Technical Communications of the
33rd International Conference on
Logic Programming

ICLP 2017, August 28-September 1, 2017, Melbourne, Australia

Edited by

Ricardo Rocha
Tran Cao Son

Christopher Mears
Neda Saeedloei

\\v OASICS

OASlcs — Vol. 58 — ICLP 2017 www.dagstuhl.de/oasics

Editors

Ricardo Rocha Tran Cao Son

CRACS & INESC TEC and Faculty of Sciences Department of Computer Science
University of Porto New Mexico State University
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal Las Cruces, NM 88003, USA
ricroc@dcc.fc.up.pt tson@cs.nmsu.edu

Christopher Mears Neda Saeedloei

Redbubble Department of Computer Science
Melbourne, Australia Southern lllinois University
chris.mears@redbubble.com Carbondale, IL 62901, USA

neda@cs.siu.edu

ACM Classification 1998: D.1.6 Logic Programming, D.2.4 Software/Program Verification, D.2.5 Testing
and Debugging, D.3 Programming Languages, D.3.2 Language Classifications: Applicative (functional)
languages, Constraint and logic languages, D.3.3 Language Constructs and Features, D.3.4 Processors,
F.2.2 Nonnumerical Algorithms and Problems, F.3.1 Specifying and Verifying and Reasoning about
Programs, F.3.2 Semantics of Programming Languages, F.3.3 Studies of Program Constructs, H.3.3
Information Search and Retrieval, H.3.5 Online Information Services, 1.2.1 Applications and Expert
Systems, 1.2.4 Knowledge Representation Formalisms and Methods, 1.2.5 Programming Languages and
Software, 1.2.7 Natural Language Processing.

ISBN 978-3-95977-058-3

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-058-3.

Publication date
February, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/0OASlcs.ICLP.2017.0
ISBN 978-3-95977-058-3 ISSN 1868-8969 http: //www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-95977-058-3
http://www.dagstuhl.de/dagpub/978-3-95977-058-3
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.ICLP.2017.0
http://www.dagstuhl.de/dagpub/978-3-95977-058-3
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

O:iii

OASlcs — OpenAccess Series in Informatics

OASilcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASlIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU Miinchen, Germany)
Barbara Hammer (Universitat Bielefeld, Germany)
Marc Langheinrich (Universita della Svizzera ltaliana — Lugano, Switzerland)

Dorothea Wagner (Editor-in-Chief, Karlsruher Institut fiir Technologie, Germany)

ISSN 2190-6807

http: //www.dagstuhl.de/oasics

ICLP 2017 TCs

http://www.dagstuhl.de/dagpub/2190-6807
http://www.dagstuhl.de/oasics

Contents

Preface
Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei 0:vii-0:ix

ICLP 2016: Technical Comunications

Entity Set Expansion from the Web via ASP
Weronika T. Adrian, Marco Manna, Nicola Leone, Giovanni Amendola, and

Marek Adrian 1:1-1:5

The Pyglaf Argumentation Reasoner
Mario AIanoo 2:1-2:3

Reasoning on Anonymity in Datalog+/-
Giovanni Amendola, Nicola Leone, Marco Manna, and Pierfrancesco Veltri 3:1-3:5

Rule Based Temporal Inference

Melisachew Wudage Chekol and Heiner Stuckenschmidt 4:1-4:14
Logic Programming with Max-Clique and its Application to Graph Coloring (Tool
Description)

Michael Codish, Michael Frank, Amit Metodi, and Morad Muslimany 5:1-5:18

Semantic Versioning Checking in a Declarative Package Manager
Michael Hanus ... e 6:1-6:16

Understanding Restaurant Stories Using an ASP Theory of Intentions
Daniela Inclezan, Qinglin Zhang, Marcello Balduccini, and Ankush Israney 7:1-7:4

Learning Effect Axioms via Probabilistic Logic Programming
ROIf Schwilter 8:1-8:15

Towards Run-time Checks Simplification via Term Hiding
Nataliia Stulova, José F. Morales, and Manuel V. Hermenegildo 9:1-9:3

A Hitchhiker’s Guide to Reinventing a Prolog Machine
Paul Tarau o 10:1-10:16

Efficient Declarative Solutions in Picat for Optimal Multi-Agent Pathfinding
Neng-Fa Zhou and Roman Bartdk i 11:1-11:2

ICLP 2016 Doctoral Program: Technical Communications

Treewidth in Non-Ground Answer Set Solving and Alliance Problems in Graphs
Bernhard Bliem 12:1-12:12

Achieving High Quality Knowledge Acquisition using Controlled Natural Language
TIantian GOt e 13:1-13:10

A Simple Complete Search for Logic Programming
Jason Hemann, Daniel P. Friedman, William E. Byrd, and Matthew Might 14:1-14:8

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

On Improving Run-time Checking in Dynamic Languages
Natalita STulova 15:1-15:10

Preface

This volume contains the Technical Communications of the 33rd International Conference on
Logic Programming (ICLP 2017), held in Melbourne, Australia, from the 28th of August to
the 1st of September, 2017. Since the first conference held in Marseille in 1982, ICLP has been
the premier international event for presenting research in logic programming. Contributions
to ICLP are sought in all areas of logic programming, including:

Theory — Semantic Foundations, Formalisms, Nonmonotonic Reasoning, Knowledge
Representation.

Implementation — Compilation, Virtual Machines, Parallelism, Constraint Handling Rules,
Tabling.

Environments — Program Analysis, Transformation, Validation, Verification, Debugging,
Profiling, Testing.

Language Issues — Concurrency, Objects, Coordination, Mobility, Higher Order, Types,
Modes, Assertions, Programming Techniques.

Related Paradigms — Inductive and Co-inductive Logic Programming, Constraint Logic
Programming, Answer-Set Programming, SAT-Checking.

Applications — Databases, Big Data, Data Integration and Federation, Software Engineer-
ing, Natural Language Processing, Web and Semantic Web, Agents, Artificial Intelligence,
Bioinformatics, and Education.

Three kinds of submissions were accepted:

Technical papers, for technically sound, innovative ideas that can advance the state of
logic programming.

Application papers, that impact interesting application domains;

System and tool papers, which emphasize novelty, practicality. usability, and availability
of the systems and tools described.

This year, ICLP adopted the hybrid publication model used in all recent editions of the
conference, with journal papers and Technical Communications (TCs), following a decision
made in 2010 by the Association for Logic Programming. Papers of the highest quality
were selected to be published as rapid publications in the journal of Theory and Practice of
Logic Programming (TPLP), Cambridge University Press. The TCs comprise papers which
the Program Committee judged of good quality but not yet of the standard required to be
accepted and published in TPLP as well as dissertation project descriptions stemming from
the Doctoral Program (DP) held with ICLP.

We received 55 full submissions for the main conference, the Program Committee recom-
mended 13 to be accepted as TCs, of which 11 were materialized in this volume (2 were
withdraw). The DP, with a separate Program Committee, received 4 submissions, all of
which were accepted. All papers in this volume were presented in specific sessions of ICLP
2017. The best DP paper was given the opportunity to be presented in a slot of the main
conference.

We are of course deeply indebted to both Program Committee members and external
reviewers, as the conference would not have been possible without their dedicated, enthusiastic
and outstanding work. The Program Committee members for ICLP and the DP were:

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:viii

Preface

Mario Alviano
Marcello Balduccini
Pedro Cabalar
Mats Carlsson
Manuel Carro
Andre Augusto Cire
Michael Codish
Alessandro Dal Palu
Broes De Cat
Marina De Vos
Marc Denecker
Agostino Dovier
Inés Dutra

Esra Erdem
Wolfgang Faber
Fabio Fioravanti
Thom Fruehwirth
Sarah Alice Gaggl
Graeme Gange
Maria Garcia De La Banda
Marco Gavanelli
Martin Gebser

Tias Guns

Gopal Gupta

Amelia Harrison
Manuel V. Hermenegildo
Tomi Janhunen
Matti Jarvisalo
Serdar Kadioglu
George Katsirelos
Andy King

Ekaterina Komendantskaya
Lars Kotthoff

Jean Marie Lagniez
Joohyung Lee
Michael Leuschel
Vladimir Lifschitz
Michele Lombardi
Christopher Mears
Alessandra Mileo
Jose F. Morales

Nina Narodytska
Enrico Pontelli
Charles Prud’Homme
Claude-Guy Quimper
C. R. Ramakrishnan

The external reviewers were:

Joaquin Arias
Marc Bezem
Bernhard Bliem
Zhuo Chen
Jonnathan Cook
Bernardo Cuteri
Fabio Aurelio D’Asaro
Ingmar Dasseville
Besik Dundua
Andrea Formisano
Michael Frank
Daniel Gall
Jianmin Ji

Georgios Karachalias
Arash Karimi
Michael Kifer

Ruben Lapauw
Thomas Linsbichler
Fangfang Liu
Yanhong A. Liu
Kyle Marple

Michael Morak

Jose F. Morales
Falco Nogatz

Adrian Palacios

Le Thi Anh Thu Pham

Francesco Ricca
Ricardo Rocha
Alessandra Russo
Neda Saeedloei
Chiaki Sakama,
Tom Schrijvers
Takehide Soh

Tran Cao Son
Theresa Swift
Guido Tack

Paul Tarau

Daniele Theseider Dupre’
Kevin Tierney
Mirek Truszczynski
Tommaso Urli
Frank Valencia
Willem-Jan Van Hoeve
Nadarajen Veerapen
German Vidal

Jan Wielemaker
Stefan Woltran
Jia-Huai You
Neng-Fa Zhou

Javier Romero
Elmer Salazar
Vitor Santos Costa
Lukas Schweizer
Farhad Shakerin
Nada Sharaf

Roni Stern

Alwen Tiu
Matthias van der Hallen
Alicia Villanueva
Yi Wang

Philipp Wanko
Zhun Yang

We would also like to express our gratitude to the full ICLP 2017 organization committee,
namely Maria Garcia de la Banda and Guido Tack, who acted as general chairs; Enrico
Pontelli, who served as workshop chair; Tommaso Urli, who acted as publicity chair and
designed the web pages; and, finally, Paul Fodor and Graeme Gange, who organized the
programming contest.

Our gratitude must be extended to Torsten Schaub, who is serving in the role of President
of the Association of Logic Programming (ALP), to all the members of the ALP Executive
Committee and to Mirek Truszczynski, Editor-in-Chief of TPLP. Also, to the staff at
Cambridge University Press, especially Richard Horley and Samira Ceccarelli, and to the

Preface

personnel at Schloss Dagstuhl-Leibniz Zentrum fiir Informatik, especially Marc Herbstritt,
for their timely assistance. We would also like to thank the staff of the EasyChair conference
management system for making the life of the Program Chairs easier. Thanks should go
also to the authors of all submitted papers for their contribution to make ICLP alive and to
the participants for making the event a meeting point for a fruitful exchange of ideas and
feedback on recent developments.

Finally, we would like to thank our generous gold-tier sponsors — the Association for
Logic Programming, the Association for Constraint Programming, the Monash University,
the University of Melbourne, CSIRO Data61, COSYTEC and Satalia; our generous bronze-
tier sponsors — Google; and our generous donors — the European Association for Artificial
Intelligence, the International Journal of Artificial Intelligence, Springer, CompSustNet and
Cosling.

Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei
Program Committee Chairs
August 2017

0:ix

ICLP 2017 TCs

List of Authors

Marek Adrian

Universty of Calabria
Ttaly
m.adrian@mat.unical.it

Weronika T. Adrian
Universty of Calabria
Ttaly
w.adrian@mat.unical.it

Mario Alviano
University of Calabria
Ttaly
alviano@mat.unical.it

Giovanni Amendola
Universty of Calabria
Ttaly
amendola@mat.unical.it

Marcello Balduccini
Drexel University

United States of America
mb3368@drexel . edu

Roman Bartak

Charles University

Czech Republic
bartak@ktiml.mff.cuni.cz

Bernhard Bliem

TU Wien

Austria
bliem@dbai.tuwien.ac.at

William E. Byrd
University of Utah
United States of America
Will.Byrd@cs.utah.edu

Melisachew Wudage Chekol
University of Mannheim

Germany
mel@informatik.uni-mannheim.de

Michael Codish

Ben-Gurion University of the Negev
Israel

mcodish@cs.bgu.ac.il

Michael Frank

Ben-Gurion University of the Negev
Israel

frankm@cs.bgu.ac.il

Daniel P. Friedman
Indiana University
United States of America
dfried@indiana.edu

Tiantian Gao

Stony Brook University
United States of America
tiagao@cs.stonybrook.edu

Michael Hanus

Institut fiir Informatik
Germany
mh@informatik.uni-kiel.de

Jason Hemann

Indiana University
United States of America
jhemann@indiana.edu

Manuel V. Hermenegildo
Universidad Politécnica de Madrid
Spain

manuel .hermenegildo@upm.es

Daniela Inclezan
Miami University
United States of America

inclezd@miamioh.edu

Ankush Israney

Drexel University

United States of America
avi26@drexel.edu

Nicola Leone
University of Calabria
Italy
leone@mat.unical.it

Marco Manna
University of Calabria
Italy
manna@mat.unical.it

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xii Authors

Amit Metodi
Cadence Design Systems
ametodi@cadence.com

Matthew Might
University of Utah
United States of America
might@cs.utah.edu

José F. Morales

IMDEA Software Institute
Spain

josef .morales@imdea.org

Morad Muslimany

Ben-Gurion University of the Negev
Israel

moradm@cs.bgu.ac.il

Rolf Schwitter

Macquarie University
Australia
Rolf.Schwitter@mq.edu.au

Heiner Stuckenschmidt

University of Mannheim

Germany
heiner@informatik.uni-mannheim.de

Nataliia Stulova

IMDEA Software Institute
Spain
nataliia.stulova@imdea.org

Paul Tarau

University of North Texas
United States of America
paul.tarau@unt.edu

Pierfrancesco Veltri
University of Calabria
Ttaly
veltri@mat.unical.it

Qinglin Zhang

Miami University

United States of America
zhangq7@miamioh.edu

Neng-Fa Zhou

CUNY Brooklyn College

United States of America
nzhou@sci.brooklyn.cuny.edu

Entity Set Expansion from the Web via ASP

Weronika T. Adrian!, Marco Manna?, Nicola Leone?,

Giovanni Amendola*, and Marek Adrian®

1 Universty of Calabria, Arcavacata di Rende (CS), Italy and
AGH University of Science and Technology, Krakéw, Poland
w.adrian@mat.unical.it

2 Universty of Calabria, Arcavacata di Rende (CS), Italy
manna@mat.unical.it

3 Universty of Calabria, Arcavacata di Rende (CS), Italy
leone@mat.unical.it

4 Universty of Calabria, Arcavacata di Rende (CS), Italy
amendola@mat.unical.it

2 Universty of Calabria, Arcavacata di Rende (CS), Italy
m.adrian@mat.unical.it

—— Abstract

Knowledge on the Web in a large part is stored in various semantic resources that formalize,
represent and organize it differently. Combining information from several sources can improve
results of tasks such as recognizing similarities among objects. In this paper, we propose a logic-
based method for the problem of entity set expansion (ESE), i.e. extending a list of named entities
given a set of seeds. This problem has relevant applications in the Information Extraction domain,
specifically in automatic lexicon generation for dictionary-based annotating tools. Contrary to
typical approaches in natural languages processing, based on co-occurrence statistics of words, we
determine the common category of the seeds by analyzing the semantic relations of the objects the
words represent. To do it, we integrate information from selected Web resources. We introduce
a notion of an entity network that uniformly represents the combined knowledge and allow to
reason over it. We show how to use the network to disambiguate word senses by relying on
a concept of optimal common ancestor and how to discover similarities between two entities.
Finally, we show how to expand a set of entities, by using answer set programming with external
predicates.

1998 ACM Subject Classification D.1.6 Logic Programming, H.3.3 Information Search and
Retrieval, H.3.5 Online Information Services, 1.2.4 Knowledge Representation Formalisms and
Methods, 1.2.7 Natural Language Processing

Keywords and phrases answer set programming, entity set expansion, information extraction,
natural language processing, word sense disambiguation

Digital Object Identifier 10.4230/0OASIcs.JCLP.2017.1

1 Introduction

The problem we study in this paper goes under the name of entity set expansion. Informally,
given a set of words called seeds, the goal is to extend the original set with new words of the
same “sort”. For example, starting from Rome and Budapest, one could expand these seeds
with Amsterdam, Athens, Berlin, ..., Warsaw, and Zagreb, which are also capital cities of
European Union member states. But is this the most appropriate way? In fact, an alternative

expansion could be made by Amsterdam, Berlin, Dublin, ..., Paris, and Prague, which are
© Weronika T. Adrian, Marco Manna, Nicola Leone, Giovanni Amendola, Marek Adrian;
37 licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 1; pp. 1:1-1:5

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

1:2

Entity Set Expansion via ASP

also Europe’s capitals situated on rivers. Moreover, Rome is not only a ‘capital’, but also a
‘drama television series’, a ‘female deity’, and many other things, while Budapest is also a
‘film series’ and a ‘rock band’, apart from being a ‘capital’ too. Hence, which is the “best”
common sort putting together the original words? Are they ‘capitals’ or ‘films’?

The problem of entity set expansion has been widely studied in the NLP community.
Several approaches have been proposed, including bootstrapping algorithms [10, 13] that
starting from a set of seed words, discover patterns in which they appear in a given corpus,
then using those patterns find more examples and repeat the process until an end condition
is met. The patterns are usually lexico-syntactic, but recently more advanced ways of
characterizing the words in a category to be expanded have also been proposed, e.g. word
embeddings [3, 6]. As far as the corpus is concerned, the great potential of the Web has
been recognized and used to extend the set of seeds [4, 11, 9]. Nevertheless, there are several
problems with existing approaches. First, the inherent limitation of statistical methods when
analyzing the words, is that they do not take into consideration possible different senses of
the same word, domain-specific exceptions etc., so methods that work well for generating
general lexicons may fail for domains-specific dictionaries, when the meaning of words do
not always agree with statistics [5]. Moreover, the intended categories is usually as simple
as a ‘person’ or a ‘city’. We would like to go a step further and be able to discover more
descriptive categories, by including the properties of the objects represented with the seeds.

To this end, we propose to use knowledge available on the Web, specifically, stored in
selected semantic resources that represent semantics of objects, their categorization and
relations with other objects. We want to use these resources to disambiguate word meanings
and discover commonalities among objects represented with them. Once the common category
is singled out, we want to utilize the Web-harvested knowledge, specifically stored in the
hypernym database built automatically using Hearst-like patterns. This way, our approach
combines structural knowledge from the semantic resources for analyzing and understanding
objects, and Web-harvested knowledge to extend the set. We propose a model of an entity
network that will allow to integrate information from several sources and reason over it. We
also propose an implementation in answer set programming with external predicates to query
semantic resources.

2 Semantic resources and entity networks

Currently, more and more machine-readable knowledge is available on the Web in a form of
semantic resources, such as WordNet [7], Wikidata (http://wikidata.org), BabelNet [§]
and WebIsADatabase[12]. These knowledge bases formalize and organize human knowledge
about the world in different scope and manners, focus on various dimensions and areas.

To integrate knowledge from such resources, we propose a model that can uniformly repres-
ent information acquired from them. The basic notions we will use are (semantic) entities and
an (entity) network. An entity is a pair e = (id(g), names(g)), where id(e) is the identifier of
g, and names(g) is a set of (human readable) terms describing e. From a syntactic viewpoint,
id(e) is a set of strings of the form src : code where src identifies the semantic resource where &
is classified, and code is the local identifier within source src, while names(e) is a set of strings.
For example, € = ({wn:08864547, wd:Q40, bn:00007266n}, {Austria, Republic of Austria}) is
an entity representing the object in real world, the Republic of Austria, referred to in WordNet
(abbreviation wn with identifier 08864547), Wikidata (abbreviated wd with item identifier
Q40), and BabelNet (with synset identifier bn:00007266n).

http://wikidata.org

W. T. Adrian, M. Manna, N. Leone, G. Amendola, and M. Adrian

From a semantic point of view, entities may refer to three different kinds of objects.
Namely, they can either point to (i) individuals, called hereafter instances, such as in
the previous example, where the entity denotes a particular country, or (ii) concepts that
generalize a class of objects e.g., € = ({ wn:08562388, wd:Q6256, bn:00023235n }, {country})
or to (iii) (semantic) relations that hold between two objects e.g., ¢ = ({wd:P31}, {instance
of, is a, ...})or e = ({ wd:P131}, {is located in, ...}) etc. For convenience, we group
the entities representing instances and classes into one group, so-called (knowledge) units.

An (entity) network is a four-tuple N' = (Uni, Rel, Con, type) where: (i) Uni is a set
of knowledge units, both classes and instances; (ii) Rel is a set of semantic relations; (#i7)
Con C Uni x Uni is a set of ordered pairs denoting that two units are connected via some
(one or more) semantic relations; and (iv) type : Con — (27¢1\) is a function that assigns
to each connection a set of semantic relations.

To construct an entity network, one may start from either a set of words (i.e. raw
strings) or a set of units. To this end, we use Answer Set Programming (ASP) [1] enriched
with external predicates [2]. External predicates refer to functions (implemented separately)
that encapsulate requests to semantic resources and acquire responses. It is easy to ex-
tend the current implementation with a new semantic resource: one needs only to add a
new rule with an external predicate — a new (typically very simple) function, compatible
with the resource’s API. In fact, all the rules that query external sources establish new
connections and are of the general form: newCon(InputUnit, OutputUnit [, optionalArg]*) : -
unitID(InputUnit), &externalPredicate(InputUnit; OutputUnit) [, optionalRestriction]*.

For example, given a set of seed words, each encoded with a logical fact seed (Seed Word) ,
we use the following rules in ASP to establish connections sense0f from a set of seed words
W to the first node of the network representing the meanings of words:

sense0f (SeedWord, SenseID) :- seed(SeedWord), &babelnetSense(SeedWord; SenselD).

Once we have the first units in the entity network, we can further expand the network with
relations of the represented objects, such as hypernymy:

bnISA(ID, PID, PLv) :- babelnetID(ID,Lv), &babelnetISA(ID; PID),
babelnetDepth(BabelNetMax), Lv<BabelNetMax, PLv = Lv +1.

In this rule, the external predicate &babelnetISA(Input; Output) query BabelNet for
hypernyms (superclasses) of the given input, and the optional restrictions set the limits on
the number of applications of the rule.

3 Entity set expansion

Given the set W of seeds, we solve ESE by performing three major steps described next.

First, we need to understand the objects represented by the seed words. To this end, we
construct a network N from W and expand the hypernymy relations via ASP as described
above. From WordNet we acquire the taxonomy up to the most general concept: “entity”.
From other sources, in which the taxonomy is not guaranteed to be acyclic, we get the
hypernyms only up to some fixed level. The output of the expansion is a directed acyclic
graph, in which we determine the “correct” meanings of the seed words by identifying the
“optimal common ancestors” for W. Basically, we identify via ASP program with weak
constraints minimum spanning subtrees in the graph, containing one meaning for each word
and one common ancestor. The output of this step is a set of units U.

1:3

ICLP 2017 TCs

1:4

Entity Set Expansion via ASP

Once we know the single optimal combination of word senses, we proceed to the phase of
category recognition. In this step, we create a network N3 starting from the above set of U.
First, we determine the common supertypes by asking the semantic resources for hypernyms
up to a given limit. Then, we expand the other semantic relations that connect U to other
objects. For each shared relation we obtain a set of units that are the image of the relation
w.r.t. the seed units. If the set is a singleton, it means that the seed units are connected via
the relation to the same unit. If it is not the case, then we treat the image set as the new
set of seeds, for which we repeat the process of finding a common supertype and analyzing
common relations (the iteration limit can be set). The output of this step is a sub-network
N3 that describes the common properties and will be used as “verifier” in the next step.

Finally, to discover new objects of the target category, we query the WebIsADatabase
for instances of the common ancestors of the seeds, setting a threshold to filter out noisly
results. The obtained set of new candidate instances is then evaluated against the properties
discovered earlier. We check if they are hyponyms of one of the desired common ancestors,
and if they share the relations discovered for the seed set.

4 Conclusion

The problem of entity set expansion is not a new topic. With our approach, we address the
old problem in a moderm semantic way. Instead of relying strictly on lexical level, we utilize
the online semantic resources, that were not available before, to build a better representation,
based on semantic relations. Our approach allows to leverage existing resources, and we
believe that with the theoretical foundations and efficient ASP-based implementation of
prototypes, that we already have, we can build, with further engineering effort, an integrated,
configurable system.

—— References

1 Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set programming at
a glance. Communications of the ACM, 54(12):92-103, 2011.

2 Francesco Calimeri, Davide Fusca, Simona Perri, and Jessica Zangari. I-DLV: the new
intelligent grounder of DLV. Intelligenza Artificiale, 11(1):5-20, 2017.

3 José Camacho-Collados, Mohammad Taher Pilehvar, and Roberto Navigli. A unified mul-
tilingual semantic representation of concepts. In Proc. of ACL’15, pages 741-751, 2015.

4 Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked, Stephen
Soderland, Daniel S. Weld, and Alexander Yates. Unsupervised named-entity extraction
from the web: An experimental study. Artificial Intelligence, 165(1):91-134, 2005.

5 Ruihong Huang and Ellen Riloff. Inducing domain-specific semantic class taggers from
(almost) nothing. In Proc. of ACL 2010, pages 275285, 2010.

6 Ignacio Tacobacci, Mohammad T. Pilehvar, and Roberto Navigli. Sensembed: Learning
sense embeddings for word and relational similarity. In Proc. of ACL 2015, pages 95105,
2015.

7 George A Miller. Wordnet: a lexical database for english. Communications of the ACM,
38(11):39-41, 1995.

8 Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic construction, eval-
uation and application of a wide-coverage multilingual semantic network. Artificial Intelli-
gence, 193:217-250, 2012.

9 Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-Maria Popescu, and Vishnu Vyas.
Web-scale distributional similarity and entity set expansion. In Proc. of EMNLP 2009,
pages 938947, 2009.

W. T. Adrian, M. Manna, N. Leone, G. Amendola, and M. Adrian

10

11

12

13

Ellen Riloff and Rosie Jones. Learning dictionaries for information extraction by multi-level
bootstrapping. In Proc. of AAAI "99 and TAAI 99, pages 474-479, 1999.

Luis Sarmento, Valentin Jijkoun, Maarten de Rijke, and Eugenio Oliveira. "more like these":
growing entity classes from seeds. In Proc. of CIKM’07, pages 959-962, 2007.

Julian Seitner, Christian Bizer, Kai Eckert, Stefano Faralli, Robert Meusel, Heiko Paulheim,
and Simone Paolo Ponzetto. A large database of hypernymy relations extracted from the
web. In Proc. of LREC’16, 2016.

Michael Thelen and Ellen Riloff. A bootstrapping method for learning semantic lexicons
using extraction pattern contexts. In Proc. of EMNLP 02, pages 214-221, 2002.

1:5

ICLP 2017 TCs

The Pyglaf Argumentation Reasoner”

Mario Alviano

Department of Mathematics and Computer Science, University of Calabria, Italy
alviano@mat.unical.it

—— Abstract
The PYGLAF reasoner takes advantage of circumscription to solve computational problems of
abstract argumentation frameworks. In fact, many of these problems are reduced to circumscrip-
tion by means of linear encodings, and a few others are solved by means of a sequence of calls
to an oracle for circumscription. Within PYGLAF, Python is used to build the encodings and
to control the execution of the external circumscription solver, which extends the SAT solver
GLUCOSE and implements an algorithm based on unsatisfiable core analysis.

1998 ACM Subject Classification 1.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases abstract argumentation frameworks, propositional circumscription, min-
imal model enumeration, incremental solving

Digital Object Identifier 10.4230/0ASIcs.ICLP.2017.2

1 Introduction

Circumscription [9] is a nonmonotonic logic formalizing common sense reasoning by means
of a second order semantics, which essentially enforces to minimize the extension of some
predicates. With a little abuse on the definition of circumscription, the minimization can
be imposed on a set of literals, so that a set of negative literals can be used to encode a
maximization objective function. Since many semantics of abstract argumentation frameworks
are based on a preference relation that essentially amount to inclusion relationships, PYGLAF
(http://alviano.com/software/pyglaf/) uses circumscription as a target language to
solve computational problems of abstract argumentation frameworks.

PYGLAF is implemented in Python and uses CIRCUMSCRIPTINO [1], a circumscription
solver extending the SAT solver GLUCOSE [7] with the unsatisfiable core based algorithm
ONE [6] enhanced by reiterated progression shrinking [3], native support for cardinality
constraints as in WASP [4, 5, 8], and polyspace model enumeration [2]. Linear reductions
are used for all considered semantics. The communication between PYGLAF and CIRCUM-
SCRIPTINO is handled in the simplest possible way, that is, via stream processing. In fact,
the communication is limited to a single invocation of the circumscription solver.

2 From Argumentation Frameworks to Circumscription

Let A be a fixed, countable set of atoms including L. A literal is an atom possibly preceded
by the connective —. For a literal ¢, let ¢ denote its complementary literal, that is, o = —p
and =p = p for all p € A; for a set L of literals, let L be {¢ | £ € L}. Formulas are defined as

The paper has been partially supported by the Italian Ministry for Economic Development (MISE) under
project “PIUCultura — Paradigmi Innovativi per I'Utilizzo della Cultura” (n. F/020016/01-02/X27),
and under project “Smarter Solutions in the Big Data World (S2BDW)” (n. F/050389/01-03/X32)
funded within the call “HORIZON2020” PON I&C 2014-2020, and by Gruppo Nazionale per il Calcolo
Scientifico (GNCS-INdAM).

© Mario Alviano;
37 licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 2; pp.2:1-2:3

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.2
http://alviano.com/software/pyglaf/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

2:2

The Pyglaf Argumentation Reasoner

usual by combining atoms and the connectives —, A, V, —, <>. A theory is a set T of formulas
including —.L; the set of atoms occurring in 7" is denoted by atoms(T'). An assignment is a
set A of literals such that AN A = (. An interpretation for a theory T is an assignment I
such that (I UT)N.A = atoms(T). Relation = is defined as usual. I is a model of a theory
T if I =T. Let models(T) denote the set of models of T.

Circumscription applies to a theory T and a set P of literals subject to minimization.
Formally, relation <* is defined as follows: for I,.J interpretations of T, I <P Jif INP C
JNP. I € models(T) is a preferred model of T with respect to <" if there is no J € models(T)
such that I £F J and J <P I. Let CIRC(T, P) denote the set of preferred models of T with
respect to §P.

An abstract argumentation framework (AF) is a directed graph G whose nodes arg(G)
are arguments, and whose arcs att(G) represent an attack relation. An extension E is a set
of arguments. The range of F in G is E} := EU {z | 3yz € att(G) with y € E}. In the
following, several AF semantics are characterized by means of circumscription.

For each argument x, an atom a, is possibly introduced to represent that z is attacked
by some argument that belongs to the computed extension E, and an atom r, is possibly
introduced to enforce that x belongs to the range Eg:

attacked(G) :== a; <> \/ y | x € arg(G) (1)
yx€att(G)
range(G) == S ry > xV \/ y | x € arg(G) (2)
yxE€att(G)

The following set of formulas characterize semantics not based on preferences:

conflict-free(G) := {-~L}U{—zV -y | zy € alt(G)} (3)

admissible(G) := conflict-free(G)Uattacked(G) U {z — ay | yz € att(G)} (4)

complete(G) := admissible(G) U /\ ay | =z |z € arg(G) (5)
yx€att(G)

stable(Q) := complete(G) U range(G) U{r, | = € arg(G)} (6)

Note that in (4) truth of an argument = implies that all arguments attacking x are actually
attacked by some true argument. In (5), instead, whenever all attackers of an argument x
are attacked by some true argument, argument z is forced to be true. Finally, in (6) all
atoms of the form r, are forced to be true, so that the range of the computed extension has
to cover all arguments.

Below are several AF semantics with natural characterization in circumscription:

co(@) := CIRC(complete(G), D) (7)
st(G) := CIRC(stable(G), D) (8)
gr(G) := CIRC(complete(G), arg(G)) (9)
pr(G) := CIRC(complete(G), arg(G)) (10)
sst(G) := CIRC(complete(G) U range(Q),{—ry; | x € arg(G)}) (11)
stg(G) := CIRC(conflict-free(G) U range(G), {—ry | x € arg(G)}) (12)

All of the above semantics are supported by PYGLAF, which provides a uniform developing
platform for reasoning on argumentation frameworks.

M. Alviano

—— References

1

Mario Alviano. Model enumeration in propositional circumscription via unsatisfiable core
analysis. TPLP, 17, 2017. To appear. URL: https://arxiv.org/abs/1707.01423.
Mario Alviano and Carmine Dodaro. Answer set enumeration via assumption literals.
In Giovanni Adorni, Stefano Cagnoni, Marco Gori, and Marco Maratea, editors, AI*IA
2016: Advances in Artificial Intelligence - XVth International Conference of the Italian
Association for Artificial Intelligence, Genowva, Italy, November 29 - December 1, 2016,
Proceedings, volume 10037 of Lecture Notes in Computer Science, pages 149-163. Springer,
2016. doi:10.1007/978-3-319-49130-1_12.

Mario Alviano and Carmine Dodaro. Anytime answer set optimization via unsatisfiable
core shrinking. TPLP, 16(5-6):533-551, 2016. doi:10.1017/5147106841600020X.

Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone, and Francesco Ricca.
WASP: A native ASP solver based on constraint learning. In Pedro Cabalar and
Tran Cao Son, editors, Logic Programming and Nonmonotonic Reasoning, 12th Inter-
national Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceed-
ings, volume 8148 of Lecture Notes in Computer Science, pages 54—66. Springer, 2013.
doi:10.1007/978-3-642-40564-8_6.

Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca. Advances in
WASP. In Francesco Calimeri, Giovambattista Ianni, and Miroslaw Truszczynski, edit-
ors, Logic Programming and Nonmonotonic Reasoning - 13th International Conference,
LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Proceedings, volume 9345
of Lecture Notes in Computer Science, pages 40-54. Springer, 2015. doi:10.1007/
978-3-319-23264-5_5.

Mario Alviano, Carmine Dodaro, and Francesco Ricca. A maxsat algorithm using car-
dinality constraints of bounded size. In Qiang Yang and Michael Wooldridge, editors,
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 2677—2683. AAAI Press,
2015. URL: http://ijcai.org/Abstract/15/379.

Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT
solvers. In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages
399-404, 2009. URL: http://ijcai.org/Proceedings/09/Papers/074.pdf.

Carmine Dodaro, Mario Alviano, Wolfgang Faber, Nicola Leone, Francesco Ricca, and
Marco Sirianni. The birth of a WASP: preliminary report on a new ASP solver. In
Fabio Fioravanti, editor, Proceedings of the 26th Italian Conference on Computational
Logic, Pescara, Italy, August 31 - September 2, 2011, volume 810 of CEUR Workshop
Proceedings, pages 99-113. CEUR-WS.org, 2011. URL: http://ceur-ws.org/Vol-810/
paper-106.pdf.

John McCarthy. Circumscription - A form of non-monotonic reasoning. Artif. Intell.,
13(1-2):27-39, 1980. doi:10.1016/0004-3702(80)90011-9.

2:3

ICLP 2017 TCs

https://arxiv.org/abs/1707.01423
http://dx.doi.org/10.1007/978-3-319-49130-1_12
http://dx.doi.org/10.1017/S147106841600020X
http://dx.doi.org/10.1007/978-3-642-40564-8_6
http://dx.doi.org/10.1007/978-3-319-23264-5_5
http://dx.doi.org/10.1007/978-3-319-23264-5_5
http://ijcai.org/Abstract/15/379
http://ijcai.org/Proceedings/09/Papers/074.pdf
http://ceur-ws.org/Vol-810/paper-l06.pdf
http://ceur-ws.org/Vol-810/paper-l06.pdf
http://dx.doi.org/10.1016/0004-3702(80)90011-9

Reasoning on Anonymity in Datalog+/-*

Giovanni Amendola!, Nicola Leone?, Marco Manna?, and
Pierfrancesco Veltri*

1 DEMACS, University of Calabria, Italy
amendola@mat.unical.it

2 DEMACS, University of Calabria, Italy
leone@mat.unical.it

3 DEMACS, University of Calabria, Italy
manna@mat.unical.it

4 DEMACS, University of Calabria, Italy
veltri@mat.unical.it

—— Abstract

In this paper we empower the ontology-based query answering framework with the ability to
reason on the properties of “known” (non-anonymous) and anonymous individuals. To this end,
we extend Datalog+ /- with epistemic variables that range over “known” individuals only. The res-
ulting framework, called datalog®* | offers good and novel knowledge representation capabilities,
allowing for reasoning even on the anonymity of individuals. To guarantee effective computab-
ility, we define shyK, a decidable subclass of datalog®*, that fully generalizes (plain) Datalog,
enhancing its knowledge modeling features without any computational overhead: OBQA for shyK
keeps exactly the same (data and combined) complexity as for Datalog. To measure the express-

iveness of shyK, we borrow the notion of uniform equivalence from answer set programming, and
show that shyK is strictly more expressive than the DL EL£H. Interestingly, shyK keeps a lower
complexity, compared to other Datalog+/- languages that can express this DL.

1998 ACM Subject Classification D.1.6 Logic Programming
Keywords and phrases Datalog, query answering, Datalog+/-, ontologies, expressiveness

Digital Object Identifier 10.4230/0ASIcs.ICLP.2017.3

1 Introduction

In ontology-based query answering (OBQA), a user query ¢ is evaluated over a logical theory
consisting of an extensional database D paired with an ontology . This problem is attracting
the increasing attention of scientists in various fields of Computer Science, ranging from
artificial intelligence [3, 13, 17] to database theory [5, 18, 6] and logic [22, 4, 19]. In this
context, Description Logics [2] and Datalog® [10] have been recognized as the two main
families of formal knowledge representation languages to specify ¥, while conjunctive queries
represent the most common and studied formalism to express q.

In this paper we concentrate on the Datalog® family whose intent is to collect all
expressive extensions of Datalog which are based on existential quantification, equality-
generating dependencies, negative constraints, negation, and disjunction. In particular, the

The paper has been partially supported by the Italian Ministry for Economic Development (MISE) under
project “PIUCultura — Paradigmi Innovativi per I’Utilizzo della Cultura” (n. F/020016/01-02/X27),
and under project “Smarter Solutions in the Big Data World (S2BDW)” (n. F/050389/01-03/X32)
funded within the call “HORIZON2020” PON I&C 2014-2020.

© Giovanni Amendola, Marco Manna, Nicola Leone, and Pierfrancesco Veltri;
37 licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).

Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 3; pp. 3:1-3:5

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

3:2

Reasoning on Anonymity in Datalog+/-

“plus” symbol refers to any possible combination of these extensions, while the “minus” one
imposes at least decidability, as already the presence of existential quantification alone makes
OBQA undecidable in the general case [23, 9], also because the ontology universe may be
enlarged with infinitely many “anonymous” individuals to satisfy existential rules.

Originally, this family was introduced with the aim of “closing the gap between the
Semantic Web and databases” [11] to provide the Web of Data with scalable formalisms
that can benefit from existing database technologies. And in fact it generalizes well-known
subfamilies of Description Logics —such as €€ [8] and DL-Lite [1]— collecting the basic
tractable languages for OBQA in the context of the Semantic Web and databases. Currently,
Datalog* has evolved as a major paradigm and an active field of research. As a result,
a number of syntactic properties that guarantee decidability by implicitly limiting the
generation and the “interaction” among anonymous individuals have been single out: weak-
acyclicity [16], guardedness [9], linearity [11], stickiness [12], and shyness [21].

2 Datalog* with epistemic variables

Following the Datalog* philosophy, on the one hand we extend the family with a novel
knowledge representation feature that allows for consciously reasoning on the properties of
“known” (non-anonymous) and anonymous individuals in different ways; on the other hand,
we single out sufficient syntactic conditions to ensure decidability. More specifically, we start
from a classical well-established setting introduced by [11], where an ontology X is a set of
datalog? (a.k.a. “existential”) rules of the form VXVY (¢(X,Y) — 3Z p(X,Z)), and a query
¢(X) is an expression of the form JY (¢(X,Y), p1(Z1),...,pr(Zk)), where symbol ‘=’
stands for default negation (a.k.a. negation as failure). Both in rules and queries, ¢(X,Y) is
a conjunction of atoms; also, p(X,Z) and each p;(Z;) are atoms (with Z; C X UY required
as standard “safety” condition). Then, we enhance the framework with epistemic variables
(denoted by X,Y, Z, ...) that complement standard variables (denoted by X, Y, Z, ...)
adding some interesting modeling capabilities. We call datalog®* the resulting language.
Roughly, epistemic variables range over “known” (non-anonymous) individuals only; while
standard variables range over all individuals.

Consider for example the database D = {person(john), person(tim), hasFather(john, tim)},
and the datalog®* ontology ¥ consisting of the following rules:

person(X) — 3Y hasFather(X,Y) (p1)
hasFather(X, }7) — hasKnownFather(X) (p2)

The first rule states that every person has a father (note that the father is guaranteed to exists,
even if he could be an unknown individual); while the second, using the epistemic variable f’,
specifies the persons who have a known father. From p; we derive that also tm has a father,
but his identity is not known. (Technically, this is represented by some fact hasFather(tim,n)
where 7 is a term not occurring in the ontology domain, namely an “anonymous” individual
or a “null” in the database terminology.)AFrom p2, hasKnownFather(john) is derived, while

hasKnownFather(tim) is not derived as Y ranges over the ontology domain {john, tim}. Let
us now consider the query:

q(X) = 3Y hasFather(X,Y), ~hasKnownFather(X),

which asks for those people whose father is not known. By evaluating ¢ over D U X, we get
the answer X = tim, as expected since the identity of tim’s father is not known; while the
father of john is known.

G. Amendola, M. Manna, N. Leone, and P. Veltri

Roughly, epistemic variables behave as the operator K already in use in Description
Logics [14]. In this context, expression KC' is interpreted as the set of individuals on the
ontology domain that are instances of the concept C' in all models, or equivalently the “known’
objects which are instances of C. For example, the inclusion axiom KC £ D of Description
Logics can be expressed via the datalog®* rule C(X) — D(X).

9

3 A decidable and expressive language: shyK

Besides enhancing the KR features of the framework, we want to ensure decidable query
answering. To this end, we single out a datalog®* language called shyK. Intuitively, consider
a database D, a shyK ontology ¥, and a chase step (p, h)(I) = I’ employed in the construction
of chase(D,¥) (for more details on the chase procedure, see [20]). The syntactic properties
underlying shyK guarantee that: (1) if a standard variable X occurs in two different atoms of
the body of p, then h(X) is a constant; and (2) if two different standard variables X and Y
occur both in the head of p and in two different atoms of the body of p, then h(X) = h(Y)
implies h(X) is a constant.

We reduce the evaluation of conjuntive queries over shyK ontologies to the evaluation of
conjunctive queries over shy ontologies.

» Theorem 1. QEVAL for conjunctive queries over shyK ontologies is: (i) EXPTIME-complete
in combined complezity, and (ii) PTIME-complete in data complexity.

To measure the expressiveness of shyK we compare it with the DL ££LH. More precisely,
consider an ontology Y. We say that an ontology X’ is equivalent to X if, for each database
D over R(X), it holds that chase(D,%')|r(x) = chase(D,Y). Hence, a class Cy is strictly
more expressive than Co if (i) for each ¥ € C; there is ¥’ € C; being equivalent to X, and (i)
for some X € C; there is no ¥’ € Cy being equivalent to .

We show that shyK is strictly more expressive than ELH. In particular, we provide a
polynomial-time transformation that maps each ££LH ontology to an equivalent shyK one.
Since the reduction is polynomial, this also shows that ££7H is no more succinct than shyK.

» Theorem 2. shyK is strictly more expressive than ELH.

4 Conclusion

In conclusion, we extend datalog rules to deal with both epistemic variables and existential
quantification. The resulting framework offers good and novel knowledge representation
capabilities, allowing for reasoning even on the anonymity of individuals. We define shyK,
a datalog®* language that supports epistemic variables, fully generalizes datalog, and that
guarantees the decidability of OBQA for conjunctive queries with epistemic variables. Finally,
to measure the expressive power of shyK, we borrow the notion of uniform equivalence from
answer set programming [15]. Then, we compare shyK with the well-known Description Logic
ELH [7, 8], showing that shyK is strictly more expressive than ELH. Interestingly, shyK
keeps a lower computational complexity, compared to other Datalog* languages that can
express this Description Logic (namely guarded and its extensions).

—— References

1 Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. The
dl-lite family and relations. J. Artif. Intell. Res., 36:1-69, 2009.

3:3

ICLP 2017 TCs

3:4

Reasoning on Anonymity in Datalog+/-

10

11

12

13

14

15

16

17

18

19

20

21

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

Jean-Francois Baget, Michel Leclére, Marie-Laure Mugnier, and Eric Salvat. On rules
with existential variables: Walking the decidability line. Artif. Intell., 175(9-10):1620-1654,
2011.

Vince Bérany, Georg Gottlob, and Martin Otto. Querying the guarded fragment. Logical
Methods in Computer Science, 10(2), 2014.

Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data
access: A study through disjunctive datalog, csp, and MMSNP. ACM Trans. Database
Syst., 39(4):33:1-33:44, 2014.

Pierre Bourhis, Marco Manna, Michael Morak, and Andreas Pieris. Guarded-based dis-
junctive tuple-generating dependencies. ACM TODS, 41(4), November 2016.

Sebastian Brandt. On subsumption and instance problem in ELH w.r.t. general tboxes. In
Proceedings of DL 2004, 2004.

Sebastian Brandt. Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and - what else? In Proceedings of ECAI 2004, pages 298-302,
2004.

Andrea Cali, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. J. Artif. Intell. Res., 48:115-174, 2013.

Andrea Cali, Georg Gottlob, and Thomas Lukasiewicz. Datalogi: a unified approach to
ontologies and integrity constraints. In Proceedings of ICDT 2009, pages 14-30, 2009.
Andrea Cali, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-based framework
for tractable query answering over ontologies. J. Web Sem., 14:57-83, 2012.

Andrea Cali, Georg Gottlob, and Andreas Pieris. Towards more expressive ontology lan-
guages: The query answering problem. Artif. Intell., 193:87-128, 2012.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Data complexity of query answering in description logics. Artif. Intell.,
195:335-360, 2013.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Andrea Schaerf, and Werner Nutt.
Adding epistemic operators to concept languages. In Proceedings of KR 1992, pages 342—
353, 1992.

Thomas Eiter and Michael Fink. Uniform equivalence of logic programs under the stable
model semantics. In Proceedings of ICLP 2003, pages 224-238, 2003.

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:
semantics and query answering. Theor. Comput. Sci., 336(1):89-124, 2005.

Georg Gottlob, Stanislav Kikot, Roman Kontchakov, Vladimir Podolskii, Thomas
Schwentick, and Michael Zakharyaschev. The price of query rewriting in ontology-based
data access. Artif. Intell., 213:42-59, 2014.

Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Query rewriting and optimization for
ontological databases. ACM Trans. Database Syst., 39(3):25:1-25:46, 2014.

Georg Gottlob, Andreas Pieris, and Lidia Tendera. Querying the guarded fragment with
transitivity. In Proceedings of ICALP 2013, pages 287298, 2013.

David S. Johnson and Anthony C. Klug. Testing containment of conjunctive quer-
ies under functional and inclusion dependencies. J. Comput. Syst. Sci., 28(1):167-
189, 1984. URL: https://doi.org/10.1016/0022-0000(84)90081-3, doi:10.1016/
0022-0000(84)90081-3.

Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. Efficiently com-
putable datalogd programs. In Proceedings of KR 2012, 2012.

https://doi.org/10.1016/0022-0000(84)90081-3
http://dx.doi.org/10.1016/0022-0000(84)90081-3
http://dx.doi.org/10.1016/0022-0000(84)90081-3

G. Amendola, M. Manna, N. Leone, and P. Veltri 3:5

22 Héctor Pérez-Urbina, Boris Motik, and Tan Horrocks. Tractable query answering and re-
writing under description logic constraints. J. Applied Logic, 8(2):186-209, 2010.

23 Riccardo Rosati. The limits of querying ontologies. In Proceedings of ICDT 2007, pages
164-178, 2007.

ICLP 2017 TCs

Rule Based Temporal Inference

Melisachew Wudage Chekol' and Heiner Stuckenschmidt?

1 Data and Web Science Group, University of Mannheim, Mannheim, Germany
mel@informatik.uni-mannheim.de

2 Data and Web Science Group, University of Mannheim, Mannheim, Germany
heiner@informatik.uni-mannheim.de

—— Abstract

Time-wise knowledge is relevant in knowledge graphs as the majority facts are true in some time
period, for instance, (Barack Obama, president of, USA, 2009, 2017). Consequently, temporal
information extraction and temporal scoping of facts in knowledge graphs have been a focus of
recent research. Due to this, a number of temporal knowledge graphs have become available
such as YAGO and Wikidata. In addition, since the temporal facts are obtained from open
text, they can be weighted, i.e., the extraction tools assign each fact with a confidence score
indicating how likely that fact is to be true. Temporal facts coupled with confidence scores result
in a probabilistic temporal knowledge graph. In such a graph, probabilistic query evaluation
(marginal inference) and computing most probable explanations (MPE inference) are fundamental
problems. In addition, in these problems temporal coalescing, an important research in temporal
databases, is very challenging. In this work, we study these problems by using probabilistic
programming. We report experimental results comparing the efficiency of several state-of-the-art
systems.

1998 ACM Subject Classification D.1.6 Logic Programming
Keywords and phrases temporal inference, temporal knowledge graphs, probabilistic reasoning

Digital Object Identifier 10.4230/0OASIcs.ICLP.2017.4

1 Introduction

The advance of open information extraction and data mining have guided the automatic
construction and completion of big knowledge graphs (KGs). This is often done by crawl-
ing the web and extracting facts and relations using machine learning techniques, for
instance NELL [4]. Some of the KGs contain high quality, human curated facts for in-
stance YAGO [20], Wikidata [30], DBpedia [1] and some contain probabilistic facts for
instance Google’s Knowledge Vault [10], NELL, DeepDive [27], ReVerb [15], and ProbKB [6].
Additionally, present-day knowledge graphs contain partially temporally annotated facts.

Time-wise knowledge can be found from patient and employee histories to event and
streaming data. For instance, the fact that Barack Obama was the president of USA is valid
only from 2009 to 2017. When such facts are derived via machine learning techniques, they
are produced with some degree confidence indicating how likely they are to be true. We
refer to knowledge graphs (KGs) that contain temporally annotated probabilistic facts as
probabilistic temporal knowledge graphs. The emergence of such KGs poses new challenges
in probabilistic reasoning. In this respect, recently, Markov logic networks (MLNSs) is used
for conflict resolution in uncertain temporal KGs [5]. In particular, the authors investigate
maximum a-posteriori inference (MAP—computing the most probable temporal KG) for
debugging noisy temporal data. This problem is known to be intractable. On the other hand,
the main focus of this work is to investigate marginal inference (computing the probabilities
? Melisachew Wudage Chekol and Heiner Stuckenschmidt;

5v icensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 4; pp. 4:1-4:14

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2

Rule Based Temporal Inference

of queries) through the use of ProbLog (a probabilistic programming language). Moreover, we
leverage a tractable rule language called probabilistic soft logic for computing most probable
explanations (MPE) for probabilistic temporal KGs.

