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Abstract
Linear discriminative models, in the form of Logistic Regression, are a popular choice within
the clinical domain in the development of risk models. Logistic regression is commonly used
as it offers explanatory information in addition to its predictive capabilities. In some examples
the coefficients from these models have been used to determine overly simplified clinical risk
scores. Such models are constrained to modeling linear relationships between the variables and
the class despite it known that this relationship is not always linear. This paper compares the
conditions under which linear discriminative and linear generative models perform best. This
is done through comparing logistic regression and naïve Bayes on real clinical data. The work
shows that generative models perform best when the internal representation of the data is closer
to the true distribution of the data and when there is a very small difference between the means
of the classes. When looking at variables such as sodium it is shown that logistic regression can
not model the observed risk as it is non-linear in its nature, whereas naïve Bayes gives a better
estimation of risk. The work concludes that the risk estimations derived from discriminative
models such as logistic regression need to be considered in the wider context of the true risk
observed within the dataset.
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1 Introduction

Within the clinical domain the use of linear discriminative models such as logistic regression
is a popular choice in the development of clinical risk models. Such models are able to
model linear relationships between continuous variables and binary outcome events such as
mortality. Generally discriminative models are preferred over generative models, however,
there is a need to understand the conditions under which these models perform best [20].
Within the context of clinical risk modelling we aim to explore these conditions. This is
achieved by selecting logistic regression as a linear discriminative model and comparing this
to naïve Bayes which is as a linear generative model.

Logistic regression is a linear discriminative model which estimates probability directly
from the inputs x and the class label y. The posterior probability is estimated directly as a
function of p(y|x). Logistic regression is widely applied in the clinical domain and has shown
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to be effective for modelling clinical risk. The popularity of this approach in the clinical
domain is the dual ability of the model to offer explanatory information about the underlying
causes as well as its predictive capability. The main limitation of logistic regression is the
estimated coefficients model linear relationships between the input variables and the class
label.

To compare the differences between discriminative and generative models in the clinical
context a naïve Bayes model is selected as it is a linear generative model. Naïve Bayes
determines probability estimates from the joint probability expressed as p(x, y). Probability
estimates are derived by estimating the probability p(y|x) for each class label based on
the input, then using Bayes rule to determine the most likely class. Whilst naïve Bayes is
considered a linear model, the probability estimates derived from the function p(x, y) can
model non-linear relationships between the inputs and the class label.

2 Background

As discussed, discriminative models are commonly applied to clinical data usually in the
form of logistic regression for the use of both explanatory and predictive purposes. It is
shown that logistic regression is widely used in the prediction of mortality events in addition
to predicting hospital readmission, and it is able to outperform other regression techniques
[18]. In other examples it is shown that logistic regression has been used to model short term
mortality events including death within 30 days [2] and death within 60 days [8]. In these
examples the performance was reported as area under the curve (AUC) with results of 0.86
and 0.77 respectively.

In other work, the coefficients from regression models have been used to develop simpler
points based models for use in clinical practice [19][15]. The points are produced by rounding
the estimated coefficients of the model to an integer value [15][10]. These integer values
represent univariate risk with the sum representing a compound risk score.

Logistic regression is an extension of linear regression. With linear regression estimations
been determined as

y = f(x, β) = β0 + β1x1,+...+, βnxn + ε (1)

where βn is some estimated coefficients and ε represents the error. This is then extended
to the general linear model of logistic regression where the estimates are bound to values
between 0 and 1 through the use of a logistic sigmoid function such as

f(y|x, β) = 1
1 + e−(β0+β1x1,+...+,βnxn) (2)

Regression models allow the combination of discrete and continuous input variables to
be used which allows for the estimation of a linear relationship. It is useful to transform
some continuous variables into categorical variables using arbitrary ranges. For example, a
continuous variable could be transformed into a categorical variable with ranges representing
low, medium and high. This can be seen in existing clinical risk models [19][15]. Whilst
this can help model nonlinear relationships between the variable and the class it can lead to
unnatural step changes in risk between each category [16].

