Model Checking of Robot Gathering

Ha Thi Thu Doan!, Francois Bonnet2?, and Kazuhiro Ogata3®

1 Japan Advanced Institute of Science and Technology, Nomi, Japan
doanha@Qjaist.ac.jp

2 Graduate School of Engineering, Osaka University, Osaka, Japan
francois@cy2sec.comm.eng.osaka-u.ac.jp

3 Japan Advanced Institute of Science and Technology, Nomi, Japan
ogata@jaist.ac.jp

—— Abstract

Recent advances in distributed computing highlight models and algorithms for autonomous mo-
bile robots that self-organize and cooperate together in order to solve a global objective. As
results, a large number of algorithms have been proposed. These algorithms are given together
with proofs to assess their correctness. However, those proofs are informal, which are error prone.
This paper presents our study on formal verification of mobile robot algorithms. We first propose
a formal model for mobile robot algorithms on anonymous ring shape network under multiplicity
and asynchrony assumptions. We specify this formal model in Maude, a specification and pro-
gramming language based on rewriting logic. We then use its model checker to formally verify an
algorithm for robot gathering problem on ring enjoys some desired properties. As the result of
the model checking, counterexamples have been found. We detect the sources of some unforeseen
design errors. We, furthermore, give our interpretations of these errors.

1998 ACM Subject Classification D.2.4 Software/Program Verification, H.3.4 Systems and Soft-
ware

Keywords and phrases Mobile Robot, Robot Gathering, Formal Verification, Model Checking,
Maude

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.12

1 Introduction

Theoretical research on distributed mobile robot focuses mainly on computability aspects;
the goal is to determine whether a problem can be solved given some assumptions, such
as synchrony, multiplicity detection and chirality. Various models and problems have been
proposed for the last two decades (e.g. Suzuki and Yamashita first paper [18], or the book
from Flocchini et al. [15]). A few major models have emerged (e.g. ASYNC, weak multiplicity
detection) for which some of the main problems (e.g. gathering, exploration) are now fully
understood. In this work, we would like to take a step back and look at what have been
accomplished so far. Now that results are stable, it is the right time to spend some energy
carefully reviewing the proposed algorithms.

There have been already some efforts to unify and formalize existing results [9, 10, 8, 14].
While earlier papers described algorithms based on a (potentially long and cryptic) list of
rules (e.g. [4]), more recent publications usually describe algorithms based on mathematical
abstractions and real pseudo-codes (e.g. [8]). Naturally, at the same time, proofs become
also more formal. We believe this is going, of course, in the good direction. Being closer
to the mathematical world also makes these algorithms/proof well suited to be checked
systematically.

© Ha Thi Thu Doan, Frangois Bonnet, and Kazuhiro Ogata;
37 licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and Jodo Leitdo; Article No. 12; pp. 12:1-12:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2

Model Checking of Robot Gathering

Formal verification and related work. Classic distributed algorithms have been formally
verified [19, 17, 13, 12]. We aim to obtain similar achievements for distributed robot
algorithms. However, due to the mobility aspect, mobile robot algorithms are often complex,
arguably even more complex than classic distributed systems. This inherent difficulty explains
probably the limited number of attempts in obtaining formal verifications.

Recently Courtieu et al. [7] and Balabonski et al. [2] formally proved the correctness
of two gathering algorithms using the Coq proof assistant. In both cases, robots move
on the continuous 2-dimensional plane. The difference lies in the timing model; the first
paper considers the semi-synchronous (SSYNC) model while the second studies the fully-
synchronous (FSYNC) model (and remove some other assumptions). The asynchronous
model (ASYNC) is not considered in these papers since the gathering problem is generally
not solvable in ASYNC in continuous space (except for trivial cases).

Closely related to our current approach, Berard et al. [3] and Doan et al. [11] analyze the
perpetual exploration algorithm described in [4]. This algorithm, while being quite simple
(only 3 robots on the ring and 8 rules), was refuted. Both papers use similar techniques;
they formally specify the algorithm and then encode in Linear Temporal Logic (LTL) the
properties that should be satisfied. The first paper uses DiVinE and ITS tools, while the
second one uses Maude.

This paper is somehow an extension of [11] to a different problem. Note however that
this is not an easy generalization; our new formalization should accommodate any number
of robots instead of only three. The previous studies [7, 2, 3, 11] basically consider either
FSYNC or ASYNC without multiplicity assumption. The lack of multiplicity, of course,
simplifies the model. Here we consider ASYNC and the possibility for multiple robots to be
located on the same node.

Context. In this paper, we restrict our attention to discrete models only, and more spe-
cifically to the ring topology. About timing assumption, we consider the more general
asynchronous model ASYNC. In addition, we take into account multiplicity assumption,
which makes it much harder to formalize mobile robot algorithms. We present how to formal-
ize a mobile robot algorithm as a state machine and then specify the state machine in Maude.
Maude is a rewriting logic-based programming and specification language and equipped with
a powerful system (or environment). Rewriting logic makes it possible to naturally specify
dynamic systems, and the Maude system has an LTL model checker. We have demonstrated
in [13, 12, 11] that Maude allows us to specify distributed algorithms/systems more succinctly
than others. For instance, it supports associative and commutative operator attributes that
are very necessary to concisely specify mobile robot algorithms as showing in [11].

We then use the Maude LTL model checker to formally verify an algorithm for robot
gathering problem on ring enjoys desired properties. We focus on the gathering problem
and analyze the algorithm proposed by D’Angelo et al. [8] as a case study. As the result of
the model checking, counterexamples have been found. We detect the sources of unforeseen
design errors. We, furthermore, give our explanations on these errors.

