On the Control of Asynchronous Automata*'

Hugo Gimbert

LaBRI, CNRS, Université de Bordeaux, France
hugo.gimbert@cnrs.fr

—— Abstract
The decidability of the distributed version of the Ramadge and Wonham controller synthesis
problem [11], where both the plant and the controllers are modeled as asynchronous automata [12,
1] and the controllers have causal memory is a challenging open problem [9, 7]. There exist three
classes of plants for which the existence of a correct controller with causal memory has been
shown decidable: when the dependency graph of actions is series-parallel, when the processes are
connectedly communicating and when the dependency graph of processes is a tree. We design a
class of plants, called decomposable games, with a decidable controller synthesis problem. This
provides a unified proof of the three existing decidability results as well as new examples of
decidable plants.

1998 ACM Subject Classification B.1.2 Automatic synthesis, H.3.4 Distributed systems
Keywords and phrases Asynchronous automata, Controller synthesis

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2017.30

1 Introduction

The decidability of the distributed version of the Ramadge and Wonham control problem [11],
where both the plant and the controllers are modeled as asynchronous automata [12; 1] and
the controllers have causal memory is a challenging open problem. Very good introductions
to this problem are given in [9, 7].

In this setting a controllable plant is distributed on several finite-state processes which
interact asynchronously using shared actions. On every process, the local controller can
choose to block some of the actions, called controllable actions, but it cannot block the
uncontrollable actions from the environment. The choices of the local controllers are based
on two sources of information.

First the controller monitors the sequence of states and actions of the local process. This

information is called the local view of the controller.

Second when a shared action is played by several processes then all the controllers of

these processes can exchange as much information as they want. In particular together

they can compute their mutual view of the global execution: their causal past.

A controller is correct if it guarantees that every possible execution of the plant satisfies
some specification. The controller synthesis problem is a decision problem which, given a
plant as input, asks whether the system admits a correct controller. In case such a controller
exists, the algorithm should compute one as well.

The difficulty of controller synthesis depends on several factors, e.g.:

the size and architecture (pipeline, ring, ...) of the system,

* A full version of this paper, including proofs, is available as a technical report [5].
T We acknowledge support from ANR-13-BS02-0011 "Stoch-MC" and UMI Relax.

© Hugo Gimbert;
oY licensed under Creative Commons License CC-BY
37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2017).
Editors: Satya Lokam and R. Ramanujam; Article No. 30; pp. 30:1-30:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2

On the Control of Asynchronous Automata

the information available to the controllers,

the specification.
Assuming that processes can exchange information upon synchronization and use their causal
past to take decisions is one of the key aspects to get decidable synthesis problems [3]. In early
work on distributed controller synthesis, for example in the setting of [10], the only source
of information available to the controllers is their local view. In this setting, distributed
synthesis is not decidable in general, except for very particular architectures like the pipeline
architecture. The paper [2] proposes information forks as a uniform notion explaining the
(un)decidability results in distributed synthesis. The idea of using causal past as a second
source of information appeared in [3].

We adopt a modern terminology and call the plant a distributed game and the controllers
are distributed strategies in this game. A distributed strategy is a function that maps the
causal past of processes to a subset of controllable actions. In the present paper we focus on
the termination condition, which is satisfied when each process is guaranteed to terminate its
computation in finite time, in a final state. A distributed strategy is winning if it guarantees
the termination condition, whatever uncontrollable actions are chosen by the environment.

We are interested in the following problem, whose decidability is an open question.

DISTRIBUTED SYNTHESIS PROBLEM: given a distributed game decide whether there exists a
winning strategy.

There exist three classes of plants for which the DISTRIBUTED SYNTHESIS PROBLEM has
been shown decidable:
1. when the dependency graph of actions is series-parallel [3],
2. when the processes are connectedly communicating [6],
3. and when the dependency graph of processes is a tree [4, 8].

A series-parallel game is a game such that the dependency graph of the alphabet A is a
co-graph. Series-parallel games were proved decidable in [3], for a different setup than ours:
in the present paper we focus on process-based control while [3] was focusing on action-based
control. Actually action-based control is more general than process-based control, see [9] for
more details. The results of the present paper could probably be extended to action-based
control however we prefer to stick to process-based control in order to keep the model
intuitive. To our knowledge, the result of [3] was the first discovery of a class of asynchronous
distributed system with causal memory for which the DISTRIBUTED SYNTHESIS PROBLEM is
decidable.

Connectedly communicating games have been introduced [6]. A game is connectedly
communicating if there is a bound k such that if a process p executes k steps in parallel to
another process ¢ then all further actions of p will be parallel to q. The event structure of a
connectedly communicating games has a decidable MSO theory [6] which implies that the
DISTRIBUTED SYNTHESIS PROBLEM is decidable for these games.

An acyclic game is a game where processes are arranged as a tree and actions are either
local or synchronize a father and its son. Even in this simple setting the DISTRIBUTED
SYNTHESIS PROBLEM is non-elementary hard [4].

Our contribution

We develop a new proof technique to address the DISTRIBUTED SYNTHESIS PROBLEM, and
provide a unified proof of decidability for series-paralell, connectedly communicating and
acyclic games. We design a class of games, called decomposable games, for which the

H. Gimbert

DISTRIBUTED SYNTHESIS PROBLEM is decidable. This leads to new examples of decidable
architectures for controller synthesis.