Naïve Bayes is an example of a generative linear model which has been applied to the
clinical domain. In terms of accuracy, non-linear discriminative models such as Support
Vector Machines and Decision Tress have performed marginally better than naïve Bayes at
identifying patients at risk of having heart failure [1][14]. However when comparing naïve
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Bayes with a Multi-Layer Perceptron, which is a discriminative general non-linear model,
naïve Bayes has performed better [14]. Naïve Bayes can be applied in different forms which is
underpinned by the type of data which is required as the inputs. This can include multinomial
naïve Bayes and Gaussian naïve Bayes. Recent work has shown that Tree Augmented naïve
Bayes can perform better than other versions of naïve Bayes in the clinical domain [12].

As introduced previously, naïve Bayes estimates the probability from the joint probability
expressed as p(x, y). For each class the probability is estimated as

p(Y1|x) = p(x|Y1)p(Y1)
p(x|Y1)p(Y1) + p(x|Y2)p(Y2) (3)

This gives a probability estimate for class 1 and when the problem is constrained to two
classes the estimation for class 0 can be p(Y0|x) = 1− p(Y1|x).

In this work we are using a Gaussian naïve Bayes model which determines p(Yn|x) where
x ∈ X and X conforms to a normal distribution. Within clinical dataset this requirement is
commonly unsatisfied.

3 Dataset and Methodology

The dataset used in this study is a subset which is extracted from the MIMIC-III dataset
[9] where heart failure patients have been identified. Patients are selected based on the
use of heart failure related ICD Codes in position one, two or three of the admission
diagnosis. Additionally, patients without a test for N-terminal pro-B-type natriuretic peptide
(NTproBNP) was excluded as this is a valuable marker in the diagnosis of patients with heart
failure [13]. The subset used contained 2,536 patients with 90 day mortality used as the class
labels (Dead: 697, Alive: 1839).

Naïve Bayes and logistic regression was used for univariate analysis of the datasets.
Performance of the models is measured using the Pseudo R2, the means square error (MSE)
and the area under the curve (AUC).

The aim of the work is to explore how discriminative and generative models perform using
real clinical data. This is achieved by comparing the commonly applied logistic regression
model with naïve Bayes which are both linear models.

4 Results

The results show the performance of the two models on clinical data, specifically showing
the univariate relationship between the variable and risk of death within 90 days. The
results also visually show the risk estimates derived from the two models (Figure 1 and 2).
Additionally, a sample range is selected from each variable with risk estimates from the
models compared to the true proportion of risk in those ranges. As the outputs from the
models are probabilistic estimates of risk rather than classification values the AUC is reported.
R2 and MSE give representations of the distance between the probabilistic estimates and the
true binary outcomes.

Risk Estimations
The distributions of the MCV and Sodium variables approximate a Gaussian distribution
along with similar means and standard deviations for the two classes (Table 1 and Figure
1). In these examples linear discrimination between the two classes is not possible. This is
reflected in the probabilistic risk estimates derived from the logistic regression model which
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Table 1 Mean and standard deviation (SD) for MCV and Sodium for each class

Alive Dead
Variable Mean SD Mean SD
MCV 89.9 6.8 90.2 7.1
Sodium 138.4 4.7 138.4 5.9

Figure 1 Density plots for both classes (left) and predictive model estimations (right) for MCV
and Sodium.

shows little change in risk as values for MCV and Sodium change. Furthermore, the risk
estimations for these two variables is low and when interpreting the relationship between
sodium or MCV and the risk of death using a logistic regression model these variables can be
said to be poor predictors. However the probabilistic estimates derived from the naïve Bayes
show a different relationship between these variables and risk. It is known that levels of
sodium which are too high or too low can increase the risk of death [3]. From the distributions
shown in Figure 1 for both MCV and Sodium it is intuitive that risk is increased for low and
high values of these variables and risk is reduced in the mid ranges. As naïve Bayes derives
its estimates from the mean and standard deviation of the classes it can better approximate
the relationship between theses variables and outcome when the means are similar but the
standard deviations are different. When considering this in terms of detecting patients at
risk, the naïve Bayes would enable a larger number of patients at risk of death to be identified
(increasing sensitivity) at the cost of incorrectly identifying low risk patients as high risk
(decreased specificity).

