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—— Abstract
We introduce some classical complexity-theoretic techniques to Parameterized Complexity. First,
we study relativization for the machine models that were used by Chen, Flum, and Grohe (2005)
to characterize a number of parameterized complexity classes. Here we obtain a new and non-
trivial characterization of the A-Hierarchy in terms of oracle machines, and parameterize a famous
result of Baker, Gill, and Solovay (1975), by proving that, relative to specific oracles, FPT and
A[1] can either coincide or differ (a similar statement holds for FPT and W[P]). Second, we
initiate the study of interactive proof systems in the parameterized setting, and show that every
problem in the class AW[SAT] has a proof system with “short” interactions, in the sense that
the number of rounds is upper-bounded in terms of the parameter value alone.
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1 Introduction

In Parameterized Complexity Theory, the complexity of computational problems is measured
not only in terms of the size of the input, |z|, but also in terms of a parameter k which
measures some additional structure of the input. The main advantage of this approach is
that the class of problems which are considered computationally tractable can be expanded
considerably by requiring that the running time of algorithms be polynomial only in |z|,
while allowing some other dependence of the running time on the parameter value. Problems
that can be solved by such algorithms are said to be fized-parameter tractable. To this relaxed
notion of computational tractability there corresponds a matching notion of intractability.

The complexity classes capturing parameterized intractability were originally defined as
closures, under suitably defined parameterized reductions, of specific problems that were
conjectured to not have fpt-algorithms (see [8], or the more recent [9]). This approach ensured
that most of these “hard” classes contained an interesting or somewhat natural complete
problem, and, in the case of W[1], produced a “web of reductions” similar to the one for
NP-complete problems in classical complexity.

However, defining complexity classes only via reductions to specific problems means that
the resulting classes may not have characterizations in terms of computing machines, or,
indeed, any natural characterizations except the definition. This in turn can mean that
many proof techniques from classical complexity are not usable in the parameterized setting,
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because they rely on different characterizations that do not apply to any one parameterized
complexity class. To give an example, in the proof of IP = PSPACE ([15], see also
[16]), both the definition of PSPACE in terms of space-bounded computation, and the
characterization of this class in terms of alternating polynomial-time computation are used.
In the parameterized world, this equivalence between space and alternating time seems to
break down [6], and parameterized interactive proof systems do not appear to have been
studied at all, so no similar theorem is known in this setting.

Surprisingly (given the way they were originally defined), many of the classes capturing
parameterized intractability turned out to have characterizations in terms of computing
machines: In three papers, Chen [5, 6, 7], Flum [5, 6, 7], and Grohe [6, 7] showed that certain
kinds of nondeterministic random access machines (RAMs) exactly define some important
parameterized classes:

W/[P] and AW|[P] are characterized by RAMs that can nondeterministically ! guess

integers, but the number of guesses they can make throughout the computation is bounded

by a computable function of the parameter value of the input instance. We refer to this

as parameter-bounded nondeterminism (a term used similarly in [6]).

The classes of the A-Hierarchy, as well as AW[x], are obtained by further restricting

the (alternating) nondeterminism of the machines to tail-nondeterminism, meaning that

the machines can only make nondeterministic guesses among the last h(k) steps of a

computation, where h is a computable function and k is the parameter.

Finally, the classes of the W-Hierarchy are characterized by tail-nondeterministic ma-

chines which are not allowed to access the guessed integers directly (they can make

nondeterministic decisions based on them, but not use them in arithmetic operations).

The main reason why the characterizations in [5, 6, 7] were given in terms of RAMs, rather
than Turing machines (TMs), is that a TM may need to traverse the entire used portion
of its tape in order to read a particular bit, so a tail-nondeterministic TM would not be
able to make use of its entire memory during the nondeterministic phase of the computation.
The classes W[P] and AW|[P] also have characterizations in terms of TMs with restricted
nondeterminism [6], but we consistently use random access machines throughout this work.

