
Report from Dagstuhl Seminar 17352

Analysis and Synthesis of Floating-point Programs
Edited by
Eva Darulova1, Alastair F. Donaldson2, Zvonimir Rakamarić3, and
Cindy Rubio-González4

1 MPI-SWS – Saarbrücken, DE, eva@mpi-sws.org
2 Imperial College London, GB, alastair.donaldson@imperial.ac.uk
3 University of Utah – Salt Lake City, US, zvonimir@cs.utah.edu
4 University of California – Davis, US, crubio@ucdavis.edu

Abstract
This report summarises the presentations, discussion sessions and panel that took place during the
Dagstuhl seminar on “Analysis and Synthesis of Floating-point Programs” that took place during
August 27 – 30, 2017. We hope that the report will provide a useful resource for researchers today
who are interested in understanding the state-of-the-art and open problems related to analysing
and synthesising floating-point programs, and as a historical resource helping to clarify the status
of this field in 2017.

Seminar August 27–30, 2017 – http://www.dagstuhl.de/17352
1998 ACM Subject Classification Design and analysis of algorithms, Approximation algorithms

analysis, Numeric approximation algorithms, Logic, Automated reasoning
Keywords and phrases energy-efficient computing, floating-point arithmetic, precision allocation,

program optimization, rigorous compilation
Digital Object Identifier 10.4230/DagRep.7.8.74

1 Executive Summary

Eva Darulova
Alastair F. Donaldson
Zvonimir Rakamarić
Cindy Rubio-González

License Creative Commons BY 3.0 Unported license
© Eva Darulova, Alastair F. Donaldson, Zvonimir Rakamarić, and Cindy Rubio-González

This report documents the program and the outcomes of Dagstuhl Seminar 17352 “Analysis
and Synthesis of Floating-point Programs”.

Floating-point numbers provide a finite approximation of real numbers that attempts to
strike a fine balance between range, precision, and efficiency of performing computations.
Nowadays, performing floating-point computations is supported on a wide range of computing
platforms, and are employed in many widely-used and important software systems, such as
high-performance computing simulations, banking, stock exchange, self-driving cars, and
machine learning.

However, writing correct, and yet high-performance and energy-efficient, floating-point
code is challenging. For example, floating-point operations are often non-associative (contrary
to their real mathematical equivalents), which creates problems when an ordering of operations
is modified by either a compiler or due to nondeterministic interleavings of concurrent
executions. Furthermore, the underlying floating-point hardware is often heterogeneous,

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Analysis and Synthesis of Floating-point Programs, Dagstuhl Reports, Vol. 7, Issue 8, pp. 74–101
Editors: Eva Darulova, Alastair F. Donaldson, Zvonimir Rakamarić, and Cindy Rubio-González

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/17352
http://dx.doi.org/10.4230/DagRep.7.8.74
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 75

hence different results may be computed across different platforms or even across components
of the same heterogeneous platform. Given the underlying complexity associated with
writing floating-point code, it is not surprising that there have been numerous software bugs
attributed to incorrectly implemented floating-point computations.

Research related to floating-point computation spans a multitude of areas of computer
science, ranging from hardware design and architecture, all the way to high-performance
computing, machine learning, and software analysis and verification. The objective of this
seminar was thus to bring together researchers from several of these areas, which have
either traditionally been considered as non-overlapping, or which have arguably enjoyed
insufficient interaction despite a clear overlap of interests. The goal in mind here was to
provide opportunities to brainstorm new theoretical advances and practical techniques and
tools for making floating-point computations performant and correct, and to help foster long
term collaborations.

The seminar involved brief presentations from most participants, interspersed with a lot of
informal technical discussion, in addition to four breakout sessions based on common themes
that arose during informal discussion. In addition, a joint panel session was held between
this seminar and the concurrently running “Machine Learning and Formal Methods” seminar.
This report presents the collection of abstracts associated with the participant presentations,
notes summarising each discussion session, and a transcript of the panel session. We hope
that the report will provide a useful resource for researchers today who are interested in
understanding the state-of-the-art and open problems related to analysing and synthesising
floating-point programs, and as a historical resource helping to clarify the status of this field
in 2017.

17352

76 17352 – Analysis and Synthesis of Floating-point Programs

2 Table of Contents

Executive Summary
Eva Darulova, Alastair F. Donaldson, Zvonimir Rakamarić, and Cindy Rubio-González 74

Overview of Talks
Algorithm – Architecture Codesign
George A. Constantinides . 78

Salsa: An Automatic Tool to Improve the Numerical Accuracy of Programs
Nasrine Damouche . 78

Algorithms for Efficient Reproducible Floating Point Summation and BLAS
James W. Demmel . 79

A Comprehensive Study of Real-World Numerical Bug Characteristics
Anthony Di Franco . 80

Testing Compilers for a Language With Vague Floating-Point Semantics
Alastair F. Donaldson . 80

Floating-Point Cadence
Theo Drane . 81

Floating-point result-variability: sources and handling
Ganesh L. Gopalakrishnan . 82

Hierarchical Search in Floating-Point Precision Tuning
Hui Guo . 82

Auto-tuning Floating-Point Precision
Jeffrey K. Hollingsworth . 83

Floating Point Computations in the Multicore and Manycore Era
Miriam Leeser . 83

JFS: Solving floating point constraints with coverage guided fuzzing
Daniel Liew . 84

Autotuning for Portable Performance for Specialized Computational Kernels
Piotr Luszczek . 84

Interval Enclosures of Upper Bounds of Roundoff Errors using Semidefinite Pro-
gramming
Victor Magron . 85

Verification for floating-point, floating-point for verification
David Monniaux . 85

Alive-FP: Automated Verification of Floating Point Optimizations in LLVM
Santosh Nagarakatte . 86

Debugging Large-Scale Numerical Programs with Herbgrind
Pavel Panchekha . 86

Utah Floating-Point Toolset
Zvonimir Rakamarić . 87

Condition Number and Interval Computations
Nathalie Revol . 87

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 77

Dynamic Analysis for Floating-Point Precision Tuning
Cindy Rubio-González . 88

FPBench: Toward Standard Floating Point Benchmarks
Zachary Tatlock . 88

Impacts of non-determinism on numerical reproducibility and debugging at the
exascale
Michela Taufer . 89

An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-
Point
Laura Titolo . 89

Stabilizing Numeric Programs against Platform Uncertainties
Thomas Wahl . 90

Working groups
Notes from Breakout Session: “Analysis Tools for Floating-Point Software”
Pavel Panchekha . 90

Notes from Breakout Session: “Specifications for Programs Computing Over Real
Number Approximations”
Cindy Rubio-González . 92

Notes from Breakout Session: “Compilers: IEEE Compliance and Fast Math
Requirements”
Daniel Schemmel . 93

Notes from Breakout Session: “Reproducibility in Floating-Point Computation”
Thomas Wahl . 94

Panel discussions
Notes from Joint Panel Discussion between the “Analysis and Synthesis of Floating-
Point Programs” and “Machine Learning and Formal Methods” Seminars
Alastair F. Donaldson . 95

Participants . 101

17352

78 17352 – Analysis and Synthesis of Floating-point Programs

3 Overview of Talks

3.1 Algorithm – Architecture Codesign
George A. Constantinides (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© George A. Constantinides

Joint work of George Constantinides, Peter Cheung, Xitong Gao, Wayne Luk
URL http://cas.ee.ic.ac.uk/people/gac1

This talk takes a look at the changing face of computer architecture and the implications for
numerical compute. I argue that the drive in computer architecture in recent years has been
to give more silicon (and more energy) back to computation, and I note that the rise of FPGA-
based computation results in many possibilities for non-standard, customised arithmetic. I
review work from my group in the early 2000s, which first considered the question of precision
tuning for such customisation, for LTI systems implemented in fixed-point arithmetic. I then
move to look at some more recent work from my group which automatically refactors code to
explore the Pareto tradeoff between accuracy, area, and performance of algorithms specified
in floating-point and implemented in FPGA hardware. Finally, I pose some automation
challenges to the community – success in these challenges is likely to require the combined
efforts of architects, computer arithmetic researchers, numerical analysts and programming
language researchers.

3.2 Salsa: An Automatic Tool to Improve the Numerical Accuracy of
Programs

Nasrine Damouche (University of Perpignan, FR)

License Creative Commons BY 3.0 Unported license
© Nasrine Damouche

Joint work of Nasrine Damouche, Matthieu Martel
Main reference Nasrine Damouche, Matthieu Martel, “Salsa: An Automatic Tool to Improve the Numerical

Accuracy of Programs”, Automated Formal Methods (AFM), 2017.
URL http://fm.csl.sri.com/AFM17/AFM17_paper_4.pdf

This talk describes Salsa, an automatic tool to improve the accuracy of the floating-point
computations done in numerical codes. Based on static analysis methods by abstract
interpretation, our tool takes as input an original program, applies to it a set of transformation
rules and then generates a transformed program which is more accurate than the initial one.
The original and the transformed programs are written in the same imperative language.
This talk is a concise description of former work on the techniques implemented in Salsa,
extended with a presentation of the main software architecture, the inputs and outputs of
the tool as well as experimental results obtained by applying our tool on a set of sample
programs coming from embedded systems and numerical analysis.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://cas.ee.ic.ac.uk/people/gac1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://fm.csl.sri.com/AFM17/AFM17_paper_4.pdf
http://fm.csl.sri.com/AFM17/AFM17_paper_4.pdf
http://fm.csl.sri.com/AFM17/AFM17_paper_4.pdf

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 79

3.3 Algorithms for Efficient Reproducible Floating Point Summation
and BLAS

James W. Demmel (University of California – Berkeley, US)

License Creative Commons BY 3.0 Unported license
© James W. Demmel

Joint work of James W. Demmel, Peter Ahrens, Hong Diep Nguyen, Greg Henry, Peter Tang, Xiaoye Li, Jason
Riedy, Mark Gates

Main reference J. Demmel, I. Dumitriu, O. Holtz, P. Koev, “Accurate and Efficient Expression Evaluation and
Linear Algebra,” Acta Numerica, v. 17, 2008.

