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Abstract
We present a parallel algorithm for computing the treewidth of a graph on a GPU. We implement
this algorithm in OpenCL, and experimentally evaluate its performance. Our algorithm is based
on an O∗(2n)-time algorithm that explores the elimination orderings of the graph using a Held-
Karp like dynamic programming approach. We use Bloom filters to detect duplicate solutions.

GPU programming presents unique challenges and constraints, such as constraints on the use
of memory and the need to limit branch divergence. We experiment with various optimizations
to see if it is possible to work around these issues. We achieve a very large speed up (up to 77×)
compared to running the same algorithm on the CPU.
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1 Introduction

Treewidth is a well known graph parameter that measures how ‘tree-like’ a graph is. The
fact that many otherwise hard graph problems are linear time solvable on graphs of bounded
treewidth [6] has been exploited in many theoretical and practical applications. For such
applications, it is important to have efficient algorithms, that given a graph, determine the
treewidth and find tree decompositions with optimal (or near-optimal) width.

The interest in practical algorithms to compute treewidth and tree decompositions is also
illustrated by the fact that both the PACE 2016 and PACE 2017 challenges [12] included
treewidth as one of the two challenge topics. Remarkably, while most tracks in the PACE
2016 challenge attracted several submissions [13], there were no submissions for the call
for GPU-based programs for computing treewidth. Current sequential exact algorithms for
treewidth are only practical when the treewidth is small (up to 4, see [17]), or when the graph
is small (see [16, 4, 26, 14, 25]). As computing treewidth is NP-hard, an exponential growth
of the running time is to be expected; unfortunately, the exact FPT algorithms that are
known for treewidth are assumed to be impractical; e.g., the algorithm of [3] has a running

∗ Due to space constraints, several tables in this paper have been abridged or omitted. The complete
set of results is presented in the full version of this paper, available on arXiv [23], https://arxiv.org/
abs/1709.09990.
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29:2 Computing Treewidth on the GPU

time of 2O(k3)n. This creates the need for good parallel algorithms, as parallelism can help
to significantly speed up the algorithms, and thus deal with larger graph sizes.

In this paper, we consider a practical parallel exact algorithm to compute the treewidth
of a graph and a corresponding tree decomposition. The starting point of our algorithm is a
sequential algorithm by Bodlaender et al. [4]. This algorithm exploits a characterization of
treewidth in terms of the width of an elimination ordering, and gives a dynamic programming
algorithm with a structure that is similar to the textbook Held-Karp algorithm for TSP [18].

Prior work on parallel algorithms for treewidth is limited to one paper, by Yuan [25],
who implements a branch and bound algorithm for treewidth on a CPU with a (relatively)
small number of cores. With the advent of relatively inexpensive consumer GPUs that offer
more than an order of magnitude more computational power than their CPU counterparts, it
is very interesting to explore how exact and fixed-parameter algorithms can take advantage
of the unique capabilities of GPUs. We take a first step in this direction, by exploring how
treewidth can be computed on the GPU.

Our algorithm is based on the elimination ordering characterization of treewidth. Given
a graph G = (V,E), we may eliminate a vertex v ∈ V from G by removing v and turning its
neighborhood into a clique, thus obtaining a new graph. One way to compute treewidth is
to find an order in which to eliminate all the vertices of G, such that the maximum degree of
each vertex (at the time it is eliminated) is minimized. This formulation is used by e.g. [16]
to obtain a (worst-case) O∗(n!)-time algorithm. However, it is easy to obtain an O∗(2n)-time
algorithm by applying Held-Karp style dynamic programming as first observed by Bodlaender
et al. [4]: given a set S ⊆ V , eliminating the vertices in S from G will always result in
the same intermediate graph, regardless of the order in which the vertices are eliminated
(and thus, the order in which we eliminate S only affects the degrees encountered during its
elimination). This optimization is used in the algorithms of for instance [15] and [25].

We explore the elimination ordering space in a breadth-first manner. This enables efficient
parallelization of the algorithm: during each iteration, a wavefront of states (consisting of
the sets of vertices S of size k for which there is a feasible elimination order) is expanded to
the wavefront of the next level, with each thread of the GPU taking a set S and considering
which candidate vertices of the graph can be added to S. Since multiple threads may end up
generating the same state, we then use a bloom filter to detect and remove these duplicates.