The machine characterizations of some of the above-mentioned classes can be rewritten
in such a way that they strongly resemble definitions of some familiar classes from classical
complexity. For example, A[1] can be defined as the class of parameterized problems that
are decided by tail-nondeterministic RAMs in fpt-time, which at least formally looks like the
definition of NP. Similarly, W[P] can also be defined in a way that is similar to NP (using
parameter-bounded nondeterminism), the levels of the A-Hierarchy have characterizations
that match the definitions of the X-levels of the Polynomial Hierarchy, and AW[P] and AW [x]
both correspond to AP (the class of problems that are decidable in alternating polynomial-
time). Given the similar definitions, it seems reasonable to expect that parameterized
complexity classes also inherit some properties from their classical counterparts. However,
replacing the machine model in a definition is a significant change, so it is by no means
obvious which theorems will still hold for a parameterized version of a complexity class.

Our goal in this paper is to show that having machine-based characterizations of pa-
rameterized complexity classes opens up a largely unexplored, but possibly very fruitful,
path toward understanding parameterized intractability. To that end we extend the work

! Throughout this paper, nondeterminism will mean alternating nondeterminism with a number of
alternations that will be clear from the context. This should not cause any confusion, since simple
nondeterminism is just l-alternating nondeterminism.
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of Chen, Flum, and Grohe [5, 6, 7] in two directions: relativization and interactive proofs.
The key insight is that parameterized versions of these two concepts can be defined in such
a way that some important classical theorems can be recovered in this setting. The proofs
of our theorems follow along the same lines as their classical counterparts, with only some
technical obstacles to be overcome, but it is a remarkable fact that parameterized versions
of these proofs can be made to work at all: For example, it is not a priori clear whether
parameterized oracle computation can be even in principle defined in a way that makes the
A-Hierarchy have an oracle characterization that is similar to that of PH. We show, among
other things, that this is indeed the case, and furthermore, that the restrictions that must be
placed on the access to the oracle in order to obtain this result are quite natural (at least, in
the context of the machine characterization of A[1] from [7]).

1.1 Our results

Parameterized relativization. Theorems involving oracles have been given before in Pa-
rameterized Complexity, but it is almost always Turing machines that are endowed with
access to an oracle (see, for example, [13]). In order to relativize the hard parameterized
complexity classes for which machine characterizations are known, we define oracle RAMs
with the different forms of restricted nondeterminism mentioned above. It turns out that in
order for oracle access and nondeterminism to interact in a useful way, both of these features
must, roughly speaking, have the same restrictions (tail-nondeterministic machines should
have tail-restricted oracle access, etc.)2. We show that these restrictions lead to a natural
type of oracle access for each type of machine, by proving parameterized versions of two
fundamental results from classical complexity, both for the tail-nondeterministic and the
parameter-bounded version of nondeterministic RAMs.

First, we give a new characterization of the classes of the A-Hierarchy, in terms of oracle
machines (resembling the oracle characterization of the levels of the Polynomial Hierarchy
(see [3], Section 5.5)), by proving that

vt >1: A1) = At + 1],

but only for a specific oracle O; that is complete for A[t] (Theorem 13). We also explain
why tail-nondeterminism appears to be too weak to allow for this theorem to be proved for
an arbitrary A[t]-complete problem. The situation is much better when the nondeterminism
is only parameter-bounded, and we have (Theorem 16) that

[P]
vi>1: WP =xl

where ELP] (t > 1) are the X-levels of the analogue of the Polynomial Hierarchy for the
machine model with parameter-bounded nondeterminism (so E[1P] = W/[P]). We emphasize
that both of these theorems seem to hold only if the oracle A[1]- and W[P]-machines have
exactly the right restrictions placed on their oracle access, and even then, tail-nondeterminism
causes a number of non-trivial technical issues (see the proof of Theorem 13).

2 Placing restrictions on the access to an oracle is a fairly common practice even in classical complexity.
For example, the oracle tape of a LOGSPACE-machine is write-only, in order to allow the machine to
make polynomial-sized queries while preventing it from using the tape for computations that avoid the
space restriction. Another example can be found in [1], where, in order to prove that the statement
NEXP C MIP algebrizes, the authors restrict machines that run in exponential time so that they can
only make oracle queries of polynomial size.

9:3
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Second, we recover a parameterized version of a well-known oracle separation result of
Baker, Gill, and Solovay [4], by showing (Theorem 14) that there exist parameterized oracles
A and B such that

FPT" = A[1]* and FPT? +# A[1]5.

It is worth noting that here the FPT-machine may be given completely unrestricted access
to the oracle B, whereas the A[l]-machine only has tail-restricted access (which is the most
restricted form of oracle access we consider), so in some sense this separation is stronger
than expected. A similar theorem holds when replacing A[1] with W[P] (Theorem 18).

