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Abstract
Events have effects on properties of the world; they initiate or terminate these properties at a
given point in time. Reasoning about events and their effects comes naturally to us and appears
to be simple, but it is actually quite difficult for a machine to work out the relationships between
events and their effects. Traditionally, effect axioms are assumed to be given for a particular
domain and are then used for event recognition. We show how we can automatically learn the
structure of effect axioms from example interpretations in the form of short dialogue sequences
and use the resulting axioms in a probabilistic version of the Event Calculus for query answering.
Our approach is novel, since it can deal with uncertainty in the recognition of events as well as
with uncertainty in the relationship between events and their effects. The suggested probabilistic
Event Calculus dialect directly subsumes the logic-based dialect and can be used for exact as
well as a for inexact inference.
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1 Introduction

The Event Calculus [9] is a logic language for representing events and their effects and
provides a logical foundation for a number of reasoning tasks [13, 24]. Over the years,
different versions of the Event Calculus have been successfully used in various application
domains; amongst them for temporal database updates, for robot perception and for natural
language understanding [12, 13]. However, many event recognition scenarios exhibit a
significant amount of uncertainty, since a system may not be able to detect all events reliably
and the effects of events may not always be known in advance. In order to deal with
uncertainty, we have to extend the logic-based Event Calculus with probabilistic reasoning
capabilities and try to learn the effects of events from example interpretations. Effect axioms
are important in the context of the Event Calculus, since they specify which properties are
initiated or terminated when a particular event occurs at a given point in time.

Recently, the combination of logic programming and probability under the distribution
semantics [5, 23] has proven to be useful for building rich representations of domains consisting
of individuals and uncertain relations between these individuals. These representations can
be learned in an efficient way and used to carry out inference. The distribution semantics
underlies a number of probabilistic logic languages such as PRISM [23], Independent Choice
Logic [14, 15], Logic Programs with Annotated Disjunctions [27], P-log [1], and ProbLog [4, 6].
Since these languages have the same formal foundation, there exist linear transformations
between them that preserve their semantics [20].
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8:2 Learning Effect Axioms via Probabilistic Logic Programming

In this paper, we investigate how the language of Logic Programs with Annotated
Disjunctions (LPAD) and its implementation in the cplint framework of programs for
reasoning with probabilistic logic programs [22] can be used to learn the structure of
probabilistic effect axioms for a dialect of the Event Calculus.

Recently, Skarlatidis and colleagues introduced two probabilistic dialects of the Event
Calculus for event recognition, in particular for the detection of short-term activities in video
frames. Their first dialect, Prob-EC [25], is based on probabilistic logic programming [8]
and handles noise in the input data. Input events are assumed to be independent and are
associated with detection probabilities. Their second dialect, MLN-EC [26], is based on
Markov logic networks [16] and does not make any independence assumption of input events.
Our probabilistic dialect of the Event Calculus is related to Prob-EC in the sense that it
is based on the distribution semantics. However, we focus in our work not only on the
processing of uncertain events but also on the learning of the structure and parameters
of effect axioms from example interpretations, an issue that has not been addressed by
Skarlatidis and colleagues.

The rest of this paper is structured as follows: In Section 2, we introduce our dialect
of the logic-based Event Calculus, followed by a brief introduction to probabilistic logic
programming in Section 3. In Section 4, we reformulate the logic-based Event Calculus as
a probabilistic logic program where the events and the effect axioms are annotated with
probabilities. In Section 5, we discuss how we can learn the structure of these effect axioms
from positive and negative interpretations that are available in the form of short dialogue
sequences. In Section 6, we present our experiments and show that the proposed probabilistic
dialect is an elaboration-tolerant version of the logic-based Event Calculus. In Section 7, we
summarise the advantages of our approach and present our conclusion.

2 The Event Calculus

The original logic-based Event Calculus as introduced by [9] is a logic programming formalism
for representing the effects of events on properties. The basic ontology of the Event Calculus
consists of events, fluents, and time points. An event represents an action that may occur
in the world; for example, a person who is arriving in the kitchen. A fluent represents a
time-varying property that might be the effect of an event; for example, a person who is
located in the kitchen (after arriving in the kitchen). A time point represents an instant
of time and indicates when an event happens or when a fluent holds; for example, Sunday,
19-Feb-17, 23:59:00, UTC-121. In the following discussion we introduce the axioms of our
dialect of the Simple Event Calculus (SEC) [24]. These axioms are implemented as Prolog
clauses and displayed in Listing 1.