To reduce the number of states explored, we experiment with using the minor-min-width
heuristic [16], for which we also provide a GPU implementation. Whereas normally this
heuristic would be computed by operating on a copy of the graph, we instead compute it using
only the original graph and a smaller auxiliary data structure, which may be more suitable
for the GPU. We also experiment with several techniques unique to GPU programming,
such as using shared/local memory (which can best be likened to the cache of a CPU) and
rewriting nested loops into a single loop to attempt to improve parallelism.

We provide an experimental evaluation of our techniques, on a platform equipped with a
Intel Core i7-6700 CPU (3.40GHz) with 32GB of RAM (4x8GB DDR4), and an NVIDIA
GeForce GTX 1060 with 6GB GDDR5 memory (Manufactured by Gigabyte, Part Number
GV-N1060WF2OC-6GD). Our algorithm is implemented in OpenCL (and thus highly portable).
We achieve a very large speedup compared to running the same algorithm on the CPU.
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2 Preliminaries

Treewidth

For a detailed description of treewidth and its characterization, we refer to [11]. Our algorithm
is based on the O(2nnm)-time algorithm of Bodlaender et al. [4]. Though the characterization
in terms of tree decomposition is more common, we recall only the characterization in terms
of elimination orderings that is used by this algorithm:

Let G = (V,E) be a graph with vertices v1, . . . vn. An elimination ordering is a per-
mutation π : V → {1, . . . , n} of the vertices of G. The treewidth of G is defined as
minπ maxv |Q({u ∈ V | π(u) < π(v)}, v)|, where Q(S, v) is the set of vertices {u ∈ V \ S |
there is a path v, p1, . . . , pm, u such that p1, . . . , pm ∈ S}, i.e., Q(S, v) is the subset of ver-
tices of V \ S reachable from v by paths whose internal vertices are in S.

An alternative view of this definition is that given a graph G, we can eliminate a vertex
v by removing it from the graph, and turning its neighborhood into a clique. The treewidth
of a graph is at most k, if there exists an elimination order such that all vertices have degree
at most k at the time they are eliminated.

GPU Terminology

Parallelism on a GPU is achieved by executing many threads in parallel. These threads are
grouped into warps of 32 threads. The 32 threads that make up a warp do not execute
independently: they share the same program counter, and thus must always execute the
same “line” of code (thus, if different threads need to execute different branches in the code,
this execution is serialized - this phenomenon, called branch divergence, should be avoided).
The unit that executes a single thread is called a CUDA core.

We used a GTX1060 GPU, which is based on the Pascal architecture [20]. The GTX1060
has 1280 CUDA cores, which are distributed over 10 Streaming Multiprocessors (SMs). Each
SM thus has 128 CUDA cores, which can execute up to 4 warps of 32 threads simultaneously.
However, a larger number of warps may be assigned to an SM, enabling the SM to switch
between executing different warps, for instance to hide memory latency.

Each SM has 256KiB1 of register memory (which is the fastest, but which registers are
addressed must be known at compile time, and thus for example dynamically indexing an
array stored in register memory is not possible), 96KiB of shared memory (which can be
accessed by all threads executing within the thread block) and 48KiB of L1 cache.

Furthermore, we have approximately 6GB of global memory available which can be
written to and read from by all threads, but is very slow (though this is partially alleviated
by caching and latency hiding). Shared memory can, in the right circumstances, be read
and written much faster, but is still significantly slower than register memory. Finally, there
is also texture memory (which we do not use) and constant memory (which is a cached
section of the global memory) that can be used to store constants that do not change over
the kernel’s execution (we use constant memory to store the adjacency lists of the graph).

Shared memory resides physically closer to the SM than global memory, and it would
thus make sense to call it “local” memory (in contrast to the more remote global memory).
Indeed, OpenCL uses this terminology. However, NVIDIA/CUDA confusingly use “local
memory” to indicate a portion of the global memory dedicated to a single thread.

1 A kibibyte is 210 bytes.
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3 The Algorithm

3.1 Computing Treewidth
Our algorithm works with an iterative deepening approach: for increasing values of k, it
repeatedly runs an algorithm that tests whether the graph has treewidth at most k. This
means that our algorithm is in practice much more efficient than the worst-case O∗(2n)
behavior shown by [4], since only a small portion of the 2n possible subsets may be feasible
for the target treewidth k. A similar approach (of solving the decision version of the problem
for increasing values of k) was also used by Tamaki [22], who refers to it as positive-instance
driven dynamic programming.

