The Complexity of the Diagonal Problem for
Recursion Schemes*

Pawel Parys

University of Warsaw, Poland

—— Abstract
We consider nondeterministic higher-order recursion schemes as recognizers of languages of finite
words or finite trees. We establish the complexity of the diagonal problem for schemes: given a set
of letters A and a scheme G, is it the case that for every number n the scheme accepts a word (a

tree) in which every letter from A appears at least n times. We prove that this problem is (m—1)-
EXPTIME-complete for word-recognizing schemes of order m, and m-EXPTIME-complete for
tree-recognizing schemes of order m.
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1 Introduction

The diagonal problem in its original formulation over finite words asks, for a set of letters A
and a language of words L, whether for every n € N there is a word in L where every letter
from A occurs at least n times. The same problem can be also considered for a language of
finite trees. In this paper, we study the complexity of the diagonal problem for languages of
finite words and finite trees recognized by nondeterministic higher-order recursion schemes.

Higher-order recursion schemes (schemes in short) are used to faithfully represent the
control flow of programs in languages with higher-order functions. This formalism is equivalent
via direct translations to simply-typed AY-calculus [22] and to higher-order OI grammars [8,
16]. Collapsible pushdown systems [9] and ordered tree-pushdown systems [5] are other
equivalent formalisms. Schemes cover some other models such as indexed grammars [1] and
ordered multi-pushdown automata [3].

The goal of this paper is to establish the complexity of the diagonal problem for higher-
order schemes. By a recent result by Clemente et al. [6] we know that this problem is
decidable. For schemes of order m their algorithm works in f(m)-fold exponential time
for some quadratic function f (although the complexity of the algorithm is not mentioned
explicitly in the paper, it can be easily estimated as being such). In the current work, we
tighten the upper bound: we prove that the diagonal problem for word-recognizing (tree-
recognizing) schemes of order m is (m — 1)-EXPTIME-complete (m-EXPTIME-complete,
respectively).

Let us recall from [6] that the decidability result for the diagonal problem entailed other
decidability results for recursion schemes, concerning in particular computability of the
downward closure of recognized languages [23], and the problem of separability by piecewise
testable languages [7]. Although our complexity result for the diagonal problem does not
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influence directly our knowledge on the complexity of the other problems (the aforementioned
reductions preserve only decidability, but not complexity), it can be seen as the first step in
establishing the complexity of the other problems as well.

Our solution is based on an appropriate system of intersection types. Intersection types
were intensively used in the context of schemes, for several purposes like model-checking
[11, 14, 4, 21], pumping [12], transformations of schemes [13, 6], etc. Among such type
systems we have to distinguish those [18, 19], in which the (appropriately defined) size of a
type derivation for a term approximates some quantity visible in the B6hm tree of that term.
In particular, in our recent work [19] we have developed a type system that allows to solve
the diagonal problem for a special case of a single-letter alphabet.

Here, we generalize the last type system mentioned above to multiple letters. In result, a
type derivation in this system is labeled by flags of different kinds. The key property lies in
some (quite rough) correspondence between words (trees) that can be generated from a term
and type derivations for the term, where, for every letter a, the number of appearances of a
in the generated word (tree) is approximated by the number of appearances of an appropriate
flag in the type derivation. In effect, the diagonal problem reduces to checking whether there
exist type derivations with arbitrarily many flags corresponding to every letter from the
input set A.

Some further work was needed to carefully optimize the developed type system in order
to obtain an algorithm achieving the optimal complexity.

Our paper is structured as follows. In Section 2 we introduce all necessary definitions.
In Section 3 we introduce the type system, and we show how to use it for deciding the
diagonal problem for word-recognizing schemes. Finally, Section 4 presents extensions of the
algorithm, in particular to tree-recognizing schemes.

2 Preliminaries

Infinitary A-calculus. The set of sorts (a/k/a simple types), constructed from a unique
basic sort o using a binary operation —, is defined as usual. We omit brackets on the right
of an arrow, so e.g. 0—(0—o0) is abbreviated to o—o0—o0. The order of a sort is defined by
induction: ord(o) =0, and ord(ay— ... —2as—0) = 1+ max(ord(ay), ..., ord(as)) for s > 1.

A sort ay— ... —as—o0 is homogeneous if ord(ay) > -+ > ord(as) and all o, ..., a4 are
homogeneous. In the sequel we restrict ourselves to homogeneous sorts (even if not always
this is written explicitly).

Let ¥ be an infinite set of symbols (alphabet). To denote nondeterministic choices we use
a symbol nd. Assuming that nd ¢ ¥, we denote ¥"¢ = X U{nd}. Let also V = {2, ¢y”,27,...}
be a set of variables, containing infinitely many variables of every homogeneous sort (sort of
a variable is written in superscript).

We consider infinitary, sorted A-calculus. Infinitary \-terms (or just A-terms) are defined
by coinduction, according to the following rules:

node constructor — if a € " and P{,..., P° are A-terms, then (a(Py,...,P°))° is a
A-term,!