Listing 1 The Simple Event Calculus (SEC)
holds_at ( fluent :F, tp:T) :- % SEC1

initially ( fluent :F),
\+ clipped (tp:0, fluent :F, tp:T).

holds_at ( fluent :F, tp:T2) :- % SEC2
initiated_at ( fluent :F, tp:T1),
T1 < T2 ,
\+ clipped (tp:T1 , fluent :F, tp:T2).

1 In the following we use integers instead of POSIX time to save space in the paper.
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clipped (tp:T1 , fluent :F, tp:T3) :- % SEC3
terminated_at ( fluent :F, tp:T2),
T1 < T2 , T2 < T3.

initiated_at ([ fluent :located , pers:A, loc:B], tp:C) :- % EAX1
happens_at ([ event:arrive , pers:A, loc:B], tp:C).

terminated_at ([ fluent :located , pers:A, loc:D], tp:C) :- % EAX2
happens_at ([ event:arrive , pers:A, loc:B], tp:C),
B \= D.

initially ([ fluent :located , pers:bob , loc: garden ]). % SCO1

happens_at ([ event:arrive , pers:bob , loc: kitchen ], tp :3). % SCO2

happens_at ([ event:arrive , pers:bob , loc: garage ], tp :5). % SCO3

Axiom SEC1 specifies that a fluent F initially holds at time point T1, if it held at time
point 0, and has not been terminated between these two time points. Axiom SEC2 specifies
that a fluent F holds at time point T2, if the fluent has been initiated at some time point T1,
which is before T2 and has not been clipped between T1 and T2. Axiom SEC3 states that a
fluent F has been clipped between time point T1 and T3, if the fluent has been terminated
at a time point T2 and this time point is between T1 and T3. Note that according to these
domain-independent axioms (SEC1-SEC3), a fluent does not hold at the time of the event that
initiates it but at the time of the event that terminates it.

Events have effects on properties of the world; they initiate and terminate these properties
at a given point in time. These effects can be described by domain-dependent effect axioms.
For example, the positive effect axiom EAX1 in Listing 1 specifies that the fluent with the
name located involving a person A and a location B is initiated after the time point C, if an
event occurs at a time point C where the person A arrives at the location B. The negative
effect axiom EAX2 in Listing 1 specifies that the fluent with the name located involving a
person A and a location D is terminated after the time point C, if an event occurs at a time
point C where the person A arrives at a location B that is different from location D. Finally, a
scenario (SCO1-SCO3) is required where the initial state of the world (SCO1) is described as
well as a sequence of events (SCO2 and SCO3) that occur at subsequent time points.

This setting allows us to investigate which fluents hold at a given point in time. The
logic-based SEC assumes that the effect axioms are known in advance and that there is no
uncertainty in the relationships between events and effects and in the recognition of events.
In the following, we assume that the effect axioms are unknown and need to be learned
first from example interpretations and that the recognition of events that occur in the real
world can be noisy. During the learning process, the structure of the effect axioms will be
generated automatically and the resulting axioms will be annotated with probabilities. These
probabilistic effect axioms can then be processed with a version of the SEC that is based on
a probabilistic logic programming language which supports probabilistic reasoning.

3 Probabilistic Logic Programs (PLP)

One of most successful approaches to Probabilistic Logic Programs (PLP) is based on the
distribution semantics [23]. Under the distribution semantics a probabilistic logic program
defines a probability distribution over a set of normal logic programs (called worlds). The
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8:4 Learning Effect Axioms via Probabilistic Logic Programming

probability of a query is then obtained from the joint distribution of the query and the worlds
by marginalization.

While the distribution semantics underlies a number of different probabilistic languages
(see [20] for an overview), Logic Programs with Annotated Disjunctions (LPAD) [27] offer the
most general syntax of this family of languages. An LPAD P consists of a set of annotated
disjunctive clauses Ci of the form:

h1 : α1; . . . ;hn : αn ← b1, . . . , bm.

where hi are logical atoms, αi are real numbers, each of them standing for a probability in
the interval [0, 1] such that the sum of all αi is 1, and bi are logical literals (incl. negation as
failure). The set of elements hi : αi form the head of a clause and the set of elements bi the
body. Disjunction in the head is represented by a semicolon and the atoms in the head a
separated by a colon from their probabilities. Note that if n = 1 and α1 = 1, then a clause
corresponds to a normal clause and the annotation can be omitted. Note also that if the
sum of all αi is smaller than 1, then an additional disjunct null is assumed with probability
1− sum(αi). If the body of a clause is empty, then it can be omitted.