This algorithm lends itself very well to paralellization, since the subsets can be evaluated
(mostly) independently in parallel. This comes at the cost of slightly reduced efficiency (in
terms of the number of states expanded) compared to a branch and bound approach (e.g.
[14, 25, 26]) since the states with treewidth < k − 1 are expanded more than once. However,
even a branch and bound algorithm needs to expand all of the states with treewidth k − 1
before it can conclude that treewidth k is optimal, so the main advantage of branch and
bound is that it can settle on a solution with treewidth k without expanding all such solutions
(of width k).

Listing 1 Algorithm for computing treewidth. Note that lines 7–19 compute the degree of v in
the graph that remains after eliminating the vertices in S.

1 for k:=0 to n-1 do
2 inp :={∅};
3 for i:= 0 to n-k-2 do
4 outp = {};
5 foreach set S in inp do
6 foreach vertex v 6∈ S do
7 stack := {};
8 degree := 0;
9 push v to stack;

10 while stack 6= ∅ do
11 pop vertex u from stack;
12 foreach unvisited neighbor w of u do
13 mark w as visited ;
14 if w ∈ S

15 push w to stack;
16 else
17 degree := degree +1;
18 endforeach
19 endwhile
20 if degree ≤ k

21 outp := outp ∪ {S ∪ {v}};
22 endforeach
23 endforeach
24 inp := outp
25 endfor
26 if inp 6= ∅
27 report the treewidth of G is k;
28 endfor

To test whether the graph has treewidth at most k, we consider subsets S ⊆ V of increasing
size, such that the vertices of S can be eliminated in some order without eliminating a vertex
of degree > k. For each k, the algorithm starts with an input list (that initially contains just
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the empty set) and then forms an output list by for each set S in the input list, attempting
to add every vertex v 6∈ S to S, which is feasible only if the degree of v in the graph that
remains after eliminating the vertices in S is not too large. This is tested using a depth first
search. Then, the input and output lists are swapped and the process is repeated. If after
n iterations the output list is not empty, we can conclude that the graph has treewidth at
most k. Otherwise, we proceed to test for treewidth k + 1. Pseudocode for this algorithm is
given in Listing 1.

We include three optimizations: first, if C ⊆ V induces a clique, there is an elimination
order that ends with the vertices in C [4]. We can thus precompute a maximum clique C,
and on line 7 of Lisiting 1, skip any vertices in C. Next, if G has treewidth at most k and
there are at least k + 1 vertex-disjoint paths between vertices u and v, we may add the edge
uv to G without increasing its treewidth [10]. Thus, we precompute for each pair of vertices
u, v the number of vertex-disjoint paths between them, and when testing whether the graph
has treewidth at most k we add edges between all vertices which have at least k + 1 disjoint
paths (note that this has diminishing returns, since in each iteration we can add fewer and
fewer edges). Finally, if the graph has treewidth at least k, then the last k + 1 vertices can
be eliminated in any order so we can terminate execution of the algorithm earlier.

We note that our algorithm does not actually compute a tree decomposition or elimination
order, but could easily be modified to do so. Currently, the algorithm stores with each
(partial) solution one additional integer, which indicates which four vertices were the last to
be eliminated. To reconstruct the solution, one could either store a copy of (one in every
four of) the output lists on the disk, or repeatedly add the last four vertices to C and rerun
the algorithm to obtain the next four vertices (with each iteration taking less time than the
previous, since the size of C has increased).

3.2 Duplicate Elimination using Bloom Filters
Each set S may be generated in multiple ways by adding different vertices to subsets S′ ⊆ S;
if we do not detect whether a set S is already in the output list when adding it, we risk
the algorithm generating Ω(n!) sets. To detect whether a set S is already in the output, we
use a Bloom filter [2]: Bloom filters are a classical data structure in which an array A of
m bits can be used to encode the presence of n elements by means of k hash functions. To
insert an element S, we compute k independent hash functions {Hi|1 ≤ i ≤ k} each of which
indicates one position in the array, A[Hi(S)], which should be set to 1. If any of these bits
was previously zero, then the element was not yet present in the filter, and otherwise, the
probability of a false positive is approximately (1− e−kn/m)k.

In our implementation, we compute two 32-bit hashes h1(S), h2(S) using Murmur3 [1],
which we then combine linearly to obtain hashes Hi(S) = h1(S) + i · h2(S) (which is nearly
as good as using k independent hash functions [19]).