The winning condition of the present paper is the termination of all processes in a final
state. Richer specifications can be expressed by parity conditions. In the present paper we
stick to termination conditions for two reasons. First, the long-term goal of this research is
to establish the decidability or undecidability of the distributed controller synthesis problem.
A possible first step is to prove decidability for games with termination conditions. Second,
it seems that the results of the present paper can be lifted to parity games, using the same
concepts but at the cost of some extra technical details needed to reason about infinite plays.

Our proof technique consists in simplifying a winning strategy by looking for useless parts
to be removed in order to get a smaller winning strategy. These parts are called useless
repetitions. Whenever a useless repetition exists, we remove it using an operation called a
shortcut in order to get a simpler strategy. Intuitively, a shortcut is a kind of cut-and-paste
operation which makes the strategy smaller. By taking shortcuts again and again, we make
the strategy smaller and smaller, until it does not have any useless repetition anymore.

If a winning strategy exists, there exists one with no useless repetition. In decomposable
games, there is a computable upper bound on the size of strategies with no useless repetition,
which leads to decidability of the controller synthesis problem.

Performing cut-and-paste in a distributed game is not as easy as doing it in a single-
process game. In a single-process game, strategies are trees and one can cut a subtree from
a node A and paste it to any other node B, and the operation makes sense as long as the
state of the process is the same in both nodes. In the case of a general distributed strategy,
designing cut-and-paste operations is more challenging. Such operations on the strategy
tree should be consistent with the level of information of each process, in order to preserve
the fundamental property of distributed strategies: the decisions taken by a process should
depend only on its causal view, not on parallel events.

The decidability of series-parallel games established in [3] relies also on some simplification
of the winning strategies, in order to get uniform strategies. The series-parallel assumption
is used to guarantee that the result of the replacement of a part of a strategy by a uniform
strategy is still a strategy, as long as the states of all processes coincide. Here we work without
the series-parallel assumption, and matching the states is not sufficient for a cut-and-paste
operation to be correct.

This is the reason for introducing the notion of lock. A lock is a part of a strategy where
information is guaranteed to spread in a team of processes before any of these processes
synchronize with a process outside the team. When two locks A and B are similar, in some
sense made precise in the paper, the lock B can be cut and paste on lock A. Upon arrival on
A, a process of the team initiates a change of strategy, which progressively spreads across
the team. All processes of the team should eventually play as if the play from A to B had
already taken place, although it actually did not.

The complexity of our algorithm is really bad, so probably this work has no immediate
practical applications. This is not surprising since the problem is non-elementary even for the
class of acyclic games [4]. Nevertheless we think this paper sheds new light on the difficult
open problem of distributed synthesis.

Organization of the paper

Section 2 introduces the DISTRIBUTED SYNTHESIS PROBLEM. Section 3 provides several
examples. In section 4 we show how to simplify strategies which contain useless repetitions,
and prove that if a winning strategy exists, there exists one without any useless repetition.

30:3

FSTTCS 2017

30:4

On the Control of Asynchronous Automata

Finally, section 5 introduces the class of decomposable games and show their controller
synthesis problem is decidable. A full version of this paper, including proofs, is available as a
technical report [5].

2 The distributed synthesis problem

The theory of Mazurkiewicz traces is very rich, for a thorough presentation see [1]. Here we
only fix notations and recall the notions of traces, views, prime traces and parallel traces.

We fix an alphabet A and a symmetric and reflexive dependency relation D C A x A
and the corresponding independency relation I C A x A defined as Va,b € A,(a 1) <
(a,b) € D. A Mazurkiewicz trace or, more simply, a trace, is an equivalence class for the
smallest equivalence relation = on A* which commutes independent letters i.e. for every
letters a, b and every words wi, ws,

alb = wiabwy = wibaws .

The words in the equivalence class are the linearizations of the trace. The trace whose only
linearization is the empty word is denoted e. All linearizations of a trace u have the same set
of letters and length, denoted respectively Alph(u) and |u|. Given B C A, the set of traces
such that Alph(u) C B is denoted BZX in particular the set of all traces is AZ.

The concatenation on words naturally extends to traces. Given two traces u,v € AL,
the trace uv is the equivalence class of any word in uv. The prefix relation C is defined by
(uCv <= Fwe AL uw =v) . and the suffix relation is defined similarly.

Maxima, prime traces and parallel traces

A letter a € A is a mazimum of a trace u if it is the last letter of one of the linearizations of
u. A trace u € AL is prime if it has a unique maximum, denoted last(u) and called the last
letter of u. Two prime traces u and v are said to be parallel if

neither w is a prefix of v nor v is a prefix of u; and

there is a trace w such that both v and v are prefixes of w. These notions are illustrated

on Fig. 1.

Processes and automata

Asynchronous automata are to traces what finite automata are to finite words, as witnessed
by Zielonka’s theorem [12]. An asynchronous automaton is a collection of automata on finite
words, whose transition tables do synchronize on certain actions.