The semantics of an LPAD P is defined via its grounding. The grounding of P is
obtained by replacing the variables of each clause C with the terms of the Herbrand universe
HU (P ) [10]. Each of these ground clauses represents a probabilistic choice between a number
of non-disjunctive clauses. By selecting a head atom for each ground clause of an LPAD, we
get an instance of a normal logic program. Each selection has its own probability assigned
to it and the product of these probabilities induces the probability of a program instance,
assuming independence among the choices made for each clause. All instances of an LPAD
together define a probability distribution over a set of interpretations of the program. The
probability of a particular interpretation I is then the sum of the probability of all instances
for which I is a model (see [27] for details).

4 The Simple Event Calculus as a PLP

We can reformulate the logic-based SEC as a PLP and process it with the help of the PITA
library [18] that runs in SWI Prolog2. PITA computes the probability of a query from an
LPAD program by transforming the program into a normal program that contains calls to
manipulate Binary Decision Diagrams as auxiliary data structures and is evaluated by Prolog.
PITA was compared with ProbLog [4] and found to be fast and scalable [17]. Alternatively,
we can use MCINTYRE [19], if exact inference in PITA gets too expensive. MCINTYRE
performs approximate inference using Monte Carlo sampling. Both PITA and MCINTYRE
are part of the cplint framework3 for reasoning with probabilistic logic programs.

In contrast to the logic-based dialect of the SEC, we have to load the pita (or mcintyre)
library first, initialise it with a corresponding directive and enclose the LPAD clauses for the
SEC in additional directives that mark the start and end of the program as illustrated in
Listing 2:

Listing 2 PITA Initialisation
:- use_module ( library (pita )).
:- pita.

2 http://www.swi-prolog.org
3 https://github.com/friguzzi/cplint
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:- begin_lpad .

% The SEC with probabilistic events and probabilistic effect
% axioms goes here.

:- end_lpad .

The domain-independent clauses for the probabilistic version of the SEC are the same
(SEC1-SEC3) as those of the logic-based version introduced in Listing 1. The probabilistic
effect axioms that we are going to learn (see Section 5) have the same basic form as the
axioms EAX1 and EAX2, but they are additionally annotated with probabilities and contain
special conditions in the body of the clauses to guarantee that all variables in the head of a
clause are range restricted; otherwise the distribution semantics is not well-defined for an
LPAD program. In our case, the annotated effect axioms look as illustrated in Listing 3:

Listing 3 Effect Axioms with Probabilities
initiated_at ([ fluent :located , pers:A, loc:B], tp:C):0.66; ' ':0.34 :-

happens_at ([ event:arrive , pers:A, loc:B], tp:C).

terminated_at ([ fluent :located , pers:A, loc:D], tp:C):0.66; ' ':0.34 :-
happens_at ([ event:arrive , pers:A, loc:B], tp:C),
location ([ loc:D]).

Here, the value 0.66 stands for the probability of the clause to be true and the value 0.34
for the probability of the clause to be false. Note that the predicate location/1 in the body
of the second clause restricts the range of the variable D in the head of the clause. That
means we have to make sure – as we will see in Section 5.2 – that facts for the locations
are available in the background knowledge for the LPAD program that is used to learn the
structure of these axioms.

In order to deal with uncertainty in the initial setting and the recognition of events, we
can also add probabilities to the facts that describe the scenario (SCO1-SCO3); for example, to
the facts SCO2 and SCO3 that describe the events as shown in Listing 4:

Listing 4 Events with Probabilities
happens_at ([ event:arrive , pers:bob , loc: kitchen ], tp :3):0.95; ' ':0.05.
happens_at ([ event:arrive , pers:bob , loc: garage ], tp :5):0.99; ' ':0.01.