In our experiments, we have used m
n ≥ 24 and k = 17 to obtain a low (theoretical) false

positive probability of around 1 in 100.000. We note that the possibility of false positives
results in a Monte Carlo algorithm (the algorithm may inadvertently decide that the treewidth
is higher than it really is). Indeed, given that many millions of states are generated during
the search we are guaranteed that the Bloom filter will return some false positives, however,
this does not immediately lead to incorrect results: it is still quite unlikely that all of the
states leading to an optimal solution are pruned, since there are often multiple feasible
elimination orders.

The Bloom filter is very suitable for implementation on a GPU, since our target architec-
ture (and indeed, most GPUs) offers a very fast atomic OR operation [21]. We note that
addressing a Bloom filter concurrently may also introduce false negatives if multiple threads
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attempt to insert the same element simultaneously. To avoid this, we use the initial hash
value to pick one of 65.536 mutexes to synchronize access (this allows most operations to
happen wait-free, and only a collision on the initial hash value causes one thread to wait for
another).

3.3 Minor-Min-Width
Search algorithms for treewidth are often enhanced with various heuristics and pruning
rules to speed up the computation. One very popular choice (used by e.g. [16, 25, 26]) is
minor-min-width (MMW) [16] (also known as MMD+(min-d)) [7]). MMW is based on the
observation that the minimum degree of a vertex is a lower bound on the treewidth, and that
contracting edges (i.e. taking minors) does not increase the treewidth. MMW repeatedly
selects a minimum degree vertex, and then contracts it with a neighbor of minimum degree,
in an attempt to obtain a minor with large minimum degree (if we encounter a minimum
degree that exceeds our target treewidth, we know that we can discard the current state).
As a slight improvement to this heuristic, the second smallest vertex degree is also a lower
bound on the treewidth [7].

Given a subset S ⊆ G, we would like to compute the treewidth of the graphs that remains
after eliminating S from G. The most straightforward method is to explicitly create a copy
of G, eliminate the vertices of S, and then repeatedly perform the contraction as described
above. However, storing e.g. an adjacency list representation of these intermediate graphs
would exceed the available shared memory and size of the caches. As we would like to avoid
transferring large amounts of data to and from global memory, we implemented a method to
compute MMW without explicitly storing the intermediate graphs.

Our algorithm tracks the current degrees of the vertices (which, conveniently, we already
have computed to determine which vertices can be eliminated). It is thus easy to select
a minimum degree vertex v. Since we do not know what vertices it is adjacent to (in the
intermediate graph), we must select a minimum degree neighbor by using a depth-first search,
similarly to how we compute the vertex degrees in Listing 1. Once we have found a minimum
degree neighbor u, we run a second dept-first search to compute the number of neighbors u
has in common with v, allowing us to update the degree of v. To keep track of which vertices
have been contracted, we use a disjoint set data structure.

The disjoint set structure and list of vertex degrees together use only two bytes per
vertex (for a graph of up to 256 vertices), thus, they fit our memory constraints whereas an
adjacency matrix or adjacency list (for dense graphs, noting that the graphs in question can
quickly become dense as vertices are eliminated) would readily exceed it.

4 Experiments

4.1 Instances
We selected a number of instances from the PACE 2016 dataset [12] and libtw [24].

All instances were preprocessed using the preprocessing rules of our PACE submission
[8], which split the graph using safe separators: we first split the graph into its connected
components, then split on articulation points, then on articulation pairs (making the remaining
components 3-connected) and finally - if we can establish that this is safe - on articulation
triplets (resulting in the 4-connected components of the graph). We then furthermore try
to detect (almost) clique separators in the graph, and split on those. For a more detailed
treatment of these preprocessing rules, we refer to [5].
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Table 1 Performance of the algorithm on several benchmark graphs, using global memory and a
work size of 128.