These results are, of course, only the first steps toward understanding relativization for
parameterized complexity classes beyond FPT. To illustrate the importance of investigating
relativization in this setting, let us briefly consider the long-standing open problem of proving
a parameterized version of Toda’s Theorem [17], which states that PH C PFPP. It is not clear
which parameterized classes would be involved in such a theorem, but, presumably, P would
be replaced by FPT, which can easily be described in terms of Turing machines, so it should
be possible to at least state the theorem without further considerations about the type of
oracle access being used. Furthermore, it could be argued that since only the larger of the
two classes in the theorem statement is obtained via relativization, placing no restrictions on
the access to the oracle can only make the inclusion easier to prove. However, both Toda’s
original proof [17] and Fortnow’s simplified version of it [12] make heavy use of relativized
versions of classes such as BPP and PH, so following either one of these proofs would
involve relativized versions of parameterized counterparts of such classes. Our Theorems
13 and 16 only deal with oracle access and alternating nondeterminism, but this already
requires a careful balancing of the restrictions placed on both features. Toda’s Theorem, on
the other hand, involves an interplay between relativization, alternating nondeterminism,
randomization, and counting complexity, so it seems unlikely that a parameterized version
of it can be proved without a better understanding of parameterized relativization and its
relation to other complexity-theoretic concepts.

Interactive proof systems for parameterized complexity classes. The levels of the A-
Hierarchy were originally defined as fpt-closures of model checking problems, where a relational
structure A and a first-order formula ¢ without free variables are given, and the task is to
decide whether A satisfies ¢. In [7], model checking problems are used in a very interesting
way in the proof of the machine characterization of the classes A[t]: Specifically, a pair
(A, @) is used to encode the computation of a tail-nondeterministic RAM, in a way that
is strongly reminiscent of how the computation of a nondeterministic TM is encoded as a
quantified Boolean formula in the proof of the Cook-Levin Theorem (see [3], Chap. 2). This
suggests that by generalizing classical techniques that involve quantified Boolean formulas,
it may be possible to apply them to parameterized complexity classes for which a model
checking problem is complete. In Section 4 we continue this line of thought by generalizing
arithmetization of quantified Boolean formulas (see [3], Section 8.3) to pairs of relational
structures and first-order formulas.

We also initiate the study of interactive proof systems in this setting. Using generalized
arithmetization, we show that all problems in AW[SAT] have proof systems with a number
of rounds depending only on the parameter value of the input instance (Theorem 19). The
goal (which, unfortunately, is not achieved here) is to precisely characterize either AW [x]
or AW[P] in terms of IPs, as this would recover a parameterized version of the fact that
IP = AP, even without a notion of space that corresponds to alternation in the parameterized
setting. At the end of Section 4 we give a possible candidate for a characterization of AW/x].
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Note that theorem proofs and other details can be found in the full version of paper
(arXiv:1706.09391).

2 Preliminaries

We refer to [3] and to [11], respectively, for the necessary background in classical and
Parameterized Complexity. By N we mean the set of non-negative integers, and by N* the
set of finite sequences of non-negative integers.

2.1 Random access machines and parameterized complexity classes

We give only a general overview of RAMs, and refer to Section 2.6 of [14] for the details.
A random access machine is specified by its program (a finite sequence of instructions),
which operates on an infinite sequence of standard registers, rg,r1, ..., that contain integers.
Instructions access registers either directly, by referencing their numbers, or indirectly, by
taking the number of a register to be the current content of another register (in other words,
the machine can access ., i € N). We follow [6] in assuming that the registers store only
non-negative integers. Except instructions which copy the contents of one register to another,
a RAM also has conditional and unconditional jump instructions, as well as instructions
which perform the operations addition, subtraction, and integer division by 2 (these suffice
to efficiently perform all arithmetic operations on signed integers). The input of a RAM is a
finite sequence of non-negative integers, each stored in a separate register, and we define the
problems solved by such machines accordingly.

» Definition 1. A parameterized problem @ is a subset of N* x N. When dealing with the
problem of deciding whether (z, k) € N* x N is an element of Q, (z, k) is referred to as an
instance; the second element of such a pair is called the parameter.