URL https://tinyurl.com/y8yxq94n

We briefly present 3 topics: (1) Reproducibility. We define reproducibility to mean getting
bitwise identical results from multiple runs of the same program, perhaps with different
hardware resources or other changes that should ideally not change the answer. Many users
depend on reproducibility for debugging or correctness. However, dynamic scheduling of
parallel computing resources, combined with non-associativity of floating point addition,
makes attaining reproducibility a challenge even for simple operations like summing a vector
of numbers, or more complicated operations like the Basic Linear Algebra Subprograms
(BLAS). We describe two versions of an algorithm to compute a reproducible sum of floating
point numbers, independent of the order of summation. The first version depends only on a
subset of the IEEE Floating Point Standard 754-2008, and the second version uses a possible
new instruction in the proposed Standard 754-2018. The algorithm is communication-optimal,
in the sense that it does just one pass over the data in the sequential case, or one reduction
operation in the parallel case, requiring a “reproducible accumulator” represented by just
6 floating point words (more can be used if higher precision is desired), enabling standard
tiling techniques used to optimize the BLAS. The arithmetic cost with a 6-word reproducible
accumulator is 7n floating point additions to sum n words using version 1, or 3n using version
2, and (in IEEE double precision) the final error bound can be up to 108 times smaller than
the error bound for conventional summation on ill-conditioned inputs. We also describe
ongoing efforts to incorporate this in a future BLAS Standard. We seek feedback on this
proposed new instruction, which is also intended to accelerate many existing algorithms for
double-double, compensated summation, etc. For details see [1]. (2) New BLAS Standard.
The BLAS standards committee is meeting again to consider a new version, motivated by
industrial and academic demand for new precisions, batched BLAS, and reproducible BLAS.
This is also an opportunity to improve floating point exception handling in the BLAS, which
currently propagates exceptions, e.g. NaNs, inconsistently. We seek feedback on the draft
standard, available at [2]. (3) Automatic generation of accurate floating point formulas. This
was a topic at Dagstuhl 05391, 25-30 Sept, 2005, when Olga Holtz presented joint work on
the decidability of whether an expression guaranteeing high relative accuracy exists for a
given algebraic expression (in the 1 + delta model, so real numbers). We give an example of
this (the Motzkin polynomial) and point out more recent (prize-winning) results in [3].

Topic (1) is joint work with Peter Ahrens (former UCB undergrad, now a grad student
at MIT) and Hong Diep Nguyen (former UCB postdoc, now at a startup) [1].

Topic (2) is joint work with Greg Henry (Intel), Peter Tang (Intel), Xiaoye Li (LBNL),
Jason Riedy (GaTech) and Mark Gates (U Tenn) [2].

Topic (3) is joint work with Olga Holtz (UCB), Ioana Dumitriu (U Wash), and Plamen
Koev (former UCB grad student, now at SJSU) [3].

17352

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://tinyurl.com/y8yxq94n
https://tinyurl.com/y8yxq94n
https://tinyurl.com/y8yxq94n

80 17352 – Analysis and Synthesis of Floating-point Programs

References
1 J. Demmel, P. Ahrens, H.-D. Nguyen. Efficient Reproducible Floating Point Summation

and BLAS. UC Berkeley EECS Tech Report UCB/EECS-2016-121, June 2016.
2 J. Demmel, M. Gates, G. Henry, X. S. Li, J. Riedy, P. T. P. Tang. A proposal for a Next-

Generation BLAS. Writable document (at time of writing) for submission of comments:
https://tinyurl.com/y8yxq94n, August 2017.

3 J. Demmel, I. Dumitriu, O. Holtz, P. Koev. Accurate and Efficient Expression Evaluation
and Linear Algebra. Acta Numerica, v. 17, 2008.

3.4 A Comprehensive Study of Real-World Numerical Bug
Characteristics

Anthony Di Franco (University of California – Davis, US)

License Creative Commons BY 3.0 Unported license
© Anthony Di Franco

Joint work of Anthony Di Franco, Hui Guo, Cindy Rubio-González
Main reference Anthony Di Franco, Hui Guo, Cindy Rubio-González: “A comprehensive study of real-world

numerical bug characteristics”, in Proc. of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017,
pp. 509–519, IEEE Computer Society, 2017.

URL http://dx.doi.org/10.1109/ASE.2017.8115662

Numerical software is used in a wide variety of applications including safety-critical systems,
which have stringent correctness requirements, and whose failures have catastrophic con-
sequences that endanger human life. Numerical bugs are known to be particularly difficult to
diagnose and fix, largely due to the use of approximate representations of numbers such as
floating point. Understanding the characteristics of numerical bugs is the first step to combat
them more effectively. In this paper, we present the first comprehensive study of real-world
numerical bugs. Specifically, we identify and carefully examine 269 numerical bugs from five
widely-used numerical software libraries: NumPy, SciPy, LAPACK, GNU Scientific Library,
and Elemental. We propose a categorization of numerical bugs, and discuss their frequency,
symptoms and fixes. Our study opens new directions in the areas of program analysis, testing,
and automated program repair of numerical software, and provides a collection of real-world
numerical bugs.

3.5 Testing Compilers for a Language With Vague Floating-Point
Semantics

Alastair F. Donaldson (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Alastair F. Donaldson

Joint work of Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, Paul Thomson
Main reference Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, Paul Thomson: “Automated testing of

graphics shader compilers”, PACMPL, Vol. 1(OOPSLA), pp. 93:1–93:29, 2017.
URL http://dx.doi.org/10.1145/3133917

The OpenGL shading language (GLSL) deliberately has vague semantics when it comes
to floating-point arithmetic, stating (see p. 90 of the OpenGL Shading Language 4.50
specification):

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ASE.2017.8115662
http://dx.doi.org/10.1109/ASE.2017.8115662
http://dx.doi.org/10.1109/ASE.2017.8115662
http://dx.doi.org/10.1109/ASE.2017.8115662
http://dx.doi.org/10.1109/ASE.2017.8115662
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3133917
http://dx.doi.org/10.1145/3133917
http://dx.doi.org/10.1145/3133917

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 81

“Without any [precision] qualifiers, implementations are permitted to perform such
optimizations that effectively modify the order or number of operations used to evaluate
an expression, even if those optimizations may produce slightly different results relative
to unoptimized code.”

As a result, it is hard to test compilers for GLSL: there is no predefined image that a
shader should render for a given input, and differential testing across shader compilers for
different platforms is not straightforward because one can legitimately expect differences in
rendering results.

We have been investigating an alternative testing approach using metamorphic testing,
inspired by recent work on compiler validation using equivalence modulo inputs testing. We
take an initial shader and make from it a family of variant shaders by applying semantics-
preserving transformations, or more precisely transformations that would have no impact
on semantics if floating-point operations were replaced with real number operations. We
then render, on a single platform, all the images generated by compiling and executing each
shader in the family. While we do expect to see pixel-level differences between rendered
images, since our transformations may have impacted on floating-point computation, if the
initial shader is numerically stable these differences should not be large. Using an image
comparison metric, such as the chi-squared distance between image histograms, we can
automatically flag up variant shaders that give rise to large rendering differences. To such
deviant shaders we then apply a form of delta-debugging whereby we iteratively reverse the
semantics-preserving transformations that were initially applied, converging on a shader that
differs minimally from the original shader such that the source-level difference – which should
be semantics-preserving – causes a large difference in rendering. Inspection of this difference
then sheds light on whether there is a compiler bug, or whether the original shader is in fact
numerically unstable.

We have implemented this method in a tool, GLFuzz, which we have successfully applied
to a number of commercial shader compilers, finding a large number of defects that we
track via a repository (see https://github.com/mc-imperial/shader-compiler-bugs/), with
highlights from the work summarized via a series of online posts (see https://medium.com/
@afd_icl/689d15ce922b).

3.6 Floating-Point Cadence
Theo Drane (Cadence Design Systems – Bracknell, GB)

License Creative Commons BY 3.0 Unported license
© Theo Drane

Main reference Theo Drane, “Lossy Polynomial Datapath Synthesis”, PhD thesis, Imperial College London, 2014.
URL https://spiral.imperial.ac.uk/handle/10044/1/15566

Cadence’s logic synthesis and high level synthesis divisions, Genus and Stratus respectively,
both come with floating-point IP offerings. Our IP development is done in tandem with our
synthesis tools and thus provide a unique opportunity for co-optimisation. Our verification
draws upon other Cadence divisions in equivalence and model checking, Conformal and
Jasper divisions respectively; as well as reaching out into the use of academic theorem provers.
This talk will cover the offerings, challenges and potential future avenues of research and
development in this area.

17352

https://github.com/mc-imperial/shader-compiler-bugs/
https://medium.com/@afd_icl/689d15ce922b
https://medium.com/@afd_icl/689d15ce922b
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://spiral.imperial.ac.uk/handle/10044/1/15566
https://spiral.imperial.ac.uk/handle/10044/1/15566

82 17352 – Analysis and Synthesis of Floating-point Programs

3.7 Floating-point result-variability: sources and handling
Ganesh L. Gopalakrishnan (University of Utah – Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
© Ganesh L. Gopalakrishnan

Joint work of Geof Sawaya, Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan, Dong Ahn
Main reference Geoffrey Sawaya, Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan, Dong H. Ahn: “FLiT:

Cross-platform floating-point result-consistency tester and workload”, in Proc. of the 2017 IEEE
International Symposium on Workload Characterization, IISWC 2017, Seattle, WA, USA, October
1-3, 2017, pp. 229–238, IEEE Computer Society, 2017.