Name |V | tw Time (sec.) Exp
GPU CPU

1e0b_graph 55 24 779 - 1730 ×106

1fjl_graph* 57 26 1730 - 3680 ×106

1igd_graph 59 25 107 5120 261 ×106

1ubq* 47 11 1130 - 2300 ×106

8x6_torusGrid* 48 7 1110 - 2100 ×106

BN_98 47 21 689 - 1590 ×106

contiki_dhcpc_handle_dhcp* 39 6 1490 - 2930 ×106

DoubleStarSnark 30 6 34,5 873 87,6 ×106

KneserGraph_8_3* 56 24 1710 - 4130 ×106

myciel5* 47 19 2000 70.600 4000 ×106

NonisotropicUnitaryPolarGraph_3_3 63 53 1,16 60,4 1,56 ×106

queen8_8 64 45 26,3 2040 57,9 ×106

RandomBarabasiAlbert_100_2* 41 12 1610 - 3280 ×106

RandomBoundedToleranceGraph_60 59 30 0,274 0,635 0,0560 ×106

SylvesterGraph 36 15 248 - 632 ×106

te* 62 7 1170 - 2160 ×106

4.2 General Benchmark

We first present an experimental evaluation of our algorithm (without using MMW) on a
set of benchmark graphs. Table 1 shows the number of vertices, computed treewidth, time
taken (in seconds) on the GPU and the number of sets S explored. Note that the time
does not include the time taken for preprocessing, and that the vertex count is that of the
preprocessed graph (and thus, the original graph may have been larger).

The size of the input and output lists were limited by the memory available on our GPU.
With the current configuration (limited to graphs of at most 64 vertices - though the code
is written to be flexible and can easily be changed to support up to 256 vertices), these
lists could hold at most 180 million states (i.e., subsets S ⊆ V that have a feasible partial
elimination order) each. If at any iteration this number was exceeded, the excess states were
discarded. The algorithm was allowed to continue execution for the current treewidth k, but
was terminated when trying the next higher treewidth (since we might have discarded a state
that would have lead to a solution with treewidth k, the answer would no longer be exact).
The states were the capacity of the lists was exceed are marked with *, if the algorithm was
terminated then the treewidth is stricken through (and represents the candidate value for
treewidth at which the algorithm was terminated, and not the treewidth of the graph, which
is likely higher).

For instance, for graph 1ubq the capacity of the lists was first exceeded at treewidth
10, and the algorithm was terminated at treewidth 11 (and thus the actual treewidth is at
least 10, but likely higher). For graph myciel5, the capacity of the lists was first exceeded
at treewidth 19, but still (despite discarding some states) a solution of treewidth 19 was
nevertheless found (which we thus know is the exact treewidth).

For several graphs (those where the GPU version of the algorithm took at most 5 minutes),
we also benchmarked a sequential version of the same algorithm on the CPU. In some cases,
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Table 2 Running time (sec.) for various work group sizes (W ), using shared (S) or global (G)
memory. Each cell lists the average result of 4 test runs, where the complete set of runs was executed
in a randomized order.

Name |V | tw Time (sec.)
W = 32 W = 64 W = 128 W = 256

1igd_graph (G) 59 25 109 107 107 107
1igd_graph (S) 59 25 94,8 95,6 98,2 103
1ku3_graph (G) 60 22 238 235 235 235
1ku3_graph (S) 60 22 214 217 222 230
queen8_8 (G) 64 45 29,5 26,6 26,3 26,0
queen8_8 (S) 64 45 25,1 24,1 24,5 25,0

the algorithm achieves a very large speedup compared to the CPU version (up to 77×, in the
case of queen8_8). Additionally, for myciel5, we also ran the CPU-based algorithm, which
took more than 19 hours to finish. The GPU version only took 34 minutes.

The GPU algorithm can process a large amount of states in a very short time. For
example, for the graph 1fjl, 3680 million states were explored in just 1730 seconds, i.e., over
2 million states were processed each second (and for each state, a Θ(|V ||E|)-time algorithm is
executed). The highest throughput (2.5 million states/sec.) is achieved on SylvesterGraph,
but this graph has relatively few vertices.

We caution the reader that the graph names are somewhat ambiguous. For instance, the
queen7_7 instance is from libtw and has treewidth 35. The 2016 PACE instances include
a graph called dimacs_queen7_7 which only has treewidth 28. The instances used in our
evaluation are available from our GitHub repository [9].

4.3 Work Size and Global v.s. Shared Memory

In this section, we study the effect of work size and whether shared or global memory is used
on the running time of our implementation.

Recall that shared memory is a small amount (in our case, 96KiB) of memory that is
physically close to each Streaming Multiprocessor, and is therefore in principle faster than the
(much larger, off-chip) global memory. We would therefore expect that our implementation
is faster when used with shared memory.

