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Abstract
The outcomes of local measurements made on entangled systems can be certified to be random
provided that the generated statistics violate a Bell inequality. This way of producing randomness
relies only on a minimal set of assumptions because it is independent of the internal functioning
of the devices generating the random outcomes. In this context it is crucial to understand
both qualitatively and quantitatively how the three fundamental quantities – entanglement, non-
locality and randomness – relate to each other. To explore these relationships, we consider
the case where repeated (non projective) measurements are made on the physical systems, each
measurement being made on the post-measurement state of the previous measurement. In this
work, we focus on the following questions: Given a single entangled system, how many nonlocal
correlations in a sequence can we obtain? And from this single entangled system, how many
certified random numbers is it possible to generate? In the standard scenario with a single
measurement in the sequence, it is possible to generate non-local correlations between two distant
observers only and the amount of random numbers is very limited. Here we show that we can
overcome these limitations and obtain any amount of certified random numbers from a single
entangled pair of qubit in a pure state by making sequences of measurements on it. Moreover,
the state can be arbitrarily weakly entangled. In addition, this certification is achieved by near-
maximal violation of a particular Bell inequality for each measurement in the sequence. We also
present numerical results giving insight on the resistance to imperfections and on the importance
of the strength of the measurements in our scheme.
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1 Introduction

Bell’s theorem [4] has shown that the predictions of quantum mechanics demonstrate non-
locality. That is, they cannot be described by a theory in which there are objective properties
of a system prior to measurement that satisfy the no-signalling principle (sometimes referred
to as “local realism"). Thus, if one requires the no-signaling principle to be satisfied at the
operational level then the outcomes of measurements demonstrating non-locality must be
unpredictable [4, 19, 15]. This unpredictability, or randomness, is not the result of ignorance
about the system preparation but is intrinsic to the theory.

Although the connection between quantum non-locality (via Bell’s theorem) and the
existence of intrinsic randomness is well known [4, 19, 5, 15] it was analyzed in a quantitative
way only recently [17, 7]. It was shown how to use non-locality (probability distributions
that violate a Bell inequality) to certify the unpredictability of the outcomes of certain
physical processes. This was termed device-independent randomness certification, because
the certification only relies on the statistical properties of the outcomes and not on how they
were produced. The development of information protocols exploiting this certified form of
randomness, such as device-independent randomness expansion [17, 7, 23] and amplification
protocols [8, 12], followed.

Entanglement is a necessary resource for quantum non-locality, which in turn is required
for randomness certification. It is thus crucial to understand qualitatively and quantitatively
how these three fundamental quantities relate to one another. In our work, we focus on asking
how many observers in a sequence can be nonlocally correlated and how much certifiable
randomness can be obtained from a single entangled state as a resource that is measured
repeatedly. An important step to answer this question was recently made in [22], in which it
was shown that nonlocality generated by a maximally entangled state can be shared between
any number of distant observers, however, at the cost of exponentially diminishing the
amount of nonlocality, as measured by the violation of the CHSH Bell inequality, between all
the observers. Here we answer a significantly more demanding question that such correlations
can be made arbitrarily close to extremal for each observer, a crucial property for randomness
certification. In this particular sense we show that the nonlocality does not need to be
diminished, as for each observer the generated correlations violate a particular Bell inequality
(almost) maximally.

For randomness certification, progress has been made for entangled states shared between
two parties, Alice (A) and Bob (B), in the standard scenario where each party makes a
single measurement on his share of the system and then discards it. An argument adapted
from Ref. [10] shows that either of the two parties, A or B can certify at most 2log2d bits
of randomness [2], where d is the dimension of the local Hilbert space the state lives in,
which in turn implies a bound of 4log2d bits when the two outputs are combined. This
demonstrates a fundamental limitation for device-independent randomness certification in
the standard scenario. The main goal of our work is to show that this limitation on the
amount of certifiable random bits from one quantum state can be lifted. To do this we will
consider the sequential scenario, where sequences of measurements can be applied to each
local system. Our main result is to prove that an unbounded amount of random bits can be
certified in this scenario.

http://dx.doi.org/10.4230/LIPIcs.TQC.2017.1
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Imagine the following situation where, contrary to the device-independent approach that
we follow in this article, one has perfect control over the functioning of the device generating
randomness. An entangled state initially prepared in the Pauli-Z basis, i.e., a σz eigenstate
|0〉 or |1〉, is measured in the Pauli-X, or σx basis |±〉 = |0〉+|1〉√

2 . The outcome of this
measurement is perfectly random and the post-measurement state is now one of the two
eigenstates of the Pauli-X basis |±〉. If the device now measures this new state in the original
Pauli-Z basis, the outcome of this new measurement is again random and one of the σz
eigenstates is obtained. A device alternating between measurements in those two orthogonal
basis thus allows one to obtain any amount of random bits from a single state as input.

Of course, this way of generating randomness can never be trusted, as one can always
design a classical device (with deterministic outcomes – a local model) that has the same
behavior as the device we described, i.e., their outputs are indistinguishable. To certify
randomness one needs the generation of non-local correlations, that can not be simulated
with classical resources. But is it nevertheless possible to use this idea of measuring a
state repeatedly, in a scheme exploiting non-locality, to obtain more random numbers
and beat the bounds on randomness certification? Clearly, certifying more randomness
by making sequences of measurements on the same state depends on whether one is able
to produce sequences of non-local correlations between distant observers, as otherwise no
additional randomness can be certified. One of the obstacles to this is that if local (projective)
measurements are used to generate the non-local correlations, the entanglement in the state
is destroyed. Then the post-measurement state is separable and thus cannot be further used
to generate nonlocality or to certify randomness. A challenge is therefore to come up with
measurements that do not destroy all the entanglement in the state but nevertheless generate
non-local correlations. With such measurements the post-measurement state will still be a
potential resource for the generation of more non-local correlations and certified randomness.

Bell tests with sequences of measurements have received less attention in the literature
than the standard ones with a single measurement round despite the novel features in this
scenario [13], as for example the phenomenon known as hidden nonlocality [18]. In our work
we show that they prove useful in the task of randomness certification, which also provides
another example [2] where general measurements can overcome limitations of projective
ones. More precisely, we describe a scheme where any number m of random bits are certified
using a sequence of n > m consecutive measurements on the same system. This work thus
shows that the bound of 4log2d random bits in the standard scenario can be overcome in
the sequential scenario, where it is impossible to establish any bound. The unbounded
randomness is certified by a near-maximal violation of a particular Bell inequality for each
measurement in the sequence. Moreover, for any finite amount of certified randomness, our
scheme has a finite (yet very small) noise robustness. Our results show that

This paper is an extended version of [9], where the main results are already included.
The rest of the paper is organized as follows. In section 2, we describe the sequential scenario
that allows for multiple measurements on the same state. In section 3, we generalize the
concept of guessing probabilities – that allow to certify upper bounds on the predictive power
of an adversary trying to guess the random numbers – to the sequential scenario and obtain
new results on their continuity properties. In section 4 we introduce the main ingredients we
will use in our scheme, in particular we introduce a family of measurements on two qubit
states that allow us to retain some entanglement in the post-measurement states. In section
5 we describe our scheme that allows for the generation of nonlocal correlations between any
number of distant observers and any amount of certified random numbers. In section 6 we
present numerical results on the relation between the amount of violation of the family of
inequalities introduced in [1] and the amount of randomness that can be certified from it. In
section 7 we obtain numerical results to understand the relation between the strength of the
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Figure 1 The standard scenario, where parties A and B make a single quantum measurement
on their share of the state and discard it versus the sequential scenario where the second party B
makes multiple measurements on his share.

measurement and the amount of randomness that can be certified from it. We conclude in
section 8 with additional remarks and potential future work.

2 The sequential measurements scenario

Before presenting our results, let us introduce the scenario we work in. We carry over many
of the features from the standard scenario except now we allow party B to make multiple
measurements in a sequence on his share of the state. One can visualize this as in Fig. 1
where B is split up into several Bs, each one corresponding to a measurement made on the
state and labeled by Bi, i ∈ {1, 2, .., n}, where n is the total number of measurements made
in the sequence. Each Bi makes one measurement and the post-measurement state is sent
to Bi+1. We organize the Bobs such that Bi is doing his measurement before Bj for i < j.
Thus in principle Bj can receive the information about the inputs and outputs of previous
measurements Bi for all i < j.