» Definition 1. An asynchronous automaton on alphabet A with processes P is a tuple
A = ((Ap)pep, (Qp)pep; (ip)pep, (Fp)pep, A) where:
every process p € [P has a set of actions A,, a set of states @), and i, € @ is the initial
state of p and F}, C @, its set of final states.
A =U,ep Ap- For every letter a € A, the domain of a is dom(a) ={p€P|a€ 4,} .
A is a set of transitions of the form (a, (¢p, ¢,)pedom(a)) Where a € A and g;,q,, € Q.
Transitions are deterministic: for every a € A, if 0 = (a,(gp, q))pedom(a)) € A and
6" = (a, (4p, 4) pedom(a)) € A then § = ¢’ (hence Vp € dom(a),q, = q,)-

Such an automaton works asynchronously: each time a letter a is processed, the states of
the processes in dom(a) are updated according to the corresponding transition, while the

H. Gimbert

N O O e W NN
N O Ot s W N

Figure 1 The set processes is {1...7}. A letter is identified with its domain. Here the domains
are either singletons, represented by a single dot, or pairs of contigous processes, represented
by two dots connected with a vertical segment. The trace {2}{3}{4,5}{2,3}{4}{1,2}{3,4} =
{4,5H{4}{2}{3}{2,3}{3,4}{1, 2} is represented on the left-handside. It has two maximal letters

{1,2} and {3,4} thus is not prime. Center left: process 4 sees only its causal view 94(u) (in yellow).

Center right: uvw = uwv since dom(v) N dom(w) = @. Both uv and Js(uw) (in yellow) are prime
prefixes of uvw and they are parallel. Right: uv and J.(uvwec) (in yellow) are parallel.

states of other processes do not change. This induces a natural commutation relation I on
A: two letters commute iff they have no process in common i.e.

(a1b) < (dom(a)Ndom(b) =0) .

The set of plays of the automaton A is a set of traces denoted plays(A) and defined
inductively, along with a mapping state : plays(A) — Il,cpQ).

€ is a play and state(e) = (ip)pep,

for every play u such that (state,(u))pep is defined and (a, (state,(u), qp)pedom(a)) is a
state,(u) if p & dom(a),

transition then wa is a play and Vp € P, state,(ua) =
dp otherwise.

For every play u, state(u) is called the global state of u. The inductive definition of
state(u) is correct because it is invariant by commutation of independent letters of w.

Counting actions of a process

For every trace u we can count how many times a process p has played an action in u, which
we denote |u|,. Formally, |u|, is first defined for words, as the length of the projection of u
on Ap, which is invariant by commuting letters. The domain of a trace is defined as

dom(u) = {p € P | Jul, # 0} .

Views, strategies and games

Given an automaton A, we want the processes to choose actions which guarantee that every
play eventually terminates in a final state.

To take into account the fact that some actions are controllable by processes while some
other actions are not, we assume that A is partitioned in

A=A UA,

30:5

FSTTCS 2017

30:6

On the Control of Asynchronous Automata

where A, is the set of controllable actions and A, the set of (uncontrollable) environment
actions. Intuitively, processes cannot prevent their environment to play actions in A., while
they can decide whether to block or allow any action in A..

We adopt a modern terminology and call the automaton A together with the partition
A= A.U A, a distributed game, or even more simply a game. In this game the processes
play distributed strategies, which are individual plans of action for each process. The choice
of actions by a process p is dynamic: at every step, p chooses a new set of controllable
actions, depending on its information about the way the play is going on. This information is
limited since processes cannot communicate together unless they synchronize on a common
action. In that case however they exchange as much information about the play as they
want. Finally, the information missing to a process is the set of actions which happened in
parallel of its own actions. The information which remains is called the p-view of the play, it
is illustrated on Fig. 1 and defined formally as follows.

» Definition 2 (Views). For every set of processes Q C P and trace u, the Q-view of u,
denoted dg(u), is the unique trace such that u factorizes as u = dg(u) - v and v is the longest
suffix of u such that Q Ndom(v) = 0. In case Q is a singleton {p} the view is denoted 9, (u)
and is either empty or prime. For every letter a € A we denote 94 (u) = Odom(a) (1)

Some useful properties of the Q-view are:

o (uv) = dg (u) dg(v) where Q" = Q U dom(9g(v)) (1)
(QEQ) = (Og(u) E dg(u)) - (2)

We can now define what is a distributed strategy.

» Definition 3 (Distributed strategies, consistent and maximal plays). Let G = (A, A, A.) be
a distributed game. A strategy for process p in G is a mapping which associates with every
play u a set of actions o,(u) such that:

environment actions are allowed: A, C op(u),

the decision depends only on the view of the process: op(u) = 0,(0p(u)).
A distributed strategy is a tuple o = (0p,)pep Where each o, is a strategy of process p. A play
u=ay---a), € plays(A) is consistent with o, or equivalently is a o-play if:

Viel... |ul,Vp € dom(a;),a; € op(ar---ai—1) .
A o-play is maximal if it is not the strict prefix of another o-play.

Note that a strategy is forced to allow every environment action to be executed at every
moment. This may seem to be a huge strategic advantage for the environment. However
depending on the current state, not every action can be effectively used in a transition because
the transition function is not assumed to be total. So in general not every environment
actions can actually occur in a play. In particular it may happen that a process enters a
final state with no outgoing transition, where no uncontrollable action can happen.

Winning games

Our goal is to synthesize strategies which ensure that the game terminates and all processes
are in a final state.

» Definition 4 (Winning strategy). A strategy o is winning if the set of o-plays is finite and
in every maximal o-play u, every process is in a final state i.e. Vp € PP, state,(u) € F, .

H. Gimbert

We are interested in the following problem, whose decidability is an open question.