The plots for NTproBNP which has been transformed using a natural logarithm where it
can be seen that the estimates from logistic regression and naïve Bayes are similar (Figure 2).

Clinical Ranges
To further explore the accuracy of the models at determining risk, three ranges (low, medium,
high) where selected from each variable. The proportion of mortality events are calculated
within these ranges and formed the ground truth for comparison. Risk estimations for both
models are recorded on the original data and log transformed data.
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Figure 2 Density plots for both classes (left) and predictive model estimations (right) for
NTproBNP.

Table 2 Estimation Accuracy using a sample of ranges.

Raw Log
Variable Range True % LR NB LR NB
Creatinine 1 - 1.2 0.211 0.268 0.294 0.264 0.261
Creatinine 4 - 4.5 0.346 0.302 0.208 0.324 0.334
Creatinine 08 - 12 0.077 0.368 0.002 0.365 0.409
Glucose 50 - 60 0.375 0.282 0.267 0.286 0.292
Glucose 190 - 200 0.417 0.271 0.279 0.270 0.270
Glucose 350 - 400 0.304 0.257 0.108 0.262 0.269
NTproBNP 150 - 200 0.053 0.211 0.195 0.095 0.061
NTproBNP 19,000 - 20,000 0.364 0.333 0.297 0.374 0.374
NTproBNP 45,000 - 50,000 0.269 0.552 0.927 0.454 0.415
Potassium 3 - 3.2 0.360 0.259 0.292 0.260 0.309
Potassium 4.8 - 5 0.234 0.282 0.268 0.281 0.234
Potassium 9 - 10 0.714 0.349 0.987 0.314 0.770
Sodium 125 - 128 0.464 0.276 0.494 0.280 0.494
Sodium 138 - 140 0.242 0.275 0.234 0.275 0.237
Sodium 150 -155 0.714 0.273 0.604 0.269 0.536

The results for these tests show that overall the naïve Bayes model gave a closer estimate
of risk to the ground truth values (Table 2). The distribution of Creatinine is positively
skewed with logistic regression giving more accurate estimation. However, when the variable
is transformed to a natural logarithm scale the naïve Bayes provides closer estimations. For
values greater than 8 mg/dL, the naïve Bayes model gives a better representation of risk.

In variables where the data is closer to being normally distributed such as Potassium and
Sodium it can be seen that the naïve Bayes model gives better estimations (Table 2). This is
true for both the original data and the log transformed data where estimations from a naïve
Bayes model are closer to the true values than estimates from the logistic regression model.

Metrics
Whilst it is expected that the results using Pseudo R2, MSE and AUC will be poor for a
single variable, the results have been shown to explore measurable differences in the models
performance.

When comparing pseudo R2 and MSE there is subtle differences between the two models
for all clinical variables (Table 3). With variables such as Creatinine and NTproBNP which
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Table 3 Results comparing psuedo R2, Mean Square Error (MSE) and Area under the Curve
(AUC).

Naïve Bayes Logistic Regression
Variable R2 MSE AUC R2 MSE AUC
Creatinine mg/dL -0.006 0.200 0.515 0.001 0.199 0.547
ln(Creatinine mg/dL) 0.002 0.199 0.547 0.003 0.199 0.547
MCV fL 0.000 0.199 0.534 0.000 0.199 0.519
ln(MCV fL) 0.000 0.199 0.532 0.000 0.199 0.519
NTproBNP pg/mL -0.025 0.204 0.624 0.036 0.192 0.633
ln(NTproBNP pg/mL) 0.040 0.191 0.633 0.044 0.191 0.633
Glucose mg/dL -0.004 0.200 0.500 0.000 0.199 0.495
ln(Glucose mg/dL) 0.000 0.199 0.494 0.000 0.199 0.495
Bicarbonate 0.007 0.198 0.551 0.003 0.199 0.538
ln(Bicarbonate) 0.004 0.198 0.552 0.005 0.198 0.538
Potassium -0.019 0.203 0.535 0.001 0.199 0.508
ln(Potassium) -0.003 0.200 0.535 0.000 0.199 0.508
Sodium 0.004 0.198 0.573 0.000 0.199 0.508
ln(Sodium) 0.003 0.199 0.572 0.000 0.199 0.508

are highly skewed it is shown that logistic regression has a better AUC. However, when these
variables are transformed using the natural logarithm (ln) the AUC is the same for both
models. In contrast, naïve Bayes performs better with variables which are approximately
normally distributed as shown with MCV and Sodium.