» Remark 2. When an instance of a parameterized problem is given as input to a RAM, we
assume that the parameter is given in unary encoding, meaning that if the parameter value
is k € N, then k registers, each containing the value 1, are used to encode the parameter
value. The size of x, the main part of the input, is taken as the sum of the sizes of the binary
encodings of the integers that make up x. A RAM can therefore efficiently convert between
a reasonable encoding using integers, and any reasonable encoding using a finite alphabet.

» Definition 3. A random access machine M is parameter-restricted if there is a computable
function f and a polynomial function p, such that on any input (z, k):

M terminates after executing at most f(k)p(|x|) instructions;

throughout any computation, the registers contain only numbers that are < f(k)p(|x|).

The above definition replaces the “polynomial-time” restriction on the running time in
the classical setting, and is similar to the definition of “k-restricted” in Chap. 6 of [11]. Note
that the second condition is a bound on the numbers stored in the registers, not on the
number of bits that would be needed for the binary encoding of these numbers.

The next definition is easily seen to be equivalent to the usual definition of FPT [11].

» Definition 4. We define FPT as the class of parameterized problems that are decidable
by parameter-restricted (deterministic) RAMs.

An alternating random access machine (ARAM) is a RAM with additional existential
and undversal guess instructions, EXISTS and FORALL, both of which place a nondeter-
ministically chosen integer from the interval [0, ro] into ¢ (the difference between the two
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instructions is in how the acceptance of the input is defined). We may assume that the
upper end of the range of each nondeterministic guess is the largest number that the machine
can store in its registers, given the input, because the machine can first guess a number in
the maximum range, and then trim the result by computing the remainder of a division
by the size of the intended range. For ARAMs, the notions of computation (on an input),
configuration, computation path, ¢-alternation, and acceptance/rejection of an input are
defined in the standard way (see [11], section 8.1, pp. 168-170). Following [7], we mean by
“t-alternating” that the first guess instruction is existential.

We give the definitions of some complexity classes in terms of nondeterministic RAMs.
These are not the original definitions, but characterizations proved in [6] and [7].

» Definition 5. A parameterized problem @ is in AW[P] [in WIP]] if it is decided by an
ARAM Ja l-alternating ARAM] A which, for some computable function h, on any input
(z, k), executes at most h(k) nondeterministic instructions on any computation path.

» Definition 6. An ARAM A is tail-nondeterministic if there is a computable function
g such that, on any input (z,k), A executes nondeterministic instructions only among
the last g(k) steps of any computation path. For every ¢ > 1, A[t] denotes the class of
parameterized problems that are decidable by parameter-restricted tail-nondeterministic
t-alternating ARAMs. AW x| denotes the class of parameterized problems that are decidable
by parameter-restricted tail-nondeterministic ARAMs.

An oracle (A)RAM or (A)RAM with access to an oracle is a machine with an additional
set of oracle registers that store non-negative integers, as well as instructions that copy the
contents of ry to an arbitrary oracle register and vice-versa, and a QUERY instruction, which
queries the oracle with the contents of the oracle registers, and causes the register ry to
contain the values 1 or 0 (representing the oracle’s answer). Note that we only work with
oracles that decide parameterized problems, and that the parameter of a query instance must
be encoded in unary (see Remark 2). Most previous results involving oracles in Parameterized
Complexity place the following restriction on oracle machines. We will consider additional
restrictions to oracle access in the next section.

» Definition 7. An oracle (A)RAM A has balanced access to an oracle if there is a computable
function g such that, on input (x, k), any query (y, k') made to the oracle, on any computation
path, satisfies k' < g(k).

2.2 Relational structures and first-order formulas

A relational vocabulary T is a set of pairs of symbols and positive integers, called relational
symbols and arities, respectively. A relational structure A with vocabulary T is a set containing;:
a set A, called the universe of A, and for each pair (s,r) € 7, a relation R* C A”. We only
use relational structures with finite universes and finite vocabularies, so we assume that
A=H0,...,n}, n € N. A first-order formula ¢ with vocabulary T is constructed in the same
way as a quantified Boolean formula, except that the atomic formulas are not variables, but
expressions of the form zy = x5 or R%zy ...x,, where x1,...,x, are variables and (s,r) € 7.