3 Randomness certification: from the standard to the sequential
scenario

To quantify the randomness produced in the setup, we put the above scenario in the setting
of non-local guessing games (e.g. Refs. [1, 16, 11, 2]). Let us consider an additional adversary
Eve (E) who is in possession of a quantum system potentially correlated to the one of A
and B. The global state is denoted ρABE . We assume that at each round of the experiment,
E is the one preparing the state ρABE and distributes ρAB = TrEρABE to A and B. This
state will be used to make the measurements in the sequence and the aim of E is to try to
guess B’s outcomes by using measurements on her share of the state ρABE . The parties
A and Bis, having no knowledge about the state or the real measurements made on it,
see their respective devices as black boxes that receive some classical input x ∈ {0, 1} and
yi ∈ {0, 1}, y1, y2, .., yn ≡ ~y, respectively, and that generate a classical output a ∈ {±1}
and bi ∈ {±1}, (b1, b2, .., bn) ≡ ~b, respectively (see Fig. 1). They generate statistics from
multiple runs of the experiment to obtain the observed probability distribution Pobs with
elements pobs(a,~b|x, ~y). This distribution Pobs lives inside the set of quantum correlations
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Qn obtained from measurements on quantum states in a sequence as we described. This set
is convex and thus can be described in terms of its extreme points, denoted Pext, and any
Pobs can be written as Pobs =

∑
ext
qextPext, where

∑
ext
qext = 1 and every qext ≥ 0.

From studying the outcome statistics only we can bound E’s predictive power by allowing
her to have complete knowledge of how Pobs is decomposed into extreme points, i.e., she knows
the probability distribution qext over extreme points Pext. This predictive power is quantified
via the device-independent guessing probability (DIGP) [1] where we fix the particular input
string y0

1 , y
0
2 , .., y

0
n ≡ ~y0 for which E has to guess the outputs ~b. The DIGP, denoted by

G(~y0, Pobs), is then calculated as the optimal solution to the following optimization problem
[11, 16]:

G(~y0, Pobs) = max
{qext,Pext}

∑
ext

qext max
~b

pext(~b|~y0)

subject to:

pext(~b|~y0) =
∑
a

pext(a,~b|x, ~y0), ∀x (1)

Pobs =
∑
ext

qextPext, Pext ∈ Qn. (2)

The operational meaning of this quantity is clear: Eve has a complete description of the
observed correlations in terms of extreme points. She then guesses the most probable
outcome for each extreme point. The standard scenario with a single measurement round
can also be represented in this formalism by simply considering that ~b = b and ~y(0) = y(0).
To quantify the amount of bits of randomness that is certified, we use the min entropy
H(~y0, Pobs) = − log2 G(~y0, Pobs) which returns m bits of randomness if G(~y0, Pobs) = 2−m.
The amount of bits of randomness quantified in this way is the figure of merit in this work
and our goal is to obtain as many bits as possible from a single system.

We will now derive some general properties of the guessing probability (2) in the form
of theorems 3 and 4. Let us stress here that these results are not limited to the guessing
probability used in this work but are general properties of guessing probabilities. A more
detailed discussion and an introduction to the topic of guessing probabilities and their use in
randomness certification can be found in the appendices, as well as the proofs of the theorems
that we discuss here.

For a single measurement on each system (i.e. a sequence of n = 1 measurement), which
corresponds to the standard Bell scenario and Q ≡ Q1 the set of quantum correlations for a
single measurement on each subsystem we have that:

I Proposition 1. The function G(y0, Pobs) on the set of quantum distributions Q is continu-
ous in the interior of Q.

I Proposition 2. The function G(y0, Pobs) is continuous in any extremal point of Q.

The proofs of these two propositions are based mostly on general properties of concave
functions [20] and of concave roof extensions in particular [6], and can be found in section
B of the appendices. In other words the guessing probability for a single measurement is
continuous everywhere except possibly on some points that lie on the surface of the quantum
set but that are not extremal. An example of this can be obtained from the measurements
described in [17] for a state with arbitrarily little entanglement. The joint conditional
probability distribution (introduced below, see (6)) corresponding to those measurements
made on such a state has G(y0, Pobs) = 1/2 and is at the same time arbitrarily close to a
joint conditional probability distribution corresponding to measurements on a product state
with G(y0, Pobs) = 1, i.e., a local point. The key is that this local point is not extremal, it
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lies somewhere on the surface of the local (and quantum) set but can be decomposed into
other extremal (local) points, i.e. is not a vertex of the local polytope. Discontinuities of
G(y0, Pobs) can thus appear only at the boundary between extremal points and non-extremal
points lying on the surface of the set, and in the rest of the set it is continuous.

In general – and in particular in our work – the optimization problem (2) can be relaxed
to an optimization where instead of insisting on Pobs =

∑
ext
qextPext (2), one only imposes

that the observed statistics Pobs give a particular Bell inequality violation [17]. The optimal
solution to this new problem is an upper bound to the optimal solution of (2). Crucially,
this relaxation often gives non trivial bounds as shown in our case for example. From now
on, every time we refer to a guessing probability we refer to this relaxation of the problem to
a particular Bell inequality violation.

Now we consider a Bell expression I with its maximal value tmax on the quantum set
Q. We define the hyperplane Ht to contain the elements of Q for which the value of I is
t ≤ tmax and further we define the restriction G(y0, Pobs)t of G(y0, Pobs) to the intersection
of Ht with Q and let maxG(y0, Pobs)t be the maximum of the guessing probability on this
intersection. From Propositions (1) and (2) we can show that:

I Theorem 3. If the intersection of Htmax with Q is a single (thus extremal) point, there
exists a tc < tmax such that G(y0, Pobs)t is a continuous function of t for tc ≤ t ≤ tmax

The proof of this theorem can be found in section C of the appendices. In the other case, if the
intersection of Htmax with Q has more than one point, it also contains a set of non-extremal
points of Q and therefore a discontinuity of G(y0, Pobs)t at tmax can not be ruled out by
theorem (3). In other words, if the violation of a particular Bell inequality I is achieved by a
unique quantum point (as for example the following (5)), the guessing probability close to
that point is continuous.

Until now, we have considered the continuity properties of the guessing probability in the
standard scenario with a single measurement in the sequence. Now we would like to extend
those results to the guessing probability in the sequential measurement scenario with n ≥ 2
measurements being made on the subsystems. Remember that we split party B into many
Bi, so that party Bi makes the ith measurement on the system. The measurement setting
of Bi is yi and its outcome bi (see Fig. 1). In our work, we will always take yi ∈ {0, 1}
and bi ∈ {0, 1}, but the following results can be generalized to any number of inputs and
outcomes (they may even be different for each measurement in the sequence).

Now consider the joint conditional probability distributions P iobs(a, bi|x, y1, ..., yi, b1, ...,

bi−1) between A and each Bi, that is the joint conditional probability distribution between A
and Bi conditioned on what happened before the ith measurement, namely the input choices
y1, ..., yi−1 and the outcomes b1, ..., bi−1 that were obtained before measurement i. There are
n of those joint conditional probability distributions living in Q that can be obtained directly
from the whole probability distribution for the sequence Pobs(a~b|x~y) living in Qn. Now
suppose that we play, for each distribution P iobs(a, bi|x, y1, ..., yi, b1, ..., bi−1), a Bell game Ii
such that Ii(Pi(a, bi|x, y1, ..., yi, b1, ..., bi−1)) = ti ≤ tmax

i , where tmax
i is the maximum of Ii

over the set Q.

I Theorem 4. Suppose that each joint conditional probability distribution P iobs(a, bi|x, y1, ...,

yi, b1, ..., bi−1) between A and Bi in the sequence is such that Ii(Pi(a, bi|x, y1, ..., yi, b1, ...,

bi−1)) = ti and consider the limit where each ti → tmax
i . Suppose also that for each i,

Gi(y0
i , P

i
obs(a, bi|x, y1, ..., yi, b1, ..., bi−1)) attains its smallest possible value at ti = tmax

i . Then
if the maximal value tmax

i of each Ii is achieved in a unique quantum point in Q:

G(~y0, Pobs(a~b|x~y))→
n∏
i=1

Gi(y0
i , P

i
obs(a, bi|x, y1, ..., yi, b1, ..., bi−1)) (3)
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where Gi(y0
i , P

i
obs(a, bi|x, y1, ..., yi, b1, ..., bi−1)) is the (non sequential) relaxed guessing prob-

ability (2) of an adversary E trying to guess outcome bi for input y0
i from the observed joint

probability distribution P iobs(a, bi|x, y1, ..., yi, b1, ..., bi−1)). The proof of this theorem can be
found in appendices D and E. In other words, if each measurement in the sequence taken
separately – thus not seen as in a sequence – leads to correlations close enough to the unique
maximal violation of inequality Ii between A and Bi only, and if this maximal violation
corresponds to the minimal possible guessing probability for bi, then the guessing probability
for the whole sequence tends to the product of the individual guessing probabilities of the
outcomes bi.