L Our node constructor differs from the standard definition in two aspects. First, one usually assumes
that symbols are ranked, i.e., that the number r is determined by the choice of a. Second, typically
a symbol a is considered itself as a A-term of sort o— ...—0 —0, which after applying Py,..., P’ as

T
arguments is equivalent to our (a(Py,..., P?))°. These are, though, only superficial differences.
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variable — every variable x® € V is a A-term,

application — if P*7# and Q® are A-terms, then (P*# Q%) is a A-term, and

A-binder — if P? is a A-term and z® is a variable, then (Az®.P?)*7# is a A\-term;
in the above, «, 8, and a—f are homogeneous sorts. We naturally identify A-terms differing
only in names of bound variables. We often omit the sort annotations of A-terms, but we
keep in mind that every A-term (and every variable) has a particular sort. Free variables of
a A-term are defined as usual. A A-term P is closed if it has no free variables.

For a A-term P, the order of P is just the order of its sort, while the complexity of P is
the smallest number m such that the order of all subterms of P is at most m. We restrict
ourselves to A-terms that have finite complexity. We also define the order of a S-reduction as
the order of the involved variable. More precisely, for a number k € N, we say that there is a
p-reduction of order £k from a A-term P to a A-term @Q, written P — () Q, if Q is obtainable
from P by replacing a redex (Ax.R) S where ord(x) = k with R[S/x].

Trees. A tree is defined as a A-term that is built using only node constructors, i.e., not
using variables, applications, nor A-binders. A tree is I'-labeled if only symbols from I' appear
in it.

Let us now define how we resolve nondeterministic choices. Although this is mainly
used for trees, we define it for arbitrary A-terms. We write P —,q @ if @ is obtained from
P by choosing some appearance of the nd symbol surrounded only by symbols from 3,
and removing this nd symbol together with all but one of its arguments. Formally, we let
—nd to be the smallest relation such that nd(Py,..., P.) = P; for i € {1,...,r}, and if
a €%, and P; —ng P/ for some i € {1,...,r}, and P; = P for all j € {1,...,7}\ {i}, then
a(Py,...,P.) =g a(P],..., P/). For a relation r, by r* we denote the reflexive transitive
closure of r. For a A\-term P (which is usually a X"-labeled, potentially infinite tree), by
L(P) we denote the set of all finite, X-labeled trees T such that P —%, T

Bohm Trees. We consider Bohm trees only for closed A-terms of sort o. For such a
term P, its Bohm tree BT(P) is constructed by coinduction, as follows: if there is a
sequence of B-reductions from P to a A-term of the form a(Py,..., P,) (where a € "), then
BT(P) =a(BT(Py),...,BT(P,)); otherwise BT (P) = nd().

Higher-Order Recursion Schemes. We use a very loose definition of schemes. A higher-
order recursion scheme (or just a scheme) is a triple G = (N, R, N§), where N C V is a
finite set of nonterminals, R is a function that maps every nonterminal N € A to a finite
A-term whose free variables are contained in N and whose sort equals the sort of N, and
N§ € N is a starting nonterminal, being of sort 0. We assume that elements of A/ are not
used as bound variables, and that R(N) is not a nonterminal. The order of the scheme is
defined as the maximum of complexities of R(N) over all its nonterminals N.

The infinitary A-term generated by a scheme G = (N, R, N§), denoted A(G), is defined as
the limit of the following process starting from N§: take any nonterminal N appearing in
the current term, and replace it by R(N) (so that every nonterminal is eventually replaced).
Observe that in the limit we obtain a closed A-term of sort o and of complexity not greater
than the order of the scheme. The language of G is defined as £(G) = L(BT(A(G))).

We remark that according to our definition all subterms of all A-terms (and all nonterminals
as well) have homogeneous sorts; usually it is not assumed that sorts used in a scheme are
homogeneous. It is, however, the case that any scheme using also non-homogeneous sorts
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can be converted into one in which all sorts are homogeneous, and that this can be done in
logarithmic space [20]. We make the homogeneity assumption for technical convenience.

A word is defined as a tree in which every node has at most one child (such a tree
can be identified with a word understood in the classic sense). We say that a A-term P
is word-recognizing if for every its subterm of the form a(Py,..., P.) with a € ¥ it holds
r < 1; a scheme G is word-recognizing if A(G) is word-recognizing. In this case, all elements
of L(BT(P)) or L(G), respectively, are words.

» Example 1. Consider the higher-order recursion scheme G; with two nonterminals, M?
(taken as the starting nonterminal) and N(°~°)=° and with rules

R(M) = N (Ax.nd(a(x), b(x))), R(N) = M.nd(f (c()),N (A\y.f (fy))).

We obtain A(G1) = R; (Ax.nd(a(x), b(x))), where R; is the unique A-term such that R; =
M.nd(f (c()), R1 (A\y.f(fy))). We have BT(A(G1)) = nd(Tyo,nd(To1,nd(Ts2,...))), where
Ty = c{) and T;41 = nd(a(T;),b(T;)). In L(G;) we have words of length 2¢ + 1 for all i € N,
where the first 2¢ letters are chosen from {a,b} arbitrarily, and the last letter is c. In the
following examples we will continue to consider this scheme, together with the set A = {a, b}.