Contributions. The paper presents a study on how to specify and model check mobile robot
algorithms. The contribution of this paper is the proof by example that formal methods must
be used to verify distributed robot algorithms. Indeed, even algorithms described and proven
using mathematical abstractions (may) still contain errors. While some of them are minor
and could have been detected by a careful reader (simple typos), some errors would have
been almost impossible to detect without model-checking. Said differently, we believe that

H. T.T. Doan, F. Bonnet, and K. Ogata

informal and semi-formal mathematical proofs are not enough for this kind of algorithms.

The complexity of analyzing all situations may be too high for human brains.

Two main contributions are: (1) a formal model for mobile robot algorithms on anonymous
ring shape network under multiplicity and asynchrony assumptions — our model is general
enough and could be applied to other problems (in the ring); (2) a refutation by model
checking that the algorithm enjoys desired properties — in detail, the algorithm contains
design errors that prevent robots from gathering into one location.

The additional contributions are a preliminary set of Maude modules that could be
re-used for future verifications and the interpretations of the errors found. While it may not
be straightforward to understand Maude formalism, we hope that it may still be useful for
other people.

Outline. Section 2 describes the model, problem, and the main ideas of the algorithm under
study. Section 3 presents how we formalize and then specify the system in Maude. Section 4
describes our model checking of the algorithm, showing and explaining the result. Section 5
finally concludes the paper.

2 Robots Gathering in the Ring under ASYNC

As mentioned in the Introduction, we consider the classic gathering problem in the ring
under the asynchronous scheduler (ASYNC). We analyze the most general algorithm that
solves the problem for (almost) all initial configurations. The considered algorithm is said
to be general in a sense that it solves the problem for all valid (i.e. without multiplicity)
initial configurations outside of NG U SP4, where (1) NG is the set of Non-Gatherable
configurations (such as periodic configurations), from which it is impossible to gather robots,
and (2) SP4 is the “small” set of SPecial configurations with 4 robots from which it is still
unknown whether it is possible to gather robots (Bonnet et al. gave a partial answer [5]).

In the remainder of this section, we succinctly present the model, the problem, and the
algorithm under study. For each part, a more complete description can be found in the
original paper [8].

2.1 Computational Model

This model description is adapted from [5] for our specific context. The ring is anonymous,
that is, there is neither node nor edge labeling. The robots are identical, i.e., they are
indistinguishable and all execute the same algorithm. Moreover, the robots are oblivious and
disoriented, meaning that they have no memory of past actions, and they share no common
orientation (no chirality).

The robots cannot explicitly communicate, but have the ability to sense their environment
and see the relative positions of the other robots, in their local coordinate system. We assume
the global weak multiplicity detection; each robot can distinguish whether a node is empty,
occupied by one robot, or more than one robot. When there is strictly more than one robot,
we use the term multiplicity. Robots follow a three-phase behavior: Look, Compute, and
Mowe. During its Look phase a robot takes a snapshot of all robots’ positions. The collected
information (position of the other robots in the egocentric view) is used in the Compute
phase during which the robot decides to move or stay idle. In the Move phase, the robot may
move to one of the two adjacent nodes, as computed in the previous phase. The moves are
assumed to be instantaneous which means that, during a Look phase, robots can be located
on nodes only.

12:3

OPODIS 2017

12:4

Model Checking of Robot Gathering

The computational model we consider is the classic asynchronous ASYNC model [15].
It means that, the start and duration of each Look-Compute phases and the start of each
Move phase of each robot are arbitrary and determined by an adversary. Note that it is
possible for a robot to make a move based on a previously observed configuration which
is not the current one anymore (e.g. if its Look phase occurred before the Move phase of
another robot).

A move that has been computed (during a Compute phase) but not yet executed (in the
subsequent Move phase) is called a pending move.

2.2 Gathering Problem

The gathering problem requires each robot to terminate on the same node. The problem is
solved if all robots are on the same location and there is no pending move.

2.3 Gathering Algorithm

This paper analyzes the algorithm [8] for robot gathering. The algorithm executes these four

phases sequentially:

1. Starting from an initial configuration without multiplicity, the algorithm executes a
procedure MULTIPLICITY-CREATION that creates either one or two symmetric multi-
plicities.

2. A second phase named COLLECT consists in moving all but four robots in the previously
created multiplicities.

3. A third phase called MULTIPLICITY-CONVERGENCE makes the two multiplicities to
merge into a single one.

4. Finally the phase CONVERGENCE allows the remaining single robots to join the unique
multiplicity, which concludes the gathering.

This is a short (partially incorrect) summary. In some rare cases, the sequence of four
phases may be temporarily broken. (e.g. the system may go back to the COLLECT phase
while executing the CONVERGENCE phase). But eventually all robots should gather at
the same location.

The algorithm contains some specific subroutines for configurations with four or six
robots.! At the moment, we decided not to include them in our analysis; as in the paper,
they could be dealt separately.

Plaintext vs. Pseudo-code. In [8], the algorithms are described and explained in plaintext
and also given in term of pseudo-codes. We think that the pseudo-code version contains
less ambiguities than the plaintext version. In (pseudo-)code, there is usually no place for
interpretation; it is thus either correct or incorrect. Since our goal is to formally model-check,
we believe that it makes more sense to base our analysis on the most formal available version.
That is why this paper analyzes the pseudo-code version of the algorithms.

This is certainly an arguable decision. Indeed, some of the errors, at least the ones from
Section 4.3, do not exist in the plaintext description of the algorithms. Other detected errors
may or may not exist in the plaintext version. We can not conclude anything about the
correctness of the plaintext algorithm since it is subject to interpretation.

! The precise algorithm is not given for four or six robots, but refers to other papers.