Before presenting our results, it is worth explaining why the causal constraints imposed by
the sequential scenario make it stronger than standard Bell tests with one measurement in the
sequence. At first sight, one could be tempted to group all the measurements in the sequence
into a single box receiving an input string ~yn to output another string ~bn, as in a standard
Bell test. However, in general a sequence of measurements can not be represented as a single
measurement. To understand this, note that in the sequential scenario the outcome bi can
depend only on variables produced in its past, namely the input choices y1, y2, ..., yi and the
outcomes b1, b2, ..., bi−1 that were previously obtained. However, in the single measurement
scenario, the measurement box receives all inputs and produces all outputs at once. In
particular, outcome bi can now be a function of input choices yj>i and outcomes bj>i that are
produced in the future. That is, such a big box may violate the physical constraints coming
from the sequential arrangement and the assumption that signaling from the future to the
past is impossible. These additional causality constraints further limit Eve’s predictability
with respect to a standard Bell test and are responsible of the unbounded amount of certified
randomness.

4 Making non-destructive measurements on qubit states

Alice and Bob share the pure two-qubit state

|ψ(θ)〉 = cos(θ)|00〉+ sin(θ)|11〉 (4)

that for all θ ∈]0, π/2[ is entangled. In Ref. [1], a family of Bell inequalities was introduced:

Iθ = β〈B0〉+ 〈A0B0〉+ 〈A1B0〉 + 〈A0B1〉 − 〈A1B1〉 (5)

where β = 2 cos(2θ)/[1 + sin2(2θ)]1/2, 〈By〉 = p(b = +1|y) − p(b = −1|y) and 〈AxBy〉 =
p(a = b|xy)− p(a 6= b|xy) for x, y ∈ {0, 1}. This family of inequalities has the following two
useful properties: first, its maximal quantum violation, Imax

θ = 2
√

2
√

1 + β2/4, is obtained
by measuring the state (4) with measurements:

A0 = cosµσz + sinµσx, B0 = σz,

A1 = cosµσz − sinµσx, B1 = σx, (6)

where tanµ = sin(2θ). Second, when maximally violated, the inequality certifies one bit of
local randomness on Bob’s side for his second measurement choice y0 = 1: G(y0 = 1, Pmax

obs ) =
1/2 [1]. These observations are possible because the maximal violation is uniquely achieved
by the probability distribution Pmax

obs that arises from the previously-described state and
measurements (4) and (6). Therefore, for the maximal violation, Pmax

obs = Pext in (2) and the
guessing probability for input choice y0 = 1 is equal to 1/2.

However, in general we may not get correlations that maximally violate our Bell inequality
but give a violation that is only close to maximal. In section 3 we have shown how to make
conclusions about the guessing probability for non-maximal violations. In particular, we
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1:8 Single Entangled System Is an Unbounded Source of Nonlocality and Randomness

showed that for any Bell inequality with a unique point of maximal violation, the guessing
probability is a continuous function of the value of the inequality close to the maximal
violation. This implies in the particular case we are studying that:

Iθ → Imaxθ ⇒ G(y0 = 1, Pobs)→
1
2 . (7)

In section 6, we also provide a numerical upper bound on the guessing probability G(y0 =
1, Pobs) by a concave function of the value of Iθ.

Bell inequalities (5) are the first main ingredient in our sequential construction below.
The second one is the use of general, non-projective measurements. Indeed, if B1 performs
a projective measurement on the shared entangled state, the resulting post-measurement
state, now shared between Alice and B2, is separable and thus useless for randomness
production. Consequently, one needs to consider non-projective measurements to retain
some entanglement in the system for the subsequent measurements. For this purpose, let
us introduce the following two-outcome quantum measurement (written in the formalism of
Kraus operators):

M±1(ξ) = cos ξ|±〉〈±|+ sin ξ|∓〉〈∓| (8)

corresponding to the two outcomes {±1}. This measurement σ̂x(ξ) ≡ {M†+1M+1,M
†
−1M−1}

can be understood as a generalization of the projective measurement σx. It varies from being
projective (for ξ = 0) to being non-interacting (for ξ = π/4). One can verify that measuring
an entangled state (4) for ξ ∈]0, π/4] (non-projective measurement) the post-measurement
state still retains some entanglement, irrespectively of the outcome. Therefore, by tuning
the parameter ξ we are able to vary the destruction of the entanglement of the state at
the gain of extracting information from it (cf. Ref. [22]): the closer to being a projective
measurement, the lower the entanglement in the post-measurement state, but the bigger the
violation of the initial Bell inequality.

5 A scheme for an unbounded amount of nonlocal correlations and
certified random numbers

We now combine the previous observations to demonstrate our main result. First, let us
recall that, as shown in [1], one can obtain one bit of randomness from any pure entangled
two qubit state, irrespective of the amount of entanglement in it. Moreover, one can verify
that approximately one random bit can be certified if the measurements are close to the
ones in Eq. (6) (in the sense that σ̂x(ξ) is close to a measurement of σx for B1 in Eq. (6))
since Iθ is then close to Imax

θ in Eq. (7). Second, the measurement in Eq. (8) is only close to
projective for ξ close to zero and leaves entanglement in the post-measurement state between
Alice and Bob which is thus still useful for randomness certification. By repeated use of
these two properties we can certify the production of an unbounded amount of random bits
from a single pair of entangled qubits. We now formally describe this process in which Alice
makes a single measurement on her share of the state, whereas Bob makes a sequence of n
measurements on his.

Each Bi chooses between measurements of σz and σ̂x(ξi) (8) for inputs yi = 0 and yi = 1,
respectively, with outcomes bi ∈ {±1}. The parameter ξi is fixed before the beginning of
the experiment. The initial entangled state shared between Alice and Bob, before B1’s
measurement, is |ψ(1)(θ1)〉 (see Eq. (4) with θ = θ1). If the first non-projective measurement
of the operator σ̂x(ξ1) is made by B1 on the initial state |ψ(1)(θ1)〉, the post-measurement
state is of the form

|ψ(2)
b1

(θ1, ξ1)〉 = U b1A (θ1, ξ1)⊗ V b1B (θ1, ξ1)(c|00〉+ s|11〉) , (9)
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where c = cos(θb1(θ1, ξ1)) and s = sin(θb1(θ1, ξ1)) and the two unitaries, U b1A (θ1, ξ1) and
V b1B (θ1, ξ1), and angle θb1(θ1, ξi) ∈]0, π/4] depend on the first outcome b1 and the angles θ1
and ξ1.

After his measurement, B1 applies the unitary (V b1B )†, conditioned on his outcome b1, on
the post-measurement state going to B2. This allows B2 to use the same two measurements
σ̂(ξ2) and σz independently of the outcome b1 since the unitary (V b1B ) is canceled in (9). This
last procedure will be applied by each Bi after his measurement, before sending the post-
measurement state to the next Bi+1. If the system passed through only the non-projective
measurements, the state received by Bi can be one of 2i−1 potential states, depending on
all of the previous Bj ’s (j < i) outcomes (one for each combination ~bi−1 ≡ (b1, b2, .., bi−1) of
outcomes obtained by the previous Bj , these can be computed before the beginning of the
experiment). Any of these states can be written as:

|ψ(i)
~bi−1
〉 = U

~bi−1
A ⊗ 1B

[
cos(θ~bi−1

)|00〉+ sin(θ~bi−1
)|11〉

]
, (10)

where the angles θ~bi−1
and the matrix U

~bi−1
A both depend on the outcomes ~bi−1, on the

initial angle θ1 and the angles ξj of the previous Bj ’s with j < i. In the notation, we will
always omit the dependence on the angles θ1 and ξ1, ξ2, .., ξj since these are fixed before
the beginning of the experiment. For each of these different potential states with angle
θ~bi−1

, Alice adds two measurements to her input choices, where for k ∈ {0, 1}, these are

measurements of the observables A
~bi−1
k which are defined as

U
~bi−1
A

[
cos(µ~bi−1

)σz + (−1)k sin(µ~bi−1
)σx

]
(U

~bi−1
A )†, (11)

where tan(µ~bi−1
) = sin(2θ~bi−1

), depending on the specific state |ψ(i)
~bi−1
〉 (10).