DISTRIBUTED SYNTHESIS PROBLEM: given a distributed game decide whether there exists a
winning strategy.

If the answer is positive, the algorithm should compute a winning strategy as well.

3 Three decidable classes

Series-parallel games. A game is series-parallel if its dependency alphabet (A, D) is a
co-graph i.e. belongs to the smallest class of graphs containing singletons and closed under
parallel product and complementation. In this case A has a decomposition tree, this is a

binary tree whose nodes are subsets of A, its leaves are the singletons ({a})aca, its root is A.

Moreover every node B with two children By and Bj is the disjoint union of By and By and
either By X By C D (serial product) or (By x B1) N D = () (parallel product).
The synthesis problem is decidable for series-parallel games [3].

Connectedly communicating games. A game is k-connectedly communicating if for every
pair p, g of processes, if process p plays k times in parallel of process ¢ then all further actions
of ¢ will be parallel to p. Formally, for every prime play uvw, (¢ € dom(v) and |v|, > k) =
q € dom(w) .

The MSO theory of the event structure of a k-connectedly communicating game is
decidable [6], which implies that controller synthesis is decidable for theses games.

Acyclic games. An acyclic game is a game where processes P are the nodes of a tree Tp
and the domain of every action is a connected set of nodes of Tp. The synthesis problem is
known to be decidable for acyclic games such that the domain of each action has size 1 or
2 [4].

4 Simplifying strategies

In this section we present an elementary operation called a shortcut, which can be used to
simplify and reduce the duration of a winning strategy.

To create a shortcut, one selects a o-play zy and modifies the strategy o so that as soon
as any of the processes sees the play x in its view, this process assumes that not only x but
also zy has actually occurred. In other words, a shortcut is a kind of cut-and-paste in the
strategy: we glue on node = the sub-strategy rooted at node xy.

The choice of z and y should be carefully performed so that the result of the shortcut
is still a strategy. We provide a sufficient condition for that: (z,y) should be a useless
repetition.

The interest of taking shortcuts is the following: if the original strategy is winning, then
the strategy obtained by taking the shortcut is winning as well, and strictly smaller than the
original one. In the remainder of this section, we formalize these concepts.

4.1 Locks

We need to limit the communication between a set of processes, called a team, and processes
outside the team. This leads to the notion of a @Q-lock: this is a prime play u such that there
is no synchronization between Q and P\ Q in parallel of u.

30:7

FSTTCS 2017

30:8

On the Control of Asynchronous Automata

» Definition 5. Let Q C P. An action b is Q-safe if (dom(b) C Q or dom(b)NQ = 0). A
play u is a Q-lock if it is prime and the last action of every prime play parallel to u is Q-safe.

The notion of lock is illustrated on the right handside of Fig. 1. Set Q = {1,2,3,4,5}.
Then uv is not a Q-lock because J.(uvwe) is parallel to uv but ¢ is not Q-safe. Locks occur
in a variety of situations, including the three decidable classes.

» Lemma 6 (Sufficient conditions for Q-locks). Let u be a prime play of a game G and Q C P.
Each of the following conditions is sufficient for u to be a Q-lock:
(i) @=P.
(i) wis a (P\ Q)-lock.
(iii) Q C dom(last(u)).
(iv) The game is series-parallel and Q = dom(B) where B is the smallest node of the
decomposition tree of A which contains Alph(u).
(v) The game is connectedly communicating game with bound k, Q = dom(u) and Vp €
dom(u), |ul, > k.
(vi) The game is acyclic with respect to a tree Tp and Q is the set of descendants in Tp of
the processes in dom(last(u)).
(vii) There are two traces x and z such that u = xz and z is a Q-lock in the game G, identical
to G except the initial state is changed to state(z).

4.2 Taking shortcuts

In this section we present a basic operation used to simplify a strategy, called a shortcut,
which consists in modifying certain parts of a strategy, called useless repetitions. These
notions rely on the notion of strategic state as well as two operations on strategies called
shifting and projection.

» Definition 7 (Residual). Let o be a strategy, u a o-play and Q C P. The Q-residual of o
after u is the set:

7(o,u,Q) = {(v,0(uv)) | v € AL, dom(v) C Q and uv is a o-play.} .

A winning strategy may take unnecessarily complicated detours in order to ensure
termination. Such detours are called useless repetitions.

» Definition 8 (Strategic state). Let Q C P be a set of processes, o a strategy and u a prime
o-play with maximal letter b. The strategic Q-state of o after u is the tuple

strate, g(u) = (b, state(u), 7 (o, u, Q \ dom(b)))

» Definition 9 (Useless repetition). A useless Q-repetition in a strategy o is a pair of traces
(z,y) such that y is not empty, xy is a o-play, dom(y) C Q, both x and zy are Q-locks and
strate, g(x) = strate, g(zy).

The following theorem is the key to our decidability results.

» Theorem 10. If there exists a winning strategy then there exists a winning strategy without
any useless repetition.

The proof of this theorem relies on the notion of shortcuts, an operation which turns a
winning strategy into another strategy with strictly shorter duration.

H. Gimbert

» Definition 11 (Duration of a strategy). The duration of a strategy o is

dur(o) = Z |w] .

u maximal o-play
The duration of a strategy ¢ may in general be infinite but is finite if ¢ is winning.