H. T.T. Doan, F. Bonnet, and K. Ogata

3 Formal Model for Mobile Robot Algorithms

In this section, we propose a formal model for mobile robot algorithms on anonymous ring
shape network under multiplicity and asynchrony assumptions. Unavoidably, multiplicity
and asynchrony make arduous to formalize the systems. We pay much attention to this
problem and solve it in our model. To describe the model, we use state machines. A state
machine consists of a set S of states, some of which are initial states, and a binary relation T’
C S x S. Each element (s,s") € T is called a state transition from s to s’. We then transfer
this model into Maude specification language. In Maude, the basic units of specifications and
programs are modules. A module contains syntax declarations, providing suitable language
to describe a system. There are two kinds of modules: functional modules and system
modules. Functional modules are those in which data structures, such as pair and sequence,
are specified, and system modules are those in which systems, such as distributed systems,
are specified. A distributed system is formalized as a state machine and then the state
machine is specified in Maude as a system module.

For these systems, a state of the system is called a configuration. A configuration is
described in terms of a view starting from any robot and traversing the ring in one arbitrary
direction. When a robot wakes up, it takes the snapshot of the current configuration of
the system, and computes a move (called a computed move) based on this snapshot. The
computed move is either staying idle or moving to one of its adjacent nodes. In the latter
case, it moves to the adjacent node, eventually. In the following part, Maude notation is
used to describe state machines. We consider how to express a state and how to describe an
event as a state transition.

3.1 State Expressions

We denote a robot as a pair (I, P), where I denotes the size of the interval? between it and
the next robot, and P denotes the computed move. The value of P could be nil, fc or
fe— (fe stands for following the configuration). nil means that the robot has no pending
move (i.e last computed move was idle). fc (resp. fc—) means that the robot has a pending
move to the adjacent node located after it (resp. before it) following the direction of the
configuration. Initially, the computed move of each robot is nil. If P is n:l, the robot may
be activated and will compute a new move and update P accordingly. If P is not nil, the
robot may be activated and will execute the move and update P to nil after the move. We
use the sort® Pending to denote computed moves and the sort Pair to denote pairs. They
are expressed by the following operators that are constructors as specified with ctor.

op (_,) : Int Pending — Pair [ctor] .

The sort Int is used for denoting integers. The operator (_,) is used to construct Pair.
For ¢; € Int, co € Pending, {c1,c2) € Pair.

A configuration is expressed as a sequence of pairs. It contains the information about the
locations of all robots and their states. The corresponding sort is Config. Configurations are
defined by the following operators.

2 An interval is a maximal set of empty consecutive nodes.

3 The types of data are called sorts. A sort denotes the set of elements in the same type. For example,
the sort Nat is used to denote the set of Natural numbers. A sort is a subsort of another sort if and only
if the set denoted by the former is a subset of the one by the latter, and the latter is called a supersort
of the former.

12:5

OPODIS 2017

12:6

Model Checking of Robot Gathering

T
] T
r r r
(a) (b) (©) (d)

Figure 1 Some configurations. A dashed arrow represents a pending move. Black nodes represent
multiplicities.

subsort Pair < Seq .

op empS : — Seq [ctor] .

op _ _ : Seq Seq — Seq [ctor assoc id: empS] .

op {_} : Seq — Config [ctor].
where the sort Seq is used for sequences of pairs. empS denotes the empty sequence of
pairs. Seq is a supersort of Pair, which means that each Pair is treated as the singleton
sequence only consisting of the pair. The juxtaposition operator _ _ is used to construct
non-trivial sequences of pairs. For ¢y, ¢y € Seq, ¢1 co € Seq. The juxtaposition operator
is associative as specified with assoc, and empS is an identity of the operator specified with
id: empS.

A configuration is of the form { } of a sequence. States of the system are expressed
as terms of the sort Config. A term of a sort S is a variable of S or f(t1,...,t,) if fis an
operator declared as f:S1... S, = S (n > 0) and ¢4, ...,t, are terms of Sy,...,S,. If f
has any underscores _, such as (_,), then a different notation than f(¢y,...,t,) is used,
such as (I, P) that is a term of the sort Pair, where I is term of the sort Int and P is a
term of the sort Pending. Constructor terms are those consisting of constructors only and
variables. Ground term are those having no variables. Ground constructor terms hence are
those composed of constructors only and no variables . Ground constructor terms of the
sort Config express concrete states of the system. For example, the initial configuration of
the system as shown in Fig. 1(a) could be expressed as the view starting from the robot r
in clockwise order, {(1,nil)(0,nil)(5,nil)(0,nil)(1,nil)(3,nil)}. Let us assume that robot
r1 is activated, takes a look at the configuration, and computes a move. Assuming that
the move is to move to the node located after it, the system reaches the configuration as
shown in Fig. 1(b). It is expressed as {(1,nil)(0,nil)(5, fc){0,nil)(1,nil)(3,nil)}. If the
robot 71 is activated again, it executes the move; the system becomes as shown Fig. 1(c)
which is expressed as {(1, nil)(1, nil) (4, nil)(0, nil) (1, nil) (3, nil) }. A robot is not allowed to
look at the second element of the pairs of other robots and it calculates a move based on
its own view of the system. For example, the view of robot r; in Fig. 1(a) could be either
{(5,nil)(0, nil) (1, nil)(3, nil) (1, nil}{0,nil) } or {(0,nil)(1,nil)(3,nil)(1, nil){0, nil){(5,nil)}
without knowing anything about clockwise order. It is worth noting that this allows us to
guarantee that robots have no sense of direction and do not know the pending moves of other
robots.