We are now ready to describe how the scheme certifies randomness. The measurement
operator σ̂x(ξi) can be made arbitrarily close to σx by choosing ξi sufficiently small. This
brings the outcome statistics for measurements σ̂x(ξi), σz on Bob’s side and A

~bi−1
0 ,A

~bi−1
1 on

Alice’s side on the state in Eq. (10), arbitrarily close to the statistics for the measurements in
Eq. (6) and a state of the form in Eq. (4), for θ = θ~bi−1

. Therefore, the inequality Iθ~bi−1
for

Alice and Bi as defined in (5) can be made arbitrarily close to its maximal violation. This in
turn guarantees that the guessing probability, G(y0

i = 1, Pobs) can be made arbitrarily close
to 1/2. Note that this guessing probability does not only describe the instances when Alice
chooses the measurements A

~bi−1
j . Since Eve does not know Alice’s measurement choices in

advance she cannot use a strategy that gives higher predictive power for the instances when
Alice chooses other measurements. Finally, by making G(y0

i = 1, Pobs) sufficiently close to
1/2 for each i (by choosing each ξi sufficiently close to 0) the DIGP G(y0

1 , y
0
2 , .., y

0
n, Pobs) can,

by continuity, be made arbitrarily close to 2−n (see theorem 4 of section 3.)
At the end, Bob can produce m random bits by a suitably chosen sequence σ̂x(ξi),

i ∈ {1, 2, .., n}, of n > m measurements. The certification only requires that each Bi
occasionally chooses the projective measurement σz so that the whole statistics can be
obtained. Note that Bob can choose σz with probability γi and σ̂x(ξi) with probability
1 − γi for γi as close to zero as he wants. Finally, note that the value of each inequality
Iθ~bi−1

between each Bi and A can be made as close as wanted to the maximal value Imax
θ~bi−1

.
Therefore, we can certify randomness for each measurement Bi in the sequence at the expense
of increasing the number of measurements that Alice chooses from.

This protocol can also be used to certify any finite amount of randomness with some
small but strictly non-zero noise robustness. Indeed, assume the goal is to certify m random
bits. One can then run the protocol for m′ > m bits. By continuity, when adding a small but
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1:10 Single Entangled System Is an Unbounded Source of Nonlocality and Randomness

finite amount of noise the protocol will certify m random bits. Of course, the noise robustness
tends to zero with the number of certified random bits. However, we expect this to be the
case for any protocol. This conjecture is based on the following argument: each measurement
of a particle of finite dimension can produce only a finite amount of randomness. Thus, to
get unbounded randomness, an infinite number of measurements are needed. Moreover, a
measurement that is very close to non-interacting is unlikely to produce nonlocal correlations
and is thus useless to certify randomness. It therefore appears quite likely that, in the infinite
limit, any sequence of local measurements that are useful for randomness certification will
destroy all the entanglement in the state, so that the resulting noise resistance tends to zero.
We therefore expect that, while quantitative improvements over our protocol in terms of
noise robustness can be expected, from a qualitative point of view it goes as far as possible.

6 Numerical bounds on the amount of violation of the family of Bell
inequalities of [1] and the certified randomness

Let us now explain some numerical results that should provide some quantitative intuition
on the relation between the amount of violation of the family of inequalities (5) and the
amount of random bits certified by this violation. This allows one to evaluate how close the
value Iθ of the inequalities (5) should be to the maximal one Imaxθ in order to certify close
to one perfect random bit from the statistics for one measurement n = 1.

Let us consider the following two-parameter class of Bell inequalities:

Iα,β := β〈B0〉+ α(〈A0B0〉+ 〈A1B0〉) + 〈A0B1〉 − 〈A1B1〉 ≤ β + 2α (12)

where α ≥ 1 and β ≥ 0 such that αβ < 2. For α = 1 the above class reproduces the family
of Bell inequalities (5) with β = 2 cos(2θ)/[1 + sin2(2θ)]1/2. In [1] it was proved that the
maximal quantum value Imax

α,β for these inequalities is given by:

Imax
α,β =

√
(1 + α2)(4 + β2). (13)

Now, we conjecture that the following inequality is satisfied by Iαβ :

I2
α,β + (2− αβ)2〈B1〉2 ≤ (1 + α2)(4 + β2). (14)

We have numerically evaluated this inequality for various values of α and β by maximizing
its left-hand side over general one-qubit measurements Ai = ~mi · ~σ and Bi = ~ni · ~σ with
~mi, ~ni ∈ R3 such that |~mi| = |~ni| = 1 for i = 0, 1, and two-qubit pure entangled states that
can always be written as

|ψ〉 = cos t|00〉+ sin t|11〉 (15)

with t ∈ [0, π/2] now being independent of β. The obtained values were always smaller than
or equal to the right-hand side of (14). Notice that in the case of Bell scenarios with two
dichotomic measurements one can always optimize expression like the above one over qubit
measurements and states (see e.g. Ref. [1]).

From (14), it is easy to obtain an upper bound on the expectation value:

|〈B1〉| ≤

√
(1 + α2)(4 + β2)− I2

α,β

2− αβ =

√
(Imax
α,β )2 − I2

α,β

2− αβ , (16)

which, due to the fact that the right-hand side of the above is a concave function in Iα,β ,
implies an upper bound on the guessing probability:

G(y0 = 1, Pobs) ≤
1
2 +

√
(Imax
α,β )2 − I2

α,β

2(2− αβ) ≡ f(Iαβ). (17)
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Figure 2 Our numerical upper bounds on the guessing probability in function of the violation of
Iθ for θ = π

4 ,
π
8 ,

π
16 , where Iθ=π

4
= CHSH. One can see that these are tight both at the maximal

violation of the inequality and at its local bound.

In the particular case of maximal violation of the inequality Iαβ (12) – which saturates
inequality (14), this bound implies that the outcome of the first Bob’s measurement is
completely unpredictable, G(y0 = 1, Pobs) = 1/2. Our numerical bound is thus tight at the
maximal quantum violation of the inequality, but also when Iαβ attains its classical value
2α+ β, for which G(y0 = 1, Pobs) = 1. In general, however, the bound (17) is not tight. Still,
it provides a good bound on the guessing probability in terms of the amount of violation of
Iαβ (12) and thus also of the family of inequalities Iθ (5) we were using in our scheme.

For example, one can insert the maximal quantum value Imax
θ (13) in (16) or in (17) and

get that 〈B1〉 = 0 or G(y0 = 1, Pobs) = 1
2 , which coincides with the certification of one perfect

local random bit for input y0 = 1 on Bob’s side for the maximal violation of Iθ. Since the
probability distribution of maximal violation is unique, the point is necessarily an extreme
point [1], so we can directly use the observed probability distribution Pobs to bound the
eavesdropper’s predictive power (as an extreme point allows only for one decomposition:
itself).

Let us finally consider the case of α = 1 and β = 2 cos(2θ)/[1 + sin2(2θ)]1/2, which
results in the Bell inequality (5) considered in the main text. Figure 3 presents the bound
(17) for three values of θ, in particular for θ = π/4 which corresponds to the CHSH Bell
inequality. This should provide one with an intuition of how close quantitatively to the
maximal violation Imaxθ the observed value Iθ should be in order to get close to one perfect
local bit of randomness (G(y = 1, Pobs)→ 1/2) for a state with a given angle θ.

7 The amount of certified randomness as a function of the strength
of the measurement

We know already that the violation of a Bell inequality certifies the existence of randomness in
the outcomes of the measurements. The other way is also true, namely that if the solution of
the optimization problem (2) gives a solution G(y0, Pobs) < 1 then the observed behavior Pobs
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1:12 Single Entangled System Is an Unbounded Source of Nonlocality and Randomness

is necessarily nonlocal. On a purely qualitative level, certified randomness in the outcomes is
equivalent to nonlocal correlations.

In this section we analyze with the help of numerical tools the dependency of the certified
randomness from the violation of the family of Bell inequalities (5) on the strength parameter
ξ of the measurements σ̂x(ξ) = cos(2ξ)σx (8). For example, what is the maximal value of
the parameter ξ – i.e. the minimal strength of the measurement –such that we can generate
nonlocal correlations (and thus randomness) from this measurement on an entangled state
of the form |ψ(θ)〉 (4)? Do less entangled states need stronger measurement to unveil their
nonlocal behavior?

To answer these questions, we have been using semi-definite programing (SDP) techniques
as explained in [3, 16] to obtain numerical upper bounds on the guessing probabilities
(2). One can find the computational details – presented in a pedagogical way – online
at https://github.com/peterwittek/ipython-notebooks/blob/master/Unbounded_randomness.
ipynb. Here we work in the standard scenario with only one measurement n = 1 in the
sequence. We used states of the form (4):

|ψ(θ)〉 = cos(θ)|00〉+ sin(θ)|11〉 (18)

and measurements (6):

A0 = cosµσz + sinµσx, B0 = σz,

A1 = cosµσz − sinµσx, B1 = σ̂x(ξ) = cos(2ξ)σx, (19)

where tan(µ) = sin(2θ). These measurements correspond to the ones in our scheme for an
unbounded amount of randomness and where the second measurement y = 1 of B is the
tunable version σ̂x(ξ) ≡ {M†+1M+1,M

†
−1M−1} of Eq. (8):

M±1(ξ) = cos ξ|±〉〈±|+ sin ξ|∓〉〈∓|, (20)

with ξ ∈ [0, π4 ]. For example, if the parameter ξ = 0, the four (projective) measurements in
Eq. (19) on any quantum state |ψ(θ)〉 with angle θ (18) generates a behavior P θobs leading
to the maximal violation of the inequality Iθ (5) for the same value of θ. This implies that
extremal nonlocal correlations are generated and from the results of [1] we know that one
perfect random bit – equivalently G(y0 = 1, P θobs) = 1

2 – is produced. This corresponds to
the strongest (projective) version of the measurements. Now, as we increase the parameter
ξ > 0 of B’s y = 1 measurement, σ̂x(ξ) gets weaker, the generated correlations cease to be
extremal and less than one random bit is produced. At some point, at a particular value ξθmax
the measurement of B is so weak that we expect the generated correlations to become local.
This exact value might depend on the amount of entanglement θ in the state. The bounds
obtained by SDP indicate that this dependency on the angle θ of the maximal value ξθmax is
relatively small. As we vary the angle θ, the minimal required strength of the measurement
to generate a nonlocal behavior P θobs stays within a narrow interval: ξθmax ∈ [0.519, 0.576] for
θ ∈ [ π32 ,

π
4 ].