If the annotation of the probability is omitted in a clause, then its value is implicitly 1. As
we will see in Section 6, the probabilistic version of the SEC without annotated probabilities
behaves exactly like the logic-based version of the SEC. In this respect, the probabilistic
version of the SEC can be considered as an elaboration-tolerant extension of the logic-based
version, since all modifications that are required for building the resulting probabilistic logic
program are additive.

5 Learning the Structure of Effect Axioms

To learn the structure of effect axioms from positive and negative interpretations, we use
a separate LPAD program together with SLIPCOVER [3], an algorithm for learning the
structure and parameters of probabilistic logic programs. SLIPCOVER takes as input a set
of example interpretations and a language bias that indicates which predicates are target.
These interpretations must contain positive and negative examples for all predicates that
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8:6 Learning Effect Axioms via Probabilistic Logic Programming

may appear in the head of a clause. SLIPCOVER learns the structure of effect axioms
by first performing a beam search in the space of probabilistic clauses and then a greedy
search in the space of theories. The first search step starts from a set of bottom clauses,
aims at finding a set of promising clauses, and looks for good refinements of these clauses in
terms of the log-likelihood of the data. The second search step starts with an empty theory
and tries to add each clause for a target predicate to that theory. After each addition, the
log-likelihood of the data is computed as the score of the new theory. If the value of the
new theory is better than the value of the previous theory, then the clause is kept in the
theory, otherwise the clause is discarded. Finally, SLIPCOVER completes a theory consisting
of target predicates by adding the body predicates to the clauses and performs parameter
learning on the resulting theory (for details see [3]).

Note that the refinements during this process are scored by estimating the log-likelihood
of the data by running a small number of iterations of EMBLEM [2], an implementation of
expectation-maximization for learning parameters that computes expectations directly on
Binary Decision Diagrams.

Listing 5 LPAD Program for Learning the Structure of Effect Axioms with SLIPCOVER

:- use_module ( library ( slipcover )). % 1.1
:- sc. % 1.2
:- set_sc (max_var , 4). % 1.3
:- set_sc ( megaex_bottom , 3). % 1.4
:- set_sc ( depth_bound , false ). % 1.5
:- set_sc (neg_ex , given ). % 1.6

:- begin_bg . % 2.1
location ([ loc: bathroom ]). % 2.2
location ([ loc: kitchen ]). % 2.3
location ([ loc: living_room ]). % 2.4

:- end_bg . % 2.5

output ( initiated_at /2). % 3.1
input( happens_at /2). % 3.2
modeh (*, initiated_at ([ fluent : -#fl , pers: +pers , loc: +loc], % 3.3

tp: +tp )).
modeb (*, happens_at ([ event: -#ev , pers: +pers , loc: +loc], % 3.4

tp: +tp )).
determination ( initiated_at /2, happens_at /2). % 3.5

initiated_at (ID , [ fluent :F2 , pers:P, loc:L2], tp:T2) :- % 4.1
holds_at (ID , [ fluent :_F1 , pers:P, loc:_L1], tp:T1),
happens_at (ID , [event:_E , pers:P, loc:L2], tp:T2),
T1 < T2 ,
holds_at (ID , [ fluent :F2 , pers:P, loc:L2], tp:T3),
T2 < T3.

neg( initiated_at (ID , [ fluent :F2 , pers:P, loc:_L], tp:T2)) :- % 4.2
holds_at (ID , [ fluent :_F1 , pers:P, loc:_L1], tp:T1),
happens_at (ID , [event:_E , pers:P, loc:L2], tp:T2),
T1 < T2 ,
neg( holds_at (ID , [ fluent :F2 , pers:P, loc:L2], tp:T3)),
T2 < T3.
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begin(model(f1 )). % 5.1
holds_at ([ fluent :located , pers:mary , loc: bathroom ], tp :0).
happens_at ([ event:arrive , pers:mary , loc: kitchen ], tp :1).
holds_at ([ fluent :located , pers:mary , loc: kitchen ], tp :2).

end(model(f1 )).

begin(model(f2 )). % 5.2
holds_at ([ fluent :located , pers:emma , loc: living_room ], tp :3).
happens_at ([ event:arrive , pers:emma , loc: bathroom ], tp :4).
neg( holds_at ([ fluent :located , pers:emma , loc: bathroom ], tp :5)).

end(model(f2 )).

begin(model(f3 )). % 5.3
holds_at ([ fluent :located , pers:sue , loc: kitchen ], tp :6).
happens_at ([ event:arrive , pers:sue , loc: living_room ], tp :7).
holds_at ([ fluent :located , pers:sue , loc: living_room ], tp :8).

end(model(f3 )).

fold(train , [f1 , f2 , f3 ]). % 5.4

learn_effect_axioms (C) :- % 5.5
induce ([ train], C).