In parallel with fact and relation extraction, schema induction and rule learning! have
been widely investigated [7, 25, 26]. Most rule learning systems, such as AIME+ [16],
SHERLOCK [26], and ProbFOIL [25], produce weighted Horn rules that can be encoded into
ProbLog and probabilistic soft logic (PSL). Besides such rules can be conveniently temporalized
to take into account the temporal scope of facts. Thereby, alleviating the notoriously difficult
problem of temporal rule learning. As an example consider a probabilistic Horn rule which
represents “a person lives in the same place where the company she works for is located”:

0.5 :: livesin(z, z) : — worksfor(z, y), locatedin(y, z).

This rule can be temporalized as:

0.5 :: livesin(z, z,¢,t") : — worksfor(z, y, ¢y, te), locatedin(y, 2, ¢}, t.), overlaps(ts, t., t}, t.),
where the overlaps tests if there is an overlap between the intervals [ty, t.] and [tp,] and
[t,t'] = [ty, te] N [E}, tL]. ProbLog is equipped with built-in predicates that allow to represent
the predicate overlaps, this permits us to perform inference in temporal knowledge graphs
where inference rules often contain arithmetic predicates to determine temporal overlap.
Similarly, PSL provides a programming interface for creating user defined functions.

A relevant problem in probabilistic temporal KGs is temporal coalescing. Temporal
coalescing is the process of merging facts with identical non-temporal arguments and adjacent
or overlapping time-intervals. This problem has been thoroughly investigated in the database
community in a non-probabilistic setting (look for instance [3]). In this paper we investigate
two approaches for coalescing probabilistic temporal facts. Overall, the contributions of
this paper are the following: (i) we study temporal coalescing in a probabilistic setting and
propose efficient algorithms, (ii) we provide coalescing-based query rewriting for marginal
and MPE inference tasks, and (iii) we perform extensive experimental analysis over the
Wikidata KG.

Outline. The paper is organized as follows. Next, we briefly introduce ProbLog, PSL and
knowledge graphs. In Section 3, we present temporal coalescing of KGs. Section 4 describes
representation of probabilistic temporal KGs in ProbLog. We briefly outline temporal KGs in
probabilistic soft logic (Section 5). In Section 6, we evaluate our approach using Wikidata
and four state-of-the-art systems. We review related work in Section 7 and provide conclusion
in Section 8.

2 Background
2.1 ProblLog

ProbLog is a probabilistic extension of Prolog [22]. A ProbLog program consists of a set of
definite clauses with their corresponding probabilities. The probability of a clause indicates
the likelihood of that clause, i.e., it is a measure of how likely the clause is to hold or
be true. Given a ProbLog program T = {p; :: ¢1,...,pn = ¢n}, each ground ¢; (a clause
with no variables) is called a fact. Facts allow us to represent triples of a KG and definite
clauses enable to encode background knowledge or schema of a KG. A ProbLog program
T ={p1 = c1,...,pn i: cn} defines a probability distribution over ground logic programs

L Often first order Horn rules are produced by inductive logic programming and machine learning
techniques.

M. W. Chekol and H. Stuckenschmidt

LCLyr={c1,...,ch} of T:

P(LIT) = sz' H (1—ps)

c, €L ¢, €Lp\L

2.1.1 Marginal query

An important problem in ProbLog is computing the probability of a query (known as the
success probability). The probability of a query g over a ProbLog program T is obtained as:

P(qT)= Y P(qlL)P(LIT), P(q|L)=

LCLy 0 otherwise

{1 if30: L= q0

where 6 denotes a possible substitution for q. P(¢q|T") is the probability that ¢ is provable over
the distribution of logic programs of T'. In this paper, we make use of ProbLog to compute
the marginal probabilities of temporal queries over probabilistic temporal KGs. Another
important problem in ProbLog is computing the most probable explanation of a set of facts.

2.1.2 MPE inference

MPE inference is the task of finding the most likely interpretation (joint state) of all non-
evidence facts NE given some evidence facts E, i.e., argmax,, P(NE =ne | E = ¢). MPE
inference in a probabilistic temporal KG corresponds to computing the most probable temporal
KG with the highest probability. Another Horn-based probabilistic logic programming
language is PSL. MPE inference in PSL is known to be tractable.

2.2 Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) uses first-order logic to specify templates for Hinge-Loss
Markov Random Fields (HR-MRFs) [2]. A PSL knowledge base KB contains a set of
formulae {(F;,w;)}, where F; is a disjunction of literals (an atom or its negation) and
w; € R>g is a real-valued weight. A formula F; is called hard (resp. soft) if its weight w; = oo
(resp. w; € R>g). A hard formula must be true in all the possible worlds of the KB. To
avoid confusion (and perform experimental comparison of ProbLog and PSL over the same
dataset) of probabilities in ProbLog and weights in PSL, we assume that the weights in PSL
are between 0 and 1. A PSL formula is written as: Hy V---V H,, < By A--- A B,,, where
Hy,..., H,, are predicates in the head and By, ..., B,, are predicates in the body of the rule.
PSL defines a probability distribution over all possible interpretations I of all ground atoms.
The probability density function for I is defined as:

S = 27 eapl— 3w (do(D)); = = / cepl— 3 w,(d (D)),

reR reR

where R denotes the set of ground formulas; w, denotes the weight of rule r; Z is the
normalization constant; p provides two different loss functions: linear (p = 1) and quadratic
(p = 2), the choice of a loss function depends on the application?; d,.(I) is r’s distance to

2 The “linear loss function chooses interpretations that completely satisfy one rule at the expense of higher
distance from satisfaction for conflicting rules, whereas the quadratic loss function favors interpretations
that satisfy all rules to some degree" [2].

4:3

ICLP 2017 TCs

4:4

Rule Based Temporal Inference

satisfaction under the interpretation I, d,.(I) = max{0, I(rbody) — I(rhead)}, which is defined
using Lukasiewicz’s relaxation of Boolean operators A, V, and —:

I(=by) = 1 — I(by) I(b; v b;) = min{I(b) + 1(b;), 1}

The most important inference problem in PSL is MPE inference.

2.2.1 MPE inference

A most probable explanation query corresponds to the problem of finding a most probable
state of a probabilistic KB. Formally, MPE inference is the task of computing P(y|z) the
most probable assignment for a set of variables y given observations z: argmax, P(y|z). This
problem is known to be tractable. Hence, it allows to perform MPE inference efficiently in
probabilistic temporal KGs.

2.3 Knowledge Graphs

A knowledge graph is a set of triples that can be encoded in the W3C standard RDF data
model [19]. Let | and L be two disjoint sets denoting the set of IRIs (identifying resources)
and literals (character strings or some other type of data), respectively. We abbreviate the
union of these sets (lUL) as IL . A triple of the form (s,r,0) € | x | X IL is called an RDF
triple?; s is the subject, r is the predicate, and o is the object of the triple. Each triple can be
thought of as an edge between the subject and the object labeled by the predicate; hence a set
of RDF triples is referred to as an RDF' graph. We use the term knowledge graph loosely to
refer to an RDF graph. Automatic extraction of facts produces highly calibrated probabilistic
annotations for the facts. Additionally, some of these facts can be timestamped with time
intervals. Knowledge graphs that contain such facts are called probabilistic temporal KGs.

2.3.1 Probabilistic Temporal Knowledge Graphs

A temporal knowledge graph is obtained by labeling triples in the graph with a temporal
element [18]. The temporal element represents the time period in which a triple is valid,
i.e., the valid time of the triple. We consider a discrete time domain T as a linearly ordered
finite sequence of time points; for instance, days, minutes, or milliseconds. The finite domain
assumption ensures that there are finitely many possible worlds in ProbLog and Probabilistic
Soft Logic (see discussion in subsequent sections). A time interval is an ordered pair [tp, t.]
of time points, with ¢, < t. and t,t. € T, which denotes the closed interval from t; to t.*.
We will work with the interval-based temporal domain to define our data model.

» Definition 1 (Temporal KG). A temporal KG is a KG where some facts g; = (s,7,0) in the
graph have a valid time [tp,t.], i.e., g = (s,7,0,tp,t.). We refer to g; as a temporal fact.

For a temporal KG G, its snapshot at time ¢ is the graph G(t) (the non-temporal KG):
G(t) ={(s,m,0) | (s,r,0,t,t) € G}. The KG associated with a temporal KG, denoted u(G), is
(U, G(t), the union of the graphs G(t). We define temporal entailment as follows. For temporal

3 'We do not consider blank nodes.
4 Tt is possible to extend to other interval-based representations such as [ty, te), left-closed, right-open
interval.

M. W. Chekol and H. Stuckenschmidt

KGs G1 and Ga, G1 ¢ Gy if G1(t) | Ga(t) for each t; = denotes temporal entailment [18]
and = is the standard RDF entailment [19]. An extension of temporal KGs with uncertainty
is studied in [5]. The authors leverage Markov logic networks to provide semantics. In
this paper, we employ ProbLog and Probabilistic soft logic (PSL) for representation and
reasoning tasks.

» Definition 2 (Probabilistic temporal KG). A probabilistic temporal knowledge graph is a
tuple K = (G, F) with G = {(¢1,p1),-- -, (gn,Pn)} a temporal KG where each temporal fact
gi € G is labeled with a probability p;; and F = {(f1,p1),..., (fm,pm)} is a finite set of
first order logic formulas representing background knowledge or schema and p; denotes the
probability of clause f;.

In this paper, we restrict F' to be Horn clauses that express temporal inference rules and
use the Problog syntax to represent them (discussed in the next section).

» Example 3. Consider the following probabilistic temporal KG representing Michael Jordan’s
playing career:

(91) (MichaelJordan, playsfor, ChicagoBulls, 1984, 1993) 0.99
(92) (MichaelJordan, playsfor, WashingtonWizards, 2001, 2003) 0.7
(93) (ChicagoBulls, locatedin, Chicago, 1966, now) 1.0

The time point now denotes the current time instant or wuntil changed from temporal
databases. The temporal fact g3 represents the fact that “the basketball team Chicago Bulls
is located in the Chicago city from 1966 until now”.

Temporalizing inference rules. Knowledge graphs often contain background knowledge to
control and manage the quality of data and query answers. These background knowledge
can be captured by first order logic. However, most rule extraction systems produce Horn
rules (that we call inference rules), for instance, the SHERLOCK system [26] and ontological
pathfinding (OP) [7] efficiently learn several thousands of first order Horn rules. Horn clauses
are expressive enough to represent complex schema axioms (background knowledge). The
extraction of Horn rules with temporal constraints is notoriously difficult and has been afforded
limited attention from the research community. However, the majority of the rules produced by
rule learning systems can be converted into temporal rules by using the following: (i) add two
variables t; and t. that represent time points of intervals to each predicate (i.e., r(x, y) becomes
r(x,y,ty, te)) and (ii) if the number of predicates in the body is more than one, introduce an
arithmetic predicate which is used to test temporal overlap (i.e., r3(z, 2) :— ri(x,y) Ara(y, 2)
becomes r3(z, z,t,t') :— ri(x,y, ts, te) A ra(y, 2,15, t.) A overlaps(y, te, t;, t.) where [¢,t'] =
[to, te] N [t;.t.]). We refer to this process as temporalizing inference rules.

3 Coalescing Probabilistic Temporal Knowledge Graphs

Coalescing is a technique used in temporal databases for duplicate elimination [9, 3]. Co-
alescing has a number of advantages: reduces the size of the probabilistic temporal KaG,
avoids incorrect answers in query evaluation. For instance, consider the query ‘did Michael
Jordan play for Chicago bulls from 1984 to 19962’ on the temporal facts of Fig. 1 before
coalescing. The result is no, however, the same query on the coalesced fact (brown part of the
figure), returns yes. Uncoalesced facts can arise in various cases: during query evaluation via
projection or union operations, by not enforcing coalescing in update or insertion operations,

4:5

ICLP 2017 TCs

4:6

Rule Based Temporal Inference

I T T T T T T
1984 1986 1988 1990 1992 1994 1996

N
>

—— 0.99::playsfor(MichaelJordan, ChicagoBulls, 1984, 1993)
—— 0.6::playsfor(MichaelJordan, ChicagoBulls, 1990, 1996)

—— 0.59::playsfor(MichaelJordan, ChicagoBulls, 1984, 1996) } after coalescing

} before coalescing

Figure 1 Coalescing probabilistic temporal facts.

and through information extraction from diverse sources or accuracy of the extractor. In
this section, we discuss temporal coalescing of KGs, in the next section, we address coalescing
for query evaluation.

A temporal knowledge graph G is called duplicate-free, if for all pairs of facts p(s, o, tp, t.),
p(s,0,t,,t.) € G, it holds that: [ty,te] N [t},t.] = 0. In other words, if the non-temporal
terms of two temporal facts are the same, then their temporal terms must be disjoint (non-
overlapping). Temporal coalescing is the process of merging facts with identical non-temporal
arguments and adjacent or overlapping time-intervals. Often, a temporal database is assumed
to be duplicate-free and coalescing is done by merging the time intervals of facts with the
same non-temporal arguments. However, in a probabilistic setting, to perform coalescing
is not straightforward because it is not clear what the probability of the new (coalesced)
fact should be and it could be dependent of the application. Performing coalescing on a
probabilistic temporal knowledge graph removes duplicates.

» Definition 4 (Coalescing). Formally, two probabilistic temporal facts py :: r(s,0,tp, t.),
p2 i T(s',0,4,,t.) can be coalesced if s = &', r = 7', 0 = o and the overlap of [t,t.]
and [t;,t.] is non-empty. The probability of the coalesced fact ps :: 7(s,o,[t,t']) with

[t,t'] = [ts, te] U [t},t.] is computed using Table 1.

Rule-based coalescing. One approach to coalescing is to use the following rule-based
technique. In order to coalesce all the facts of a probabilistic temporal KG, we can construct
Horn rules for each relation in the KG. Thus, in ProbLog, rule-based coalescing can be done
as follows: for each relation r; in a probabilistic temporal KG K, use the following rule:

ri(z,y, t,t') i—ri(z,y, ty, te), mi (2, y, th, th), t is min(ty, ty), t" is max(te, t)), ty, < tL, t, < te.

The expression ¢, < t,, t; < t. tests temporal overlap of the intervals [t;,%.] and ¢,¢,.
Besides, is, min, and maz are built-in predicates representing assignment, minimum, and
maximum functions respectively. The probability of the coalesced facts is the product when
done in ProbLog, however, this can be replaced by using Table 1 (to compute probabilities).
This approach uses one rule for each relation. If a KG has 80000 relations, we need the same
number of coalescing rules to coalesce the KG. Hence, this operation can be very expensive,
however, it is done only once. Furthermore, this operation can be done more efficiently
outside the ProbLog setting.

» Example 5. Consider coalescing the probabilistic temporal facts shown in Figure 1 using
the rule-based approach. This operation merges the two facts into one with the probability
of the new fact being the product of the two.

M. W. Chekol and H. Stuckenschmidt

Table 1 Computing probabilities of coalesced facts based on Allen’s interval relations. The
computation holds for the inverse relations. gne. is obtained by merging (taking the union) of the
intervals of the two facts and ppew = p1 + p2 — p1 * p2, based on the product rule of probability.

Interval relation Temporal facts Coalesced fact
(gl) pl)
Equal (91, maz(p1, p2))
(92 ; Pz)
(gl ; pl)
During (92,p2)
(92, p2)
(91, p1)
Starts (92,p2)
(92,p2)
(gl) pl)
Finishes (92:p2)
(927 p?)
(gl) pl)
overlaps (Gnews Prew)
(92 5 p2)
(91 s p1)
Meets (gnew » pnew)
(92,p2)
(gl s P1)
Before 0
(92) p2)

Algorithmic coalescing. Another approach for coalescing probabilistic temporal facts is
based on the following. In short, the algorithm continues as follows: for each relation r
search all temporal facts with the same non-temporal (s,r,0) elements, order these facts
according to their time period, for overlapping time periods build the maximum time period
(union of time periods), delete the temporal facts whose time periods are contained in the
maximum time period, and finally assign probability to the coalesced temporal facts using
Table 1. There are two important tasks in probabilistic temporal KGs: marginal and MPE
inference. In order to perform these reasoning, we use ProbLog.

4 ProbLog-based Representation of Probabilistic Temporal KGs

In order to compute the probabilities of temporal queries, we represent probabilistic temporal
KGs in ProbLog. This can be done by introducing a predicate for each temporal fact. To
elaborate, we use a simple correspondence between temporal facts (s, r, o, tp, t.) and ProbLog
predicates of the form (s, o, t, t.) such that s, r, o, tp, and t. are temporal KG symbols. Thus,
whenever a temporal fact (s,r,0,tp,t.) is satisfied, the corresponding predicate 7(s, o, tp, te)
is satisfied and the converse also holds. More formally, given a probabilistic temporal KG
K = (G,F) with G = {(g1,p1),-- -+ (gnsPn)} and F = {(f1,p1);- -, (fm:Pm)}, & ProbLog
representation K, of K is obtained as follows: (i) replace each probabilistic temporal fact
(gi = (s,7,0,tp, te), p;) With p; :: 7(s, 0,1, te) € Gp, and (ii) replace each Horn formula (f;, p;)
with p; = f; € F, where p; € (0,1]. Thus, K, = (G,, F},) is a ProbLog program with G,
being facts and Fj, is a set of definite clauses.

4:7

ICLP 2017 TCs

4:8

Rule Based Temporal Inference

» Example 6. Consider the following temporal ProbLog kG K, = (G, F,) based on
Wikidata®, G, contains the facts g4—ge obtained by translating the temporal facts g1—g3
of Example 3 into ProbLog. F}, contains the formulas f;—f3 shown below. The formula f;
expresses the fact that if someone plays for (resp. works for, resp. coaches) a club located
in a city over an overlapping period of time, then that person likely lives in the same city
as where the club is located. f; represents if a person plays for a team and that the team
participates in a league over an overlapping period of time, then that person plays in that
league. Finally, f3 is used to express disjointness of temporal relations, to be precise, a
person cannot play (resp. work, resp. coach) for two different teams at the same time.

1 .0 livesin(z, 2,¢,t") :— playsfor/worksfor/coaches(x, y, ty, te), locatedin(y, z, ¢, te),
0.5 :: livesi ! laysf ksf h I di byt
t is max(tp,), " is min(t;,t.),t < ¢'.
2 .7 :: playslnLeague(z, z,t,t") :— playsfor(z, vy, ty, tc), teamPlaysinLeague(y, z, t;, t¢),
f 0.7 laysinL ! laysf PlaysInL byt
t is max(tp, t,), " is min(t;,t.),t < t'.
3 .9 1 false :— playsfor /workstor /coach(x, y, ty, te), playsfor /worksfor /coach(z, z, ty, te),
0.9 l laysf ksf h laysf ksf h
y # z,t is max(t, ty,),t" is min(t,,t.), ¢t < t'.
(ga) 0.99 :: playsfor(MichaelJordan, ChicagoBulls, 1984, 1993)
(gs) 0.7 :: playsfor(MichaelJordan, WashingtonWizards, 2001, 2003)
(g6) 1.0 :: locatedin(ChicagoBulls, Chicago, 1966, now)

In fi—f3, max and min are ProbLog built-in predicates, is is an assignment operator. The
arthimetic expression t is max(ts, t;),t’ is min(¢;,t.),t < t’ tests if there is an overlap between

the intervals [ty, t.] and [t},t.].

The semantics of probabilistic temporal KGs in ProbLog can be given in terms of Herbrand
interpretations. Let C be the set of IRIs and Literals that appear in some probabilistic
temporal kG K = (G, F) and let K,, = (G, F},) be its ProbLog representation, the Herbrand
base of F}, can be constructed by replacing all the variables in F}, with the constants in
C. For a finite set C and a set of time points T, each temporal fact in K, can be mapped,
using a substitution 6, into a subset of the Herbrand base of F' with respect to C and T. A
Herbrand interpretation is a subset of the Herbrand base. A Herbrand interpretation H is a
Herbrand model of F), iff it satisfies all groundings of the formulas in F},. As in ProbLog,
since the schema F, = {p; :: f;} of K, is fixed and there is a one-to-one mapping between
ground f; clauses and Herbrand interpretations, a probabilistic temporal KG also defines
a probability distribution over its Herbrand interpretations [22]. The probabilities of the
facts and Horn rules determine a probability distribution in ProbLog. Formally, given a
probabilistic temporal K¢ K = (G, F') and some K’ = (G', F’) over the same set of constants
(IRIs, literals and time points) such that K’ C K, we have the following:

P(K'|K) = 11 i [(-p),

GEG'NG'UF [=vg; gi€G\G'

where G’ U F’ |=; g; is temporal entailment at time point ¢.

4.1 Marginal Inference

An important task in probabilistic knowledge bases is computing the probability of a set
of facts, i.e., given a query g and a KG K, marginal inference computes the probability of
the answers of ¢ over K. In this paper, we study temporal conjunctive queries. A temporal
conjunctive query is a conjunction of a set of temporal facts.

5 https://www.wikidata.org/

https://www.wikidata.org/

M. W. Chekol and H. Stuckenschmidt

» Definition 7. A temporal conjunctive query ¢ is a Horn formula of the form ¢ :—g1,...,9n
where g; = r;(X;,Y;, t, te) is a temporal predicate with X; and Y; being temporal variables or
constants; and ty, t. are time points or variables. Given a temporal ProbLog KG K, = (G,,, F},)
and a query ¢ over K, the marginal probability of ¢ is obtained by:

P(qK,) = Y P(qIK')- P(K'|Kp).
K'CK,

» Example 8. Consider the following queries on the temporal facts (before coalescing) of
Example 5:
1. How long is Michael Jordan’s playing career? q(ts,t.) :— playsfor(MichaelJordan, Y, ¢, t.).
2. Select the teams that Michael Jordan owns and played for since 1995.

q(Y) :— playsfor(MichaelJordan, Y, t;, t.), owns(MichaelJordan, Y, ¢}, t.)).

In probabilistic databases and statistical relational learning, often the probabilities of
queries are computed by grounding, i.e., by replacing all the variables in the queries using
constants in the database. The grounding is used to generate a propositional sentence (lineage
of a query) for exact inference or a graphical model for approximate computation. Similarly,
temporal conjunctive queries can be grounded by evaluating queries using the techniques

from temporal databases and instantiating the variables in the queries using their answers.

This results in a set of ground queries, the probability of which can be computed using
ProbLog. Instead, in this paper, we evaluate temporal conjunctive queries by rewriting them
in ProbLog. Temporal conjunctive queries require checking interval intersection to determine
the overlap of intervals in the query predicates. In order to do this, we rewrite queries. Here,
we consider only the following case and leave out the rest as a future work.

One predicate query: queries that contain only a single temporal predicate (when the size
of the body of the query is one), i.e., (W) :— r(X,Y, ty, te), with W C {X,Y}. Here, we
consider the rewriting of queries with non-temporal variable projections. Hence, g can be
rewritten ¢,.(W) by using a self join (by rewriting the same predicate with different temporal
variables) as shown below:

Q(W) :7T(X7Y;tb7te)
a-(W) —r(X, Y, ty,te),7(X,Y, t,,t.), overlaps(tp, te, ty, t,).
overlaps(ty, te, t,t.) —ty < t,, t, < t.

We use the predicate overlaps() to check if the intersection of the intervals is non-empty.

4.2 MPE inference

In addition to marginal inference, we can compute most probable explanations over temporal

ProbLog KGs. MPE queries are one of the most important tasks in probabilistic reasoning.

These queries are useful for computing the most probable temporal KG of a probabilistic
temporal KG. Formally, given a rewritten temporal conjunctive query ¢, some evidence e
(set of temporal facts), and a temporal ProbLog KG K, = (G,, F},), the most likely temporal
KG of ¢ is obtained by: argmax, P(qle).

5 Probabilistic Temporal KGs in PSL

Since PSL like ProbLog uses Horn clauses to model KBs, we present a compact description
of probabilistic temporal KGs in PSL. On the other hand, ProbLog is based on Sato’s

4:9

ICLP 2017 TCs

4:10

Rule Based Temporal Inference

distributional semantics and PSL is defined over hinge-loss Markov random fields. A PSL
knowledge base consists of a set of (weighted) Horn rules and a set of soft evidence facts.
Soft refers to probabilities. Note that while in PSL the weight of the rules can be a positive
real number, in this paper, we assume the weights to be between 0 and 1. This weight
conversion can be done, for instance, by the Logit function. We make this assumption in
order to perform experiments on the same datasets for ProbLog and PSL.

A temporal PSL knowledge graph K5 = (Gpsi, Fpsi) contains a set of (temporal) facts
Gpsi = {(g1,w1), ..., (gn,wn)} and a set of (temporal) inference rules F,g = {(F1,w1),...,
(Fym,wm)}. Given a temporal PSL knowledge graph K4, and a set of deduction rules F,
the semantics of K is given based on a probability density function. Formally, for a given
Kpsi = (Gpsi, Fps1) and some K, over the same signature, the probability density function

P(K),,) is given by:
Z_l exXp Z Wi (d‘h (Kzl;sl))p if KII;S[':t Kpsl
P(4 l) = {(giawi)EG:Késl‘=tgi}
ps
0 otherwise

where Z is the normalization constant of the probability density function P; w; is the weight
of the temporal fact g;; dy, (K},) is the distance to satisfaction of g; in K ;; and p is a loss
function. Note that in MPE inference Z is not computed. The most relevant reasoning task

in PSL is MPE inference which is defined in the same way as in ProbLog.

6 Experiments

We conducted two different experiments: (i) marginal inference and (i) MPE inference. For
both experiments, we carried out performance test in terms of running times by comparing
four state-of-the-art solvers. We ran the experiments on a 2GHz 24-core processor with
386GB of RAM running Debian 8.

Tools. We used four different tools for our experiments: ProbLog, PSL, Tuffy [23], and
TuffyLite [21]. Tuffy and TuffyLite are based on Markov logic networks (MLNs — attaches
weights to first order formulas). For marginal inference experiments, we employ ProbLog,
Tuffy, and TuffyLite whereas for MPE inference, we use PSL and ProbLog. Note that
PSL does not support marginal inference.

Temporal rules. We designed 40 different temporal inference rules (definite clauses)
based on the fluents (time-varying relations) in Wikidata.

Evidence. We used as evidence different size fragments of Wikidata knowledge graph.
In particular, we extract a part of the KG that contains structured temporal information
(obtained from various sources using open information extraction). We extracted over
6.3 million temporal facts from Wikidata. We extracted temporal facts for various fluent
relations including: playsFor, educatedAt, memberOf, occupation, spouse, and so on.

6.1 Marginal Temporal Query Evaluation

In this experiment, we test the scalability of marginal temporal query evaluation. We carried
out the experiments using ProbLog, Tuffy, and TuffyLite. We found out that Tuffy and
TuffyLite hardly scale when the size (arity) of the predicates is 3 or more (we stopped the
execution after one hour timeout). On one occasion, while running Tuffy on Wikidata, we

M. W. Chekol and H. Stuckenschmidt

T T T T T
—e— ProbLog —e— ProbLog
—a— Tuffy
1,000 |-| —e— TuffyLite ’
200 - 8
— =
2 g
& v
£ 500 g
= [] =
é é 100 |- *
0 N
L | | | | 0 L L L L | | | i
20 40 60 80 100 0 5 10 15 20 25

Evidence/fact size(x10%)

(b). ProbLog.

Evidence/fact size

(a). Tuffy, TuffyLite, and ProbLog,.

Figure 2 Marginal inference: runtime comparison over fixed query and varying data size.

noticed that its grounded database is 400GB large, thereby our execution eventually ran out
of memory. To elaborate, the ground size in Tuffy and TuffyLite can be extremely large,
for instance, for a test data size of 75 temporal facts and 40 inference rules, the grounding
database contains 4,112,784 tuples. Comparatively, ProbLog uses a different grounding
technique that reduces that ground size reasonably. Therefore, it is recommended to use
ProbLog for marginal inference tasks in probabilistic temporal KGs when the background
knowledge (inference rules) can be expressed as Horn rules. The results of the experiment
are shown in Fig. 2. The reported runtimes are averaged over 5 runs for all of the solvers.
As it can be seen in Fig. 2(a), due to scalability, we could only test Tuffy and TuffyLite over
10 to 100 facts. While the runtime of ProbLog increases linearly with data, the runtime of
Tuffy and TuffyLite is nonlinear; it increases sharply as the size of data increases. If the
inference rules of a knowledge graph can be expressed by Horn rules, then it is advisable to
use ProbLog because it scales much better than Markov logic solvers (Tuffy and TuffyLite).
On the other hand, if expressivity is required at the expense of scalability, Tuffy and TuffyLite
can be chosen. In Fig. 2(b), we report the runtimes of marginal inference for ProbLog on
large datasets (x10* magnitude).

6.2 MPE Inference

In this experiment, we compare the running times of ProbLog and PSL on different data

sizes. Due to intractability of inference in Markov logic, we exclude Tuffy and TuffyLite.

The runtimes, averaged over 5 runs, are reported in Fig. 3. As can be seen, ProbLog is
faster than PSL. In addition, while the runtime of ProbLog increases linearly with respect to
the datasize, the runtime of PSL does not increase linearly with respect to the size of the
input data. This is due to each added incorrect temporal fact might be involved in a conflict
resulting in a non trivial optimization problem. Furthermore, contrary to PSL, ProbLog

handles well the temporal predicates that are used to test the overlap of temporal intervals.

7 Related Work

Temporal databases. Temporal databases have been extensively studied (see surveys [24, 28]).

However, relatively few works exist on probabilistic temporal databases [11, 8]. A relational
database is used to model and query temporal data, integrity constraints and deduction rules

4:11

ICLP 2017 TCs

4:12

Rule Based Temporal Inference

T
—e— PSL
10 {-| —=— ProbLog B

Runtime (min)

10 20 30 40 50

Evidence/fact size (x10%)

Figure 3 MPE inference: runtime comparison of ProbLog and PSL over fixed query and varying
data size.

can also be specified [11]. However, these rules must be deterministic (unweighted) unlike
what we do here. On the otherhand, contrary to this study where we use the valid time
model, uncertain spatio-temporal databases focus on stochastically modelling trajectories
through space and time (see [14] for instance).

Query evaluation in probabilistic databases is an active area of research [17, 31, 7, 29, 12].
With respect to temporal query evaluation over a probabilistic temporal knowledge base, to
the best of our knowledge, there are two important studies [5] and [11]. While the former
focuses on MPE inference, we study here marginal inference and deal with the problem of
temporal coalescing. The later deals with marginal inference, the difference with this work
are the following: (i) we consider weighted inference rules and constraints, (ii) we propose
coalescing for temporal KGs, and (iii) we introduce rewriting for the coalescing of queries.
In another study [13], the authors proposed an approach for resolving temporal conflicts
in RDF knowledge bases. The idea is to use first-order logic Horn formulas with temporal
predicates to express temporal and non-temporal constraints. However, these approaches are
limited to a small set of temporal patterns and only allow for uncertainty in facts. Moreover,
extending KGs using open domain information extraction, will often also lead to uncertainty
about the correctness of schema information; a large variety of temporal inference rules and
constraints, some of which will be domain specific, can also be the subject of uncertainty.
Finally, Chen and Wang [6] debug erroneous facts by using a set of functional constraints
although they do not deal with numerical and temporal facts at the same time.

8 Conclusion

Temporal reasoning is indispensable as advances in open information extraction has guided
the automatic construction of temporal knowledge graphs. To perform temporal reasoning,
one has to take care of the temporal scopes of facts. In addition, coalescing is necessary to
prohibit errors and compact query answers. In this work, we addressed these issues. We
provided theoretical as well as experimental results based on ProbLog and PSL.

A possible line of future work is to address scalability issues for ProbLog and PSL. Besides,
coalescing needs to be addressed for other query operators such as union, negation, and
selection.

Acknowledgements. We thank Janina Luitz for her helpful comments.

M. W. Chekol and H. Stuckenschmidt

—— References

1

10

11

12

13

14

15

16

17

18

19

Soren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. Dbpedia: A nucleus for a web of open data. The semantic web, pages
722-735, 2007.

Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. Hinge-loss markov
random fields and probabilistic soft logic. arXiv:1505.04406 [cs.LG], 2015.

Michael H. Bohlen, Richard T. Snodgrass, and Michael D. Soo. Coalescing in temporal
databases. In VLDB’96, Proceedings of 22th International Conference on Very Large Data
Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 180-191, 1996.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka Jr,
and Tom M Mitchell. Toward an architecture for never-ending language learning. In AAAI
volume 5, page 3, 2010.

Melisachew Wudage Chekol, Giuseppe Pirro, Joerg Schoenfisch, and Heiner Stuck-
enschmidt. Marrying uncertainty and time in knowledge graphs. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Fran-
cisco, California, USA., pages 88-94, 2017.

Yang Chen and Daisy Zhe Wang. Knowledge expansion over probabilistic knowledge bases.
In SIGMOD, pages 649-660. ACM, 2014.

Yang Chen, Daisy Zhe Wang, and Sean Goldberg. Scalekb: scalable learning and inference
over large knowledge bases. The VLDB Journal, 25(6):893-918, 2016.

Alex Dekhtyar, Robert Ross, and VS Subrahmanian. Probabilistic temporal databases, i:
algebra. ACM Transactions on Database Systems (TODS), 26(1):41-95, 2001.

Anton Dignés, Michael H Béhlen, and Johann Gamper. Temporal alignment. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data, pages 433~
444. ACM, 2012.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,
Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge Vault: A Web-Scale Ap-
proach to Probabilistic Knowledge Fusion. In SIGKDD, pages 601-610, 2014.

Maximilian Dylla, Iris Miliaraki, and Martin Theobald. A temporal-probabilistic database
model for information extraction. Proc. of the VLDB Endowment, 6(14):1810-1821, 2013.
Maximilian Dylla, Iris Miliaraki, and Michael Theobald. Top-k query processing in prob-
abilistic databases with non-materialized views. In Data Engineering (ICDE), 2013 IEEE
29th International Conference on, pages 122-133. IEEE, 2013.

Maximilian Dylla, Mauro Sozio, and Martin Theobald. Resolving Temporal Conflicts in
Inconsistent RDF Knowledge Bases. In BTW, pages 474-493, 2011.

Tobias Emrich, Hans-Peter Kriegel, Nikos Mamoulis, Matthias Renz, and Andreas Zufle.
Querying uncertain spatio-temporal data. In Data Engineering (ICDE), 2012 IEEE 28th
International Conference on, pages 354-365. IEEE, 2012.

Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open in-
formation extraction. In Proceedings of the Conference of Empirical Methods in Natural
Language Processing (EMNLP ’11), Edinburgh, Scotland, UK, July 27-31 2011.

Luis Galarraga, Christina Teflioudi, Katja Hose, and Fabian M Suchanek. Fast Rule Mining
in Ontological Knowledge Bases with AMIE+. The VLDB Journal, 24(6):707-730, 2015.
Eric Gribkoff and Dan Suciu. Slimshot: In-database probabilistic inference for knowledge
bases. PVLDB, 9(7):552-563, 2016.

Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman. Temporal RDF. In Proc. of
European Semantic Web Conference, pages 93-107, 2005.

Patrick Hayes. RDF Semantics. W3C Recommendation, 2004.

4:13

ICLP 2017 TCs

4:14

Rule Based Temporal Inference

20

21

22

23

24

25

26

27

28

29

30

31

Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, Edwin Lewis-Kelham, Gerard
De Melo, and Gerhard Weikum. Yago2: exploring and querying world knowledge in time,
space, context, and many languages. In Proceedings of the 20th international conference
companion on World wide web, pages 229-232. ACM, 2011.

Tushar Khot, Niranjan Balasubramanian, Eric Gribkoff, Ashish Sabharwal, Peter Clark,
and Oren Etzioni. Markov logic networks for natural language question answering. arXiv
preprint arXiv:1507.03045, 2015.

Angelika Kimmig, Bart Demoen, Luc De Raedt, Vitor Santos Costa, and Ricardo Rocha.
On the implementation of the probabilistic logic programming language problog. Theory
and Practice of Logic Programming, 11(2-3):235-262, 2011.

Feng Niu, Christopher Ré, AnHai Doan, and Jude Shavlik. Tuffy: Scaling up statist-
ical inference in markov logic networks using an rdbms. Proc. of the VLDB Endowment,
4(6):373-384, 2011.

Gultekin Ozsoyoglu and Richard T Snodgrass. Temporal and real-time databases: A survey.
IEEFE Transactions on Knowledge and Data Engineering, 7(4):513-532, 1995.

Luc De Raedt, Anton Dries, Ingo Thon, Guy Van den Broeck, and Mathias Verbeke. Indu-
cing probabilistic relational rules from probabilistic examples. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-81, 2015, pages 1835-1843, 2015.

Stefan Schoenmackers, Oren Etzioni, Daniel S Weld, and Jesse Davis. Learning first-order
horn clauses from web text. In Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing, pages 1088-1098. Association for Computational Linguistics,
2010.

Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christopher Ré.
Incremental knowledge base construction using deepdive. Proceedings of the VLDB En-
dowment, 8(11):1310-1321, 2015.

Richard T Snodgrass. Temporal databases. In Theories and methods of spatio-temporal
reasoning in geographic space, pages 22—64. Springer, 1992.

Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic databases.
Synthesis Lectures on Data Management, 3(2):1-180, 2011.

Denny Vrandeci¢ and Markus Krotzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10):78-85, 2014.

Hong Zhu, Caicai Zhang, Zhongsheng Cao, and Ruiming Tang. On efficient conditioning
of probabilistic relational databases. Knowl.-Based Syst., 92:112-126, 2016.

Logic Programming with Max-Clique and its
Application to Graph Coloring (Tool Description)*

Michael Codish!, Michael Frank?, Amit Metodi3, and
Morad Muslimany*

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, Israel
mcodish@cs.bgu.ac.il

2 Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, Israel
frankm@cs.bgu.ac.il

3 Cadence Design Systems, Israel
ametodi@cadence.com

4 Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, Israel
moradm@cs.bgu.ac.il

—— Abstract

This paper presents pl-cliquer, a Prolog interface to the cliquer tool for the maximum clique
problem. Using pl-cliquer facilitates a programming style that allows logic programs to in-
tegrate with other tools such as: Boolean satisfiability solvers, finite domain constraint solvers,
and graph isomorphism tools. We illustrate this programming style to solve the Graph Coloring
problem, applying a symmetry break that derives from finding a maximum clique in the input
graph. We present an experimentation of the resulting Graph Coloring solver on two bench-
marks, one from the graph coloring community and the other from the examination timetabling
community. The implementation of pl-cliquer consists of two components: A lightweight C in-
terface, connecting cliquer’s C library and Prolog, and a Prolog module which loads the library.
The complete tool is available as a SWI-Prolog module.

1998 ACM Subject Classification D.1.6 Logic Programming
Keywords and phrases Logic Programming, Constraints, Maximum Clique

Digital Object Identifier 10.4230/0ASIcs.ICLP.2017.5

1 Introduction

The maximum clique problem, which is about finding the largest set of pairwise adjacent
vertices in a graph, has been studied extensively both in theory [18, 10, 16, 2, 3, 14, 15, 5, 33]
and in practice [29, 28, 19, 6, 7]. Several tools have been developed recently, which tackle
the maximum clique problem [28, 21, 20, 29]. One of these tools is cliquer [27], which uses
an exact branch-and-bound algorithm in the search for maximum cliques. cliquer consists
of a collection of C routines, which can be compiled to either a standalone executable or a
shared library.

* Supported by the Israel Science Foundation grant 182/13 and by the Lynn and William Frankel Center
for Computer Science

© Michael Codish, Michael Frank, Amit Metodi, and Morad Muslimany;
37 licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).

Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 5; pp. 5:1-5:18

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2

Logic Programming with Max-Clique and its Application to Graph Coloring

The maximum clique problem is related to several other well-known graph problems.
The chromatic number of any graph is bound from below by its maximum clique size, and
the chromatic number of perfect graphs is identical to its maximum clique size. The size of
the largest independent set in any graph G is identical to the size of the maximum clique
in the complement graph of G (i.e., the graph in which u and v are adjacent if and only
if they are not adjacent in G). The fast detection of cliques may also assist in the search
for Ramsey graphs, which are characterized by their clique sizes. Further applications of
maximum cliques can be found in bioinformatics (e.g., to infer evolutionary trees [11] and
predict protein structures [32]), and in the analysis of random processes, where maximum
cliques are sought in a dependency graph [13].

Integrating a (maximum) clique finding tool into a Logic Programming tool-chain has
the potential to benefit search when solving hard graph problems. Such a tool can be used,
for example, as a preprocessing step for instances of the graph coloring problem. After
preprocessing, instances are processed by a constraint solver, or a SAT solver to find a
solution. Moreover, using a tool-chain fitted for Prolog leads to new logic programming
styles, such as those presented in [9], which integrates SAT solvers with Prolog, or [12] which
integrates the nauty graph automorphism library with Prolog.

In this paper we demonstrate how a maximum clique tool can be integrated with Prolog,
resulting in a library for SWI-Prolog [34] containing predicates that find maximum cliques in
graphs. Moreover, we demonstrate how this library is integrated with an entire tool-chain
written for Prolog. This tool-chain includes a collection of problem solving tools such as
SAT and CSP solvers (e.g., [9]), finite-domain constraint compilers (e.g., [25, 26]), as well
as a collection of additional symmetry breaking predicates which allow us to detect and
prune equivalent solutions. We also observe that our tool-chain, augmented by cliquer,
is competitive for graph coloring with results reported in the literature, and in some cases
obtains previously unreported solutions.

The rest of this paper is structured as follows. Section 2 introduces the basic definitions
and notations used throughout. Section 3 describes and illustrates the use of the pl-cliquer
interface. Section 4 introduces the graph coloring problem, as well as a graph coloring solver,
which is extended with optimizations based on the identification of a maximum clique. This
example demonstrates how pl-cliquer augments an existing tool-chain. Section 5 defines
the exam timetabling problem, as an application of the graph coloring problem. Sections 4
and 5 also present selected results of an experimentation using the standard graph coloring
and exam timetabling benchmarks. Section 6 contains some technical details on pl-cliquer,
and Section 7 concludes. Appendices A and B present results on the full benchmarks.

2 Preliminaries

A graph G = (V, E) consists of a set of vertices V = [n] = { 1,...,n } and a set of edges
E CV x V. In the context of the tools that we present in this paper, it is natural to consider
only simple graphs. Meaning, we assume that graphs are undirected, and there are no self
loops or multiple edges. The degree of a vertex v € V is denoted by deg(v) and it is equal
to the number of neighbors v has. The maximum degree of a graph G = (V, E) is denoted
A(G) and it is equal to the maximum over all vertex degrees. In this paper we represent
graphs as Boolean adjacency matrices, a list of N length-N lists. We also make use of the
DIMACS file format for graph representation, which contains the line e 4 5 for every edge
(i,4) of the graph, such that i < j.

A function w: V — N\ {0}, which assigns positive weights to the vertices of the graph is
called a positive weight function. As an abuse of notation, we denote the weight of a set of

M. Codish, M. Frank, A. Metodi, and M. Muslimany

vertices U C V by w(U) = >,y w(u). For the sake of simplicity, throughout this paper,
we assume that vertex weights are 1, thereby identifying the weight of U with its size.

A clique C CV of G = (V,E) is a set of vertices that are pairwise connected, meaning
that if u,v € C then (u,v) € E. If |C| = k we call C a k-clique. The clique number of a
graph G is denoted w(G) and is the number of vertices in a largest clique of G. A clique
C C V such that |C] = w(G) is called a maximum clique. The max-clique problem is about
finding a maximum clique in a given graph . The max-weighted-clique problem is about
finding a clique C' C V such that the weight of C' is maximal. The max-clique problem is
known to be NP-Hard [18].

A vertex k-coloring of a graph G = (V,E), for k € N, is a mapping c: V — [k]
(k] ={ 1,...,k }) such that (u,v) € E implies that c(u) # ¢(v). The chromatic number of
a graph G is denoted x(G) and it is the smallest number k such that the vertices of G are
k-colorable. The graph coloring problem is about finding a k-coloring of a given graph G.
The minimum graph coloring problem is about finding a k-coloring of a given graph G such
that k = x(G). The graph coloring problem is known to be NP-Complete, and the minimum
graph coloring problem is NP-Hard [18].

3 Interfacing Prolog with cliquer’s C library

The pl-cliquer interface is implemented using the foreign language interface of SWI-
Prolog [34]. The C library of cliquer is linked against corresponding C code written for
Prolog, which contains the low-level Prolog predicates connecting cliquer with Prolog.
These low-level predicates are wrapped by a Prolog module, which extends their functionality
and provides five high-level predicates. The five high-level predicates, available through the
module are:

graph_read_dimacs_file/5

clique_find_single/4

clique_find _multi/5

clique_find_n_sols/6

bl ol ol A

clique_print_all/6

In the following we describe these in more detail and present several usage examples.

3.1 The clique_read_dimacs_file/5 predicate

The call graph_read_dimacs_file(DIMACS, NVert, Weights, Matrix, Options) applies
to convert a graph represented in the standard DIMACS format to a Prolog representation
as a Boolean adjacency matrix (list of lists). Figure 1 illustrates an example graph with
seven vertices, its DIMACS representation, and its corresponding adjacency matrix. If the
DIMACS representation resides in the file example.dimacs then the following call:

7- graph_read_dimacs_file(’example.dimacs’, NVert, Weights, Matrix, []).
Matrix = [[0,1,1,1,1,0,0],

[1,0,1,1,0,0,1],

[1,1,0,1,0,1,0],

[1,1,1,0,0,1,0],

[1,0,0,0,0,1,0],

[0,0,1,1,1,0,0],

[0,1,0,0,0,0,011,
NVert = 7,

Weights [1,1,1,1,1,1,1]

5:3

ICLP 2017 TCs

5:4

Logic Programming with Max-Clique and its Application to Graph Coloring

p edge 7 11

el 2
: iz [[0,1,1,1,1,0,0],
1 — 2 — 7 e 15 [1,0,1,1,0,0,11,
P [1,1,0,1,0,1,0],
e 24 [1,1,1,0,0,1,01,
5 3 4 e 97 [1,0,0,0,0,1,0],
\\ s e 34 [0,0,1,1,1,0,01,
6 c36 [0,1,0,0,0,0,011

e 46

e b5 6

Figure 1 An example graph (left), its DIMACS representation (middle), and corresponding
adjacency matrix (right).

will bind (as indicated) the variable Matrix to the matrix depicted also on the right of
Figure 1, the variable NVert to the number of vertices in the graph, i.e., 7, and the variable
Weights to a list of ones (since the vertices of this graph are without weights). The last
argument (an empty list in the example) specifies a list of options which may contain the
options edge (Value) and non_edge (Non). These respectively determine the symbols used
to represent edges and non-edges in the adjacency matrix Matrix. The empty list indicates
default settings. By default, edges are represented by the symbol 1 and non-edges by the
symbol 0.

3.2 The clique_find_single/4 predicate

The clique_find_single/4 predicate provides an interface to the cliquer routine by the
same name. It finds a single clique in the input graph. The predicate takes the form
clique_find_single(NVert, Graph, Clique, Options). The first argument indicates
the number of vertices in the graph, the second argument is an adjacency matrix representing
the graph, and the third argument is the output clique. The last argument is a list of options
which fine-tune the behavior of pl-cliquer, constraining the size and weight of the sought
after clique.

Options may include min_weight (Min) and max_weight (Max) limiting the clique weight
to be between Min and Max. In order to obtain a maximum clique (which is the default beha-
vior) both Min and Max should be 0. Other options are maximal (Maximal), where Maximal is a
Boolean specifying whether only maximal cliques should be found, static_ordering(Order)
where Order is a permutation of { 1...n } specifying the order in which the n vertices
of the graph are backtracked over by cliquer’s algorithm. The option weights(Weights)
specifies a list of n Weights associated with the n vertices of the graph (by default all weights
are 1). The empty list indicates default settings.

For example, calling clique_find_single(NVert, Graph, Clique, Options) with the
graph from Figure 1, unifies Clique with the vertices [1,2,3,4], which are easily verified as
the maximum clique. Notice that during the runtime of cliquer additional information is
printed to screen, which indicates the current workload and the maximal clique found so far.

M. Codish, M. Frank, A. Metodi, and M. Muslimany

?- Graph = [[O,1,1,1,1,0,0], [1,0,1,1,0,0,11 | ... 1,
clique_find_single(7, Graph, Clique, [1).

2/7 (max 1) 0.00 s (0.00 s/round)
4/7 (max 2) 0.00 s (0.00 s/round)
5/7 (max 3) 0.00 s (0.00 s/round)
7/7 (max 4) 0.00 s (0.00 s/round)
size=4 (max 7) 01 2 3

Graph = [[0, 1, 1, 1, 1, 0, 01 | ... 1],

Clique = [1, 2, 3, 4].

3.3 The clique_find_n_sols/6 predicate

The call clique_find_n_sols(MaxSols, NVert, Graph, Sols, Total, Opts) allows to
find several cliques in the input graph. The first argument, MaxSols, indicates the maximal
number of cliques to be found. The second argument NVert indicates the number of vertices
in the graph, and third argument is an adjacency matrix representing the graph. The fourth
argument Sols, is unified with the cliques that are found in the graph, and the fifth argument
is unified with the number of cliques found. The last argument is the option list, which is
identical to the one for clique_find_single/4.

For example, calling clique_find_n_sols/6, with the graph from Figure 1, with options
indicating that at most ten cliques of weight 3 and 4 should be found, also indicating these
cliques may not be maximal — returns a result that implies that six such cliques exist, five
cliques of weight 3 and one clique of weight 4, and they are: [[1, 2, 3], [2, 3, 4], [1,
2, 3, 4], [1, 3, 4], [1, 2, 4], [83, 4, 6]].

?- Graph = [[0,1,1,1,1,0,0], [1,0,1,1,0,0,1] | ...],
NVert = 7, MaxSols = 10,
Options = [min_weight(3), max_weight(4), maximal(false)],
clique_find_n_sols(MaxSols, NVert, Graph, Sols, Total, Options).

Graph = [[0, 1, 1, 1, 1, 0, 0] | ...],
Sols = [[1, 2, 31, [2, 3, 41, [1, 2, 3, 41, [1, 3, 41, [1, 2, 41, [83, 4, 6€]],
Total = 6.

3.4 The clique_find_multi/5 predicate

The clique_find_multi/5 is similar in nature to clique_find_n_sols/6, except that
it backtracks over the cliques that are found instead of collecting them in a list. This
predicate takes the form clique_find_multi(MaxSols, NVert, Graph, Sol, Opts), with
parameters identical in description to those of clique_find_n_sols/6 except that Sol will
be unified with a single clique, which will change upon backtracking.

For example, calling clique_find_multi/5, with the graph from Figure 1, and options
indicating that at most three cliques with weights between 3 and 4 should be found, such
that these cliques may not be maximal — the call returns a result that implies that at least
three such cliques exist: two cliques of weight 3 and one clique of weight 4, and they are: [1,
2, 31, [2, 3, 4] and [1, 2, 3, 4].

5:5

ICLP 2017 TCs

5:6

Logic Programming with Max-Clique and its Application to Graph Coloring

?- Graph = [[0,1,1,1,1,0,0], [1,0,1,1,0,0,1] | ...],
NVert = 7, MaxSols = 3,
Options = [min_weight(3), max_weight(4), maximal(false)],
clique_find_multi(MaxSols, NVert, Graph, Sol, Total, Options).