Whenever a pair (A, ¢) is given, it is assumed implicitly that A and ¢ share the same
relational vocabulary. We say that A satisfies ¢ if ¢ is true when all atomic formulas are
evaluated based on the relations in A and all variables are taken as ranging over A.

We define some important classes of first-order formulas with relational vocabularies. For
every t € N, let ¥; be the set of all first-order formulas of the form

Jri1.. Fv g, Voo . VEo g, o Q... Queg, Y(z1,...,T¢),
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where (21, ..., 2¢) is a quantifier-free formula (Q means 3 if ¢ is odd, V if ¢ is even). For all

t,r € N, let X;[r] be the set of all ¥;-formulas with vocabularies in which all arities are < r.

Finally, let PNF be the set of all first-order formulas in prenex normal form, meaning that
they are of the form Q121 ... Qs : ¥(x1,...,2¢), where (x1,...,2¢) is a quantifier-free
formula and Q1,...,Q: € {3,V}.

For certain classes of formulas F', the following parameterized model checking problems
are complete for various important complexity classes.

p-MC(F)
Input: (A, ¢), where A is a relational structure, ¢ € F.
Parameter:  |¢|.

Problem: Decide whether A satisfies ¢.

p-var-MC(F)
Input: (A, @), where A is a relational structure, ¢ € F.
Parameter:  The number of variables in ¢.
Problem: Decide whether A satisfies ¢.

» Remark 8. A relational structure can be represented by listing the elements of its universe,
followed by the tuples in each relation. However, for a RAM to check whether some tuple
(ai,...,a,) is an element of some r-ary relation R® may then take a number of steps that
depends on [A[| := |A[+|7[+ >, e, [1°] -7 (even if the elements of each relation are listed
in lexicographic order, and binary search is used). To avoid this, we will assume, whenever
A contains only relations of arity at most some fixed number [, that each r-ary relation
(r <1) is stored as an |A|"-size array of ones and zeroes, each number representing whether
or not some element of A" is a member of the relation. Furthermore, we will assume that
the location of every such array is stored in a look-up table. This way, checking whether
(a1,...,a,) € R® only takes a constant number of operations for a RAM, at the cost of
increasing the size of the representation of A in memory to O(poly(]|.A])) (since [ is constant).
This also means that adding and removing elements requires only constant time.

» Definition 9. Let Q and Q' be parameterized problems. An algorithm R is an fpt-reduction
from @ to Q' if there exist computable functions f and g, and a polynomial function p, such
that for any instance (z, k) of @ we have a) (y, k') := R(z, k) € Q" if and only if (z,k) € Q;
b) R runs in time f(k)p(|z|); and ¢) k' < h(k).

For any parameterized problem @, we denote by [Q]* the set of parameterized problems
that are <* Q, meaning fpt-reducible to Q.

» Fact 10 ([6, 10],[2]). For every t € N, A[t] = [p-MC(X;)]®t = [p-MC(X[3])]".
AWI[SAT] = [p-var-MC(PNF)]Pt.

» Remark 11. In the proof of their machine-based characterization of A[t], Chen, Flum,
and Grohe [7] show how the parameter-restricted computation of a t-alternating tail-
nondeterministic RAM can be encoded as a pair (A, ¢). We refer the interested reader
to [7] for the details, and recall only some facts about this reduction that we use here. Let
f(E)p(|x|) be an upper bound on the running time, the largest number of a register used,
and the largest integer stored during the computation of the machine A on input (x, k). The
relational structure A has universe {0,..., f(k)p(]z|)} and contains relations representing
the instructions of A’s program and the contents of the accessed registers at the end of the
deterministic part of the computation (a relation Reg is defined so that (y, z) € Reg if and
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only if r, = z right before the first nondeterministic instruction is executed). All relations
in A have arity < 3. The first-order formula ¢ has the same vocabulary as .A and encodes
the nondeterministic computation of A (the last h(k) steps). The formula is constructed in
such a way that changes to the contents of the registers are kept track of, and access to the
contents of the registers at the start of the nondeterministic computation are encoded using
the relation Reg. A close look at the construction in [7] reveals that part of it is oblivious to
the input z, in the sense that computing the formula ¢ only requires knowledge of k, A.

3 Parameterized relativization

The guiding principle in our approach to defining nondeterministic oracle RAMs will be that
all of the special resources of a machine (nondeterminism, oracle queries, random guesses —
everything beyond the basic deterministic operations) should be restricted in the same way,
in order for these resources to interact well with each other.