We now present the results in the form of a graph (see Fig.3). A complete tables with
our results for the different states and bounds on the guessing probabilities can be found in
the appendices F.

As expected the amount of certified randomness for each state |ψ(θ)〉 is one bit when the
measurement is projective (for ξ = 0) as the correlations are the extremal ones described in [1]
regardless of the entanglement θ in the state. As ξ increases the lower bounds on the certified
randomness rapidly decreases, with a more rapid decrease for smaller θ. Interestingly, and up
to (high) numerical precision, for all values of θ the bounds reach zero certified randomness
around the same value ξmax ∈ [0.519, 0.576]. This indicates, again up to numerical precision,

https://github.com/peterwittek/ipython-notebooks/blob/master/Unbounded_randomness.ipynb
https://github.com/peterwittek/ipython-notebooks/blob/master/Unbounded_randomness.ipynb
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Figure 3 Lower bounds on the amount of randomness certified from the quantum state (4) with
angles θ = 0, π

32 ,
π
16 ,

π
8 ,

π
4 as function of the strength of the measurement ξ. The measurement is

projective for ξ = 0 – which certifies the maximal amount of randomness – and is non interacting
with the system when ξ = π

4 . It is intriguing to see that for the cases of π
32 ≤ θ ≤

π
4 considered the

generated behavior become local in a small interval ξmax ∈ [0.519, 0.576].

that all the generated P θobs become local – or stop generating randomness – around this
critical value.

In the end, we are interested primarily in the amount of certified randomness from P θobs
close to the maximal violation of Iθ, corresponding to ξ → 0. There, the SDP solutions
indicate that the correlations resisting the best to the weakening of the measurement ξ > 0
are the ones coming from the measurements made on the maximally entangled state. Indeed,
if the bounds are close to the actual values of certified randomness it is quite clear from the
numerical results that the more the state is entangled (θ → π

4 ) the better it resists. The
less entangled states (θ → 0) appear to generate exponentially less randomness when the
parameter ξ increases, or equivalently when the correlations cease to be extremal. This tells
us that even though our scheme certifies an unbounded amount of randomness from states
|ψ(θ)〉 with any nonzero amount of entanglement, i.e. any θ > 0, it is preferential from a
practical point of view to use the maximally entangled state as the initial state.

8 Conclusion

We have presented a scheme for certifying an unbounded amount of random bits from a
single pair of entangled qubits in the scenario where one of the qubits is subjected to a
sequence of measurements. The measurements do not completely destroy the entanglement
but map the state to another pure entangled two-qubit state (with reduced entanglement).
Our main result made use of the fact that every measurement in Bob’s sequence generated
an almost-maximally non-local output distribution (in the sense of violating some Bell
inequality almost maximally). In Ref. [22], a sequence of non-local correlations is obtained
from a single pair of qubits, showing that the nonlocality of a state can be shared between
many parties. While it also considers sequences of measurements, one can show that the
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1:14 Single Entangled System Is an Unbounded Source of Nonlocality and Randomness

correlations obtained in their work do not generate more certified randomness than the simple
standard single measurement scenario. Indeed, the maximum of randomness is achieved
when all but one measurements do not interact with the particle and their scheme is thus
optimal when coinciding with a single measurement one. In our work, we overcome this
limitation by producing (almost) extremal correlations for each measurement in the sequence,
which is a fundamental property of potential further use for many other device-independent
quantum information tasks (in particular for randomness certification). Our work is in many
respects a proof-of-principle result: First, it requires an exponentially increasing number
of measurements on Alice’s side, namely

∑n
i=1 2i = 2(2n − 1) measurement choices for n

measurements in the sequence. Second, the result is based on a continuity argument and
there is no control on the noise robustness. All these issues deserve further investigation.
Finally, it is worth exploring how to design device-independent randomness generation
protocols involving sequences of measurements. However, the sequential scenario is much
more demanding from an implementation point of view, because it requires quantum non-
demolition measurements. It is then unclear whether with present or near future technology
sequential protocols will provide a significant practical advantage over simpler protocols
based on standard Bell tests. However, the first experimental works observing non-local
correlations in the sequential scenario have recently been reported [21, 14]. In any case, the
main implications of our work are fundamental: It shows that a single pair of pure entangled
qubits is a potentially unbounded source of certifiable random bits when performing sequences
of measurements on it.

We have also provided numerical results that gives us an insight on the resistance to
imperfections of a potential protocol that implements our scheme. For a single measurement
in the sequence, we have given numerical bounds on how the certified randomness diminishes
as the generated correlations cease to be extremal. Second, we have also explored how the
certified randomness diminishes when the strength of the measurement is lowering. This
allows us to expect that any potential protocol trying to implement our scheme for a finite
amount of randomness starting from a single entangled system has an advantage using a
maximally entangled one. It is clear from our numerical results that this state offers the best
resistance to imperfections. So, while it is true that even arbitrarily little entangled states
are a source of unbounded certified randomness, more entanglement offers an advantage in
terms of resistance to imperfections.

It would also be interesting to explore whether an unbounded amount of randomness
can be obtained versus a post-quantum adversary E, only constrained by the no-signaling
condition, trying to guess the outcomes of the measurements. Or, on the contrary, is the
amount of certified randomness against no-signaling adversaries bounded also in the sequential
scenario? Our conjecture is that the amount of randomness that can be certified is limited in
this case. Indeed, the fact that the no-signaling set – consisting of all correlations constrained
only by the no-signaling conditions – does not have a continuous set of extremal points (it is
a polytope) makes it impossible to obtain a sequence of extremal probability distributions in
a sequence as the one that we could obtain in the quantum case. A different approach thus
needs to be taken. It is really the fact that the quantum set has curved boundaries made of
extremal quantum behaviors that allowed us to derive the results of this paper.

References

1 Antonio Acín, Serge Massar, and Stefano Pironio. Randomness versus nonlocality and
entanglement. Phys. Rev. Lett., 108:100402, Mar 2012. doi:10.1103/PhysRevLett.108.
100402.

http://dx.doi.org/10.1103/PhysRevLett.108.100402
http://dx.doi.org/10.1103/PhysRevLett.108.100402


F. J. Curchod, M. Johansson, R. Augusiak, M. J. Hoban, P. Wittek, and A. Acín 1:15

2 Antonio Acín, Stefano Pironio, Tamás Vértesi, and Peter Wittek. Optimal randomness
certification from one entangled bit. Phys. Rev. A, 93(4):040102, April 2016. doi:10.
1103/PhysRevA.93.040102.

3 Jean-Daniel Bancal, Lana Sheridan, and Valerio Scarani. More randomness from the same
data. New J. Phys., 16(3):033011, 2014. doi:10.1088/1367-2630/16/3/033011.

4 John S. Bell. On the Einstein Podolsky Rosen paradox. Physics, 1:195, 1964.
5 Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Valerio Scarani, and Stephanie

Wehner. Bell nonlocality. Rev. Mod. Phys., 86:419–478, Apr 2014. doi:10.1103/
RevModPhys.86.419.

6 Orest Bucicovschi and Jiří Lebl. On the continuity and regularity of convex extensions. J.
Convex Anal., 20(4):1113–1126, 2013.

7 Roger Colbeck. Quantum and Relativistic Protocols for Secure Multi-Party Computation.
PhD thesis, University of Cambridge, 2006.

8 Roger Colbeck and Renato Renner. Free randomness can be amplified. Nat. Phys., 8(6):450–
454, May 2012. doi:10.1038/nphys2300.

9 Florian J. Curchod, Markus Johansson, Remigiusz Augusiak, Matty J. Hoban, Peter Wit-
tek, and Antonio Acín. Unbounded randomness certification using sequences of measure-
ments. Phys. Rev. A, 95(2), feb 2017. doi:10.1103/physreva.95.020102.

10 Giacomo Mauro D’Ariano, Paoloplacido Lo Presti, and Paolo Perinotti. Classical ran-
domness in quantum measurements. J. Phys. A: Math. Gen., 38(26):5979, 2005. doi:
10.1088/0305-4470/38/26/010.