Each SM contains 128 CUDA cores, and thus 4 warps of 32 threads each can be executed
simultaneously on each SM. The work size (which should be a multiple of 32), represents
the number of threads we assign to each SM. If we set the work size larger than 128, more
threads than can physically be executed at once are assigned to one SM. The SM can then
switch between executing different warps, for instance to hide latency of memory accesses. If
the work size is smaller than 128, a number of CUDA cores will be unutilized.

In Table 2, we present some experiments that show running times on several graphs,
depending on whether shared memory or global memory is used, for several sizes of work
group (which is the number of threads allocated to a single SM).

There is not much difference between running the program using shared or global memory.
In most instances, the shared memory version is slightly faster. Surprisingly, it also appears
that the work size used does not affect the running time significantly. This suggests that our
program is limited by the throughput of memory, rather than being computationally-bound.
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Table 3 The effect of using the Minor-Min-Width Heuristic. Time is in seconds. Global memory,
work size 128.

Name |V | tw With MMW Without MMW
Time Exp Time Exp

1e0b_graph 55 24 2750 1660 ×106 779 1730 ×106

1fjl_graph* 57 26 timeout 3260 ×106 1730 3680 ×106

1igd_graph 59 25 471 235 ×106 107 261 ×106

1ubq* 47 11 2010 1500 ×106 1130 2300 ×106

8x6_torusGrid* 48 7 1350 1300 ×106 1110 2100 ×106

BN_98 47 21 1480 1440 ×106 689 1590 ×106

contiki_dhcpc_handle_dhcp* 39 6 2670 2900 ×106 1490 2930 ×106

DoubleStarSnark 30 6 38,3 76,0 ×106 34,5 87,6 ×106

KneserGraph_8_3* 56 24 1330 1220 ×106 1730 4130 ×106

myciel5* 47 19 2550 3200 ×106 2000 4000 ×106

NonisotropicUnitaryPolarGraph_3_3 63 53 3,36 1,30 ×106 1,16 1,56 ×106

queen8_8 64 45 83,5 51,1 ×106 26,3 57,9 ×106

RandomBarabasiAlbert_100_2* 41 12 2390 2840 ×106 1610 3280 ×106

RandomBoundedToleranceGraph_60 59 30 0,630 0,0478 ×106 0,274 0,0560 ×106

SylvesterGraph 36 15 274 503 ×106 248 632 ×106

te* 62 10 2260 1690 ×106 1170 2160 ×106

4.4 Minor-Min-Width

In Table 3, we list results obtained when using Minor-Min-Width to prune states.
The computational expense of using MMW is comparable to that of the initial computation

(for determining the degree of vertices): the algorithm does a linear search for a minimum
degree vertex (using the precomputed degree values), and then does a graph traversal (using
BFS) to find a minimum degree neighbour (recall that we do not store the intermediate
graph, and use only a single copy of the original graph). Once such a neighbour is found, the
contraction is performed (by updating the disjoint set data structure) and another graph
traversal is required (to compute the number of common neighbours, and thus update the
degree of the vertex).

The lower bound given by MMW does not appear to be very strong, at least for the
graphs considered in our experiment: the reduction in number of states expanded is not very
large (for instance, from 1730 million states to 1660 million for 1e0b, or from 1590 million to
1480 million for BN_98). The largest reductions are visible for graphs on which we run out of
memory (for instance, from 4130 million to 1330 million for KneserGraph_8_3), but this is
likely because the search is terminated before we reach the actual treewidth (so we avoid the
part of our search where using a heuristic is least effective) and there are no graphs on which
we previously ran out of memory for which MMW allows us to determine the treewidth (the
biggest improvement is that we are able to determine that te has treewidth at least 10, up
from treewidth at least 7).

Consistent with the relatively low reduction in the number of states expanded, we see
the computation using MMW typically takes around 2 − 3 times longer. On the graphs
considered here, the reduction in search space offered by MMW does not offset the additional
cost of computing it.

Again, the GPU version is significantly faster than executing the same algorithm on the
CPU: we observed a 55× speedup for queen8_8. Still, given what we observed in Section
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4.3, it is not clear whether our approach of not storing the intermediate graphs explicitly is
indeed the best approach. Our main motivation for taking this approach was to be able to
store the required data structures entirely in shared memory, but our experiments indicate
that for MMW, using global memory gives better performance than using shared memory.
However, the relatively good performance of global memory might be (partially) due to
caching and the small amount of data transferred, so it is an interesting open question to
determine whether the additional memory costs of using more involved data structures is
compensated by the potential speedup.