3 Type System for the Diagonal Problem

In this section we introduce a type system that allows to solve the diagonal problem for
schemes.

» Definition 2. For a set of trees L and a set of symbols A, the predicate Diag 4 (L) holds if
for every n € N there is some T' € L with at least n occurrences of every symbol from A. The
diagonal problem for tree-recognizing order-m schemes is to decide whether Diag 4 (£(G)) holds,
given a scheme G of order at most m and a set A. The diagonal problem for word-recognizing
order-m schemes is as the above, but with the restriction that G is word-recognizing.

» Theorem 3. For m > 1, the diagonal problem for word-recognizing order-(m + 1) schemes
is m-EXPTIME-complete. For m € {—1,0} it is NP-complete.

Throughout the rest of this section we solve the diagonal problem for word-recognizing
schemes, and thus all schemes considered here are assumed to be word-recognizing. Moreover,
we fix a set of symbols A, for which we want to solve the diagonal problem.

Intuitions. The main novelty of our type system lies in labeling nodes of type derivations
by two kinds of labels called flags and markers. To each marker we assign a number, called
an order. Flags, beside of their order, are also identified by a symbol from A; thus we have
(k,a)-flags for k € N and a € A. While deriving a type for a A-term of complexity at most
m + 1, we use markers of order from the range 0, ..., m, and flags of order from the range
1,...,m+1.

Let P,,+1 be a A-term of complexity at most m + 1. Recall that our goal is to describe a
word T € L(BT(Pp,+1)) using a type derivation for P,,y; itself. While doing that, we want
to preserve the information that 7' has many appearances of every symbol from A.

Since T can be found in some finite prefix of BT (Pp,+1), in order to find T it is enough
to perform finitely many g-reductions from P,,;1. Moreover, thanks to the fact that all
sorts are homogeneous, the S-reductions can be rearranged so that those of higher order are
performed first. Namely, we can find A-terms P, ..., P, such that

Perl —>;§(m) Pm —>E(m71) N _>E(O) PO and P() _>:d T.
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Some prefix of Py can be seen as a tree, in which we can find a path on which there are all
symbols of T', and some additional nd symbols. Let us place an order-0 marker in the leaf
ending this path. Additionally, for every symbol a € A, we place (1, a)-flags in all a-labeled
nodes of the considered path.

Next, we proceed back to P;. The leaf constructor of Py containing our order-0 marker
was created out of some particular appearance of such constructor in P;; let us put there
as well the order-0 marker. Similarly, we find node constructors in P; out of which in P,
we obtain node constructors with flags, and we transfer the flags back to P;. The crucial
observation is that no two flagged node constructors of Py could come out of a single node

constructor of P;. Indeed, recall that all the S-reductions between P; and Py are of order 0.

This means that in every such S-reduction we take a whole subtree (i.e., a A-term of sort o)
of Pi, and we replace it somewhere, possibly replicating it. But since all flags lie in Py on a
single path, they may lie only in at most one copy of the replicated subtree. In effect, the
number of appearances of order-1 flags of every kind is the same in P; as in FP.

We cannot directly repeat the same reasoning to move flags from P; back to P, since now
there is a problem: a single node constructor in P may result in multiple (uncontrollably
many) node constructors with a flag in P;. We rescue ourselves by considering only |A| paths
in Pp, one for each symbol in A. Namely, for every symbol a € A we place in P; a marker of
order 1, choosing in this way the path from the root to the position of this marker. Then,
for every node labeled by a (1,a)-flag we place a (2, a)-flag in the closest ancestor that lies
on the chosen path. Although the number of (2, a)-flags may be smaller than the number of
(1,a)-flags (the closest ancestor on the path may be the same for multiple (1, a)-flags), we
can ensure that it is smaller only logarithmically; to do so, we choose the marked node in a
clever way: staring from the root, we always proceed to this subtree in which the number of
(1,a)-flags is the largest. In effect, if the number of (1, a)-flags was “very large”, then also
the number of (2, a)-flags will be “very large”.

Once for every a € A all (2,a)-flags lie on a single path of P;, we can transfer them
back to P, without changing their number. Then in P, we again reduce to |A| paths by
introducing markers of order 2, and so on. At the end we obtain some labeling of P,,;1
by several kinds of flags and markers. The goal of the type system we develop is, roughly
speaking, to ensure that a labeling of P, actually is obtainable in the process as above (in
fact, we will not be labeling nodes of P, itself, but rather nodes of a type derivation for

Pm-i-l)'

Type Judgments. Recall that A is the set of symbols for which we want to solve the
diagonal problem. For storing the information about flags and markers used in a derivation
of a type we use flag sets and marker multisets. Recall that a flag is parameterized by a
pair (k,a), where k € N is called an order, and a € A is called a symbol. For flags it is
enough to remember for every order whether at least one flag of this order was used, and
if so, then also a symbol of this flag (if flags with multiple symbols were used, it is enough
for us to remember just one of these symbols). Thus for m € N we define F,, to contain
sets FF C {1,...,m} x A such that (k,a), (k,b) € F implies a = b. Such sets F are called
m-bounded flag sets. For markers the situation is slightly different, as we want to remember
precisely how many markers were used. Moreover, markers do not have a symbol, only an
order. We thus define M,, to contain functions M: N — {0,...,|A|} such that M(0) <1
and M (k) = 0 for all &k > m. Such functions M are called m-bounded marker multisets.