» Lemma 12. Let (z,y) be a useless Q-repetition in a strategy o. Let & : AL — AL and T

defined by ®(u) = { wifelu

zyu' if Cu and u = zu’

and

Vp € P, 7p(u) = 0p(P(9p(u))).

1. Then 7 is a strategy called the (x,y)-shortcut of o. Moreover for every trace u,
(u is a T-play) <= (P(u) is a o-play) . (3)
2. If o is a winning strateqy then T is winning as well and has a strictly smaller duration.

The strategy 7 can be summarized as asking to every process "() whenever play x has
occurred, replace it by xy and apply ¢". Claim 1 in Lemma 12 would not hold in general if

(z,y) would not be a useless repetition. For example, assume u = z in the definition above.

In general, right after has occurred, a process p which is not part of the domain of the
maximal action of z is playing in parallel of x and sees a strict prefix 0,(x) of . Thus p
does not know whether the play z has actually occurred. Asking this process to apply () is
"cheating" because by definition of strategies, the decision of p after play x should be based
only on Op(x). However, if (z,y) is a useless repetition then 7 is a distributed strategy, which
relies on the equality o,(®(9p(u))) = 0p(0p(P(u))) for every play u.

Claim 2 relies on dur(7) < dur(o) which follows immediately from (3). And according
to (3) again, the set of global states of the maximal plays is the same for o and 7 thus if ¢ is
winning then 7 is winning as well.

Proof of Theorem 10. As long as there exists a useless repetition, take the corresponding

shortcut. According to Lemma 12, this creates a sequence og, 01, ... of winning strategies
whose duration strictly decreases. Thus the sequence is finite and its last element is a winning
strategy without useless repetition. |

5 Decomposable games

In this section we introduce decomposable games, for which the DISTRIBUTED SYNTHESIS

PROBLEM is decidable (Theorem 21). There are actually three notions of decomposability:

structural decomposability, process decomposability and action decomposability. These three
notions form a hierarchy: structural decomposability implies process decomposability which

itself implies action decomposability (Lemma 19). Known decidable classes are decomposable:

acyclic games are structurally decomposable (Lemma 14), connectedly-communicating games
are process decomposable (Lemma 16) and series-parallel games are action decomposable
(Lemma 18). Structural decomposability is stable under some operations between games
which leads to new examples of decidable games (Lemma 26).

30:9

FSTTCS 2017

30:10

On the Control of Asynchronous Automata

5.1 Decomposability

The notions of decomposability rely on preorders defined on 2F or 24. A preorder < is a
reflexive and transitive relation. We denote < the relation (x < y) < (z Xy Ay £ z).

Structural decomposability. This notion of decomposability relies on a preorder < on 2F
which is monotonic with respect to inclusion, i.e. VQ,Q' CP, (QCQ = Q=< Q).

» Definition 13 (Structural decomposability). A game is <-structurally decomposable if for
every non-empty prime trace y € AL there exists Q D dom(y) and b € Alph(y) such that:

(Q\ dom(b)) < Q
Va € A, (alb = ais Q-safe) .

We say a game is structurally decomposable if it is <-structurally decomposable for some
preorder <. We have already seen one example of such games.

» Lemma 14. Acyclic games are structurally decomposable.

Proof. Assume the game is acyclic with process tree Tp. Set Q < Q' iff every process in Q
has a Tp-ancestor in ', which is monotonic with respect to inclusion. Let y be a prime trace,
p € P the least common ancestor in Tp of processes in dom(y) and Q the set of descendants
of p. Then dom(y) C Q. Moreover, since y is prime and since the domain of every action
is a connected subset of Tp then dom(y) is connected as well thus p € dom(y) and there
exists a letter b € Alph(y) such that p € dom(b). We show that b satisfies the conditions in
the definition of structural decomposability. First, (Q \ dom(b)) = Q and the inequality is
strict because the only ancestor of p in Q is p itself and p € dom(b). Second, let a € A such
that a T b. Then p € dom(a) and since dom(a) is connected in Tp, then either none of the
processes in dom(a) or all of them are descendants of p in Tp, i.e. a is Q-safe. |

Process decomposability. The definition of process decomposable games relies on a para-

meter k € N and a preorder < on 2F which is monotonic with respect to inclusion.

» Definition 15 (Process decomposable games). Fix an integer k. A trace y is k-repeating if
y is not empty and Vp € dom(y), |y|, > k .

A game is (=, k)-process decomposable if for every prime play xy, if y is k-repeating then
there exists Q 2 dom(y) and a prime prefix z C y such that Ojag(2)(22) is a Q-lock and

(Q\ dom(last(z))) < dom(y) . (4)

We have already seen one example of process decomposable games.
» Lemma 16. Connectedly communicating games are process decomposable.
Action decomposability. Action decomposability is defined with respect to a parameter
k € N and a preorder < on 24 which is monotonic with respect to inclusion.

» Definition 17 (Action decomposable games). Let k be an integer. A game is (X, k) action
decomposable if for every prime play zy such that y is k-repeating, there exists Q O dom(y)
and a prime prefix z C y such that Ojag(2)(22) is a Q-lock and

{a € A | dom(a) C (Q\ dom(last(z))} < Alph(y) .

H. Gimbert

We have already seen one example of action decomposable games.
» Lemma 18. Series-parallel games are action decomposable.
Finally we show that these notions form a hierarchy.