In our case, the LPAD program for structure learning consists of five parts: (1) a preamble,
(2) background knowledge for type definitions, (3) language bias information, (4) clauses for
finding examples, and (5) example interpretations (= models). In the following subsections,
we discuss these parts in more detail.

5.1 Preamble

In the preamble of the program, the SLIPCOVER library is loaded (1.1) and initialised
(1.2), and the relevant parameters are set (1.3-1.6). In our case, these parameters are: the
maximum number of distinct variables that can occur in a clause to be learned (1.3); the
number of examples on which to build the bottom clauses (1.4); the depth of the derivation
which is unbound in our case, and therefore false (1.5); and the availability of negative
examples in the interpretations (1.6).

5.2 Background Knowledge

The background knowledge specifies the kind of knowledge that is valid for all interpretations
of a clause. This knowledge is enclosed in a begin directive (2.1) and an end directive (2.5).
In our case, it contains type definitions for different locations (2.2-2.4) that are required
to restrict the range of variables in the clauses to be learned. These are predicates that
may be used for constructing the body of a clause. As we will see in Section 5.5, these type
definitions are automatically derived from the same dialogue sequences that are used to
construct the example interpretations.

5.3 Language Bias Information

The language bias specifies the accepted structure of the clauses to be learned and helps
to guide the construction of the refinements for the resulting theory. The language bias is
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8:8 Learning Effect Axioms via Probabilistic Logic Programming

expressed in terms of: (a) predicate declarations, (b) mode declarations, (c) type specifications,
and (d) determination statements.
(a) Predicate declarations take the form of output predicates (3.1) or input predicates

(3.2). Output predicates are declared as output/1 and specify those predicates whose
atoms one intends to predict. Input predicates are declared as input/1 and specify those
predicates whose atoms one is not interested in predicting but which should occur in
the body of a hypothesized clause.

(b) Mode declarations are used to guide the process of constructing a generalisation from
example interpretations and to constrain the search space for the resulting clauses. We
distinguish between head mode declarations (3.3) and body mode declarations (3.4). A
head mode declaration (modeh(n, atom)) specifies the atoms that can occur in the head
of a clause and a body mode declaration (modeb(n, atom)) those atoms that can occur
in the body of a clause. The argument n, the recall, is either an integer (n ≥ 1) or an
asterisk (*) and indicates how many atoms for the predicate specification are retained
in the bottom clause during a saturation step. The asterisk stands for all those atoms
that are found; otherwise the indicated number of atoms is randomly chosen.

(c) Type specifications have, in our case, the form +type, -type, or -#type, and specify
that the argument should be either an input variable (+) of that type, an output variable
(-) of that type, or a constant (-#) of that type. For example, the argument of the
form -#fl in the head mode declaration of (3.3) stands for the name of a fluent, and the
argument of the form -#ev in the body mode declaration of (3.4) stands for the name of
an event, and symbols prefixed with + and - for input and output variables.

(d) Determination statements such as (3.5) are required by SLIPCOVER and declare
which predicates can occur in the body of a particular clause.
In addition to the specification of the language bias for the positive effect axiom

(initiated_at/2) in Listing 5, we present below in Listing 6 the specification for the negative
effect axiom (terminated_at/2), since the successful construction of this negative effect axiom
depends on some important additions:

Listing 6 Negative Effect Axiom
output ( terminated_at /2).
input( happens_at /2)

modeh (*, terminated_at ([ fluent : -#fl , pers: +pers , loc: +loc2],
tp: +tp )).

modeb (*, happens_at ([ event: -#ev , pers: +pers , loc: -loc1], tp: +tp )).
modeb (*, location ([ loc: +loc2 ])).

determination ( terminated_at /2, happens_at /2).
determination ( terminated_at /2, location /1).

lookahead_cons_var ( location ([ loc:_L2 ]),
[ happens_at ([ event:_E , pers:_P , loc:_L1], tp:_T )]).

lookahead_cons_var ( happens_at ([ event:_E , pers:_P , loc:_L1], tp:_T),
[ location ([ loc:_L2 ])]).