Graph = [[0, 1, 1, 1, 1, 0, 01 | ... 1],
Sol = [1, 2, 3] ;

Sol = [2, 3, 4] ;

Sol = [1, 2, 3, 4] ;

false.

3.5 The clique_print_all/6 predicate

The clique_print_all/6 predicate is primarily intended for debugging and exploring, and it
will print all the cliques of a graph which comply to certain constraints. The predicate takes
the form clique_print_all(NVert, Min, Max, Maximal, Graph, Total). For example,
the following call to clique_print_all/6 will print all of the cliques in the example graph
of Figure 1, which contain at least two vertices and at most three vertices, and unify Total
with the total number of lines printed.

?- NVert = 7, Min = 2, Max = 3, Maximal = false,
Graph = [[0,1,1,1,1,0,0],
[1,0,1,1,0,0,1],
[1,1,0,1,0,1,0]1,
[1,1,1,0,0,1,0]1,
[1,0,0,0,0,1,0],
[0,0,1,1,1,0,0]1,
[0,1,0,0,0,0,01],
clique_print_all(NVert, Min, Max, Maximal, Graph, Total).

[1, 2]

[2, 3]

[1, 2, 3]

[1, 3]

[3, 4]

[2, 3, 4]

[1, 3, 4]

[2, 4]

[1, 2, 4]

[1, 4]

[1, 5]

[5, 6]

[4, 6]

[3, 4, 6]

[3, 6]

[2, 7]

Total = 16.

The predicate clique_print_all/6 does not print out the graph, or the edge list. This
is because in many cases, the graph is very large, and printing these details provides no
constructive effect. Moreover, while the list of edges is available to cliquer when parsing
the graph, it is not available to the interface of pl-cliquer. Nevertheless, one may extract
a list of graph edges using an auxiliary predicate included with the pl-cliquer source code.

M. Codish, M. Frank, A. Metodi, and M. Muslimany

4 Solving the Graph Coloring Problem

The graph coloring problem has been studied vigorously, for both theoretical and practical
purposes. Some of the real world applications of the graph coloring problem include:
timetabling problems (e.g., [22]), frequency assignment (e.g., [1]) and register allocation
(e.g., [8]). We demonstrate, using a logic program tool-chain augmented by pl-cliquer,
a solution for the graph (vertex) coloring problem, with an application for the minimum
examination timetabling schedule problem. We demonstrate how pl-cliquer integrates
with an existing tool-chain, all specified as part of the Prolog programming process. We
compare our graph coloring application to previous work using to two standard benchmark
sets [7, 17], one from the graph coloring community, and the other from the exam timetabling
community.

In the graph coloring problem we are given a graph G = ([n], E') and a natural number
k > 0, and we seek a labeling c: [n] — [k] of the graph vertices such that (i,j) € E —
¢(i) # ¢(j). In the minimum graph coloring problem, we seek the smallest & for which such a
labeling exists. Both the graph coloring problem and the minimum graph coloring problem
are known to be NP-Hard [18].

In practical scenarios, solving the graph coloring problem has often involved formulating
it as an integer linear program [4] or as a constraint model [31]. We solve the graph coloring
problem by modeling it using a constraint language and then applying the finite-domain
constraint compiler BEE [25, 26], which stands for Ben-Gurion University Equi-propagation
Encoder (written in Prolog), to encode it to an instance of Boolean satisfiability which is then
solved using an underlying SAT solver (through its Prolog interface [9]). In the configuration
for this paper we use CryptoMiniSAT v2.5.1 as the underlying SAT solver.

When describing our approach we distinguish between the constraint model for the
decision problem: given a graph G and a number & — does there exist a vertex coloring with
at most k colors? and the optimization problem — given a graph G what is the smallest
number k for which there exists a vertex coloring with at most & colors? To model the
optimization problem we apply the minimization option of the BEE solver which incrementally
refines the number &k for which the corresponding decision problem has a solution. The
remainder of this section focuses on implementing the graph coloring decision problem, on
which we later perform the minimization.

4.1 The Constraint Model for Graph Coloring

The basic constraint model is straightforward: for a graph G = (V, E) and a given number
(of colors) k, each vertex u € V is affiliated with a finite domain integer variable I, taking
a value in the range [1,..., k] representing its color. For each edge (u,v) € E, a constraint
I, # I, is added to the model, forcing distinct colors between adjacent vertices.

The following graphColoring/3 predicate lists the high level Prolog code which imple-
ments this encoding for the graph coloring problem. Given a Boolean adjacency matrix
M for a graph with N vertices, we represent a coloring of that graph as a list of N values,
such that the value in position I of the list is the color of vertex I. The graphColoring/3
predicate takes the following form: graphColoring(Graph, KColors, Coloring). The first
parameter is the adjacency matrix for the graph to be colored, the second parameter is the
number of colors, and the last parameter will be unified with the coloring.

The call in the first line of the definition of graphColoring/3 generates a constraint
model that is satisfiable if and only if Graph has a coloring with KColors colors. It also
generates a Map which relates the integer variables (the colors per vertex) with their Boolean

5:7

ICLP 2017 TCs

5:8

Logic Programming with Max-Clique and its Application to Graph Coloring

% Initial Coloring % Different Colors
[4,B,C,D,E,F,G] int_neq(4,B)
int_neq(A,C)
% Coloring Declaration int_neq(4,D)
new_int(A,1,5) int_neq(A,E)
new_int(B,1,5) int_neq(B,C)
new_int(C,1,5) int_neq(B,D)
new_int(D,1,5) int_neq(B,G)
new_int (E,1,5) int_neq(C,D)
new_int(F,1,5) int_neq(C,F)
new_int(G,1,5) int_neq(D,F)

int_neq(E,F)

Figure 2 Example of the constraint model for the graph in Figure 1.

(bit-blasted) representation. The second line is a call to BEE which compiles the constraint
model to CNF, and the third line contains a call to the underlying SAT solver. The last
line of graphColoring/3 translates the coloring from BEE’s (bit-blasted) representation of
integers to that of Prolog.

graphColoring(Graph, KColors, Coloring) :-
encode (coloring(Graph, KColors), Map, Constr),
bCompile(Constr, CNF),
sat (CNF),
decode(Map, Coloring).

As an example, consider the graph in Figure 1. A call to graphColoring(Graph, 5,
Coloring) would result in finding a coloring of that graph with 5 colors, and unifying
Coloring with it. The first line of graphColoring/3 will generate the constraint model, the
second and third lines will compile and solve it. Figure 2 illustrates the constraint model
for the example graph in Figure 1. The left column details the initial (unknown) coloring
generated by the encoding process, as well as the variable declarations, and the right column
lists the constraints forbidding adjacent vertices from having the same color. After solving
the problem, in line 4 of graphColoring/3 the coloring is translated back to Prolog values,
and Coloring is unified with [1,2,3,4,5,1,3], for example.

4.2 Throwing pl-cliquer into the mix

It is often the case that fast detection and iteration of cliques can be used to simplify and
break symmetries in graph related problems [33, 6, 24]. In the case of graph coloring, when
coloring the graph G = (V, E), a clique C C V must correspond to a set of vertices which
are labeled by different colors, since C' contains a set of mutually adjacent vertices. Given
a clique C' C V of the graph, it is possible to arbitrarily label the vertices of C' with |C|
different colors, thereby breaking symmetries and establishing a lower bound on x(G).

The following graphColoring/3 predicate is augmented with a preprocessing step which
applies pl-cliquer in order to find a maximum clique of the input graph. This clique is
passed to the encoder, to be used by it during the generation of the constraint model. The
first and second lines of the predicate find a maximum clique in Graph and unify it with
MaxClique. The remaining lines of code follow the same outline as in graphColoring/3
described in Section 4.1, with the exception that MaxClique is taken into account as part of
the encoding process.

M. Codish, M. Frank, A. Metodi, and M. Muslimany

% Partial Coloring % Different Colors

[1,2,3,4,E,F,G] int_neq(1,E)
int_neq(2,G)

% Coloring Declaration int_neq(3,F)

new_int (E,1,5) int_neq(4,F)

new_int(F,1,5) int_neq(E,F)

new_int(G,1,5)

Figure 3 Example of the constraint model for the graph in Figure 1 with a partial coloring.

graphColoring(Graph, KColors, Coloring) :-—
length(Graph, NVert),
clique_find_single(NVert, Graph, MaxClique, [1),
encode (coloring(Graph, KColors, MaxClique), Map, Constr),
bCompile(Constr, CNF),
sat (CNF),
decode(Map, Coloring).

The encoding process initially assigns colors {1,...,|MaxClique|} to the vertices of
MaxClique. The remaining vertices are associated with finite-domain variables taking values
between {1,...,KColor }, representing their color. Finally, constraints are added which
prevent adjacent vertices from sharing a color.

As an example, consider the graph in Figure 1. A call to the augmented predicate
graphColoring(Graph, 5, Coloring) would result in finding a coloring of that graph with
5 colors, and unifying Coloring with it. The first line of graphColoring/3 determines the
number of vertices in the graph. The second line of graphColoring/3 finds a maximum
clique and unifies MaxClique with a list of its vertices. For example, given the graph in
Figure 1, the solver might unify MaxClique with [1,2,3,4]. The third line generates the
constraint model, and the fourth line compiles the constraint model to CNF. The fifth line
calls a SAT solver and the sixth line translates the result to Prolog values, resulting in either
a coloring for the graph, or an unsatisfiable result, implying the graph can not be colored
by KColor colors. Notice that since the maximum clique is known, the encoding process
may introduce a partial coloring of the graph, which substantially reduces the constraint
model, because constraints involving clique vertices may now be omitted. Figure 3 illustrates
the constraint model for the example graph in Figure 1. The left column details the partial
coloring generated by the encoding process, as well as the variable declarations, and the right
column lists the constraints forbidding adjacent vertices from having the same color.

4.3 Additional Optimizations & Results

In this section we mention additional optimizations that can be made, when solving the
graph coloring problem, given that the maximum clique of the graph is known. So far, the
graph coloring solver is composed of: (1) a preprocessing step which embeds the colors of a
maximum clique, and (2) a constraint model which is translated to CNF and solved by a SAT
solver. In addition to (1) and (2), we have also implemented, as a secondary preprocessing
step, the optimizations discussed in [23]. These optimizations reduce symmetries, as well as
the instance size leading to an improved constraint model. Once solved, the improved model
is passed through a postprocessing step, also described in [23] in order to obtain the final
coloring. For the sake of brevity, we refer the interested reader to the relevant paper [23] for
a complete description of the optimizations. We tested this method on the DIMACS coloring
instances, which were introduced in the Second DIMACS Implementation Challenge [17].

5:9

ICLP 2017 TCs

5:10

Logic Programming with Max-Clique and its Application to Graph Coloring

Table 1 Satisfiable Dimacs Instances Results.

with cliquer without cliquer
Instance k time status time status

anna.col 11 0.02 sat(BEE) 0.06 sat
david.col 11 0.02 sat(BEE) 0.05 sat
DSJC125.1.col 5 0.06 sat 0.03 sat
DSJR500.1.col 12 0.07 sat 0.31 sat

DSJR500.5.col 122 | 4661.28 memory oo memory
fpsol2.i.1.col 65 0.03 sat(BEE) 4.13 sat
fpsol2.i.2.col 30 0.07 sat 1.31 sat
fpsol2.i.3.col 30 0.07 sat 1.31 sat
games120.col 9 0.05 sat 0.07 sat
huck.col 11 0.02 sat(BEE) 0.04 sat
inithx.i.1.col 54 0.12 sat 4.38 sat
inithx.i.2.col 31 0.3 sat 2.03 sat
inithx.i.3.col 31 0.33 sat 2.2 sat
jean.col 10 0.02 sat(BEE) 0.03 sat
le450 15a.col 15 1.6 sat 0.78 sat
le450__15b.col 15 0.76 sat 0.68 sat
le450 25a.col 25 0.57 sat 1.12 sat
le450 25b.col 25 0.7 sat 1.13 sat
le450_ 5a.col 5 0.18 sat 0.22 sat
le450 5b.col 5 0.18 sat 0.23 sat
1le450_5c.col 5 0.26 sat 0.36 sat
le450_ 5d.col 5 0.27 sat 0.34 sat
miles1000.col 42 0.02 sat(BEE 1.29 sat
miles1500.col 73 0.02 sat(BEE 3.83 sat
miles250.col 8 0.02 sat(BEE 0.04 sat
miles500.col 20 0.02 sat(BEE) 0.23 sat
miles750.col 31 0.03 sat 0.69 sat
mulsol.i.1.col 49 0.02 sat(BEE) 0.98 sat
mulsol.i.2.col 31 0.13 sat 0.62 sat
mulsol.i.3.col 31 0.13 sat 0.64 sat
mulsol.i.4.col 31 0.14 sat 0.64 sat
mulsol.i.5.col 31 0.14 sat 0.63 sat
myciel3.col 4 0.03 sat 0.01 sat
myciel4.col 5 0.03 sat 0.01 sat
myciel5.col 6 0.03 sat 0.01 sat
myciel6.col 7 0.04 sat 0.04 sat
myciel7.col 8 0.09 sat 0.11 sat
queen5_ 5.col 5 0.03 sat 0.01 sat
queen6_ 6.col 7 0.03 sat 0.04 sat
queen7__7.col 7 0.04 sat 0.04 sat
queen8__12.col 12 0.1 sat 0.15 sat
queen8_ 8.col 9 0.92 sat 0.24 sat
queen9_ 9.col 10 6.98 sat 14.42 sat
queenl0_10.col 11 | 21638.0 sat 2168.42 sat
schooll.col 14 66.91 sat 1.34 sat
schooll nsh.col 14 27.08 sat 1.06 sat
zeroin.i.1.col 49 0.02 sat(BEE) 1.05 sat
zeroin.i.2.col 30 0.03 sat 0.56 sat
zeroin.i.3.col 30 0.03 sat 0.56 sat

Selected results for this set of benchmarks are given in Tables 1 and 2, a more complete set
of results can be found in (B).

Table 1 compares solving times for the satisfiable instances of the DIMACS benchmarks
with and without our augmented tool-chain. Table 2 similarly compares the solving times of
the unsatisfiable instances. Both tables share the same structure: the first column lists the
instance name and the second column lists the coloring size we seek. In Table 1 these values
k correspond to the best known colorings described in the literature [23, 24]. In Table 2
these correspond to corresponding values k — 1, the largest values for which there does not
exist a coloring. The third and fifth columns detail the solving times with and without
our augmented tool-chain, and the fourth and sixth columns detail the means by which
the instance was solved. The means by which an instance was solved may be one of the
following: (a) sat(BEE) — which means that BEE solved the constraints without calling the

M. Codish, M. Frank, A. Metodi, and M. Muslimany

Table 2 Unsatisfiable Dimacs Instances Results.

with cliquer without cliquer
Instance k time status time status
anna.col 10 0.01 unsat(cliquer 1.63 unsat
david.col 10 0.01 unsat(cliquer 0.79 unsat
DSJC125.1.col 4 0.03 unsat(BEE) 0.03 unsat
DSJR500.1.col 11 0.02 unsat(cliquer 4.79 unsat
DSJR500.5.col 121 | 4597.34 unsat(cliquer oo memory
fpsol2.i.1.col 64 0.02 unsat(cliquer oo timeout
fpsol2.i.2.col 29 0.02 unsat(cliquer) oo timeout
fpsol2.i.3.col 29 0.02 unsat(cliquer) oo timeout
games120.col 8 0.01 unsat(cliquer) 0.82 unsat
huck.col 10 0.01 unsat(cliquer) 0.52 unsat
inithx.i.1.col 53 0.05 unsat(cliquer) oo timeout
inithx.i.2.col 30 0.05 unsat(cliquer) oo timeout
inithx.i.3.col 30 0.05 unsat(cliquer) oo timeout
jean.col 9 0.01 unsat(cliquer) 0.29 unsat
le450__15a.col 14 0.02 unsat(cliquer) | 535.52 unsat
le450__15b.col 14 0.02 wunsat(cliquer) | 432.15 unsat
le450_25a.col 24 0.02 unsat(cliquer) oo timeout
le450_25b.col 24 0.02 unsat(cliquer) oo timeout
le450_ 5a.col 4 0.01 unsat(cliquer) 0.18 unsat
le450_ 5b.col 4 0.01 unsat(cliquer) 0.18 unsat
le450_ 5c.col 4 0.01 unsat(cliquer) 0.3 unsat
le450_ 5d.col 4 0.01 unsat(cliquer) 0.32 unsat
miles1000.col 41 0.01 unsat(cliquer) oo timeout
miles1500.col 72 0.01 unsat(cliquer) oo timeout
miles250.col 7 0.01 unsat(cliquer) 0.1 unsat
miles500.col 19 0.01 unsat(cliquer) oo timeout
miles750.col 30 0.01 unsat(cliquer) oo timeout
mulsol.i.1.col 48 0.01 unsat(cliquer) oo timeout
mulsol.i.2.col 30 0.01 unsat(cliquer) oo timeout
mulsol.i.3.col 30 0.01 unsat(cliquer) oo timeout
mulsol.i.4.col 30 0.01 unsat(cliquer) oo timeout
mulsol.i.5.col 30 0.01 unsat(cliquer) oo timeout
myciel3.col 3 0.03 unsat 0.01 unsat
myciel4.col 4 0.03 unsat 0.03 unsat
myciel5.col 5 0.87 unsat 109.25 unsat
myciel6.col 6 | 22970.5 unsat oo timeout
myciel7.col 7 oo timeout oo timeout
queenb_ 5.col 4 0.01 unsat(cliquer) 0.01 unsat
queen6__6.col 6 0.03 unsat 1.68 unsat
queen?_7.col 6 0.01 unsat(cliquer) 0.04 unsat
queen8 12.col 11 0.01 unsat(cliquer) 9.09 unsat
queen8_ 8.col 8 15.93 unsat oo timeout
queen9_ 9.col 9 | 2295.93 unsat oo timeout
queenl0_10.col 10 oo timeout oo timeout
schooll.col 13 66.39 unsat(cliquer) | 592.95 unsat
schooll nsh.col 13 26.6 unsat(cliquer) | 793.89 unsat
zeroin.i.1.col 48 0.01 unsat(cliquer) oo timeout
zeroin.i.2.col 29 0.01 unsat(cliquer) oo timeout
zeroin.i.3.col 29 0.01 unsat(cliquer) oo timeout

SAT solver, or (b) sat — which means that the SAT solver was called, or (¢) unsat — which
means the SAT solver was called and returned with an unsatisfiable result, or (d) unsat(BEE)
— meaning that the BEE constraint compiler determined during its compilation stages that
the instance is unsatisfiable, or (e) unsat(cliquer) — meaning that cliquer determined that
the instance is unsatisfiable, or (f) memory — meaning that the computer ran out of memory
while solving this instance, or (g) timeout — meaning that the computation for this instance
did not terminate within 24 hours. All times are listed in seconds.

Table 1 illustrates that little improvement is gained from using cliquer when solving
satisfiable instances with k = x(G). In fact, solving times substantially increase for three
satisfiable instances when cliquer is applied as part of a preprocessing step. Table 2
illustrates that when cliquer is incorporated to solve unsatisfiable instances where k =

5:11

ICLP 2017 TCs

5:12

Logic Programming with Max-Clique and its Application to Graph Coloring

Table 3 Satisfiable Toronto Instances Results.

with cliquer without cliquer

Instance k (lit) time status | time status
hec-s-92 17 (17) 0.08 sat 0.17 sat
sta-f-83 13 (13) 0.03 sat 0.15 sat
yor-f-83 18 (19) 0.46 sat 0.93 sat
ute-s-92 10 (10) 0.16 sat 0.13 sat
ear-f-83 22 (22) 0.3 sat 0.62 sat
tre-s-92 20 (20) 0.51 sat 1.023 sat
lse-f-91 17 (17) 0.13 sat 0.62 sat
kfu-s-93 19 (19) 0.4 sat 0.98 sat
rye-s-93 21 (21) 0.61 sat 1.67 sat
car-f-92 27 (28) 2.08 sat 6.95 sat
uta-s-92 29 (30) 3.7 sat 4.45 sat
car-s-91 27 (27) | 1580.47 sat oo timeout
pur-s-93 31 (36) 6.71 sat 32.03 sat

X(G) — 1, solving times are considerably improved, often making the difference between being
able to determine a result or not.

5 Exam Timetabling: An Application of Graph Coloring

The examination timetabling problem is about scheduling exams to a set of sequential
timeslots, in such a way that conflicting exams are not scheduled to the same timeslot. An
instance of the examination timetabling problem specifies n, the total number of exams,
a set D C [n] x [n] of conflicting exams, in such a way that conflicts are symmetric
(ie, (i,4) € D <= (j,i) € D), as well as a number of timeslots, m. We seek to
find a legal schedule of size m, which is a tuple S = {(ti,...,t,) describing a mapping from
exams to timeslots such that ¢; is the timeslot of exam i. Each timeslot takes a value in
the set { 1,....m }, and for every pair of conflicting exams i and j — the exams are not
scheduled to the same timeslot (i.e., t; # t;).

The examination timetabling problem is reducible to the graph coloring problem by
considering the conflict graph derived from the problem instance. This is the graph with
vertices corresponding to courses and edges induced by the constraint set D such that (i,)
is an edge of the graph if and only if (¢,) € D. If the graph is m-colorable, then the coloring
can be taken to be a legal schedule of size m.

In the minimum examination timetabling problem, we seek the minimum m for which
there exists a legal schedule. The minimum examination timetabling problem is equivalently
reducible to the minimum graph-coloring problem.

We tested our approach on the Toronto timetabling instances, which were introduced
by Carter et al., [7]. Selected results for this set of benchmarks are given in Tables 3
and 4, the complete set of results can be found in Appendix A Table 3 lists instances for
which satisfiable results were found, illustrating the coloring size that was found using our
augmented tool-chain. The table follows the same description as that of Table 1, except
that the second column lists the optimal coloring size we found as well as the best known
coloring we found in literature [30]. Table 4 lists the corresponding unsatisfiable instances
which prove that the colorings found in Table 3 are optimal. The columns of this table follow
the same description as those of Table 2.

Table 3 illustrates the improvement gained by using cliquer when solving satisfiable
instances. The table lists four instances for which the best known colorings are improved, while
colorings for the remaining instances match the best known results from literature. Moreover,
Table 4 illustrates that when cliquer is incorporated to solve unsatisfiable instances, solving

M. Codish, M. Frank, A. Metodi, and M. Muslimany

Table 4 Unsatisfiable Toronto Instances Results.

with cliquer without cliquer
Instance k (lit) | time status time status
hec-s-92 16 | 0.01 unsat(cliquer) | 3736.02 unsat
sta-f-83 12 | 0.01 wunsat(cliquer) 25.43 unsat
yor-f-83 17 | 0.01 unsat(cliquer) oo timeout
ute-s-92 9 0.1 unsat(cliquer) 0.65 unsat
ear-f-83 21 | 0.24 unsat oo timeout
tre-s-92 19 | 0.01 unsat(cliquer) oo timeout
lse-f-91 16 | 0.01 unsat(cliquer) | 3718.11 wunsat
kfu-s-93 18 | 0.02 unsat(cliquer) 0o timeout
rye-s-93 20 | 0.03 unsat(cliquer) oo timeout
car-f-92 26 | 50.2 unsat oo timeout
car-s-91 26 oo timeout oo timeout
uta-s-92 28 | 8.18 unsat oo timeout
pur-s-93 30 | 4.71 unsat oo timeout

times are considerably improved, often making the difference between solvable and unsolvable
instances. Also notice that, to the best of our knowledge, the chromatic numbers of Toronto
instances were not previously reported in the literature [30].

6 Technical Details

The package containing pl-cliquer is available for download from the pl-cliquer homepage
at: https://www.cs.bgu.ac.il/~frankm/plcliquer/. The package contains a README file,
which contains usage and installation instructions, as well as an examples directory containing
the examples discussed in this paper. The C code for pl-cliquer may be found in the src
directory. Also in the src directory are the module files for pl-cliquer.

pl-cliquer was compiled and tested on Debian Linux and Ubuntu Linux using the 7.x.x
branch of SWI-Prolog. Note that pl-cliquer should compile and run on any architecture
where cliquer will compile and run.

7 Conclusions

We have presented, and made available, a Prolog interface to the core components of the
cliquer clique-finding tool [27]. The principle contribution of this paper is in the utility of
the tool which we expect to be widely used. The tool provides a “drop in” clique finding
utility, through which Prolog programs which address graph related problems may apply
cliquer natively, through Prolog, as part of the solving process. Cliques may be generated,
subject to programmer selected constraints on size, maximality etc., and may be generated
deterministically or non-deterministically. Additionally, we illustrate in Prolog the standard
approach to implement a graph coloring solver. The experiments we report on indicate that
our tool-chain, augmented with pl-cliquer, is on par with results reported in the literature
[30, 23, 24].

—— References

1 Karen I Aardal, Stan PM Van Hoesel, Arie MCA Koster, Carlo Mannino, and Antonio
Sassano. Models and solution techniques for frequency assignment problems. Annals of
Operations Research, 153(1):79-129, 2007.

2 Noga Alon and Ravi B. Boppana. The monotone circuit complexity of boolean functions.

Combinatorica, 7(1):1-22, 1987. doi:10.1007/BF02579196.

5:13

ICLP 2017 TCs

https://www.cs.bgu.ac.il/~frankm/plcliquer/
http://dx.doi.org/10.1007/BF02579196

5:14

Logic Programming with Max-Clique and its Application to Graph Coloring

10

11

12

13

14

15

16

17

18

19

20

Béla Bollobas. Complete subgraphs are elusive. Journal of Combinatorial Theory, Series
B, 21(1):1 — 7, 1976. doi:10.1016/0095-8956(76)90021-6.

Immanuel M. Bomze, Marco Budinich, Panos M. Pardalos, and Marcello Pelillo. The
Mazimum Clique Problem, pages 1-74. Springer US, Boston, MA, 1999. doi:10.1007/
978-1-4757-3023-4_1.

R. L. Brooks. On colouring the nodes of a network. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 37(2):194-197, 004 1941. doi:10.1017/S030500410002168X.
M W Carter and D G Johnson. Extended clique initialisation in examination timetabling.
Journal of the Operational Research Society, 52(5):538-544, 2001. doi:10.1057/palgrave.
jors.2601115.

Michael W. Carter, Gilbert Laporte, and Sau Yan Lee. Examination timetabling: Al-
gorithmic strategies and applications. Journal of the Operational Research Society,
47(3):373-383, 1996. doi:10.1057/jors.1996.37.

Gregory J Chaitin, Marc A Auslander, Ashok K Chandra, John Cocke, Martin E Hopkins,
and Peter W Markstein. Register allocation via coloring. Computer languages, 6(1):47-57,
1981.

Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Logic programming with satisfiability.
TPLP, 8(1):121-128, 2008. doi:10.1017/S1471068407003146.

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151-158, New
York, NY, USA, 1971. ACM. doi:10.1145/800157.805047.

William H. E. Day and David Sankoff. Computational complexity of inferring phylogenies
by compatibility. Systematic Zoology, 35(2):224-229, 1986. URL: http://www.jstor.org/
stable/2413432.

Michael Frank and Michael Codish. Logic programming with graph automorphism: Integ-
rating nauty with Prolog (tool description). Theory and Practice of Logic Programming,
16(5-6):688-702, 009 2016. doi:10.1017/51471068416000223.

Ove Frank and David Strauss. Markov graphs. Journal of the American Statistical Associ-
ation, 81(395):832-842, 1986. URL: http://www.jstor.org/stable/2289017.

M. R. Garey and D. S. Johnson. “ strong ” NP-completeness results: Motivation, examples,
and implications. J. ACM, 25(3):499-508, July 1978. doi:10.1145/322077.322090.
Johan Héstad. Clique is hard to approximate within n'=¢. Acta Math., 182(1):105-142,
1999. doi:10.1007/BF02392825.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512 — 530, 2001.
doi:10.1006/jcss.2001.1774.

David J. Johnson and Michael A. Trick, editors. Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993. American
Mathematical Society, Boston, MA, USA, 1996.

Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85-103. Springer, 1972.

Ciaran McCreesh, Samba Ndojh Ndiaye, Patrick Prosser, and Christine Solnon. Clique and
constraint models for maximum common (connected) subgraph problems. In Michel Rueher,
editor, Principles and Practice of Constraint Programming - 22nd International Conference,
CP 2016, Toulouse, France, September 5-9, 2016, Proceedings, volume 9892 of Lecture Notes
in Computer Science, pages 350-368. Springer, 2016. doi:10.1007/978-3-319-44953-1_
23.

Ciaran McCreesh and Patrick Prosser. Multi-threading a state-of-the-art maximum clique
algorithm. Algorithms, 6(4):618-635, 2013. doi:10.3390/a6040618.

http://dx.doi.org/10.1016/0095-8956(76)90021-6
http://dx.doi.org/10.1007/978-1-4757-3023-4_1
http://dx.doi.org/10.1007/978-1-4757-3023-4_1
http://dx.doi.org/10.1017/S030500410002168X
http://dx.doi.org/10.1057/palgrave.jors.2601115
http://dx.doi.org/10.1057/palgrave.jors.2601115
http://dx.doi.org/10.1057/jors.1996.37
http://dx.doi.org/10.1017/S1471068407003146
http://dx.doi.org/10.1145/800157.805047
http://www.jstor.org/stable/2413432
http://www.jstor.org/stable/2413432
http://dx.doi.org/10.1017/S1471068416000223
http://www.jstor.org/stable/2289017
http://dx.doi.org/10.1145/322077.322090
http://dx.doi.org/10.1007/BF02392825
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/978-3-319-44953-1_23
http://dx.doi.org/10.1007/978-3-319-44953-1_23
http://dx.doi.org/10.3390/a6040618

M. Codish, M. Frank, A. Metodi, and M. Muslimany 5:15

21 Ciaran McCreesh and Patrick Prosser. A parallel branch and bound algorithm for the
maximum labelled clique problem. Optimization Letters, 9(5):949-960, 2015. doi:10.
1007/s11590-014-0837-4.

22 Nirbhay K Mehta. The application of a graph coloring method to an examination scheduling
problem. Interfaces, 11(5):57-65, 1981.

23 Isabel Méndez-Diaz and Paula Zabala. A branch-and-cut algorithm for graph coloring.
Discrete Applied Mathematics, 154(5):826-847, 2006.

24 Isabel Méndez-Diaz and Paula Zabala. A cutting plane algorithm for graph coloring. Dis-
crete Applied Mathematics, 156(2):159-179, 2008.

25 Amit Metodi and Michael Codish. Compiling finite domain constraints to SAT with BEE.
TPLP, 12(4-5):465-483, 2012. doi:10.1017/31471068412000130.

26 Amit Metodi, Michael Codish, and Peter J. Stuckey. Boolean equi-propagation for concise
and efficient SAT encodings of combinatorial problems. J. Artif. Intell. Res. (JAIR), 46:303—
341, 2013. doi:10.1613/jair.3809.

27 Sampo Niskanen and Patric R. J. Ostergird. Cliquer user’s guide. Technical Report ver-
sion 1.0, Communications Laboratory, Helsinki University of Technology, Espoo, Technical
Report T48, 2003. URL: https://users.aalto.fi/~pat/cliquer.html.

28 Patric R. J. Ostergard. A fast algorithm for the maximum clique problem. Discrete Appl.
Math., 120(1-3):197-207, August 2002. doi:10.1016/S0166-218X(01)00290-6.

29 Patrick Prosser. Exact algorithms for maximum clique: A computational study. Algorithms,
5(4):545-587, 2012. doi:10.3390/a5040545.

30 Rong Qu, Edmund K Burke, Barry McCollum, LT Merlot, and Sau Y Lee. A survey
of search methodologies and automated system development for examination timetabling.
Journal of scheduling, 12(1):55-89, 2009.

31 Jean-Charles Régin. Using Constraint Programming to Solve the Maximum Clique Prob-
lem, pages 634-648. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. doi:10.1007/
978-3-540-45193-8_43.

32 Ram Samudrala and John Moult. A graph-theoretic algorithm for comparative modeling
of protein structure. Journal of Molecular Biology, 279(1):287 — 302, 1998. doi:10.1006/
jmbi.1998.1689.

33 D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph
and its application to timetabling problems. The Computer Journal, 10(1):85, 1967. doi:
10.1093/comjnl/10.1.85.

34 Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjérn Lager. SWI-Prolog. Theory
and Practice of Logic Programming, 12(1-2):67-96, 2012.

A Toronto Instances

Tables 5 and 6 describe in more detail the results obtained for satisfiable and unsatisfiable
instances of the Toronto benchmarks respectively. The first column lists the instance name,
the second column lists the best coloring found as well as the previously best known coloring
from literature [30], the third column lists the time it took cliquer to find a maximum
clique in the graph, the fourth column lists the time it took BEE to compile the constraints to
CNF, The fifth and sixth column detail the size of the CNF in terms of clauses and number
of variables, the seventh column lists the time it took the SAT solver to obtain a result, and
the last column detail the reason for that result. The values in column seven are the same as
the status column of Table 1.

ICLP 2017 TCs

http://dx.doi.org/10.1007/s11590-014-0837-4
http://dx.doi.org/10.1007/s11590-014-0837-4
http://dx.doi.org/10.1017/S1471068412000130
http://dx.doi.org/10.1613/jair.3809
https://users.aalto.fi/~pat/cliquer.html
http://dx.doi.org/10.1016/S0166-218X(01)00290-6
http://dx.doi.org/10.3390/a5040545
http://dx.doi.org/10.1007/978-3-540-45193-8_43
http://dx.doi.org/10.1007/978-3-540-45193-8_43
http://dx.doi.org/10.1006/jmbi.1998.1689
http://dx.doi.org/10.1006/jmbi.1998.1689
http://dx.doi.org/10.1093/comjnl/10.1.85
http://dx.doi.org/10.1093/comjnl/10.1.85

5:16 Logic Programming with Max-Clique and its Application to Graph Coloring

Table 5 Satisfiable Toronto Instances Results.

Instance k (lit) | cliquer BEE #clauses #vars sat | Status
hecs92 17 (17) 0.0I 0.05 6601 590 0.02 | sat
sta-£-83 13 (13) 0.01 0.01 735 175 0.01 | sat
yor-f-83 18 (19) 0.01 0.37 37569 1812 0.08 | sat
ute-s-92 10 (10) 0.1 0.04 9100 770 0.02 | sat
ear-f-83 22 (22) 0.01 0.22 23159 1639 0.07 | sat
tre-s-92 20 (20) 0.01 0.36 55756 2881 0.14 | sat
lse-f-91 17 (17) 0.01 0.1 17478 1418 0.02 | sat
kfu-s-93 19 (19) 0.02 0.23 48300 2807 0.15 | sat
rye-s-93 21 (21) 0.03 0.42 69838 4160 0.16 | sat
car-f-92 27 (28) 0.2 1.15 179749 7634 0.73 | sat
uta-s-92 29 (30) 0.1 2.1 338007 11490 1.5 | sat
car-s-91 27 (27) 0.06 1.93 407155 12672 1578.48 | sat
pur-s-93 31 (36) 0.5 285 1098306 39613 3.36 | sat

Table 6 Unsatisfiable Toronto Instances Results.

Instance k | cliquer BEE #clauses #vars sat | Status
hec-s-92 16 0.01 — — — — | unsat(cliquer)
sta-f-83 12 0.01 — — — — | unsat(cliquer)
yor-£-83 17 0.01 — — — — | unsat(cliquer)
ute-s-92 9 0.1 — — — — | unsat(cliquer)
ear-f-83 21 0.01 0.2 13841 1210 0.03 | unsat
tre-s-92 19 0.01 - — - — | unsat(cliquer)
Ise-f-91 16 0.01 - — - — | unsat(cliquer)
kfu-s-93 18 0.02 — — — — | unsat(cliquer)
rye-s-93 20 0.03 — — — — | unsat(cliquer)
car-f-92 26 0.2 1.12 159981 7138 48.88 | unsat
car-s-91 26 0.06 1.09 373479 12053 oo | timeout
uta-s-92 28 0.1 1.5 310668 10933 6.58 | unsat
pur-s-93 30 0.5 2.77 1005456 37849 1.44 | unsat

B Dimacs Instances

Tables 7 and 8 describe in more detail the results obtained for satisfiable and unsatisfiable
instances of the DIMACS benchmarks respectively. The tables description follows the
description of Tables 5 and 6.

M. Codish, M. Frank, A. Metodi, and M. Muslimany 5:17

Table 7 Satisfiable Dimacs Instances Results.

Instance k | cliquer BEE #clauses #vars sat | Status
anna.col 11 0.01 0.01 — — — | sat(BEE)
david.col 11 0.01 0.01 — — — | sat(BEE)
DSJC125.1.col 5 0.01 0.02 4017 553 0.03 | sat
DSJR500.1.col 12 0.02 0.02 14928 1209 0.03 | sat
DSJR500.5.col 122 | 4661.28 - - — — | memory
fpsol2.i.1.col 65 0.02 0.01 - — — | sat(BEE)
fpsol2.i.2.col 30 0.02 0.04 9654 894 0.01 | sat
fpsol2.i.3.col 30 0.02 0.04 9654 894 0.01 | sat
games120.col 9 0.01 0.03 8820 1051 0.01 | sat
huck.col 11 0.01 0.01 — — — | sat(BEE)
inithx.i.1.col 54 0.05 0.05 17248 1192 0.02 | sat
inithx.i.2.col 31 0.05 0.13 103315 3705 0.12 | sat
inithx.i.3.col 31 0.05 0.15 103315 3705 0.13 | sat
jean.col 10 0.01 0.01 — — — | sat(BEE)
le450__15a.col 15 0.02 0.34 127561 6102 1.24 | sat
le450__15b.col 15 0.02 0.32 117393 5879 0.42 | sat
le450_ 25a.col 25 0.02 0.33 155049 6290 0.22 | sat
le450_25b.col 25 0.02 0.34 190394 7420 0.33 | sat
le450__5a.col 5 0.01 0.12 29092 2088 0.05 | sat
le450__5b.col 5 0.01 0.11 30023 2117 0.06 | sat
le450_ 5c¢.col 5 0.01 0.19 42630 1992 0.06 | sat
le450_5d.col 5 0.01 0.19 44927 2051 0.07 | sat
miles1000.col 42 0.01 0.01 - — — | sat(BEE)
miles1500.col 73 0.01 0.01 — — — | sat(BEE)
miles250.col 8 0.01 0.01 - — — | sat(BEE)
miles500.col 20 0.01 0.01 — — — | sat(BEE)
miles750.col 31 0.01 0.01 15 7 0.01 | sat
mulsol.i.1.col 49 0.01 0.01 — — — | sat(BEE)
mulsol.i.2.col 31 0.01 0.06 41878 1574 0.06 | sat
mulsol.i.3.col 31 0.01 0.06 41878 1574 0.06 | sat
mulsol.i.4.col 31 0.01 0.06 44293 1642 0.07 | sat
mulsol.i.5.col 31 0.01 0.06 43042 1608 0.07 | sat
myciel3.col 4 0.01 0.01 83 30 0.01 | sat
myciel4.col 5 0.01 0.01 393 91 0.01 | sat
myciel5.col 6 0.01 0.01 1570 240 0.01 | sat
myciel6.col 7 0.01 0.02 5736 589 0.01 | sat
myciel7.col 8 0.01 0.06 19929 1386 0.02 | sat
queen5_ 5.col 5 0.01 0.01 266 31 0.01 | sat
queen6__6.col 7 0.01 0.01 1584 138 0.01 | sat
queen7__7.col 7 0.01 0.02 2566 192 0.01 | sat
queen8__12.col 12 0.01 0.07 19816 872 0.02 | sat
queen8__8.col 9 0.01 0.03 7314 380 0.88 | sat
queen9_ 9.col 10 0.01 0.06 12026 547 6.91 | sat
queenl0_10.col 11 0.01 0.09 21322 856 21637.9 | sat
schooll.col 14 66.39 0.51 42 16 0.01 | sat
schooll nsh.col 14 26.6 0.47 107 34 0.01 | sat
zeroin.i.1.col 49 0.01 0.01 — — — | sat(BEE)
zeroin.i.2.col 30 0.01 0.01 734 139 0.01 | sat
zeroin.i.3.col 30 0.01 0.01 734 139 0.01 | sat

ICLP 2017 TCs

5:18 Logic Programming with Max-Clique and its Application to Graph Coloring

Table 8 Unsatisfiable Dimacs Instances Results.

Instance k | cliquer BEE #clauses #vars sat | Status
anna.col 10 0.01 - - - — | unsat(cliquer)
david.col 10 0.01 - - - — | unsat(cliquer)
DSJC125.1.col 4 0.01 0.02 - - — | unsat(BEE)
DSJR500.1.col 11 0.02 — — — — | unsat(cliquer)
DSJR500.5.col 121 | 4597.34 — — — — | unsat(cliquer)
fpsol2.i.1.col 64 0.02 — — — — | unsat(cliquer)
fpsol2.i.2.col 29 0.02 — — — — | unsat(cliquer)
fpsol2.i.3.col 29 0.02 - — - — | unsat(cliquer)
games120.col 8 0.01 — — - — | unsat(cliquer)
huck.col 10 0.01 — — - — | unsat(cliquer)
inithx.i.1.col 53 0.05 — — - — | unsat(cliquer)
inithx.i.2.col 30 0.05 — — — — | unsat(cliquer)
inithx.i.3.col 30 0.05 - — - — | unsat(cliquer)
jean.col 9 0.01 - - - — | unsat(cliquer)
le450_15a.col 14 0.02 — - - — | unsat(cliquer)
le450_15b.col 14 0.02 - — - — | unsat(cliquer)
le450_25a.col 24 0.02 - — - — | unsat(cliquer)
le450_25b.col 24 0.02 - — - — | unsat(cliquer)
le450 5a.col 4 0.01 - — — — | unsat(cliquer)
le450 _5b.col 4 0.01 - — — — | unsat(cliquer)
le450 5c.col 4 0.01 - — — — | unsat(cliquer)
le450_5d.col 4 0.01 - — — — | unsat(cliquer)
miles1000.col 41 0.01 - — — — | unsat(cliquer)
miles1500.col 72 0.01 - — — — | unsat(cliquer)
miles250.col 7 0.01 - — — — | unsat(cliquer)
miles500.col 19 0.01 — — — — | unsat(cliquer)
miles750.col 30 0.01 — — — — | unsat(cliquer)
mulsol.i.1.col 48 0.01 — — — — | unsat(cliquer)
mulsol.i.2.col 30 0.01 — — — — | unsat(cliquer)
mulsol.i.3.col 30 0.01 — — = — | unsat(cliquer)
mulsol.i.4.col 30 0.01 — — = — | unsat(cliquer)
mulsol.i.5.col 30 0.01 — — = — | unsat(cliquer)
myciel3.col 3 0.01 0.01 37 15 0.01 | unsat
mycield.col 4 0.01 0.01 267 70 0.01 | unsat
myciel5.col 5 0.01 0.01 1170 195 0.85 | unsat
myciel6.col 6 0.01 0.02 4548 496 22970.47 | unsat
myciel7.col 7 0.01 0.06 16499 1197 oo | timeout
queen5_ 5.col 4 0.01 — — — — | unsat(cliquer)
queen6__6.col 6 0.01 0.01 1070 108 0.01 | unsat
queen?_7.col 6 0.01 - — — — | unsat(cliquer)
queen8 12.col 11 0.01 — — — — | unsat(cliquer)
queen8__ 8.col 8 0.01 0.04 5838 324 15.88 | unsat
queen9_9.col 9 0.01 0.06 9859 474 2295.86 | unsat
queenl0_10.col 10 0.01 0.08 18110 716 oo | timeout
schooll.col 13 66.39 - — — — | unsat(cliquer)
schooll nsh.col 13 26.6 - — — — | unsat(cliquer)
zeroin.i.1.col 48 0.01 - — — — | unsat(cliquer)
zeroin.i.2.col 29 0.01 - — — — | unsat(cliquer)
zeroin.i.3.col 29 0.01 - — — — | unsat(cliquer)

Semantic Versioning Checking in a Declarative
Package Manager

Michael Hanus

Institut fiir Informatik, CAU Kiel, 24098 Kiel, Germany
mh@informatik.uni-kiel.de

—— Abstract

Semantic versioning is a principle to associate version numbers to different software releases in a
meaningful manner. The correct use of version numbers is important in software package systems
where packages depend on other packages with specific releases. When patch or minor version
numbers are incremented, the API is unchanged or extended, respectively, but the semantics of
the operations should not be affected (apart from bug fixes). Although many software package
management systems assumes this principle, they do not check it or perform only simple syntactic
signature checks. In this paper we show that more substantive and fully automatic checks are
possible for declarative languages. We extend a package manager for the functional logic language
Curry with features to check the semantic equivalence of two different versions of a software
package. For this purpose, we combine CurryCheck, a tool for automated property testing,
with program analysis techniques in order to ensure the termination of the checker even in
case of possibly non-terminating operations defined in some package. As a result, we obtain a
software package manager which checks semantic versioning and, thus, supports a reliable and
also specification-based development of software packages.

1998 ACM Subject Classification D.2.5 Testing and Debugging, F.3.1 Specifying and Verifying
and Reasoning about Programs

Keywords and phrases functional logic programming, semantic versioning, program testing

Digital Object Identifier 10.4230/0ASIcs ICLP.2017.6

1 Motivation

Contemporary software systems are complex and based on many components. To structure
such systems and support the re-use of components in different software systems, software
packages with well-defined APIs (application programming interfaces) are used. A software
package consists of one or more modules and is used as a building block of a larger system.
Hence, a software system or even a complex package depends on other packages. Since
packages develop over time, e.g., new functionality is added, more efficient implementations
are developed, or the usage of operations (i.e., the API) is changed, it is important to use
appropriate versions of packages. Finding them and manage these dependencies is often
called “dependency hell” As a solution to this problem, package managers use version
numbers associated to package releases and allow to express such dependencies as relations
on version numbers.

Semantic versioning is a recommendation to associate meaningful version numbers to
software packages. In the semantic versioning standard,' each version number consists of
major, minor, and patch number, separated by dots, and an optional pre-release specifier

! http://www.semver.org

© Michael Hanus;
37 licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 6; pp. 6:1-6:16

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.6
http://www.semver.org
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

6:2

Semantic Versioning Checking in a Declarative Package Manager

consisting of alphanumeric characters and hyphens appended with a hyphen (and optional
build metadata, which we do not consider here). For instance, 0.1.2 and 1.2.3-alpha.2
are valid version numbers. Furthermore, an ordering is defined on version numbers where
major, minor, and patch numbers are compared in lexicographic order and pre-releases are
considered unstable so that they are smaller than their non-pre-release versions. For instance,
0.1.1<0.1.2<0.3.1 < 1.1.2-alpha < 1.1.2. Furthermore, semantic versioning requires
that the major version number is incremented when the API functionality of a package is
changed, the minor version number is incremented when new API functionality is added
and existing API operations are backward compatible, and the patch version number is
incremented when the API functionality is unchanged (only bug fixes, code refactorings, code
improvements, etc).

The advantage of semantic versioning is an increased flexibility to choose packages when
building larger software systems. For instance, if package A requires some functionality which
has been introduced in version 2.3.1 of package B, one can specify that A depends on B in a
version greater than or equal to 2.3.1 but less than 3.0.0. Thanks to semantics versioning,
a package manager can choose newer versions of B (as long as they are smaller than 3.0.0),
when they become available, in order to build A without dependency problems.

However, semantic versioning requires the semantic compatibility of two packages with
identical major version numbers (apart from new operations or operations with bug fixes).
Since this property is obviously undecidable in general, the developer is responsible for this
semantic compatibility so that this is not checked in contemporary package management
systems. Improving this situation is the objective of the work described in this paper. Due
to the absence of side effects in declarative (functional, logic) programming languages, one
can easily write repeatable test suites. Tests parameterized over some arguments are also
called properties. Property-based testing automates the checking of properties by random or
systematic generation of test inputs. It has been introduced with the QuickCheck tool [12]
for the functional language Haskell and adapted to other languages, like PrologCheck [2] for
Prolog, PropEr [26] for the concurrent functional language Erlang, or EasyCheck [11] and
CurryCheck [17] for the functional logic language Curry.

In order to check the semantic equivalence of a unary operation f defined in versions v; and
vo of some package, a first approach is renaming the definitions of f in these packages to f,,
and f,,, respectively, and checking the property Vz.f,, () = fu,(x), which is called computed
result equivalence in [9].2 Ideally, one should prove this property. Since fully automatic proof
techniques are available only for limited domains, we propose to use property-based testing
instead. Although this method is incomplete in general, in practice it is quite successful if
the generated input data is well distributed (which is a goal of all property-based test tools).
Unfortunately, the brute-force testing of the equivalence of all operations, as described above,
does not yield an automatic checker for semantic versioning, since it might not terminate if
some operations are non-terminating. Moreover, declarative languages like Haskell or Curry
are based on lazy evaluation to enable optimal computations and modularity by stream-based
programming [20]. Hence, operations might also compute infinite results that cannot be
compared in a finite amount of time. Therefore, we propose to combine property-based testing
with program analysis techniques in order to ensure the termination of property testing. In
general, operations which might not terminate are excluded from equivalence checking. In

2 This property is a necessary but not sufficient condition to ensure semantic equivalence in functional
logic programs [7]. Since we do not intend to provide a faithful method for semantic versioning checking
but use a testing-based approach to detect inconsistencies, we use this simplified property.

M. Hanus

order to check operations which compute infinite data structures, e.g., stream generators, we
analyze the “productivity” of these operations, i.e., a property which ensures that partial
results are produced after a finite amount of time, and check finite approximations of their
results.

In order to use these ideas in practice, we integrated this kind of semantic versioning
checking into CPM [25], a new package management system for the functional logic language
Curry. In this way, we obtain a software package manager which checks semantic versioning

and, thus, supports a reliable and also specification-based development of software packages.

This paper is structured as follows. In the next section we briefly survey functional
logic programming and features of Curry. Sections 3 and 4 discuss the main features of
property-based testing and the Curry package manager CPM. The integration of semantic
versioning checking into CPM is shown in Section 5. The techniques to check also possibly
non-terminating operations are introduced in Section 6 and their implementation is discussed
in Section 7. Before we conclude, we show in Section 8 an important application of our
approach: the specification-based development of software systems.

2 Functional Logic Programming and Curry

In this section we briefly review some features of functional logic programming and Curry
that are relevant for this paper. More details can be found in surveys on functional logic
programming [6, 16] and in the language report [19].

Functional logic languages [6, 16] integrate the most important features of functional
and logic languages in order to provide a variety of programming concepts. They support
functional programming concepts like higher-order functions and lazy evaluation as well
as logic programming concepts like non-deterministic search and computing with partial
information. The declarative multi-paradigm language Curry [19] is a functional logic
language with advanced programming concepts.

The syntax of Curry is close to Haskell [27], i.e., type variables and names of defined
operations usually start with lowercase letters and the names of type and data constructors
start with an uppercase letter. a — 3 denotes the type of all functions mapping elements of
type « into elements of type 8 (where § can also be a functional type, i.e., functional types
are “curried”). The application of an operation f to e is denoted by juxtaposition (“f e”).

In addition to Haskell, Curry allows free (logic) variables in rules and initial expressions.

Function calls with free variables are evaluated by a possibly non-deterministic instantiation
of demanded arguments.

» Example 1. The following simple program shows the functional and logic features of Curry.