» Definition 12. An oracle (A)RAM A has parameter-bounded access to an oracle if it has
balanced access to the oracle, and there is a computable function A such that, on input
(z,k), A makes at most h(k) queries to the oracle on any computation path. A is said to
have tail-restricted access to an oracle if it has balanced access to the oracle, and there is a
computable function h such that, on input (z, k), A makes queries to the oracle only among
the last h(k) steps of any computation path.

Because we will use different kinds of oracle machines, and the exponent notation for
the relativization of a complexity class is difficult to customize, we will also use the (older)
parenthesis notation: If C' is a complexity class that is characterized by machines, we denote
by C(O) the class characterized by oracle machines of the same type as the ones characterizing
C, with unrestricted access to the oracle O. Similarly, C(O)pq; denotes the class defined
by oracle machines with balanced access to the parameterized oracle, C'(O)paro denotes the
class defined by oracle machines with parameter-bounded access to the oracle, and C(O)tq4
denotes the class defined by tail-nondeterministic oracle machines with the same restrictions
as the machines that define C'. The exponent notation is only used when the type of oracle
access is the “natural” one for the type of machine being considered (so A[1]° = A[1](O)¢ai
and W[P]? = WIPJ(O)pare)- For FPT we always specify the type of oracle access.

Relativization results for tail-nondeterministic random access machines. We give an
informal overview of the proof that A[1]P"MCZB) = A[t 4 1], to highlight the role played
by the choice of the oracle and by the restrictions made to the tail-nondeterministic oracle
machines (for a comparison with the proof that NP¥**" = B | see [3], Section 5.5).

For the “2”-inclusion, we have that an A[l]-machine with a p-MC(%;[3])-oracle (which
is complete for A[t]) can first deterministically simulate the deterministic part of the com-
putation of an At 4+ 1]-machine on input (z, k). The oracle A[l]-machine then enters the
nondeterministic phase of its computation, and uses its own nondeterministic guesses to
simulate the first block of existential guesses of the simulated machine (until a universal
instruction is encountered). The computation of the A[t+ 1]-machine from this point onward
(which starts with a universal guess instruction and has < ¢t — 1 alternations) can be encoded
as an instance ((A, @), |¢]) of p-MC(X4[3]) (see Remark 11), but the size of A depends on |z|.
Therefore, A must (for the most part) be computed by the oracle A[l]-machine and written
to the oracle registers ahead of time, during the deterministic phase of the computation, with
only the formula ¢ left to be computed during the nondeterministic phase. This is why it
is necessary to allow tail-nondeterministic oracle machines access to their oracle registers
throughout the entire computation.
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For the reverse inclusion, we have that an A[t + 1]-machine can simulate an oracle
AJ1]-machine on input (x, k), by first simulating the deterministic part of the computation
deterministically, and then using (¢ + 1)-alternating nondeterminism to simulate both the
oracle A[l]-machine’s existential guesses, as well as all of the p-MC(X,[3])-queries (this is
accomplished in the same way as in the classical proof). In order to evaluate the queried
instances, however, the A[t + 1]-machine’s computation must be in its nondeterministic
phase, so it is essential that:

the simulated oracle machine can not make queries outside of the last h(k) steps of its

computation, for some computable function h;

the size of the formulas in the queried instances is < g(k), for some computable function

g (balanced oracle access);

the quantifier-free part of a formula can be evaluated efficiently (relational structures

must be encoded in such a way that expressions involving relations can be evaluated by a

RAM in time independent of the size of the relational structure; see Remark 8).

» Theorem 13. For every t > 1, A[1]PMCCHBD = At +1].

