this family of histograms.

» Lemma 7.1. Let Mg : [do]+ — [n], do = 223" for some £ € N, dy > |X] and U ~
Unif([do]+). There exists a multiset of histograms G, (X) satisfying:
Let g ~ Unif(Gm,(X)). For all x € X, the marginal distribution g, is distributed
according to Mo(U).
Let g ~ Unif(Gay, (X)). For all B C X such that |B| <n+1 and for all ¢ € [n]?

Pr[Vz € B g, = co] = [ [ Prlgs = ca]
TzEB

For all g € G, (X), the histogram g can be represented by a string of length O(n -log dy)
and given this representation for all x € X the count g, can be evaluated in time

O(n) - O(logdp) + Time(My).

For all A C X such that |A| < n and ¢ € [n]* sampling a histogram h uniformly at random
from {g € G, (X) :Vz € A g, = ¢} can be done in time O(n) - Time(S) 4+ O(n -log? do)
where Time(S) is the maximum time over v € [n] to sample from the distribution
Sy ~ Unif({ug € [do]+ : Mo(uo) = v}).

Proof. (Construction) Let G/, (X) be the set of all degree at most n polynomials over the
finite field Fy,. Now, G, (X) is a (n + 1)-wise independent hash family mapping Fg, to Fg,.
And given any function p, € Gy, (&) we construct a histogram g € G, (X') by using py(z)
as the randomness for M. More specifically, let T': Fgq, — [do]+ be a bijection and for all
x € X, define g, = Mo(T(py(z))). <

7.2 The Algorithm

We can think of taking dy = d and Mg(u) = M(0,u) for all u € [d]4, but for technical
reasons (e.g. requiring dy > |X]), we will allow My(u) to approximate M(0,u). In this
way, a histogram picked uniformly at random from the family Gy, (X) will have the desired
marginal distributions for all empty bins.

Thus, for our algorithm to have the correct marginal distributions over all bins we first
compute the noisy counts for the nonzero bins and then randomly pick a histogram from our
family that is consistent with these computed counts.

Algorithm 9 CompactHistogram,, \ (D) for D € A" where M : [n] x [d]; — [n] and
Mo : [do]+ — [n] such that dy = 223" for some ¢ € N and dy > |X]

1. Let A={z € X:c,(D)>0}.
2. Let {(z,¢,)}zea = BasicHistogram,, (D).
3. Release h drawn uniformly at random from {g € G, (X) :Vz € A gy =Gy}
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» Theorem 7.2. Let deterministic M : [n] x [d]; — [n] be (£1/2,0)-differentially private
for counting queries and have (a, §)-accuracy. Let deterministic Mg : [do]+ — [n] such that
do = 2%% for some £ € N and dy > |X|. Assume Pr[Mo(Up) < a] > 1— 8 and for all ¢ € [n)

e 2 - PriMo(Up) = ] < Pr[M(0,U) = ¢] < e - Pr[M(Uy) = (]

where U ~ Unif([d]}) and Uy ~ Unif([do]+). Then CompactHistogram,, r, (D) has the
following properties:
(1 + 2 + €3, 0)-differential privacy.
(a, B)-per-query accuracy.
(a, |X| - B)-simultaneous accuracy.
Runming time O(n -logd 4+ n - Time(M) + n - Time(S) + n - log® dy) where Time(S) is
the mazimum time over v € [n] to sample from the distribution S, ~ Unif({uy € [do]+ :
Mo(uo) = v}). 3
Given its output h, the count h, can be evaluated in time O(n) - O(log dy) + Time(M)
forallx € X.

As discussed above, a natural choice for My is to take dy = d and Mg(u) = M(0, u)
for all u € [d]4+. Although d does not does satisfy the required constraints for the counting
algorithms of Section 4, as we show in the full version of the paper [1], we can construct Mg
for our counting query algorithms at only a constant loss in privacy.

» Corollary 7.3. Let e € N™', 3 € N=! such that § > 1/n°M) and M = FastSample,, s
where ¢ = 1/[10/(9¢)] and v = B/(2|X]|). Then there exists My : [do]+ — [n] where
logdy = O(1/e) - (logn + log|X|) such that CompactHistogram,, ,, has the following
properties:

(e, 0)-differential privacy.

(a, B)-per-query accuracy for a = [(5/¢e) - In(2/8)].

(a, B)-simultaneous accuracy for a = [(5/¢) - In(2|X|/5)].

Running time O(n) - O((1/€2) - (log® n + log? | X])).

Given its output, a count can be computed in time O(n) - O((1/¢) - (logn + log | X])).
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