Due to the multiplicity assumption, it is possible that a robot moves to a node that
is occupied by other robots. The node is, or becomes a multiplicity. There may be more
than one of such robots in one multiplicity. Since the robots are anonymous, we can denote
all of them by a pair (I, P) in which the value of I is set to the negative of the additional
number of robots located on the multiplicity (—3 indicates 3 additional robots, which means
a multiplicity of 4 robots). Note that this notation allows us to represent the exact number

H. T.T. Doan, F. Bonnet, and K. Ogata

Ty Ty
r, r,
—— trans 6 —» — e
P4

trans 3

r r
1 2 (d)

o PR S J—

(b) trans 7
trans 1 - -
/ 4
"2
r, T, /

/ @

T trans 8 —p

(a)

el

ry trans 9

~

trans 5

~

—
trans 10 —

!N /N SN N

Figure 2 A transition graph of one specific initial configuration (a).

of robots in multiplicities. But robots do not have access to this information; they can
only know if there is a multiplicity (i.e. a negative number). Our encoding allows a simple
conversion to consider global strong multiplicity detection. For instance, the configuration as
shown in Fig. 1(d) assuming that there are two robots in each multiplicity, is expressed as
{(2,nil)(—1,nil) (5, nil)(—1,nil) (2, nil) (3, nil) }. We use this encoding to match as closely as
possible the definitions introduced in [8].

3.2 State Transitions

Because the Compute phase uses the snapshot of the system taken in the Look phase as input
and a robot does not perform any movements during two phases, to model the system, we
combine the two phases into one called the Look-Compute phase in which a robot takes the
snapshot of the system and computes a move. When either (1) a robot takes the snapshot of
the system and then computes a move, or (2) a robot executes its pending move, the current
configuration of the system changes to another. Such changes are called a state transition
(or a transition). A transition is expressed as a pair (,r), where [and r are configurations.

Let us examine the following scenario. Given an initial configuration as shown in
Fig. 2(a) and assumed that both robots r and ry are allowed to move, it may happen
that only one robot (assuming r;) looks at the system and computes a move, or both
r1 and ro do. In the former case, the configuration of the system is transferred to the
one as shown in Fig. 2(b). The transition is named transl and expressed by the pair
({1, nil){0, nil) (5, nal) (0, nil) (1, nil) (3, nil), (1, nil) {0, nil) (5, fc){0,nil) (1, nil)(3, nil)). In the
latter case, the configuration of Fig. 2(c) is established. The configuration of Fig. 2(d) is
obtained after 71 in the configuration of Fig. 2(b) executes its pending move. The configuration
of Fig. 2(e) and Fig. 2(f) are obtained from the configuration of Fig. 2(c). The graph in
Fig. 2 shows possible transitions from the initial configuration. A sequence of transitions

12:7

OPODIS 2017

12:8

Model Checking of Robot Gathering

starting from an initial configuration, e.g transl, trans3, trans6, ..., is called a possible
execution. There may exist more than one execution from a given initial configuration.

We describe the actions of robots as transition rules. A transition rule is described in
the form of a rewrite rule. Each rewrite rule is defined only over Config that does not have
any sub-sorts and in the form L = R such that L only consists of constructors and variables.
We give here a simple example to explain how an action can be expressed as a transition
rule. The following transition rule describes the action corresponding to a robot executing
its pending move when there is no multiplicity in the system.

crl [fe-pending] : {S1 (11, P) (12,fc) S2} = {S1 (11 + 1, P) (12 -1, nil) S2}

if nonMul({S1 (I1, P) (12, fc) S2}).
where S1, S2 € Seq, I1, I2 € Int and P € Pending are variables of those sorts; The function
nonMul returns true when the configuration has no multiplicity and false otherwise.

The above rule is a conditional writing rule and the condition is specified in the if part.
The rule then will be applied if the condition is satisfied. The configuration {S1 (I1, P)
(12, fc) S2} expresses any state such that the robot (I2, fc) holds a pending move fc
and the robot before it is (I1, P). Such a state may have some more robots before and
after the two robots that are expressed as S1 and 52, respectively. The ground constructor
term {(1,nil)(0,nil) (5, fc)(0,nil)(1,nil)(3,nil)} expresses the state as shown in Fig. 2(b).
There is no multiplicity in this configuration. The left-hand side of the above rewrite rule
fe-pending matches this ground term by substituting S1, I1, P, I2 and S2 with (1, nil), 0,
nil, 5 and (0, nil)(1, nil)(3,nil), and the rewrite rule can be applied to the term, changing it
to {(1, nil) (1, nal) (4, nil){0, nil) (1, nil) (3, nil) } expressing the state as shown in Fig. 2(d). In
this way, a rewrite rule expresses a set of state transitions.

To make T, a set of transitions (s, s’), from rewrite rules L = R, let o be a substitution
from the variables in L to appropriate constructor terms, o(L) is a constructor term, but
o(R) is not necessarily, and then it is necessary to reduce o(R) with equations. Let nf(t) be
the term obtained by reducing ¢ with equations. So, (¢(L),nf(c(R))) is a state transition
obtained from L = R. Let o(L) = nf(c(R)) be called a ground instance of L = R.

» Definition 1 (TRgrs). Let TRrs be the set of all ground instances of the all transition
rules.

3.3 Formal Model

We formalize a mobile robot system as a state machine. The state machine includes the set
of all possible states as the set of all ground constructor terms Sgg, the set of initial states
Irs and the binary relation over states Trg. Irs is a subset of Sgg such that for each state
s € Sgg, there is no multiplicity and the configuration does not belong to NG U SP4. Trs
is the binary relation over Sggs made from T'Rgrg.

» Definition 2 (Mprg). The state machine formalizing a mobile robot system is Mpg, where
1. Sgg is the set of all ground constructor terms whose sorts are Config;
2. IRg is a subset of Sgg such that (Vs € Igg) (numMul(s) = 0) and (not ngé&spd(s));
3. Tggs is the binary relation over Sgg defined as follows:

{(Lt) |1=1r € TRgrs}.
The function numMul counts the number of the multiplicities in the system and the function
ng&sp4 returns true when a configuration is in NG U SP4 and false otherwise.