By M + M’ and M — M’ we mean the coordinatewise sum or difference, respectively. We
use 0 to denote a function that maps every element of its domain to 0 (where the domain
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should be always clear from the context). By {k1,...,k,[} we mean the multiset M such
that M(k) =|{i € {1,...,n} | ki =k}| for all k € N. When F € F,,,, M € M,,, n € N, and
O is one of <, >, we write F[g,, for {(k,a) € F | kOn}, and Mg, for the function that
maps every k to M (k) if kOn, and to 0 if =(kOn).

Next, for every sort a and for m € N we define three sets: the set 7% of types of sort «,
the set 7T, of m-bounded type triples of sort a, and the set TC® of triple containers of sort
a. They are defined by mutual induction on the structure of a.

If a = a1— ... 2as—o0, the set T contains types that are of the form C;— ... =>Cs—o,
where C; € TC* fori € {1,...,s}.

Type triples in T 7T, are just triples (F, M,Ci— ... >Cs—0) € Fp, X My, x T, where
M (k) =0 for all (k,a) € F, and where M (0) + >_;_, Mk(C;)(0) = 1 (we will define Mk(C;)
soon). These triples store a type, together with the information about flags and markers
used while deriving this type. In order to distinguish type triples from types, the former
are denoted by letters with a hat, like 7. We also define a function Mk that extracts the
marker multiset out of a type triple: Mk(7) = M for 7 = (F, M, 7). A type triple is balanced
if Mk(7) = 0; otherwise it is unbalanced.

Triple containers are used to store (multi)sets of type triples that have to be derived for
an argument of a A\-term, or for a A-term substituted for a free variable. For balanced type
triples, triple containers behave like sets, that is, they remember only whether every balanced
type triple is required or not. Conversely, for unbalanced type triples, triple containers behave
like multisets, that is, they remember precisely how many times every unbalanced type triple
is required. Thus, formally, in 7C we have functions C': TT5,4(0) = {0,...,|A[} such that

C(7) < 1if Mk(7) = 0. For C'€ TC* we define MK(C) = Srerpa S0 MK(7). Tor two

triple containers C, D € TC* we define their sum C'UD: TT7g 4 — N so that for every
TE TTgrd(a)v

(CUD)7) = { max(C(#), D(7)) if Mk(7) = 0.

We also say that C' T D if C(7) = D(7) for every unbalanced 7 € TT 3,44, and C(7) < D(7)
for every balanced 7 € TT7,4). We sometimes write {|71,..., 7.} or {7 |i € {1,...,n}}
to denote the triple container C such that C(6) = |[{i € {1,...,n} | 7 = 6}| for every
unbalanced type triple 6, and C(6) = 1< 3i € {1,...,n}.7; = & for every balanced type
triple &.

A type environment is a function I" that maps every variable x® to a triple container from
TC(O,‘Td(a). We use ¢ to denote the type environment mapping every variable to 0. When
I'(xz) =0, by T'[z — C] we denote the type environment that maps z to C, and every other
variable y to I'(y) (whenever we write I'[x — C], we implicitly require that I'(z) = 0). For
two type environments I', I we define their sum I' UT” so that (I'UT")(z) = I'(z) UT(z) for
every variable x.

A type judgment is of the form I' -, P : 7> ¢, where I is a type environment, m € N is
called the order of the type judgment, P is a A-term, 7 is an m-bounded type triple of the
same sort as P (i.e. ¥ € TT., when P is of sort a), and ¢ is a function A — N called a flag
counter.

As usually for intersection types, the intuitive meaning of a type C—7 is that a A-term
having this type can return a A-term having type 7, while taking an argument for which
we can derive all type triples from C. Let us now explain the meaning of a type judgment
'ty P (F,M,7)>c. Obviously 7 is the type derived for P, and T' contains type triples
that could be used for free variables of P in the derivation. As explained above for triple
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containers, balanced and unbalanced type triples behave differently: all unbalanced type
triples assigned to variables by I' have to be used exactly once in the derivation; conversely,
balanced type triples may be used any number of times. Going further, the order m of the
type judgment bounds the order of flags and markers that can be used in the derivation:
flags can be of order at most m + 1, and markers of order at most m. The multiset M
counts markers used in the derivation, together with those provided by free variables (i.e., we
imagine that some derivations, specified by the type environment, are already substituted in
our derivation for free variables); we, however, do not include markers provided by arguments
of the A-term (i.e. coming from the triple containers C; when 7 = C1— ... —2Cs—0). The
set F' contains an information about flags of order at most m used in the derivation. A pair
(k,a) can be contained in F if a (k,a)-flag is placed in the derivation itself, or provided by
a free variable, or provided by an argument. We do not have to keep in F' all such pairs,
i.e., if we can derive a type triple with some flag set F', then we can derive it also with every

subset of F' as the flag set. In fact, we cannot keep in F' all such pairs due to two restrictions.
First, the definition of a flag set allows to have in F' at most one pair (k, a) for every order k.