Here, the two determination statements indicate that the predicate happens_at/2 as well
as the predicate location/1 can appear in the body of the negative effect axiom. Additionally,
we have to specify a lookahead that enforces that whenever one of these two predicates is
added to the body of the clause during refinement, then also the other predicate needs to be
added to that body.
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5.4 Program Clauses for Finding Examples
The program clauses for finding examples (4.1 + 4.2) in Listing 5 contain those predicates
that are used during search. These clauses are not part of the background knowledge
and therefore contain an additional argument (ID) that is used to identify the relevant
example interpretations (models). We encode the search for finding examples intensionally
as the clauses in Listing 5 illustrate. This representation completes the interpretations by
generating positive and negative examples for the positive effect axiom (initiated_at/2) using
the predefined predicate neg/1 in the clause (4.2). To complete our discussion, we show below
in Listing 7 the clauses for finding examples for the negative effect axiom (terminated_at/2):

Listing 7 Finding Negative Effect Axiom
terminated_at (ID , [ fluent :F1 , pers:P, loc:L1], tp:T2) :-

holds_at (ID , [ fluent :F1 , pers:P, loc:L1], tp:T1),
happens_at (ID , [event:_E , pers:P, loc:L2], tp:T2),
T1 < T2 ,
holds_at (ID , [ fluent :_F2 , pers:P, loc:L2], tp:T3),
T2 < T3.

neg( terminated_at (ID , [ fluent :F1 , pers:P, loc:L1], tp:T2)) :-
holds_at (ID , [ fluent :F1 , pers:P, loc:L1], tp:T1),
happens_at (ID , [event:_E , pers:P, loc:L2], tp:T2),
T1 < T2 ,
neg( holds_at (ID , [ fluent :_F2 , pers:P, loc:L2], tp:T3)),
T2 < T3.

The interesting thing to note here is that the variable L1 for the location becomes available
via the example interpretation, but the predicate location/1 that is used to restrict the range
of this variable comes from the background information and is enforced via the lookahead
predicate discussed in the previous section.

5.5 Example Interpretations
In our case the example interpretations (5.1-5.3) in Listing 5 are derived from short dialogue
sequences. We experimented with dialogue sequences consisting of a state sentence, followed
by an event sentence, followed by a question that results in a positive or negative answer.
These dialogue sequences are similar to the data used in the dialogue-based language learning
dataset [28], and look in our case as follows:

S.1.1 Mary is located in the bathroom.
S.1.2 Mary arrives in the kitchen.
S.1.3 Where is Mary?
S.1.4 In the kitchen.

S.2.1 Emma is located in the living room.
S.2.2 Emma arrives in the bathroom.
S.2.3 Is Emma in the bathroom?
S.2.4 No.

These dialogues are parsed into dependency structures and automatically translated into
the corresponding Event Calculus representation. For this purpose, we used the Stanford
Parser [11] that generates for each sentence (or answer fragment) a dependency structure.
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8:10 Learning Effect Axioms via Probabilistic Logic Programming

This dependency structure is then translated with the help of a simple ontology into the
corresponding Event Calculus notation. The ontology contains, among other things, the
information that Mary is a person and that a bathroom is a location. The dialogue sequence
S.1.1-S.1.4, for example, is first translated into four dependency structures as illustrated on
the left-hand side of Listing 8:

Listing 8 From Dependency Structures to Event Calculus Representation
DEPENDENCY STRUCTURES EVENT CALCULUS REPRESENTATION

% D.1.1
nsubjpass (located -3, Mary -1) holds_at ([ fluent :located ,
auxpass (located -3, is -2) pers:mary ,
root(ROOT -0, located -3) loc: bathroom ], tp :1).
case(bathroom -6, in -4)
det(bathroom -6, the -5) location ([ loc: bathroom ]).
nmod(located -3, bathroom -6)

% D.1.2
nsubj(arrives -2, Mary -1) happens_at ([ event:arrive ,
root(ROOT -0, arrives -2) pers:mary ,
case(kitchen -5, in -3) loc: kitchen ], tp :2).
det(kitchen -5, the -4)
nmod(arrives -2, kitchen -5) location ([ loc: kitchen ]).