11 Gonzalo de la Torre, Matty J. Hoban, Chirag Dhara, Giuseppe Prettico, and Anto-
nio Acín. Maximally nonlocal theories cannot be maximally random. Phys. Rev. Lett.,
114(16):160502, 2015. doi:10.1103/physrevlett.114.160502.

12 Rodrigo Gallego, Lluis Masanes, Gonzalo De La Torre, Chirag Dhara, Leandro Aolita,
and Antonio Acín. Full randomness from arbitrarily deterministic events. Nat. Commun.,
4:2654, 2013. doi:10.1038/ncomms3654.

13 Rodrigo Gallego, Lars Erik Würflinger, Rafael Chaves, Antonio Acín, and Miguel Navascués.
Nonlocality in sequential correlation scenarios. New J. Phys., 16(3):033037, 2014. doi:
10.1088/1367-2630/16/3/033037.

14 Meng-Jun Hu, Zhi-Yuan Zhou, Xiao-Min Hu, Chuan-Feng Li, Guang-Can Guo, and Yong-
Sheng Zhang. Experimental sharing of nonlocality among multiple observers with one
entangled pair via optimal weak measurements. arXiv:1609.01863, Sep 2016. arXiv:1609.
01863.

15 Lluis Masanes, Antonio Acín, and Nicolas Gisin. General properties of nonsignaling theories.
Phys. Rev. A, 73(1):012112, Jan 2006. doi:10.1103/physreva.73.012112.

16 Olmo Nieto-Silleras, Stefano Pironio, and Jonathan Silman. Using complete measure-
ment statistics for optimal device-independent randomness evaluation. New J. Phys.,
16(1):013035, 2014. doi:10.1088/1367-2630/16/1/013035.

17 Stefano Pironio, Antonio Acín, Serge Massar, Antoine Boyer de la Giroday, Dzmitry N.
Matsukevich, Peter Maunz, Steven Matthew Olmschenk, David Hayes, Le Luo, T. Andrew
Manning, and Christopher R. Monroe. Random numbers certified by bell’s theorem. Nature,
464(7291):1021–1024, 2010. doi:10.1038/nature09008.

18 Sandu Popescu. Bell’s inequalities and density matrices: Revealing “hidden” nonlocality.
Phys. Rev. Lett., 74(14):2619–2622, Apr 1995. doi:10.1103/physrevlett.74.2619.

19 Sandu Popescu and Daniel Rohrlich. Quantum nonlocality as an axiom. Found. Phys.,
24(3):379–385, 1994. doi:10.1007/BF02058098.

20 Tyrrell Rockafellar. Convex Analysis. Princeton Press, 1970.
21 Matteo Schiavon, Luca Calderaro, Mirko Pittaluga, Giuseppe Vallone, and Paolo Villoresi.

Three-observer bell inequality violation on a two-qubit entangled state. Quantum Science
and Technology, 2(1):015010, mar 2017. doi:10.1088/2058-9565/aa62be.

TQC 2017

http://dx.doi.org/10.1103/PhysRevA.93.040102
http://dx.doi.org/10.1103/PhysRevA.93.040102
http://dx.doi.org/10.1088/1367-2630/16/3/033011
http://dx.doi.org/10.1103/RevModPhys.86.419
http://dx.doi.org/10.1103/RevModPhys.86.419
http://dx.doi.org/10.1038/nphys2300
http://dx.doi.org/10.1103/physreva.95.020102
http://dx.doi.org/10.1088/0305-4470/38/26/010
http://dx.doi.org/10.1088/0305-4470/38/26/010
http://dx.doi.org/10.1103/physrevlett.114.160502
http://dx.doi.org/10.1038/ncomms3654
http://dx.doi.org/10.1088/1367-2630/16/3/033037
http://dx.doi.org/10.1088/1367-2630/16/3/033037
http://arxiv.org/abs/1609.01863
http://arxiv.org/abs/1609.01863
http://dx.doi.org/10.1103/physreva.73.012112
http://dx.doi.org/10.1088/1367-2630/16/1/013035
http://dx.doi.org/10.1038/nature09008
http://dx.doi.org/10.1103/physrevlett.74.2619
http://dx.doi.org/10.1007/BF02058098
http://dx.doi.org/10.1088/2058-9565/aa62be


1:16 Single Entangled System Is an Unbounded Source of Nonlocality and Randomness

22 Ralph Silva, Nicolas Gisin, Yelena Guryanova, and Sandu Popescu. Multiple observers can
share the nonlocality of half of an entangled pair by using optimal weak measurements.
Phys. Rev. Lett., 114(25):250401, 2015. doi:10.1103/physrevlett.114.250401.

23 Umesh Vazirani and Thomas Vidick. Certifiable quantum dice. Phil. Trans. R. Soc. A.,
370(1971):3432–3448, Jun 2012. doi:10.1098/rsta.2011.0336.

24 Peter Wittek. Algorithm 950: Ncpol2sdpa - sparse semidefinite programming relaxations for
polynomial optimization problems of noncommuting variables. ACM Trans. Math. Softw.,
41(3):21:1–21:12, 2015. doi:10.1145/2699464.

25 Makoto Yamashita, Katsuki Fujisawa, and Masakazu Kojima. Implementation and evalu-
ation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optimization Methods and
Software, 18(4):491–505, 2003. doi:10.1080/1055678031000118482.

A The guessing probability

We start our appendices with the following discussion, which is a summary of the work
done in deriving the device-independent guessing probability (DIGP) [17, 1, 16, 11]. A
conditional probability distribution that is the outcome distribution for some measurement
on a quantum state is called a quantum distribution. For example, a distribution P with
elements p(ab|xy) is quantum if there exist at least one quantum state, i.e., a positive
semi-definite hermitian unit trace matrix ρ and at least one set of measurements, i.e., a set of
positive semi-definite hermitian matrices Ma|x, Mb|y satisfying

∑
aMa|x =

∑
bMb|y = 1 such

that p(ab|xy) = Tr(Ma|x⊗Mb|y · ρ). We will often abuse notation and refer to a distribution
by its elements p(ab|xy) when there is no confusion in doing so.

The set Q of quantum distributions is convex and a distribution in Q that cannot be
decomposed as a convex combination of other distributions is called extremal in Q. For
a non-extremal distribution P (ab|xy) there is in general more than one possible convex
decomposition.

A non-extremal distribution p(ab|xy) with a convex decomposition p(ab|xy) =∑
λ qλpλ(ab|xy) can be constructed by sampling the different distributions pλ(ab|xy) with

probability qλ. In this case knowledge about the convex decomposition chosen changes the
ability of an eavesdropper to correctly guess the outcomes a and/or b.

Without knowledge of the decomposition, or for extremal distributions, the probability
of correctly guessing the outcome of measurement y0 is maxb p(b|y0), the probability of the
most likely outcome. With knowledge of the decomposition p(ab|xy) =

∑
λ qλpλ(ab|xy), the

probability is larger or equal to maxb p(b|y0)∑
λ

qλ max
b
pλ(b|y0) ≥ max

b

∑
λ

qλpλ(b|y0) = max
b
p(b|y0). (21)

For a given observed non-extremal distribution Pobs, it is possible that it was produced by an
agent Eve that has larger predictive power than an agent which only observes the outcomes.

We now want to consider the optimal probability for the agent Eve to correctly guess
an outcome b of measurement y0 given a distribution pobs(ab|xy) and control over its
decomposition in extremal points. If the set of quantum distributions is closed there exist one
or several optimal ways to decompose the given distribution that maximizes this probability.
If the set is not closed but open or semi-open, there may not exist a maximum and the
relevant quantity is instead the supremum value of Eves probability to correctly guess the
outcome. Since maxb p(b|y0) is a continuous function on the set of probability distributions
it follows that the supremum value of

∑
λ qλ maxb pλ(b|y0) as a function of all possible

decompositions, indexed by λ, on an open or semi-open set of distributions is the same as
the maximum value on the closure of the set. Therefore, in this case we can consider the

http://dx.doi.org/10.1103/physrevlett.114.250401
http://dx.doi.org/10.1098/rsta.2011.0336
http://dx.doi.org/10.1145/2699464
http://dx.doi.org/10.1080/1055678031000118482
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closure of the set and express the probability as an optimization over the extremal points of
this closed set.

With this disclaimer, the maximal probability for the agent Eve to correctly guess
an outcome b of measurement y0 given a distribution pobs(ab|xy) and control over the
decomposition is the DIGP G(y0, Pobs)

G(y0, Pobs) = max
qλ,pλ(ab|xy)

∑
λ

qλ max
b
pλ(b|y0). (22)

where λ is labelling the convex decompositions of pobs(ab|xy) in terms of extremal distributions
pλ(ab|xy). Note that if Q is not closed a given extremal point may not belong to the set but
only to its closure. For any open interval of Q the function G(y0, Pobs) is a concave function
[17]. Therefore this kind of maximization is called a concave roof construction.