Second, we intentionally remove from F all pairs (k,a) for which M (k) > 0. Finally, in a
type judgment we have a function ¢, called a flag counter, that for each symbol a counts the
number of (m + 1, a)-flags present in the derivation.

Type System. Before giving rules of the type system, let us state two general facts. First,
all type derivations are assumed to be finite — although we derive types mostly for infinite
A-terms, each type derivation analyzes only a finite part of a term. Second, we require that
premisses and conclusions of all rules are valid type judgments. For example, when the type
environment appearing in the conclusion of a rule is I' LI TV, this implies that for all z and all
unbalanced type triples 7 it holds I'(z)(7) + I (z)(7) < |A| (so that (T UTY)(x) is indeed a
valid triple container). Let us also remark that rules of the type system will guarantee that
the order m of all type judgments used in a derivation will be the same.

Rules of the type system correspond to particular constructs of A-calculus. We start by
giving the first three rules:

Mgy = M’ 'k, P:7pc ie{l,...,r}

(VAR) - (ND)
gle = {(F,M',7)}] b @ (F,M,7)>0 Tk, nd(Py,...,B) e

Flz— Cbp P (F,M,7)bc  C'CC
T b AP : (F, M — Mk(C),C—7) b ¢

The (Var) rule allows to have in the resulting marker multiset M some numbers that do
not come from the multiset assigned to x by the type environment; these are the orders of
markers placed in the leaf using this rule. Notice, however, that we allow here only orders
greater than ord(z). This is consistent with the intuitive description of the type system
(page 4), which says that a marker of order k can be put in a place that will be a leaf after
performing all S-reductions of order at least k. Indeed, the variable x remains a leaf after
performing S-reductions of orders greater than ord(z), but while performing S-reductions of
order ord(x) this leaf will be replaced by a subterm substituted for z. Recall also that, by
definition of a type judgment, we require that (F, M’,7) € TT ., and (F,M,7) € TTy,,

ord(x

for appropriate sort «; this introduces a bound on maximal numbers that may appear in F’
and M.
» Example 4. Denoting pg = (0, {0[}, 0) we can derive:

o ol 000 ™ kS el 0oL os0
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In the derivation on the right, two markers of order 1 are placed in the conclusion of the rule.

We see that to derive a type for the nondeterministic choice nd(Py, ..., P.), we need to
derive it for one of the subterms Py, ..., P,.

For the (\) rule, recall that C' C C means that in C” we have all unbalanced type triples
from C, and some subset of balanced type triples from C'. Thus in a subderivation concerning
the A-term P, we need to use all unbalanced type triples provided by an argument of Az.P,
while balanced type triples may be used or not. Recall also that we intend to store in the
marker multiset the markers contained in the derivation itself and those provided by free
variables, but not those provided by arguments. Because of this, in the conclusion of the
rule we remove from M the markers provided by x. It is required, implicitly, that the result
remains nonnegative. The set I, unlike M, stores also flags provided by arguments, so we
do not need to remove anything from F'.

» Example 5. In this example we show how the (ND) and ()A) rules can be used. Notice that
in the conclusion of the (\) rule, in both derivations, we remove 0 from the marker multiset,
because an order-0 marker is provided by x.

elx = {polt] F1al) : ({(
elx = {lpolt] F1 nd(alx), b(x)) :
e k1 Ax.nd(a{x), b(x)) : ({(1

elx = {polt] F1alx) : (0,40, 1,1, 0)>{(a, 1), (b, 0)}
elx = {pol] F1 nd(a(x), b{x)) : (0,{0,1,1},0) > {(a, 1), (b, 0)}
€ b1 Axnd(a(x), b(x)) : (0, {1, 1]}, ﬂpo[}—>0)>{(a 1), (b,0)}

The next three rules use a predicate Comp,,,, saying how flags and markers from premisses

1,a)},{0},0)>0
({(1’ a)}> {|O|}70) >0
;a)}0,{po[t—0) >0

(ND)
(M)

contribute to the conclusion. It takes “as input” pairs (F;, ¢;) for i € I, consisting of a flag set
F; and a flag counter ¢; from some premiss. Moreover, the predicate takes a marker multiset
M that will appear in the conclusion of the rule. The goal is to compute a flag set F' and a
flag counter ¢ that should be placed in the conclusion. First, for each k € {1,...,m + 1}
consecutively, we decide which flags of order k& should be placed in the considered node of a
type derivation. We follow here the rules mentioned in the intuitive description. Namely, we
place a (k, a)-flag if we are on the path leading to a marker of order k—1 (i.e., if M(k—1) > 0),
and simultaneously we receive an information about a (k — 1,a)-flag. By receiving this
information we mean that either a (k — 1, a)-flag was placed in the current node, or (k —1,a)
belongs to some set F;. Actually, we place multiple (k, a)-flags: one per each (k — 1, a)-flag
placed in the current node, and one per each set F; containing (k — 1,a). Then, we compute
F and c. In ¢(a), for every a € A, we store the number of (m + 1, a)-flags: we sum all the
flag counters ¢;, and we add the number of (m + 1, a)-flags placed in the current node. In
F, we allow to keep elements of all F;, and we allow to add pairs (k,a) for flags that were
placed in the current node, but it can be chosen “nondeterministically” which of them are
actually taken to F', and which are dropped. It is often necessary to drop some elements,
since when the set F' is used in a type triple, the definitions of a flag set and of a type triple
put additional requirements on this set.