% D.1.3
advmod (is -2, Where -1)
root(ROOT -0, is -2)
nsubj(is -2, Mary -3) holds_at ([ fluent :located ,

pers:mary ,
% D.1.4 loc: kitchen ], tp :3).
case(kitchen -3, In -1)
det(kitchen -3, the -2)
root(ROOT -0, kitchen -3)

For example, the dependency structure D.1.1 for the sentence S.1.1 is translated into a
holds_at/2 predicate, since the sentence describes a fluent. The translation of the dependency
structure D.1.2 for sentence S.1.2 results in a happens_at/2 predicate, since the sentence
describes an event. Finally, the translation of the two dependency structures D.1.3 + D.1.4
for the question-answer pair in S.1.3 + S.1.4 introduce a positive holds_at/2 predicate, since
the question and the answer together confirm that a particular fluent holds. Note that this
dialogue sequence is also used to derive together with the help of the ontology the factual
information that bathroom and kitchen are locations.

In our LPAD program for structure learning in Listing 5, the derived example interpreta-
tions (5.1-5.3) are initiated by predicates of the form begin(model(<name>)) and terminated
by predicates of the form end(model(<name>)) and the relevant background information is
added to the background section (2.1-2.5) of the program.

Note that each example interpretation may contain an additional fact of the form prob(P)
that assigns a probability P to the interpretation. This probability may be used to reflect the
confidence of the parser in a particular interpretation. If this probability is omitted, then
the probability of each interpretation is considered equal to 1/n where n is the total number
of interpretations (for details see [22]).
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Finally, we have to specify how the example interpretations are divided in folds for taining
(5.4), before we can perform parameter learning on the training fold as illustrated in (5.5).

6 Experiments

In order to get more realistic probabilities for the effect axioms that we discussed in this
paper, we learned the structure of these axioms with the help of 50 example dialogues. This
resulted in the following probabilities for the two effect axioms as shown in Listing 9:

Listing 9 Effect Axioms with Probabilities Derived from Example Dialogues
initiated_at ([ fluent :located , pers:A, loc:B], tp:C):0.87; ' ':0.13 :-

happens_at ([ event:arrive , pers:A, loc:B], tp:C).

terminated_at ([ fluent :located , pers:A, loc:D], tp:C):0.87; ' ':0.13 :-
happens_at ([ event:arrive , pers:A, loc:B], tp:C),
location ([ loc:D]).

We used the same domain-independent axioms (SEC1-SEC3) for our experiments as in the
logic-based version of the SEC in Listing 1, but added the following background axioms in
Listing 10 to the probabilistic version of the program to deal with the range requirement for
variables of the learned clauses under the distribution semantics:

Listing 10 Background Axioms
location ([ loc: garage ]).
location ([ loc: garden ]).
location ([ loc: kitchen ]).

To test the probabilistic dialect of the SEC, we conducted three experiments using PITA
and MCINTYRE for reasoning and the queries shown in Listing 11 + 12. In the first
experiment A, we removed all probabilities from the axioms and executed the queries; in the
second experiment B, we used the effect axioms annotated with the learned probabilities
to answer the queries; and finally in the third experiment C, we used the annotated effect
axioms together with probabilities for noisy event occurrences and executed the queries. We
then run the same three experiments using MCINTYRE and sampled the answer for each
query 100 times. This sampling process returns the estimated probability that a sample is
true (i.e., that a sample succeeds).

Listing 11 Test Queries used to Evaluate the SEC with PITA
test_ec_pita (Num , [P1 , P2 , P3 , P4 , P5 , P6 , P7]) :-

prob( holds_at ([ fluent :located , pers:bob , loc: garden ], tp:1, P1 ),
prob( holds_at ([ fluent :located , pers:bob , loc: garden ], tp:2, P2 ),
prob( holds_at ([ fluent :located , pers:bob , loc: kitchen ], tp:3, P3 ),
prob( holds_at ([ fluent :located , pers:bob , loc: kitchen ], tp:4, P4 ),
prob( holds_at ([ fluent :located , pers:bob , loc: kitchen ], tp:5, P5 ),
prob( holds_at ([ fluent :located , pers:bob , loc: garage ], tp:5, P6 ),
prob( holds_at ([ fluent :located , pers:bob , loc: garage ], tp:6, P7 ).