Since, for every ¢ > 1, the problem used as an oracle in Theorem 13 is complete for A[t], it
would be tempting to now state that A[1]A = A[t+1], because this would imply a “collapse
theorem” for this hierarchy, namely that V¢t > 1: A[t] = At + 1] = (V' > t: Aft] = A[t']).
Unfortunately, tail-nondeterminism appears to be too weak for such a collapse theorem to
be proved in this fashion. In fact, it is not even certain whether A[1]¥PT C A[2]: This is
because an A[2]-machine trying to simulate an A[1]-machine that has oracle access to some
non-trivial problem in FPT, on some input (z, k), may have to enter the nondeterministic
phase of its computation before it even knows the instance to be queried (the simulated
machine may write a large instance to its oracle registers, and then nondeterministically
make some changes to it before querying the oracle). The size of this instance may depend
on |z|, and although it can be decided in fpt-time, it may not be possible to decide it in
time h(k), for some computable function h, even with 2-alternating nondeterminism. Thus,
the property of p-MC(X;[3]) that, with the right encoding, an instance ((A, ¢),|¢|) can be
decided by a t-alternating tail-nondeterministic ARAM in time depending computably only
on |¢|, appears to have been crucial for our oracle characterization of the A-Hierarchy.

The next theorem is the parameterized analogue of a famous classical result of Baker, Gill,
and Solovay [4]. The construction of a parameterized oracle B relative to which FPT and
A[1] differ, is done via diagonalization and uses similar ideas as the classical proof in [4], but
with two noteworthy differences:

First, when diagonalizing against all FPT-machines, we can not computably list all such
machines, because the f(k)-term in their running times can be any computable function.
We must therefore proceed more carefully with the construction in order to obtain an oracle
which is computable.

Second, when running each RAM on larger and larger inputs for an increasing number of
steps while constructing the oracle, we are free to increase both the size of the main part of
the input and the parameter value. Having this additional dimension of the input works in
our favor, and allows us to “kill” the f(k)-term in the running time of any FPT-machine by
increasing |z| so that |z| > f(k), at which point we can treat f(k)|x|® as a polynomial in |z|.

» Theorem 14. There exist parameterized oracles A and B such that

FPT(A)ai = A[1]* and FPT(B)aq C A[1]P (and even A[1]% \ FPT(B) #0).
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Relativization results for RAMs with parameter-bounded nondeterminism. For this ma-
chine model, we first need to define the analogue of the Polynomial Hierarchy.

» Definition 15. For each t > 1, let E£P] be the class of parameterized problems that can
be decided by a parameter-restricted t-alternating ARAM A such that, for some computable
function h, on any input (z, k), A executes at most h(k) nondeterministic instructions on
any computation path. Furthermore, we define W[PJH := [ J;2, ELP}.

Clearly, W[P] = E[1P] C WIPIJH C AWI[P]. For t > 2, ELP]—complete problems can be
obtained by modifying known W[P]- or AW[P]-complete problems appropriately (see [6, 11]).

We turn to the oracle characterization of this hierarchy. Since a W[P]-machine can
compute fpt-reductions at any point in the computation, the choice of the complete problem
given as an oracle is no longer important. Now the proof of the theorem proceeds in the same
way as the characterization of PH in terms of oracle machines (see [3], Section 5.5), but note
that for the “C”-inclusion, the restrictions on the oracle access are nevertheless essential:
balanced access ensures that the Egi]l—machine can nondeterministically decide the instances
queried by the oracle machine, and parameter-bounded access ensures that the number of

queries made by the oracle machine is not too large for a Eﬁ]l-machine to simulate.

»[P] . (P]
» Theorem 16. For cach t > 1, we have W[P]™t =X, .

» Corollary 17. For any t,u > 1, if ELP] = Zl[fi]u, then W[PH = EI[SP].

Finally, we have the oracle separation result for this machine model, as in [4]:
» Theorem 18. There exist parameterized oracles A and B such that

FPT(A)para = WP and FPT(B)pare C W[P]® (and even W[P)” \FPT(B) # ().

=

For the proof, it suffices to use the same two oracles as in the proof of Theorem 14.

4 Interactive proof systems for parameterized complexity classes

A classical interactive proof system consists of a verifier and a prover who exchange messages
in order for the verifier to decide whether a given input is a ‘yes’-instance of a problem. The
verifier is a probabilistic TM, meaning that he can guess random bits, but his computation
throughout the entire interaction is time-bounded polynomially in terms of the size of the
input instance (and therefore so is the length of the messages he can send or receive). The
prover is computationally all-powerful, but he only sees the input and the messages sent
by the verifier (not the verifier’s random bits), and his goal is to convince the verifier to
accept. A proof system is said to decide a problem Q if every x € @ is accepted by the
verifier with probability (over the verifier’s random bits) > 2/3 for some prover, and every
x ¢ @ is accepted by the verifier with probability < 1/3 for any prover (see [3], Chap. 8).