» Lemma 19. Fvery structurally decomposable game is process decomposable and every
process decomposable game is action decomposable.

Thus action decomposability is the most general notion of decomposability. In the sequel
for the sake of conciseness, it is simply called decomposability.

5.2 Decidability

In this section we show that decomposability is a decidable property and decomposable
games have a decidable controller synthesis problem.

» Lemma 20 (Decomposability is decidable). Whether a game is decomposable is decidable.
There exists a computable function decomp from games to integers such that whenever a
game G is (X, k) decomposable for some k, it is (=, decomp(G)) decomposable.

» Theorem 21. The distributed synthesis problem is decidable for decomposable games.

Proof of Theorem 21. We show that there exists a computable function f from games to
integers such that in every decomposable distributed game G every strategy with no useless
repetition has duration < f(G).

Let < be a preorder on 2”4 compatible with inclusion, &’ an integer and G a (=<, k") action
decomposable distributed game. Assume k' = decomp(G) w.l.o.g. (cf. Lemma 20).

For every set of actions B C A, denote Gp the game with actions B and the same
processes, initial state and final states than G. The transitions of G are all transitions of G
whose action is in B. An action a € B is controllable in G iff it is controllable in G.

We show that for every B C A the game G is (X, k') decomposable, where <5 denotes
the restriction of < to 2B. Let zy be a prime play of G g such that y is k’-repeating. Since G is
(=, k") decomposable, there exists Q 2 dom(y) and a prime prefix z C y such that Opas(z)(22)
is a Q-lock in G and C' < Alph(y) where C = {a € A | dom(a) C Q and a I last(z)}. Since <
is monotonic with respect to inclusion then {b € B | dom(b) C Q and b I last(z)} = (CNB) =<
C < Alph(y) thus (C'N B) <p Alph(y). Since zy is a play in Gp then O (z)(22) E 2y is a
play in Gp as well. And since every play in G is a play in G, Ojag(2) (22) is a Q-lock not
only in G but also in Gg. All conditions of action decomposability are met : Gp is (=Zp, k')
decomposable.

Denote Rp(m) the largest size of a complete undirected graph whose edges are labelled
with 28 and which contains no monochromatic clique of size > m. According to Ramsey’s
theorem, Rp(m) is finite and computable. For every B C A, defined inductively f(Gp) as :

)

1(Gr) = Ri (' +[B)) - B - |QI1 - 270

with the convention max () = 0.
Fix a strategy o with no useless repetition. We prove that for every o-play zu,

lul < f (G atph(u))

(
The proof is by induction on Alph(u) with respect to <. The base case when Alph(u) = 0 is
easy, in this case |u| = 0.

5)

30:11

FSTTCS 2017

30:12

On the Control of Asynchronous Automata

Now let zu be a o-play consistent with . Assume the induction hypothesis holds: for
every o-play 2/u/, if Alph(u') < Alph(u) then [u/| < f (G aiph(u))-

We start with computing, for every non-empty set of letters B < Alph(u) an upper bound
on the length of every factorization u = uguy - - - unyun1 such that

B = Alph(uy) = Alph(ug) = ... = Alph(un) . (6)

For a start, we consider the case where B is connected in the sense where the dependency
graph D = (B, DN B x B) is connected. Set k = k' + [P|. For 0 < ¢ < £, denote w, the
concatenation wy = U1k - Uark -+ Ugter and hy = zugwy ... we—1. Let Rp = dom(B) and
fix some ¢ € B.

Let 0 < ¢ < . We show that d.(wy) is k'-repeating and dc(hewy) = Or,, (he) Oc(wy).
Since wy = U1k - Uatek - - Uktk, according to property (1) of views there exists a sequence
P2 R; D... 2R such that

Oc(we) = Or, (u14ek) Or, (Uatek) - - - Ory, (Uktek) (7)

where Ry = {c} and for every 1 <i <k —1, R; = R;y; Udom(Jg,,, (4it14¢x)). Since the
sequence (R;)i<j<p/4(p| is monotonic, there exists i € k'... k" + [P| such that R; = Ry ;.
Denote R = R; = R;41 and B’ = {b € B,dom(b) NR # @} and B” = {b € B,dom(b) C R}.
By definition of views, and according to (6), B’ C Alph(Or(u;114ex)). Since R = R; = R;41
and R; = R;11Udom (0O, , (ti414¢k)) then dom(Or (tit14ex)) € R thus Alph(Or (wiy14er)) C
B”. Since B” C B’ then finally B’ = Alph(Or(uit14¢x)) = B”. Thus the set B” is a
connected component of the graph D = (B, D N B X B): by definition of B’ and B”, all
edges with source B” have target in B’ = B”. However by hypothesis Dp is connected thus
B =B = B" and R = Rp. Finally Rp C R; C R; and since Ry C dom(d.(w¢)) C Rp, the
sequence (R;)1<i<; is constant equal to Rg. Thus, according to (6) and the definition of
Rp, for every 1 <4 <4, Or, (us1ex) = ug4ox. Thus, according to (6) and (7) and since
k' <, every letter of B occurs at least k' times in 9.(wy) thus 0.(wy) is k’-repeating and
ac(hgwg) = 8RB (he) 8C(w¢).

Since the game is (<, k’) decomposable and J.(wy) is k’-repeating, and 9.(hewy)
Ok (he) Oc(wy), there exists a superset T) of Ry, an action by, and a prime prefix wiyby
Oc(we) such that the play z; = Op,(Or, (he)w)by) is a T®-lock and By < B where By
{a € A|dom(a) C (T® \ dom(b))} .