We specify this formal model in Maude specification languages. Note that our specification
is coherent [6]. The source files are available for download [1].

H. T.T. Doan, F. Bonnet, and K. Ogata

4 Model Checking the Algorithm

Model checking is a verification technique that explores all possible system states and checks
whether a desired property that should be satisfied by an algorithm is satisfied. The desired
property is required to be formally expressed. A model checker then verifies whether the
formula is satisfied for all possible executions. If the formula is not satisfied, a counterexample
is found. We specify the formal model of the system in Maude. We then apply Maude
LTL model checker to formally verify the algorithm. The original paper [8] has given very
important lemmas, such as Lemma 5, 6, and 7, that state properties that need to be satisfied
at the end of each phase. These lemmas are used to model check the algorithm. We have
formally expressed these lemmas as LTL formulas [16]. We give here the formalization of
Lemma 6 as an example. Lemma 6 states a property that must be satisfied at the end
of the COLLECT phase. Namely, it states that the configuration obtained at the end of
the COLLECT phase contains two multiplicities and satisfies a condition (called located
condition) that the configuration needs to be in some specific configurations in which robots
are located in some specific locations. Note that the COLLECT phase can start only if
the initial configuration is symmetric or at one step from specific symmetric configurations.
To model check this lemma, we expressed it as an LTL formula. We define the atomic
propositions endOfColl and coll as follows:

C E endOfColl = checkOfColl(C) .

C = coll = checkColl(C) .

checkColl(C) = checkAllowedSym(C) and (numMul(C) == 2) and checkCondition(C) .
The function checkOfColl checks whether a system state C is at the end of the COLLECT
phase. The atomic proposition endOfColl, thus, is true if and only if the COLLECT phase
phase has just finished. The function checkAllowedSym checks whether a configuration is
an allowed symmetric configuration. The function checkCondition returns true when the
configuration satisfies the located condition and false otherwise. The atomic proposition coll,
thus, is true when the configuration is an allowed symmetric configuration containing two
multiplicities* and satisfies the located condition and false otherwise.
The lemma then is formally expressed as an LTL formula as follows.

lemma6 = O (endOfColl — coll) A ¢ endOfColl .
where O stands for always (globally) and ¢ stands for eventually (in the future).

Intuitively, the formula states that it is always true that the phase COLLECT will fi-
nally terminate and whenever the phase has been just over, then coll is true. This means
that the Lemma 6 is satisfied at the end of the COLLECT phase.
This formula is used to conduct the model checking for the algorithm. To model check, we
separate the formula into two sub-formulas and model check them separately in order to
easily detect the source of errors (if some are found). Namely, we use the two following
formulas:

lemma6-1 = ¢ endOfColl .

lemma6-2 = O (endOfColl — coll) .
As the result of the model checking, counterexamples are found. A counterexample is of the
form of a possible execution: it includes all visited states and the sequence of transition rules
applied. This helps to analyze counterexamples to detect the source of the detected errors.
We present two counterexamples as follows:

4 The mathematical notation == stands for equivalence.

12:9

OPODIS 2017

12:10

Model Checking of Robot Gathering

The first one results from the model checking of the formula lemmag-1.

reduce in EXPERIMENT : modelCheck(init, lemma6-1)
rewrites: 89524096 in 40088ms cpu (40173ms real) (2233163 rewrites/second)
result ModelCheckResult: counterexample(

{{< 0,nil > < 1,nil > < 0,nil > < 3,nil>

< 0,nil > < 1,nil > < 0,nil > < 0,nil >},’w5-fo}

{{< 0,nil > < 1,nil > < 0,nil > < 3,nil > < 0,fc >
< 1,nil > < 0,nil > < 0,nil >},’FC22-pending}

{{< 0,nil > < 1,nil > < 0,nil > < 4,nil > < -1,nil >
< 1,nil > < 0,nil > < 0,nil >},’coll-a-1-fo2}

{{< 0,nil > < 1,nil > < 0,nil > < 4,fc- > < -1,nil >
< 1,nil > < O,nil > < 0,nil >},’FC-23-pending},

{{< 0,nil > < 1,nil > < -1,nil > < 5,nil > < -1,nil >
< 1,nil > < 0,nil > < 0,nil >},deadlock})

The counterexample shows that the system falls into a deadlock state. Indeed, the config-
uration {(0,nil)(1,nil){(—1, nil){5,nil)(—1,nil)(1, nil){0,nil)(0,nil) } belongs to the kind of
configurations that need to be handled by the COLLECT phase. However, the COLLECT
phase could not deal with it. Thus, the system is not able to reach a valid state at the
end of the COLLECT phase. Analyzing this counterexample, we detect the error, which
is described later in Section 4.1. This also means that the algorithm fails in gathering all
robots in the same location.
The second counter-example results from the model checking of the formula lemma6-2.

reduce in EXPERIMENT : modelCheck(init, lemma6-2)
rewrites: 15982060 in 7064ms cpu (7114ms real) (2262435 rewrites/second)
result ModelCheckResult: counterexample(
{{< 0,nil > < 1,nil > < 0,nil > < 3,nil >
< 0,nil > < 1,nil > < 0,nil > < 0,nil >},’w5-fo}
{{< 0,nil > < 1,nil > < 0,nil > < 3,nil >
< 0,fc > < 1,nil > < 0,nil > < 0,nil >},’FC22-pending}
{{< 0,nil > < 1,nil > < 0,nil > < 4,nil >
< -1,nil > < 1,nil > < 0,nil > < 0,nil >},’coll-a-1-fol}
{{< 0,nil > < 1,nil > < 0,fc- > < 4,nil >
< -1,nil > < 1,nil > < O,nil > < 0,nil >},’FC-23-pending},
{{< 0,nil > < 0,nil > < 1,nil > < 4,nil >
< -1,nil > < 1,nil > < 0,nil > < O,nil >},’0fColl})

This counterexample occurs because the state
{{0,nil){0, nal){1, nal) {4, nil)(—1, nil) (1, nil) {0, nil) (0, nil) }

is at the end of the COLLECT phase, but the atomic propositions coll returns false. Specific-
ally, at end of the COLLECT phase, the configuration does not contain two multiplicities
and satisfy the located condition.