URL http://dx.doi.org/10.1109/IISWC.2017.8167780

Understanding the extent to which computational results can change across platforms,
compilers, and compiler flags can go a long way toward supporting reproducible experiments.
In this work, we offer the first automated testing aid called FLiT (Floating-point Litmus
Tester) that can show how much these results can vary for any user-given collection of
computational kernels. Our approach is to take a collection of these kernels, disperse them
across a collection of compute nodes (each with a different architecture), have them compiled
and run, and bring the results to a central SQL database for deeper analysis.

Properly conducting these activities requires a careful selection (or design) of these kernels,
input generation methods for them, and the ability to interpret the results in meaningful
ways. The results in this paper are meant to inform two different communities: (a) those
interested in seeking higher performance by considering “IEEE unsafe” optimizations, but
then want to understand how much result variability to expect, and (b) those interested in
standardizing compiler flags and their meanings, so that one may safely port code across
generations of compilers and architectures.

By releasing FLiT, we have also opened up the possibility of all HPC developers using it
as a common resource as well as contributing back interesting test kernels as well as best
practices, thus extending the floating-point result-consistency workload we contribute. This is
the first such workload and result-consistency tester underlying floating-point reproducibility
of which we are aware.

3.8 Hierarchical Search in Floating-Point Precision Tuning
Hui Guo (University of California – Davis, US)

License Creative Commons BY 3.0 Unported license
© Hui Guo

Joint work of Hui Guo, Cindy Rubio-González

Floating-point types are notorious for their intricate representation. The effective use of
mixed precision, i.e., using various precisions in different computations, is critical to achieve a
good balance between accuracy and performance. Unfortunately, reasoning about the impact
of different precision selections is a difficult task even for numerical experts. Techniques
have been proposed to systematically search over floating-point variables and/or program
instructions to find a profitable precision configuration. These techniques are characterized
by their “black-box” nature, and face scalability limitations mainly due to the large search
space.

In this talk, we present a semantic-based search algorithm that hierarchically guides
precision tuning to improve performance given an accuracy constraint. The novelty of our
algorithm lies in leveraging semantic information to reduce the search space and find more
profitable precision configurations. Specifically, we perform dependence analysis and edge

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/IISWC.2017.8167780
http://dx.doi.org/10.1109/IISWC.2017.8167780
http://dx.doi.org/10.1109/IISWC.2017.8167780
http://dx.doi.org/10.1109/IISWC.2017.8167780
http://dx.doi.org/10.1109/IISWC.2017.8167780
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 83

profiling to create a weighted dependence graph that presents a network of floating-point
variables. We then formulate hierarchy construction on the network as a community detection
problem, and present a hierarchical search algorithm that iteratively lowers precision with
regard to communities. Our evaluation on real world floating-point programs shows that
hierarchical search algorithm is in general more efficient than the state of the art in finding
profitable configurations.

3.9 Auto-tuning Floating-Point Precision
Jeffrey K. Hollingsworth (University of Maryland – College Park, US)

License Creative Commons BY 3.0 Unported license
© Jeffrey K. Hollingsworth

Joint work of Mike Lam, Jeffrey K. Hollingsworth
Main reference Mike O. Lam, Jeffrey K. Hollingsworth, “Fine-grained floating-point precision analysis,”

International Journal of High Performance Computing Applications, SAGE Publications, 2016.
URL http://doi.org/10.1177/1094342016652462

In this talk I will describe the CRAFT tool for automatically exploring the required floating
point precision for specific programs. The tool operates on compiled binary programs. Using
different analysis modules, it can explore reduced precision (single vs. double) as well as
variable precisions (specific numbers of bits of precision for each operation). I will also
present results of using the CRAFT tool for different benchmark programs.

3.10 Floating Point Computations in the Multicore and Manycore Era
Miriam Leeser (Northeastern University – Boston, US)

License Creative Commons BY 3.0 Unported license
© Miriam Leeser

Joint work of Miriam Leeser, Thomas Wahl, Mahsa Bayati, Yijia Gu
Main reference Yijia Gu, Thomas Wahl, Mahsa Bayati, Miriam Leeser: “Behavioral Non-portability in Scientific

Numeric Computing”, in Proc. of the Euro-Par 2015: Parallel Processing - 21st International
Conference on Parallel and Distributed Computing, Vienna, Austria, August 24-28, 2015,
Proceedings, Lecture Notes in Computer Science, Vol. 9233, pp. 558–569, Springer, 2015.

URL https://doi.org/10.1007/978-3-662-48096-0_43

The results of numerical computations with floating-point numbers depend on the execution
platform. One reason is that, even for similar floating point hardware, compilers have
significant freedom in deciding how to evaluate a floating-point expression, as such evaluation
is not standardized. Differences can become particularly large across (heterogeneous) parallel
architectures. This may be surprising to a programmer who conflates the portability promised
by programming standards such as OpenCL with reproducibility.

In this talk, I present experiments, conducted on a variety of platforms including CPUs
and GPUs, that showcase the differences that can occur even for randomly selected inputs. I
present a study of the same OpenCL code run on different architectures and analyze the
sources of differences, and what tools are needed to aid the programmer. The code is taken
from popular high performance computing benchmark suites. I also introduced challenges to
the research community. A major one is being able to handle programs that run on large
parallel machines while providing useful information to the user regarding the importance of
these differences.

17352

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://doi.org/10.1177/1094342016652462
http://doi.org/10.1177/1094342016652462
http://doi.org/10.1177/1094342016652462
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-662-48096-0_43
http://dx.doi.org/10.1007/978-3-662-48096-0_43
http://dx.doi.org/10.1007/978-3-662-48096-0_43
http://dx.doi.org/10.1007/978-3-662-48096-0_43
https://doi.org/10.1007/978-3-662-48096-0_43

84 17352 – Analysis and Synthesis of Floating-point Programs

3.11 JFS: Solving floating point constraints with coverage guided
fuzzing

Daniel Liew (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Daniel Liew

Joint work of Daniel Liew, Cristian Cadar, Alastair Donaldson
Main reference Daniel Liew, Daniel Schemmel, Cristian Cadar, Alastair F. Donaldson, Rafael Zähl, Klaus Wehrle:

“Floating-point symbolic execution: a case study in n-version programming”, in Proc. of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, ASE 2017, Urbana, IL,
USA, October 30 - November 03, 2017, pp. 601–612, IEEE Computer Society, 2017.

URL http://dx.doi.org/10.1109/ASE.2017.8115670

In this talk I will present the work-in-progress design and implementation of a constraint
solver called JIT Fuzzing Solver (JFS). JFS is designed to investigate the use of “coverage
guided fuzzing” as an incomplete tactic for solving SMT queries that use any combination of
the Core, BitVector, and FloatingPoint theories defined by SMT-LIB.

JFS takes as input an SMT query, from which it generates a C++ program with a
sequence of “if” branches, each corresponding to an assert from the query. The program is
constructed such that finding an input to the program that traverses all the “true” edges of
the branches is equivalent to finding a satisfying assignment to all the free variables of the
SMT query. To find such an input, a high-performance coverage-guided fuzzer is used. We
conclude with a brief discussion of initial results.

This work was motivated by a project on extending symbolic execution with support for
floating-point reasoning; the “main reference” is a paper on that project.

3.12 Autotuning for Portable Performance for Specialized
Computational Kernels

Piotr Luszczek (University of Tennessee – Knoxville, US)

License Creative Commons BY 3.0 Unported license
© Piotr Luszczek

Joint work of Piotr Luszczek, Jakub Kurzak, Mark Gates, Mike (Yaohung) Tsai, Matthew Bachstein, Jack
Dongarra

Main reference Mark Gates, Jakub Kurzak, Piotr Luszczek, Yu Pei, Jack J. Dongarra: “Autotuning Batch
Cholesky Factorization in CUDA with Interleaved Layout of Matrices”, in Proc. of the 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops, IPDPS Workshops 2017,
Orlando / Buena Vista, FL, USA, May 29 - June 2, 2017, pp. 1408–1417, IEEE Computer Society,
2017.

URL http://dx.doi.org/10.1109/IPDPSW.2017.18

High performance Exascale libraries for numerical algorithms, data analytics, and statistical
inference require specialized implementations of computational kernels that progressively
become harder to create due to the increasingly divergent designs of extreme-scale hardware
platforms. We present our ongoing efforts in automated performance engineering that
encompasses code autotuning within a comprehensive framework of integrated tools that
include domain specific languages, testing/deployment infrastructure, and analysis modules.
These components assist in continuous development, deployment, and improvement of these
essential scientific kernels.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ASE.2017.8115670
http://dx.doi.org/10.1109/ASE.2017.8115670
http://dx.doi.org/10.1109/ASE.2017.8115670
http://dx.doi.org/10.1109/ASE.2017.8115670
http://dx.doi.org/10.1109/ASE.2017.8115670
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/IPDPSW.2017.18
http://dx.doi.org/10.1109/IPDPSW.2017.18
http://dx.doi.org/10.1109/IPDPSW.2017.18
http://dx.doi.org/10.1109/IPDPSW.2017.18
http://dx.doi.org/10.1109/IPDPSW.2017.18
http://dx.doi.org/10.1109/IPDPSW.2017.18

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 85

3.13 Interval Enclosures of Upper Bounds of Roundoff Errors using
Semidefinite Programming

Victor Magron (VERIMAG – Grenoble, FR)

License Creative Commons BY 3.0 Unported license
© Victor Magron

Joint work of Victor Magron, George Constantinides, Alastair F. Donaldson
Main reference Victor Magron, George A. Constantinides, Alastair F. Donaldson: “Certified Roundoff Error

Bounds Using Semidefinite Programming”, ACM Trans. Math. Softw., Vol. 43(4), pp. 34:1–34:31,
2017.