Below we give a formal definition, in which f,’m contains the number of (k,a)-flags
placed in the current node, while f , additionally counts the number of premisses for which
(k,a) € F;. We say that (F,c) € Comp,,,(M; ((F;,c;))ier) when

F C{(k,a)| fx,a >0}, and cla) = fomti,a + Zci(a) for all a € A,
iel
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where, for k € {0,...,m+ 1} and a € A,

fk,a = fllc,a +Z|Fz N {(k7a)}‘7

, 0 ifk=0or M(k—1)=0,
fk-,a:
iel

fr—1,0 otherwise.

We now present rules for node constructors using symbols other than nd:

(F,c) € Comp,(M;({(0,a)},0))  a+#nd
ebmal): (F,M,0)>c

(Con0)

Pl P (F, M0)od (Fyc) € Compy(M; ({(0,0)},0), (F, ) a#nd
'k al(P): (F,M,0)>c

(Con1)

In these rules we do not claim that the set {(0,a)} passed to Comp,, is an element of
Fm (and in fact it is not, because the order is 0, which is forbidden for flags; we also do
not necessarily have that a € A). The effect of passing this set is that if M(0) > 0 (i.e., we
are on the path to the order-0 marker) and a € A, then Comp,, places a (1,a)-flag in the
current node, and maybe also some (k,a)-flags for higher k. In the (Con0) rule, i.e., if we
are in a leaf, we are allowed to place markers of arbitrary order: the marker multiset M may
be arbitrary.

» Example 6. The (Con1) rule may be instantiated in the following ways:

glx = {polt] F1 x: (0, {0[},0)>0
elx = {polt] F1a(x) : ({(1,2)}, {0}, 0) >0

elx = {polt] F1x: (0,{0,1,1},0)>0
elx = {polt] F1alx) : (0,40, 1,1}, 0) > {(a, 1), (b, 0)}

In the first example, a (1, a)-flag is placed in the conclusion of the rule (because the marker
multiset contains 0, the pair (0,a) passed to the Comp, predicate results in the (1,a) pair in
the flag set). In the second example, (1,a)- and (2,a)-flags are placed in the conclusion of
the (Con1) rule: since order-1 markers are visible, we do not put (1, a) to the flag set, but
instead we create a (2, a)-flag, which results in increasing the flag counter.

(Conl)

(Con1)

The last rule describes application:
FI '_m P (F/, MI, {I(F’L {SDTd(Q), MZ rSO’I"d(Q)’Tl) ‘ xS II}_>T) > C/
i bm Q: (Fy, M;,7;)>¢; for each i € T M:M’—i—ZEIMi ord(Q) <m
(Fv C) € Compm(Ma (Flacl)v ((Fl r>ord(Q)7c’i))i€I) {(k,a) €F ‘ M(k) = 0} CF @
/ . .
r u|_|i€lrz Fm PQ: (F,M,7)b>c

In this rule, it is allowed (and potentially useful) that for two different i € I the type
triples (F}, M;,7;) are equal. It is also allowed that I = (), in which case no type needs to
be derived for Q). Observe how flags and markers coming from premisses concerning @) are
propagated: only flags and markers of order k < ord(Q) are visible to P, while only flags
of order k > ord(Q) are passed to the Comp,, predicate. This can be justified if we recall
the intuitions staying behind the type system (see page 4). Indeed, while considering flags
and markers of order k, we should imagine the A-term obtained from the current A-term by
performing all S-reductions of order at least k; the distribution of flags and markers of order
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k in the current A-term actually simulates their distribution in this imaginary A-term. Thus,
if k < ord(Q), then our application will disappear in this imaginary A-term (thanks to the
homogenity assumption), and @ will be already substituted somewhere in P; for this reason
we need to pass the information about flags and markers of order k from @ to P. Conversely,
if k> ord(Q), then in the imaginary A-term the considered application will be still present,
and in consequence the subterm corresponding to P will not see flags and markers of order
k placed in the subterm corresponding to (). The condition {(k,a) € F' | M(k) =0} C F
(saying that some flags from F’ cannot disappear) is useful for proofs.