Since counterexamples are found, the lemma does not hold. The remainder of this section
reports on some errors that we have found. In addition, we also give our opinions about the
origins of these errors.

H. T.T. Doan, F. Bonnet, and K. Ogata

From To From To
(b) (e)
(a) (d)
(c) (U]

Figure 3 Expected executions for the two specific symmetric configurations with two multiplicities.

4.1 Omission of Special Cases

We report here the error that corresponds to the first counterexample. The error occurs when
the algorithm deals with symmetric configurations with two multiplicities. Single robots in
such configurations should move such that the configuration eventually reaches a symmetric
one with (i) size nodes occupied, (ii) two multiplicities, (iii) two robots adjacent to these
multiplicities, and (iv) other robots in specific locations. However, it is not straightforward to
design a strategy for these robots. Two examples are shown in Fig. 3. For the configuration of
Fig. 3(a), the two symmetric robots are expected to move such that either the configuration
of Fig. 3(b) or Fig. 3(c) is obtained. In the same way, the configurations of Fig. 3(e) and
Fig. 3(f) are obtained from the configuration of Fig. 3(d).

Unfortunately, a counterexample is found. Our model checking detects that the algorithm
does not work correctly for the configuration of Fig. 3(d). The two single robots do not move
as expected. The same configuration is obtained instead of the configurations of Fig. 3(e),
3(f). Indeed, the algorithm only works correctly for configurations in which there are two
single robot adjacent to the two multiplicities, e.g. the configurations similar to the one of
Fig. 3(a), but it does not work for configurations such as the one of Fig. 3(d).

This error exists because some cases were missing. For instance, the configurations as
the configuration of Fig. 3(d) are not considered. That is why the algorithm is not able to

deal with them. This would be very difficult to detect without the help of an automatic tool.

The error leads to the fact that the system will fall to a deadlock state and all robots in
the system are unable to locate at the same location. This error could be fixed by finding
a strategy to deal with these case. However, we need to take care of the fact that the new
strategies may be conflicting with exiting strategies.

4.2 Design Errors (difficult to detect by mathematical proof)

This section report errors of a different kind compared to the one of Section 4.1. One of
the main issue to be handled by the algorithm concerns symmetric configurations in which
two symmetric robots are supposed to move symmetrically. Let us explain the idea with an
example. For the symmetric configuration as shown in Fig. 4(a), the two symmetric robots
r and r are allowed to symmetrically move. It may happen that both r and r; move and

12:11

OPODIS 2017

12:12

Model Checking of Robot Gathering

r ::: r, T : : 7, r r
(@ (b) (c)
Figure 4 Three configurations where (a) is some initial configuration, (b) is the configuration
obtained if only one robot moves, and (c) the one obtained if both symmetric robots move.

QOO0 O

Figure 5 Five configurations. The gathering algorithm should follow the sequence (a), (b), (c),
(d), but the configuration (f) is actually obtained from (b).

the configuration of Fig. 4(c) is obtained. It may also happen that only r moves, while 7
already computed the move, but has not yet moved (means that it holds a pending move)
or 71 has not yet performed its Look-Compute phase and the configuration of Fig. 4(b) is
obtained. This configuration is an asymmetric configuration that may contain a possible
pending move (only robot r; knows if it has already computed its move; other robots do
not know it). The procedures CHECK-REDUCTION and PENDING-REDUCTION are
designed to deal with this case. The robots in such configuration are supposed to detect
this situation and the robot r; is expected to move in order to reach the configuration of
Fig. 4(c). It is not so difficult to design procedures that let robots in these configurations to
recognized these configurations and move as expected. However, the problem is when these
procedures are included in the entire program.

As written in [8], the procedure CHECK-REDUCTION also recognizes some other
configurations where PENDING-REDUCTION should not be applied. One of them is
the configuration depicted in Fig. 5(b). The authors use this configuration as an example
to explain the algorithm (Figure 3 in [8]). The algorithm is expected to work as follows:
since the configuration of Fig. 5(a) is symmetric with one robot on the axis, the robot
on the axis has to move, obtaining the configuration of Fig. 5(b). This configuration is
asymmetric and and contains only one supermin®. There is one important point emphasized
by authors: the robots can recognize that there are no pending moves in this configuration.
Therefore, the unique supermin is reduced until a multiplicity is created. In this example,
the configuration Fig. 5(c) is obtained, and then all robots join the unique multiplicity
one-by-one, until achieving the gathering as in Fig. 5(d). However, the algorithm actually
works as follows: from configuration of Fig. 5(b), the robot which is supposed to create a
multiplicity does not move. Instead two other robots move and we obtain the configuration of
Fig. 5(f) (instead of Fig. 5(c)). Checking each step of the execution and the transition rules
applied, we discover that the source of this error: Robots do not recognize the correct type

5 The definition of supermin is given in [8]. One characteristic of a supermin is that it is smallest interval.

H. T.T. Doan, F. Bonnet, and K. Ogata

(a) (b) (c) (d)

Figure 6 Four configurations. The gathering algorithm should follow the sequence (a), (b), (c),
but the configuration (d) is actually obtained from (b).

of the configuration of Fig. 5(b), which is classified into a group named W7 that performs
the procedure CHECK-REDUCTION and PENDING-REDUCTION. When executing the
procedure CHECK-REDUCTION on this configuration, robots incorrectly categorize it
as an as asymmetric configuration with possible pending moves. Then the PENDING-
REDUCTION is executed while it should not be for this configuration. Thus, the two
symmetric robots decide to move. The configuration of Fig. 5(f) is obtained. This means
that the CHECK-REDUCTION and PENDING-REDUCTION procedures are not correct.
This error would be very difficult to detect manually. Indeed, the procedures are correct for
the configurations for which they are supposed to be used. It is only incorrect because it is
also applied to configurations that are not supposed to use these procedures®.