It defines the well-known list concatenation and an operation that returns some element of a
list having at least two occurrences:

(++) :: [al] — [a]l — I[al someDup :: [a] — a
[1 ++ ys = ys someDup xs | xs == _++ [x] ++ _++ [x] ++ _
(x:x8) ++ ys = x : (xs ++ ys) = x where x free

Since “++” can be called with free variables in arguments, the condition in the rule of
someDup is solved by instantiating x and the anonymous free variables “_” to appropriate
values (i.e., expressions without defined functions) before reducing the function calls. This
corresponds to narrowing [28], but Curry narrows with possibly non-most-general unifiers to
ensure the optimality of computations [3]. Curry is a non-strict language, i.e., derivation
steps are performed at outermost positions, which supports computations with infinite data

structures [20]. We do not recapitulate the details of the operational semantics which can be

6:3

ICLP 2017 TCs

6:4

Semantic Versioning Checking in a Declarative Package Manager

found in [1]. When we later consider evaluations of expressions, we denote by “—” the one
step outermost derivation relation and by “=” its reflexive-transitive closure.

Note that someDup is a non-deterministic operation since it might deliver more than one
result for a given argument, e.g., the evaluation of someDup [1,2,2,1] yields the values 1 and
2. Non-deterministic operations, which can formally be interpreted as mappings from values
into sets of values [14], are an important feature of contemporary functional logic languages.
Hence, Curry has also a predefined choice operation:

x ? = x

-7y =y

Thus, the expression “0 ? 1” evaluates to 0 and 1 with the value non-deterministically chosen.

A functional pattern [4] is a pattern in the left-hand side of a rule containing defined
operations (and not only data constructors and variables). Such a pattern abbreviates the
set of all standard patterns to which the functional pattern can be evaluated (by narrowing).
For instance, we can rewrite the definition of someDup as

someDup (_++[x]++_++[x]++_) = x

Functional patterns are a powerful feature to express arbitrary selections in tree structures,
e.g., as shown for processing XML documents in [15].

Curry has also features which are useful for application programming, like set functions
[5] to encapsulate non-deterministic computations, default rules [8] to deal with partially
specified operations and negation, and standard features from functional programming, like
modules or monadic I/O. Other features are explained when they are used in the following.

3 Property-based Testing and CurryCheck

Property-based testing is a useful technique to improve the reliability of software packages.
Basically, properties are Boolean expressions parameterized over input data. Concrete input
data is automatically generated by property-based test tools which evaluate the properties
on these inputs. For instance, QuickCheck [12], PropEr [26], or PrologCheck [2] generate
test inputs in a random manner, whereas SmallCheck [29], GAST [21], or EasyCheck [11]
perform a systematic enumeration of test inputs so that, for finite input domains, they can
actually verify properties.

CurryCheck [17] is a property-based test tool for Curry which automates the test process.
CurryCheck is based on EasyCheck and extracts and tests all properties contained in a source
program. A property is a top-level entity with result type Prop and an arbitrary number of
inputs. For instance, if we add to the program of Example 1 the property

concIsAssoc :: [Int] — [Int] — [Int] — Prop
concIsAssoc xs ys zs = (xs++ys)++zs -=- xs++(ys++zs)

and run CurryCheck on this program, the associativity property of list concatenation is
tested by systematically enumerating lists of integers for the variables xs, ys, and zs. The
property “-=-" has the type a—a—Prop and is satisfied if both arguments have a single
identical value.

To check laws involving non-deterministic operations, one can use the property “<~>”
which is satisfied if both arguments have identical result sets. For instance, consider the
following definition of a permutation of a list (which exploits a functional pattern to select
some element in the argument list):

M. Hanus

perm (xs++[x]++ys)
perm []

x : perm (xs++ys)

(1

The requirement that permutations do not change the list length can be expressed by the
property

permLength xs = length (perm xs) <~> length xs

Since the left argument of “<~>” evaluates to many (identical) values, the set-based interpret-
ation of “<~>” is relevant here. This is reasonable since, from a declarative programming
point of view, it is irrelevant how often some result is computed.

Now consider an alternative definition of permutations which non-deterministically inserts
the first element into a permutation of the remaining elements:

permIns [] =0
permIns (x:xs) = insert x (permIns xs)
insert x (xs++ys) = xs++[x]++ys

In order to check whether both definitions of permutations compute identical results, we
(successfully) test the following property:

permSameAsPermIns xs = perm xs <~> permlIns xs

4 CPM: The Curry Package Manager

The Curry Package Manager CPM? [25] is a tool to distribute and install Curry software
packages and manage version dependencies between them. Essentially, a package consists of
one or more Curry modules and a package specification, a file in JSON format containing
the package’s metadata. Beyond some standard fields, like author, name, or synopsis, the
metadata of each package contains the version number of the package (in semantic versioning
format, see above) and a list of dependency constraints. A dependency constraint consists of
the name of another package and a disjunction of conjunctions of version relations, which
are comparison operators (<, <=, > >= =) together with a version number. Conjunctions

are separated by commas, and disjunctions are separated by ||. Hence, the dependency
constraint
"B" : ">= 2.0.0, < 3.0.0 || > 4.1.0"

expresses the requirement that the current package depends on package B with major version
2 or in a version greater than 4.1.0.

CPM has various commands to manage the set of all packages and install and upgrade
individual packages. CPM uses a central index of all known packages and their versions. A
user can download a local copy of this index and also add other local packages and versions
to this index. To install a package, CPM tries to resolve all dependency constraints of the
current package and all dependent packages. This is a classic constraint satisfaction problem
and CPM uses a lazy functional approach based on [24] to solve all dependency constraints
and find appropriate package versions. If there is a solution to these constraints, CPM
automatically installs all required packages. If there are several possible versions of some

3 http://curry-language.org/tools/cpm

6:5

ICLP 2017 TCs

http://curry-language.org/tools/cpm

6:6

Semantic Versioning Checking in a Declarative Package Manager

package to install, CPM uses the newest one. CPM also supports upgrading packages, i.e.,
to replace already installed packages by newer versions, if possible. The details of these
processes are outside the scope of this paper and are described in [25].

CPM adheres to the semantic versioning standard as sketched in Section 1. Thus, if
there are two versions of a package with identical major version numbers, they should have
compatible APIs, i.e., all public data types and operations in the exported modules* occurring
in both package versions must have identical type signatures and behavior, and new public
operations can be added only if the minor version number is increased. CPM supports the
automated checking of this principle by the diff command. For instance, to compare the
current package to a previous version 1.2.4 of the same package, a package developer can
invoke the command

> cpm diff 1.2.4

This starts a complex comparison process which is described in the next section. Depending
on the outcome of this API comparison, the current package can be added to the central
CPM index.

5 Semantic Versioning Checking

Semantic versioning checking is the process to compare the APIs of two versions of some
package and report possible violations according to the semantic versioning standard. In our
context, the API of a package is the set of all public data types and operations occurring
in the exported modules of this package. To accomplish this task, the semantic versioning
checker integrated in CPM performs the following steps:

1. The signatures of all API data types and operations occurring in both packages are
compared. If there are any syntactic differences and the major version numbers of the
packages are identical, a violation is reported.

2. If there is some API entity f occurring in version ap.bi.c; but not in version as.bs.ca,
then a violation is reported if a; and ao are identical but by is not greater than bs.

3. If the major version numbers of the packages are identical, then, for all API operations
occurring in both package versions, the behavior of both versions of such an operation is
compared (see below for more details about this comparison). If any difference is detected,
a violation is reported.

To compare the behavior of some operation f defined in versions v; and vo of some package,

the code of both packages is copied and all modules of these packages (and all packages

on which these packages depend) are renamed with the version number as a prefix. For
instance, a module Mod occurring in package version 1.2.3 is copied and renamed into module

V_1_2_3_Mod. Thus, if there is a unary operation f occurring in module Mod in package

versions 1.2.3 and 1.2.4 to compare, one can access both versions of this operation by the

qualified name V_1_2_3_Mod.f and V_1_2_4_Mod.f. After copying all modules, CPM generates

a new “comparison” module which contains the following code:

import qualified V_1_2_4_Mod

import qualified V_1_2_3_Mod

check_Mod_f x = V_1_2_3 Mod.f x <~> V_1_2 4 Mod.f x

4 A package specification can also declare a subset of all modules as “exported” so that only operations
in these modules can be used by other packages. If this is not explicitly declared, all modules of the
package are considered as exported.

M. Hanus

If this is passed to CurryCheck and the property is satisfied for all generated test inputs, we
have some confidence about the semantic equivalence of f in both packages (although full
confidence requires the proof of a more complex property [7, 9]). This approach works under
the following assumptions:

1. The input and result types of V_1_2_3_Mod.f and V_1_2_4_Mod.f are identical.

2. The operations to be compared are terminating on all input values.

Since these conditions might not be satisfied in practice, we develop (partial) solutions to it.

To see an example where the first condition is not satisfied, consider the following excerpt of
the library Day dealing with weekdays:

data Weekday = Monday | Tuesday | ... | Sunday

nextDay :: Weekday — Weekday

Since the type Weekday is locally defined, copying and renaming two versions of this library
for semantic versioning checking results in two different Weekday types so that both versions
of nextDay have incompatbile argument and result types. Thus, to generate a property to
compare both versions, CPM generates a bijective mapping between both renamed types:

t_Weekday :: V_1_2_4 _Day.Weekday — V_1_2_3_Day.Weekday
t_Weekday V_1_2_4_Day.Monday = V_1_2_3_Day.Monday
t_Weekday V_1_2_4_Day.Tuesday = V_1_2_3_Day.Tuesday

This mapping must exist (otherwise, semantic versioning is syntactically violated) and it
allows to compare both versions of nextDay with the following property:

check_Day_nextDay :: V_1_2_4 Day.Weekday — Prop
check_Day_nextDay x = t_Weekday (V_1_2_4_Day.nextDay x)
<~> V_1_2_3_Day.nextDay (t_Weekday x)

If our second assumption (termination of the operations to be compared) is not satisfied,
the behavior checker might not terminate. Obviously, this should be avoided. Therefore,

we analyze the operations to be compared before the comparison properties are generated.

As a simple approach, one can approximate the termination behavior of these operations,
e.g., by comparing the argument sizes in recursive calls [22]. For this purpose, we used
the Curry analysis framework CASS [18] to implement a simple termination analysis which
checks the arguments of direct recursive calls of an operation. If all these calls contain at
least one syntactically smaller argument (since we consider only algebraic data types for this
purpose, there are no infinite chains of size-decreasing values) and all dependent operations
are terminating, the operation is classified as terminating. We can use this analysis to
check only those operations which are definitely terminating and emit warnings about the
remaining unchecked operations. Although there are many opportunities to improve the
termination analyzer, it can only approximate the termination property. Therefore, CPM

also accepts specific pragmas where the programmer can annotate operations as terminating.

For instance, CPM will consider the following operation as terminating and, thus, includes it
in semantic versioning checking:

{-# TERMINATE -#}

mcCarthy :: Int — Int

mcCarthy n = if n<=100 then mcCarthy (mcCarthy (n+11))
else n-10

6:7

ICLP 2017 TCs

6:8

Semantic Versioning Checking in a Declarative Package Manager

Although this is reasonable to increase the number of operations considered in semantic
versioning checking, an important class of operations is still excluded: operations that are
intentionally non-terminating since they generate infinite data structures. A method to check
such operations will be presented in the next section.

6 Checking Non-terminating Operations

It is well-known that lazy evaluation is a useful programming feature to increase modularity
by separating producers and consumers of data [20]. Typically, data producers are operations
which generate infinite structures, like the following operations which generate infinite lists
of ascending integers starting from the argument:

ints :: Int — [Int] ints2 :: Int — [Int]
ints n = n : ints (n+1) ints2 n = n : ints2 (n+2)

Although these operations compute infinite lists of a different shape, this difference cannot
be detected by the property

checkInts x = ints x <~> ints2 x

due to its non-termination. Since such operations are actually used in non-strict languages,
semantic versioning checking should be supported for them in some way.

How can we state that ints and ints2 have a different behavior? If we consider the
computed result equivalence of operations introduced in Sect. 1, there is no difference since
neither ints nor ints2 evaluate to some value (an expression without operation symbols).
Therefore, a simple strategy like running CurryCheck with a time limit would not show any
difference in the values computed by ints nor ints2. We need another way to compare the
behavior of these operations. Thus, we use a more general notion of equivalence of operations
in non-strict functional logic languages proposed in [7], also called “contextual equivalence”
in [9]. It expresses the idea that two operations are equivalent if they can be replaced by
each other in any context without changing the produced values.

» Definition 2 (Equivalent operations [7]). Let fi, fo be operations of the same type. fi is
equivalent to fs iff, for any expression E; and value v, F, evaluates to v iff E5 evaluates to
v, where E5 is obtained from F; by replacing any occurrence of f; with fs.

Since equivalence in this sense implies computed result equivalence, counter-examples found
by the method introduced in Sect. 5 are also counter-examples to the equivalence of operations.
Moreover, ints and ints2 are not equivalent w.r.t. Def. 2: head (tail (ints 0)) evaluates to
1 but head (tail (ints2 0)) evaluates to 2. To detect such differences, we put the operations
into some context where only a finite outermost part is computed. In our example, we
define an operation that limits the length of a list. Since the length should be limited with
non-negative numbers, we define Peano numbers with the constructors zZ(ero) and s(uccessor):

data Nat = Z | S Nat

We limit potentially infinite lists to some length provided as a Nat argument:

limitList :: Nat — [Int] — [Int]
limitList Z _ =[]

limitList (S n) [] =[]

limitList (S n) (x:xs) = x : limitList n xs

Now we can check the observable equivalence of ints and ints2 by the following property:

M. Hanus 6:9

limitCheckInts n x = limitList n (ints x) <~> limitList n (ints2 x)

CurryCheck finds a counter-example for the input arguments n=(S (S 2)) and x=1.

Since the list length limit is an input parameter to the property, this property is sufficient
to detect observable differences between such infinite lists. A formal result about the
soundness and completeness of limited property checking will be presented below. Before we
have to discuss some conditions required for this method.

In order to ensure the termination of property checking, a depth restriction is not sufficient
in general. For instance, when checking the equivalence of the operations

loop n = loop (n+1) loop2 n = loop2 (n+2)

a depth limit would not avoid the non-terminating evaluations of loop and loop2. This is
due to the fact that the evaluation of these operations do not produce a constructor-rooted
term after finitely many steps. To exclude this kind of operations, we define the class of
productive operations (for the sake of simplicity, we consider unary operations only, but all
definitions and results can be extended to operations with more than one argument):

» Definition 3 (Productive operations). An operation f is called root-productive if, for all
values t, there is no infinite derivation

ft—)el—)€2—>"'

where each e; is operation-rooted. An operation f is called productive if it is root-productive
and, for all values t and derivations f ¢t —» e, all operations in e are productive.

For instance, loop and loop2 are not productive whereas ints and ints2 are productive (re-
member that “—” denotes the outermost reduction relation of Curry). Obviously, terminating
operations are productive but not vice versa.

If all operations in an expression are productive and we limit the result depth of evaluating
this expression, as done in the property 1imitCheckInts above, all evaluations are terminating.
Thus, if we restrict semantic versioning checking to productive operations and limit the depth
of the results, it is always terminating. To formalize this method, we define a limit operation
for some data type 7 as follows (for the sake of simplicity, we consider monomorphic data
types here; the extension to polymorphic type constructors will be discussed later):

» Definition 4 (Limit operation). Let 7 be some type defined by

data 7 = C; T11 ---Ting | ... | Ck Tkl - - - Thny

Then the limit operation for type 7 is defined as follows:

limit7 :: Nat — 7 — T

limit7T Z _ = cr -- ¢r is some ground value of type 7T
limit7 (S n) (Ci Z1...2Zp,) = Ci1 (limit7p n 1) ... (1imit7ip, D Zp,)

limit7 (S n) (Ck 21...%n,) = Cp (limit7er n 1) ... (1imit7Ten, D Ty,)

The operation limitList defined above is an example of a limit operation for lists of integers.
The definition assumes that there is always a ground value ¢, (i.e., a constructor term without
variables like a constant) of type 7. This assumption might not be satisfied for data types
that do not have finite values, as

ICLP 2017 TCs

6:10

Semantic Versioning Checking in a Declarative Package Manager

data ByteStream = Cons Byte ByteStream

In this case, there is no ground value which can be used as a result of 1imitByteStream Z _.
However, we could extend this data type with a new constant

data ByteStream = Cons Byte ByteStream | EmptyByteStream

and define

limitByteStream Z _ = EmptyByteStream

Note that this data type extension is similarly to the representation of failures when compiling
functional logic programs into purely functional programs [10] so that it does not change the
set of computed values.

The termination of semantic versioning checking with limit operations for productive
operations is a consequence of the following result:

» Proposition 5. Let 1imitr be a limit operation, n some Nat value, and e an expression of
type T which contains only productive operations. Then all derivations of (limitT n e) are
finite.

Now we can state the soundness and completeness of checking the equivalence of operations
with limit operations. Soundness means that every counter-example found by limited
equivalence checking shows that the considered operations are not equivalent:

» Proposition 6 (Soundness of limited equivalence checking). Let f1 and fa be operations of
type T — 7' and limitt’ be a limit operation for type T'. If there are values n,x,y such that
limitT' n (f1 x) evaluates to y but limitt’ n (f2 x) does not evaluate to y, then fi and fo are
not equivalent.

Completeness of equivalence checking with limit operations means that one can always find
a counter-example for non-equivalent operations (if we search long enough for appropriate
inputs). However, this is not the case in general due to partially defined operations. For
instance, consider a slightly modified variant of the ints operations where the generated lists
also include elements head [1 whose evaluation leads to a failure:

fints n = head[] : n : fints (n+1) fints2 n = head [] : n : fints2 (n+2)

Since the evaluation of (1imitList n fints) fails and does not produce any value for non-zero
n, a counter-example to the equivalence of fints and fints2 is not generated. Fortunately,
generators of infinite structures are in practical programs totally defined, i.e., reducible on
all ground constructor terms. For such operations, completeness is ensured:

» Proposition 7 (Completeness of limited equivalence checking). Let f1 and fo be totally
defined operations of type T — 7' and limitr’ be a limit operation for type . If f1 and fo
are not equivalent, then there are values n,x,y such that limitT' n (f1 x) evaluates to y but
Limitt' n (f2 *) does not evaluate to y.

7 Implementation of Semantic Versioning Checking

Based on the observations discussed so far, we can construct a fully automatic tool for
semantic versioning checking as follows. Instead of comparing all operations of two versions,
which might not terminate, we consider the following operations:

M. Hanus

1. Terminating operations: Since their evaluations are finite on all input values, one can
check their behavior on given inputs by comparing the sets of their result values (using
the property “<~>” of CurryCheck).

2. Productive operations: Since they might produce infinite data structures, their result
values cannot be fully compared. Instead, one can check their behavior on given inputs
by comparing the results obtained by applying some limit operation to them.

By Propositions 6 and 7, this is a sound and complete method for equivalence checking for

totally defined operations. The method is still applicable to partial operations but then it is

not ensured that counter-examples are found. On the other hand, every implementation has
to limit the number of test inputs to a finite set. Therefore, the theoretical incompleteness of
property testing for partially defined operation does not cause a problem in practice.

From a practical point of view, it is more relevant to ensure the termination of the
checking tool. This requires to approximate the termination and productivity properties of
operations and the generation of limit operations for data types. First, we consider the latter
(easier) requirement.

We have already seen the definition of limit operations for monomorphic types like list of
integers. This scheme can be extended to polymorphic data types: in this case, we pass limit

operations for the polymorphic argument types which are applied to polymorphic arguments.

For instance, a limit operation for polymorphic lists can be defined as follows:

limitList :: (Nat — a — a) — Nat — [a]l] — [al
limitList la Z _ =[]
limitList la (S n) [] (]
limitList la (S n) (x:xs) la n x : limitList la n xs

CPM generates limit operations according to this scheme for all result types of productive
operations.

Since termination and productivity are undecidable properties, we approximate these
properties with a program analysis and use the Curry analysis framework CASS [18] to
implement this analysis. For termination, the size-change principle [22] is a reasonable
framework. We implemented only a simplified version of it where all directly recursive
calls must have decreasing arguments. Although this is not as powerful as the general
framework, it is a good starting to implement our approach. Of course, one can make the
termination analysis more precise by implementing sophisticated termination methods or
use, if free variables occur in right-hand sides, specific termination methods for functional
logic programming [23].

The approximation of productivity is less explored than termination. A notion of
productivity has been investigated in the area of term rewriting systems (TRSs), e.g., [13, 30].
However, the focus is different there. Productivity in TRS means that there is some reduction
sequence that produces an outermost constructor in finitely many steps, whereas productivity
in our sense means that all outermost reduction sequences cannot go on forever without
producing outermost constructors, which is important to ensure the termination of our
checking procedure (see Prop. 5). This difference becomes relevant for non-deterministic
computations where it is not sufficient for our purpose that some computation branch
produces constructors. Furthermore, terminating operations are always productive in our
sense.

We approximate productivity by considering the top-level operation calls (tlo) of some
operation. For each operation f, the set tlo(f) is defined by (we denote by o a sequence of

6:11

ICLP 2017 TCs

6:12

Semantic Versioning Checking in a Declarative Package Manager

objects 01 ...0p):
tlo(f) = {g | 3 values £,5 and some derivation f = g 5}

Similarly, we define the set tlc(f) of top-level calls inside constructors as all operations
occurring outermost in a constructor derived from a call to f. For instance, tlo(ints) = {}
and tlc(ints) = {ints}. These sets can be over-approximated by a fixpoint computation on
the program rules. Then we classify an operation f as productive if

L. f&tlo(f),

2. all operations in tlo(f) and tlc(f) are productive, and

3. all other operations which might occur in derivations of f are terminating.

Hence, the operation ints is productive (note that no other operation occur in a derivation
of ints) whereas loop is not productive (since it violates the first requirement). Productive
operations occurring in arguments of other operations lead to non-productive operations. To
understand this strong requirement, consider the following operation (the standard operation
filter removes all elements in the second argument list which do not satisfy the predicate
provided in the first argument):

natsWith p = filter p (ints 0)

Although ints is productive, the productivity of natsWith depends on the value of its argument:
if the argument is the predicate (>0), it always produces outermost constructors, but if the
argument is the predicate (<0), it loops without producing any constructor. One might
improve our weak but safe approximation for particular cases, but our current approximation
is still useful in practice. If this approximation does not classify an operation as productive,
the package developer can add a pragma to tell CPM that an operation is productive. For
instance, one can compute the list of all prime numbers by the sieve of Eratosthenes, but
the productivity depends on the fact that there are infinitely many prime numbers. Hence,
Euclid would add the following pragma:

{-# PRODUCTIVE -#}
primes = sieve (ints 2)
where sieve (p:xs) = p : sieve (filter (\x — mod x p > 0) xs)

The effectiveness of the termination and productivity analysis depends on the programs
under consideration. In order to evaluate our approach, we applied our analysis to the
largest library available in Curry distributions: the standard prelude which contains the
definitions of operations that are available to any Curry program. The prelude defines 126
operations (plus 30 I/O actions which are excluded from automated property checking due
to the problem of guessing appropriate input values like file names, see also [17]). Our
analysis shows that 112 operations are terminating, 11 operations are productive, and the
remaining three operations might be non-terminating so that they should not be checked. A
closer look at the latter operations shows that one operation is actually non-terminating (the
prelude operation until which implements a loop which might not terminate), whereas two
other are actually terminating but use other productive operations so that their termination
cannot be shown by our criteria. Nevertheless, the precision is encouraging and there are
non-terminating but productive operations that can be checked thanks to our techniques.

Note that our approach to equivalence checking for non-terminating operations is also
applicable to non-deterministic operations. For instance, if we define lists of ascending
integers in a non-deterministic manner by

ndints n = n : (ndints (n+1) ? (n+1) : ndints (n+2))

M. Hanus

then our check with limit operations succeeds: although ndints non-deterministically evaluates
to several infinite lists, all of them are identical to the list computed by ints.

The inclusion of non-determinism is relevant for packages that use logic programming
features. Apart from this, it is also useful to support specification-based software development
as discussed in the following section.

If a previous version of the package contains a bug in the implementation of some
operation, it is meaningless to compare the operation of the current version against the
previous version. For this purpose, there is a pragma to tell CPM to drop the checking of
some operation:

{-# NOCOMPARE -#}
f ... = ...code with bug fixes. ..

If the current version is accepted to the CPM repository, this annotation should be removed.

8 Specification-based Software Development

The advantage of using functional logic languages like Curry as a wide-spectrum language for
software development is discussed in [7]. There it is shown that functional logic programming
features are useful to write comprehensive, executable specifications as well as more eflicient
implementations. Since specifications as well as implementations are written in the same
language, specifications can be used as run-time assertions for implementations or their
equivalence can be statically checked by property testing [17]. For this purpose, [7] proposed

to define the specification of some operation f by some operation with the name f’spec.

CurryCheck uses this name convention for generating and testing equivalence properties.
With the use of packages, one can structure this development process even better. The
idea is to write the specification of the operations to be developed in a first version of a

package, i.e., the package n.0.0 (where n is a major version number) contains the specification.

For instance, if we want to develop a package sort with sorting operations, we could define a
specification of sorting a list in version 1.0.0 by

sort (xs++[x,yl++ys) | x>y = sort (xs++[y,x]++ys)
sort’default xs = xs

In the first rule, a functional pattern is used to select some arbitrary pair of elements that
are swapped to improve the ordering of the list. The second default rule [8] is applicable
when the first rule cannot be applied, i.e., when all elements are in the correct order.

Note that this specification is non-deterministic, i.e., its execution might return a sorted
list more than one time. However, this is not relevant if we use it for semantic versioning
checking since there we compare the result sets of two versions of an operation. Thus, if
we implement a deterministic and more efficient sorting operation in version 1.0.1 of the
package sort, we can use the semantic versioning checker to automatically test the new
implementation against its specification.

9 Conclusions and Related Work

We have presented, to the best of our knowledge, the first semantic versioning checker that
is integrated in a software package manager. In order to make the checking process fully
automatic, it is necessary to ensure the termination of the checker. Therefore, the checker
analyzes the termination and productivity behavior of all operations and generates appropriate
properties that will be tested by CurryCheck. With these methods, most operations can be
automatically checked, even operations which produce infinite data structures. Since the

6:13

ICLP 2017 TCs

6:14

Semantic Versioning Checking in a Declarative Package Manager

checker can only approximate the run-time behavior of operations, a package developer can
also insert annotations to increase the number of checked operations.

We developed this framework for the functional logic programming language Curry, but
most of the ideas can also be transferred to other declarative (purely functional or purely logic)
languages. Nevertheless, the use of Curry also supports the specification-based development
of software since specifications can often be adequately expressed in a non-deterministic way.

Although semantic versioning is recommended in many package managers and used in
software projects, there are almost no tools to help the developer to check semantic properties
of different package versions. An exception is the Elm package manager® which performs
semantic versioning checks based on purely syntactic API comparisons. Thus, it can not
detect semantic differences when API types are unchanged, like replacing a decrement by an
increment operation.

We have demonstrated that declarative programming in combination with property testing
tools is a good basis for this task. Hence, all kinds of languages with property testing tools are
appropriate for this technique, e.g., Haskell with QuickCheck [12], Prolog with PrologCheck
[2], or Erlang with PropEr [26]. For a fully automatic tool that can be integrated into the
infrastructure of package managers, it is important to ensure the termination of the checking
process. For this purpose, one needs methods to ensure the termination of the programs
under consideration. For non-strict languages, one should also provide methods to compare
operations which produce infinite structures. For this purpose, we defined the notion of
productive operations and a method to approximate this property. One can find similar
notions in term rewriting systems (e.g., [30, 13]) but with a slightly different focus.

For future work, we plan to integrate better techniques for termination checking, since
this would enlarge the class of checked operations. Furthermore, it would be interesting to
add methods for equivalence checking without property testing. An obvious method is to
check the structural equivalence of program code. This is useful for operations which are
unchanged or only reformatted in two versions of a package. One might also use an abstract
semantics to infer equivalences in functional logic programs, as done in [9]. Another idea is
to combine property testing with theorem proving to develop and store proofs of properties.
Initial ideas are supported by CurryCheck [17] but their integration for semantic versioning
checking has to be explored.

—— References

1 E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational semantics for declarative
multi-paradigm languages. Journal of Symbolic Computation, 40(1):795-829, 2005.

2 C. Amaral, M. Florido, and V. Santos Costa. PrologCheck - property-based testing
in Prolog. In Proc. of the 12th International Symposium on Functional and Logic
Porgramming (FLOPS 2014), pages 1-17. Springer LNCS 8475, 2014. doi:10.1007/
978-3-319-07151-0_1.

3 S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of the ACM,
47(4):776-822, 2000. doi:10.1145/347476.347484.

4 S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings of
the International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’05), pages 6-22. Springer LNCS 3901, 2005.

5 S. Antoy and M. Hanus. Set functions for functional logic programming. In Proceedings of
the 11th ACM SIGPLAN International Conference on Principles and Practice of Declar-

5 http://elm-lang.org/

http://dx.doi.org/10.1007/978-3-319-07151-0_1
http://dx.doi.org/10.1007/978-3-319-07151-0_1
http://dx.doi.org/10.1145/347476.347484
http://elm-lang.org/

M. Hanus

10

11

12

13

14

15

16

17

18

19

20

21

ative Programming (PPDP’09), pages 73-82. ACM Press, 2009. doi:10.1145/1599410.
1599420.

S. Antoy and M. Hanus. Functional logic programming. Communications of the ACM,
53(4):74-85, 2010. doi:10.1145/1721654.1721675.

S. Antoy and M. Hanus. Contracts and specifications for functional logic program-
ming. In Proc. of the 1jth International Symposium on Practical Aspects of Declarat-
e Languages (PADL 2012), pages 33-47. Springer LNCS 7149, 2012. doi:10.1007/
978-3-642-27694-1_4.

S. Antoy and M. Hanus. Default rules for Curry. Theory and Practice of Logic Programming,
17(2):121-147, 2017. doi:10.1017/S1471068416000168.

G. Bacci, M. Comini, M.A. Felit, and A. Villanueva. Automatic synthesis of specifications
for first order Curry. In Principles and Practice of Declarative Programming (PPDP’12),
pages 25-34. ACM Press, 2012. doi:10.1145/2370776.2370781.

B. Brafiel, M. Hanus, B. Peeméller, and F. Reck. KiCS2: A new compiler from Curry
to Haskell. In Proc. of the 20th International Workshop on Functional and (Constraint)
Logic Programming (WFLP 2011), pages 1-18. Springer LNCS 6816, 2011. doi:10.1007/
978-3-642-22531-4_1.

J. Christiansen and S. Fischer. EasyCheck - test data for free. In Proc. of the 9th Inter-
national Symposium on Functional and Logic Programming (FLOPS 2008), pages 322-336.
Springer LNCS 4989, 2008.

K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random testing of Haskell
programs. In International Conference on Functional Programming (ICFP’00), pages 268
279. ACM Press, 2000.

J. Endrullis and D. Hendriks. Lazy productivity via termination. Theoretical Computer
Science, 412(28):3203-3225, 2011. doi:10.1016/j.tcs.2011.03.024.

J.C. Gonzéilez-Moreno, M.T. Hortala-Gonzélez, F.J. Lépez-Fraguas, and M. Rodriguez-
Artalejo. An approach to declarative programming based on a rewriting logic. Journal of
Logic Programming, 40:47-87, 1999.

M. Hanus. Declarative processing of semistructured web data. In Technical Communica-
tions of the 27th International Conference on Logic Programming, volume 11, pages 198—
208. Leibniz International Proceedings in Informatics (LIPIcs), 2011. doi:10.4230/LIPIcs.
ICLP.2011.198.

M. Hanus. Functional logic programming: From theory to Curry. In Programming Logics
- Essays in Memory of Harald Ganzinger, pages 123-168. Springer LNCS 7797, 2013. doi:
10.1007/978-3-642-37651-1_6.

M. Hanus. CurryCheck: Checking properties of Curry programs. In Proceedings of the 26th
International Symposium on Logic-Based Program Synthesis and Transformation (LOP-
STR 2016). Springer LNCS 10184, 2016.

M. Hanus and F. Skrlac. A modular and generic analysis server system for functional
logic programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial Evaluation
and Program Manipulation (PEPM’1/), pages 181-188. ACM Press, 2014. doi:10.1145/
2543728 .2543744.

M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Available at
http://www.curry-language.org, 2016.

J. Hughes. Why functional programming matters. In D.A. Turner, editor, Research Topics
in Functional Programming, pages 17-42. Addison Wesley, 1990.

P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic automated soft-
ware testing. In Proc. of the 1/th International Workshop on Implementation of Functional
Languages, pages 84-100. Springer LNCS 2670, 2003.

6:15

ICLP 2017 TCs

http://dx.doi.org/10.1145/1599410.1599420
http://dx.doi.org/10.1145/1599410.1599420
http://dx.doi.org/10.1145/1721654.1721675
http://dx.doi.org/10.1007/978-3-642-27694-1_4
http://dx.doi.org/10.1007/978-3-642-27694-1_4
http://dx.doi.org/10.1017/S1471068416000168
http://dx.doi.org/10.1145/2370776.2370781
http://dx.doi.org/10.1007/978-3-642-22531-4_1
http://dx.doi.org/10.1007/978-3-642-22531-4_1
http://dx.doi.org/10.1016/j.tcs.2011.03.024
http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.198
http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.198
http://dx.doi.org/10.1007/978-3-642-37651-1_6
http://dx.doi.org/10.1007/978-3-642-37651-1_6
http://dx.doi.org/10.1145/2543728.2543744
http://dx.doi.org/10.1145/2543728.2543744
http://www.curry-language.org

6:16

Semantic Versioning Checking in a Declarative Package Manager

22

23

24

25
26

27

28

29

30

C.S. Lee, N.D. Jones, and A.M. Ben-Amram. The size-change principle for program ter-
mination. In ACM Symposium on Principles of Programming Languages (POPL’01), pages
81-92, 2001.

N. Nishida and G. Vidal. Termination of narrowing via termination of rewriting. Applicable
Algebra in Engineering, Communication and Computing, 21(3):177-225, 2010. doi:10.
1007/s00200-010-0122-4.

T. Nordin and A.P. Tolmach. Modular lazy search for constraint satisfaction prob-
lems. Journal of Functional Programming, 11(5):557-587, 2001. doi:10.1017/
S0956796801004051.

J. Oberschweiber. A package manager for Curry. Master’s thesis, University of Kiel, 2016.
M. Papadakis and K. Sagonas. A PropEr integration of types and function specifications
with property-based testing. In Proc. of the 10th ACM SIGPLAN Workshop on Erlang,
pages 39-50, 2011. doi:10.1145/2034654.2034663.

S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cam-
bridge University Press, 2003.

U.S. Reddy. Narrowing as the operational semantics of functional languages. In Proc. IEEE
Internat. Symposium on Logic Programming, pages 138-151, Boston, 1985.

C. Runciman, M. Naylor, and F. Lindblad. SmallCheck and Lazy SmallCheck: automatic
exhaustive testing for small values. In Proc. of the 1st ACM SIGPLAN Symposium on
Haskell, pages 37-48. ACM Press, 2008.

H. Zantema and M. Raffelsieper. Proving productivity in infinite data structures. In
Proc. 21st International Conference on Rewriting Techniques and Applications (RTA 2010),
volume 6 of LIPIcs, pages 401-416. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2010. doi:10.4230/LIPIcs.RTA.2010.401.

http://dx.doi.org/10.1007/s00200-010-0122-4
http://dx.doi.org/10.1007/s00200-010-0122-4
http://dx.doi.org/10.1017/S0956796801004051
http://dx.doi.org/10.1017/S0956796801004051
http://dx.doi.org/10.1145/2034654.2034663
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.401

Understanding Restaurant Stories Using an ASP
Theory of Intentions

Daniela Inclezan!, Qinglin Zhang?, Marcello Balduccini®

Ankush Israney*

, and

1 Miami University, Oxford OH, USA
inclezd@miamioh.edu

2 Miami University, Oxford OH, USA
zhangg7@miamioh.edu

3 Drexel University, Philadelphia PA, USA
mb3368@drexel.edu

4 Drexel University, Philadelphia PA, USA
avi26@drexel.edu

—— Abstract

The paper describes an application of logic programming to story understanding. Substantial
work in this direction has been done by Erik Mueller, who focused on texts about stereotypical
activities (or scripts), in particular restaurant stories. His system performed well, but could not
understand texts describing exceptional scenarios. We propose addressing this problem by using
a theory of intentions developed by Blount, Gelfond, and Balduccini. We present a methodology
in which we model scripts as activities and employ the concept of an intentional agent to reason
about both normal and exceptional scenarios.

1998 ACM Subject Classification 1.2.4 Knowledge Representation Formalisms and Methods
Keywords and phrases answer set programming, story understanding, theory of intentions

Digital Object Identifier 10.4230/0OASIcs.ICLP.2017.7

1 Overview

This paper describes an application of Answer Set Prolog [3] and its extension [1] to the
understanding of narratives. According to Schank and Abelson [7], stories frequently narrate
episodes related to stereotypical activities — sequences of actions normally performed in a
certain order by one or more actors, according to cultural conventions. An example of a
stereotypical activity is dining in a restaurant with table service. A story mentioning a
stereotypical activity is not required to state explicitly all of the actions that are part of it,
as it is assumed that readers are capable of filling in the blanks with their own commonsense
knowledge about the activity [7]. Consider, for instance, the following narrative:

» Example 1. Nicole went to a vegetarian restaurant. She ordered lentil soup. The waitress
set the soup in the middle of the table. Nicole enjoyed the soup. She left the restaurant.

Norms indicate that customers do not seat themselves when there is table service, but rather
wait to be seated by a waiter; they are also expected to pay for their meal. Readers are
supposed to know these conventions, and thus such information is missing from the text.
Schank and Abelson [7] introduced the concept of a script to model stereotypical activities:
a fized sequence of actions that are always executed in a specific order. Following these

ideas, Erik Mueller conducted substantial work on narratives about stereotypical activities.
© Daniela Inclezan, Qinglin Zhang, Marcello Balduccini, and Ankush Israney;
37 licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 7; pp. 7:1-7:4

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

7:2

Understanding Restaurant Stories Using an ASP Theory of Intentions

He focused on restaurant stories [5] and news about terrorist incidents [4]. In the former,
Mueller developed a system that can take as an input a text about a restaurant episode,
process it using information extraction techniques, and demonstrate an understanding of
the narrative by answering questions whose answers are not necessarily explicitly stated in
the text. The system had a good accuracy but the rigidity of scripts did not allow for the
correct processing of scenarios describing exceptions (e.g., waiter bringing a wrong dish). To
be able to handle such scenarios, all possible exceptions of a script would have to be foreseen
and encoded as new scripts by a knowledge engineer, which is an important hurdle.

In this paper, we propose a new representation methodology and reasoning approach, which
makes it possible to answer, in both normal and exception scenarios, questions about events
that did or did not take place. We overcome limitations in Mueller’s work by abandoning
the rigid script-based approach. Instead, we view characters in stories about stereotypical
activities (e.g., the customer, waiter, and cook in a restaurant scenario), as BDI agents that
intend to perform some actions in order to achieve certain goals, but may not always need
to/ be able to perform these actions as soon as intended. It was instrumental for our purpose
to use a theory of intentions developed by Blount et al. [2] that introduces the concept
of an activity — a triple consisting of the activity’s name, a goal, and the plan aimed at
achieving it. An activity (or rather its plan) may be divided into sub-activities with their
own sub-goals. In our work, each character role that is relevant to a stereotypical activity
had its own activity. For instance, for the customer role in a restaurant episode, we created
an activity named ¢_act(C, R, W, F'), read as “customer C' goes to restaurant R where s/he
communicates to waiter W an order for food F.” The plan for this activity is the sequence

[enter(C,R), lead_to(W,C,t), sit(C), c_subact_1(C,F,W), eat(C,F),
c_subact_2(C, W), stand_up(C'), move(C,t,entrance), leave(C) |

in which t stands for the customer’s table. The activity’s goal is satiated_and_out(C).
Modeling the customer’s activity as a nested one with sub-activities allowed reasoning about
a larger number of exceptional scenarios compared to its formalization as a flat activity, for
instance Example 2. We introduced two sub-activities: ¢_subact_1(C, F,W) — “C consults
the menu and communicates an order for food F' to W,” and ¢__subact_2(C, W) — “C asks W
for the bill and pays for it.” In Example 2, Nicole does not execute the actions in ¢_subact_ 2
as the goal of this sub-activity, being done with payment, is already satisfied as the meal is
on the house. Instead, she performs the next action in the overall activity: stand_ up.

» Example 2 (Serendipity). Nicole went to a vegetarian restaurant. She ordered lentil soup.
When the waitress brought her the soup, she told her that it was on the house.

Activities were encoded in Answer Set Prolog via rules like:

activity(c_act(C, R,W, F)) < customer(C), restaurant(R), waiter(W), food(F).
comp(c_act(C,R,W, F), 1, enter(C, R)) < activity(c_act(C, R, W, F)).
length(c_act(C,R,W, F), 9) < activity(c_act(C, R, W, F)).

goal(c_act(C,R, W, F), satiated _and_out(C)) < activity(c_act(C, R, W, F)).

Blount et al. also introduced an architecture (AZ.A) of an intentional agent, an agent
that obeys his intentions. According to AZA, at each time step, the agent observes the world,
explains observations incompatible with its expectations (diagnosis), and determines what
action to execute next (planning). AZ.A models the control strategy of an agent capable
of reasoning about a wide variety of scenarios, including the serendipitous achievement of
its goal by exogenous actions as in Example 2 or the realization that an ongoing activity is

D. Inclezan, Q. Zhang, M. Balduccini, and A. Israney

futile. In contrast with AZ.A, which encodes an agent’s reasoning process about its own goals,
intentions, and ways to achieve them, we represented the reasoning process of a (cautious)
reader that learns about the actions of an intentional agent from a narrative. For instance,
while an intelligent agent creates or selects its own activity to achieve a goal, in a narrative
context, the reader learns about the activity that was selected by the agent from the text.
As a consequence, we adapted parts of the AZA architecture to suit our purposes.

Stories about stereotypical activities do not mention all actions that occur, as they
rely on the reader’s background knowledge. As a result, the reader needs to fill the story
time line with new time points (and thus construct what we call a reasoning time line) to
accommodate physical and mental actions not mentioned in the text. We complemented the
reasoning module adapted from AZ.A with reasoning rules below, in which we denote story
vs. reasoning time steps by predicates story_ step and step, resp., and introduce predicate
map(s, i) to say that story step s is mapped into reasoning time step i:

{map(S,I) : step(I)}1 <+ story_step(S).

—-map(S,I) «+ map(S1,1), S<S1, I>1, story_step(S), step(I).
Observations about the occurrence of actions and values of fluents mentioned in the text,
recorded using predicates st__hpd and st_ obs, are translated into observations on the reason-
ing time line via rules of the type:

hpd(A,V,I) « st_hpd(A,V,S), map(S,I).

A reader may be asked questions about the story. We support yes/no, when, who,
and where questions related to events. A question is represented by an atom question(q),
where ¢ is a term encoding the question, e.g., query_occur(A) (“did action A occur?”),
query_when(A) (“when did A occur?”). Answers are encoded by atoms answer(q, a), where
a is the answer. For example, answer(occur(pay(nicole,b)), yes) states that the answer to
question “Did Nicole pay the bill?” is yes. A positive answer about the occurrence of a
specific event is encoded by the rule:

answer(query_occur(A), yes) < physical_action(A), step(I), occurs(A,T).
Answering a definite “no" requires ensuring that the action did not happen at any step:
maybe(A) < physical__action(A), step(I), not —occurs(A, I).
answer(query_occur(A), no) < physical__action(A), step(I),
not answer(query__occur(A), yes), not maybe(A).
While we exemplified and tested our methodology on restaurant scenarios, our approach

is equally applicable to other stereotypical activities. The main task for a new stereotypical
activity is defining the different activities, including goals, for each relevant character role.
Part of this process can be automated by starting from a rigid and centralized script learned
in an unsupervised manner (e.g., [6]). Determining (sub-)goals and splitting activities into
sub-activities is a more challenging problem, which deserves substantial attention.

—— References

1 Marcello Balduccini and Michael Gelfond. Logic Programs with Consistency-Restoring
Rules. In Proceedings of Commonsense-03, pages 9-18. AAAI Press, 2003.

2 Justin Blount, Michael Gelfond, and Marcello Balduccini. A theory of intentions for intel-
ligent agents. In Proceedings of LPNMR 2015, pages 134-142, 2015.

3 Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing, 9(3/4):365-386, 1991.

4 Erik T. Mueller. Understanding script-based stories using commonsense reasoning. Cogni-
tive Systems Research, 5(4):307-340, 2004.
5 Erik T. Mueller. Modelling space and time in narratives about restaurants. Literary and

Linguistic Computing, 22(1):67-84, 2007.

7:3

ICLP 2017 TCs

7:4 Understanding Restaurant Stories Using an ASP Theory of Intentions

6 Michaela Regneri, Alexander Koller, and Manfred Pinkal. Learning script knowledge with
web experiments. In Proceedings of the ACL ’10, pages 979-988, 2010.

7 R. C. Schank and R. P. Abelson. Scripts, Plans, Goals, and Understanding: An Inquiry
into Human Knowledge Structures. Lawrence Erlbaum, 1977.

Learning Effect Axioms via Probabilistic Logic
Programming

Rolf Schwitter

Department of Computing, Macquarie University, Sydney NSW 2109, Australia
Rolf.Schwitter@mqg.edu.au

—— Abstract

Events have effects on properties of the world; they initiate or terminate these properties at a
given point in time. Reasoning about events and their effects comes naturally to us and appears
to be simple, but it is actually quite difficult for a machine to work out the relationships between
events and their effects. Traditionally, effect axioms are assumed to be given for a particular
domain and are then used for event recognition. We show how we can automatically learn the
structure of effect axioms from example interpretations in the form of short dialogue sequences
and use the resulting axioms in a probabilistic version of the Event Calculus for query answering.
Our approach is novel, since it can deal with uncertainty in the recognition of events as well as
with uncertainty in the relationship between events and their effects. The suggested probabilistic
Event Calculus dialect directly subsumes the logic-based dialect and can be used for exact as

well as a for inexact inference.
1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases Effect Axioms, Event Calculus, Event Recognition, Probabilistic Logic
Programming, Reasoning under Uncertainty

Digital Object Identifier 10.4230/0ASIcs.ICLP.2017.8

1 Introduction

The Event Calculus [9] is a logic language for representing events and their effects and
provides a logical foundation for a number of reasoning tasks [13, 24]. Over the years,
different versions of the Event Calculus have been successfully used in various application
domains; amongst them for temporal database updates, for robot perception and for natural
language understanding [12, 13]. However, many event recognition scenarios exhibit a
significant amount of uncertainty, since a system may not be able to detect all events reliably
and the effects of events may not always be known in advance. In order to deal with
uncertainty, we have to extend the logic-based Event Calculus with probabilistic reasoning
capabilities and try to learn the effects of events from example interpretations. Effect axioms
are important in the context of the Event Calculus, since they specify which properties are
initiated or terminated when a particular event occurs at a given point in time.

Recently, the combination of logic programming and probability under the distribution
semantics [5, 23] has proven to be useful for building rich representations of domains consisting
of individuals and uncertain relations between these individuals. These representations can
be learned in an efficient way and used to carry out inference. The distribution semantics
underlies a number of probabilistic logic languages such as PRISM [23], Independent Choice
Logic [14, 15], Logic Programs with Annotated Disjunctions [27], P-log [1], and ProbLog [4, 6].
Since these languages have the same formal foundation, there exist linear transformations
between them that preserve their semantics [20].

© Rolf Schwitter;
37 licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 8; pp. 8:1-8:15

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

8:2

Learning Effect Axioms via Probabilistic Logic Programming

In this paper, we investigate how the language of Logic Programs with Annotated
Disjunctions (LPAD) and its implementation in the cplint framework of programs for
reasoning with probabilistic logic programs [22] can be used to learn the structure of
probabilistic effect axioms for a dialect of the Event Calculus.

Recently, Skarlatidis and colleagues introduced two probabilistic dialects of the Event
Calculus for event recognition, in particular for the detection of short-term activities in video
frames. Their first dialect, Prob-EC [25], is based on probabilistic logic programming [§]
and handles noise in the input data. Input events are assumed to be independent and are
associated with detection probabilities. Their second dialect, MLN-EC [26], is based on
Markov logic networks [16] and does not make any independence assumption of input events.
Our probabilistic dialect of the Event Calculus is related to Prob-EC in the sense that it
is based on the distribution semantics. However, we focus in our work not only on the
processing of uncertain events but also on the learning of the structure and parameters
of effect axioms from example interpretations, an issue that has not been addressed by
Skarlatidis and colleagues.

The rest of this paper is structured as follows: In Section 2, we introduce our dialect
of the logic-based Event Calculus, followed by a brief introduction to probabilistic logic
programming in Section 3. In Section 4, we reformulate the logic-based Event Calculus as
a probabilistic logic program where the events and the effect axioms are annotated with
probabilities. In Section 5, we discuss how we can learn the structure of these effect axioms
from positive and negative interpretations that are available in the form of short dialogue
sequences. In Section 6, we present our experiments and show that the proposed probabilistic
dialect is an elaboration-tolerant version of the logic-based Event Calculus. In Section 7, we
summarise the advantages of our approach and present our conclusion.

2 The Event Calculus

The original logic-based Event Calculus as introduced by [9] is a logic programming formalism
for representing the effects of events on properties. The basic ontology of the Event Calculus
consists of events, fluents, and time points. An event represents an action that may occur
in the world; for example, a person who is arriving in the kitchen. A fluent represents a
time-varying property that might be the effect of an event; for example, a person who is
located in the kitchen (after arriving in the kitchen). A time point represents an instant
of time and indicates when an event happens or when a fluent holds; for example, Sunday,
19-Feb-17, 23:59:00, UTC-12!. In the following discussion we introduce the axioms of our
dialect of the Simple Event Calculus (SEC) [24]. These axioms are implemented as Prolog
clauses and displayed in Listing 1.

Listing 1 The Simple Event Calculus (SEC)

holds_at (fluent:F, tp:T) :- % SEC1
initially (fluent:F),
\+ clipped(tp:0, fluent:F, tp:T).

holds_at (fluent:F, tp:T2) :- % SEC2
initiated_at (fluent:F, tp:T1),
T1 < T2,

\+ clipped(tp:T1, fluent:F, tp:T2).

! In the following we use integers instead of POSIX time to save space in the paper.

R. Schwitter

clipped(tp:T1, fluent:F, tp:T3) :- % SEC3
terminated_at (fluent:F, tp:T2),
TL < T2, T2 < T3.

initiated_at ([fluent:located, pers:A, loc:B], tp:C) :- % EAX1
happens_at ([event:arrive, pers:A, loc:B], tp:C).

terminated_at ([fluent:located, pers:A, loc:D], tp:C) :- % EAX2
happens_at ([event:arrive, pers:A, loc:B], tp:C),
B \= D.
initially ([fluent:located, pers:bob, loc:garden]). % SCO01
happens_at ([event:arrive, pers:bob, loc:kitchen], tp:3). % SC02
happens_at ([event:arrive, pers:bob, loc:garage], tp:5). % SCO03

Axiom SEC1 specifies that a fluent F initially holds at time point T1, if it held at time
point 0, and has not been terminated between these two time points. Axiom SEC2 specifies
that a fluent F holds at time point T2, if the fluent has been initiated at some time point T1,
which is before T2 and has not been clipped between T1 and T2. Axiom SEC3 states that a
fluent F has been clipped between time point T1 and T3, if the fluent has been terminated
at a time point T2 and this time point is between T1 and T3. Note that according to these
domain-independent axioms (SEC1-SEC3), a fluent does not hold at the time of the event that
initiates it but at the time of the event that terminates it.