The guessing probability can be approximated by a hierarchy of semidefinite programming
(SDP) relaxations [16, 3]. We used Ncpol2sdpa [24] to generate the relaxations for verifying
some of the analytical results. We relied on the arbitrary-precision variant of the SDPA
family of solvers [25] for obtaining important numerical values, and the solver Mosek1 in all
other cases.

B Continuity of the guessing probability in interior and extremal
points of Q

The guessing probability as a function on the space of probability distributions is not every-
where continuous. An example of this is that the family of Bell-inequalities of Ref. [1] that
certifies one bit of randomness for measurements on a state with arbitrarily little entangle-
ment. The probability distribution corresponding to such a state and the measurements
in Eq. 6 has G(y0, Pobs) = 1/2 and is at the same time arbitrarily close to a distribution
corresponding to measurements on a product state with G(y0, Pobs) = 1, i.e., a distribution
which can be prepared by a local deterministic procedure. There is thus a discontinuity where
the guessing probability jumps from 1/2 to 1. The key to understanding this discontinuity
is that the local deterministic distribution is not extremal while the quantum distribution
in the neighbouring point is extremal. As seen in Eq. 21, the guessing probability is given
by different functions depend ing on whether a distribution can be decomposed into other
distributions or not, i.e., if it is extremal or not. This means discontinuities can appear at
the boundary between extremal points and non-extremal points.

We will now show that discontinuities can only appear at such boundaries between
extremal and non-extremal points in the boundary ∂Q of the quantum set Q. To do this we
use the property of the guessing probability described in Eq. 21, together with some general
properties of concave functions and in particular concave roof constructions.

We want to show that the following propositions are true:

I Proposition 5. The function G(y0, Pobs) on the set of quantum distributions Q is continu-
ous in the interior of Q.

I Proposition 6. The function G(y0, Pobs) is continuous in any extremal point of Q.

Proposition 1 is trivial. The guessing probability G(y0, Pobs) is concave by definition and
any concave function is continuous on an open subset of its domain [20]. In particular this
means that G(y0, Pobs) is continuous in the interior of Q. Note that if Q is open, i.e. has no
boundary, there can thus not exist any discontinuity.

1 http://mosek.com/
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To address proposition 2 we consider the restriction G(y0, Pobs)∂Q of G(y0, Pobs) to the
boundary ∂Q of the quantum set. First we note that the function G(y0, Pobs)∂Q by definition
is continuous on any open set of extremal points since maxb p(b|y) is a continuous function.
Next we observe that the boundary ∂Q can be decomposed into a collection of open sets of
extremal points and a collection {Si} of closed connected possibly overlapping sets where
each set is the closure of a maximal open connected subset. A maximal open connected
subset M of the non-extremal points is an open set such that any other open connected set
of non-extremal points which contains M is M itself. Therefore, each set Si is the convex
hull of the set of extremal points in its closure.

Any closed set Si has a boundary ∂Si with the rest of ∂Q which can be decomposed
in the same way into open sets of extremal points and closed connected sets Sij that are
closures of maximal open connected sets of non-extremal points. The boundary ∂Sij of Sij
with the rest of ∂Si is in turn decomposable in the same way.

Continuing this successive decomposition of the boundary ∂Q we will eventually reach
sets Sijk... that are one dimensional simplexes, or alternatively sets with only extremal points
in the boundary. On sets of these two types G(y0, Pobs) is a continuous function. To see this
we introduce the following terminology, and use a theorem from Ref. [6].

A function for which all discontinuities are such that the function takes the higher value
at a closed set and the lower value at an open set is called upper semi-continuous.

The function G(y0, Pobs)S defined on a closed convex set S can be viewed as an extension
of G(y0, Pobs)∂S to the interior of S. This extension is called the concave roof extension.

I Theorem 7. Let C be a compact set and K = co(C) be the convex hull of C. If F : C → R
is bounded, upper semi-continuous, and concave on C, then the concave roof extension
F̂ : K → R of F to K is upper semi-continuous [6].

The guessing probability is bounded and concave by definition. If the boundary of S
has only extremal points it follows that G(y0, Pobs)∂S is continuous in ∂S and by theorem
7 G(y0, Pobs)S is upper semi-continuous on S. Moreover, since G(y0, Pobs)S is concave it
cannot have an upper semi-continuous discontinuity between the boundary and the interior.
If S is a one-dimensional simplex we can, if necessary, restrict the domain of the guessing
probability to a one dimensional subspace and make the same argument.

Next we consider discontinuities between S and an open set of extremal points.

I Lemma 8. Any discontinuity of G(y0, Pobs) between a closed set and an open set of
extremal points is upper semi-continuous.

Proof. If the boundary point of the closed set is extremal the G(y0, Pobs) is continuous since
maxb p(b|y0) is continuous. Next consider a non-extremal boundary point of the closed set.
G(y0, Pobs) in the non-extremal point is always greater or equal to maxb P (b|y0) by Eq. 21.
Thus any discontinuity is upper semi-continuous. J

If there is a discontinuity of G(y0, Pobs) on the boundary of S it is, by lemma 8 , upper
semi-continuous and at a set of non-extremal points.

By repeated application of Theorem 7 and lemma 8 we can conclude that G(y0, Pobs)∂Q
is upper semi-continuous on ∂Q and that G(y0, Pobs) is upper semi-continuous on Q. Since
G(y0, Pobs) is concave there cannot be an upper semi-continuous discontinuity between the
boundary ∂Q and the interior of Q. Thus the only discontinuities are between non-extremal
points in closed subsets of ∂Q and extremal points in open subsets of ∂Q.
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C Bounds on the guessing probability as a function of a Bell
inequality: Continuity at a unique point of maximal violation

We have described the guessing probability as a function on set of quantum distributions,
but it is sometimes useful to consider it as a function of the violation of some given Bell
inequality I. A Bell expression is a linear function on the space of distributions and the set
of distributions for which it takes a given value t is a hyper-plane Ht. The different values of
the Bell expression thus defines a family of parallel hyperplanes.

On each hyperplane Ht we can consider the restriction G(y0, Pobs)t of G(y0, Pobs) to the
intersection of Ht with Q and take its maximum maxG(y0, Pobs)t on this intersection. This
maximum is the highest probability for Eve to guess the outcome of y0 for any distribution
P ∈ Q such that I(P ) = t. The function maxG(y0, Pobs)t can have a discontinuity at t = tc
only if Htc intersects with a point in Q at which G(y0, Pobs) is discontinuous.

Let us consider a Bell expression I and its maximal value tmax on Q. If the intersection
of Htmax and Q is a single extremal point it follows from Propositions 1 and 2 that there is
a tc 6= tmax such that for the range tc ≤ t ≤ tmax for which maxG(y0, Pobs)t is a continuous
function of t.

If the intersection of Htmax and Q contains more than one extremal point it also contains
a set of non-extremal points of ∂Q and G(y0, Pobs) could have a discontinuity between this
set and an open set of extremal points. This discontinuity could lead to a discontinuity of
the function maxG(y0, Pobs)t at tmax.

D Guessing probability for a sequence

So far, we have discussed the continuity properties of the guessing probability in the standard
scenario, where one single measurement Ma|x is made on Alice’s side and Mb|y on Bob’s. The
goal of this section is to extend these properties to the case where sequential measurements
Mai|xi and Mbi|yi are performed by each party, where i labels the position of a particular
measurement in the sequence.

Let us consider a sequence of measurements σ̂(ξi) chosen by Bob and denote (ξ1, ξ2, . . . , ξn)
≡ ~ξ. The convex decomposition of the observed outcome distribution that gives Eve
optimal probability to correctly guess the sequence of outcomes ~bn of the measurements
(y0

1 , y
0
2 , . . . , y

0
n) ≡ ~y0

n is a function of ~ξ. The guessing probability G(~y0
n, Pobs) is thus given by

G(~y0
n, Pobs) =

∑
λξ̄

qλ~ξ max
~bn

pλ~ξ(b1|y0
1) · pλ~ξ(b2|y0

2 , y
0
1 , b1) . . . pλ~ξ(bn|~y

0
n
~bn−1). (23)

where the extremal distributions pλ~ξ(bn|yn . . . ) and weights qλ~ξ of the optimal convex
decomposition are functions of ~ξ as indicated by the index λ~ξ. Let us assume that a term
which appears in the convex combination is

qλ~ξpλ~ξ(b1|y0
1) . . . pλ~ξ(bn|~y

0
n
~bn−1). (24)

Thus we assume that it corresponds to the most probable sequence of outcomes ~bn for a
specific distribution indexed by λ~ξ.