The second error is in the COLLECT phase. When entering into this phase, the
configuration of the system belongs to one of three categories. One of them is called COLL-
A-1. They are asymmetric configurations with one multiplicity that can be obtained from
symmetric configurations and while satisfying also some other conditions. To simulate how
the algorithm works, the authors give the scenario depicted in Fig. 6. The configuration
of Fig. 6(b) is in COLL-A-1. It is at one move from the symmetric configuration of
Fig. 6(a). When the configuration is in COLL-A-1, the algorithm checks whether the current
configuration satisfies some conditions. If the conditions are satisfied, it moves the robot and
re-establish the previous axis of symmetry, leading to a symmetric configuration with two
multiplicities. In this specific case, the configuration of Fig. 6(c) is obtained.

Unfortunately, instead of moving the robot and re-establishes the previous axis of sym-
metry, the algorithm moves both adjacent robots in the same direction. That means the
symmetric configuration with two multiplicities is not obtained. In this specific case, the
configuration of Fig. 6(d) is obtained. This error is somehow similar to the previous design
error, but at a different level; robot instead of configuration. Here, the robot that is supposed
to move (from the plaintext description of the algorithm) really moves, but an additional
robot also moves.

These design errors prevent the robots from gathering. Said differently, the algorithm
fails in gathering all robots in one location. Both errors could certainly be fixed by including
additional tests before computing the moves. However adding these tests may lead to other
problems and is therefore not straightforward.

6 As explained in Section 2, we analyze the pseudo-code of the algorithms [8]. It is unclear whether such
error exists in the informal plaintext description of the algorithm.

12:13

OPODIS 2017

12:14

Model Checking of Robot Gathering

4.3 Some minor errors

We also want to report some other small errors. They could be detected by carefully checking
the pseudo-code. However, it may be difficult to find where they are in the code. Fortunately,
we can also detect them by model checking.

4.3.1 Minor “typo” error

If a configuration is periodic, it is impossible to gather all robots to one location. Therefore,
it is important to detect whether a configuration is periodic or not. To check the periodicity,
the authors give the following procedure:

Input: a configuration C' = (qo, g1, -.-, ;) -

Output: true if C is periodic, false otherwise.

1. periodic := false .

2. for i:=0,1,...,j do if C' = C; then periodic = true.

3. return periodic .
where periodic is a boolean variable. It is expected to return true if the configuration
C is periodic, false otherwise. We discover that periodic returns true also for aperiodic
configurations. This is obviously wrong. The source of the error is that the condition C' = Cj
is true for any configuration C. Thus, the procedure always returns true for any input
configuration C. One needs to simply start iterations from ¢ = 1 instead of ¢ = 0.

4.3.2 Error of inattention

The second error detected is in the main procedure for phase MULTIPLICITY-CREATION
whose purpose is to create one multiplicity or two symmetric multiplicities. Since this is
the first phase of the algorithm, which deals with initial configurations, all possible initial
configurations are partitioned into seven groups. One of them is called W6. In this case, the
procedure is given as follows:
Input: CT, C = Q(r) = (qo,q1,---,q5)-
Case CT = W6
LC = (p+1,q1—1,...,9).
2.if C' = C" and qo is odd then move towards qo;
3. else
"= (QO, o qi—1 — 1,95 + 1).
if C} = CY and g; is odd then move towards g;;

where C = Q(r) = (qo,q1,-.-,qj) is the configuration that is perceived by robot r. C
corresponds to (4o, ¢;,¢j—1,-.-q1) in the case where C = (qo, q1, .., ¢j—1,9;)-

This code is supposed to handle asymmetric configurations that could have been obtained
from a symmetric configurations with an odd number of nodes and a node-edge symmetric
axis. In the above code, C’ (or C") is the configuration of the symmetric configuration. The
intention of the authors is to move a robot r in order to reach a new symmetric configuration
with the same original axis. One example taken from the Appendix of [8] is given in Fig. 7.
The configuration of Fig. 7(b) can be obtained from the symmetric configuration of Fig. 7(a).
Thus, the robot r is supposed to move and the configuration of Fig. 7(c) is obtained.

However, the algorithm does not make the robot r to move. We found that the error lies
in the conditions: gy (or g;) is odd. Let us take a look at symmetric configurations (e.g as
shown in Fig. 7(a)) with odd number of nodes and one axis passing through an edge, we can
see that the interval crossed by the axis is on an odd interval. That means that go + 1 (or
g; + 1) is odd, but not g (or ¢;). The error can be fixed by updating the conditions to test
if go +1 (or ¢; + 1) is odd. This error was probably made due to the confusion between the
configurations C' and C” (or C").

H. T.T. Doan, F. Bonnet, and K. Ogata 12:15

(a) (b) (c)

Figure 7 Three configurations, where (a) may lead to (b), and (c) presents the expected behavior
of the algorithm for the specific asymmetric configuration (b).