URL http://dx.doi.org/10.1145/3015465

Roundoff errors cannot be avoided when implementing numerical programs with finite
precision. The ability to reason about rounding is especially important if one wants to
explore a range of potential representations, for instance in the world of FPGAs. This
problem becomes challenging when the program does not employ solely linear operations as
non-linearities are inherent to many computational problems in real-world applications.

We present two frameworks which can be combined to provide interval enclosures of
upper bounds for absolute roundoff errors.

The framework for upper bounds is based on optimization techniques employing semi-
definite programming (SDP) and sparse sums of squares certificates, which can be formally
checked inside the Coq theorem prover.

The framework for lower bounds is based on a new hierarchy of convergent robust SDP
approximations for certain classes of polynomial optimization problems. Each problem in
this hierarchy can be exactly solved via SDP.

Our tool covers a wide range of nonlinear programs, including polynomials and transcend-
ental operations as well as conditional statements. We illustrate the efficiency and precision
of this tool on non-trivial programs coming from biology, optimization and space control.

3.14 Verification for floating-point, floating-point for verification
David Monniaux (Université Grenoble Alpes – Saint-Martin-d’Hères, FR)

License Creative Commons BY 3.0 Unported license
© David Monniaux

Joint work of David Monniaux, Antoine Miné, Jérôme Feret
Main reference Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,

David Monniaux, Xavier Rival: “A static analyzer for large safety-critical software”, in Proc. of the
ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation 2003,
San Diego, California, USA, June 9-11, 2003, pp. 196–207, ACM, 2003.

URL http://dx.doi.org/10.1145/781131.781153

Verification for floating-point: Verifying the safety of floating-point programs poses specific
challenges. The usual assumptions about arithmetic types (addition and multiplication form
a commutative ring, etc.) are now false, making it difficult to apply standard abstractions
(e.g. zones, octagons, polyhedra). In the Astrée system, we applied interval analysis as well
as relaxation of floating-point into reals so as to use the standard abstractions. We also
developed specific abstract domains for filters.

Floating-point for verification: It is tempting to use floating-point inside decision procedures
and other algorithms inside analysis tools, instead of exact precision arithmetic, which can
be much slower. But how can we be sure of the results? We present here methods for e.g.
using an off-the-shelf implementation of linear programming inside a sound tool.

17352

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3015465
http://dx.doi.org/10.1145/3015465
http://dx.doi.org/10.1145/3015465
http://dx.doi.org/10.1145/3015465
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/781131.781153
http://dx.doi.org/10.1145/781131.781153
http://dx.doi.org/10.1145/781131.781153
http://dx.doi.org/10.1145/781131.781153
http://dx.doi.org/10.1145/781131.781153

86 17352 – Analysis and Synthesis of Floating-point Programs

3.15 Alive-FP: Automated Verification of Floating Point Optimizations
in LLVM

Santosh Nagarakatte (Rutgers University – Piscataway, US)

License Creative Commons BY 3.0 Unported license
© Santosh Nagarakatte

Joint work of David Menendez, Santosh Nagarakatte, Aarti Gupta
Main reference David Menendez, Santosh Nagarakatte, Aarti Gupta: “Alive-FP: Automated Verification of

Floating Point Based Peephole Optimizations in LLVM”, in Proc. of the Static Analysis - 23rd
International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings, Lecture
Notes in Computer Science, Vol. 9837, pp. 317–337, Springer, 2016.

URL https://doi.org/10.1007/978-3-662-53413-7_16

Peephole optimizations optimize and canonicalize code to enable other optimizations but
are error-prone. This talk presents Alive-FP, an automated verification framework for
floating point based peephole optimizations in LLVM. Alive-FP handles a class of floating
point optimizations and fast-math optimizations involving signed zeros, not-a-number, and
infinities, which do not result in loss of accuracy. This talk will describe multiple encodings
for various floating point operations to account for the various kinds of undefined behavior
and under-specification in the LLVM’s language reference manual. We have discovered seven
wrong optimizations in LLVM using Alive-FP.

3.16 Debugging Large-Scale Numerical Programs with Herbgrind
Pavel Panchekha (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
© Pavel Panchekha

Joint work of Pavel Panchekha, Alex Sanchez-Stern, Zachary Tatlock, Sorin Lerner
URL http://herbgrind.ucsd.edu

It is hard to find and fix numerical errors in large numerical programs because it is difficult
to detect the error, determine which instructions are responsible for the error, and gather
context describing the computation that lead to the error. Herbgrind is a dynamic binary
analysis tool to address these issues. Herbgrind uses higher-precision shadow values to
compute a ground truth, correct value for every floating-point value in the program, thus
making it possible to detect that program outputs are erroneous. Herbgrind then uses the
local error heuristic to identify program instructions that introduce numerical errors and
then propagates information about those instructions to affected program values using a taint
analysis. Finally, to gather context describing the computations that lead to instructions
with high local error, Herbgrind uses anti-unification to summarized expression trees into an
abstract form that describes the computation. Herbgrind has been used on large numerical
programs, and has proven valuable for identifying errors and providing the information
necessary to fix them.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-662-53413-7_16
http://dx.doi.org/10.1007/978-3-662-53413-7_16
http://dx.doi.org/10.1007/978-3-662-53413-7_16
http://dx.doi.org/10.1007/978-3-662-53413-7_16
https://doi.org/10.1007/978-3-662-53413-7_16
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://herbgrind.ucsd.edu

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 87

3.17 Utah Floating-Point Toolset
Zvonimir Rakamarić (University of Utah – Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
© Zvonimir Rakamarić

Joint work of Zvonimir Rakamarić, Ganesh Gopalakrishnan, Alexey Solovyev, Wei-Fan Chiang, Ian Briggs, Mark
Baranowski, Dietrich Geisler, Charles Jacobsen

Main reference Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamarić, Ganesh Gopalakrishnan: “Rigorous
Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions”, in Proc. of the
FM 2015: Formal Methods - 20th International Symposium, Oslo, Norway, June 24-26, 2015,
Proceedings, Lecture Notes in Computer Science, Vol. 9109, pp. 532–550, Springer, 2015.

URL https://doi.org/10.1007/978-3-319-19249-9_33

Virtually all real-valued computations are carried out using floating-point data types and
operations. With the current emphasis of system development often being on computational
efficiency, developers as well as compilers are increasingly attempting to optimize floating-
point routines. Reasoning about the correctness of these optimizations is complicated, and
requires error analysis procedures with different characteristics and trade-offs. In my talk,
I present both dynamic and rigorous static analyses we developed for estimating errors of
floating-point routines. Finally, I describe how we extended our rigorous static analysis into
a procedure for mixed-precision tuning of floating-point routines.

3.18 Condition Number and Interval Computations
Nathalie Revol (ENS – Lyon, FR)

License Creative Commons BY 3.0 Unported license
© Nathalie Revol

Main reference Nathalie Revol, “Influence of the Condition Number on Interval Computations: Illustration on
Some Examples,” in honour of Vladik Kreinovich’ 65th birthday, Springer Festschrift, El Paso,
United States, 2017.

URL https://hal.inria.fr/hal-01588713

The condition number is a quantity that is well-known in “classical” numerical analysis, that
is, where numerical computations are performed using floating-point numbers. This quantity
appears much less frequently in interval numerical analysis, that is, where the computations
are performed on intervals.

In this talk, three small examples are used to illustrate experimentally the impact of the
condition number on interval computations. As expected, problems with a larger condition
number are more difficult to solve: this means either that the solution is not very accurate (for
moderate condition numbers) or that the method fails to solve the problem, even inaccurately
(for larger condition numbers). Different strategies to counteract the impact of the condition
number are discussed and, with success, experimented: use of a higher precision, iterative
refinement, bisection of the input.

17352

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-19249-9_33
http://dx.doi.org/10.1007/978-3-319-19249-9_33
http://dx.doi.org/10.1007/978-3-319-19249-9_33
http://dx.doi.org/10.1007/978-3-319-19249-9_33
https://doi.org/10.1007/978-3-319-19249-9_33
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://hal.inria.fr/hal-01588713
https://hal.inria.fr/hal-01588713
https://hal.inria.fr/hal-01588713
https://hal.inria.fr/hal-01588713

88 17352 – Analysis and Synthesis of Floating-point Programs

3.19 Dynamic Analysis for Floating-Point Precision Tuning
Cindy Rubio-González (University of California – Davis, US)

License Creative Commons BY 3.0 Unported license
© Cindy Rubio-González

Joint work of Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel, William Kahan,
Koushik Sen, David H Bailey, Iancu, Costin; Hough, David

Main reference Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel, William Kahan,
Koushik Sen, David H. Bailey, Costin Iancu, David Hough: “Precimonious: tuning assistant for
floating-point precision”, in Proc. of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC’13, Denver, CO, USA - November 17 - 21, 2013,
pp. 27:1–27:12, ACM, 2013.

URL http://dx.doi.org/10.1145/2503210.2503296

Given the variety of numerical errors that can occur, floating-point programs are difficult to
write, test and debug. One common practice employed by developers without an advanced
background in numerical analysis is using the highest available precision. While more robust,
this can degrade program performance significantly. In this paper we present Precimonious,
a dynamic program analysis tool to assist developers in tuning the precision of floating-point
programs. Precimonious performs a search on the types of the floating-point program
variables trying to lower their precision subject to accuracy constraints and performance
goals. Our tool recommends a type instantiation that uses lower precision while producing
an accurate enough answer without causing exceptions. We evaluate Precimonious on several
widely used functions from the GNU Scientific Library, two NAS Parallel Benchmarks, and
three other numerical programs. For most of the programs analyzed, Precimonious reduces
precision, which results in performance improvements as high as 41%.

