
Efficient and Modular Consensus-Free
Reconfiguration for Fault-Tolerant Storage∗†

Eduardo Alchieri1, Alysson Bessani2, Fabíola Greve3, and
Joni da Silva Fraga4

1 University of Brasília, Brazil
alchieri@unb.br

2 LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
anbessani@ciencias.ulisboa.pt

3 Federal University of Bahia, Brazil
fabiola@dcc.ufba.br

4 Federal University of Santa Catarina, Brazil
fraga@das.ufsc.br

Abstract
Quorum systems are useful tools for implementing consistent and available storage in the presence
of failures. These systems usually comprise of a static set of servers that provide a fault-tolerant
read/write register accessed by a set of clients. We consider a dynamic variant of these systems
and propose FreeStore, a set of fault-tolerant protocols that emulates a register in dynamic
asynchronous systems in which processes are able to join/leave the set of servers during the
execution. These protocols use a new abstraction called view generators, that captures the
agreement requirements of reconfiguration and can be implemented in different system models
with different properties. Particularly interesting, we present a reconfiguration protocol that is
modular, efficient, consensus-free and loosely coupled with read/write protocols. An analysis
and an experimental evaluation show that the proposed protocols improve the overall system
performance when compared with previous solutions.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Distributed Systems, Reconfiguration, Fault-Tolerant Quorum Systems

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.26

1 Introduction

Quorum systems [13] are a fundamental abstraction to ensure consistency and availability of
data stored in replicated servers. Apart from their use as building blocks of synchronization
protocols (e.g., consensus [7, 19]), quorum-based protocols for read/write (r/w) register
implementation are appealing due to their scalability and fault tolerance: the r/w operations
do not need to be executed in all servers, but only in a quorum of them. The consistency of
the stored data is ensured by the intersection between any two quorums.

Quorum systems were initially studied in static environments, where servers are not
allowed to join or leave the system during execution [4,13]. This approach is not adequate for

∗ This work was partially supported by CNPq (Brazil) through project FREESTORE (Universal
457272/2014-7) and by FCT (Portugal) through projects LaSIGE (UID/CEC/00408/2013) and IRCoC
(PTDC/EEI-SCR/6970/2014).

† A full version of the paper is available at [3], https://arxiv.org/abs/1607.05344.

© Eduardo Alchieri, Alysson Bessani, Fabíola Greve, and Joni Fraga;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 26; pp. 26:1–26:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.26
https://arxiv.org/abs/1607.05344
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Efficient and Modular Consensus-Free Reconfiguration for Fault-Tolerant Storage

long lived systems since given a sufficient amount of time, there might be more faulty servers
than the threshold tolerated, affecting the system correctness. Beyond that, this approach
does not allow a system administrator to deploy new machines (to deal with increasing
workloads) or replace old ones at runtime. Moreover, these protocols can not be used in
many systems where, by their very nature, the set of processes that compose the system may
change during its execution (e.g., MANETs and P2P overlays).

Reconfiguration is the process of changing the set of nodes that comprise the system.
Previous solutions proposed for reconfigurable storage, by implementing dynamic quorum
systems, rely on consensus for reconfigurations in a way that processes agree on the set
of servers (view) supporting the storage [14,20]. Although adequate, since the problem of
changing views resembles an agreement problem, this approach is not the most efficient or
appropriate. Besides the costs of running the protocol, consensus is known to not be solvable
in asynchronous environments [11]. Moreover, atomic shared memory emulation can be
implemented in static asynchronous systems without requiring consensus [4].

DynaStore [2] was the first protocol that implement dynamic atomic storage without
relying on consensus for reconfigurations. These reconfigurations may occur at any time and
generate a graph of views from which it is possible to identify a sequence of views in which
clients need to execute their r/w operations (Figure 1, left). Unfortunately, DynaStore has
two serious drawbacks: (1) its reconfiguration and r/w protocols are strongly tied and (2) its
performance is significantly worse than consensus-based solutions in synchronous executions,
which are the norm. The first issue is particularly important since it means that DynaStore
r/w protocols (as well as other consensus-based works like RAMBO [14]) explicitly deal with
reconfigurations and are quite different from static r/w protocols (e.g., ABD protocol [4]).

More recently, the SmartMerge [17] and SpSn [12] protocols improved DynaStore by
separating the reconfiguration and r/w protocols. A common framework was proposed for
their implementations [21]. Although these approaches make it easy to adapt other static
register implementations to dynamic environments, they do not fully decouple the execution
of r/w and reconfiguration protocols, since before they execute each r/w operation, it is
necessary to access some reconfiguration abstraction to check for updates in the system.
These abstractions are implemented by a set of static single-writer multi-reader (SWMR)
registers. We show by experiments (Section 7) that this design decision significantly reduces
the system performance, even in periods without reconfigurations.

In this paper we present FreeStore, a set of algorithms for implementing fault-tolerant
atomic [18] and wait-free [15] storage that allows the reconfiguration of the set of servers
at runtime. FreeStore is composed by two types of protocols: (1) r/w protocols and
(2) the reconfiguration protocol. Read/write protocols can be adapted from static register
implementations (e.g., the classical ABD [4], as used in this paper). The reconfiguration
protocol – our main contribution – is used to change the set of replicas supporting the storage.
The key innovation of the FreeStore reconfiguration protocol is the use of view generators,
a new abstraction that captures the agreement requirements of reconfiguration protocols.
We provide two implementations of view generators – based on consensus and consensus-free
– and compare how efficiently they can be used to solve reconfiguration.