4.5 Loop Unnesting
Finally, we experimented with another technique, which aims to increase parallelism (and
thus speedup) by limiting branch divergence. However, as the results were discouraging, we
limit ourselves to a brief discussion.

The algorithm of Listing 1 consists of a loop (lines 5–22) over the (not yet eliminated)
vertices, inside of which is a depth-first search (which computes the degree of the vertex,
to determine whether it can be eliminated). The depth-first search in turn consists of a
loop which runs until the stack becomes empty (lines 10–19) inside of which is a final loop
over the neighbours of the current vertex (lines 12–18). This leads to two sources of branch
divergence:

First, if the graph is irregular, all threads in a warp have to wait for the thread that is
processing the highest degree vertex, even if they only have low-degree vertices.
Second, all threads in a warp have to wait for the longest of the BFS searches to finish
before they can start processing the next vertex.

To alleviate this, we proposed a technique which we call loop unnesting: rather than have
3 nested loops, we have only one loop, which simulates a state machine with 3 states: (1)
processing the adjacency list of a vertex, (2) having finished processing of an adjacency list
and being ready to pop a new vertex off the queue, or (3) having finished a BFS, and being
ready to begin computing the degree of a new vertex.

We considered a slightly more general version of this idea: in an (x, y)-unnesting of our
program, after every x iterations of the inner loop (exploring neighbours of the current vertex)
one iteration of the middle loop is executed (if exploring the adjacency list is finished, get a
new vertex from the queue), and for every y iterations of the middle loop, one iteration of
the outer loop is executed (begin processing an entirely new vertex). Thus, a (1, 1)-unrolling
corresponds to the state machine simulation described above, and an (∞,∞)-unrolling
corresponds to the original program.

Picking the right values for x, y means finding the right trade-off between checking
frequently enough whether a thread is ready to start working on another vertex, and the cost
of performing those checks. What we observed was surprising: while (1, 1), (3, 2) and (1,∞)-
unrollings gave reasonable results, the best results were obtained with (∞,∞)-unrollings (i.e.
the original, unmodified algorithm) and the performance of (∞, 1)-unrollings was abysmal.

We believe that a possible explanation may be that loop unnesting does work to some
extent, but not unnesting the loops has the advantage that all BFS searches running
simultaneously start from the same initial vertex, and (up to differences caused by different
sets S being used) will access largely the same values from the adjacency lists at the same time,
which may increase the efficiency of read operations. On the other hand, (∞, 1)-unnesting
can not take advantage of either phenomenon: different initial vertices may be processed
at any given time (so there is little consistency in memory accesses) and the inner loop
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is not unnested at all so there is no potential to gain speedup there either. Perhaps for
larger graphs, where the difference in length of adjacency lists may be more pronounced,
or the amount of time a BFS takes varies more strongly with the initial vertes and S, loop
unnesting does provide speed up, but for the graphs considered here it does not appear to be
a beneficial choice.

5 Conclusions

We have presented an algorithm that computes treewidth on the GPU, achieving a very large
speedup over running the same algorithm on the CPU. Our algorithm is based on the classical
O∗(2n)-time dynamic programming algorithm [4] and our results represent (promising) first
steps in speeding up dynamic programming for treewidth on the GPU. The current best
known practical algorithm for computing treewidth is the algorithm due to Tamaki [22].
This algorithm is much more complicated, and porting it to the GPU would be a formidable
challenge but could offer an extremely efficient implementation for computing treewidth.

Given the large speedup achieved, we are no longer mainly limited by computation time.
Instead, our ability to solve larger instances is hampered by the memory required to store the
very large lists of partial solutions. Using minor-min-width did not prove effective in reducing
the number of states considerably, so it would be interesting to see how other heuristics and
pruning rules (such as simplicial vertex detection) could be implemented on the GPU.

GPUs are traditionally used to solve easy (e.g. linear time) problems on very large inputs
(such as the millions of pixels rendered on a screen, or exploring a graph with millions of
nodes), but clearly, the speedup offered by inexpensive GPUs would also be very welcome in
solving hard (NP-complete) problems on small instances. Exploring how techniques from
FPT and exact algorithms can be used on the GPU raises many interesting problems - not
only practical ones, but also theoretical: how should we model complex devices such as
GPUs, with their many types of memory and branch divergence issues?
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Source Code and Instances. We have made our source code, as well as the graphs used
for the experiments, available on GitHub [9].
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