3.20 FPBench: Toward Standard Floating Point Benchmarks
Zachary Tatlock (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
© Zachary Tatlock

Joint work of Zachary Tatlock, Nasrine Damouche, Matthieu Martel, Pavel Panchekha, Chen Qiu, Alexander
Sanchez-Stern

Main reference Nasrine Damouche, Matthieu Martel, Pavel Panchekha, Chen Qiu, Alexander Sanchez-Stern,
Zachary Tatlock: “Toward a Standard Benchmark Format and Suite for Floating-Point Analysis”,
in Proc. of the Numerical Software Verification - 9th International Workshop, NSV 2016, Toronto,
ON, Canada, July 17-18, 2016, [collocated with CAV 2016], Revised Selected Papers, Lecture
Notes in Computer Science, Vol. 10152, pp. 63–77, 2016.

URL http://dx.doi.org/10.1007/978-3-319-54292-8_6

FPBench is a standard format and common set of benchmarks for floating-point accuracy
tests. The goal of FPBench is to enable direct comparisons between competing tools, facilitate
the composition of complementary tools, and lower the barrier to entry for new teams working
on numerical tools. FPBench collects benchmarks from published papers in a standard format
and with standard accuracy measures and metadata. As a single repository for benchmarks,
FPBench can be used to guide the development of new tools, evaluate completed tools, or
compare existing tools on identical inputs, all while avoiding duplication and the manual effort
and inevitable errors of translating between input formats. Please see http://fpbench.org for
more.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2503210.2503296
http://dx.doi.org/10.1145/2503210.2503296
http://dx.doi.org/10.1145/2503210.2503296
http://dx.doi.org/10.1145/2503210.2503296
http://dx.doi.org/10.1145/2503210.2503296
http://dx.doi.org/10.1145/2503210.2503296
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-54292-8_6
http://dx.doi.org/10.1007/978-3-319-54292-8_6
http://dx.doi.org/10.1007/978-3-319-54292-8_6
http://dx.doi.org/10.1007/978-3-319-54292-8_6
http://dx.doi.org/10.1007/978-3-319-54292-8_6
http://dx.doi.org/10.1007/978-3-319-54292-8_6

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 89

3.21 Impacts of non-determinism on numerical reproducibility and
debugging at the exascale

Michela Taufer (University of Delaware – Newark, US)

License Creative Commons BY 3.0 Unported license
© Michela Taufer

Joint work of Dylan Chapp, Travis Johnston, Michela Taufer
Main reference Dylan Chapp, Travis Johnston, Michela Taufer: “On the Need for Reproducible Numerical

Accuracy through Intelligent Runtime Selection of Reduction Algorithms at the Extreme Scale”, in
Proc. of the 2015 IEEE International Conference on Cluster Computing, CLUSTER 2015, Chicago,
IL, USA, September 8-11, 2015, pp. 166–175, IEEE Computer Society, 2015.

URL http://dx.doi.org/10.1109/CLUSTER.2015.34

In message-passing applications, one notable technique is the use of non-blocking point-to-
point communication, which permits communication and computation to be overlapped,
leading to an increase in scalability. The price paid however, is the loss of determinism in
applications’ executions. Non-determinism in high performance scientific applications has
severe detrimental impacts for both numerical reproducibility and debugging. As scientific
simulations are migrated to extreme-scale platforms, the increase in platform concurrency
and the attendant increase in non-determinism is likely to exacerbate both of these problems
(i.e., numerical reproducibility and debugging). In this talk, we address the challenges of
non-determinism’s impact on numerical reproducibility and on debugging. Specifically, we
present empirical studies focusing on floating-point error accumulation over global reductions
where enforcing any reduction order is expensive or impossible. We also discuss techniques
for record and replay to reduce out-of-order message rate in non-deterministic execution.

3.22 An Abstract Interpretation Framework for the Round-Off Error
Analysis of Floating-Point

Laura Titolo (National Institute of Aerospace – Hampton, US)

License Creative Commons BY 3.0 Unported license
© Laura Titolo

Joint work of Marco A. Feliu, Aaron Dutle, Laura Titolo, Cesar A. Muñoz
Main reference Mariano M. Moscato, Laura Titolo, Aaron Dutle, César A. Muñoz: “Automatic Estimation of

Verified Floating-Point Round-Off Errors via Static Analysis”, in Proc. of the Computer Safety,
Reliability, and Security - 36th International Conference, SAFECOMP 2017, Trento, Italy,
September 13-15, 2017, Proceedings, Lecture Notes in Computer Science, Vol. 10488, pp. 213–229,
Springer, 2017.

URL http://doi.org/10.1007/978-3-319-66266-4_14

In this work, an abstract interpretation framework for the round-off error analysis of floating-
point programs is presented. This framework defines a parametric abstract semantics of
the floating-point round-off error of functional programs. Given a functional floating-point
program, the abstract semantics computes, for each execution path of the program, an
error expression representing a sound over-approximations of the accumulated floating-point
round-off error that may occur in that execution path. In addition, a boolean expression
representing the input values that satisfy the path conditions of the given path is also
computed. This boolean expression characterizes the input values leading to the computed
error approximation. A widening operator is defined to ensure the convergence of recursive
programs. The proposed framework provides the infrastructure to correctly handle the
so-called unstable tests, which occur when the round-off errors of conditional floating-point
expressions alter the execution path of the ideal program on infinite precision real arithmetic.

17352

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/CLUSTER.2015.34
http://dx.doi.org/10.1109/CLUSTER.2015.34
http://dx.doi.org/10.1109/CLUSTER.2015.34
http://dx.doi.org/10.1109/CLUSTER.2015.34
http://dx.doi.org/10.1109/CLUSTER.2015.34
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-66266-4_14
http://dx.doi.org/10.1007/978-3-319-66266-4_14
http://dx.doi.org/10.1007/978-3-319-66266-4_14
http://dx.doi.org/10.1007/978-3-319-66266-4_14
http://dx.doi.org/10.1007/978-3-319-66266-4_14
http://doi.org/10.1007/978-3-319-66266-4_14

90 17352 – Analysis and Synthesis of Floating-point Programs

3.23 Stabilizing Numeric Programs against Platform Uncertainties
Thomas Wahl (Northeastern University – Boston, US)

License Creative Commons BY 3.0 Unported license
© Thomas Wahl

Joint work of Mahsa Bayati, Yijia Gu, Miriam Leeser, Thomas Wahl
Main reference Yijia Gu, Thomas Wahl: “Stabilizing Floating-Point Programs Using Provenance Analysis”, in

Proc. of the Verification, Model Checking, and Abstract Interpretation - 18th International
Conference, VMCAI 2017, Paris, France, January 15-17, 2017, Proceedings, Lecture Notes in
Computer Science, Vol. 10145, pp. 228–245, Springer, 2017.

URL https://doi.org/10.1007/978-3-319-52234-0_13

Floating-point arithmetic (FPA) is a loosely standardized approximation of real arithmetic
available on many computers today. The use of approximation incurs commonly underes-
timated risks for the reliability of numeric software, including reproducibility issues caused
by the relatively large degree of freedom for FPA implementers offered by the IEEE 754
standard. If left untreated, such problems can seriously interfere with program portability.

In this talk I demonstrate how, using information on the provenance of platform dependen-
cies, reproducibility violations can be repaired with low impact on program efficiency, resulting
in stabilized program execution. I illustrate the use of these techniques on decision-making
and purely numeric programs.

This is direct joint work with my student Yijia Gu, and is based on longer collaboration
with Miriam Leeser and her students, particularly Mahsa Bayati.

4 Working groups

4.1 Notes from Breakout Session: “Analysis Tools for Floating-Point
Software”

Pavel Panchekha (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
© Pavel Panchekha

The discussion on tools focused on two central issues: the benefits and challenges of running
a tools competition (heavily reliant on Zvonimir’s experience with SVComp) and then on
incremental steps that can be taken toward those benefits. The key conclusions were that
a tools competition provides visibility for participants, including a full list of entrants; a
deadline by which entrants must support a common format, which force participants to
implement that functionality; ease of entry by new groups; and the opportunity to write up
an analysis on the entrants, their strengths and weaknesses, and the benchmarks covered.
This final benefit seemed particularly beneficial to industry users, as Sam attested. To achieve
some of these benefits incrementally, a series of four steps were chosen: first, a central list of
floating point research tools; second, support for common input and output formats; third,
regular composition of floating-point tools; and fourth, regular competitions to compare tools
in the same space.

The discussion started with Zvonimir’s experience with the SVComp competition, where
software verification tools compete to find assertion violations on a set of tens of thousands
of benchmarks formatted as C code. The competition works by having a deadline by which
entrants must submit an analyzer. Each analyzer is then run on each benchmark without
any interactions, and the results are tallied, scored, and the results made available two weeks

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-52234-0_13
http://dx.doi.org/10.1007/978-3-319-52234-0_13
http://dx.doi.org/10.1007/978-3-319-52234-0_13
http://dx.doi.org/10.1007/978-3-319-52234-0_13
https://doi.org/10.1007/978-3-319-52234-0_13
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 91

later or so. The whole evaluation is fully-scripted, though other competitions are structured
differently (with interaction and a limited benchmark set). The results of the competition are
then discussed at a dedicated sessions at TACAS, which also provides 50 pages of conference
proceedings to publish the competition analysis (written by the competition organizer) as
well as write-ups by winners. A key challenge in organizing the competition is in resolving
disagreements between tools and within the community. For example, a dedicated witness
and proof format was eventually invented to make it possible to resolve disagreements
between tools (since not every benchmark program is labeled with correct answers), and the
weighting of results has been changed over time as the emphases of the community have
shifted (mistakes, for example, are now more heavily penalized than earlier). Within the
community, managing different perspectives, like the difference between bug-finding (where
false positives are penalized but false negatives may be acceptable) and verification (where
the emphasis is reversed) has been a challenge throughout the life of the competition.