4.4 Summary of model checking

It is very common to use case analysis techniques to tackle non-trivial problems, such
as robot gathering. The authors in [8] have split the problem into many cases and used
different strategies to deal with them. In detail, they have partitioned not only the initial
configurations, but also the configurations in each phase. Since the authors need to consider a
large number of cases, there is a risk of missing some cases. Moreover, since different strategies
are used for each case, there could be some conflicts between these strategies. To prove the
algorithm, the authors have to consider all possible cases. However, it is exhausting for a
person to figure out all possible executions. Fortunately, a model checker strongly supports
to automatically check all possible executions. We have showed how to formally express the
desired properties as LTL formulas and conduct the model checking of the algorithm. The
model checking has found counterexamples. Analyzing these counterexamples, we found the
source of some errors that would be difficult to detect by handmade proof. These errors make
the algorithm fail in gathering all robots in one location. We also gave some explanations
about why such errors may have occurred. We hope it may be useful to avoid them in the
future.

5 Conclusion

How to formalize and model check a new software system is always challenging. We show in
this paper how to formalize and model check a new form of distributed system. We have
demonstrated the usefulness of model checking techniques to formally verify mobile robot
algorithms. Although informal proofs have been given in [8] to guarantee the correctness of
the algorithm, there remain some mistakes that are subtle and not easy to find by carefully
checking the algorithm, even by experts. We want to emphasize that our goal is not to blame
the authors or reviewers of the paper. When reading the paper, we also missed most of these
errors. But it means that it is indeed difficult and therefore we should really consider using
formal methods to check such algorithms.

—— References

1 Our Maude source files. URL: https://figshare.com/s/3c0a6fdbOedfec3bOb08.

2 T. Balabonski, A. Delga, L. Rieg, S. Tixeuil, and X. Urbain. Synchronous gathering without
multiplicity detection: A certified algorithm. In Proceedings of the 18th International
Symposium on Stabilization, Safety, and Security of Distributed Systems, volume 10083 of
LNCS, pages 7-19. Springer, 2016.

3 B. Bérard, P. Lafourcade, L. Millet, M. Potop-Butucaru, Y. Thierry-Mieg, and S. Tixeuil.
Formal verification of mobile robot protocols. Distributed Computing, 29(6):459-487, 2016.

OPODIS 2017

https://figshare.com/s/3c0a6fdb0e4fec3b0b08

12:16

Model Checking of Robot Gathering

4

10

11

12

13

14

15

16

17

18

19

L. Blin, A. Milani, M. Potop-Butucaru, and S. Tixeuil. Exclusive perpetual ring explora-
tion without chirality. In Proceedings of the 24th International Symposium on Distributed
Computing, volume 6343 of LNCS, pages 312-327. Springer, 2010.

F. Bonnet, M. Potop-Butucaru, and S. Tixeuil. Asynchronous gathering in rings with
4 robots. In Proceedings of the 15th International Conference on Ad-hoc, Mobile, and
Wireless Networks, volume 9724 of LNCS, pages 311-324. Springer, 2016.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott. All
About Maude, volume 4350 of LNCS. Springer, 2007.

P Courtieu, L. Rieg, S Tixeuil, and X. Urbain. Certified universal gathering in r? for
oblivious mobile robots. In Proceedings of the 30th International Symposium on Distributed
Computing, volume 9888 of LNCS, pages 187-200. Springer, 2016.

G. D’Angelo, G. Di Stefano, and A. Navarra. Gathering on rings under the look—compute—
move model. Distributed Computing, 27:255-285, March 2014.

G. D’Angelo, G. Di Stefano, A. Navarra, N. Nisse, and K. Suchan. Computing on rings
by oblivious robots: A unified approach for different tasks. Algorithmica, 72(4):1055-1096,
2015.

G. D’Angelo, A. Navarra, and N. Nisse. A unified approach for gathering and exclusive
searching on rings under weak assumptions. Distributed Computing, 28(1):17-48, 2017.

H. T. T. Doan, F. Bonnet, and K. Ogata. Model checking of a mobile robots perpetual ex-
ploration algorithm. In Proceedings of the 6th International Workshop on Structured Object-
Oriented Formal Language and Method (SOFL+MSVL 2016), volume 10189 of LNCS, pages
201-219. Springer, 2017.

H. T. T. Doan, F. Bonnet, and K. Ogata. Specifying a distributed snapshot algorithm as
a meta-program and model checking it at meta-level. In Proceedings of The 37th IEEE
International Conference on Distributed Computing Systems (ICDCS 2017), pages 1586
1596, 2017.

H. T. T. Doan, W. Zhang, M. Zhang, and K. Ogata. Model checking chandy-lamport dis-
tributed snapshot algorithm revisited. In Proceedings of the 2nd International Symposium
on Dependable Computing and Internet of Things, pages 7-19, 2015.

P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Computing without communicating;:
Ring exploration by asynchronous oblivious robots. Algorithmica, 65(3):562-583, 2013.

P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing by Oblivious Mobile
Robots. Morgan & Claypool Publishers, 2012.

Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, 2004.

I. Konnov, H. Veith, and J. Widder. On the completeness of bounded model checking
for threshold-based distributed algorithms: Reachability. Information and Computation,
252:95-109, 2017.

I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric
patterns. SIAM Journal on Computing, 28(4):1347-1363, 1999.

T. Tsuchiya and A. Schiper. Verification of consensus algorithms using satisfiability solving.
Distributed Computing, 23(5):341-358, 2011.

	Introduction
	Robots Gathering in the Ring under ASYNC
	Computational Model
	Gathering Problem
	Gathering Algorithm

	Formal Model for Mobile Robot Algorithms
	State Expressions
	State Transitions
	Formal Model

	Model Checking the Algorithm
	Omission of Special Cases
	Design Errors (difficult to detect by mathematical proof)
	Some minor errors
	Minor ``typo'' error
	Error of inattention

	Summary of model checking

	Conclusion