Events have effects on properties of the world; they initiate and terminate these properties

at a given point in time. These effects can be described by domain-dependent effect axioms.

For example, the positive effect axiom EAX1 in Listing 1 specifies that the fluent with the
name located involving a person A and a location B is initiated after the time point C, if an
event occurs at a time point C where the person A arrives at the location B. The negative
effect axiom EAX2 in Listing 1 specifies that the fluent with the name located involving a
person A and a location D is terminated after the time point C, if an event occurs at a time
point C where the person A arrives at a location B that is different from location D. Finally, a
scenario (SC01-SC03) is required where the initial state of the world (sc01) is described as
well as a sequence of events (SC02 and SC03) that occur at subsequent time points.

This setting allows us to investigate which fluents hold at a given point in time. The
logic-based SEC assumes that the effect axioms are known in advance and that there is no

uncertainty in the relationships between events and effects and in the recognition of events.

In the following, we assume that the effect axioms are unknown and need to be learned
first from example interpretations and that the recognition of events that occur in the real
world can be noisy. During the learning process, the structure of the effect axioms will be
generated automatically and the resulting axioms will be annotated with probabilities. These
probabilistic effect axioms can then be processed with a version of the SEC that is based on
a probabilistic logic programming language which supports probabilistic reasoning.

3 Probabilistic Logic Programs (PLP)

One of most successful approaches to Probabilistic Logic Programs (PLP) is based on the
distribution semantics [23]. Under the distribution semantics a probabilistic logic program
defines a probability distribution over a set of normal logic programs (called worlds). The

8:3

ICLP 2017 TCs

8:4

Learning Effect Axioms via Probabilistic Logic Programming

probability of a query is then obtained from the joint distribution of the query and the worlds
by marginalization.

While the distribution semantics underlies a number of different probabilistic languages
(see [20] for an overview), Logic Programs with Annotated Disjunctions (LPAD) [27] offer the
most general syntax of this family of languages. An LPAD P consists of a set of annotated
disjunctive clauses C; of the form:

hi:ag;...;h, i ap < by,..., by.
where h; are logical atoms, «; are real numbers, each of them standing for a probability in
the interval [0, 1] such that the sum of all «; is 1, and b; are logical literals (incl. negation as
failure). The set of elements h; : ; form the head of a clause and the set of elements b; the
body. Disjunction in the head is represented by a semicolon and the atoms in the head a
separated by a colon from their probabilities. Note that if n = 1 and a; = 1, then a clause
corresponds to a normal clause and the annotation can be omitted. Note also that if the
sum of all «; is smaller than 1, then an additional disjunct null is assumed with probability
1 — sum(c;). If the body of a clause is empty, then it can be omitted.

The semantics of an LPAD P is defined via its grounding. The grounding of P is
obtained by replacing the variables of each clause C' with the terms of the Herbrand universe
Hy (P) [10]. Each of these ground clauses represents a probabilistic choice between a number
of non-disjunctive clauses. By selecting a head atom for each ground clause of an LPAD, we
get an instance of a normal logic program. Each selection has its own probability assigned
to it and the product of these probabilities induces the probability of a program instance,
assuming independence among the choices made for each clause. All instances of an LPAD
together define a probability distribution over a set of interpretations of the program. The
probability of a particular interpretation I is then the sum of the probability of all instances
for which I is a model (see [27] for details).

4 The Simple Event Calculus as a PLP

We can reformulate the logic-based SEC as a PLP and process it with the help of the PITA
library [18] that runs in SWI Prolog?. PITA computes the probability of a query from an
LPAD program by transforming the program into a normal program that contains calls to
manipulate Binary Decision Diagrams as auxiliary data structures and is evaluated by Prolog.
PITA was compared with ProbLog [4] and found to be fast and scalable [17]. Alternatively,
we can use MCINTYRE [19], if exact inference in PITA gets too expensive. MCINTYRE
performs approximate inference using Monte Carlo sampling. Both PITA and MCINTYRE
are part of the cplint framework® for reasoning with probabilistic logic programs.

In contrast to the logic-based dialect of the SEC, we have to load the pita (or mcintyre)
library first, initialise it with a corresponding directive and enclose the LPAD clauses for the
SEC in additional directives that mark the start and end of the program as illustrated in
Listing 2:

Listing 2 PITA Initialisation

:- use_module (library(pita)).
:- pita.

2 http://www.swi-prolog.org
3 https://github.com /friguzzi/cplint

R. Schwitter

:— begin_1lpad.

% The SEC with probabilistic events and probabilistic effect
% axioms goes here.

:- end_lpad.

The domain-independent clauses for the probabilistic version of the SEC are the same
(SEC1-SEC3) as those of the logic-based version introduced in Listing 1. The probabilistic
effect axioms that we are going to learn (see Section 5) have the same basic form as the
axioms EAX1 and EAX2, but they are additionally annotated with probabilities and contain
special conditions in the body of the clauses to guarantee that all variables in the head of a
clause are range restricted; otherwise the distribution semantics is not well-defined for an
LPAD program. In our case, the annotated effect axioms look as illustrated in Listing 3:

Listing 3 Effect Axioms with Probabilities

initiated_at ([fluent:located, pers:A, loc:B], tp:C):0.66;'':0.34 :-
happens_at ([event:arrive, pers:A, loc:B], tp:C).

terminated_at ([fluent:located, pers:A, loc:D], tp:C):0.66;"'':0.34 :-
happens_at ([event:arrive, pers:A, loc:B], tp:C),
location([loc:D]).

Here, the value 0.66 stands for the probability of the clause to be true and the value 0.34
for the probability of the clause to be false. Note that the predicate location/1 in the body
of the second clause restricts the range of the variable D in the head of the clause. That
means we have to make sure — as we will see in Section 5.2 — that facts for the locations
are available in the background knowledge for the LPAD program that is used to learn the
structure of these axioms.

In order to deal with uncertainty in the initial setting and the recognition of events, we
can also add probabilities to the facts that describe the scenario (S€01-Sc03); for example, to
the facts sC02 and sC03 that describe the events as shown in Listing 4:

Listing 4 Events with Probabilities

happens_at ([event:arrive, pers:bob, loc:kitchen], tp:3):0.95;'"':0.05.
happens_at ([event:arrive, pers:bob, loc:garage], tp:5):0.99;'':0.01.

If the annotation of the probability is omitted in a clause, then its value is implicitly 1. As
we will see in Section 6, the probabilistic version of the SEC without annotated probabilities
behaves exactly like the logic-based version of the SEC. In this respect, the probabilistic
version of the SEC can be considered as an elaboration-tolerant extension of the logic-based
version, since all modifications that are required for building the resulting probabilistic logic
program are additive.

5 Learning the Structure of Effect Axioms

To learn the structure of effect axioms from positive and negative interpretations, we use
a separate LPAD program together with SLIPCOVER [3], an algorithm for learning the
structure and parameters of probabilistic logic programs. SLIPCOVER takes as input a set

of example interpretations and a language bias that indicates which predicates are target.

These interpretations must contain positive and negative examples for all predicates that

8:5

ICLP 2017 TCs

8:6

Learning Effect Axioms via Probabilistic Logic Programming

may appear in the head of a clause. SLIPCOVER learns the structure of effect axioms
by first performing a beam search in the space of probabilistic clauses and then a greedy
search in the space of theories. The first search step starts from a set of bottom clauses,
aims at finding a set of promising clauses, and looks for good refinements of these clauses in
terms of the log-likelihood of the data. The second search step starts with an empty theory
and tries to add each clause for a target predicate to that theory. After each addition, the
log-likelihood of the data is computed as the score of the new theory. If the value of the
new theory is better than the value of the previous theory, then the clause is kept in the
theory, otherwise the clause is discarded. Finally, SLIPCOVER completes a theory consisting
of target predicates by adding the body predicates to the clauses and performs parameter
learning on the resulting theory (for details see [3]).

Note that the refinements during this process are scored by estimating the log-likelihood
of the data by running a small number of iterations of EMBLEM |[2], an implementation of
expectation-maximization for learning parameters that computes expectations directly on
Binary Decision Diagrams.

Listing 5 LPAD Program for Learning the Structure of Effect Axioms with SLIPCOVER

:- use_module (library(slipcover)). ho1.1
C= @@ % 1.2
:- set_sc(max_var, 4). % 1.3
:- set_sc(megaex_bottom, 3). % 1.4
:- set_sc(depth_bound, false). % 1.5
:- set_sc(neg_ex, given). % 1.6
:- begin_bg. h 2.1
location([loc: bathroom]). % 2.2
location([loc: kitchenl]). % 2.3
location([loc: living_room]). % 2.4
:- end_bg. h 2.5
output (initiated_at/2). % 3.1
input (happens_at/2). % 3.2
modeh (*, initiated_at([fluent: -#fl, pers: +pers, loc: +loc], % 3.3
tp: +tp)).
modeb (*, happens_at ([event: -#ev, pers: +pers, loc: +locl], % 3.4
tp: +tp)).
determination(initiated_at/2, happens_at/2). % 3.5
initiated_at (ID, [fluent:F2, pers:P, loc:L2], tp:T2) :- % 4.1
holds_at (ID, [fluent:_F1, pers:P, loc:_L1], tp:T1),
happens_at (ID, [event:_E, pers:P, loc:L2], tp:T2),
T1 < T2,
holds_at (ID, [fluent:F2, pers:P, loc:L2], tp:T3),
T2 < T3.
neg(initiated_at (ID, [fluent:F2, pers:P, loc:_L], tp:T2)) :- % 4.2

holds_at (ID, [fluent:_F1, pers:P, loc:_L1], tp:T1),
happens_at (ID, [event:_E, pers:P, loc:L2], tp:T2),

T1 < T2,

neg (holds_at (ID, [fluent:F2, pers:P, loc:L2], tp:T3)),
T2 < T3.

R. Schwitter

begin (model (£1)). % 5.1
holds_at ([fluent:located, pers:mary, loc:bathroom], tp:0).
happens_at ([event:arrive, pers:mary, loc:kitchen], tp:1).
holds_at ([fluent:located, pers:mary, loc:kitchen], tp:2).

end (model (£1)).

begin (model (£2)) . % 5.2
holds_at ([fluent:located, pers:emma, loc:living_room], tp:3).
happens_at ([event:arrive, pers:emma, loc:bathroom], tp:4).
neg(holds_at ([fluent:located, pers:emma, loc:bathroom], tp:5)).

end (model (£2)) .

begin (model (£3)) . % 5.3
holds_at ([fluent:located, pers:sue, loc:kitchen], tp:6).
happens_at ([event:arrive, pers:sue, loc:living_room], tp:7).
holds_at ([fluent:located, pers:sue, loc:living_room], tp:8).

end (model (£3)) .

fold(train, [f1, f2, £3]). % 5.4

learn_effect_axioms(C) :- % 5.5
induce ([train], C).

In our case, the LPAD program for structure learning consists of five parts: (1) a preamble,
(2) background knowledge for type definitions, (3) language bias information, (4) clauses for
finding examples, and (5) example interpretations (= models). In the following subsections,
we discuss these parts in more detail.

5.1 Preamble

In the preamble of the program, the SLIPCOVER library is loaded (1.1) and initialised
(1.2), and the relevant parameters are set (1.3-1.6). In our case, these parameters are: the
maximum number of distinct variables that can occur in a clause to be learned (1.3); the
number of examples on which to build the bottom clauses (1.4); the depth of the derivation
which is unbound in our case, and therefore false (1.5); and the availability of negative
examples in the interpretations (1.6).

5.2 Background Knowledge

The background knowledge specifies the kind of knowledge that is valid for all interpretations

of a clause. This knowledge is enclosed in a begin directive (2.1) and an end directive (2.5).

In our case, it contains type definitions for different locations (2.2-2.4) that are required
to restrict the range of variables in the clauses to be learned. These are predicates that
may be used for constructing the body of a clause. As we will see in Section 5.5, these type
definitions are automatically derived from the same dialogue sequences that are used to
construct the example interpretations.

5.3 Language Bias Information

The language bias specifies the accepted structure of the clauses to be learned and helps
to guide the construction of the refinements for the resulting theory. The language bias is

8:7

ICLP 2017 TCs

8:8

Learning Effect Axioms via Probabilistic Logic Programming

expressed in terms of: (a) predicate declarations, (b) mode declarations, (c) type specifications,

and (d) determination statements.

(a) Predicate declarations take the form of output predicates (3.1) or input predicates
(3.2). Output predicates are declared as output/1 and specify those predicates whose
atoms one intends to predict. Input predicates are declared as input/1 and specify those
predicates whose atoms one is not interested in predicting but which should occur in
the body of a hypothesized clause.

(b) Mode declarations are used to guide the process of constructing a generalisation from
example interpretations and to constrain the search space for the resulting clauses. We
distinguish between head mode declarations (3.3) and body mode declarations (3.4). A
head mode declaration (modeh(n, atom)) specifies the atoms that can occur in the head
of a clause and a body mode declaration (modeb(n, atom)) those atoms that can occur
in the body of a clause. The argument n, the recall, is either an integer (n > 1) or an
asterisk (*) and indicates how many atoms for the predicate specification are retained
in the bottom clause during a saturation step. The asterisk stands for all those atoms
that are found; otherwise the indicated number of atoms is randomly chosen.

(c) Type specifications have, in our case, the form +type, -type, or -#type, and specify
that the argument should be either an input variable (+) of that type, an output variable
(-) of that type, or a constant (-#) of that type. For example, the argument of the
form -#£1 in the head mode declaration of (3.3) stands for the name of a fluent, and the
argument of the form -#ev in the body mode declaration of (3.4) stands for the name of
an event, and symbols prefixed with + and - for input and output variables.

(d) Determination statements such as (3.5) are required by SLIPCOVER and declare
which predicates can occur in the body of a particular clause.

In addition to the specification of the language bias for the positive effect axiom
(initiated_at/2) in Listing 5, we present below in Listing 6 the specification for the negative
effect axiom (terminated_at/2), since the successful construction of this negative effect axiom
depends on some important additions:

Listing 6 Negative Effect Axiom

output (terminated_at/2).
input (happens_at/2)

modeh (*, terminated_at ([fluent: -#fl, pers: +pers, loc: +loc2],

tp: +tp)).
modeb (*, happens_at ([event: -#ev, pers: +pers, loc: -locl], tp: +tp)).
modeb (*, location([loc: +1loc2])).

determination(terminated_at/2, happens_at/2).
determination(terminated_at/2, location/1).

lookahead_cons_var (location([loc:_L2]),
[happens_at ([event:_E, pers:_P, loc:_L1], tp:_T)]1).
lookahead_cons_var (happens_at ([event:_E, pers:_P, loc:_L1], tp:_T),
[location([loc:_L2]1)1).

Here, the two determination statements indicate that the predicate happens_at/2 as well
as the predicate location/1 can appear in the body of the negative effect axiom. Additionally,
we have to specify a lookahead that enforces that whenever one of these two predicates is
added to the body of the clause during refinement, then also the other predicate needs to be
added to that body.

R. Schwitter

5.4 Program Clauses for Finding Examples

The program clauses for finding examples (4.1 + 4.2) in Listing 5 contain those predicates
that are used during search. These clauses are not part of the background knowledge
and therefore contain an additional argument (ID) that is used to identify the relevant
example interpretations (models). We encode the search for finding examples intensionally
as the clauses in Listing 5 illustrate. This representation completes the interpretations by
generating positive and negative examples for the positive effect axiom (initiated_at/2) using
the predefined predicate neg/1 in the clause (4.2). To complete our discussion, we show below
in Listing 7 the clauses for finding examples for the negative effect axiom (terminated_at/2):

Listing 7 Finding Negative Effect Axiom

terminated_at (ID, [fluent:F1, pers:P, loc:L1], tp:T2) :-
holds_at (ID, [fluent:F1, pers:P, loc:L1], tp:T1),
happens_at (ID, [event:_E, pers:P, loc:L2], tp:T2),
T1 < T2,
holds_at (ID, [fluent:_F2, pers:P, loc:L2], tp:T3),
T2 < T3.

neg (terminated_at (ID, [fluent:F1, pers:P, loc:L1], tp:T2)) :-
holds_at (ID, [fluent:F1, pers:P, loc:L1], tp:T1),
happens_at (ID, [event:_E, pers:P, loc:L2], tp:T2),
T1 < T2,
neg (holds_at (ID, [fluent:_F2, pers:P, loc:L2], tp:T3)),
T2 < T3.

The interesting thing to note here is that the variable L1 for the location becomes available
via the example interpretation, but the predicate location/1 that is used to restrict the range
of this variable comes from the background information and is enforced via the lookahead
predicate discussed in the previous section.

5.5 Example Interpretations

In our case the example interpretations (5.1-5.3) in Listing 5 are derived from short dialogue
sequences. We experimented with dialogue sequences consisting of a state sentence, followed

by an event sentence, followed by a question that results in a positive or negative answer.

These dialogue sequences are similar to the data used in the dialogue-based language learning
dataset [28], and look in our case as follows:

S.1.1 Mary is located in the bathroom.
S.1.2 Mary arrives in the kitchen.
S.1.3 Where is Mary?

S.1.4 In the kitchen.

S.2.1 Emma is located in the living room.
S.2.2 Emma arrives in the bathroom.
S.2.3 Is Emma in the bathroom?

S.2.4 No.

These dialogues are parsed into dependency structures and automatically translated into
the corresponding Event Calculus representation. For this purpose, we used the Stanford

Parser [11] that generates for each sentence (or answer fragment) a dependency structure.

8:9

ICLP 2017 TCs

8:10

Learning Effect Axioms via Probabilistic Logic Programming

This dependency structure is then translated with the help of a simple ontology into the
corresponding Event Calculus notation. The ontology contains, among other things, the
information that Mary is a person and that a bathroom is a location. The dialogue sequence
S.1.1-S.1.4, for example, is first translated into four dependency structures as illustrated on
the left-hand side of Listing 8:

Listing 8 From Dependency Structures to Event Calculus Representation

DEPENDENCY STRUCTURES EVENT CALCULUS REPRESENTATION
% D.1.1

nsubjpass (located-3, Mary-1) holds_at ([fluent:located,
auxpass (located-3, is-2) pers:mary,

root (ROOT-0, located-3) loc:bathroom], tp:1).
case (bathroom-6, in-4)

det (bathroom-6, the-5) location([loc:bathroom]).

nmod (located-3, bathroom-6)

% D.1.2

nsubj (arrives -2, Mary-1) happens_at ([event:arrive,

root (ROOT-0, arrives-2) pers:mary,
case(kitchen-5, in-3) loc:kitchen], tp:2).
det (kitchen-5, the-4)

nmod (arrives -2, kitchen-5) location([loc:kitchen]).

% D.1.3

advmod (is-2, Where-1)
root (ROOT-0, is-2)

nsubj (is-2, Mary-3) holds_at ([fluent:located,
pers:mary,
% D.1.4 loc:kitchen], tp:3).

case (kitchen-3, In-1)
det (kitchen-3, the-2)
root (ROOT-0, kitchen-3)

For example, the dependency structure D.1.1 for the sentence S.1.1 is translated into a
holds_at/2 predicate, since the sentence describes a fluent. The translation of the dependency
structure D.1.2 for sentence S.1.2 results in a happens_at/2 predicate, since the sentence
describes an event. Finally, the translation of the two dependency structures D.1.3 4+ D.1.4
for the question-answer pair in S.1.3 + S.1.4 introduce a positive holds_at/2 predicate, since
the question and the answer together confirm that a particular fluent holds. Note that this
dialogue sequence is also used to derive together with the help of the ontology the factual
information that bathroom and kitchen are locations.

In our LPAD program for structure learning in Listing 5, the derived example interpreta-
tions (5.1-5.3) are initiated by predicates of the form begin(model(<name>)) and terminated
by predicates of the form end(model(<name>)) and the relevant background information is
added to the background section (2.1-2.5) of the program.

Note that each example interpretation may contain an additional fact of the form prob(P)
that assigns a probability P to the interpretation. This probability may be used to reflect the
confidence of the parser in a particular interpretation. If this probability is omitted, then
the probability of each interpretation is considered equal to 1/n where n is the total number
of interpretations (for details see [22]).

R. Schwitter 8:11

Finally, we have to specify how the example interpretations are divided in folds for taining
(5.4), before we can perform parameter learning on the training fold as illustrated in (5.5).

6 Experiments

In order to get more realistic probabilities for the effect axioms that we discussed in this
paper, we learned the structure of these axioms with the help of 50 example dialogues. This
resulted in the following probabilities for the two effect axioms as shown in Listing 9:

Listing 9 Effect Axioms with Probabilities Derived from Example Dialogues

initiated_at ([fluent:located, pers:A, loc:B], tp:C):0.87;'':0.13 :-
happens_at ([event:arrive, pers:A, loc:B], tp:C).

terminated_at ([fluent:located, pers:A, loc:D], tp:C):0.87;'':0.13 :-
happens_at ([event:arrive, pers:A, loc:B], tp:C),
location([loc:D]).

We used the same domain-independent axioms (SEC1-SEC3) for our experiments as in the
logic-based version of the SEC in Listing 1, but added the following background axioms in
Listing 10 to the probabilistic version of the program to deal with the range requirement for
variables of the learned clauses under the distribution semantics:

Listing 10 Background Axioms

location([loc: garagel).
location([loc: garden]).
location([loc: kitchen]).

To test the probabilistic dialect of the SEC, we conducted three experiments using PITA
and MCINTYRE for reasoning and the queries shown in Listing 11 4+ 12. In the first
experiment A, we removed all probabilities from the axioms and executed the queries; in the
second experiment B, we used the effect axioms annotated with the learned probabilities
to answer the queries; and finally in the third experiment C, we used the annotated effect
axioms together with probabilities for noisy event occurrences and executed the queries. We
then run the same three experiments using MCINTYRE and sampled the answer for each
query 100 times. This sampling process returns the estimated probability that a sample is
true (i.e., that a sample succeeds).

Listing 11 Test Queries used to Evaluate the SEC with PITA

test_ec_pita(Num, [P1, P2, P3, P4, P5, P6, P7]) :-
prob(holds_at ([fluent:located, pers:bob, loc:garden], tp:

1, P1),
prob(holds_at ([fluent:located, pers:bob, loc:garden], tp:2, P2),
prob(holds_at ([fluent:located, pers:bob, loc:kitchen], tp:3, P3),
prob(holds_at ([fluent:located, pers:bob, loc:kitchen], tp:4, P4),
prob(holds_at ([fluent:located, pers:bob, loc:kitchen], tp:5, P5),
prob(holds_at ([fluent:located, pers:bob, loc:garagel], tp:5, P6),
prob(holds_at ([fluent:located, pers:bob, loc:garagel, tp:6, P7)

Listing 12 Test Queries used to Evaluate the SEC with MCINTYRE

test_ec_mcintyre ([P1, P2, P3, P4, P5, P6, P7]) :-
mc_sample (holds_at ([fluent:located, pers:bob, loc:garden], tp:1),
100, P1),

ICLP 2017 TCs

8:12

Learning Effect Axioms via Probabilistic Logic Programming

mc_sample(holds_at ([fluent:located, pers:bob, loc:garden], tp:2),

100, P2),

mc_sample (holds_at ([fluent:located, pers:bob, loc:kitchen], tp:3),
100, P3),

mc_sample (holds_at ([fluent:located, pers:bob, loc:kitchen], tp:4),
100, P4),

mc_sample (holds_at ([fluent:located, pers:bob, loc:kitchen], tp:5),
100, P5),

mc_sample (holds_at ([fluent:located, pers:bob, loc:garagel], tp:5),
100, P6),

mc_sample (holds_at ([fluent:located, pers:bob, loc:garagel, tp:6),
100, P7).

6.1 Experiment A

For the first experiment, we removed the probabilities of the learned effect axioms and
automatically combined them with the domain-independent axioms (SEC1-SEC3) and the
axioms of the original scenario (SC01-3€03), and then executed the queries in Listing 11 and
12 using the two inference modules PITA (P) and MCINTYRE (M). This resulted in the
following answers:

(P) Probs
(M) Probs

(1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0]
[t.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0]

Here the value 1.0 stands for "true" and the value 0.0 for "false" and the answers are the
same as we get for the logic-based version of the SEC. Note that by definition a fluent does
not hold at the time point of the event that initiates it; therefore, the probability for the
answer of the third query and the sixth query in Listing 11 + 12 is 0.0.

6.2 Experiment B

In this experiment, we used the probabilistic effect axioms that we learned with the help of
our 50 training examples. This gives the following results for our test queries:

(P) Probs
(M) Probs

[1.0, 1.0, 0.0, 0.87, 0.87, 0.0, 0.87]
[1.0, 1.0, 0.0, 0.85, 0.91, 0.0, 0.87]

Note that the first three answers and the sixth answer are the same as before, answer
four, five and seven show the probabilistic effect axioms at work. Since MCINTYRE uses
inexact inference and relies on sampling, the results for each run show some variation. We
observe a standard deviation of about 0.034 for the relevant answers when we run each query
ten times and use 100 samples for each query (see Listing 12).

6.3 Experiment C

For our third experiment, we used again the probabilistic effect axioms and added probabilities
to the events to deal with a situation where we have noise in the recognition of events:

happens_at ([event:arrive ,pers:bob,loc:kitchen] ,tp:3):0.95;"'':0.05.
happens_at ([event:arrive ,pers:bob,loc:garage] ,tp:5):0.99;"'':0.01.

Running our test queries under these uncertain conditions gives the following results:

R. Schwitter
(P) Probs = [1.0, 1.0, 0.0, 0.8265, 0.8265, 0.0, 0.8613]
(M) Probs = [1.0, 1.0, 0.0, 0.84, 0.82, 0.0, 0.84]

As expected, uncertainty in event recognition lowers the probability for the relevant
answers, and there is of course some variation under inexact inference for each run.

7 Conclusion

In this paper we showed how we can automatically learn the structure and parameters of
probabilistic effect axioms for the Simple Event Calculus (SEC) from positive and negative
example interpretations stated as short dialogue sequences in natural language. We used the
cplint framework for this task that provides libraries for structure and parameter learning
and for answering queries with exact and inexact inference. The example dialogues that are
used for learning the structure of the probabilistic logic program are parsed into dependency
structures and then further translated into the Event Calculus notation with the help of a
simple ontology. The novelty of our approach is that we can not only process uncertainty in
event recognition but also learn the structure of effect axioms and combine these two sources
of uncertainty to successfully answer queries under this probabilistic setting. Interestingly,
our extension of the logic-based version of the SEC is completely elaboration-tolerant in
the sense that the probabilistic version fully includes the logic-based version. This makes it
possible to use the probabilistic version of the SEC in the traditional way as well as when we
have to deal with uncertainty in the observed world. In the future, we would like to extend
the probabilistic version of the SEC to deal — among other things — with concurrent actions
and continuous change.

Acknowledgements. I would like to thank Fabrizio Riguzzi for his valuable help with the
implementation of the algorithm for learning the effect axioms.

—— References

1 Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic reasoning with answer
sets. In Theory and Practice of Logic Programming, 9(1), pp. 57144, 2009.

2 Elena Bellodi and Fabrizio Riguzzi. Expectation Maximization over binary decision dia-
grams for probabilistic logic programs. In Intelligent Data Analysis, 17(2), pp. 343-363,
2013.

3 Elena Bellodi and Fabrizio Riguzzi. Structure learning of probabilistic logic programs by
searching the clause space. In Theory and Practice of Logic Programming, 15(2), pp. 169
212, 2015.

4 Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A probabilistic Pro-
log and its application in link discovery. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI-07), Hyderabad, India, pp. 24622467, 2007.

5 Luc De Raedt and Angelika Kimmig. Probabilistic (logic) programming concepts. In Ma-
chine Learning, Vol. 100, Issue 1, Springer New York LLC, pp. 547, 2015.

6 Anton Dries, Angelika Kimmig, Wannes Meert, Joris Renkens, Guy Van den Broeck, Jonas
Vlasselaer and Luc De Raedt. ProbLog2: Probabilistic logic programming. In Machine
Learning and Knowledge Discovery in Databases, LNCS 9286, Springer, pp. 312-315, 2015.

7 Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Incremental learning of event
definitions with Inductive Logic Programming. In Machine Learning, Vol. 100, Issue 2, pp.
555-585, 2015.

8:13

ICLP 2017 TCs

8:14

Learning Effect Axioms via Probabilistic Logic Programming

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

Angelika Kimmig, Bart Demoen, Luc De Raedt, Vitor Santos Costa and Ricardo Rocha. On
the implementation of the probabilistic logic programming language ProbLog. In: Theory
and Practice of Logic Programming, Vol. 11, pp. 235-262, 2011.

Robert Kowalski and Marek Sergot. A Logic-Based Calculus of Events. In New Generation
Computing, Vol. 4, pp. 67-95, 1986.

John W. Lloyd. Foundations of logic programming. Second, Extended Edition. Springer-
Verlag, New York, 1987.

Christopher, D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard,
and David McClosky. The Stanford CoreNLP Natural Language Processing Toolkit. In
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, pp. 55-60, 2014.

Rob Miller and Murray Shanahan. Some Alternative Formulations of the Event Calculus.
In Computational Logic: Logic Programming and Beyond — Essays in Honour of Robert
A. Kowaski, LNAT 2408, Springer pp. 452—-490, 2002.

Erik T. Mueller. Commonsense Reasoning, An Event Calculus Based Approach. 2nd Edi-
tion, Morgan Kaufmann/Elesevier, 2015.

David Poole. The independent choice logic for modelling multiple agents under uncertainty.
In Artificial Intelligence Vol. 94, pp. 7-56, 1997.

David Poole. The independent choice logic and beyond. In L. De Raedt, P. Frasconi, K.
Kersting, and S. Muggleton (eds.), Probabilistic Inductive Logic Programming: Theory
and Application, LNATI Vol. 4911, Springer, pp. 222-243, 2008.

Matthew Richardson and Pedro Domingos. Markov logic networks. In Machine Learning,
Vol. 62, Issue 1, pp. 107-136, 2006.

Fabrizio Riguzzi and Terrance Swift. An extended semantics for logic programs with annot-
ated disjunctions and its efficient implementation. In Italian Conference on Computational
Logic. CEUR Workshop Proceedings, Vol. 598. Sun SITE Central Europe, 2010.

Fabrizio Riguzzi and Terrance Swift. The PITA system: Tabling and answer subsumption
for reasoning under uncertainty. In Theory and Practice of Logic Programming, 27th Inter-
national Conference on Logic Programming (ICLP’11) Special Issue, 11(4-5), pp. 433-449,
2011.

Fabrizio Riguzzi. MCINTYRE: A Monte Carlo system for probabilistic logic programming.
In: Fundamenta Informaticae, 124(4), pp. 521-541, 2013.

Fabrizio Riguzzi, Elena Bellodi, and Riccardo Zese. A History of Probabilistic Inductive
Logic Programming. In Frontiers in Robotics and Al 18. September 2014.

Fabrizio Riguzzi and Terrance Swift. Probabilistic logic programming under the distribution
semantics. In M. Kifer and Y. A. Liu, (eds), Declarative Logic Programming: Theory,
Systems, and Applications, LNCS. Springer, 2016.

Fabrizio Riguzzi. cplint Manual. SWI-Prolog Version. July 4, 2017.

Taisuke Sato. A statistical learning method for logic programs with distribution semantics.
In L. Stearling (ed.), 12th International Conference on Logic Programming, Cambridge:
MIT Press, pp. 715-729, 1995.

Murray Shanahan. The Event Calculus Explained. In M.J. Wooldridge and M. Veloso (eds),
Artificial Intelligence Today, LNAI, Vol. 1600, Springer, pp. 409-430, 1999.

Anastasios Skarlatidis, Alexander Artikis, Jason Filippou, Georgios Paliouras. A Probabil-
istic Logic Programming Event Calculus. In Theory and Practice of Logic Programming,
Vol. 15, No. 2, pp. 213-245, 2015.

Anastasios Skarlatidis, Georgios Paliouras, Alexander Artikis, and George A. Vouros. Prob-
abilistic Event Calculus for Event Recognition. In ACM Transactions on Computational
Logic, Vol. 16, No. 2, Article 11, 2015.

R. Schwitter 8:15

27 Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. Logic programs with annot-
ated disjunctions. In International Conference on Logic Programming LNCS 3131, Berlin:
Springer, pp. 195-209, 2004.

28 Jason Weston. Dialog-based Language Learning. Facebook AI Research. In
arXiv:1604.06045v7, 24th October 2016.

ICLP 2017 TCs

Towards Run-time Checks Simplification via Term
Hiding*!
Nataliia Stuloval, José F. Morales?, and Manuel V. Hermenegildo3

1 IMDEA Software Institute, Madrid, Spain and Universidad Politécnica de
Madrid (UPM), Madrid, Spain
nataliia.stulova@imdea.org

2 IMDEA Software Institute, Madrid, Spain
josef .morales@imdea.org

3 IMDEA Software Institute, Madrid, Spain and Universidad Politécnica de
Madrid (UPM), Madrid, Spain
manuel .hermenegildo@upm.es

—— Abstract

Flexibility in term creation and manipulation in dynamic languages can threaten safety of data
processing. To counter this issue expensive run-time checks are often added to programs to ensure
safety of operations, yet they incur impractically high overheads. While such overheads can be
greatly reduced with static analysis, the gains depend strongly on the quality of the information
inferred.

We propose a technique for improving term shape inference during static program analysis,
that exploits term visibility rules of the underlying module system. We also describe an improved
run-time checking approach that takes advantage of the proposed mechanisms to achieve large
reductions in overhead. While the approach is general and system-independent, we present
and evaluate it for concreteness in the context of the Ciao assertion language and combined
static/dynamic checking framework. One of its benefits is that it does not introduce the need to
switch the language to (static) type systems, which is known to change the semantics in languages
like Prolog, while allowing for reductions in overhead closer to those of static languages.

1998 ACM Subject Classification D.3.3 Language Constructs and Features, D.2.4 Software /Pro-
gram Verification, D.2.5 Testing and Debugging, F.3.1 Specifying and Verifying and Reasoning
about Programs, F.3.3 Studies of Program Constructs, F.3.2 Semantics of Programming Lan-
guages

Keywords and phrases Module Systems, Implementation; Run-time Checking, Assertion-based
Debugging and Validation, Static Analysis

Digital Object ldentifier 10.4230/0OASIcs.ICLP.2017.9

1 Brief Overview

Modular programming has become widely adopted due to the benefits it provides in code
reuse and for structuring data flow between program components. A tightly related concept
is the principle of information hiding that allows concealing the concrete implementation
details behind a well-defined interface and thus allows for cleaner abstractions. In different

* In [2] we provide full details on this work.
T This research has been partially funded by Spanish MINECO project TIN2015-67522-C3-1-R TRACES,
and Madrid Region program M141047003 N-GREENS.

© Nataliia Stulova, José F. Morales, and Manuel V. Hermenegildo;
37 licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).

Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No.9; pp.9:1-9:3

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

9:2

Towards Run-time Checks Simplification via Term Hiding

programming languages these concepts are implemented in different ways, some examples
being the encapsulation mechanism of classes adopted in object-oriented programming
and opaque data types. In the (constraint) logic programming context, most mature
language implementations incorporate module systems, which are either predicate-based
(where predicate symbol visibility is controlled by the module import-export rules but functor
symbols are public) or atom-based (where both predicate and functor symbol visibility is
controlled by the module import-export rules).

We propose a hybrid predicate-based module system [2] that offers an optional hiding
mechanism for selected functor symbols, providing more fine-grained term visibility control.
The proposed module system is still strict in the sense that it disallows breaking predicate
or term visibility rules by bypassing the module interfaces. The hiding mechanism allow
programmers to restrict the visibility of some terms to the module where they are defined,
thus both making the concrete implementation details opaque to other modules and providing
guarantees that all data terms with such shapes may only be constructed by the predicates
of that particular module. Our motivation comes from the reusable library scenario, i.e., the
case of analyzing, verifying, and compiling a library for general use, without access to the
client code or analysis information on it. This includes for example the important case of
servers accessed via remote procedure calls.

The need for mechanisms for controlling term visibility is in particular prominent in
the context of assuring safety of data access and manipulation in untyped programming
languages. One of the most attractive features of untyped languages for programmers is the
flexibility they offer in term creation and manipulation. However, with such power comes
the responsibility of ensuring correctness in the manipulation of data, and this is specially
relevant when data can come from unknown clients. A popular solution for ensuring safety is
to enhance the language with optional assertions that allow specifying correctness conditions
both at the public module interface and for the private internal module routines [1]. These
assertions can be checked dynamically by adding run-time checks to the program, but this
can also introduce overheads that are in many cases impractical. Such overheads can be
greatly reduced with static analysis, but the gains then depend strongly on the quality of
the analysis information inferred. Unfortunately, in the reusable library setting shape/type
analyses are necessarily imprecise, since in this context the unknown clients can fake data
that is really intended to be internal to the library. Ensuring safety then requires sanitizing
input data with potentially expensive run-time checks.

In order to reduce the checking cost, we present a technique that, using the combination
of term hiding and the strict visibility rules in the module system, enhances the inference of
shape information during static program analysis. By restricting some functors to the scope
of a module it becomes possible to reason statically about whether the data shapes that are
built with these functors are hidden and wvisible to the other modules with respect to the
module interface. We will further refer to all possible terms that may exist outside a module
m as its escaping terms. In [2] we provide an algorithm to compute an over-approximation
of the set of all escaping terms from a module for a given set of functor hiding declarations.

» Example 1. Let point/1 be a hidden functor in a module m1 that exports a single predicate
p/1 which constructs a term point(1):

:— module(ml, [p/1]1). % module interface
:- hide point/1. % hidden functor
p(A) :- A = point(B), B = 1.

There is no success substitution for p/1 where variables can be bound to some point (_)
more general than point (1). The same applies to any possible substitution in any derivation

N. Stulova, J. F. Morales, and M. V. Hermenegildo

in programs that are composed with this module. Without term hiding, this is impossible
to ensure (without client knowledge) since any module could define any point(_) terms
(e.g., point([_,_1), point(coord(_,_,_))). In this simplified example point (1) is the
escaping term of module m1.

Note that hidden functor symbols are essential to reason compositionally about the flow
of data in a program composed of reusable libraries. This is analogous to the reasoning about
the semantics of the predicates in a module, which requires the predicate symbols to be local.
The information about escaping terms obtained by the static analysis can then be used to
replace the original run-time checks with their optimized versions while preserving the safety
guarantees the original checks provide. These optimized, or shallow versions of properties
are weakened forms that are semantically equivalent to the original ones in the context of
the possible program executions, and are cheaper to execute (e.g., requiring asymptotically
fewer steps). Shallow run-time checking consists in using shallow versions of properties in
the run-time checks for the calls across module boundaries.

» Example 2. Assume that the set of escaping terms of m contains point (1) and it does not
contain the more general point (_). Consider the property intpoint (point (X)) :- int(X).
Checking intpoint (A) at any program point outside m must check first that A is instantiated
to point (X) and that X is instantiated to an integer (int (X)). However, the escaping terms
show that it is not possible for a variable to be bound to point (X) without X=1. Thus,
the latter check is redundant. We can compute the optimized — or shallow — version of
intpoint/1 in the context of all execution points external to m as intpoint (point(_)).

Note that since the argument(s) inside, e.g., the first level of a term can be arbitrarily large
the savings from this technique can also be unbounded. In our work we show experimentally
that for practical programs and settings, thanks to the term creation safety guarantees
provided by the module system, it is possible to reduce the run-time overhead for the calls
across module boundaries by several orders of magnitude. Together, the combination of
these techniques with traditional static analysis brings improvements in the number and cost
of the run-time checks that allow providing equivalent guarantees to those of statically-typed
approaches, at similar run-time cost, but without imposing on programs the restrictions of
being well typed.

For concreteness, we use in this work the relevant parts of the Ciao system [1]: the module
system, the assertion language —which allows providing optional program specifications with
various kinds of information, such as modes, (regular) types, or non-determinism—, and the
verification framework, that combines static and dynamic checking. However, our results are
general and can be applied to other languages.

—— References

1 M. V. Hermenegildo, F. Bueno, M. Carro, P. Lépez, E. Mera, J. F. Morales, and
G. Puebla. An Overview of Ciao and its Design Philosophy. Theory and Practice
of Logic Programming, 12(1-2):219-252, January 2012. CoRR abs/1102.5497 [cs.PL].
doi:10.1017/S1471068411000457.

2 N. Stulova, J. F. Morales, and M. V. Hermenegildo. Term Hiding and its Impact on Run-
time Check Simplification. Technical Report CLIP-1/2017.0, The CLIP Lab, May 2017.
CoRR abs/1705.06662 [cs.PL].

9:3

ICLP 2017 TCs

http://dx.doi.org/10.1017/S1471068411000457

A Hitchhiker’s Guide to Reinventing a Prolog
Machine
Paul Tarau

Department of Computer Science and Engineering, University of North Texas,
Denton, USA
paul.tarau@unt.edu

—— Abstract

We take a fresh, “clean-room” look at implementing Prolog by deriving its translation to an ex-
ecutable representation and its execution algorithm from a simple Horn Clause meta-interpreter.

The resulting design has some interesting properties. The heap representation of terms and
the abstract machine instruction encodings are the same. No dedicated code area is used as the
code is placed directly on the heap. Unification and indexing operations are orthogonal. Filtering
of matching clauses happens without building new structures on the heap. Variables in function
and predicate symbol positions are handled with no performance penalty. A simple English-
like syntax is used as an intermediate representation for clauses and goals and the same simple
syntax can be used by programmers directly as an alternative to classic Prolog syntax. Solutions
of (multiple) logic engines are exposed as answer streams that can be combined through typical
functional programming patterns, with flexibility to stop, resume, encapsulate and interleave
executions. Performance of a basic interpreter implementing our design is within a factor of 2 of
a highly optimized compiled WAM-based system using the same host language.

To help placing our design on the fairly rich map of Prolog systems, we discuss similarities
to existing Prolog abstract machines, with emphasis on separating necessary commonalities from
arbitrary implementation choices.

1998 ACM Subject Classification D.3 Programming Languages, D.3.4 Processors

Keywords and phrases Prolog abstract machines, heap representation of terms and code, immut-
able goal stacks, natural language syntax for clauses, answer streams, multi-argument indexing
algorithm

Digital Object Identifier 10.4230/0ASIcs.ICLP.2017.10

1 Introduction

Forgetting how to implement a Prolog system is as hard as learning how to build one. While
contaminated with episodic memories acquired through the not so few Prolog systems that
we have built in the past [17, 15, 14, 16], a fresh, “clean-room” attempt is described here
to reinvent a Prolog machine by deriving it from the intuitions gleaned from the execution
algorithm of a simplified two-clause meta-interpreter.

But why would one do this, when more than three decades of Prolog implementation seem
to have fully saturated the search space of available implementation choices? Some of the
details will unfold as our story progresses through the next sections, but an important reason
is that we felt that existing systems, while possibly peeking out in terms of performance
[5, 3, 11, 6, 24] or overall environment convenience and system usability [22, 3, 6], have left
interesting implementation choices unexplored. Another reason is that the natural chain
of concepts leading the execution mechanism of SLD-resolution to an efficient low-level
implementation has stayed often in a “no-man’s land” between theoretical work exploring

© Paul Tarau;
37 licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 10; pp. 10:1-10:16

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

10:2

A Hitchhiker’s Guide to Reinventing a Prolog Machine

the foundations of logic programming languages and implementation work focussed mostly
on refining the gold standard set by the Warren Abstract machine [21, 1, 19].

While comparisons to WAM-based systems abound to help placing in context the alternat-
ives we propose, the paper can also be seen as a self-contained shortcut allowing a “hitchhiker”
to Prolog implementation to get the core of an efficient-enough Prolog system up and running
in a few days. However, given the space constraints of the paper, our step-by-step derivation
process will leave out some routine elements well-known to people modestly familiar with
prolog implementation.

The resulting design, implemented in an easily translatable to C subset of Java, around
1000 lines, is available at http://www.cse.unt.edu/~tarau/research/2016/prologEngine.
zip. We refer to it for details that space constraints will force us to summarize or omit.
More intuitions and background, for the reader less familiar with Prolog implementation,
are available as the recording https://www.youtube.com/watch?v=SRYAMt8iQSw&list=
PLJq3XDLIJkib2h2f0bomdFRZrQeJg4UIW of our VMSS’2016 invited tutorial.

It covers only Horn-Clause Prolog, as this is usually a good first step to evaluate the
basic implementation choices and performance characteristics of a Prolog Machine. It does
not cover orthogonal implementation issues like garbage collection, unification of cyclical
terms, constraints, tabling, built-ins or host language interface, as our focus is on the inner
workings of the Prolog machine seen as an unification+backtracking+indexing engine.

We will start by sketching here some features that are not typically shared with most
existing Prolog systems:

a shared representation of executable code and terms on the heap

a simple English-like intermediate representation used as our “assembler language”

the packaging of solutions as answer streams

the decoupling of indexing and unification instructions

interpreted, but fast-enough execution.

The paper is organized as follows. Section 2 derives (informally) the main lines of our
design from a simple Horn Clause meta-interpreter and an equational representation of
Prolog terms. Section 3 describes an execution-ready heap representation of Prolog clauses
that also serves as instruction set for our abstract machine. Section 4 explains the execution
algorithm seen as iterated unfolding of the first goal in the body of a clause, the generation
of answer streams and the main run-time data structures. Section 5 overviews a generic
indexing mechanism, orthogonal to the unification-based execution algorithm, designed as
an add-on to the iterated unfolding interpreter loop. Section 6 shows some preliminary
performance results. Section 7 overviews related work. Section 8 concludes the paper.

2 Distilling the “essence” of Prolog’s execution algorithm

When seen through the eyes of a meta-interpreter for the Horn Clause subset of Prolog, the
execution algorithm is astonishingly simple. We will next expand step-by-step the intuitions
behind its implicit operations and derive an equational form that we will use to guide
subsequent refinements into a self-contained interpreter.

2.1 Our starting point: a simplified Horn Clause meta-interpreter

We will start by inventing a simpler meta-interpreter than the usual one, with a bit of help
from a convenient clause representation. The meta-interpreter metaint/1 uses a (difference)-
list view of prolog clauses.

http://www.cse.unt.edu/~tarau/research/2016/prologEngine.zip
http://www.cse.unt.edu/~tarau/research/2016/prologEngine.zip
https://www.youtube.com/watch?v=SRYAMt8iQSw&list=PLJq3XDLIJkib2h2fObomdFRZrQeJg4UIW
https://www.youtube.com/watch?v=SRYAMt8iQSw&list=PLJq3XDLIJkib2h2fObomdFRZrQeJg4UIW

P. Tarau 10:3

metaint ([]).

metaint ([GIGs]) : -
c1s([GIBs],Gs),
metaint (Bs) .

Clauses are represented as facts of the form cls/2 with the first argument representing the
head of the clause followed by a (possibly empty) list of body goals and terminated with a
variable returned also as the second argument of cls/2.

cls([
add(0,X,X)
|Taill,Tail).
cls([
add(s(X),Y,s(2)), add(X,Y,Z)
|Taill ,Tail).
cls([
goal(R), add(s(s(0)),s(s(0)),R)
|Taill ,Tail).

The actual content of the clauses, that we will use as our running example is marked with %1,
%2 and %3. As one can verify with any Prolog system, it runs as expected when computing
the successor arithmetic equivalent of 2 + 2 = 4.

?- metaint([goal(R)]).
R = s(s(s(s(0)))) .

2.2 The equational form of terms and clauses

This flattened form of Prolog clauses is well-known. We will use the term equation to denote
an unification step, typically between a variable and a compound term or constant. An
equation like

T=add(s(X),Y,s(Z))

can be rewritten as a conjunction of 3 equations as follows

T=add (SX,Y,SZ) ,SX=s(X) ,SZ=s(Z)

When applying this to a clause like

C=[add(s(X),Y,s(Z)), add(X,Y,Z)]

it can be transformed to a conjunction derived from each member of the list

Cc=[H,B] ,H=add (SX,Y,5Z) ,SX=s(X) ,SZ=s(2), B=add(X,Y,Z)

The list of variables ([H,B] in this case) can be seen as a toplevel skeleton abstracting away
the main components of a Horn clause: the variable referencing the head followed by 0 or
more references to the elements of the conjunction forming the body of the clause. One can

see that a Prolog clause can be decomposed into a sequence of such equations, which, if
executed as unification steps, build back the representation of the clause.

2.3 The “English-like equivalent” of the equational form

As the recursive tree structure of a Prolog term has been flattened, it makes sense to express
it as an equivalent “controlled natural language” sentence. Note that we use here “natural

ICLP 2017 TCs

10:4

A Hitchhiker’s Guide to Reinventing a Prolog Machine

language” with a grain of salt, as we are talking about a severely restricted form of controlled
English.

add SX Y SZ if SX holds s X and SZ holds s Z and add X Y Z.

Note that we keep the Prolog convention for the uppercase (or “_”) as the fist character of
variable names and the correspondence between the keywords “if” and “and” to Prolog’s
“:=" clause neck and “,” conjunction symbols. Note also the correspondence between the
keyword “holds” and the use of Prolog’s “=" to express a unification operation between a
variable and a flattened Prolog term. The toplevel skeleton of the clause can be kept implicit
as it is easily recoverable.

We can consider this syntax our “assembler language” to be read in directly by the loader
of a runtime system, as well as the virtual machine code generated by a simple compiler
“mi

translating Prolog clauses to it. A tokenizer splitting into words sentences delimited by s

all that is needed to complete a parser for this restricted English-style “assembler language”.

2.4 A small expressiveness lift: allowing variables in function and
predicate symbol positions

Let us observe right away that our flat natural syntax allows the use of variables in function
and predicate symbol position as in

Someone likes beer if Someone likes fries and Someone drinks alcohol.

corresponding to a Prolog syntax involving variables in predicate positions as in

Someone (likes, beer):-Someone(likes, fries),Someone(drinks, alcohol).

This suggests dropping this Prolog restriction for a form of higher order syntax with a first
order semantics giving to our intermediate language a (touch of) the capabilities of HiLog
[4]. While this example can be seen as an indirect way to support the use if likes as an
infix operator the use in

call(Operation,10,20,Result)

as

Operation 10 20 Result

hints about more interesting uses, with Operation working as a variable in predicate symbol
position.

An easy way to make precise the semantics of such programs, is to think about them as
a single freshly named conventional Prolog predicate for each arity, with a first argument
denoting the name of the predicate, a variable standing for it, or standing for a compound
term. This is basically the same semantics as Hilog, [4], known to be translatable to equivalent
first order programs.

As a convenient notational improvement, we can instruct our parser to expand

Xs lists a b c

to

Xs holds list a _0 and _O holds list b _1 and _1 holds list c nil

with the new keywords “list” representing the list constructor and “nil” representing the
empty list.

P. Tarau

3 The heap representation as the executable code

Derived from the equational representation of Prolog terms, our natural language form of the
clauses is ready to leave Prolog for a conventional implementation language that does not
provide, like our two clause meta-interpreter did, unification, recursion and backtracking for
free. It is basically an array representation with variables on the left side of our equations
turned into array indices pointing to compound terms at higher addresses in the same array.