This experience informed a discussion of the dangers of a tools competition. The chief
among them is the possibility of over-fitting to the benchmarks. As the community’s goals
change, some benchmarks may become irrelevant, and their presence in the competition
distorts the competitions goals. Benchmarks are also drawn from many sources, and this
leads to disagreements in the community; for example, the SVComp benchmarks range from
five to fifty-thousand lines of C – disagreements over the relative importance of programs
of different sizes can be a problem. A committee is also needed to handle disputes, plus
organizational effort put in yearly and money to set up the competition and reward winners.
In SVComp’s case, this is done by a single professor, who secured a European grant for the
work; over the long term, this may be necessary. Especially valuable in SVComp’s case has
been the support of a conference. Publishing proceedings and tool reports is an important
way to reward competition entrants, and so extremely important in organizing one. (A
conference such as TACAS allowing proceedings space is especially good, but in a pinch it
seemed a workshop proceedings could also work. A workshop proceedings could also allow
the competition to move from conference to conference, exposing the competition to new
audiences.)

Some miscellaneous thoughts on the competition asked whether the competition should
also involve submitting new benchmarks (whether that would be fair, and also whether or
not it would lead to good benchmark submissions); and how to set the objective of the
competition: highest accuracy, tightest error bounds, assertion verification, or something
else? There would also need to be consideration for tools that verify specifications and tools
that help users explore the design space. Since a persistent issue is accuracy improvement
by increasing the domain of accurate input values, evaluation by that metric would also be
valuable. With as diverse a community as floating-point is, a large suite of benchmarks and
several independent competitions seemed necessary.

With the idea of a tools competition having been deeply explored, the discussion turned
to composing tools. Though competitions would force tool developers to adopt common
formats, composing tools would be the most valuable benefit of that change. The most
valuable compositions seem to be refactoring (as in Salsa or Herbie) together with precision
tuning (as in Precimonious or FPTuner); tuning and refactoring with verification (as in Rosa
or FPTaylor); and input generation together with tools (like Precimonious or Herbgrind)
that rely on user-supplied inputs. These compositions would yield more complicated tools
with more complicated trade-offs. It would become important to show the Pareto frontier
(between, for example, accuracy and speed), and to evaluate pairs of tools together.

17352

92 17352 – Analysis and Synthesis of Floating-point Programs

Finally, to make the discussion even more concrete, Pavel spoke for three strategies the
FPBench project had been considering. The first was a list of floating-point research tools –
a website could be maintained, with information about each tool and links to project web
pages, source code, and papers. Second would be an auto-evaluation capability, to download
supported tools and run them on the benchmarks automatically. Third would be a series
of workshop papers on the benefits and uses combining two tools together. The universal
consensus was that a list of tools would be most immediately valuable; Theo described this
approach as “Visibility First”. The other two suggestions could follow on from that work.
The list of tools could also indicate support for FPBench, which could be a form of leverage
to encourage tools to support the common format. Overall, the order would be to focus on
listing tools, then encouraging a common input format, then composing tools, and only then
comparing them.

Additional suggestions for FPBench included an exact real evaluation mode (using, for
example, the computable reals) and support for simple assertion tests (such as sign or
convergence tests). For full accuracy specification, a much richer assertion language would
be needed, which FPBench did not develop due to a lack of examples, but simple tests could
be easily described and then verified.

4.2 Notes from Breakout Session: “Specifications for Programs
Computing Over Real Number Approximations”

Cindy Rubio-González (University of California – Davis, US)

License Creative Commons BY 3.0 Unported license
© Cindy Rubio-González

We are interested in specifications for programs computing over reals.

What is the notion of accuracy? According to the machine learning panel, and the
discussions throughout the seminar, there is a mismatch between worst-case error case and
programmer’s expectations. Programmers want programs to be approximately correct most
of the time.

What does it mean to be approximately correct? What do programmers mean by ’most
of the time’? We really need to take the application into account.

What do we mean by specifications? We also need to be more specific about the kinds of
specifications we are interested in. What level of specifications do we refer to? Specifications
at the user level, or at the component level? Furthermore, tools work at different levels of
abstraction? Are we interested in hardware specifications, library specifications, application
specifications? Do we need DSLs for expressing specifications?

What do ‘most of the time’ mean? For many, most of the time may mean ‘for most inputs’.
If we consider classification in machine learning, positive/negative results can be massively
wrong. On the other hand, a large different in a number may be OK for applications where
accuracy is not as important. ‘Most of the time’ is definitely relative, and heavily dependent
on the application under study.

‘Most of the time’ may also require for us to be aware of special cases. If we assume all
inputs are independent, then we can sampling over reals/floats. However, users need to be
educated in this respect. For dynamic tools, test inputs are already samples, and a main
goal is for user inputs not to break the tool.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 93

What is a good specification for verification? We really need an expert to provide the
specifications. For example, the control theory part of embedded systems would provide
specifications, but do they? There is just no general way to gather specifications because
these depend on the application. Specifications are domain specific.

But, what does it mean to be most of the time correct? For machine learning the
specification is “approximately correct”. But “most of the time” is not part of the equation.
We are not able to prove “all of the time”, and we don’t know what “most of the time”
means. Perhaps what we want to find is under what conditions an algorithm is stable. That
is, under what inputs is an algorithm stable? Thus, we should perhaps focus on the measure
of robustness and the discovery of preconditions.

How about probabilistic assertions? Can we use these to describe the input space? We
want the probability distribution. When is the environment hostile?

How about benchmarks of probabilistic assertions? Do they include floating point? Are
they large enough? Are there any other floating-point issues these do not consider? For
example, floating-point roundoff errors are not considered in the context of probabilistic
programming.

Are there simpler specifications we can find? Perhaps we can synthesize simpler optimiz-
ations such as loop optimization with respect to precision required, or assertions to insert in
the code.

In general, there is a need for better examples. There are many different application
domains facing different problems. An example is radiotherapy. The main block to verification
is the lack of formal semantics.

Scientists just “know” what is a correct/expected answer.
What can we do in computation that provides self certification? An example is calculating

the residual for a certain computation. But, to what degree can we use self certification?

What to do when specifications are not available? How about testing without oracles?
A very successful approach is to compare alternative ways to compute an answer, and then
compare the results. Although no formal guarantees are provided, it is very useful in practice
to detect unexpected behavior.

4.3 Notes from Breakout Session: “Compilers: IEEE Compliance and
Fast Math Requirements”

Daniel Schemmel (RWTH Aachen, DE)

License Creative Commons BY 3.0 Unported license
© Daniel Schemmel

Prompted not only by problems in traditional languages, such as C, C++ or Fortran, but
also by upcoming languages intended for other platforms, such as OpenCL or OpenACC, the
questions of IEEE-754 compliance and specification of fast math requirements was discussed
in this breakout session. Current state of the art is very compiler-dependent behavior, whose
guarantees (where they exist at all) are not trusted very far.

Ideally, a user would be able to always rely on strong guarantees such as: specified
error bounds will be met, the control flow of the program remains unchanged and/or FP
optimizations will never introduce undefined behavior to an otherwise correct program. Any
of these strong guarantees would however require strong whole-program analyses, which are

17352

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

94 17352 – Analysis and Synthesis of Floating-point Programs

usually infeasible. Additionally, many library operations are not just out of scope for the
compiler, but may only exist as compiled code or even be written directly in assembly.

The consensus in this breakout session was that floating point optimizations should be
compiled as a well-specified set of contracts, in which the developer explicitly agrees to
certain restrictions in order to increase performance. Examples for such contracts could be a
guarantee to never use certain kinds of values such as NaNs or Infinities (compare e.g. GCC’s
-ffinite-math-only) or the explicit permission to ignore association, which may improve
vectorization at the cost of precision. In general, IEEE-754 non-compliant behavior should
never be the default.

While modern C compilers are already going in a similar direction, there are big weaknesses
w.r.t. IEEE rounding modes. For example, GCC does not even claim to be IEEE-754
compliant in its default mode, as it always assumes round to nearest, tie to even. The
reasoning behind this is that it often inhibits even basic operations like constant folding,
if the rounding mode is not known statically. During this session, the participants agreed
that it would be useful to be able to statically define rounding modes per instruction or per
block. This would enable static analysis while still being useful in most cases. Two additional
rounding modes were suggested: First, a “native” rounding mode would be useful in the case
where the developer does not really care, and maybe only a single (possibly non-standard)
rounding mode is available on the target platform. This “native” rounding mode would allow
maximum optimization. Second, a “dynamic” rounding mode could enable a dynamic setting,
as is currently mandated by changing the floating point environment programmatically (cf.
#pragma STDC FENV ACCESS ON). By statically expressing a desire for a specific rounding
mode, it becomes more natural for compilers to either comply with the request, or to deny
compilation, which would elegantly deal with the current problem of compilers that silently
ignore it.

Finally, the question of how to enforce floating point contracts came up. To check and/or
enforce that the contracts which the programmer agreed to are being kept, it would be useful
to dynamically check for violations, which would then allow easy debugging. To deal with
that, an extension to UBSan, which already includes some small FP checks, was suggested.