» Example 7. Recalling that po = (0, {0}, 0), denote by 7, and 7, the type triples derived
in Example 5: 7, = ({(1,2)},0, {po[}—0) and 7, = (0, {1, 1]}, {po} —0). We can derive:

elf = Jfmfl F1 f: Fm> 0 ely = {poll F1y: por>0
eff = {7l Fif: 70 elf = {7mlt,y — {pol}] F1 fy: (0,{0,1,1},0)>0
E[f — ﬂfaﬂﬁml}ﬁ’ — {Iﬁol}] F1 f(fY) : (®7ﬂ0717 1|}70) D{(‘-”71)7 (b70)} ()\)
elf = {7a, Tml}] F1 Ay.f (fy) : 7m > {(a,1), (b, 0)}

@

Below the lower (@) rule the information about a (1,a)-flag (from the first premiss) meets
the information about a marker of order 1 (from the second premiss), and thus a (2, a)-flag
is placed, which increases the flag counter.

Denote pp, = (0, M2, 0), where M2 € M,, is such that M2 (0) = 1 and M2 (k) = |A]
for all k € {1,...,m}. The key property of the type system is described by the following
theorem.

» Theorem 8. Let m € N, and let P be a closed word-recognizing A-term of sort o and
complezity at most m+ 1. Then Diag ,(L(BT(P))) holds if and only if for every n € N we
can derive € by, P2 pp, > ¢, with some ¢, such that c,(a) > n for all a € A.

We omit the proof of this theorem. The overall idea is to follow the intuitions described
on page 4, and consider only such sequences of S-reductions in which reductions of higher
orders are performed before S-reductions of lower orders. The details are tedious, but rather
standard. Actually, a quite similar proof was performed in our recent work [19] concerning
the single-letter case.

» Example 9. Denote 6r = (0, {0}, {|7a, b, Tm[t—0), where 7, = ({(1,b)}, 0, {po}—0). We
can derive € k1 Ry : 6 >0 by descending to the first child of the outermost nd(:,-) in
Ry = M.nd(f (c()), Ry (A\y.f (fy))). Then, basing on a type judgment € 1 Ry : 6> c we
can derive € b1 Ry : 6> {(a,c(a) + 1), (b, ¢(b))} using in particular the derivation fragment
from Example 7, and similarly € -1 Ry : 6r > {(a, c(a)), (b,c(b) + 1)}. By composing the
above derivation fragments, we can derive € -1 Ry : 6 b ¢ for ¢ that is arbitrarily large on
both coordinates. Examples 4-6 contain derivations of type triples 7, and 7, for the A-term
Ax.nd(a(x), b{x)); similarly we can derive the type triple 7. Using the (@) rule one more time,
we can derive € 1 A(Gy) : p1 > c for ¢ that is arbitrarily large on both coordinates.

» Example 10. Consider the scheme Gy obtained from G; by changing the rule R(N) to
Af.nd{f (c{)), N (Ay.fy)). Then while deriving a type for Ay.fy we can use only one type triple:
either 7,, or 7, or 7, which causes that the flag counter is not increased. Thus, by adopting
the derivation fragment considered in the previous example, out of € -1 Ry : 6 g > ¢ we can
only derive € 1 Ry : 6 > ¢, with the same flag counter (where Ry is defined analogously
to Ry). Altogether, we can derive € b1 A(Gs) : p1 > ¢ only for ¢ with ¢(a) 4+ ¢(b) < 1. This
corresponds to the fact that £(G3) contains only words with at most one letter from {a, b}.
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» Example 11. In the derivation from Example 9 both order-1 markers were placed in
the same leaf, corresponding to the subterm x. Consider, however, a scheme Gz, where
additionally to M and N we have a nonterminal My, of sort o, and the rules are changed to:

R(M) =N (Ax.a(x)), R(Ms) = nd(c(), b(Mp)) ,
R(N) = Mf.nd(f Mp, N (\y.f (Fy))) .

Here we need to place one order-1 marker (responsible for counting appearances of the a
symbol) in a leaf corresponding to x, and another order-1 marker (responsible for counting
appearances of the b symbol) in a leaf corresponding to c().

Effectiveness. We now justify how Theorem 3 follows from Theorem 8, i.e., how given a
word-recognizing scheme G of order at most m 4+ 1 and a set of symbols A, one can check
in m-EXPTIME whether ¢ ., A(G) : pm > ¢ can be derived for flag counters ¢ that are
arbitrarily large on every coordinate. Let us say that two type judgments are equivalent if
they differ only in values of the flag counter. One can see that if ¢ is required to be large
enough on every coordinate, then in the derivation of & b, A(G) : pm > ¢, for every symbol
a € A, there are two equivalent type judgments lying on the same path (the path may depend
on a) and such that the a-coordinate of their flag counter differs. A derivation having this
property will be called pumpable. This name is justified, because the opposite implication
also holds: if we have a pumpable type derivation, then we can repeat (as many times as we
want) its fragment between all these pairs of equivalent type judgments, increasing arbitrarily
all coordinates of the flag counter in the resulting type judgment. This holds thanks to the
following additivity property of our type system: if out of I' ,, P : 71> ¢ we can derive
I+, P':#>c, thenout of 'k, P:7>d we can derive I'' -, P/ : 7/ > +d —c.