For convenience to both the readers and the writer of this paper, we have picked a subset
of Java, trivially translatable to C that does not make use of object oriented features, while
benefitting from simplicity of automated memory management and safety coming from things
like polymorphic types and index checking.

3.1 The tag system

We will instruct our tokenizer to recognize variables, symbols and (small) integers as primitive
data types. As we develop a Java-based interpreter, we represent our Prolog terms top-down
(as first described in [8]). Java’s primitive int type is used for tagged words!.

We will instruct our parser to extract as much information as possible by marking each
word with a relevant tag (that will also be seen as a WAM-like instruction by the execution
algorithm). We will use the following 3-bit tags:

V=0 marking the first occurrence of a variable in a clause

U=1 marking a second, third etc. occurrence of a variable

R=2 marking a reference to an array slice representing a subterm

C=3 marking the index in the symbol table of a constant (identifier or any other data

object not fitting in a word)

N=4 marking a small integer

A=5 marking the arity of the array slice holding a flattened term (of size 1 + the number

of arguments, to also make room for the “function symbol” - that could be an atom or a

variable)

To ensure fast inlining in a language like Java we make most of our methods final private
static - with similar annotations available in C. For clarity, we omit these annotations
from our code snippets. To emulate the existence of distinct types for tagged words and
their content we flip the sign when tagging and untagging:

int tag(int tag, int word) {return -((word << 3) + tag);}
int detag(int word) {return -word >> 3;}

int tag0f(int word) {return -word & 7;}

The minus sign marking word is meant to trigger an index error at the smallest mis-step
when a method would confuse an address use and a value use of an int. The same technique
would help catching such errors in C. As the cost of this operation is virtually 0, it is not
worth making it a debug-only option.

Note that we will ensure that the Java compiler does as much inline expansion as possible
by coding in a “C-friendly” style, avoiding inheritance and declaring most methods as static,
private and final.

! In a C implementation one might want to choose long long instead of int to take advantage of the
64 bit address space.

10:5

ICLP 2017 TCs

10:6

A Hitchhiker’s Guide to Reinventing a Prolog Machine

3.2 The top-down representation of terms

Our top-down representation of Prolog terms closely follows our natural language-style
assembler language syntax. After the clause

add(s(X),Y,s(Z)):-add(X,Y,Z).
compiles to
add _0Y _1 and _O holds s X and _1 holds s Z if add X Y Z .

it is represented on the heap (starting in this case at address 5 and shown here marked with
lower case tags and colons) as follows:

[6]a:4 [6]c:add [7]r:10 [8]v:8 [9]r:13 [10]a:2 [11]c:s [12]v:12
[13]a:2 [14]c:s [15]v:15 [16]a:4 [17]c:add [18Ju:12 [19]Ju:8 [20]u:15

Note the distinct tags of first occurrences (tagged “v:”) and subsequent occurrences of
variables (tagged “u:”). References (tagged “r:”) always point to arrays starting with their
length marked with tag “a:”. As length information in kept in a separate word, cells tagged

as array length contain the arity of the corresponding function symbol incremented by 1.
The skeleton of the clause in the previous example is

r:5 :- [r:16]

as the head of this clause starts at address 5 and its (one-element) body follows at address
16.

3.3 Clauses as descriptors of heap cells

The parser places the cells composing a clause directly to the heap, creating a prototype
clause directly usable for its execution at runtime. At the same time, a descriptor (defined
by the small class Clause) is created and collected to the array called “clauses” by the
parser. An object of type Clause (that one would mimic with a struct in C), contains the
following fields:
int base: the base of the heap where the cells for the clause start
int len: the length of the code of the clause i.e., number of the heap cells the clause
occupies
int neck: the length of the head and thus the offset where the first body element starts
(or the end of the clause if none)
int[] gs: the toplevel skeleton of a clause containing references to the location of its
head and then body elements
int[] xs: the index vector containing dereferenced constants, numbers or array sizes
as extracted from the outermost term of the head of the clause, with 0 values marking
variable positions.
As a side note, this is not a structure-sharing representation, as at runtime the heap
representation of the clauses will be copied via a fast relocation algorithm.

4 Execution as iterated clause unfolding

As the meta-interpreter in section 2 shows it, Prolog’s execution algorithm can be seen as
iterated unfolding of a goal with heads of matching clauses. If unification is successful, we
extend the list of goals with the elements of the body of the clause, to be solved first. Thus,
indexing, meant to speed-up the selection of matching clauses, is orthogonal to the core

P. Tarau

unification and goal reduction algorithm. Given also that we do not assume anymore that
predicate symbols are non-variables, it makes sense to design indexing as a distinct algorithm,
while ensuring that there’s a convenient way to plug it in as a refinement of our iterated
unfolding mechanism.

4.1 Unification, trailing and pre-unification clause filtering

In a way similar to the WAM’s unification instructions, our relatively rich tag system reduces
significantly the need to call the full unification algorithm. If one ignores the WAM’s indexing
instructions and avoids implementing an AND-stack by binarization [18] or by placing
terms directly on the heap, the remaining unification instructions can be seen as closely
corresponding to the tags of the cells on the heap, identified in our case with the “code”
segment of the clauses.

We will look first at some low-level aspects of unification, that tend to be among the
most frequently called operations of a Prolog machine.

4.1.1 Dereferencing

The function deref walks, as usual in a Prolog implementation, through variable references.
We ensure that the compiler can inline it, and inline as well the functions isVAR and getRef
that it calls, with final declarations. We put here their “low-level” code snippets (most
likely well-known to experienced Prolog implementors) as they are in the “innermost loop”
of the system.

int deref(int x) {
while (isVAR(x)) {
int r = getRef(x);
if (r == x) break;
X = r;
}

return x;

}

boolean isVAR(int x) {return tag0f(x) < 2;}

int getRef(int x) {return heap[detag(x)];}

4.1.2 The pre-unification step: detecting matching clauses without
copying to the heap

Independently of indexing, one can filter matching clauses by comparing the outermost array
of the current goal with the outermost array of a clause head.

Interestingly, as a prototype of each clause is already placed on the heap at loading and
linking time, one could tentatively unify it with the goal and then undo the bindings. On
success, one would then redo the unification while progressively copying to the heap the
subterms of the head that need to be newly created.

But even better, we can emulate WAM’s registers as a copy of the outermost array of the
goal element we are working with, holding dereferenced elements in it.

This “register”’-array can be used to reject clauses that mismatch it in positions holding
symbols, numbers or references to array-lengths. We can use for this the prototype of a clause

10:7

ICLP 2017 TCs

10:8

A Hitchhiker’s Guide to Reinventing a Prolog Machine

head without starting to place new terms on the heap. At the same time, dereferencing is
avoided when working with material from the heap-represented clauses, as our tags will tell
us that first occurrences of variables do not need it at all, and that other variable-to-variable-
references need it exactly once as a getRef step.

4.1.3 Unification

As we have unfolded to registers the outermost array of the current goal (corresponding to a
predicate’s arguments) we will start by unifying them, when needed, with the corresponding
arguments of a matching clause. A dynamically growing and shrinking int stack is used to
emulate recursion by the otherwise standard unification algorithm. Given that we actually
start by unifying the arguments of the outermost terms we split our algorithm in two methods,
unify_args and unify that take turns pushing tasks on the stack and popping them off as
they explore the structure of the two Prolog terms.

4.1.4 Trailing

As usual, variables at higher addresses are bound to those at lower addresses on the heap
and after binding, variables are trailed when lower than the heap level corresponding to the
current goal.

4.2 Fast linear term relocation

While the WAM’s instructions (that need as well to be decoded by an interpreter loop in
non-native implementations) spend effort on deciding which (new) terms are created on the
heap (“write” mode) and which (old) terms are reused from below (“read” mode), we bet
instead on a very fast relocation loop that speculatively places the clause head (including its
subterms) on the heap. This “single instruction multiple data” operation would likely benefit
from parallel execution simply by the presence of multiple arithmetic units in modern CPUs,
or even more significantly, via a CUDA or OpenCL GPU implementation, especially if copies
are speculatively created in parallel, based on predicted future uses.

As our variable and reference codes that need relocation (V,U,R) are 0,1 and 2, we ensure
that the relocate method is inlined by the Java compiler by defining it “static private
final”. Similar inlining would occur in today’s C compilers.

int relocate(int b, int cell) {
return tag0f(cell) < 3 ? cell + b : cell;
}

Note that we compute the relocation offset ahead of time, once we know the difference
between its source and its target, i.e., when the process for selecting matching clauses starts.
To relocate a slice <from,to> from our prototype clause, placed on the heap ahead of time
by the parser, we use another potentially inlineable method, pushCells:

void pushCells(int b, int from, int to,int base) {
ensureSize(to - from);
for (int i = from; i < to; i++) {
push(relocate(b, heap[base + i]));
}
¥

P. Tarau

As our heap is a dynamic array, we check ahead of time if it would overflow with ensureSize
to avoid testing if expansion is needed for each cell.

New terms are built on the heap by the relocation loop in two stages: first the clause
head (including its subterms) and then, if unification succeeds, also the body. The method
pushHead copies and relocates the head of clause at (precomputed) offset b from the prototype

clause on the heap to the higher area where it is ready for unification with the current goal.

int pushHead(int b, Clause C) {
pushCells(b, 0, C.neck, C.base);
int head = C.gs[0];
return relocate(b, head);

}

As the code reuse coming from distinguishing between a “read” and a “write” mode during
head-unification only increases heap usage by a small percentage (as most clauses are rather
body heavy than head-heavy) we trade it for copying the complete head.

On the other hand, we only copy the body once unification succeeds, by calling the
method pushBody that also relies on the precomputed relocation offset b.

int[] pushBody(int b, int head, Clause C) {
pushCells(b, C.neck, C.len, C.base);
int 1 = C.gs.length;
int[] gs = new int[1];
gs[0] = head;
for (int k = 1; k < 1; k++) {
int cell = C.gs[k];
gs[k] = relocate(b, cell);
}
return gs;

}

Note also that we relocate the skeleton gs starting with the address of the first goal so it
is ready to be merged in the immutable list of goals. At the end, an interesting assertion

holds: the heap is a stream of successive clauses connected among them by variable bindings.

And one can devise a mechanism where, based on profiling, these contiguous heap slices,

corresponding to clauses, are created in advance, speculatively, on separate threads.

While we have not implemented it yet, we mention here an alternative algorithm, that like
the WAM, only creates new terms originating form the head of the clause when needed, while
also ensuring that term creation happens all at once, and only if full unification succeeds.

We start with the pre-unification matching, followed on success with full unification, but
happening on the prototype of the clause located at a lower address on the heap. We take
care to trail every variable binding. Then we scan the trail and handle the following two
situations:

1. if a variable located in the prototype clause area points to a goal already on the heap we
collect it for future unbinding, as we want to clear the prototype from all bindings, for
reuse

2. if the binding comes from the goals already on the heap, above the prototype clauses
area, we copy to the heap the subterm it points to, relocate the variable to point to it,
while making sure to collect the variable for later placement on the trail as now it will
point upwards.

An interesting aspect of this alternative is that one mimics Prolog’s resolution step on the

pre-built prototype and it trades some extra work on the trail, in exchange for less work and

some space efficiency on the heap.

10:9

ICLP 2017 TCs

10:10

A Hitchhiker’s Guide to Reinventing a Prolog Machine

4.3 Stretching out the Spine: the immutable goal stack

A Spine can be seen as a runtime abstraction of a Clause instance, collecting the information
needed for the execution of the goals originating from it. Implemented as the small methodless
Spine class, it declares the following fields:
int hd: head of the clause
int base: base of the heap where the clause starts
IntList gs: immutable list of the locations of the goal elements accumulated by
unfolding clauses so far
int ttop: top of the trail as it was when this clause got unified
int k: index of the last clause the top goal of the Spine has tried to match so far
int[] regs: dereferenced goal registers
int[] xs: index elements based on regs
Like the meta-interpreter we have started with, a spine extends the goal stack with the
contribution of a given clause’s body. Note that (most of the) goal elements on this immutable
list are shared among alternative branches. In a way, the illusion that the complete goal stack
is local to each Spine instance is helpful as it matches the way they look in our simplified
meta-interpreter from section 2, but has virtually no space overhead compared to a global
procedurally managed goal stack as most of its (immutable) tail is safely shared among
Spines.

4.4 The interpreter loop: yielding an answer and ready to resume

Our main interpreter loop starts from a Spine and works though a stream of answers,
returned to the caller one at a time, until the spines stack is empty, when it returns null,
signaling that no more answers are available.

Spine yield() {
while (!spines.isEmpty()) {
Spine G = spines.peek();
if (hasClauses(G)) {
if (hasGoals(G)) {
Spine C = unfold(G);
if (C != null) {
if ('hasGoals(C)) return C; // return answer
else spines.push(C);
} else popSpine(); // no matches
} else unwindTrail(G.ttop); // no more goals in G
} else popSpine(); // no clauses left
}
return null;

}

The active component of a Spine is the topmost goal in the immutable goal stack gs contained
in the Spine.

When no goals are left to solve, a computed answer is yield, encapsulated in a Spine that
can be used by the caller to resume execution.

When there are no more matching clauses for a given goal, the topmost Spine is popped
off. An empty Spine stack indicates the end of the execution signaled to the caller by
returning null.

A key element in the interpreter loop is to ensure that after an Engine yields an answer,
it can, if asked to, resume execution and work on computing more answers.

P. Tarau

To achieve this, the class Engine defines in the method ask (). A variable “query” of type
Spine, contains the top of the trail as it was before evaluation of the last goal, up to where
bindings of the variables will have to be undone, before resuming execution. It also unpacks
the actual answer term (by calling the method exportTerm) to a tree representation of a
term, consisting of recursively embedded arrays hosting as leaves, an external representation
of symbols, numbers and variables.

Object ask() {
query = yield();
if (null == query) return null;
int res = answer(query.ttop) .hd;
Object R = exportTerm(res);
unwindTrail (query.ttop) ;
return R;

4.5 Playing with answer streams

We model our answer streams to match Java 8’s stream API [9], although as a more expressive
alternative (interactors), that made it in our Prolog implementations starting with [13], can
be considered instead.

A reason for choosing the Java 8 stream API is that it allows elegant embedding in
cluster and cloud configurations using high-level functional programming constructs like map,
fold and filter as well as automatic parallelization of complex data-flows as provided by
frameworks like Apache Flink.

To encapsulate our answer streams in a Java 8 stream, a special iterator-like interface
called Spliterator is used [9]. The work is done by the tryAdvance method which yields
answers while they are not equal to null, and terminates the stream otherwise.

public boolean tryAdvance(Consumer<Object> action) {
Object R = ask();
boolean ok = null != R;
if (ok) action.accept(R);
return ok;

Three more methods are required by the interface, mostly to specify when to stop the
stream and that the stream is ordered and sequential.

public Spliterator<Object> trySplit() {
return null; // nothing to do here as we do not want to split our answer stream

}

public int characteristics() { // answers are ordered and possibly infinitely many
return (Spliterator.ORDERED | Spliterator.NONNULL) & ~Spliterator.SIZED;
}

public long estimateSize() { // a way to approximate infinitely many
return Long.MAX_VALUE;

}

public boolean tryAdvance(Consumer<Object> action) {
Object R = ask();
boolean ok = null != R;

10:11

ICLP 2017 TCs

10:12

A Hitchhiker’s Guide to Reinventing a Prolog Machine

if (ok) action.accept(R);
return ok;

Once the Spliterator interface is implemented, the stream of answers encapsulating
this engine is created with second argument false, specifying that it is not a parallel stream.

public Stream<Object> stream() {return StreamSupport.stream(this, false);}

5 Multi-argument indexing: a modular add-on

The indexing algorithm is designed as an independent add-on to be plugged into the main
Prolog engine. For each argument position in the head of a clause (up to a maximum that
can be specified by the programmer) it associates to each indexable element (symbol, number
or arity) the set of clauses where the indexable element occurs in that argument position. For
deep indexing, the argument position can be generalized to be the integer sequence defining
the path leading to the indexable element in a compound term. The clauses having variables
in an indexed argument position are also collected in a separate set for each argument
position.

Sets of clause numbers associated to each (tagged) indexable element are supported by
an IntMap implemented as a fast int-to-int hash table (using linear probing). An IntMap
is associated to each indexable element by a HashMap. The HashMaps are placed into an
array indexed by the argument position to which they apply. When looking for the clauses
matching an element of the list of goals to solve, for an indexing element x occurring in
position %, we fetch the set Cy ; of clauses associated to it. If V; denotes the set of clauses
having variables in position 4, then any of them can also unify with our goal element. Thus,
we would need to compute the union of the sets C, ; and V; for each position ¢, and then
intersect them to obtain the set of matching clauses. We will not actually compute the unions,
however. Instead, for each element of the set of clauses corresponding to the “predicate
name” (position 0), we retain only those which are either in Cy; or in V; for each ¢ > 0. We
do the same for each element for the set 1} of clauses having variables in predicate positions
(if any). Finally, we sort the resulting set of clause numbers and hand it over to the main
Prolog engine for unification and possible unfolding in case of success.

Two interesting special cases can benefit from custom variants of the algorithm.

For very small programs or programs having predicates with fewer clauses than the bit size
of a long (64), the IntMap can be collapse to a long made to work as a bit set. Alternatively,
given our fast pre-unification filtering one can bypass indexing altogether, below a threshold.

For very large programs challenging overall memory capacity, a more compact sparse bit
set implementation like [23] or a Bloom filter-based set [2] would replace our IntMap-based set,
except for the first “predicate name” position, needed to enumerate the potential matches. In
this case, the probability of false positives can be fine-tuned as needed, while keeping in mind
that false positives will be anyway quickly eliminated by our pre-unification head-matching
step. Finally, especially for very large programs, one might want to compute the set of
matching clauses lazily, using the Java 8 streams APT [9].

Implementation of indexing for large fact databases is a combination of ordered set
intersection and lazy execution as provided by the Java 8 stream API. The intersection
of the sets of clauses associated (via LinkedHashSets, to preserve order) to each argument
position (or more generally a path to a deeper indexable component) is implemented as a
stream filtering operation. As sizes of matching sets are known in advance, the initial stream

P. Tarau

Table 1 Timings and number of logical inferences (as counted by SWI-Prolog) on 4 small Prolog

programs.
System 11 queens perms of 11 + nrev sudoku 4x4 ‘ metaint perms
our interpreter 5.710s 5.622s 3.500s 16.556s
Lean Prolog 3.991s 5.780s 3.270s 11.559s
Styla 13.164s 14.069s 22.196s 37.800s
SWI-Prolog 1.835s 2.620s 1.336s 4.872s
LIPS 7,278,988 7,128,483 9,261,376 6,651,000

is created from the smallest set of matching clauses, which is then filtered with the others
ordered by size. As stream specifications are mainly promises to perform operations when
needed, clauses are extracted from the intersection one at a time and then passed to the
logic engine for pre-unification and eventual heap construction and full unification. It also
makes sense to speed-up these operations by declaring the streams parallel.

6 Some basic performance tests

We prototyped our design as a small, slightly more than 1000 lines of generously commented
Java program. However, as a more natural target for a system developed around it would
use C, we have stayed away from Java’s object oriented features by using a large Engine
class hosting all the data areas and a few small classes like Clause and Spine that can
be easily mapped to C structs. While implemented as an interpreter, our preliminary
tests (Table 1) indicate, somewhat surprisingly, that performance is close, (within a factor
of 2) to our Java-based systems like Jinni and Lean Prolog that use a (fairly optimized)
WAM-based instruction set and a factor of 2-4 from C-based SWI-Prolog. While this an
order of magnitude slower than today’s C based Prologs the “apples-to-apples” comparison
with our fast WAM-based Prolog implemented in the same language - Java - is a more
accurate indication that this lightweight interpreter design is actually quite fast and likely
to be within a factor of 2 to 3 of today’s optimized WAM-based Prologs if implemented
in C. The program 11 queens computes (without printing them out) all the solutions of
the 11-queens problem. Sudoku 4x4 does the same for a reduced Sudoku solver and perms
of 1l+nrev computes the unique permutation that is equal to the reversed sequence of
numbers computed by the naive reverse predicate. The fourth program, metaint perms is a
variant of the second program, run this time via the two clause meta-interpreter that we
have started from, in section 2, to derive our execution algorithm.

For a more conclusive performance comparison, future work is planned on first deriving a
WAM-like compiled instruction set from our interpreter. Also, we expect that a C-based
system, even if kept as an interpreter, is likely to boost performance slightly above slower
compiled systems like SWI-Prolog, from which our Java-based interpreter is within a factor
of 2-4 on the Horn Clause subset, for small programs.

7 Related work

The closest Prolog implementation is our own Styla system [16], a Scala-based interpreter,
itself a derivative of our Java-based Kernel Prolog [15] system. They both use a clause
unfolding interpreter along the lines of [12], but contrary to our current design, they rely
heavily on high-level features of the implementation language, including an object-oriented

10:13

ICLP 2017 TCs

10:14

A Hitchhiker’s Guide to Reinventing a Prolog Machine

term hierarchy and a unification algorithm distributed over various term sub-types. First-
class, “resumable” Prolog engines have been present in our systems since [13] and there’s some
renewed interest in them (as reflected by a few dozen recent messages in comp.lang.prolog in
September 2015) as well as in a similar, thread-based model used in SWI-Prolog’s Pengines [7].

Locating function symbols and arity in separate words is different to the typical “sym-
bol4-arity” used in most other Prolog systems we are aware of. The translation from HiLog [4]
to a first order form, using apply/N predicates, is similar to our natural language assembler,
where (unnamed) arrays of various lengths are essentially the same thing as HiLog’s apply/N
predicate wrappers. Consequently, work on a first-order semantics for HiLog [4] also covers
our natural assembler programs.

There are some clear commonalities with the WAM [1] and more closely with the BInWAM
variant of it [17] where transformation to binary clauses implicitly emulates a form of goal
stacking. In a way, we also end up emulating something close to the WAM’s registers that
are saved in our Spine stack, itself playing a role similar to the WAM’s OR-stack. Placing
them on a stack, rather than mapping them to a register vector, is also similar to B-Prolog’s
stack frame-based representation [24].

The major commonality with the BInWAM [17], not present in the WAM, is that the
implicit goal-stacking of the BinWAM is replaced here with an explicit and immutable goal
stack seen as present in each Spine. As most (except the few topmost) goal elements are
shared among Spines, the overall time and space costs are comparable with a mutable goal
stack managed by saving in our Spines pointers to its top. Another commonality with a
BinWAM-optimization (as implemented in BinProlog) is that arguments placed in registers
are dereferenced once and then matched against several clause candidates. On the other
hand, the WAMSs instruction set ensures subterms are only built on the heap as needed, while
our interpreter tries instead to eliminate up front the non-matching clauses by borrowing
pre-unification information from a prototype clause at a lower heap location before unification
is called. On unification success, the complete body of the clause is relocated, and, as this
heap-to-heap copy is quite fast, we do not get a significant performance hit as a result. Thus,
some of the unexplored implementation choices that materialized through our “from scratch”
design steps result in comparable performance, while staying intuitively closer to the view
offered by the two clause meta-interpreter, that we have started with in section 2.

Another feature not present in typical WAM-based Prolog systems, is the decoupling of
indexing and unification instructions, although one might argue that the same philosophy is
motivating the just-in-time indexing schemes of YAP [5] and SWI-Prolog [22] and the user
defined indexing of [20]. In fact, when generalized to arbitrary paths, reaching constants
occurring deep in a term, our indexing algorithm has more in common with the ones used in
theorem proving systems like [10], than with the WAM’s tightly interleaved indexing instruc-
tions [1]. We believe that besides separating naturally independent concerns, decoupling
indexing favors deployment scenarios where the Prolog code is distributed on a cluster or
cloud, and fetched as needed. In this case, indexing might need to happen at a different site
than the one where the call is made.

8 Conclusions

We hope that by trying to forget as much as we could about the long polished art of Prolog
implementation, we have obtained a genuinely more intuitive view of Prolog’s execution
algorithm. By deriving our Prolog machine as naively as possible, from a two line meta-
interpreter, we have captured the necessary step-by-step transformations that one needs to
implement in a procedural language that mimics it.

P. Tarau

In the process, we have lifted some restrictions on Prolog syntax, like the need for the
function or predicate symbol to be a constant, and we have decoupled the indexing algorithm
from the main execution mechanism of our Prolog machine. We have also proposed a
natural language style, human readable intermediate language that can be loaded directly
by the runtime system using a minimalistic tokenizer and parser. The code and the heap
representation became one and the same. And the interpreter based on our design was able
to get close enough (within a factor of two but often less) to optimized compiled code as
shown by our preliminary performance tests. With only slightly more than 1000 lines of
Java code, we believe that future ports of this design can help with the embedding of logic
programming languages as lightweight software or hardware components.

—— References

1 H. Ait-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, 1991.

2 Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Commu-
nications of the ACM, 13:422-426, 1970.

3 Mats Carlson and Per Mildner. SICStus Prolog — The first 25 years. Theory and Practice
of Logic Programming, 12:35-66, 1 2012. doi:10.1017/S1471068411000482.

4 W. Chen, M. Kifer, and D.S. Warren. HiLog: A first-order semantics for higher-order logic
programming constructs. In E.L. Lusk and R.A. Overbeek, editors, 1st North American
Conf. Logic Programming, pages 1090-1114, Cleveland, OH, 1989. MIT Press.

5 Vitor Santos Costa, Ricardo Rocha, and Luis Damas. The YAP Prolog system. Theory
and Practice of Logic Programming, 12:5-34, 1 2012. doi:10.1017/51471068411000512.

6 M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez-Garcia, E. Mera, J. F. Morales, and
G. Puebla. An overview of Ciao and its design philosophy. Theory and Practice of Logic
Programming, 12:219-252, 1 2012. doi:10.1017/S1471068411000457.

7 Torbjorn Lager and Jan Wielemaker. Pengines: Web logic programming made easy. TPLP,
14(4-5):539-552, 2014. doi:10.1017/S1471068414000192.

8 Micha Meier. Compilation of compound terms in Prolog. In Saumya Debray and Manuel
Hermenegildo, editors, Proceedings of the 1990 North American Conference on Logic Pro-
grammang, pages 63-79, Cambridge, Massachusetts London, England, 1990. MIT Press.

9 Oracle Corp. Java 8 Streams package. URL: https://docs.oracle.com/javase/8/docs/
api/java/util/stream/package-summary.html.

10 Alexandre Riazanov and Andrei Voronkov. Efficient Instance Retrieval with Standard and
Relational Path Indezing, pages 380-396. Springer Berlin Heidelberg, Berlin, Heidelberg,
2003. doi:10.1007/978-3-540-45085-6_34.

11 Terrance Swift and S. Warren, David. XSB: Extending Prolog with Tabled Logic Pro-
gramming. Theory and Practice of Logic Programming, 12:157-187, 1 2012. doi:10.1017/
S1471068411000500.

12 Paul Tarau. Inference and Computation Mobility with Jinni. In K.R. Apt, V.W. Marek,
and M. Truszczynski, editors, The Logic Programming Paradigm: a 25 Year Perspective,
pages 33-48, Berlin Heidelberg, 1999. Springer. ISBN 3-540-65463-1.

13 Paul Tarau. Fluents: A Refactoring of Prolog for Uniform Reflection and Interoperation
with External Objects. In John Lloyd, editor, Computational Logic—-CL 2000: First Inter-
national Conference, London, UK, July 2000. LNCS 1861, Springer-Verlag.

14 Paul Tarau. Jinni Prolog: a Java-based Prolog compiler and runtime system , May 2012.
https://code.google.com/archive/p/jinniprolog/.

15 Paul Tarau. Kernel Prolog: a Java-based Prolog Interpreter Based on a Pure Ob-
ject Oriented Term Hierarchy, May 2012. https://code.google.com/archive/p/
kernel-prolog/.

10:15

ICLP 2017 TCs

http://dx.doi.org/10.1017/S1471068411000482
http://dx.doi.org/10.1017/S1471068411000512
http://dx.doi.org/10.1017/S1471068411000457
http://dx.doi.org/10.1017/S1471068414000192
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
http://dx.doi.org/10.1007/978-3-540-45085-6_34
http://dx.doi.org/10.1017/S1471068411000500
http://dx.doi.org/10.1017/S1471068411000500
https://code.google.com/archive/p/jinniprolog/
https://code.google.com/archive/p/kernel-prolog/
https://code.google.com/archive/p/kernel-prolog/

10:16

A Hitchhiker’s Guide to Reinventing a Prolog Machine

16

17

18

19

20

21

22

23
24

Paul Tarau. Styla: a Lightweight Scala-based Prolog Interpreter Based on a Pure Object
Oriented Term Hierarchy, May 2012. https://code.google.com/archive/p/styla//.
Paul Tarau. The BinProlog Experience: Architecture and Implementation Choices for
Continuation Passing Prolog and First-Class Logic Engines. Theory and Practice of Logic
Programming, 12(1-2):97-126, 2012.

Paul Tarau and Michel Boyer. Elementary Logic Programs. In P. Deransart and
J. Maluszynski, editors, Proceedings of Programming Language Implementation and Logic
Programming, number 456 in Lecture Notes in Computer Science, pages 159-173, Berlin
Heidelberg, August 1990. Springer.

Peter Van Roy. 1983-1993: The Wonder Years of Sequential Prolog Implementation.
Journal of Logic Programming, 19(20):385-441, 1994.

David Vaz, Vitor Santos Costa, and Michel Ferreira. User defined indexing. In Proceedings
of the 25th International Conference on Logic Programming, ICLP ’09, pages 372-386,
Berlin, Heidelberg, 2009. Springer-Verlag. doi:10.1007/978-3-642-02846-5_31.

D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, Artificial
Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park CA 94025, 1983.
Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjorn Lager. SWI-Prolog. Theory
and Practice of Logic Programming, 12:67-96, 1 2012. doi:10.1017/51471068411000494.
Brett Wooldridge. Sparse Bit Set, 2016. https://github.com/brettwooldridge/SparseBitSet.
Neng-Fa Zhou. The language features and architecture of B-Prolog. Theory and Practice
of Logic Programming, 12:189-218, 1 2012. doi:10.1017/S1471068411000445.

https://code.google.com/archive/p/styla//
http://dx.doi.org/10.1007/978-3-642-02846-5_31
http://dx.doi.org/10.1017/S1471068411000494
http://dx.doi.org/10.1017/S1471068411000445

Efficient Declarative Solutions in Picat for

Optimal Multi-Agent Pathfinding

Neng-Fa Zhou' and Roman Bartik?

1 CUNY Brooklyn College and Graduate Center, New York, USA
nzhou@sci.brooklyn.cuny.edu

2 Charles University, Praha, Czech Republic
bartak@ktiml.mff.cuni.cz

—— Abstract

The multi-agent pathfinding (MAPF) problem has attracted considerable attention because of its
relation to practical applications. The majority of solutions for MAPF are algorithmic. Recently,
declarative solutions that reduce MAPF to encodings for off-the-shelf solvers have achieved re-
markable success. We present a constraint-based declarative model for MAPF, together with
its implementation in Picat, which uses SAT and MIP. We consider both the makespan and the
sum-of-costs objectives, and propose a preprocessing technique for improving the performance of
the model. Experimental results show that the implementation using SAT is highly competitive.
We also analyze the high performance of the SAT solution by relating it to the SAT encoding
algorithms that are used in the Picat compiler.

1998 ACM Subject Classification 1.2.5 Programming Languages and Software (D.3.2)
Keywords and phrases Multi-agent Path Finding, SAT, MIP, Picat

Digital Object Identifier 10.4230/0ASIcs.ICLP.2017.11

1 Brief Overview

The multi-agent pathfinding (MAPF) problem amounts to finding a plan for agents to move
within a graph from their starting locations to their destinations, such that no agents collide
with each other at any time. While MAPF can be solved suboptimally in polynomial time [4],
the optimization version with the objective of minimizing the makespan or the sum-of-costs is
NP-hard [9, 13]. MAPF has been intensively studied, because the problem occurs in various
forms in practical applications, such as robotics and games [1, 7], and the problem also
provides a platform for studying search algorithms [6, 8, 12].

Recently, studies of MAPF have proposed using declarative models that rely on off-the-
shelf solvers to find solutions. These solvers include CSP (Constraint Satisfaction Problems)
[5], SAT (Satisfiability) [10, 11], ASP (Answer Set Programming) [2], and MIP (Mixed Integer
Programming) [14]. Declarative models are easy to implement and maintain, can easily be
altered for other variants, and are amenable to new domain-specific constraints. SAT-based
MAPF solutions are especially promising; they have been shown to be competitive with some
well-designed heuristic search algorithms [11].

All of the constraint-based models follow the planning-as-satisfiability approach [3], which
finds a sequence of states of a bounded length, where the first state corresponds to the
initial state, the last state satisfies the goal condition, and each pair of successive states
constitutes a valid action. An efficient declarative solution requires a good model of variables
and constraints, a fast solver, and a decent encoding of the model for the solver.

? Neng-Fa Zhou and. Roman Bartéki

5v icensed under Creative Commons License CC-BY
Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 11; pp. 11:1-11:2

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

11:2

MAPF in Picat

We give a constraint-based declarative model for MAPF. The model is very natural; it
uses a Boolean variable to indicate whether an agent occupies a vertex of the graph in a
state, and uses constraints to ensure the validity of all of the states and state transitions.
The basic model minimizes the makespan objective. This model is easily extended to deal
with the sum-of-costs objective. We adapt a preprocessing technique for eliminating some
of the variables in the model that can never be set to 1. The model is implemented in
Picat [15], a general-purpose language that provides several tools for modeling and solving
combinatorial problems. Experiments with the SAT and MIP modules show that the SAT
solution is more competitive than the MIP solution. A comparison with ASP also reveals the
high performance of the SAT solution. We also analyze the performance of the SAT solution
by relating it to the encoding algorithms used in the Picat SAT compiler.

—— References

1 Kurt M. Dresner and Peter Stone. A multiagent approach to autonomous intersection
management. J. Artif. Intell. Res. (JAIR), 31:591-656, 2008.

2 Esra Erdem, Doga Gizem Kisa, Umut Oztok, and Peter Schiiller. A general formal frame-
work for pathfinding problems with multiple agents. In Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence, 2013.

3 Henry A. Kautz and Bart Selman. Planning as satisfiability. In FCAI pages 359-363, 1992.

4 Gabriele Réger and Malte Helmert. Non-optimal multi-agent pathfinding is solved (since
1984). In SOCS, 2012.

5 Malcolm Ryan. Constraint-based multi-robot path planning. In IEEE International Con-
ference on Robotics and Automation, ICRA, pages 922-928, 2010.

6 Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The increasing cost tree
search for optimal multi-agent pathfinding. Artif. Intell., 195:470-495, 2013.

7 David Silver. Cooperative pathfinding. In Proceedings of the First Artificial Intelligence
and Interactive Digital Entertainment Conference, pages 117-122, 2005.

8 Trevor Scott Standley and Richard E. Korf. Complete algorithms for cooperative pathfind-
ing problems. In IJCAI, pages 668-673, 2011.

9 Pavel Surynek. An optimization variant of multi-robot path planning is intractable. In
Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

10 Pavel Surynek. A simple approach to solving cooperative path-finding as propositional
satisfiability works well. In PRICAI pages 827-833, 2014.

11 Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Efficient SAT approach to
multi-agent path finding under the sum of costs objective. In FCAI, pages 810-818, 2016.

12 Ko-Hsin Cindy Wang and Adi Botea. Fast and memory-efficient multi-agent pathfinding.
In ICAPS, pages 380-387, 2008.

13 Jingjin Yu and Steven M. LaValle. Structure and intractability of optimal multi-robot path
planning on graphs. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial
Intelligence, 2013.

14 Jingjin Yu and Steven M. LaValle. Optimal multi-robot path planning on graphs: Complete
algorithms and effective heuristics. CoRR, abs/1507.03290, 2015.

15 Neng-Fa Zhou, Hékan Kjellerstrand, and Jonathan Fruhman. Constraint Solving and Plan-
ning with Picat. Springer, 2015.

Treewidth in Non-Ground Answer Set Solving and
Alliance Problems in Graphs*
Bernhard Bliem

TU Wien, Vienna, Austria
bliem@dbai.tuwien.ac.at

—— Abstract

To solve hard problems efficiently via answer set programming (ASP), a promising approach
is to take advantage of the fact that real-world instances of many hard problems exhibit small
treewidth. Algorithms that exploit this have already been proposed — however, they suffer from
an enormous overhead. In the thesis, we present improvements in the algorithmic methodology
for leveraging bounded treewidth that are especially targeted toward problems involving subset
minimization. This can be useful for many problems at the second level of the polynomial
hierarchy like solving disjunctive ground ASP. Moreover, we define classes of non-ground ASP
programs such that grounding such a program together with input facts does not lead to an
excessive increase in treewidth of the resulting ground program when compared to the treewidth
of the input. This allows ASP users to take advantage of the fact that state-of-the-art ASP
solvers perform better on ground programs of small treewidth. Finally, we resolve several open
questions on the complexity of alliance problems in graphs. In particular, we settle the long-
standing open questions of the complexity of the Secure Set problem and whether the Defensive
Alliance problem is fixed-parameter tractable when parameterized by treewidth.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases answer set programming, treewidth, secure set, defensive alliance, pa-
rameterized complexity

Digital Object ldentifier 10.4230/0OASIcs.ICLP.2017.12

1 Introduction

The problem solving paradigm Answer Set Programming (ASP) [12, 30, 46, 45] has become
quite popular for tackling computationally hard problems. It offers its users a very convenient
declarative language that allows for succinct specifications, and there are highly efficient
systems available [32, 31, 29, 2, 3, 44, 4, 51, 23].

Although ASP systems have made huge advances in performance, they still struggle with
several tough problems. This is not always just an issue of computational complexity in the
classical sense. Interestingly, ASP systems may perform quite well in practice on one problem
whereas the performance on another problem of the same complexity can be significantly
worse. Often classical complexity theory is thus only of limited help to explain ASP solving
performance in practice. In such cases, it may be insightful to consider the parameterized
complexity of the problems [20, 28, 17, 48]. This theoretical framework investigates the
complexity of a problem not only in terms of the input size, but also of other parameters.

In this work, we are particularly interested in the effect of the structural parameter
treewidth [50] on the performance of ASP solvers. Intuitively, the smaller the treewidth

* This work was supported by the Austrian Science Fund (FWF) projects P25607 and Y698.

© Bernhard Bliem;
37 licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 12; pp. 12:1-12:12

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

12:2

Treewidth in Non-Ground ASP and Alliance Problems

of a graph, the closer the graph resembles a tree. It is well-known that many graph
problems become easy if we restrict the input to trees and it has turned out that for many
important problems this even holds for the more general class of instances of bounded
treewidth [5]. Luckily, it has been observed that real-world instances usually exhibit small
treewidth [10, 52, 41]. Moreover, treewidth is not only relevant for graph problems. It can
also be applied to instances of all kinds of problems by choosing a suitable representation
of the instance as a graph. For instance, treewidth has also been considered for constraint
satisfaction problems [19], where it is known under the name of “induced width” and is
crucial for the performance of a technique called bucket elimination [18].

There have already been some investigations concerning treewidth and ground ASP (i.e.,
ASP programs without variables, also known as propositional programs) [34, 49, 26]. An
important result is the algorithm from [39] for deciding whether a ground ASP program
has a solution in linear time on instances of bounded treewidth. This algorithm employs a
technique called dynamic programming on tree decompositions, which is very common for
algorithms that exploit small treewidth. The algorithm from [39] has also been implemented
and proposed as an alternative solver for ground ASP [47]. For certain problems, this
dynamic-programming-based solver was able to outperform state-of-the-art ASP solvers if
the instances had a very small treewidth and the sizes of the instances were very large.

Although the encouraging results from [47] confirmed that small treewidth can be
successfully exploited for ASP solving in experimental settings, the restrictions on problems
and instances that make this approach perform well were still too severe for most practical
applications. The main obstacles that prevented this approach from being useful for a broad
range of applications were the facts that, on the one hand, the naive dynamic programming
approach involves an enormous overhead (especially in terms of memory) and, on the other
hand, state-of-the-art ASP solvers often perform so well that the theoretical superiority of
the dynamic programming algorithm only pays off for instances of tremendous size. In fact,
experiments in [7] indicated that state-of-the-art ASP solvers are “sensitive” to the treewidth
of their input in the sense that smaller treewidth strongly correlates with higher solving
performance.

These issues hint at interesting research challenges. In particular, two approaches seem
promising for successfully exploiting small treewidth for ASP solving in practice:

The first research challenge is to improve the dynamic-programming-based methodology
in order to avoid some of its overhead and redundant computations.

For solving ground ASP, these issues are especially severe compared to other problems
because the corresponding computational problems are even harder than NP under
standard complexity-theoretic assumptions. (In fact, deciding whether a ground ASP
program with disjunctions has an answer set is at the second level of the polynomial
hierarchy.) This high complexity of ground ASP is mirrored in the dynamic programming
algorithm [39], which uses brute force to first of all find all models of all parts of the
decomposed program, and it subsequently uses brute force again for each such partial
model to find all potential counterexamples that may cause the candidate to be discarded.
This pattern also frequently occurs in dynamic programming algorithms for other problems
that search for solutions satisfying some form of subset minimality. Besides ground ASP,
this is the case, for instance, for the problem of finding subset-minimal models of a
propositional formula. In general, problems involving subset-minimization are quite
common in AI, and dynamic programming algorithms have been proposed for, e.g.,
circumscription, abduction or abstract argumentation (see [38, 35, 21]). Such algorithms
typically store a great number of redundant objects because the subsets that may invalidate

B. Bliem

a solution candidate are themselves solution candidates. Moreover, the specifications of
such algorithms themselves contain redundancies because the potential counterexamples
are usually manipulated in almost the same way as the solution candidates.

The second research challenge is to solve ASP by not doing dynamic programming at
all but instead exploiting small treewidth implicitly by relying on the assumption that
state-of-the-art solvers perform better when given ground programs of small treewidth
(as indicated by the experiments in [7]).

Since problems are usually encoded in non-ground ASP, here the research objective is to
investigate which non-ground encoding techniques significantly blow up the treewidth of
the grounding when compared to the treewidth of the input facts.

In addition to leveraging treewidth for ASP solving, we are interested in several variants
of a graph problem called SECURE SET [13]. It belongs to the class of so-called alliance
problems [42, 24, 53], which are problems that ask for groups of vertices that help each other
out in a certain way. Practical applications of alliance problems include finding groups of
websites that form communities [27] or distributing resources in a computer network in such
a way that simultaneous requests can be satisfied [36]. Intuitively, a set S of vertices in a
graph is secure if every subset of S has as least as many neighbors in S as neighbors not in
S. The SECURE SET problem asks whether a given graph contains a secure set at most of a
certain size.

The reason why we are concerned with SECURE SET is that this problem has quite
interesting properties, especially for ASP researchers: Attempts of encoding this problem in
ASP have resulted in very involved specifications indicating that SECURE SET may require
the full expressive power of ASP [1]. However, it is unfortunately unclear whether this is
really necessary because its complexity has still remained unresolved although the problem
has been introduced already in 2007 [13].

One of the variants of SECURE SET that we consider in the proposed thesis is the
DEFENSIVE ALLIANCE problem [42; 43]. This problem has received quite some attention in
the literature [24]. It is known to be NP-complete, but its complexity when parameterized
by treewidth has remained open.

2 Background

We assume some familiarity with ASP; introductions can be found in [12, 30, 46, 45]. In
the thesis, we study both ground ASP programs, i.e., programs without variables, but also
programs utilizing the full ASP language as described in the ASP-Core-2 specification [14].
In particular, we include weak constraints and aggregates.

We only outline the syntax of a simplified version of non-ground ASP. For details and
semantics, we refer to the standard [14]. An ASP program consists of rules of the following
form:

hi|...| hg:—p1,...,pe,n0t Ny, ..., N0t Ny

The head of a rule r is the set denoted by H(r) = {hy,..., hi}, the positive body of r is the
set BT (r) = {p1,...,pe}, and the negative body of r is the set B~ (r) = {ny,...,ny}. Al
elements of these sets are called atoms. An atom is either a predicate atom or an aggregate
atom. Predicate atoms have the form p(t1,...,t;), where p is a predicate and t1,...,t; are
terms, that is, constants or variables. A predicate is called extensional in a program IT if it
only occurs in rule bodies of II. An atom is called eztensional in II if it is a predicate atom
over an extensional predicate. We omit a definition of aggregate atoms but only mention

12:3

ICLP 2017 TCs

12:4

Treewidth in Non-Ground ASP and Alliance Problems

that they allow us to, e.g., compute a sum of integers or count the cardinality of a set. For
details, we refer to [14]. In addition to rules as defined above, we allow for weak constraints,
which are special kinds of rules and have the following form:

i~ P, ..., POt N, L, N0t Ny (W, T g

The intuition is that if an answer set violates a ground instantiation of such a weak constraint,
then this incurs a penalty of w to the cost of the solution. (Without the terms ¢4, ...,
each weight w would in fact only be counted once in the cost of a solution, hence t1, ..., tx
can be specified for counting the same weight multiple times.) Again, we omit details and
refer to [14] instead.

To solve a non-ground ASP program, ASP systems usually first invoke a grounder that
transforms a program into a set of ground rules. The answer sets of the original program are
the stable models (as defined in [33]) of the resulting ground program.

A “naive” grounder blindly instantiates variables by all possible ground terms. Grounders
in practice, on the other hand, employ sophisticated techniques in order to keep the resulting
ground program as small as possible. As these techniques differ between systems, we define
a simplified notion of grounding that is easier to study. For a meaningful investigation of the
relationship between the treewidth of the input and the treewidth of the grounding, we need
to assume that the grounder still performs some basic simplifications. These simplifications
are so basic that they can be assumed to be implemented by all reasonable grounders. The
intuition is that a rule from the “naive” grounding is omitted in our grounding whenever its
positive body contains an atom that cannot possibly be derived.

» Definition 1. Let II be a non-ground ASP program, let II™ denote the positive program
obtained from II by removing all negated atoms and replacing disjunctions with conjunctions
(i.e., splitting disjunctive into normal rules), and let M ™ be the unique minimal model of TT*.
The grounding of II, denoted by gr(II), is such that, for every substitution s from variables
to constants, s(r) € gr(Il) iff s(BT(r)) C M.

In our work, we are interested in the treewidth of ground ASP programs. For this, we
represent programs as graphs as follows.

» Definition 2. The primal graph of a ground ASP program II is an undirected graph whose
vertices are the atoms in Il and there is an edge between two atoms if they appear together
in a rule in IT. The treewidth of a ground ASP program II is the treewidth of its primal
graph.

Deciding whether a disjunctive ground ASP program has a stable model is ¥5-complete in
general [22], and it can be done in linear time for ground programs of bounded treewidth [34].
Treewidth is an important parameter studied in the context of parameterized complezity
theory. Here, decision problems consist not only of an instance and a yes-no question, but
additionally of a parameter of the instance. For introductions, we refer to [20, 28, 17, 48].
The central notion of tractability is called fized-parameter tractability.

» Definition 3. A problem is fized-parameter tractable (FPT) w.r.t. a parameter k of the
instances if it admits an algorithm that runs in time O(f(k) - n¢), where f is an arbitrary
computable function that only depends on k, n is the input size and c is an arbitrary constant.
We call such an algorithm an FPT algorithm.

Note that the factor f(k) in this running time may be exponential in the parameter &, but
if k£ is bounded by a constant, then the algorithm runs in polynomial time. Importantly,
the degree ¢ of the polynomial must be a constant and may not depend on the parameter,
otherwise the algorithm is not considered FPT.

B. Bliem

Dynamic programming on tree decompositions is perhaps the most common technique for
obtaining FPT algorithms when the parameter is treewidth. It is employed in the algorithm
for solving ground ASP in [39], for instance. The basic idea is the following: Given a graph
G, a tree decomposition of G is a tree whose nodes correspond to subgraphs of G according
to certain conditions. If the treewidth of a graph is bounded by a constant, then we can find
(in linear time) a tree decomposition whose nodes correspond to subgraphs of constant size
[11]. We can then solve many problems by first applying brute force at each subgraph in
order to solve a subproblem corresponding to this subgraph and then trying to combine the
obtained partial solutions. Due to the bound on the treewidth, we can afford this brute force
approach because each of the considered subgraphs has bounded size. Formal definitions and
examples of this technique can be found in, e.g., [48].

We now define secure sets in graphs [13]. For this, we use the notation Ng[S] to denote
the closed neighborhood of a subset .S of the vertices of a graph G; that is, Ng[S] contains
the vertices in .S itself and the vertices that are adjacent to an element of S.

» Definition 4. Let G be a graph and S be a subset of its vertices. We call S secure in G if
INa[X]N S| = |Ng[X]\ S| holds for every X C S.

Intuitively, we can regard a neighbor of X as a “good” neighbor if it is also in S, and as a
“bad” neighbor otherwise. Now X is a counterexample to S being secure if X has more bad
neighbors than good ones.

3 Contributions

Our contributions can be arranged in three groups: First, we present improvements in the
dynamic programming methodology; second, we define non-ground ASP classes that can be
shown to preserve bounded treewidth of the input in grounding; third, we provide complexity
results and algorithms for alliance problems in graphs.

3.1 Improvements in the Dynamic Programming Methodology

We present an improved dynamic programming methodology for problems that involve subset
minimization. Specifically, for any problem P whose solutions are exactly the subset-minimal
solutions of some base problem B, we formalize how a dynamic programming algorithm for
B can automatically be transformed into a dynamic programming algorithm for P. We prove
that the resulting algorithm runs in linear time on instances of bounded treewidth if the
base algorithm does. Moreover, we prove that the resulting algorithm is correct if the base
algorithm is correct and, intuitively, it only computes partial solutions that do not “revoke
decisions” made by associated partial solutions further down in the tree decomposition. The
resulting algorithm has two advantages compared to solving P directly in a naive way: first,
it is usually easier to specify because we only need to design an algorithm for the base
problem and need not care about subset minimization; second, it is potentially more efficient
because it stores fewer redundant items.

Indeed, this methodology has been empirically shown to lead to significant performance
benefits for several problems [6]. An improved version of the classical dynamic programming
algorithm for ground ASP has been implemented using these ideas [25] and proved to be
significantly more efficient than the algorithm from [39]. Our result formalizes the common
scheme that underlies these algorithms. We thus provide a formal framework that makes
it possible to transfer the mentioned optimizations easily to other problems. Thereby we
make the impressive performance benefits that have been reported in [6, 25] accessible to

12:5

ICLP 2017 TCs

12:6

Treewidth in Non-Ground ASP and Alliance Problems

Listing 1 A guarded ASP encoding for checking whether a given set S (declared using predicate
s) is secure in a given graph (declared using predicates v and e). The guards of rules are underlined.

% Guess a subset X of S.

x(S) | nx(S) :- s(8).

% Neighbors of X are "good" if they are in S, otherwise they are "bad".
neighbor (V) :- x(X), e(X,V).

neighbor (X) :- x(X), v(X).

good (V) :- neighbor (V) , s(V).

bad (V) :-= mneighbor(V), v(V), not s(V).

% If X has more bad neighbors than good ones, S is not secure.