4.4 Notes from Breakout Session: “Reproducibility in Floating-Point
Computation”

Thomas Wahl (Northeastern University – Boston, US)

License Creative Commons BY 3.0 Unported license
© Thomas Wahl

Sources of non-reproducibility
Not necessarily related to FP: exists way beyond FP.
Test question: is integer addition associative (and hence reproducible, irrespective of
evaluation order)? No, due to “one-sided overflows”

Dangers of non-reproducibility
Do people even notice that there is non-reproducibility? Unlike classical crashes, you
won’t run into such issues by chance: as long as you play only with your production
machine, they will not emerge.
Nondeterminism in debugging: print instructions, assertions can change memory layout
of your program and prevent/enable use of FMA.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 95

More generally known as “Heisenbugs”: they disappear only because you try to find them.
Agreed that we need reproducibility beyond just the debugging phase.
Non-reproducibility can also be a valuable indicator for problems in the code: if results
depend on computation platform, they are bound to be numerically unstable, irrespective
of the accuracy question.

Enforcing reproducibility
Easy if you ignore the other numeric quality criteria (performance, accuracy), but probably
these cannot/should not be separated.
Even just enforcing reproducibility alone raises questions: you can determinize your code
e.g. towards “strict evaluation” (supported by many compilers), but such arbitrary choice
is likely not the best for accuracy and performance. “We don’ know what to reproduce.”
Better/more realistic definition than bit-precise reproducibility: preserve control flow;
allow exception: ignore differences in bit-patterns for NAN. Need a specification language
of reproducibility: what am I willing to accept.
Could specify that I allow optimizations like constant folding to ignore differences in L/R
association and just fold X * 3.5 * 4.2 to X * 14.7.
Separating sources of non-reproducibility: architecture differences from compiler decisions:
maybe it makes sense to determinize compiler decisions for a given fixed architecture.

Future of reproducibility
(Exponentially) increasing diversity of architectures and compilers will make it harder,
rather than easier.
Domain-specific applications (matrix operations, HPC) will always produce highly spe-
cialized/customized architectures/compilers that have very little expectations of (and
need for) reproducibility.
Important to realize/accept that reproducibility is certainly not the top concern every-
where (we’d be happy if it got sufficient attention in SOME areas).
For other domains (controllers, decision-making programs) we can afford more expensive
techniques to worry about R.
Similar like in verification: it is expensive, so rather than verifying everything, we focus
on safety-critical applications.

We did not discuss much the relationship with other numeric quality criteria (performance,
accuracy), other than observing that we cannot really look at these aspects in isolation.

5 Panel discussions

5.1 Notes from Joint Panel Discussion between the “Analysis and
Synthesis of Floating-Point Programs” and “Machine Learning and
Formal Methods” Seminars

Alastair F. Donaldson (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Alastair F. Donaldson

The following notes aim to capture a panel discussion held between concurrently held Dagstuhl
seminars on “Analysis and Synthesis of Floating-Point Programs” (17352), and “Machine
Learning and Formal Methods” (17351)

17352

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

96 17352 – Analysis and Synthesis of Floating-point Programs

The panelists were:
Eva Darulova (MPI-SWS – Saarbrücken) – representing the Floating-Point seminar
Miriam Leeser (Northeastern University) – representing the Floating-Point seminar
Charles Sutton (University of Edinburgh) – representing the Machine Learning and
Formal Methods seminar
Sasa Misailovic (University of Illinois – Urbana Champaign) - representing the Machine
Learning and Formal Methods seminar

The panellists gave a brief introduction, which was followed by a 40-minute discussion.
Alastair Donaldson took notes on the questions and answers during this discussion, which

are reproduced below. These are merely notes summarising broadly the points that were
made and questions asked - they by no means represent verbatim what was said by the
various participants.

Alastair Donaldson To what extent is reproducibility of floating-point computations im-
portant in machine learning?

Charles Sutton
Of course floating-point reproducibility would be nice in principle
However, there are so many sources of approximation in the domain already, so that this
is one of many problems
Given that there are a long list of things that introduce approximation, it would be useful
to know when round-off error is moving up this list of problems – techniques to help with
that would be useful.

Miriam Leeser Given that the “Machine Learning and Formal Methods” seminar has clear
links with verification, I’d be interested in a perspective on numerical issues in the context of
verification.

Sasa Misailovic My view, which may not be representative of the entire formal methods
community, is that properties are divided into two categories: (1) properties related to safety
of computation (no crashes, no out-of-bounds accesses, that mass and gravity do not become
negative, etc.), and (2) accuracy of the result, which can sometimes be verified, but can
sometimes be let go or estimated, depending on the application domain.

Charles Sutton You can put the arrow in “Machine Learning and Formal Methods” in
either direction, so that another approach is to apply machine learning as a tool in formal
methods.

Ganesh Gopalakrishan A colleague is going to give a talk in Salt Lake City’s public library
to members of the public on the topic of the role of computer algorithms in making decisions
that might “decide their fate”. I’d like a perspective on what machine learning practitioners
can say to reassure the general public that certain levels of guarantees, from formal to
pragmatic to social, can be provided?

Charles Sutton
People are starting to think more and more about this, but with no final answers.
On a social level, if a machine learning method is making sentencing recommendations to
judges, how can you argue that it is unbiased? There are several approaches that could
be taken – not yet clear which way is best.
There is also the point of view that the method may not be biased, but rather that the
learned model has been trained on biased data.

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 97

In cyber-physical systems the guarantees required are different – in a deep learning model
trained in one situation, might a small perturbation cause very different behaviour?
People are well aware that these issues exist, but it is not clear what to do about it.
Also there is a pedagogical need to train our students regarding to what we should not
do with machine learning and why – a case in point being a paper on arxiv that upset
people by trying to predict criminal records based on photos of faces.

Miriam Leeser What do you verify in the context of machine learning applications if you
have no ground truth? We have a similar issue in reasoning about software that uses real
number approximations.

Sasa Misailovic From a compiler’s perspective you can treat the input program as a gold
standard, with the rule that whatever transformations you apply you should get something
equivalent. It’s not clear what the analogue of this would be in machine learning.

Susmit Jha Floating-point round-off can insert biased noise into a machine learning model.
Would machine learning experts prefer floating-point arithmetic that doesn’t have a determ-
inistic semantics, so that when you do some kind of operation that involves rounding the
direction of round-off is random? To the floating-point guys: do you believe non-deterministic
semantics to be limiting from a hardware point of view, or can you provide some probabilistic
guarantees? To machine learning guys: do you agree that it would be useful to have unbiased
rounding?

Jim Demmel A certain civil engineering firm wanted a reproducible parallel linear system
solver because their customer was required by lawyers to have reproducibility. Will that
come up in e.g. autonomous driving?

Charles Sutton This comes up more in the context of “explainability” rather than “repro-
ducibility” – there is a need to be able to give an explanation for why, though not clear what
form that should be.

George Constantinides I’m aware of work in machine learning on using very low precision
arithmetic. Usually papers say that they can recover all or almost all of performance by
incorporating this into training. Question is: if I could provide you with a 100 fold speedup
but far less rigorous error guarantees would you take it? [Laughter in the room.] Secondly, if
you could incorporate this in the training, what kind of spec would you like me to provide
you with?

Charles Sutton For the first question: all of these methods are intensive to train. Part of
reason for impressive DeepMind papers is they have 1000 times more GPUs than anyone else
– this gives them a very fast development cycle. If you give me something 100x faster you’ve
made my development cycle much faster. Can you clarify what you mean regarding a spec?

George Constantinides Training relies on properties of the network that is being trained,
so what is it that you’d want?

Charles Sutton I’m maybe not best person to ask, but e.g. that noise is unbiased. Might
not be a requirement, but seems natural.

Thomas Wahl Coming back to explainability: presumably one aspect of this is providing a
level of confidence that I’m aware of noise, and can therefore say that confidence is not high.
In floating-point we are good at knowing that a result is likely unstable. My understanding is
that there are lots of examples where learners report a wrong decision with high confidence.
Is that a problem for you guys?

17352

98 17352 – Analysis and Synthesis of Floating-point Programs

Charles Sutton It’s something we care about. Many learning algorithms we use can report
a confidence, but are just learning confidence from data so can be over-confident about wrong
answers.

Thomas Wahl This reminds me of a situation in verification where we generate a proof
script that can be independently checked by another tool, increasing confidence substantially.
Is there an analogue in machine learning?

Charles Sutton That reminds me of “ensemble” methods in machine learning. One thing
we know about machine learning is that if we average together different learners we will be
better, but it’s still just a learner – there is no free lunch.

Eva Darulova are there cases where you have instabilities in training or classification, such
that debugging tools would help you get a handle on what is going wrong?

Charles Sutton Could be – often with a deep network I don’t even know and blissfully
pretend they are not – bursting my bubble might make me sad! [Laughter in the room].
There are cases where we know things are bad – certain linear algebra operations for example.
If working with probabilities over structured objects, we may know these things are affected
by numerical precision so we do things with logarithms.

Sasa Misailovic My question to you guys [the floating-point seminar participants]: is it
possible to check whether an algorithm would converge to a solution after doing some kind
of perturbation, e.g. a gross numerical approximation?

George Constantinides What we want is a ranking function argument, and there is some
work on introducing round-off error into ranking function arguments.

Miriam Leeser A question for verification people who use machine learning: how worried
are you about issues with machine learning being unstable, etc.?

Armando Solar-Lezama Generally we don’t use the output of a machine learning component
as part of proof. We use it to guide the search process, e.g. searching for a proof or witness
or program. Machine learning can be very useful in guiding that search, but ultimately if it
is wrong it doesn’t matter – it might just slow things down – but you’re going to check that
the artifact you’re looking for is correct independent of machine learning.