Given that Eve has chosen the optimal convex decomposition for guessing the outcomes
of ~y0

n we consider her probability of correctly guessing the outcome of y0
m for 1 ≤ m ≤ n

given a particular sequence of previous outcomes ~bm−1. It is given by∑
λ~ξ

kλ~ξ max
bm

pλ~ξ(bm|~y
0
m
~bm−1), (25)
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where kλ~ξ is the probability that the distribution indexed by λ~ξ will be sampled given the
sequence of previous outcomes ~bm−1

kλ~ξ =
qλ~ξpλ~ξ(b1|y0

1) . . . pλ~ξ(bm−1|~y0
m−1

~bm−2)∑
λ~ξ
qλ~ξpλ~ξ(b1|y0

1). . .pλ~ξ(bm−1|~y0
m−1

~bm−2)
. (26)

The probability in Eq. 25 is larger or equal to 1/dm, where dm is the number of possible
outputs bm, but is lower or equal to G(y0

m, Pobs), the maximal probability that Eve could
guess the outcome of y0

m correctly given that she had chosen an optimal strategy for this and
not the optimal strategy for guessing the outcomes of the sequence ~y0

n. Thus if G(y0
m, Pobs)

is close to 1/dm so is the expression in Eq. 25.

E Arbitrarily close to n random bits for n measurements

We want to prove that G(~y0
n, Pobs) can be made arbitrarily close to 2−n by making G(y0

m, Pobs)
sufficiently close to 1/2 for each 1 ≤ m ≤ n.

The proof relies on the fact that if a convex combination of a collection of numbers xi
equals a, i.e.,

∑
i kixi = a where

∑
ki = 1, and if xi ≥ a for each i, it follows that for every

i either ki = 0 or xi = a.
From this follows that when G(y0

m, Pobs) is very close to 1/2 either maxbm pλ~ξ(bm|~y
0
m
~bm−1)

in Eq. 25 is very close to 1/2 or kλ~ξ is very close to zero for each λ~ξ. To see this more clearly
we construct the following bound

kλ~ξ max
bm

pλ~ξ(bm|~y
0
m
~bm−1) ≤ G(y0

m, Pobs)−
∑
λ′ 6=λ

kλ′
~ξ

max
bm

pλ′
~ξ
(bm|~y0

m
~bm−1)

≤ G(y0
m, Pobs)− 1/2(1− kλ~ξ)

where we used maxbm pλ′~ξ(bm|~y
0
m
~bm−1) ≥ 1/2 for each λ′~ξ and

∑
λ′ 6=λ kλ′~ξ

= 1−kλ~ξ . It follows
that

G(y0
m, Pobs)− 1/2 ≥ kλ~ξ [max

bm
pλ~ξ(bm|~y

0
m
~bm−1)− 1/2],

and given Eq. (26) this implies

G(y0
m, Pobs)− 1/2 ≥ qλ~ξpλ~ξ(b1|y0

1) . . . pλ~ξ(bm−1|~y0
m−1

~bm−2)[max
bm

pλ~ξ(bm|~y
0
n
~bm−1)− 1/2].

Thus for sufficiently small G(y0
m, Pobs) − 1/2 either maxbm pλ~ξ(bm|~y

0
m
~bm−1) − 1/2 can be

made arbitrarily small, or the probability qλ~ξpλ~ξ(b1|y0
1) . . . pλ~ξ(bm−1|~y0

m−1
~bm−2) that the

distribution labelled by λ~ξ is sampled when y0
m is measured is made arbitrarily small.

The argument can be made for any Bm. For B1, it follows that either pλ~ξ(b1|y0
1) is made

arbitrarily close to 1/2 or qλ~ξ is made arbitrarily close to 0. For B2, it follows that either
pλ~ξ(b2|y0

2y
0
1b1) is made arbitrarily close to 1/2 or qλ~ξpλ~ξ(b1|y0

1) is made arbitrarily close to
zero. Given the second option and that pλ~ξ(b1|y0

1) is made arbitrarily close to 1/2 it is implied
that that qλ(~ξ) is made arbitrarily close to 0. If on the other hand pλ~ξ(b1|y0

1) is not very close
to 1/2 it follows that qλ~ξ is made arbitrarily close to zero by the preceding argument.

By induction it is clear that either the term in Eq. 24 satisfies that pλ~ξ(b1|y0
1) . . .

pλ~ξ(bn|~y
0
n
~bn−1) can be made arbitrarily close to 2−n or alternatively qλ~ξ is made arbitrarily

small. Since the same is true for every λ~ξ in Eq. 23 it follows that G(~y0
n, Pobs) can be made

arbitrarily close to 2−n.
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Note that the above argument can be straightforwardly extended to the case where the
number of outputs di for each Bi can be different from 2. Thus, in this case G(~y0

n, Pobs) can
be made arbitrarily close to

∏n
i=1 d

−1
i by making G(y0

m, Pobs) sufficiently close to 1/dm for
each 1 ≤ m ≤ n.

F Our programs to obtain lower bounds on the certified randomness

In this section of the appendices we give the tables of results for section 7. We remind
the reader that the computational details – exposed in a pedagogical way – of our results
can be found online at: https://github.com/peterwittek/ipython-notebooks/blob/master/
Unbounded_randomness.ipynb.
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Table 1 θ = π
4 , the maximally entangled

state.

ξ ] random bits
0.000 1.000
0.013 0.962
0.027 0.925
0.040 0.890
0.053 0.855
0.067 0.822
0.080 0.790
0.093 0.759
0.106 0.729
0.120 0.700
0.133 0.673
0.146 0.647
0.160 0.622
0.173 0.598
0.186 0.575
0.200 0.554
0.213 0.533
0.226 0.514
0.240 0.494
0.253 0.473
0.266 0.452
0.280 0.430
0.293 0.409
0.306 0.387
0.319 0.365
0.333 0.342
0.346 0.320
0.359 0.298
0.373 0.276
0.386 0.254
0.399 0.233
0.413 0.211
0.426 0.190
0.439 0.170
0.453 0.150
0.466 0.130
0.479 0.111
0.493 0.093
0.506 0.075
0.519 0.058
0.532 0.042
0.546 0.027
0.559 0.012
0.572 0.000

Table 2 θ = π
8 .

ξ ] random bits
0.000 1.000
0.013 0.941
0.027 0.884
0.040 0.830
0.053 0.779
0.067 0.729
0.080 0.682
0.093 0.637
0.106 0.595
0.120 0.555
0.133 0.519
0.146 0.485
0.160 0.453
0.173 0.424
0.186 0.396
0.200 0.371
0.213 0.348
0.226 0.327
0.240 0.307
0.253 0.289
0.266 0.273
0.280 0.258
0.293 0.243
0.306 0.229
0.319 0.214
0.333 0.200
0.346 0.186
0.359 0.171
0.373 0.157
0.386 0.143
0.399 0.129
0.413 0.115
0.426 0.102
0.439 0.089
0.453 0.077
0.466 0.064
0.479 0.053
0.493 0.041
0.506 0.031
0.519 0.021
0.532 0.012
0.546 0.004
0.559 0.000
0.572 0.000
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Table 3 θ = π
16 .

ξ ] random bits
0.000 1.000
0.013 0.896
0.027 0.800
0.040 0.714
0.053 0.641
0.067 0.577
0.080 0.521
0.093 0.473
0.106 0.429
0.120 0.391
0.133 0.356
0.146 0.325
0.160 0.297
0.173 0.271
0.186 0.248
0.200 0.227
0.213 0.207
0.226 0.190
0.240 0.174
0.253 0.159
0.266 0.146
0.280 0.134
0.293 0.122
0.306 0.112
0.319 0.103
0.333 0.095
0.346 0.087
0.359 0.078
0.373 0.070
0.386 0.062
0.399 0.055
0.413 0.047
0.426 0.040
0.439 0.034
0.453 0.027
0.466 0.021
0.479 0.016
0.493 0.011
0.506 0.007
0.519 0.003
0.532 0.000
0.546 0.000
0.559 0.000
0.572 0.000

Table 4 θ = π
32 .

ξ ] random bits
0.000 1.000
0.013 0.823
0.027 0.706
0.040 0.619
0.053 0.551
0.067 0.493
0.080 0.444
0.093 0.400
0.106 0.362
0.120 0.328
0.133 0.297
0.146 0.269
0.160 0.244
0.173 0.221
0.186 0.200
0.200 0.181
0.213 0.163
0.226 0.147
0.240 0.133
0.253 0.119
0.266 0.107
0.280 0.095
0.293 0.085
0.306 0.076
0.319 0.067
0.333 0.059
0.346 0.052
0.359 0.046
0.373 0.040
0.386 0.035
0.399 0.030
0.413 0.025
0.426 0.021
0.439 0.017
0.453 0.013
0.466 0.009
0.479 0.006
0.493 0.004
0.506 0.002
0.519 0.000
0.532 0.000
0.546 0.000
0.559 0.000
0.572 0.000
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