We exploit the above equivalence, and we also observe that while deriving ¢ b, A(G) :
Pm > ¢ we may only use type judgments ' -, @ : 7> d (call them useful) in which @ is a
subterm of A(G) and I'(x) # 0 only for variables x that are free in Q. It is not difficult to
give an algorithm that checks whether there is a pumpable derivation of € -, A(G) : p,, > ¢
(for some ¢), and works in time polynomial in the number of equivalence classes of useful
type judgments (and exponential in |A]).

It remains to bound the number of these equivalence classes. We first bound the number
of type triples. Essentially, type triples in 775 with @« = a1 — ... —as—0 store “sets” of
type triples from 77! d(as)? and thus their number grows exponentially when we increase
the order of o by one. There is a slight exception for « of order 1: the number of type
triples in 77 for such « is polynomial, not exponential. The reason is that, for a type
(Ci—...=Cs—0) € T2 with ord(a) = 1, the triple containers Ci,...,Cs can contain
altogether only at most one type triple (by definition it is required that Y ;_, Mk(C;)(0) < 1
while, on the other hand, for type triples 6 € 7T it is required that Mk(6)(0) = 1). In
effect, |TT4,| for ord(a)) < m+ 1 is m-fold exponential in the size of G. It easily follows that
the number of equivalence classes of useful type judgments is also m-fold exponential in the
size of G, because all variables appearing in A(G) are of order strictly smaller than m + 1.

A trivial reduction from the problem of emptiness of £(G) shows that our problem is
indeed m-EXPTIME-hard [15]. For m € {—1,0} one can prove NP-completeness.

4 Extensions

Downward Closure. The downward closure of a language of words L, denoted L/, is the set
of all scattered subwords (subsequences) of words from L. Recall that the downward closure
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of any set is always a regular language; moreover, it is a finite union of ideals, i.e., languages
of the form Y {x1,e}Y7" ... {x,,e}Y, where x1,..., 2, are letters, and Yy, ...,Y,, are sets
of letters. The main interest on the diagonal problem comes from the fact that this problem
is closely related to computability of the downward closure of a language of words (where we
aim in presenting the results by a list of ideals, or by a finite automaton). Indeed, having a
word-recognizing scheme G, it is not difficult to compute £(G)| by performing multiple calls
to a procedure solving the diagonal problem (for products of G and some finite automata).
The complexity of this algorithm is directly related to the size of its output. We, however, do
not know any upper bound on the size of (a representation of) £(G)J. A recently developed
pumping lemma for nondeterministic schemes [2] may shed some new light on this subject
(while pumping lemmata for deterministic schemes [10, 12] seem irrelevant here).

Instead of actually computing the downward closure, Zetzsche [24] proposed to consider
the following decision problem of downward-closure inclusion: given two word-recognizing
schemes G, H of order at most m, check whether £(G)] C L(H)}; he proved that this
problem is co-m-NEXPTIME-hard. It would be interesting to give some upper bound on
the complexity of this problem. Although, again, we do know how to do this, we can at least
give a partial result.

» Theorem 12. Let m > 1. Given a word-recognizing scheme H of order at most m + 1,
and an ideal I, the problem of deciding whether I C L(H)] is m-EXPTIME-complete.

This is an easy consequence of Theorem 3: it is enough to appropriately combine H with
I, and then solve the diagonal problem.

Tree-Generating Schemes. Although the main interest on the diagonal problem is for
word-recognizing schemes, the problem can be also considered for tree-recognizing schemes.
Let us see how our methods can be adopted to this more general case. Consider a tree
T € L(G), and a term Py such that A(G) —% Po and Py —4 1), i.e., that T’ can be found in
a prefix of Py. In the word case, we were placing order-1 flags in node constructors of T,
and then we continued using the fact that they are all aligned along one path (as actually T
consisted of a single path). This is no longer possible in the tree case. In order to resolve
this issue, we additionally use flags of order 0, and we place them in node constructors of T’
(dispersed on multiple paths). Then, we choose only |A| paths, by placing order-1 markers
in |A] leaves of Py, and for every node labeled by a (0, a)-flag we place a (1,a)-flag in the
closest ancestor that lies on a chosen path. In effect all order-1 flags are concentrated on
only |A| paths, and we can continue as in the word case. The described modification causes
an exponential growth of the number of types, which results in the following theorem.

» Theorem 13. For m > 1, the diagonal problem for tree-recognizing order-m schemes is
m-EXPTIME-complete. For m =0 it is NP-complete.

Downward Closure for Trees. One can also consider the downward closure of a language
of trees, defined as a set of all trees that can be homeomorphically embedded in trees from
the language. By Kruskal’s tree theorem [17] downward closures of tree languages are regular
languages of trees. We notice, however, that (unlike for words) an algorithm solving the
diagonal problem is highly insufficient for the purpose of computing the downward closure.
Even in the single-letter case, in order to compute L/, one has to check, in particular, whether
for every n € N, a full binary tree of depth n can be embedded in some tree from L; using
the diagonal problem, we can only determine whether L contains arbitrarily large trees.
Extending our techniques to this kind of problems is an interesting direction for further work.
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