% We use the following weak constraints to determine this by summing up.
i~ v(V), good(V). [1,V] % Add 1 for each good neighbor.

i~ v(V), bad(V). [-1,V] % Subtract 1 for each bad neighbor.

algorithm designers working on related problems. This is primarily useful for problems on
the second level of the polynomial hierarchy as subset minimization is a recurring theme in
many such problems.

3.2 Non-Ground ASP Classes that Preserve Bounded Treewidth

We define non-ground ASP classes for which grounding, according to Definition 1, preserves
bounded treewidth of the input. By restricting the syntax of non-ground ASP, we define two
classes of programs called guarded and connection-guarded programs [7]. Guarded programs
guarantee that the treewidth of any fixed program after grounding stays small whenever
the treewidth of the input facts is small. We formally prove this property and show that,
despite their restrictions, guarded programs can still express problems that are complete for
the second level of the polynomial hierarchy.

Connection-guarded programs are even more expressive than guarded programs. We
show that the treewidth of any fixed connection-guarded program after grounding is small
whenever the treewidth and the maximum degree of (a graph representation of) the input
facts is small.

These results bring us closer to the goal of implicitly taking advantage of the apparent
sensitivity to treewidth exhibited by modern ASP solvers because they give us insight into
what happens to the treewidth of the input during grounding. Thus, by writing a program
in guarded ASP, we can be sure that the grounder does not destroy the property of bounded
treewidth. In the case of connection-guarded ASP, the same holds for the combination of
treewidth and maximum degree.

» Example 5. The ASP encoding in Listing 1 can be used for deciding whether a given set .S
of vertices is secure in a given graph G. It guesses a subset X of S and uses weak constraints
in such a way that the cost of each answer set is exactly |[Ng[X]| N S| — |[Ng[X]\ S]. If there
is a subset of S that has more “bad” neighbors than “good” ones, then the program has
an answer set with negative cost. The solutions of a program with weak constraints are
those answer sets that minimize the cost incurred by violated weak constraints. We can thus
decide whether S is secure by checking if this minimum value is negative.

The program in Listing 1 is guarded, which means that, for each rule r, all variables of r
occur together in a single extensional atom of BT (r) that we call the guard of r. Note that,
alternatively, it is also possible to check whether a set of vertices is secure without using
weak constraints. For instance, we can replace the weak constraints by the “hard” constraint

B. Bliem

;- #sum{ 1,G : good(G); -1,B : bad(B) } >= 0. The resulting program has an answer set
if and only if S is not secure. However, the new constraint is not guarded. This means that
the original program in Listing 1 generally leads to groundings of much lower treewidth and
can thus be expected to perform better. Indeed, the ground instantiation of the new hard
constraint would contain a linear number of atoms. Thus, the primal graph of the grounding
would contain a clique of linear size and thus have linear treewidth even if the treewidth of
input graphs is bounded by a constant.

In the thesis, we also present a complexity analysis of computational problems corre-
sponding to these classes when the parameter is the treewidth of the input, the maximum
degree of the input, or the combination of both. The results of this analysis show that, for
any fixed guarded ASP program, answer set solving is FPT when parameterized by the
treewidth of the input; moreover, for any fixed connection-guarded ASP program, answer set
solving is FPT when parameterized by the combination of treewidth and maximum degree.
This is not obvious because our ASP classes support weak constraints and aggregates, which
are not accounted for in the FPT algorithms [39, 25] for ground ASP. Furthermore, we prove
hardness results showing that for connection-guarded ASP programs both the treewidth and
the maximum degree must be bounded for obtaining fixed-parameter tractability. We do
this by presenting a connection-guarded ASP encoding of a problem that is NP-hard even if
the treewidth of the instances is fixed and by presenting a guarded encoding of a problem
that is £5-hard even if the degree of the instances is fixed.

As a side-product of these investigations, we obtain metatheorems for proving FPT
results. That is, our results on guarded ASP allow us to prove that a problem is FPT
when parameterized by treewidth by simply expressing the problem in guarded ASP. We
compare this metatheorem to the common approach of proving fixed-parameter tractability
by expressing a problem in monadic second-order logic and invoking the well-known theorem
by Courcelle [15, 16]. Similarly, we can prove that a problem is FPT when parameterized by
the combination of treewidth and maximum degree by expressing the problem in connection-
guarded ASP. This result is appealing because we are not aware of any metatheorems that
allow us to obtain FPT results for the combination of treewidth and degree as the parameter.

3.3 Alliance Problems in Graphs

We perform a complexity analysis of alliance problems in graphs, both in the classical setting
and when parameterized by treewidth. First, we settle the complexity of the SECURE SET
problem by proving that the problem, along with several variants, is ¥5-complete (that is, at
the second level of the polynomial hierarchy).

Next we turn to the complexity of SECURE SET and DEFENSIVE ALLIANCE when the
problems are parameterized by treewidth. We illustrate the use of our ASP classes as
FPT classification tools by presenting simple encodings for alliance problems in graphs. By
encoding the NP-complete DEFENSIVE ALLIANCE problem in connection-guarded ASP, we
easily obtain the already known result that the problem is FPT when parameterized by the
combination of treewidth and maximum degree. More importantly, we obtain the new result
that the co-NP-complete problem of deciding whether a given set is secure in a graph is FPT
for the parameter treewidth by encoding the problem in guarded ASP.

We also give several negative results. We prove that both DEFENSIVE ALLIANCE and
SECURE SET, as well as several problem variants, are not FPT when parameterized by
treewidth (under commonly held complexity-theoretic assumptions). These questions have
been open since the problems have been introduced in 2002 and 2007, respectively. They
have explicitly been stated as open problems in [40] (for DEFENSIVE ALLIANCE) and in [37]
(for SECURE SET).

12:7

ICLP 2017 TCs

12:8

Treewidth in Non-Ground ASP and Alliance Problems

Despite the parameterized hardness of SECURE SET, we can give at least a slightly
positive result: We show that the SECURE SET problem can still be solved in polynomial
time for instances of bounded treewidth although the degree of the polynomial depends on
the treewidth.

4 Current Status

The largest part of the research for the proposed thesis has already been done and is in the
process of being integrated and written down. Most of the results have been published in
conference proceedings and journals:
The work on improving the dynamic programming methodology for problems involving
subset minimization has been published in [6].
The class of connection-guarded ASP programs, which preserves bounded treewidth of
the input in grounding whenever the maximum degree is also bounded has been published
in [7]. That paper neither contained the thorough complexity analysis performed in the
proposed thesis nor the work on the class of guarded programs, which may be attractive
because this class does not require the degree of input graphs to be bounded.
The ¥5-completeness result of the SECURE SET problem has been published in [9]. An
extended version [8], which is currently under review for a journal, additionally contains
the parameterized complexity results. The proposed thesis extends this by results on the
parameterized complexity of the DEFENSIVE ALLIANCE problem as well.

5 Open Issues

The proposed thesis opens up several possibilities for future research:
The class of connection-guarded ASP programs may be of interest for algorithmic purposes
because it allows us to classify a problem as FPT when parameterized by treewidth plus
degree. A common technique for classifying problems parameterized by treewidth as
FPT is expressing them in monadic second-order logic (MSO). Our result may lead to an
extension of MSO that can be used for classifying problems as FPT when the parameter
is treewidth + degree.
From a more practical perspective, it is promising to look closely into what ASP solvers
and in particular their heuristics are doing when they are presented with a grounding
of small treewidth. This could provide us insight into why state-of-the-art ASP solvers
perform better on instances of small treewidth even though they do not “consciously”
exploit this fact. With the gained understanding, we may be able to improve their
performance by explicitly taking information from a tree decomposition into account
during solving. This could perhaps lead to a hybrid ASP solving approach that uses
classical conflict-driven clause learning in combination with techniques based on tree
decompositions.
We showed that SECURE SET is not FPT when parameterized by treewidth (unless the
class W[1] is equal to FPT). It would be interesting to study which additional restrictions
beside bounded treewidth need to be imposed on SECURE SET instances to achieve
fixed-parameter tractability. In particular, we do not know whether it becomes FPT
when additionally the degree is bounded.
Regarding our polynomial-time algorithm for SECURE SET on instances of bounded
treewidth, it would be interesting to study if this result can be extended to instances of
bounded clique-width, a parameter related to treewidth.

B. Bliem

Moreover, we have not considered a problem that is closely related to DEFENSIVE
ALLIANCE, namely OFFENSIVE ALLIANCE. Possibly some of our techniques can also be
applied to obtain complexity results for this problem.

DEFENSIVE ALLIANCE differs from SECURE SET in the size of the subsets of solution
candidates that need to be checked. For future work it would be interesting to study the
complexity of a problem that generalizes both of them, where the size of the subsets is a
parameter.

Finally, for the parameterized hardness results that we obtained we do not have corre-
sponding membership results. This is an obvious task for future work.

Acknowledgements. The proposed thesis was supervised by Stefan Woltran and is based
on publications with significant contributions by Giinther Charwat, Markus Hecher, Marius
Moldovan and Michael Morak.

—— References

1

10

11

Michael Abseher, Bernhard Bliem, Giinther Charwat, Frederico Dusberger, and Stefan
Woltran. Computing secure sets in graphs using answer set programming. J. Logic Comput.,
2015. Accepted for publication. doi:10.1093/1logcom/exv060.

Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone, and Francesco Ricca.
WASP: A native ASP solver based on constraint learning. In Pedro Cabalar and Tran Cao
Son, editors, Proceedings of LPNMR 2013, volume 8148 of LNCS, pages 54—66. Springer,
2013. doi:10.1007/978-3-642-40564-8_6.

Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca. Advances in
WASP. In Francesco Calimeri, Giovambattista Ianni, and Mirostaw Truszczynski, edi-
tors, Proceedings of LPNMR 2015, volume 9345 of LNCS, pages 40-54. Springer, 2015.
doi:10.1007/978-3-319-23264-5_5.

Mario Alviano, Wolfgang Faber, Nicola Leone, Simona Perri, Gerald Pfeifer, and Giorgio
Terracina. The disjunctive datalog system DLV. In Oege de Moor, Georg Gottlob, Tim
Furche, and Andrew Jon Sellers, editors, Revised Selected Papers of Datalog 2010, volume
6702 of LNCS, pages 282-301. Springer, 2011. doi:10.1007/978-3-642-24206-9_17.
Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12(2):308-340, 1991. doi:10.1016/0196-6774(91)
90006-K.

Bernhard Bliem, Giinther Charwat, Markus Hecher, and Stefan Woltran. D-FLAT"2: Sub-
set minimization in dynamic programming on tree decompositions made easy. Fund. In-
form., 147(1):27-61, 2016. doi:10.3233/FI-2016-1397.

Bernhard Bliem, Marius Moldovan, Michael Morak, and Stefan Woltran. The impact of
treewidth on ASP grounding and solving. In Carles Sierra and Fahiem Bacchus, editors,
Proceedings of IJCAI 2017. The AAAT Press, 2017. Accepted for publication.

Bernhard Bliem and Stefan Woltran. Complexity of secure sets. CoRR, abs/1411.6549,
2014. Updated to version 3 on July 11, 2017. URL: http://arxiv.org/abs/1411.6549.
Bernhard Bliem and Stefan Woltran. Complexity of secure sets. In Ernst W. Mayr, editor,
Revised Papers of WG 2015, volume 9224 of LNCS, pages 64—77. Springer, 2016. doi:
10.1007/978-3-662-53174-7_5.

Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernet., 11(1-2):1-21,
1993.

Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305-1317, 1996. doi:10.1137/80097539793251219.

12:9

ICLP 2017 TCs

http://dx.doi.org/10.1093/logcom/exv060
http://dx.doi.org/10.1007/978-3-642-40564-8_6
http://dx.doi.org/10.1007/978-3-319-23264-5_5
http://dx.doi.org/10.1007/978-3-642-24206-9_17
http://dx.doi.org/10.1016/0196-6774(91)90006-K
http://dx.doi.org/10.1016/0196-6774(91)90006-K
http://dx.doi.org/10.3233/FI-2016-1397
http://arxiv.org/abs/1411.6549
http://dx.doi.org/10.1007/978-3-662-53174-7_5
http://dx.doi.org/10.1007/978-3-662-53174-7_5
http://dx.doi.org/10.1137/S0097539793251219

12:10

Treewidth in Non-Ground ASP and Alliance Problems

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Gerhard Brewka, Thomas Eiter, and Mirostaw Truszczynski. Answer set programming
at a glance. Communications of the ACM, 54(12):92-103, 2011. doi:10.1145/2043174.
2043195.

Robert C. Brigham, Ronald D. Dutton, and Stephen T. Hedetniemi. Security in graphs.
Discrete Appl. Math., 155(13):1708-1714, 2007. doi:10.1016/j.dam.2007.03.009.
Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland
Kaminski, Thomas Krennwallner, Nicola Leone, Francesco Ricca, and Torsten
Schaub. ASP-Core-2 input language format. https://www.mat.unical.it/aspcomp2013/
ASPStandardization, 2015. Version: 2.03c.

Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite
graphs. Inform. and Comput., 85(1):12-75, 1990. doi:10.1016/0890-5401(90)90043-H.
Bruno Courcelle. The monadic second-order logic of graphs III: Tree-decompositions,
minors and complexity issues. RAIRO Theor. Inform. Appl., 26:257-286, 1992. doi:
10.1051/ita/1992260302571.

Marek Cygan, Fedor V. Fomin, f.ukasz Kowalik, Daniel Lokshtanov, Déniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer
International Publishing, Cham, Switzerland, 2015. doi:10.1007/978-3-319-21275-3.
Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelli-
gence, 113(1-2):41-85, 1999. doi:10.1016/50004-3702(99)00059-4.

Rina Dechter. Constraint Processing. Elsevier Morgan Kaufmann, Amsterdam, The Nether-
lands, 2003. doi:10.1016/b978-1-55860-890-0.x5000-2.

Rodney G. Downey and Michael R. Fellows. Parameterized Complezxity. Mono-
graphs in Computer Science. Springer, New York, NY, USA, 1999. doi:10.1007/
978-1-4612-0515-9.

Wolfgang Dvordk, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter
tractable algorithms for abstract argumentation. Artificial Intelligence, 186:1-37, 2012.
doi:10.1016/j.artint.2012.03.005.

Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic pro-
gramming: Propositional case. Ann. Math. Artif. Intell., 15(3-4):289-323, 1995. doi:
10.1007/BF01536399.

Islam Elkabani, Enrico Pontelli, and Tran Cao Son. SmodelsA - A system for computing
answer sets of logic programs with aggregates. In Chitta Baral, Gianluigi Greco, Nicola
Leone, and Giorgio Terracina, editors, Proceedings of LPNMR 2005, volume 3662 of LNCS,
pages 427-431. Springer, 2005. doi:10.1007/11546207_40.

Henning Fernau and Juan A. Rodriguez-Veldzquez. A survey on alliances and related
parameters in graphs. Electron. J. Graph Theory Appl. (EJGTA), 2(1):70-86, 2014. doi:
10.5614/ejgta.2014.2.1.7.

Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Answer set
solving with bounded treewidth revisited. In Marcello Balduccini and Tomi Janhunen,
editors, Proceedings of LPNMR 2017, volume 10377 of LNCS, pages 132-145. Springer,
2017. d0i:10.1007/978-3-319-61660-5_13.

Johannes Klaus Fichte and Stefan Szeider. Backdoors to tractable answer set programming.
Artificial Intelligence, 220:64—-103, 2015. doi:10.1016/j.artint.2014.12.001.

Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans Coetzee. Self-organization
and identification of web communities. IEEE Computer, 35(3):66-71, 2002. doi:10.1109/
2.989932.

Jorg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. Springer, 2006. doi:10.1007/3-540-29953-X.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Javier Romero, and Torsten
Schaub. Progress in clasp series 3. In Francesco Calimeri, Giovambattista Tanni, and

http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1016/j.dam.2007.03.009
https://www.mat.unical.it/aspcomp2013/ASPStandardization
https://www.mat.unical.it/aspcomp2013/ASPStandardization
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1051/ita/1992260302571
http://dx.doi.org/10.1051/ita/1992260302571
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1016/S0004-3702(99)00059-4
http://dx.doi.org/10.1016/b978-1-55860-890-0.x5000-2
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1016/j.artint.2012.03.005
http://dx.doi.org/10.1007/BF01536399
http://dx.doi.org/10.1007/BF01536399
http://dx.doi.org/10.1007/11546207_40
http://dx.doi.org/10.5614/ejgta.2014.2.1.7
http://dx.doi.org/10.5614/ejgta.2014.2.1.7
http://dx.doi.org/10.1007/978-3-319-61660-5_13
http://dx.doi.org/10.1016/j.artint.2014.12.001
http://dx.doi.org/10.1109/2.989932
http://dx.doi.org/10.1109/2.989932
http://dx.doi.org/10.1007/3-540-29953-X

B. Bliem

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Mirostaw Truszcezyniski, editors, Proceedings of LPNMR 2015, volume 9345 of LNCS, pages
368-383. Springer, 2015. doi:10.1007/978-3-319-23264-5_31.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers, Williston, VT, USA, 2012. doi:10.2200/
S00457ED1VO1Y201211ATMO19.

Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp: A
conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka, and John S. Schlipf,
editors, Proceedings of LPNMR 2007, volume 4483 of LNCS, pages 260—-265. Springer, 2007.
doi:10.1007/978-3-540-72200-7_23.

Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set
solving: From theory to practice. Artificial Intelligence, 187:52—-89, 2012. doi:10.1016/j.
artint.2012.04.001.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Proceedings of JICSLP 1988,
volume 2, pages 1070-1080. The MIT Press, 1988.

Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a key to tractability
of knowledge representation and reasoning. Artificial Intelligence, 174(1):105-132, 2010.
doi:10.1016/j.artint.2009.10.003.

Georg Gottlob, Reinhard Pichler, and Fang Wei. Tractable database design and datalog
abduction through bounded treewidth. Inf. Syst., 35(3):278-298, 2010. doi:10.1016/j.
is.2009.09.003.

Teresa W. Haynes, Stephen T. Hedetniemi, and Michael A. Henning. Global defensive

alliances in graphs. FElectron. J. Combin., 10, 2003. URL: http://www.combinatorics.

org/Volume_10/Abstracts/v10ilr47.html.

Yiu Yu Ho and Ronald D. Dutton. Rooted secure sets of trees. AKCFE Int. J. Graphs
Comb., 6(3):373-392, 2009.

Michael Jakl, Reinhard Pichler, Stefan Riimmele, and Stefan Woltran. Fast counting with
bounded treewidth. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors,
Proceedings of LPAR 2008, volume 5330 of LNCS, pages 436-450. Springer, 2008. doi:
10.1007/978-3-540-89439-1_31.

Michael Jakl, Reinhard Pichler, and Stefan Woltran. Answer-set programming with
bounded treewidth. In Craig Boutilier, editor, Proceedings of IJCAI 2009, pages 816-822.
The AAAIT Press, 2009.

Masashi Kiyomi and Yota Otachi. Alliances in graphs of bounded clique-width. Discrete
Appl. Math., 223:91-97, 2017. doi:10.1016/j.dam.2017.02.004.

Andrés Kornai and Zsolt Tuza. Narrowness, pathwidth, and their application in natural lan-
guage processing. Discrete Appl. Math., 36(1):87-92, 1992. doi:10.1016/0166-218X(92)
90208-R.

Petter Kristiansen, Sandra M. Hedetniemi, and Stephen T. Hedetniemi. Introduction to
alliances in graphs. In Ilyas Cicekli, Nihan Kesim Cicekli, and Erol Gelenbe, editors,
Proceedings of ISCIS 2002, pages 308-312. CRC Press, 2002.

Petter Kristiansen, Sandra M. Hedetniemi, and Stephen T. Hedetniemi. Alliances in graphs.
J. Combin. Math. Combin. Comput., 48:157-178, 2004.

Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log., 7(3):499-562, 2006. doi:10.1145/1149114.1149117.
Vladimir Lifschitz. What is answer set programming? In Dieter Fox and Carla P. Gomes,
editors, Proceedings of AAAI 2008), pages 1594-1597. The AAAI Press, 2008.

12:11

ICLP 2017 TCs

http://dx.doi.org/10.1007/978-3-319-23264-5_31
http://dx.doi.org/10.2200/S00457ED1V01Y201211AIM019
http://dx.doi.org/10.2200/S00457ED1V01Y201211AIM019
http://dx.doi.org/10.1007/978-3-540-72200-7_23
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1016/j.artint.2009.10.003
http://dx.doi.org/10.1016/j.is.2009.09.003
http://dx.doi.org/10.1016/j.is.2009.09.003
http://www.combinatorics.org/Volume_10/Abstracts/ v10i1r47.html
http://www.combinatorics.org/Volume_10/Abstracts/ v10i1r47.html
http://dx.doi.org/10.1007/978-3-540-89439-1_31
http://dx.doi.org/10.1007/978-3-540-89439-1_31
http://dx.doi.org/10.1016/j.dam.2017.02.004
http://dx.doi.org/10.1016/0166-218X(92)90208-R
http://dx.doi.org/10.1016/0166-218X(92)90208-R
http://dx.doi.org/10.1145/1149114.1149117

12:12

Treewidth in Non-Ground ASP and Alliance Problems

46

47

48

49

50

51

52

53

Victor W. Marek and Mirostaw Truszczynski. Stable models and an alternative logic pro-
gramming paradigm. In Krzysztof Apt, Victor W. Marek, Mirostaw Truszczynski, and
David S. Warren, editors, The Logic Programming Paradigm: A 25-Year Perspective, pages
375-398. Springer, New York, NY, USA, 2011. doi:10.1007/978-3-642-60085-2.
Michael Morak, Reinhard Pichler, Stefan Riimmele, and Stefan Woltran. A dynamic-
programming based ASP-solver. In Tomi Janhunen and Ilkka Niemeld, editors, Pro-
ceedings of JELIA 2010, volume 6341 of LNCS, pages 369-372. Springer, 2010. doi:
10.1007/978-3-642-15675-5_34.

Rolf Niedermeier. Invitation to Fized-Parameter Algorithms, volume 31 of Ozford Lec-
ture Series in Mathematics and its Applications. Oxford University Press, Oxford, United
Kingdom, 2006. doi:10.1093/acprof:0s0/9780198566076.001.0001.

Reinhard Pichler, Stefan Riimmele, Stefan Szeider, and Stefan Woltran. Tractable answer-
set programming with weight constraints: Bounded treewidth is not enough. Theory Pract.
Log. Program., 14(2):141-164, 2014. doi:10.1017/S1471068412000099.

Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J. Combin.
Theory Ser. B, 36(1):49-64, 1984. doi:10.1016/0095-8956 (84)90013-3.

Patrik Simons, Ilkka Niemeld, and Timo Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence, 138(1-2):181-234, 2002. doi:10.1016/
S0004-3702(02)00187-X.

Mikkel Thorup. All structured programs have small tree-width and good register allocation.
Inform. and Comput., 142(2):159-181, 1998. doi:10.1006/inco.1997.2697.

Ismael Gonzélez Yero and Juan A. Rodriguez-Veldzquez. Defensive alliances in graphs: A
survey. CoRR, abs/1308.2096, 2013. URL: http://arxiv.org/abs/1308.2096.

http://dx.doi.org/10.1007/978-3-642-60085-2
http://dx.doi.org/10.1007/978-3-642-15675-5_34
http://dx.doi.org/10.1007/978-3-642-15675-5_34
http://dx.doi.org/10.1093/acprof:oso/9780198566076.001.0001
http://dx.doi.org/10.1017/S1471068412000099
http://dx.doi.org/10.1016/0095-8956(84)90013-3
http://dx.doi.org/10.1016/S0004-3702(02)00187-X
http://dx.doi.org/10.1016/S0004-3702(02)00187-X
http://dx.doi.org/10.1006/inco.1997.2697
http://arxiv.org/abs/1308.2096

Achieving High Quality Knowledge Acquisition
using Controlled Natural Language
Tiantian Gao*

Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
tiagao@cs.stonybrook.edu

—— Abstract

Controlled Natural Languages (CNLs) are efficient languages for knowledge acquisition and reas-
oning. They are designed as a subset of natural languages with restricted grammar while being
highly expressive. CNLs are designed to be automatically translated into logical representations,
which can be fed into rule engines for query and reasoning. In this work, we build a knowledge
acquisition machine, called KAM, that extends Attempto Controlled English (ACE) and achieves
three goals. First, KAM can identify CNL sentences that correspond to the same logical rep-
resentation but expressed in various syntactical forms. Second, KAM provides a graphical user
interface (GUI) that allows users to disambiguate the knowledge acquired from text and incorpor-
ates user feedback to improve knowledge acquisition quality. Third, KAM uses a paraconsistent
logical framework to encode CNL sentences in order to achieve reasoning in the presence of
inconsistent knowledge.

1998 ACM Subject Classification 1.2.1 Applications and Expert Systems

Keywords and phrases Logic Programming, Controlled Natural Languages, Knowledge Acquis-
ition

Digital Object ldentifier 10.4230/0OASIcs.ICLP.2017.13

1 Introduction

Much of human knowledge can be represented as rules and facts, which can be used by rule
engines (e.g., XSB [22], Clingo [9], IDP [5]) to conduct formal logical reasoning in order to
derive new conclusions, answer questions, or explain the validity of true statements. However,
rules and facts extracted from human knowledge can be very complex in the real world. This
will demand domain experts to spend a lot of time on understanding the rule systems in
order to write logical rules. CNLs emerge as better knowledge acquisition systems over rule
systems in that they can acquire knowledge from text and represent the text in logical forms
for reasoning. CNLs are designed based on natural languages, but with restricted grammar
to avoid ambiguities while being highly expressive. Representative languages include ACE
[7], Processable English (PENG) [24], BioQuery-CNL [6]. In general, CNL systems provide
a GUI for user to enter CNL text. The language parser checks the grammar of the text
and sends back suggestions for correction to the user. CNL text is then mapped into the
corresponding logic programs based on the syntax and semantics of the underlying rule
engine in order to perform question answering tasks.

Though the aforementioned systems have good intent of design, we found that there
are several limitations in current CNL systems. First, they have limited ability to identify
sentences that express the same meaning but in various syntactical forms. For instance,

* The author is co-advised by Michael Kifer and Paul Fodor from Stony Brook University.

© Tiantian Gao;
37 licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 13; pp. 13:1-13:10

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

13:2

Achieving High Quality Knowledge Acquisition using Controlled Natural Language

ACE translates sentences Mary owns a car and Mary is the owner of a car into two
different logical representations. As a result, if the first sentence is entered into the knowledge
base, the reasoner will fail to answer the question who is the owner of a car. However,
in the real world, it is very common that the user writes questions in a different way from
the author who composes the knowledge base. Second, current CNL systems do not accept
inconsistent knowledge to occur. In other words, once inconsistent information is found, the
underlying rule engine will break and not be able to conduct any inference tasks. In our
view, inconsistency is very likely to happen when the knowledge base is formed by merging
multiple resources together. Hence, it is useful to design a paraconsistent logical framework
that can reason in the presence of inconsistent knowledge. Third, there is no way for the
user to edit or audit the acquired knowledge. CNL systems are not guaranteed to always
return the user-expected results. As a result, it is necessary to provide a mechanism for the
user to edit the acquired knowledge as opposed to re-write sentences many times in order to
meet the requirement.

In this work, we design a knowledge acquisition system, KAM, that achieves three
goals. First, KAM performs deep semantic analysis of English sentences and maps sentences
that express the same meaning via different syntactic forms to the same standard logical
representations. Second, KAM performs valid logical inferences based on the facts and rules
extracted from English sentences and achieves inconsistency-tolerance for query answering.
Third, KAM builds an environment to assist users with entering and disambiguating English
texts. In the following parts, Section 2 shows the background knowledge of the natural
language processing tools KAM uses in the knowledge acquisition process, Section 3 describes
the architecture of the system, Section 4 shows the current state of research and discusses
some open issues, and Section 5 concludes the paper.

2 Background

In this section, we provide the background of linguistic databases, semantic relation extraction,
and word similarity measures in the field of natural language processing in order to help
readers understand KAM better.

2.1 Linguistic Databases

KAM uses a lexical database, BabelNet, and a frame-relation database, FrameNet, in the
process of knowledge acquisition. A lexical database is a database of words. It contains the
information of part-of-speech, word sense, synset and semantic relations of words. WordNet
[19] is one of the famous linguistic databases, where each word is defined with a list of word
senses. Words that share similar meanings are grouped as a synset. Synsets are connected
by semantic relations. For instance, the hypernym relation says that one synset is a more
general concept of the other, i.e., human is the hypernym of homo sapiens. WordNet is
rich in word knowledge, but it does not have enough information about named entities we
encounter in every life or some specialized fields. DBPedia [1], WikiData [27], and YAGO
[25] are databases of entities, where each is defined with a set of properties and the relations
with other entities or with some pre-defined ontological classes. However, there is no link
between an entity in an entity database like DBPedia and a concept in WordNet. As a
result, there is no way to find the semantic relation between a name entity and a concept in
WordNet, which is useful in many cases. BabelNet solves this problem by integrating multiple
knowledge bases, including WordNet, DBPedia, Wikidata, etc. Besides, it automatically
finds the mapping across different knowledge bases and therefore bridges the gap between
concepts and entities.

T. Gao

FrameNet is a database representing entity relations using frames. A frame consists of
a set of frame elements and lexical units. A frame element denotes an entity that serves a
particular semantic role in a frame relation. Frame elements are frame-specific. Therefore,
they are not shared among frames. A lexical unit indicates a target word in a sentence that
triggers a frame relation. For example, the sentence Mary works for IBM as an engineer
semantically entails the Being_Employed frame relation, where work is the lexical unit and
Mary, IBM, and engineer represent the Employee, Employer, and Position frame elements
respectively. In FrameNet, each lexical unit is associated with a set of valence patterns and
exemplar sentences. Valence patterns show the grammatical functions [13] of each frame
element with respect to the lexical unit. For the above sentence, Mary is the external
of work, and IBM and engineer are the dependent of the prepositional modifiers of work.
Exemplar sentences are the sample English sentences that realize the valence patterns.

In addition to FrameNet, VerbNet [23] and PropBank [14] are also databases of entity
relations. VerbNet and PropBank are purely verb-oriented. Therefore, they cannot recognize
noun-, adjective-, or adverb-triggered relations. Besides, since VerbNet and PropBank group
verbs based on the syntactic patterns of verbs with respect to the entities, verbs that belong
to the same class may not represent the same meaning. The advantage of VerbNet over
FrameNet is that VerbNet assigns a WordNet synset ID to each verb. Additionally, it
defines an ontology that defines the semantic restrictions for entities that can serve particular
semantic roles in an entity relation. In KAM, we use FrameNet augmented with BabelNet
synset IDs for each frame element and lexical unit.

2.2 Semantic Relation Extraction

Semantic relation extraction tools analyze the semantics of English sentences and extract
their entailed relations. Representative tools include Ollie [18], Stanford Relation Extractor
[26], LCC [16], SEMAFOR [4], and LTH [12]. Ollie is a relation extractor that extracts
triples representing binary relations based on open domains. Stanford Relation Extractor
and LCC, on the other hand, can only extract from a fixed set of relations. Although Ollie is
flexible at extracting relations, it cannot standardize triples that represent the same semantic
relation. Stanford Relation Extractor and LCC are better at relation standardization, but
can work with a limited number of relations.

Compared with the aforementioned tools, SEMAFOR and LTH are FrameNet-based
semantic parsers that aim to identify a large number of relations and achieve standardization.
Basically, they use machine learning algorithms to train the model based on the exemplar
sentences in FrameNet. Based our empirical study, SEMAFOR and LTH do not perform
well enough for knowledge acquisition. Recall the sentence Mary works for IBM as an
engineer from the previous section. SEMAFOR extracts two frames: one is usefulness
frame triggered by work, where Mary and for IBM represent the entity and purpose frame
elements respectively; the other one is People_by_vocation frame triggered by engineer,
with no frame elements attached. The first one is wrong because for in this context does
not express the purpose meaning. Although the second frame is correct, it does not find who
holds this vocation.

In our analysis of FrameNet 1.6 data, 70.2% valence patterns have only one exemplar
sentence and 12.8% valence patterns have two exemplar sentences. However, there are
also valence patterns with more than 100 exemplar sentences. An uneven distribution of
the exemplar sentences per valence pattern will result in an imprecise estimation of model
parameters. In addition, frame elements do not have semantic restrictions, which are useful
in practical cases. For instance, comparing sentences Mary has a full-time job and Mary

13:3

ICLP 2017 TCs

13:4

Achieving High Quality Knowledge Acquisition using Controlled Natural Language

has a well-paid job, both full-time and well-paid are adjective modifiers of job. But,
they are classified as two different frame elements: Contract-basis and Compensation
respectively. Without any semantic constraints, we cannot distinguish these two frame
elements based on their syntactical context.

2.3 Semantic Similarity

Semantic similarity measures the semantic closeness between a pair of synsets. In general,
there are three classes of methods to compute semantic scores. The first class measures
the text similarity of the glosses of between two synsets, where a gloss refers to the English
description of the meaning of a word. The representative method includes Lesk [2], where
the semantic score is calculated based on the degree of overlapping information between their
glosses. The second class measures the distance of the synsets in WordNet. In WordNet,
a synset is connected by some semantic edges (i.e., hypernym, hyponym). A simple and
intuitively way to measure the semantic similarity is to compute the shortest path between
two synsets in WordNet. Therefore, synsets with shorter path lengths have stronger semantic
connections. Representative methods include wup [28], Ich [15], jen [11], lin [17], res [21],
hso [10]. Recently, with the advancement of machine learning, we can represent a synset
by a vector of arbitrary dimensions, where the synset vector is obtained by training a
large set of corpus. The representative method includes NASARI [3]. Based on the vector
representations of synsets, we can measure the semantic similarity by computing the cosine
similarity, weighted overlaps [20] of the vectors. In KAM, we use the NASARI approach. For
one thing, NASARI dataset is based on BabelNet, which is more up-to-date than WordNet.
Second, NASARI approach shows better performance based on the experimental results
shown in [3].

3 KAM Framework

KAM consists of two parts: supervised knowledge annotation and knowledge acquisition.
Supervised knowledge annotation is designed to create a Prolog knowledge base that represents
an augmented version of FrameNet data. Basically, the knowledge base includes the logical
representations of frames, frame elements, lexical units, and valence patterns. Besides, each
frame element is assigned with a list of BabelNet synsets that capture its definition. Users
can also add new frames to the knowledge base. The Prolog knowledge base is used in
knowledge acquisition, where we provide a tool that achieves the following;:
1. run deep semantic analysis of controlled English text in order to ensure that different
sentences that express the same meaning are mapped to the same logical representations.
2. perform valid logical inferences based on the facts and rules extracted from English
sentences and achieve inconsistency-tolerance in the process of knowledge acquisition.
3. allow the user to enter controlled English text, disambiguate acquired knowledge, and
perform question answering tasks

3.1 Preliminaries

First, we give a brief overview of KAM’s language parser, Attempto Parsing Engine (APE),
which is based on ACE grammar!. APE translates CNL sentences into a Discourse Rep-
resentation Structure (DRS)?, which captures the semantic meaning of the sentences. A

! http://attempto.ifi.uzh.ch/site/docs/syntax_report.html
2 http://attempto.ifi.uzh.ch/site/pubs/papers/drs_report_66.pdf

http://attempto.ifi.uzh.ch/site/docs/syntax_report.html
http://attempto.ifi.uzh.ch/site/pubs/papers/drs_report_66.pdf

T. Gao

valence patterns +
exemplar sentences LVP

Extractor

GUI

annotated
frames

LFrame
Engine

LFrame
Generator

BabelNet FrameNet

Figure 1 Supervised Knowledge Annotation.

DRS uses six pre-defined predicates to represent the semantics of a word in a sentence, in-
cluding object, property, relation, modifier_adv, modifier_pp, has_part, query, and
predicate predicates. For instance, the sentence A man enters a door with a card is
represented as

object (A,man,countable,na,eq,1)
object(B,door,countable,na,eq,1)
object(C,card,countable,na,eq,1)
predicate(D,enter,A,B)
modifier_pp(D,with,C)

where the object-predicate denotes the head word of a noun phrase, the predicate-predicate
represents an action, and the modifier_pp signifies a prepositional modifier to the action.

We define the semantic relation between two predicates as a dependency path that connects
these two predicates via a list of variables and intermediate predicates. For the above example,
man is the subject of the enter action. The semantic relation is represented as

predicate(D,enter,A,B) -> A -> object(A,man,countable,na,eq,1)

There can be more than one dependency paths that connect two predicates. For the rest of
this section, we will only consider the shortest dependency path.

3.2 Supervised Knowledge Annotation

Figure 1 shows the architecture of supervised knowledge annotation. The GUI provides
an environment for the user to annotate FrameNet frames and query BabelNet. Given
a frame, the user is required to disambiguate each frame element name by assigning a
BabelNet synset to it. For instance, in Being_Employed frame, Position is assigned with
the synset bn:00010073n (a job in an organization) and Employee is assigned with the synset
bn:00030618n (a person who is hired to perform a job). The annotated frame and frame
elements are mapped into Prolog representation by LFrame Generator as

frame_def (Frame_Name, [
frame_element (Frame_Element_Name, BabelNet_SID)|...])

Next, the user annotates each lexical unit and its exemplar sentences. Given that FrameNet
exemplar sentences are written in normal English, some may not be parsed by APE. Therefore,
the user needs to manually rephrase each exemplar sentence according to ACE grammar.

13:5

ICLP 2017 TCs

13:6 Achieving High Quality Knowledge Acquisition using Controlled Natural Language

semantic
similarity

NASARI “Cores

tokens
+POS
—|

BabelNet babelnet_sid

CNL sentence

Logical
Form

feedback GUI

LFrame extractedframes

Engine

Figure 2 Knowledge Acquisition.

Besides, the user marks the lexical unit and frame elements of a sentence. The annotated
lexical units and exemplar sentences are mapped into Prolog representation by LVP Extractor
as

lvp(Lexical_Unit, Frame_Name, [
lgf (Frame_Element_1,Dependency_Path_1)|...])

where it extracts dependency paths that represent the semantic relations between a lexical
unit and the frame elements.

LFrame Engine uses the frame_def and lvp predicates to extract frame relations and
identify frame elements from CNL sentences. Specifically, LFrame Engine applies the 1vp to
each word of a sentence to extract potential frames and frame elements, denoted as

frame (Frame_Name, [
frame_element (Frame_Element_Name, Val)|...])

3.3 Knowledge Acquisition

Figure 2 shows the process of translating a CNL sentence into its logical form. First, APE
parses the input sentence and generates the DRS and part-of-speech of each word. Second,
KAM queries BabelNet and gets the synsets each word belongs to. In parallel, LFrame
Engine extracts the candidate frames and frame elements from the DRS.

Next, for each candidate frame relation, KAM disambiguates the word sense of each
frame element based on the frame element name. Recall from the previous subsection, each
frame element name is assigned with a BabelNet synset ID that captures its definition. Here,
KAM uses NASARI database to measure the semantic similarity between each synset the
frame element belongs to and the frame element name. KAM chooses the synset with the
highest semantic similarity score as the word sense of the frame element. The sum of the
semantic scores of each frame element is defined as the score of the extracted frame relation.
Finally, KAM ranks the candidate frames based on their scores. For example, given the
sentence There is a person who works in London, LFrame Engine finds three candidate
frame relations:

frame (Being_Employed, [frame_element (Employee, person),
frame_element (Employer, London)])

frame (Being_Employed, [frame_element (Employee, person),
frame_element (Position, London)])

frame (Being_Employed, [frame_element (Employee, person),
frame_element (Place, London)])

T. Gao

KAM computes the semantic similarity scores between person and Employee (resp. London
and Employer, London and Position, and London and Place) in order to disambiguate the
word sense of person and London in each frame. In this case, the third frame has the highest
score where person is assigned with BabelNet synset bn:00046516n (a human being) and
London is assigned with bn:00013179n (the capital and largest city of England). KAM
shows the ranked results to the user and asks the user to choose the one which is consistent
with his/her understanding. Given that NASARI uses a statical approach to measure the
semantic similarities, there could be errors in the computation. KAM allows the user to
audit the result. The feedback will be recorded in order to improve the quality of semantic
similarity measures in the next run.

3.4 Logical Representation

KAM represents the semantics of the frame relations in a paraconsistent logical framework,
Annotated Predicate Calculus (APC) [8]. APC is a paraconsistent logical framework that
deals with inconsistency. The syntax is the same as FOL except for atomic formulas of
the form p : s, where p is an FOL atomic formula and s is a truth annotation. Truth
annotations come from an arbitrary upper the Belnap’s semilattice with four truth values:
1,t,f, T where L<f< T and L<t < T. Here, t and f denote a predicate is true and false
respectively. | denotes a predicate is neither true or false. T denotes a predicate is both
true and false, which causes an inconsistency. APC is based on stable model semantics and
the models are computed on Clingo. Further details of APC and its applications in natural
language understanding can be found in [8]. The advantage APC provides over Answer
Set Programming (ASP) systems and first-order logic is that APC allows inference in the
presence of inconsistent knowledge. Besides, it captures a lot of complex features in natural
language, e.g., negation, numerical constraints, reasoning by cases. For the previous sentence
There is a person who works in London, its encoding is

frame(being_employed, #1) : t.
frame_element (#1, employee, #2) : t.
frame_element (#1, place, #3) : t.
object(#2, person, bn:00046516n) : t.
object(#3, london, bn:00013179n) : t.

where t is a truth annotation in APC, #1, #2, and #3 are skolemized constants, bn:00046516n
and bn:00013179n refer to BabelNet synsets.

4 Evaluation Design

Our initial step of evaluation is to test CNL sentences which describe human-related informa-
tion, including a person’s gender, occupation, origin, age, nationality, religious belief, and so on.
We encode a set of frames such as Being employed, People by _origin, People_by_ religion,
People_by__age, Personal__relationship that represent the entity relations with respect to
human. The testing set is constructed from Wikipedia. Given that Wikipedia provides
an abundance pages about people, we extract the sentences that are related to a person’s
background. We evaluate both the precision and recall with respect to the testing set.
Particularly, for precision, it is very likely that multiple frames are extracted for one sentence.
We consider the one with the highest score as the best answer. As the next step, we will
work on specific domains such as medical text, financial rules, etc. For each domain, it would
require the knowledge engineer to create additional frames in order to represent the entity
relations that are used there.

13:7

ICLP 2017 TCs

13:8

Achieving High Quality Knowledge Acquisition using Controlled Natural Language

5 Current State of Research and Open Issues

Currently, we are working on building the prototype of the system that achieves knowledge
annotation and knowledge acquisition. In the first stage, we focus on extracting logical facts
from CNL sentences. We have encoded a subset of the frames in FrameNet that suffices to
capture the frame relations in one domain. We also run experiments to show the power of
KAM in standardizing CNL sentences to logical representations in comparison with other
relation extraction tools. As the next step, we will work on extracting rules from CNL text
and apply the rules and facts in question answering. Besides, we will expand the LFrame
Engine to include additional frames and apply to broader domains.

6 Conclusion

In this paper, we show a novel knowledge acquisition system, KAM. First, it is a new approach
in information extraction that can identify English sentences expressing the same meaning in
different syntactic forms and standardize them to the same semantic representation. Second,
it applies APC, a paraconsistent logical framework to encode English sentences in a logical
manner to support inference in the presence of inconsistent knowledge. Third, KAM provides
the users an environment to enter and disambiguate the English text and perform question
answering tasks.

—— References

1 Soren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary G. Ives. Dbpedia: A nucleus for a web of open data. In Karl Aberer, Key-Sun
Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer
Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe
Cudré-Mauroux, editors, The Semantic Web, 6th International Semantic Web Conference,
2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November
11-15, 2007., volume 4825 of Lecture Notes in Computer Science, pages 722-735. Springer,
2007.

2 Satanjeev Banerjee and Ted Pedersen. An adapted lesk algorithm for word sense disam-
biguation using wordnet. In Alexander F. Gelbukh, editor, Computational Linguistics and
Intelligent Text Processing, Third International Conference, CICLing 2002, Mezico City,
Mezico, February 17-23, 2002, Proceedings, volume 2276 of Lecture Notes in Computer
Science, pages 136—145. Springer, 2002.

3 José Camacho-Collados, Mohammad Taher Pilehvar, and Roberto Navigli. Nasari: Integ-
rating explicit knowledge and corpus statistics for a multilingual representation of concepts
and entities. Artif. Intell., 240:36-64, 2016.

4 Dipanjan Das, Desai Chen, André F. T. Martins, Nathan Schneider, and Noah A. Smith.
Frame-semantic parsing. Computational Linguistics, 40(1):9-56, 2014.

5 Broes de Cat, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Predicate logic
as a modelling language: The IDP system. CoRR, abs/1401.6312, 2014. URL: http:
//arxiv.org/abs/1401.6312.

6 Esra Erdem, Halit Erdogan, and Umut Oztok. BIOQUERY-ASP: querying biomedical
ontologies using answer set programming. In Stefano Bragaglia, Carlos Viegas Damaésio,
Marco Montali, Alun D. Preece, Charles J. Petrie, Mark Proctor, and Umberto Straccia,
editors, Proceedings of the 5th International RuleML2011@BRF Challenge, co-located with
the 5th International Rule Symposium, Fort Lauderdale, Florida, USA, November 3-5, 2011,
volume 799 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

http://arxiv.org/abs/1401.6312
http://arxiv.org/abs/1401.6312

T. Gao

10

11

12

13

14

15

16

17

18

19

20

21

22

Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto controlled english
for knowledge representation. In Cristina Baroglio, Piero A. Bonatti, Jan Maluszynski,
Massimo Marchiori, Axel Polleres, and Sebastian Schaffert, editors, Reasoning Web, /th
International Summer School 2008, Venice, Italy, September 7-11, 2008, Tutorial Lectures,
volume 5224 of Lecture Notes in Computer Science, pages 104—124. Springer, 2008.
Tiantian Gao, Paul Fodor, and Michael Kifer. Paraconsistency and word puzzles. TPLP,
16(5-6):703-720, 2016.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP + control:
Preliminary report. In M. Leuschel and T. Schrijvers, editors, Technical Communica-
tions of the Thirtieth International Conference on Logic Programming (ICLP’14), volume
arXiv:1405.3694v1, 2014. Theory and Practice of Logic Programming, Online Supplement.
Graeme Hirst, David St-Onge, et al. Lexical chains as representations of context for the
detection and correction of malapropisms. WordNet: An electronic lexical database, 305:305—
332, 1998.

Jay J. Jiang and David W. Conrath. Semantic similarity based on corpus statistics and
lexical taxonomy. CoRR, cmp-lg/9709008, 1997.

Richard Johansson and Pierre Nugues. Lth: Semantic structure extraction using nonpro-
jective dependency trees. In Proceedings of the jth International Workshop on Semantic
Evaluations, SemEval '07, pages 227230, Stroudsburg, PA, USA, 2007. Association for
Computational Linguistics.

Chrstopher R. Johnson, Charles J. Fillmore, Miriam R.L. Petruck, Collin F. Baker, Mi-
chael J. Ellsworth, Josef Ruppenhofer, and Esther J. Wood. FrameNet: Theory and Prac-
tice, 2002.

Paul Kingsbury and Martha Palmer. Propbank: the next level of treebank. In Proceedings
of Treebanks and lexical Theories, volume 3. Citeseer, 2003.

Claudia Leacock and Martin Chodorow. Combining local context and wordnet similarity
for word sense identification. WordNet: An electronic lexical database, 49(2):265-283, 1998.
John Lehmann, Sean Monahan, Luke Nezda, Arnold Jung, and Ying Shi. LCC approaches
to knowledge base population at TAC 2010. In Proceedings of the Third Text Analysis
Conference, TAC 2010, Gaithersburg, Maryland, USA, November 15-16, 2010. NIST, 2010.
Dekang Lin. An information-theoretic definition of similarity. In Jude W. Shavlik, editor,
Proceedings of the Fifteenth International Conference on Machine Learning (ICML 1998),
Madison, Wisconsin, USA, July 24-27, 1998, pages 296-304. Morgan Kaufmann, 1998.
Mausam, Michael Schmitz, Stephen Soderland, Robert Bart, and Oren Etzioni. Open
language learning for information extraction. In Jun’ichi Tsujii, James Henderson, and
Marius Pasca, editors, Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning, EMNLP-
CoNLL 2012, July 12-1/4, 2012, Jeju Island, Korea, pages 523-534. ACL, 2012.

George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39-41,
1995.

Mohammad Taher Pilehvar, David Jurgens, and Roberto Navigli. Align, disambiguate
and walk: A unified approach for measuring semantic similarity. In Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics, ACL 2013, 4-9
August 2013, Sofia, Bulgaria, Volume 1: Long Papers, pages 1341-1351. The Association
for Computer Linguistics, 2013.

Philip Resnik. Using information content to evaluate semantic similarity in a taxonomy.
arXiv preprint cmp-lg/9511007, 1995.

Konstantinos Sagonas, Terrance Swift, and David S. Warren. Xsb as an efficient deductive
database engine. In In Proceedings of the ACM SIGMOD International Conference on the
Management of Data, pages 442—-453. ACM Press, 1994.

13:9

ICLP 2017 TCs

13:10

Achieving High Quality Knowledge Acquisition using Controlled Natural Language

23

24

25

26

27

28

Karin Kipper Schuler. Verbnet: A Broad-coverage, Comprehensive Verb Lexicon. PhD
thesis, University of Pennsylvania, Philadelphia, PA, USA, 2005. AAI3179808.

Rolf Schwitter. English as a formal specification language. In 13th International Workshop
on Database and Expert Systems Applications (DEXA 2002), 2-6 September 2002, Aiz-en-
Provence, France, pages 228-232. IEEE Computer Society, 2002.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic
knowledge. In Proceedings of the 16th international conference on World Wide Web, pages
697-706. ACM, 2007.

Mihai Surdeanu, David McClosky, Mason R. Smith, Andrey Gusev, and Christopher D.
Manning. Customizing an information extraction system to a new domain. In Proceedings
of the ACL 2011 Workshop on Relational Models of Semantics, RELMS ’11, pages 2-10,
Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

Denny Vrandeci¢ and Markus Krotzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10):78-85, 2014.

Zhibiao Wu and Martha Stone Palmer. Verb semantics and lexical selection. In James
Pustejovsky, editor, 32nd Annual Meeting of the Association for Computational Linguistics,
27-30 June 1994, New Mezico State University, Las Cruces, New Mexico, USA, Proceed-
ings., pages 133-138. Morgan Kaufmann Publishers / ACL, 1994.

A Simple Complete Search for Logic Programming

Jason Hemann'!, Daniel P. Friedman?, William E. Byrd3, and
Matthew Might*

1 Indiana University, Bloomington, IN 47402, USA
jhemann@indiana.edu

2 Indiana University, Bloomington, IN 47402, USA
dfried@indiana.edu

3 University of Utah, Salt Lake City, UT 84112, USA
Will.Byrd@cs.utah.edu

4 University of Utah, Salt Lake City, UT 84112, USA
might@cs.utah.edu

—— Abstract

Here, we present a family of complete interleaving depth-first search strategies for embedded,
domain-specific logic languages. We derive our search family from a stream-based implement-
ation of incomplete depth-first search. The DSL’s programs’ texts induce particular strategies
guaranteed to be complete.