For every 0 < /4 < %, denote strate; = (bg, (se’p)pepﬂ(@)) the T® strategic state of o

i

after zp. We show two properties of (strates)o<pox .
First, all elements of (strates)y< ~ are distinct. For the sake of contradiction, assume
strate, = stratey forsome 0 < ¢ < ¢ < % We show that z; T zp. Since strate, = stratey
then b, = bys, denote this letter b. Then

20 = Op(Or s (he)wyb) E 9y (ks (he) De(we)) = Ip(De(howe))
C 9p(9c(her)) C 9p(0g s (her)) T Op(Ory (her)wiypb) = zor

where the second inequality holds because hyw; E hy since £ < ¢/ — 1, and the third
inequality holds because ¢ € B thus dom(c) C Rp hence property (2) applies. Moreover
the last inequality is strict because there is at least one more b in 0y (9gr, (her)wy,b) than in
Op(Ory (her)). We get a contradiction because by hypothesis there is no useless repetition
in o, however, denoting x = 2y and y such that xy = 2y, the pair (z,y) is a useless
T -repetition in o: by hypothesis the strategic T(¥)-states of z; and zy are equal and
both z and zy are T)-locks, moreover y is not empty because z; C zp and finally
dom(y) C dom(uiyek - - - urper) € Rp € T, Thus (z,y) is a useless repetition in o.

H. Gimbert

Second, for every 0 < ¢ < . all plays in ¢(® = 7(0, 2, T \ dom(b)) have length

< m = maxp <p f (Gp'). Let zu' be a o-play such that dom(u') C (T® \ dom(by)).
Then Alph(v’) C By. Since < is monotonic with respect to inclusion, Alph(u') <X By <
B = Alph(u). Thus by induction hypothesis, |v/| < f (G apn(u)) < m.

oml|A|[P|

According to the second property, there are at most 2 different residuals appearing

in the sequence (a([))ogk%. Thus the sequence (strateg)ogk% takes at most K = |B] -

|Q|I! - 22" Jifferent values. And according to the first property, all these states are
different thus N <k - K.

The inequality N < k - K has been established under the assumption that Dpg is
connected. The general case reduces to this case: let C' be a connected component of Dp
and for 1 <i < N let v; be the projection of u; on C. Then V1 < i < N, Alph(v;) = C and
there exists u(, such that u = ujvivs ... vyuyy1 thus N < k- K.

Let us reformulate the inequality N < k- K as a property of an undirected complete
graph with edges colored by 24. Let u = ajas - - - aj,| the factorization of u into its letters.
Let J, be the complete graph with vertices 1,...,|u| and the label of the edge {i,j} with
i < j is the set of letters {a;,...,a;}. Then every monochromatic clique of .J,, has size
< k- K. Thus, according to Ramsey theorem, |u| < Ry (k- K) = Rr (K’ + |P|) - K), which
completes the inductive step.

As a consequence, winning strategies in G can be looked for in the finite family of
strategies all of whose plays have length < f(G) with f(G) computable. As a consequence,
the synthesis problem can be solved by enumerating all these strategies and testing whether
any of them is winning. For testing whether a strategy of finite duration is winning the
algorithm simply checks that the global state of all the maximal plays is final. |

5.3 New examples of decidable games

The three classes of games whose decidability is already known are decomposable (cf Lem-
mas 14, 16 and 18). In this section we give some new examples of decidable games.

» Lemma 22. Four players games are structurally decomposable.

Although our techniques do not seem to provide an algorithm for solving games with five
processes, they can address a subclass.

» Lemma 23. Let G be a distributed game with five processes. Assume that the number of
actions that a process can successively play in a row without synchronizing simultaneously
with two other processes is bounded. Then G is process decomposable.

Another decidable example is the class of majority games:

» Lemma 24 (Majority games). Assume that every non-local action synchronizes a magjority
of the processes i.e. for every action a, |dom(a)| =1 or |dom(a)| > |P\ dom(a)|. Then the
game is structurally decomposable.

The class of structurally decomposable games is stable under projection and merge.

» Definition 25 (Projecting games). Let G be a game with processes P and alphabet (A,),ep-
Let P’ C IP a subset of the processes. The projection of G on I’ is the game G’ with processes
P" and alphabet A’ = {a € A | dom(a) NP" # 0} partitioned in (A’ N A,),ep. The states of
a process p € P’ are the same in G and G’, every transition § € {a} X ,cdom(a)@p X @p Of
G on a letter a € A’ is projected to {a} X Il edom(a)nr@p X @p, and every transition on a
letter a € A’ is simply deleted.

30:13

FSTTCS 2017

30:14

On the Control of Asynchronous Automata

Figure 2 A decidable process architecture.

The following result combines two structurally decomposable games into one.

» Lemma 26 (Merging games). Let G be a game, and Py, P C P two set of processes such
that P = Py UP, and Py NPy # O and for every action a € A,

(dom(a) NPy # 0) A (dom(a) NPy # 0) = (Po NPy C dom(a)) .

If both projections of G on (Po \ P1) and (P1 \ Po) are structurally decomposable then G is
structurally decomposable.