[Did not catch speaker] In specification learning you might get false positives as a result
of inaccuracy in machine learning, but there are false positives in program analysis anyway.

[Did not catch speaker] I’d add a bit: I’m concerned by this. The solvers we use in the
verification community often don’t terminate, but if they do we have high confidence in their
answers. When we use e.g. belief propagation this don’t terminate sometimes; we don’t
know why – we inject our own hacks and retry. We’re not using these for things for which
we need proofs – but we might in the future and then this would be a concern.

[Did not catch speaker] In tools for dynamical systems, proofs can come from semi-definite
programming. We have experienced proofs that are very numerically sensitive – if you change
a digit in an insignificant place, the proof no longer holds. You need to be very careful about
such things. If you use machine learning to do invariant learning this problem may also
persist.

Martin Vechev What’s your take on being able to see a program that [something about
neural automata – did not catch the full question]?

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 99

Charles Sutton
You’re alluding to two different areas.
Neural Turing machines – let me unpack that. I wouldn’t say they are particularly
interpretable. There are a lot of people doing research on interpretability in machine
learning, so it’s a hot topic.
You’re asking whether it is real or a fad?
Seems like it would be real – hard to see people trusting deep learning in e.g. precision
medicine unless for an individual prediction you could give some evidence.
You could argue there are cases where you don’t care – perhaps with self-driving cars
you’re happy if they work and satisfy stability properties – but don’t want your car to
explain everything that it’s doing. [Laughter in the room.]

Susmit Jha I’ve seen work in fixed-point where I can give accuracy bound [for an algorithm]
and it can figure out what width to use [to meet this bound in an efficient manner]. Are
there similar things in floating-point where I can tell you the expected accuracy and you can
figure out most efficient floating-point types?

George Constantinides The question implies that you now have a specification for accuracy
requirement – what would such a specification look like?

Susmit Jha As a an extreme I might say that output error should be bounded by actual
evaluation with infinite precision. I’d like a compiler that can take my program, compile it
into floating-point operations, such that it consumes less energy but meets the spec.

George Constantinides A lot of people in our seminar working on that.

Miriam Leeser But we almost never get specs from users.

Jerry Zhu We typically specify this with an evaluation stack or test set. We can at least
say: “on this data you should maintain accuracy to some degree”.

Cindy Rubio-González Would you care if it turned out that on other data sets the guarantee
would not hold? I.e., we make this work for your training set, but there is no proof it will
work in general.

Jerry Zhu Our basic assumption is that things are distributed in an even manner; might
be parts of the world where things don’t work so well. I would then need to redefine my loss
function.

George Constantinides The benefit right now for machine learning applications is to talk
about expectation of some error over a data set or some space, rather than worst case error,
which is what most tools do.

Susmit Jha In terms of hardware accelerators: is it possible to have an accelerator tune its
precision to meet needs of application?

Miriam Leeser there are many accelerators. GPUs are fixed. FPGAs provide the freedom
to define what you want. The ability is there, but tool flows are not sophisticated. I don’t
know about the new tensor processor, but they’ve picked something and fixed it.

Susmit Jha What are the options?

Miriam Leeser On an FPGA you can do anything, which makes it so hard to write good
tools! It depends on what you’re targeting.

17352

100 17352 – Analysis and Synthesis of Floating-point Programs

Sam Elliott Going back to GPUs: if it’s needed, the next generation will have it – so GPU
vendors can be influenced.

Alastair Donaldson [To Susmit Jha] Did you mean tuning precision in real time?

Susmit Jha Yes – is it possible to reconfigure the FPGA on the fly so that I can do
something in this precision then that precision with very short latency?

Miriam Leeser Switching time between designs can be milliseconds, but design time can
be days.

Jim Demmel Some problems are well conditioned and can be solved at various precisions,
others are not. Are the problems important in machine learning well conditioned?

Charles Sutton By and large yes.

Zvonimir Rakamarić I’m curious what people are doing in this area. For me one interesting
question is: once you put a neural network in a safety critical system, how do people analyse
this? Are there already capable verification approaches?

Sanjit Seshia There are verification approaches for cases where decisions made by a system
are based on outputs from a neural network. Some approaches treat this component as a black
box. There is work within the verification community on trying to analyse neural networks
in isolation; some of that scales less well than networks used in industrial applications, so
there is a gap. I don’t think any of it is doing a detailed analysis at the floating-point level.

Martin Vechev There are 3-4 papers I’m aware of but they usually work with small feed
forward networks.

Eva Darulova There was a recent paper on CAV related to this, in which verification was
over reals while the implementation was over floats.

Martin Vechev [Asked a question about the use of fp16, which I did not catch]

Charles Sutton People must have done experiments on this, as lots of people use fp16 –
people have results for particular applications where they use extreme low precision.

George Constantinides I’ve seen cases where severe roundoff error is akin to a regularizer
and can avoid over-fitting.

Miriam Leeser There must be an optimization point there which you can aim for.

E. Darulova, A. F. Donaldson, Z. Rakamarić, and C. Rubio-González 101

Participants

Erika Abraham
RWTH Aachen, DE

George A. Constantinides
Imperial College London, GB

Nasrine Damouche
University of Perpignan, FR

Eva Darulova
MPI-SWS – Saarbrücken, DE

James W. Demmel
University of California –
Berkeley, US

Anthony Di Franco
University of California –
Davis, US

Alastair F. Donaldson
Imperial College London, GB

Theo Drane
Cadence Design Systems –
Bracknell, GB

Sam Elliott
Imagination Technologies –
Kings Langley, GB

Ganesh L. Gopalakrishnan
University of Utah –
Salt Lake City, US

Hui Guo
University of California –
Davis, US

Jeffrey K. Hollingsworth
University of Maryland –
College Park, US

Miriam Leeser
Northeastern University –
Boston, US

Daniel Liew
Imperial College London, GB

Piotr Luszczek
University of Tennessee –
Knoxville, US

Victor Magron
VERIMAG – Grenoble, FR

Matthieu Martel
University of Perpignan, FR

Guillaume Melquiond
INRIA – Gif-sur-Yvette, FR

David Monniaux
Université Grenoble Alpes –
Saint-Martin-d’Hères, FR

Magnus Myreen
Chalmers University of
Technology – Göteborg, SE

Santosh Nagarakatte
Rutgers University –
Piscataway, US

Pavel Panchekha
University of Washington –
Seattle, US

Sylvie Putot
Ecole Polytechnique –
Palaiseau, FR

Zvonimir Rakamarić
University of Utah –
Salt Lake City, US

Nathalie Revol
ENS – Lyon, FR

Cindy Rubio-González
University of California –
Davis, US

Daniel Schemmel
RWTH Aachen, DE

Oscar Soria Dustmann
RWTH Aachen, DE

Zachary Tatlock
University of Washington –
Seattle, US

Michela Taufer
University of Delaware –
Newark, US

Laura Titolo
National Institute of Aerospace –
Hampton, US

Thomas Wahl
Northeastern University –
Boston, US

17352

	Executive Summary Eva Darulova, Alastair F. Donaldson, Zvonimir Rakamaric, and Cindy Rubio-González
	Table of Contents
	Overview of Talks
	Algorithm – Architecture Codesign George A. Constantinides
	Salsa: An Automatic Tool to Improve the Numerical Accuracy of Programs Nasrine Damouche
	Algorithms for Efficient Reproducible Floating Point Summation and BLAS James W. Demmel
	A Comprehensive Study of Real-World Numerical Bug Characteristics Anthony Di Franco
	Testing Compilers for a Language With Vague Floating-Point Semantics Alastair F. Donaldson
	Floating-Point Cadence Theo Drane
	Floating-point result-variability: sources and handling Ganesh L. Gopalakrishnan
	Hierarchical Search in Floating-Point Precision Tuning Hui Guo
	Auto-tuning Floating-Point Precision Jeffrey K. Hollingsworth
	Floating Point Computations in the Multicore and Manycore Era Miriam Leeser
	JFS: Solving floating point constraints with coverage guided fuzzing Daniel Liew
	Autotuning for Portable Performance for Specialized Computational Kernels Piotr Luszczek
	Interval Enclosures of Upper Bounds of Roundoff Errors using Semidefinite Programming Victor Magron
	Verification for floating-point, floating-point for verification David Monniaux
	Alive-FP: Automated Verification of Floating Point Optimizations in LLVM Santosh Nagarakatte
	Debugging Large-Scale Numerical Programs with Herbgrind Pavel Panchekha
	Utah Floating-Point Toolset Zvonimir Rakamaric
	Condition Number and Interval Computations Nathalie Revol
	Dynamic Analysis for Floating-Point Precision Tuning Cindy Rubio-González
	FPBench: Toward Standard Floating Point Benchmarks Zachary Tatlock
	Impacts of non-determinism on numerical reproducibility and debugging at the exascale Michela Taufer
	An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-Point Laura Titolo
	Stabilizing Numeric Programs against Platform Uncertainties Thomas Wahl

	Working groups
	Notes from Breakout Session: ``Analysis Tools for Floating-Point Software'' Pavel Panchekha
	Notes from Breakout Session: ``Specifications for Programs Computing Over Real Number Approximations'' Cindy Rubio-González
	Notes from Breakout Session: ``Compilers: IEEE Compliance and Fast Math Requirements'' Daniel Schemmel
	Notes from Breakout Session: ``Reproducibility in Floating-Point Computation'' Thomas Wahl

	Panel discussions
	Notes from Joint Panel Discussion between the ``Analysis and Synthesis of Floating-Point Programs'' and ``Machine Learning and Formal Methods'' Seminars Alastair F. Donaldson

	Participants