Listing 12 Test Queries used to Evaluate the SEC with MCINTYRE
test_ec_mcintyre ([P1 , P2 , P3 , P4 , P5 , P6 , P7]) :-

mc_sample ( holds_at ([ fluent :located , pers:bob , loc: garden ], tp:1),
100, P1 ),
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mc_sample ( holds_at ([ fluent :located , pers:bob , loc: garden ], tp:2),
100, P2 ),

mc_sample ( holds_at ([ fluent :located , pers:bob , loc: kitchen ], tp:3),
100, P3 ),

mc_sample ( holds_at ([ fluent :located , pers:bob , loc: kitchen ], tp:4),
100, P4 ),

mc_sample ( holds_at ([ fluent :located , pers:bob , loc: kitchen ], tp:5),
100, P5 ),

mc_sample ( holds_at ([ fluent :located , pers:bob , loc: garage ], tp:5),
100, P6 ),

mc_sample ( holds_at ([ fluent :located , pers:bob , loc: garage ], tp:6),
100, P7 ).

6.1 Experiment A
For the first experiment, we removed the probabilities of the learned effect axioms and
automatically combined them with the domain-independent axioms (SEC1-SEC3) and the
axioms of the original scenario (SCO1-SCO3), and then executed the queries in Listing 11 and
12 using the two inference modules PITA (P) and MCINTYRE (M). This resulted in the
following answers:

(P) Probs = [1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0]
(M) Probs = [1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0]

Here the value 1.0 stands for "true" and the value 0.0 for "false" and the answers are the
same as we get for the logic-based version of the SEC. Note that by definition a fluent does
not hold at the time point of the event that initiates it; therefore, the probability for the
answer of the third query and the sixth query in Listing 11 + 12 is 0.0.

6.2 Experiment B
In this experiment, we used the probabilistic effect axioms that we learned with the help of
our 50 training examples. This gives the following results for our test queries:

(P) Probs = [1.0, 1.0, 0.0, 0.87, 0.87, 0.0, 0.87]
(M) Probs = [1.0, 1.0, 0.0, 0.85, 0.91, 0.0, 0.87]

Note that the first three answers and the sixth answer are the same as before, answer
four, five and seven show the probabilistic effect axioms at work. Since MCINTYRE uses
inexact inference and relies on sampling, the results for each run show some variation. We
observe a standard deviation of about 0.034 for the relevant answers when we run each query
ten times and use 100 samples for each query (see Listing 12).

6.3 Experiment C
For our third experiment, we used again the probabilistic effect axioms and added probabilities
to the events to deal with a situation where we have noise in the recognition of events:

happens_at ([ event:arrive ,pers:bob ,loc: kitchen ],tp :3):0.95; ' ':0.05.
happens_at ([ event:arrive ,pers:bob ,loc: garage ],tp :5):0.99; ' ':0.01.

Running our test queries under these uncertain conditions gives the following results:
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(P) Probs = [1.0, 1.0, 0.0, 0.8265, 0.8265, 0.0, 0.8613]
(M) Probs = [1.0, 1.0, 0.0, 0.84, 0.82, 0.0, 0.84]

As expected, uncertainty in event recognition lowers the probability for the relevant
answers, and there is of course some variation under inexact inference for each run.

7 Conclusion

In this paper we showed how we can automatically learn the structure and parameters of
probabilistic effect axioms for the Simple Event Calculus (SEC) from positive and negative
example interpretations stated as short dialogue sequences in natural language. We used the
cplint framework for this task that provides libraries for structure and parameter learning
and for answering queries with exact and inexact inference. The example dialogues that are
used for learning the structure of the probabilistic logic program are parsed into dependency
structures and then further translated into the Event Calculus notation with the help of a
simple ontology. The novelty of our approach is that we can not only process uncertainty in
event recognition but also learn the structure of effect axioms and combine these two sources
of uncertainty to successfully answer queries under this probabilistic setting. Interestingly,
our extension of the logic-based version of the SEC is completely elaboration-tolerant in
the sense that the probabilistic version fully includes the logic-based version. This makes it
possible to use the probabilistic version of the SEC in the traditional way as well as when we
have to deal with uncertainty in the observed world. In the future, we would like to extend
the probabilistic version of the SEC to deal – among other things – with concurrent actions
and continuous change.

Acknowledgements. I would like to thank Fabrizio Riguzzi for his valuable help with the
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