1998 ACM Subject Classification D.3.2 Language Classifications: Applicative (functional) lan-
guages, Constraint and logic languages

Keywords and phrases logic programming, streams, search, Racket, backtracking, relational
programming

Digital Object Identifier 10.4230/0ASIcs.ICLP.2017.14

1 Introduction

A common logic language implementation technique is the shallowly-embedded, internal
domain-specific language (DSL) [12, 8, 4]. In this technique, the logic-language programmer
writes in the syntax of the underlying host language and the DSL’s operators’ behavior are
described in terms of the host’s semantics. Designers need implement only behaviors not
supported natively by the host. For logic languages implemented in functional hosts, these
may include backtracking and search, among others.

Here, we present a family of complete interleaving depth-first search strategies induced
by an embedding. Each logic program’s text induces a particular search strategy. Unlike
most other embeddings, our operators provide a complete search without the performance
penalties associated with, for example, breadth-first search [12, 8]. We improve on earlier
efforts [5] by combining the hand-off of control with relation definition, and in doing so
decrease the amount of interleaving while maintaining a complete search. We achieve a
minimal placement of interleaving points for arbitrary relation definitions.

We host our embedding in Racket [3], but any eager language with functions as values is
equally suited. We deliberately restrict ourselves to a small host language feature set. We

“and ,

rely chiefly on cons and lambda (A). The data-structure interpolation operators
are a shorthand for explicit conses, and the promise and force operators we use are shallow

wrappers over function creation and application.
© Jason Hemann, Daniel P. Friedman, William E. Byrd, and Matthew Might;
37 licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 14; pp. 14:1-14:8

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

14:2

Simple Complete Search for LP

Program

A program consists of zero or more relations (predicates, in Prolog parlance) and an initial
goal. Invoking the first goal may require a call to some relation, which may itself require a
call to another relation or relations, etc.

Goals

Goals are implemented as functions that take a state and return a stream of states. They
consist of primitive constraints such as equality (==), relation invocations like (peano q), and
their closure under operators that perform conjunction, disjunction, and variable introduction.

State

We execute a program p by attempting an initial goal in the context of zero or more relations.
The program proceeds by executing a goal in a state. The state contains a substitution and a
counter for generating fresh variables. Every program’s execution begins with an initial state
devoid of any constraint information and a variable count 0.

Streams

Executing a goal in a state s/c¢ (connoting a substitution and counter pair) yields a stream.
A stream takes one of three shapes. The stream may be empty, indicating the goal cannot
be achieved in s/c. A stream may contain one or more resultant states. In this case, each
element of the stream is a different (in terms of control flow (i.e., disjunctions); the same
state may occur many times in a single stream) way to achieve that goal from s/c. Our
streams are not necessarily infinite; there may be finitely many ways to achieve a goal in a
given state. We call these first two shapes mature, whereas an immature stream is a delayed
computation that will return a stream when forced.

The final step of running a program is to continually force the resultant stream until it
yields a list of answers. Our programs are not guaranteed to terminate. The stream we get
from invoking the initial goal may be unproductive: repeated applications of force will never
produce an answer [11]. This is the only potential cause of non-termination; all of the other
core operations in our implementation are total.

2 Implementing Depth-first Search

We now implement our interleaving search operators: disj, conj, define-relation, and
call/initial-state. We omit here the syntactic equality constraint == and call/fresh
(which scopes new logic variables). Interested readers should consult an extended version of
this work [6].

The binary operators disj and conj act as goal combinators, and they let us to write
composite goals representing the disjunction or conjunction of their arguments.

#| Goal X Goal — Goal |#
(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))

#| Goal X Goal — Goal |#
(define ((conj gl g2) s/c) ($append-map g2 (gl s/c)))

We define disj and conj in terms of $append and $append-map. If we define these
functions as aliases for the finite-list append and append-map functions standard to many

J. Hemann, D. P. Friedman, W. E. Byrd, and M. Might

languages [10], our streams will always be empty or answer-bearing; in fact, they will be fully
computed. The result of attempting an == goal must be a finite list, of length 0 or 1. If both
of disj’s arguments are goals that produce finite lists, then the result of invoking append on
those lists is itself a finite list. If both of conj’s arguments are goals that produce finite lists,
then the result of invoking append-map with a goal and a finite list must itself be a finite
list. Invoking a goal constructed from these operators in the initial state returns a list of
all successful computations, computed in a depth-first, preorder traversal of the search tree
generated by the program.

3 Recursion and define-relation

We must enrich our implementation to allow recursive relations. DFS is incomplete for
computations with infinite branches. Consider the following stylized Prolog definition of the
predicate peano that generates Peano numbers.

peano(N) :- N = z ; [s R], peano(R).

At present there are several obstacles to writing relations like peano that refer to themselves
or one another in their definitions in our embedding. Suppose we’d used define to build a
function that we hope would behave like a relation:

(define (peano n)
(disj (== n ’z)
(call/fresh (A (r) (conj (==mn ‘(s ,r))
(peano 1))))))

When we use the peano relation in the following program, we hope to generate some Peano
numbers. We invoke (call/fresh ...) with an initial state. Invoking that goal creates
and lexically binds a new fresh variable over the body. The body, (peano n), evaluates to
a goal that we pass the state (() . 1). This goal is the disjunction of two subgoals. To
evaluate the disj, we evaluate its two subgoals, and then call $append on the result. The
first evaluates to (((0 . z)) . 1), a list of one state.

> ((call/fresh (A (n) (peano n)))
(O . 0))

Invoking the second of the disj’s subgoals however is troublesome. We again lexically

scope a new variable, and invoke the goal in body with a new state, this time (() . 2).

The conj goal has two subgoals. To evaluate these, we run the first in the current state,
which results in a stream. We then run the second of conj’s goals over each element of the
resulting stream and return the result. Running this second goal begins the whole process
over again. In a call-by-value host, this execution won’t terminate. Simply using define in
this manner will not suffice.

We instead introduce the define-relation operator. This allows us to write recursive
relations; with a sequence of uses of define-relation, we can create mutually recursive
relations. Unlike the other operators, define-relation is a macro.

(define-syntax-rule (define-relation (defname . args) g)
(define ((defname . args) s/c) (delay/mame (g s/c))))

Racket’s define-syntax-rule gives a simple way to construct non-recursive macros.

The first argument is a pattern that specifies how to invoke the macro. The macro’s first
symbol, define-relation, is the name of the macro we define. The second argument is

14:3

ICLP 2017 TCs

14:4

Simple Complete Search for LP

a template to be filled in with the appropriate pieces from the pattern. We do implement
define-relation in terms of Racket’s define.

This macro expands a name, arguments, and a goal expression to a define expression
with the same name and number of arguments and whose body is a goal. It takes a state
and returns a stream, but unlike the others we’ve seen before, this goal returns an immature
stream. When given a state s/c, this goal returns a promise that evaluates the original goal
g in the state s/c when forced, returning a stream. A promise that returns a stream is itself
an immature stream.

define-relation does two useful things for us: it adds the relation name to the current
namespace, and it ensures that the function implementing our relation is total. It turns
out that we will never re-evaluate an immature stream. Unlike delay, delay/name doesn’t
memoize the result of forcing the promise, so it is like a “by name” variant of delay. In
languages without macros, the programmer could explicitly add a delay at the top of each
relation; though this has the unfortunate consequence of exposing the implementation of
streams.

We implement define-relation as a macro, since it is critical that the expression g not
be evaluated prematurely: we need to delay the invocation of g in s/c. Under call-by-value,
a function would (prematurely) evaluate its argument and would not delay the computation.

This solves the non-termination of relation invocations. When peano is defined by
define-relation, the goal (peano n) immediately returns an immature stream when
invoked. We can also write recursive relations whose goals quite clearly will never produce
answers.

(define-relation (unproductive n)
(unproductive n))

We now redefine $append and $append-map, augmenting them with support for immature
streams.
(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append (force $1) $2)))
(else (cons (car $1) ($append (cdr $1) $2)))))

If the recursive argument to $append is an immature stream, we return an immature
stream, which, when forced, continues appending the second to the first. Likewise, in
$append-map, when $ is an immature stream, we return an immature stream that will
continue the computation but still forcing the immature stream. Rather than delay/name,
force, and promise?, we could have used (A () ...), procedure invocation, and procedure?.
Using A to construct a procedure delays evaluation, and procedure? would be our test for
an immature stream.

#| Goal X Stream — Stream |#
(define ($append-map g $)
(cond
((qull? $) > O)

((promise? $) (delay/name ($append-map g (force $))))
(else ($append (g (car $)) ($append-map g (cdr $))))))

After these changes, we must do something special when we invoke a goal in the initial
state, as this can now produce an immature stream instead of an empty or answer-bearing
stream such as in the following example.

> ((call/fresh (A (n) (peano n)))
(O . 0))

#<promise>

J. Hemann, D. P. Friedman, W. E. Byrd, and M. Might

4 call/initial-state

At the very least, we would like to know if our programs are satisfiable or not. That is, we
would hope to get at least one answer if one exists, and the empty list if there are none. The
call/initial-state operator ensures that if we return, we return with a list of answers.

#| Maybe Nat® x Goal— Mature |#
(define (call/initial-state n g) (take n (pull (g (O . 0)))))

call/initial-state takes an argument n which represents the number of answers to
retrieve. n may just be a positive natural number, in which case we return at most that many
answers. Otherwise, we provide #£, indicating our embedding should return all answers. It
also takes a goal as an argument. The function pull takes a stream as argument, and if
pull terminates, it returns a mature stream. As streams may be unproductive, it is not
always possible to produce a mature stream. As a result, pull, and consequently take and
call/initial-state, are partial functions. These are the only partial functions in our
implementation.

#| Stream — Mature |#
(define (pull $) (if (promise? $) (pull (force $)) $))

take receives the mature stream that is the result of pull and, n, the argument dictating
whether to return all, or just the first n elements of the stream.

#| Maybe Nat® x Mature — List |#
(define (take n $)
(cond
((null? $) > 0)
((and n (zero? (- n 1))) (1list (car $)))
(else (cons (car $) (take (and n (- n 1)) (pull (cdr $)))))))

Our embedding is now capable of creating, combining, and searching for answers in infinite
streams.

> (call/initial-state 2
(call/fresh (A (n) (peano n))))
(0 . Z)) L) (1 .=z 0. (s D)) .2)

Rather than always returning a list implementation of non-deterministic choice, we either
have no values, a value now (possibly more than one), or something we can search later for
a value. pull, since it forces an actual value out of a promise, is akin to run in the delay
monad. take bears a similar relationship to run in the list monad.

5 Interleaving, Completeness, and Search

Although we can now create and manage infinite streams, we cannot manage them as well as
we’d like. Consider what happens in the following program execution:

> (call/initial-state 1
(call/fresh (A (n) (disj (unproductive n)
(peano n)))))

We wish the program to return a stream containing the ns for which peano holds and in
addition the ns for which unproductive holds. We know from Section 3 that there are no ns
for which unproductive holds, but infinitely many for peano. The stream should contain

14:5

ICLP 2017 TCs

14:6

Simple Complete Search for LP

only ns for which peano holds. It’s perhaps surprising, then, to learn that this program loops
infinitely.

Streams that result from using unproductive will always be, as the name suggests,
unproductive. When executing the program above, such an unproductive stream will be
the recursive argument $1 to $append. Unproductive streams are necessarily immature.
According to our definition of $append, we always return the immature stream. When we
force this immature stream, it calls $append on the forced stream value of (the delayed) $1
and $2. Since unproductive is unproductive, this process continues without ever returning
any of the results from peano.

Such surprising results are not solely the consequence of goals with unproductive streams.
Consider the definition of church.

(define-relation (church n)
(call/fresh (A (b) (conj (==mn ‘(A (s) (A (2) ,b)))
(peano b)))))

The relation church holds for Church numerals. Using a newly created variable b, it
constructs a list resembling a lambda-calculus expression whose body is the variable b. It
uses peano to generate the body of the numeral. We can thus use it to generate Church
numerals in a manner analogous to our use of peano. But consider the following program,
wherein the resulting stream is productive, but only contains elements for which peano holds.

> (call/initial-state 3
(call/fresh (A (n) (disj (peano n)
(church n)))))
(0 . 2)) . 1) (1 .2z) (0. (s1))) .2
(2.2 1. (2) . 1)) .3)

[

Under the default Racket printing convention, “.” is suppressed when it precedes a “(”.
We retain the “.” for legibility — Racket’s current-print parameter controls this behavior.

Our implementation of $append in Section 3 induces a depth-first search. Depth-first
search is the traditional search strategy of Prolog and can be implemented quite efficiently.
As we’ve seen though, depth-first search is an incomplete search strategy: answers can be
buried infinitely deep in a stream. The stream that results from a disj goal produces
elements of the stream from the second goal only after exhausting the elements of the stream
from the first.

#| Stream X Stream — Stream |#
(define ($append $1 $2)
(cond

kkéromise? $1) (delay/name ($append (force $1) $2)))))

As a result, even if answers exist microKanren may fail to produce them. We will remedy
this weakness in $append, and provide microKanren with a simple complete search. We want
microKanren to guarantee each and every answer should occur at a finite position in the
stream. Fortunately, this doesn’t require a significant change.

#| Stream X Stream —> Stream |#
(define ($append $1 $2)
(cond
kkbromise? $1) (delay/name ($append $2 (force $1))))))

That’s it. This one change to the promise? line of $append is sufficient to make disj fair
and to transform our search from an incomplete, depth-first search to a complete one.

J. Hemann, D. P. Friedman, W. E. Byrd, and M. Might

Interestingly, we haven’t reconstructed a particular, single complete search strategy.
Instead, the search strategy of microKanren programs is program- and query-specific. The
particular definitions of a program’s relations, together with the goal from which it’s executed,
dictates the order we explore the search tree. By contrast, Spivey and Seres implement
breadth-first search, also a complete search, in a language similar to microKanren [12].

Relying on non-strict evaluation simplifies their implementation; manually managing
delays would make the call-by-value version less elegant than their implementation. Even
excepting that, their implementation requires a somewhat more sophisticated transformation
than does ours. Kiselyov et al. describe a different mechanism to achieve a complete search,
but they too rely on non-strict evaluation [9]. We achieve a simpler implementation of a
complete search by using the delays as markers for interleaving our streams.

6 Conclusion and Related Work

There has been extensive research on logic programming implementation [1]. Spivey and
Seres’s [12] present a Haskell embedding of a language quite similar to microKanren. They
begin with depth-first search language, and through transformations derive an implementation
of breadth-first search.

Hinze [7, 8] and Kiselyov et al. [9] implement backtracking with asymptotic performance
improvements over stream-based approaches like that used in microKanren and the works
cited above. These context-passing implementations are also more complicated to understand
and to implement. We chose to use streams in part to more easily communicate ideas.

The fair search operators in Kiselyov et al’s LogicT monad provide the basis of the
interleaving search in earlier miniKanren implementations. The LogicT transformer augments
an arbitrary monad with backtracking and control operators similar to those we use. We
have access to the whole logic program in our embedding and carefully control interleaving
in recursions; therefore we can use less frequent interleaving and maintain a complete search.

Our development led us to a number of interesting, still-open problems. Hinze [7]
shows list-based implementations of nondeterminism to be asymptotically slower than a
continuation-based “context-passing” implementation. We would like to combine our manual
control of delays with a context-passing implementation & la Hinze and Kiselyov et al. [9].
Earlier work by Wand [13] and Danvy et al. [2] in relating models of backtracking has
provided a starting point.

While define-relation is sufficient to ensure our search is complete, it in general causes
more interleaving than necessary. For instance, mutually-recursive relations only need one
interleaving point between them, and we don’t need to interleave at all deterministic relations.
We could statically “push down” the delays into the body of a relation, reducing the amount of
interleaving we perform while retaining a complete search. We would also like to mechanically
prove the correctness of our search with a dependently-typed implementation whose types
encode our fairness properties.

Acknowledgements. We thank our reviewers, both known and anonymous, for their com-
ments and suggestions. This material is partially based on research sponsored by DARPA
under agreement number AFRL FA8750-15-2-0092 and by NSF under CAREER grant
1350344. The views expressed are those of the authors and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

14:7

ICLP 2017 TCs

14:8

Simple Complete Search for LP

—— References

1

10

11

12

13

Isaac Balbin and Koenraad Lecot. Logic Programming: A Classified Bibliography. Springer
Science & Business Media, 2012.

Olivier Danvy, Bernd Grobauer, and Morten Rhiger. A unifying approach to goal-directed
evaluation. New Generation Computing, 20(1):53, 2002. URL: http://dx.doi.org/10.1007/
BF03037259, doi:10.1007/BF03037259.

Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1, PLT
Design Inc., 2010. http://racket-lang.org/trl/.

Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. The Reasoned Schemer. MIT
Press, Cambridge, MA, 2005.

Jason Hemann and Daniel P. Friedman. pKanren: A minimal functional core for rela-
tional programming. In Scheme 15, 2013. URL: http://schemeworkshop.org/2013/papers/
HemannMuKanren2013.pdf.

Jason Hemann, Daniel P. Friedman, William E. Byrd, and Matthew Might. A small
embedding of logic programming with a simple complete search. In Proceedings of DLS '16.
ACM, 2016. URL: http://dx.doi.org/10.1145/2989225.2989230.

Ralf Hinze. Deriving backtracking monad transformers. In ACM SIGPLAN Notices,
volume 35, pages 186-197. ACM, 2000.

Ralf Hinze. Prolog’s control constructs in a functional setting: Axioms and implementation.
International Journal of Foundations of Computer Science, 12(02):125-170, 2001.

Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry. Backtracking,
interleaving, and terminating monad transformers: (functional pearl). In Olivier Danvy
and Benjamin C. Pierce, editors, Proceedings of the 10th ACM SIGPLAN ICFP, pages
192-203. ACM, September 2005.

Olin Shivers. List Library. Scheme Request for Implementation. SRFI-1, 1999. URL:
http://srfi.schemers.org/srfi-1/srfi-1.html.

Ben A. Sijtsma. On the productivity of recursive list definitions. ACM Trans. Program.
Lang. Syst., 11(4):633-649, October 1989. URL: http://doi.acm.org/10.1145/69558.69563,
doi:10.1145/69558.69563.

JM Spivey and Silvija Seres. Embedding Prolog in Haskell. In E. Meier, editor, Haskell 99,
1999.

Mitchell Wand and Dale Vaillancourt. Relating models of backtracking. In Proceedings
of the Ninth ACM SIGPLAN International Conference on Functional Programming, ICFP
'04, pages 54-65, New York, NY, USA, 2004. ACM. URL: http://doi.acm.org/10.1145/
1016850.1016861, doi:10.1145/1016850.1016861.

http://dx.doi.org/10.1007/BF03037259
http://dx.doi.org/10.1007/BF03037259
http://dx.doi.org/10.1007/BF03037259
http://racket-lang.org/tr1/
http://schemeworkshop.org/2013/papers/HemannMuKanren2013.pdf
http://schemeworkshop.org/2013/papers/HemannMuKanren2013.pdf
http://dx.doi.org/10.1145/2989225.2989230
http://srfi.schemers.org/srfi-1/srfi-1.html
http://doi.acm.org/10.1145/69558.69563
http://dx.doi.org/10.1145/69558.69563
http://doi.acm.org/10.1145/1016850.1016861
http://doi.acm.org/10.1145/1016850.1016861
http://dx.doi.org/10.1145/1016850.1016861

On Improving Run-time Checking in Dynamic
Languages®

Nataliia Stulova'

IMDEA Software Institute, Madrid, Spain and
Universidad Politécnica de Madrid (UPM), Madrid, Spain
nataliia.stulova@imdea.org

—— Abstract

In order to detect incorrect program behaviors, a number of approaches have been proposed,
which include a combination of language-level constructs (procedure-level annotations such as

assertions/contracts, gradual types, etc.) and associated tools (such as static code analyzers and
run-time verification frameworks). However, it is often the case that these constructs and tools
are not used to their full extent in practice due to a number of limitations such as excessive run-
time overhead and/or limited expressiveness. This issue is especially prominent in the context
of dynamic languages without an underlying strong type system, such as Prolog. In our work
we propose several practical solutions for minimizing the run-time overhead associated with
assertion-based verification while keeping the correctness guarantees provided by run-time checks.
We present the solutions in the context of the Ciao system, where a combination of an abstract
interpretation-based static analyzer and run-time verification framework is available, although
our proposals can be straightforwardly adapted to any other similar system.

1998 ACM Subject Classification D.3.3 Language Constructs and Features, D.2.4 Software/Pro-
gram Verification, D.2.5 Testing and Debugging, F.3.1 Specifying and Verifying and Reasoning
about Programs, F.3.3 Studies of Program Constructs, F.3.2 Semantics of Programming Lan-
guages

Keywords and phrases Runtime Verification, Assertions, Prolog, Logic Programming

Digital Object Identifier 10.4230/0OASIcs.ICLP.2017.15

1 Introduction

Detecting incorrect program behaviors is an important part of the software development
life cycle. It is also a complex and tedious one, in which dynamic languages bring special
challenges.

A number of techniques have been proposed to aid in the process, among which we center
our attention on the use of language-level constructs to describe expected program behavior,
and of associated tools to compare actual program behavior against expectations, such as
static code analyzers/verifiers and run-time verification frameworks.

Approaches that fall into this category are the assertion-based frameworks used in
(Constraint) Logic Programming [10, 24, 16, 19], soft/gradual typing approaches in functional

* Research supported in part by projects EU FP7 318337 ENTRA, Spanish MINECO TIN2012-39391
StrongSoft, TIN2015-67522-C3-1-R TRACES and TIN2008-05624 DOVES, and Comunidad de Madrid
TIC/1465 PROMETIDOS-CM and S2013/ICE-2731 N-Greens Software, and Madrid Region program
M141047003 N-GREENS.

t Supervised by José F. Morales (IMDEA Software Institute, Madrid, Spain) and Manuel V. Hermenegildo
(IMDEA Software Institute, Madrid, Spain and Universidad Politécnica de Madrid (UPM), Madrid,
Spain)

© Nataliia Stulova;
37 licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei; Article No. 15; pp. 15:1-15:10

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

15:2

On Improving Run-time Checking in Dynamic Languages

programming [5, 34, 32] and contract-based extensions in object-oriented programming [17,
18, 11]. These tools are aimed at detecting violations of the expected behavior or certifying
the absence of any such violations, and often involve a certain degree of run-time testing,
specially for non-trivial properties.

In practice, however, run-time overhead often remains impractically high, specially for
complex properties, such as, for example, deep data structure tests. This reduces the
attractiveness of run-time checking to programmers, which may allow sporadic checking of
very simple conditions, but tend to turn off run-time checking for more complex properties.
Some approaches even opt for limiting the expressiveness of the assertion language in order
to reduce the overhead.

Our research objective is twofold:

First, we aim for enhancing the expressiveness of the assertion language to reflect all the

features of the related programming language, including, e.g., higher-order constructs,

and to do so in a way that allows the programmer to write precise program specifications
while not imposing a learning or programming burden on them.

At the same time, our goal is to efficiently check such specifications, mitigating the

associated run-time overhead as much as possible without compromising the safety

guarantees that the checks provide.

While our work is general and system-independent, we present it for concreteness in the
context of the Ciao run-time checking framework. The Ciao model [13, 24] is well understood,
and different aspects of it have been incorporated in popular (C)LP systems, such as Ciao,
SWI, and XSB [14, 31, 21].

2 Current Research Results

2.1 Supporting Higher-Order Properties

Higher-order programming is a widely adopted programming style that adds flexibility to
the software development process. Within the (Constraint) Logic Programming ((C)LP)
paradigm, Prolog has included higher-order constructs since the early days, and there have
been many other proposals for combining the first-order kernel of (C)LP with different
higher-order constructs, e.g., [35, 23, 4]). Many of these proposals are currently in use in
different (C)LP systems and have been found very useful in programming practice, inheriting
the well-known benefits of code reuse (templates), elegance, clarity, and modularization.

When higher-order constructs are introduced in the language it becomes necessary to
describe properties of arguments of predicates/procedures that are themselves also predi-
cates/procedures. While the combination of contracts and higher-order has received some
attention in functional programming [12, 9], within (C)LP the combination of higher-order
with the previously mentioned assertion-based approaches has received comparatively little
attention to date. Current Prolog systems simply use basic atomic types (i.e., stating simply
that the argument is a pred, callable, etc.) to describe predicate-bearing variables (see
Listing 1). Other approaches [1] are more oriented instead towards meta programming,
describing meta-types but there is no notion of directionality (modes), and only a single
pattern is allowed per predicate.

Our proposal [26] contributes towards filling this gap between higher-order (C)LP pro-
grams and assertion-based extensions for error detection and program validation. Our starting
point is the Ciao assertion model, which we have enhanced with a new class of properties,
“predicate properties” (or predprops), for which we have proposed a syntax and semantics.

O © WO U AW N

o

ok W N e

N. Stulova

Listing 1 A simple program with a higher-order predicate min/4 that accepts a custom comparator
predicate

:- pred min(X,Y,Cmp,Min) : callable(Cmp).

min(X,Y,P,Min) :- P(R,X,Y), R <= 0, Min = X.

min(X,Y,_,Y).

less(0,A,A). 1t(’=’,A,A).

less(-1,A,B) :- A < B. 1t(’<’,A,B) :- A < B.

less(1,_,_). L2272 ,_g Do

test_min :- min(4,2,1t,2). % 1t/3 is passed, but less/3 is expected

Listing 2 A predprop comparator example and an anonymous assertion in its definition.

:- comparator (Cmp) {
:- pred Cmp(Res,M,N) : (num(M), num(N)) => between(-1,1,Res).
o

:- pred min(X,Y,Cmp,Min) : comparator (Cmp) .

These new properties can be used in assertions for higher-order predicates to describe the
properties of the higher-order arguments. An example of a predprop is provided in Listing 2,
where an anonymous assertion (note the variable symbol Cmp in place of a predicate symbol)
is used to describe a comparison predicate, that is not known at compilation time. By
reusing the original assertion language syntax to describe call and success conditions of
predicate-bearing arguments we allow both for better integration of these new constructs
into the verification framework and at the same time lessening the burden on a programmer,
who needs to provide such annotations.

Our predprop properties specify conditions for predicates that are independent of the
usage context. This corresponds in functional programming to the notion of tight contract
satisfaction [9], and it contrasts with alternative approaches such as loose contract satis-
faction [12]. In the latter, contracts are attached to higher-order arguments by implicit
function wrappers. The scope of checking is local to the function evaluation. Although this
is a reasonable and pragmatic solution, we believe that our approach is more general and
more amenable to combination with static verification techniques. For example, avoiding
wrappers allows us to remove checks (e.g., by static analysis) without altering the program
semantics. Moreover, our approach can easily support loose contract satisfaction, since it is
straightforward in our framework to optionally include wrappers as special predprops.

2.2 Trading Memory for Speed

While having become an integral part of software development process, run-time testing can
generally incur a high penalty in execution time and/or space over the standard, test-less
program execution. A number of techniques have been proposed to date to reduce this
overhead, including simplifying the checks at compile time via static analysis [2, 13] or
reducing the frequency of checking, including for example testing only at a reduced number
of points [19, 20]. Our proposal of [27] describes an approach to run-time testing that is
efficient while being minimally obtrusive and remaining exhaustive. It is based on the use of
memoization to cache intermediate results of check evaluation in order to avoid repeated
checking of previously verified properties over the same data structure.

15:3

ICLP 2017 TCs

15:4

On Improving Run-time Checking in Dynamic Languages

1 tree(e).
@ 2 tree(t(L,_,R)) :- tree(L), tree(R).
3
@ 4 t(,99,)
5 t(,19,) t(536,)
6 e t(,3,) t(,25,) Bl i,)
/YN /N /N 7 e e e e e e
8

Figure 1 A minimalistic tree data structure implementation as a regular type tree/1.

Memoization has of course a long tradition in (C)LP in uses such as tabling resolution [33,
8]. Memoization has also been used in program analysis [36, 22|, where tabling resolution is
performed using abstract values. However, in tabling and program analysis it is call-success
patterns that are usually tabled, whereas in our case the aim is to cache the results of test
execution.

We concentrate our attention on checks for conformance of run-time heap structures to
reqular types [7], a useful subset of properties that are often used in assertions. An example
in Fig. 1 shows a binary tree (left) and its possible implementation as a regular type together
with an instance of that type describing the tree (right).

Our approach is based on the observation that run-time checks of regular types are
monotonic instantiation checks, i.e., terms only become more and more instantiated with
every subsequent state that the program enters.! We extend the Ciao run-time checking
framework with a common cache, accessible to run-time checks, that stores tuples (z,t),
where z is a term address and t is an identifier of a regular type. After the initial check
on the term is performed, the corresponding tuple is added to the cache and for all the
subsequent checks on the term, the check is replaced by a (computationally cheaper) cache
lookup operation.

While studying the resulting performance of the enhanced verification framework we
have observed that a straightforward use of a cache does not necessarily lead to a significant
reduction in checking cost. An important issue that must be taken into account is the
character of cache rewrites: as the terms grow in size cache collisions happen more often,
which leads to element eviction. This in turn cancels out the advantage that using a cache
gives: the ability to just lookup the regular type of some term without actually performing
the check of it. However, this effect can be remedied by limiting the depth of terms that are
stored in the cache (e.g., not caching terms with depth more than some n).

The idea of using memoization techniques to speed up checks has attracted some attention
recently [15]. Their work (developed independently from ours) is based on adding fields to
data structures to store the properties that have been checked already for such structures. In
contrast, our approach has the advantage of not requiring any modifications to data structure
representation, or to the checking code, program, or core run-time system.

2.3 Intertwining Compile- and Run-time Checks

A complementary approach to run-time overhead reduction consists in using static analysis to
minimize the number and cost of the run-time checks that need to be placed in the program
to detect incorrect program behaviors. This idea was pioneered by the Ciao system where a

L This is not the case of course if the language allows mutable variables and they are used in the program,
but in those cases variable inmutability is tracked by the compiler / preprocessor.

N. Stulova

number of (abstract interpretation-based) static analyses are combined in order to verify
assertions to the largest extent possible at compile time, and for simplifying and reducing
the number of remaining properties that need to be introduced in the program as run-time
checks. However, while there has been evidence from use, there has been little systematic
experimental work presented to date measuring the actual impact of analysis on reducing
run-time checking overhead.

In our work [28] we generalize the existing practices as four assertion checking modes,
each of which represents a trade-off between code annotation depth, execution time slowdown,
and program behavior safety guarantees:

Unsafe: no run-time checks are generated from program assertions, program execution

is fast but incorrect program behaviors may stay undetected; the run-time overhead is

nonexistent.

Client-Safe: run-time checks are generated from the assertions of the program’s interface

(providing behavior guarantees for its clients), yet internal program assertions remain

unchecked; the run-time overhead is taken as a minimal unavoidable one.

Safe-RT: run-time checks are generated from all program assertions; this mode of checking

is characterized with the strongest behavior safety guarantees yet is at the same time

associated with highest check costs;

Safe-CT-RT: a variation of Safe-RT checking mode with an additional static analysis

phase, during which some of program assertions may be proven to always hold and

generating run-time checks from them can be omitted; depending on the kind of analysis
and the program the overhead generated by the checks from remaining assertions may be
closer to that of Client-Safe Safe-RT modes.

We also define a transformation-based approach in order to implement each one of these
modes. The differences between the transformations used in different modes are illustrated
in Fig. 2. Starting with the source of the program and its assertions in the bottom-left
corner, a sequence of preprocessing and compilation steps (denoted by arrows) is applied.
Respective components of the verification framework that perform the source transformations
are represented as hexagons.

We then concentrate on the reduction of the number of run-time tests via (abstract
interpretation-based) program analysis. To this end we propose a technique that enhances
analysis precision by taking into account that any assertions that cannot be proved statically
will be the subject of run-time testing. In practice, it means that it is safe to make the
two following assumptions for any predicate that has an assertion specifying properties that
should hold on calls and success:

The calls conditions hold after the analysis has entered the predicate definition, since

either the checks for these calls conditions have already succeeded or the program has

exited with error.

The relevant success conditions hold after the predicate has exited, since, again, at this

point either these success conditions have already succeeded or the program has exited

with error.

2.4 Benefiting from Information Hiding

While dynamic languages offer programmers great flexibility in term creation and manip-
ulation, for the very same reason the need for exhaustive run-time checks arises in order
to guarantee the data manipulation safety and correctness. Reusable libraries, i.e., library
modules that are pre-compiled independently of the client, pose special challenges in this

15:5

ICLP 2017 TCs

15:6

On Improving Run-time Checking in Dynamic Languages

| Unsafe | | Client-safe | | Safe-RT | | Safe-CT-RT |
Program Program Program Program
Code Code Code Code
Run-time Run-time Run-time
checks checks checks
(exports) (all) (reduced)
A A A
' i
B ____ i
! RT-checks), _______ .
1 |_> 1
1 1
]]
Program > Program R » Program
[}
Code Code : Code
1
1
i
1 =
Assertions Assertion 1 Assertion
conditions i conditions
: (reduced)
: 1
1
1
1

N P _ Static
'ormalizer Ana/ysis

Figure 2 Source transformation differences per checking mode.

context. The key issue here is that there is virtually no control on how and where valid
terms can be created, and thus it is quite common in the client-library interaction that any
of these modules can create any data shape and pass it. As a consequence, (often expensive)
run-time checks on the module boundaries become a necessary evil. In our work [29] we
propose a possible solution to overhead reduction for run-time checks on module boundaries
based on the information hiding principle (which is adopted in many other systems in form
of encapsulation or opaque data types).

Currently, most mature Prolog implementations adopt some flavor of a module system,
predicate-based in SWI [37], SICStus [30], YAP [25], ECLiPSe [6], and atom-based in XSB [31].
The difference between the two systems is the strictness of the term visibility rules: in an
atom-based system local to the module terms are not visible outside it if they are not a part
of the module interface. The Ciao approach [3] has until now been closer to a predicate-based
module system.

We propose an extension of the predicate-based module system, that allows to specify
only a subset of module terms as local (hidden) ones. Our argument is that in this setup
we have the guarantee of the module terms’ structural homogeneity, as only one module is
allowed to construct/deconstruct some particular data shapes. With this there is no need to
perform thorough checks of properties that verify the correctness of the data term structure
at the module boundaries. Instead, it would suffice to perform checks of shallow versions of
data shape properties: the weakened forms of the original properties that are semantically
equivalent to them in the context of the possible program executions. These versions typically
require asymptotically fewer execution steps and in some cases of the calls across module
boundaries allow us to achieve constant run-time overhead.

To illustrate the idea behind the approach, let us consider that the tree/1 regular type
from Fig. 1 is defined in a following module bintrees:

N. Stulova

:- module (bintrees,[tree/1,add/3,del/3,find/2]). /. exported predicates
:- hide e/0. % __ hidden

:- hide t/3. % / functors

:- regtype tree/1.

tree(e).

tree(t(L,_,R)) :- tree(L), tree(R).

:- pred add(E1,TO,T1) : tree(TO) => tree(T1).
add (E1,TO0,T1) :- ...

% rest of the implementation of module predicates

If we can assure by static analysis that none of the exported predicates of bintrees
passes t(_,_,_) terms outside the module, which could allow module clients to construct
arbitrary terms with this functor (e.g., t([...]1,_,[...])), then we can safely substitute the
full tree/1 property in the precondition check for add/1 (and also in precondition checks
for other exported predicates!) by its shallow version:

:- regtype shallow_tree/1.
shallow_tree(e).

shallow_tree(t(_,_,_)).

:- pred add(E1,TO,T1) : shallow_tree(TO) => tree(T1).
add (E1,TO,T1) :- ...
This way in all calls across module bintrees boundaries the cost of precondition checks
goes down from linear in the size of the term to constant (functor correctness check).
Preliminary experimental results and details about the algorithms that perform the
inference of shallow properties and conditions under which it is safe to use them in run-time
checks are provided in a technical report, to which [29] refers to.

3 Conclusions and Future Work

The specification-based runtime verification approach has attracted significant interest in
recent decades, both from academia and industry. As it is the case with any other open
problem, finding an approach that would suit each and every system is hard, and thus opting
for tailored partial solutions is more practical.

In our work we have concentrated on the peculiarities of the run-time verification task in
the context of dynamic languages and their use in (C)LP systems. We have proposed an
enhancement for the Ciao assertion language that allows us to capture the concrete execution
contexts of higher-order terms and thus adapts the verification framework to this new use
case. We have also proposed several solutions for reducing the overhead associated with
run-time checks, that treat the issue from several different angles.

While for concreteness of presentation our work was carried out within the Ciao language
and combined static/dynamic verification framework, our results are general and system-
independent. We believe they can be straightforwardly transferred to the contexts of other
declarative languages. In addition, given the advances in verification of a wide class of
programming languages, including imperative languages, by translation into Horn clauses
and proving properties at this level, and the fact that this approach is fully supported in the
Ciao system, we argue that our results can easily be adapted to a much broader spectrum of
languages.

For future work we plan to concentrate first on fully incorporating the optimization
techniques described here into Ciao’s run-time verification framework, as now they are
available as separate system bundles. Among the issues we would also like to address
more profoundly are further developments on blame assignment in the case of higher-order

15:7

ICLP 2017 TCs

15:8

On Improving Run-time Checking in Dynamic Languages

assertion checking, scalability evaluation of the combination of all optimization techniques,
and providing on-line demos and documentation.

Acknowledgements. We would like to thank the anonymous reviewers for providing valuable
comments and suggestions that had helped to improve this paper.

—— References

1

10

11

12

13

C. Beierle, R. Kloos, and G. Meyer. A Pragmatic Type Concept for Prolog Supporting
Polymorphism, Subtyping, and Meta-Programming. In Proc. of the ICLP’99 Workshop on
Verification of Logic Programs, Las Cruces, Electronic Notes in Theoretical Computer Sci-
ence, volume 30, issue 1. Elsevier, 2000. URL: http://www.elsevier.nl/locate/entcs/
volume30.html.

F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski, and
G. Puebla. On the Role of Semantic Approximations in Validation and Diagnosis of Con-
straint Logic Programs. In Proc. of the 3rd. Int’l Workshop on Automated Debugging—
AADEBUG 97, pages 155-170, Linképing, Sweden, May 1997. U. of Linképing Press. URL:
ftp://cliplab.org/pub/papers/aadebug_discipldeliv.ps.gz.

D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In International Con-
ference on Computational Logic, CL2000, number 1861 in LNAI, pages 131-148. Springer-
Verlag, July 2000.

D. Cabeza, M. Hermenegildo, and J. Lipton. Hiord: A Type-Free Higher-Order Logic
Programming Language with Predicate Abstraction. In Ninth Asian Computing Science
Conference (ASIAN’04), number 3321 in LNCS, pages 93-108. Springer-Verlag, December
2004.

Robert Cartwright and Mike Fagan. Soft Typing. In Programming Language Design and
Implementation (PLDI 1991), pages 278-292. SIGPLAN, ACM, 1991.

Cisco Systems. ECLIPSE User Manual, 2006.

P.W. Dart and J. Zobel. Efficient Run-Time Type Checking of Typed Logic Programs.
Journal of Logic Programming, 14:31-69, October 1992.

S. Dietrich. Extension Tables for Recursive Query Evaluation. PhD thesis, Departament
of Computer Science, State University of New York, 1987.

Christos Dimoulas and Matthias Felleisen. On contract satisfaction in a higher-order world.
ACM Trans. Program. Lang. Syst., 33(5):16, 2011. doi:10.1145/2039346.2039348.

W. Drabent, S. Nadjm-Tehrani, and J. Matuszynski. The Use of Assertions in Algorithmic
Debugging. In Proceedings of the Intl. Conf. on Fifth Generation Computer Systems, pages
573-581, 1988.

Manuel Fahndrich and Francesco Logozzo. Static contract checking with abstract inter-
pretation. In Proceedings of the 2010 International Conference on Formal Verification of
Object-oriented Software, volume 6528 of Lecture Notes in Computer Science, pages 10-30,
Berlin, Heidelberg, 2011. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=
1949303.1949305.

Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In
Mitchell Wand and Simon L. Peyton Jones, editors, ICFP, pages 48-59. ACM, 2002. doi:
10.1145/581478.581484.

M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Specifications,
and an Extensible Assertion Language for Program Validation and Debugging. In K. R. Apt,
V. Marek, M. Truszczynski, and D. S. Warren, editors, The Logic Programming Paradigm:
a 25-Year Perspective, pages 161-192. Springer-Verlag, July 1999.

http://www.elsevier.nl/locate/entcs/volume30.html
http://www.elsevier.nl/locate/entcs/volume30.html
ftp://cliplab.org/pub/papers/aadebug_discipldeliv.ps.gz
http://dx.doi.org/10.1145/2039346.2039348
http://dl.acm.org/citation.cfm?id=1949303.1949305
http://dl.acm.org/citation.cfm?id=1949303.1949305
http://dx.doi.org/10.1145/581478.581484
http://dx.doi.org/10.1145/581478.581484

N. Stulova

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

M. V. Hermenegildo, F. Bueno, M. Carro, P. Lépez, E. Mera, J.F. Morales, and
G. Puebla. An Overview of Ciao and its Design Philosophy. Theory and Practice
of Logic Programming, 12(1-2):219-252, January 2012. http://arxiv.org/abs/1102.5497.
doi:10.1017/S1471068411000457.

Emmanouil Koukoutos and Viktor Kuncak. Checking Data Structure Properties Orders
of Magnitude Faster. In Borzoo Bonakdarpour and Scott A. Smolka, editors, Runtime
Verification, volume 8734 of Lecture Notes in Computer Science, pages 263—-268. Springer
International Publishing, 2014. doi:10.1007/978-3-319-11164-3_22.

Claude Lai. Assertions with Constraints for CLP Debugging. In Pierre Deransart, Manuel V.
Hermenegildo, and Jan Maluszynski, editors, Analysis and Visualization Tools for Con-
straint Programming, volume 1870 of Lecture Notes in Computer Science, pages 109-120.
Springer, 2000. doi:10.1007/10722311_4.

Leslie Lamport and Lawrence C. Paulson. Should your specification language be typed?
ACM Transactions on Programming Languages and Systems, 21(3):502-526, May 1999.
Gary T. Leavens, K. Rustan M. Leino, and Peter Miiller. Specification and verification
challenges for sequential object-oriented programs. Formal Asp. Comput., 19(2):159-189,
2007. doi:10.1007/s00165-007-0026-7.

E. Mera, P. Lépez-Garcia, and M. Hermenegildo. Integrating Software Testing and Run-
Time Checking in an Assertion Verification Framework. In 25th Int’l. Conference on Logic
Programming (ICLP’09), volume 5649 of LNCS, pages 281-295. Springer-Verlag, July 2009.
E. Mera, T. Trigo, P. Lopez-Garcia, and M. Hermenegildo. Profiling for Run-Time Checking
of Computational Properties and Performance Debugging. In Practical Aspects of Declar-
ative Languages (PADL’11), volume 6539 of Lecture Notes in Computer Science, pages
38-53. Springer-Verlag, January 2011.

Edison Mera and Jan Wielemaker. Porting and refactoring Prolog programs: the PROSYN
case study. TPLP, 13(4-5-Online-Supplement), 2013.

K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency
Using Abstract Interpretation. Journal of Logic Programming, 13(2/3):315-347, July 1992.
Gopalan Nadathur and Dale Miller. Higher—Order Logic Programming. In D. Gabbay,
C. Hogger, and A. Robinson, editors, Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 5. Oxford University Press, 1998.

G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic Assertion-
Based Debugging of Constraint Logic Programs. In Logic-based Program Synthesis and
Transformation (LOPSTR’99), number 1817 in LNCS, pages 273-292. Springer-Verlag,
March 2000.

Vitor Santos Costa, Luis Damas, and Ricardo Rocha. The YAP Prolog System. Theory
and Practice of Logic Programming, 2011. http://arxiv.org/abs/1102.3896v1.

N. Stulova, J. F. Morales, and M. V. Hermenegildo. Assertion-based Debugging of Higher-
Order (C)LP Programs. In 16th Int’l. ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming (PPDP’14). ACM Press, September 2014.

N. Stulova, J. F. Morales, and M. V. Hermenegildo. Practical Run-time Checking via
Unobtrusive Property Caching. Theory and Practice of Logic Programming, 31st Int’l.
Conference on Logic Programming (ICLP’15) Special Issue, 15(04-05):726-741, September
2015. URL: http://arxiv.org/abs/1507.05986.

N. Stulova, J. F. Morales, and M. V. Hermenegildo. Reducing the Overhead of Assertion
Run-time Checks via static analysis. In 18th Int’l. ACM SIGPLAN Symposium on Prin-
ciples and Practice of Declarative Programming (PPDP’16), pages 90-103. ACM Press,
September 2016.

N. Stulova, J. F. Morales, and M. V. Hermenegildo. Term Hiding and its Impact on
Run-time Check Simplification (Extended Abstract). In Proceedings of the Technical Com-

15:9

ICLP 2017 TCs

http://dx.doi.org/10.1017/S1471068411000457
http://dx.doi.org/10.1007/978-3-319-11164-3_22
http://dx.doi.org/10.1007/10722311_4
http://dx.doi.org/10.1007/s00165-007-0026-7
http://arxiv.org/abs/1507.05986

15:10

On Improving Run-time Checking in Dynamic Languages

30

31

32

33

34

35

36

37

munications of the 33rd International Conference on Logic Programming (ICLP 2017),
Melbourne, Australia, August 28 - September 1, 2017. OASIcs, August 2017.

Swedish Institute for Computer Science, PO Box 1263, S-164 28 Kista, Swe-
den. SICStus Prolog User’s Manual, 4.1.1 edition, December 2009. Available from
http://www.sics.se/sicstus/.

Terrance Swift and David Scott Warren. XSB: Extending Prolog with Tabled Logic Pro-
gramming. TPLP, 12(1-2):157-187, 2012.

Asumu Takikawa, Daniel Feltey, Earl Dean, Matthew Flatt, Robert Bruce Findler, Sam
Tobin-Hochstadt, and Matthias Felleisen. Towards practical gradual typing. In John Tang
Boyland, editor, 29th European Conference on Object-Oriented Programming, ECOOP
2015, July 5-10, 2015, Prague, Czech Republic, volume 37 of LIPIcs, pages 4-27. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://www.dagstuhl.de/
dagpub/978-3-939897-86-6, doi:10.4230/LIPIcs.ECO0P.2015.4.

H. Tamaki and M. Sato. OLD Resolution with Tabulation. In Third International Con-
ference on Logic Programming, pages 84-98, London, 1986. Lecture Notes in Computer
Science, Springer-Verlag.

Sam Tobin-Hochstadt and Matthias Felleisen. The Design and Implementation of Typed
Scheme. In George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008,
San Francisco, California, USA, January 7-12, 2008, pages 395-406. ACM, 2008. doi:
10.1145/1328438.1328486.

D.H.D. Warren. Higher-order extensions to Prolog: are they needed? In J.E. Hayes, Donald
Michie, and Y-H. Pao, editors, Machine Intelligence 10, pages 441-454. Ellis Horwood Ltd.,
Chicester, England, 1982.

R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow
Analysis of Logic Programs. In Fifth International Conference and Symposium on Logic
Programming, pages 684-699. MIT Press, August 1988.

J. Wielemaker. The SWI-Prolog User’s Manual 5.9.9, 2010. Available from
http://www.swi-prolog.org.

http://www.dagstuhl.de/dagpub/978-3-939897-86-6
http://www.dagstuhl.de/dagpub/978-3-939897-86-6
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4
http://dx.doi.org/10.1145/1328438.1328486
http://dx.doi.org/10.1145/1328438.1328486

	p000-frontmatter
	Preface

	p001-Adrian
	Introduction
	Semantic resources and entity networks
	Entity set expansion
	Conclusion

	p002-Alviano
	Introduction
	From Argumentation Frameworks to Circumscription

	p003-Amendola
	Introduction
	Datalog+- with epistemic variables
	A decidable and expressive language: shyK
	Conclusion

	p004-Chekol
	Introduction
	Background
	ProbLog
	Marginal query
	MPE inference

	Probabilistic Soft Logic
	MPE inference

	Knowledge Graphs
	Probabilistic Temporal Knowledge Graphs

	Coalescing Probabilistic Temporal Knowledge Graphs
	ProbLog-based Representation of Probabilistic Temporal KGs
	Marginal Inference
	MPE inference

	Probabilistic Temporal KGs in PSL
	Experiments
	Marginal Temporal Query Evaluation
	MPE Inference

	Related Work
	Conclusion

	p005-Codish
	Introduction
	Preliminaries
	Interfacing Prolog with cliquer's C library
	The clique_read_dimacs_file/5 predicate
	The clique_find_single/4 predicate
	The clique_find_n_sols/6 predicate
	The clique_find_multi/5 predicate
	The clique_print_all/6 predicate

	Solving the Graph Coloring Problem
	The Constraint Model for Graph Coloring
	Throwing pl-cliquer into the mix
	Additional Optimizations & Results

	Exam Timetabling: An Application of Graph Coloring
	Technical Details
	Conclusions
	Toronto Instances
	Dimacs Instances

	p006-Hanus
	Motivation
	Functional Logic Programming and Curry
	Property-based Testing and CurryCheck
	CPM: The Curry Package Manager
	Semantic Versioning Checking
	Checking Non-terminating Operations
	Implementation of Semantic Versioning Checking
	Specification-based Software Development
	Conclusions and Related Work

	p007-Inclezan
	Overview

	p008-Schwitter
	Introduction
	The Event Calculus
	Probabilistic Logic Programs (PLP)
	The Simple Event Calculus as a PLP
	Learning the Structure of Effect Axioms
	Preamble
	Background Knowledge
	Language Bias Information
	Program Clauses for Finding Examples
	Example Interpretations

	Experiments
	Experiment A
	Experiment B
	Experiment C

	Conclusion

	p009-Stulova
	p010-Tarau
	Introduction
	Distilling the ``essence'' of Prolog's execution algorithm
	Our starting point: a simplified Horn Clause meta-interpreter
	The equational form of terms and clauses
	The ``English-like equivalent'' of the equational form
	A small expressiveness lift: allowing variables in function and predicate symbol positions

	The heap representation as the executable code
	The tag system
	The top-down representation of terms
	Clauses as descriptors of heap cells

	Execution as iterated clause unfolding
	Unification, trailing and pre-unification clause filtering
	Dereferencing
	The pre-unification step: detecting matching clauses without copying to the heap
	Unification
	Trailing

	Fast linear term relocation
	Stretching out the Spine: the immutable goal stack
	The interpreter loop: yielding an answer and ready to resume
	Playing with answer streams

	Multi-argument indexing: a modular add-on
	Some basic performance tests
	Related work
	Conclusions

	p011-Zhou
	p012-Bliem
	Introduction
	Background
	Contributions
	Improvements in the Dynamic Programming Methodology
	Non-Ground ASP Classes that Preserve Bounded Treewidth
	Alliance Problems in Graphs

	Current Status
	Open Issues

	p013-Gao
	Introduction
	Background
	Linguistic Databases
	Semantic Relation Extraction
	Semantic Similarity

	KAM Framework
	Preliminaries
	Supervised Knowledge Annotation
	Knowledge Acquisition
	Logical Representation

	Evaluation Design
	Current State of Research and Open Issues
	Conclusion

	p014-Hemann
	Introduction
	Implementing Depth-first Search
	Recursion and define-relation
	call/initial-state
	Interleaving, Completeness, and Search
	Conclusion and Related Work

	p015-Stulova
	Introduction
	Current Research Results
	Supporting Higher-Order Properties
	Trading Memory for Speed
	Intertwining Compile- and Run-time Checks
	Benefiting from Information Hiding

	Conclusions and Future Work