The merge operation can combine two structurally decomposable games in order to
create a new one. For example all acyclic games can be obtained this way, since 3-player
games are structurally decomposable and every tree with more than three nodes can be
obtained by merging two strictly smaller subtrees. This technique can go beyond acyclic
games, by merging together 4-player games and majority games. The graph of processes is
an undirected graph with nodes P and there is an edge between p and ¢ whenever both p
and ¢ both belong to the domain of one of the actions. Then all the games whose graph of
processes is contained in the one depicted on Fig. 2 are structurally decomposable.

6 Conclusion

We considered the DISTRIBUTED SYNTHESIS PROBLEM, which aims at controlling asynchronous
automata using automatically synthesized controllers with causal memory. We presented a
theorem that unifies several known decidability results and provide new ones.

The decidability of this problem is, to the best of our knowledge, stil opened, even in the
simple case where the graph of processes is a ring of five processes where each process can
interact only with both its neighbors.

Another intriguing open problem is the case of weakly k-connectedly communicating
plants. In such a plant, whenever two processes play both k times in a row without hearing
from each other, they will never hear from each other anymore. It is not known whether
the MSO theory of the corresponding event structures is decidable or not [6], neither do we
know how to use techniques of this paper to solve this class of games.

Acknowledgements. We thank Blaise Genest, Anca Muscholl, Igor Walukiewicz, Paul
Gastin and Marc Zeitoun for interesting discussions on the topic. Moreover we thank one
of the reviewers of a previous version, who spotted several mistakes and did provide very
useful comments which led to several improvements in the presentation of the results. We
also thank Engel Lefaucheux for spotting a missing hypothesis in Lemma 26.

—— References

1 Volker Diekert and Grzegorz Rozenberg. The Book of Traces. World Scientific, 1995. URL:
https://books.google.co.uk/books?id=vNFLOE2pjuAC.

https://books.google.co.uk/books?id=vNFLOE2pjuAC

H. Gimbert

10

11

12

Bernd Finkbeiner and Sven Schewe. Uniform distributed synthesis. In Logic in Computer
Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium on, pages 321-330.
IEEE, 2005.

Paul Gastin, Benjamin Lerman, and Marc Zeitoun. Distributed games with causal memory
are decidable for series-parallel systems. In Kamal Lodaya and Meena Mahajan, editors,
FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science,
24th International Conference, Chennai, India, December 16-18, 200/, Proceedings, volume
3328 of Lecture Notes in Computer Science, pages 275-286. Springer, 2004. doi:10.1007/
978-3-540-30538-5_23.

Blaise Genest, Hugo Gimbert, Anca Muscholl, and Igor Walukiewicz. Asynchronous
games over tree architectures. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwi-
atkowska, and David Peleg, editors, Automata, Languages, and Programming - 40th In-
ternational Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part
II, volume 7966 of Lecture Notes in Computer Science, pages 275—286. Springer, 2013.
doi:10.1007/978-3-642-39212-2_26.

Hugo Gimbert. A class of zielonka automata with a decidable controller synthesis problem.
CoRR, abs/1601.05176, 2016. arXiv:1601.05176.

P. Madhusudan, P. S. Thiagarajan, and Shaofa Yang. The MSO theory of connec-
tedly communicating processes. In Ramaswamy Ramanujam and Sandeep Sen, edit-
ors, FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Sci-
ence, 25th International Conference, Hyderabad, India, December 15-18, 2005, Proceed-
ings, volume 3821 of Lecture Notes in Computer Science, pages 201-212. Springer, 2005.
doi:10.1007/11590156_16.

Anca Muscholl. Automated synthesis of distributed controllers. In Magnis M. Halldérsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part I, volume 9135 of Lecture Notes in Computer Science, pages 11-27.
Springer, 2015. doi:10.1007/978-3-662-47666-6_2.

Anca Muscholl and Igor Walukiewicz. Distributed synthesis for acyclic architectures. In
Venkatesh Raman and S. P. Suresh, editors, 34th International Conference on Foundation
of Software Technology and Theoretical Computer Science, FSTTCS 2014, December 15-17,
2014, New Delhi, India, volume 29 of LIPIcs, pages 639—-651. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.639.

Anca Muscholl, Igor Walukiewicz, and Marc Zeitoun. A look at the control of asynchron-
ous automata. In M. Mukund K. Lodaya and eds. N. Kumar, editors, Perspectives in
Concurrency Theory. Universities Press, CRC Press, 2009.

Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize. In
Foundations of Computer Science, 1990. Proceedings., 31st Annual Symposium on, pages
746-757. IEEE, 1990.

Peter JG Ramadge and W Murray Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, 77(1):81-98, 1989.

Wieslaw Zielonka. Notes on finite asynchronous automata. ITA, 21(2):99-135, 1987.

30:15

FSTTCS 2017

http://dx.doi.org/10.1007/978-3-540-30538-5_23
http://dx.doi.org/10.1007/978-3-540-30538-5_23
http://dx.doi.org/10.1007/978-3-642-39212-2_26
http://arxiv.org/abs/1601.05176
http://dx.doi.org/10.1007/11590156_16
http://dx.doi.org/10.1007/978-3-662-47666-6_2
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.639

	Introduction
	The distributed synthesis problem
	Three decidable classes
	Simplifying strategies
	Locks
	Taking shortcuts

	Decomposable games
	Decomposability
	Decidability
	New examples of decidable games

	Conclusion