5 Discussion

Discriminative models estimate the model parameters based on separation by minimising
the negative log-likelihood classification loss against the true density [4]. Due to the nature
of how the model parameters are estimated these types of models are regarded as supervised
learning [5]. Discriminative models can be susceptible to cost or class imbalances in real
world scenarios and in instances where the negative examples are more prevalent they are
known to over fit [6]. This class imbalance problem is common in clinical datasets when
developing models to predict mortality events [11].

The key feature of generative models is that the probability estimates of p(y|x) are derived
from the parameters of p(x|y) and p(x) which are estimated directly from the data. This
involves internally representing the distribution of the data which adds an extra step in the
probability estimations process. In the case of the naïve Bayes model p(x|y) and p(x) are
assumed to be normally distributed, however, as shown, this is rarely the case with clinical
data. Therefore, the application of generative models can be said to be more complex and it
is recommended that you should not solve a more difficult problem as an intermediate step
[17]. However by modelling the distribution of the input this information is incorporated
into the model [5].

When comparing logistic regression and naïve Bayes it is concluded that discriminative
models will perform better than generative models when considering the asymptotic errors
[20]. However it has been shown that with real world datasets this may not always be
the case [21]. When applying the two models to real clinical data it is shown that logistic
regression models performed better when the data is highly skewed. Discriminative models
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learn the model parameters from maximizing the conditional likelihood [21] therefore, with
skewed data the model estimations will be skewed towards the higher density regions of the
variables distributions. Once the distributions are closer to been normally distributed the
estimations of naïve Bayes become more accurate and gives a better representation of the
the relationship between the inputs and the class. This is especially true when the means
for the class are similar but the shape of the distributions are dissimilar, as shown with
MCV and Sodium. As the applied Gaussian naïve Bayes model takes its estimations from
normal distributions based on the mean and standard deviation for each class it can more
accurately estimate the relationship between the inputs and class when the data is normally
distributed. In these cases, generative linear models can determine nonlinear relationships
between the input variable and the class. In contrast the linear discriminative nature of
logistic regression implies that the probability estimates must either increase monotonically,
or decrease monotonically in relation to the input [7].

One of the key features of this work is the demonstration of generative and discriminative
linear models on clinical data. While the use of linear discriminative models, specifically
logistic regression, is favoured within the development of clinical risk models these models
may not always be appropriate. This is shown when performing a univariate analysis on
variables such as Sodium and MCV (Fig. 1). When looking at Sodium the results from the
logistic regression model show no evidence that Sodium levels which are too high or too
low have an impact on mortality, despite this relationship been known [3]. When looking
at the probability estimations for Sodium using a naïve Bayes model it is shown that these
estimates are similar to the ground truth (Table 2). This is a result of the two classes having
similar means, however, class 1 (dead) has a greater proportion of the data points within the
extremities of the distribution. This is similar to values reported in a study using a heart
failure dataset when looking at the means for Sodium of the two groups of patients. It is
shown that alive patients had a mean Sodium level of 138.93 and those who died had a mean
of 138.45, with differences in the standard deviations, 3.00 and 3.56 respectively [11].

6 Conclusion

In this study discriminative and generative models have been applied to clinical data with
the results showing that both models perform equally well in scenarios where the classes are
linearly separable. It is shown that the generative model of naïve Bayes is better at modelling
the relationship between the input variable and class label when distributions for each class
is not linearly separable. When applying this to clinical data it is shown that when using
naïve Bayes as a generative model, the assumption of the input variables been normally
distributed is important. In variables which are not separable and normally distributed the
generative model gave more accurate estimations compared to the ground truth. The work
concludes that the choice of discriminative and generative models is related to the data and
dependant on the task which is to be modelled.

This work forms the foundation for model selection within a clinical dataset and future
work should explore the comparison of discriminative and generative models in a multivariate
context using clinical data. This should include the use of non-linear discriminative models
such as SVMs and MLPs.
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