Here we make a slight change to this definition, in order to apply the concept to
parameterized complexity classes, by letting the verifier be a probabilistic RAM (meaning
that he can guess non-negative integers of bounded size in a single step), and allowing the
messages between verifier and prover to be strings of non-negative integers of bounded size.
This change does not affect the (classical) class IP (see Remark 2), but allows us to apply
separate bounds to different aspects of the proof systems.
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Arithmetization of first-order formulas with relational vocabularies. Before we can give
interactive proof systems for parameterized complexity classes, we need to adapt the main
technical tool used in such results, namely arithmetization. The main idea behind the
original version of this technique is that a quantified Boolean formula can be replaced by a
multivariate polynomial which coincides with the formula on all assignments of values to
the non-quantified variables, if the Boolean truth values are identified with the elements
of GF(2) (in other words, the Boolean formula is encoded as a polynomial). Once this is
accomplished, the polynomial can also be evaluated over some larger field, which is a key
ingredient of the proof that PSPACE C IP [15].

We wish to encode a pair (¢, A) as a polynomial, where ¢ is an FO formula, A is a
relational structure with the same vocabulary as ¢, and the universe A of A is {0,...,n},
n € N\ {0}. The main obstacle here is that the atomic formulas in ¢ are not Boolean
variables, but relational expressions of the form Rz ...z;, which evaluate to Boolean values
whenever the variables are assigned values from A. We need a way to encode such a relational
expression as a polynomial Pgr that takes the values 0 or 1 whenever xy,...,x; € A, in
accordance with the relation in A corresponding to R. To do this, we first choose a prime
g > n + 1 and identify A with a subset of {0,...,qg — 1}. We then take Pr as the sum over
all terms of the form (1 — (X —a1)? 1) -...- (1 — (X —a)?!), where (a1,...,q;) is in the
relation corresponding to R in A, and argue via Fermat’s Little Theorem that whenever Pr
is evaluated over values from GF(q), at most one such term is 1, the rest being 0, and that
Pg therefore encodes the expression Rz ...x;. (See the full version of the paper for details.)

With arithmetization generalized in this way, we are now in a position to construct an IP
similar to the one used in [16] to show that PSPACE C IP, and prove the following:

» Theorem 19. For every problem Q € AWI[SAT), there is an interactive proof system
deciding Q such that, for some computable functions f and h, and a polynomial p, on any
input (z, k), the verifier runs in time f(k)p(|z|), guesses at most h(k) random numbers, and
the interaction has at most h(k) rounds.

The IP in Theorem 19 has both the number of rounds and the number of random guesses
made by the verifier bounded computably in terms of the parameter, but the length of the
prover’s messages and of the verifier’'s computations between rounds are “fpt-bounded”. In
order for an AW /[x]-machine to simulate an interactive proof, it would presumably need to
nondeterministically guess the prover’s messages, as well as the random guesses made by the
verifier, so the entire interaction would have to be simulated in the last h(k) steps of the
computation (due to tail-nondeterminism). In other words, the proof system would have
to be such that the verifier only performs an fpt-bounded pre-computation, followed by an
interaction that is entirely bounded in the parameter alone. We conjecture that the class
of problems with such IPs, which we call Pt s precisely AW |[x]. The evidence for this
conjecture is that when the size of the FO formula is bounded in terms of the parameter,
it seems that the IP from Theorem 19 can be improved so that at least the length of the
prover’s messages depends only on the parameter, by using only symbols for the polynomials

representing the atomic relations, rather than expanding them into algebraic expressions.

Getting the same bound for the verifier’s computations between rounds is more challenging.

5 Conclusions

We have shown that, with some degree of effort, certain classical methods can be put to
use in the parameterized setting, although some theorems only partially transfer over. The
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fact that different aspects of the computation of a RAM are bounded differently, and that
some computational resources can be tail-restricted, ensures that the machine-based theory
of parameterized intractability is by no means just “complexity theory with RAMs”.

One can now attempt to make some progress on the problem of separating matching levels
of the A- and the W-Hierarchy by proving oracle separations when reasonable restrictions
are placed on the oracle access of the respective machines. Another question is related to
the fact that the implication NP # P = A[l] # FPT is not known to hold: It would be
interesting to show that this implication fails to hold relative to some oracle.
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