FreeStore improves the state of the art in at least three aspects: modularity, efficiency
and simplicity. The modularity of the proposed protocols is twofold: it separates the
reconfiguration from the r/w protocols, allowing other static storage protocols (e.g., [8,10]) to
be adapted to our dynamic model, and introduces the notion of view generators, capturing the
agreement requirements of a reconfiguration protocol. Moreover, this modularity is designed
in a way that it does not impact r/w operations in periods without reconfigurations. In

E. Alchieri, A. Bessani, F. Greve, and J. Fraga 26:3

r/w$opera)ons$access$views$of$all$$
outgoing$paths$fromallviews$to$$
traversethegraph$from$V0toV6$

V0$

V1$

V2$

V3$

V4$

V5$

V6$...$

DynaStore*

V0$

V1$

V2$

V3$

r/w$opera)ons$do$not$$
access$auxiliary$views$

V4$

V6$...$

V5$

FreeStore*

Figure 1 View convergence strategies of DynaStore [2] (left) and FreeStore (right). Dotted
circles represent the auxiliary/non-established views that the system may experience during a
reconfiguration. Solid circles represent the installed/established views process must converge to.

terms of performance, both the r/w and reconfiguration protocols of FreeStore require less
communication steps than their counterparts from previous works, either consensus-based [14]
or consensus-free [2,12,17]. In particular, FreeStore’ consensus-free reconfiguration requires
less communication steps than other consensus-based reconfiguration protocols in the best
case, matching the intuition that a consensus-free approach should be faster than another
that rely on consensus. Finally, the consensus-free variant of FreeStore introduces a novel
reconfiguration strategy that reduces the number of intermediary installed views that a
process must traverse to reach the current installed view with all requested updates (see
Figure 1, right). This strategy is arguably easier to understand than the one used in previous
works, shedding more light on the study of consensus-free reconfiguration protocols.

In summary, this paper makes the following contributions:
1. It introduces the notion of view generators, an abstraction that captures the agreement

requirements of a storage reconfiguration protocol and provides two implementations: the
consensus-based perfect view generator and the consensus-free live view generator.

2. It shows that safe and live dynamic fault-tolerant atomic storage can be implemented
using the proposed view generators and discusses the tradeoffs between them.

3. It presents FreeStore, the first dynamic atomic storage system in which the reconfigur-
ation protocol (a) can be configured to be consensus-free or consensus-based and (b) is
fully decoupled from the r/w protocols, increasing the system performance and making it
easy to adapt other static register implementation to dynamic environments.

4. It presents some experiments and a detailed comparison of FreeStore with previous
protocols [2,12,14,17], showing that FreeStore is faster (i.e., requires less communication
steps) than these protocols.

2 Preliminary Definitions

2.1 System Model
We consider a fully-connected distributed system composed by a universe of processes U ,
that can be divided in two non-overlapping subsets: an infinite set of servers Π = {1, 2, ...};
and an infinite set of clients C = {c1, c2, ...}. Clients access the storage system provided by a
subset of the servers (a view) by executing read and write operations (r/w for short). Each
process (client or server) of the system has a unique identifier. Servers and clients are prone
to crash failures. Crashed processes are said to be faulty. A process that is not faulty is said
to be correct. Moreover, there are reliable channels connecting all pairs of processes [6].

We assume an asynchronous distributed system in which there are no bounds on message
transmission delays and processing times. However, each server has access to a local clock

OPODIS 2017

26:4 Efficient and Modular Consensus-Free Reconfiguration for Fault-Tolerant Storage

used to trigger reconfigurations. These clocks are not synchronized and do not have any
bounds on their drifts, being nothing more than counters that keep increasing. Besides that,
there is a real-time clock not accessed by processes, used in definitions and proofs.

2.2 Dynamic Storage Properties

During a dynamic system execution, a sequence of views is installed to account for replicas
joining and leaving. In the following we describe some preliminary definitions and the
properties satisfied by FreeStore.

Updates. We define update = {+,−} × Π, where the tuple 〈+, i〉 (resp. 〈−, i〉) indicates
that server i asked to join (resp. leave) the system. A reconfiguration procedure takes into
account updates to define a new system’s configuration, which is represented by a view.

Views. A view v is composed by a set of updates (represented by v.entries) and its associated
membership (represented by v.members). Consequently, v.members = {i ∈ Π: 〈+, i〉 ∈
v.entries ∧ 〈−, i〉 6∈ v.entries}. To simplify the notation, we sometimes use i ∈ v and |v|
meaning i ∈ v.members and |v.members|, respectively. Notice that a server i can join and
leave the system only once, but this condition can be relaxed in practice if we add an epoch
number on each reconfiguration request.

We say a view v is installed in the system if some correct server i ∈ v considers v as its
current view and answers client r/w operations on this view. When v is installed, we say
that the previous installed view (before v) was uninstalled from the system. At any time t,
we define V (t) to be the most up-to-date view (see definition below) installed in the system.
We consider that V (t) remains active from the time it is installed in the system until all
correct servers of another most up-to-date view V (t′), t′ > t, installs V (t′).

Comparing views. We compare two views v1 and v2 by comparing their entries. We
use the notation v1 ⊂ v2 and v1 = v2 as an abbreviation for v1.entries ⊂ v2.entries and
v1.entries = v2.entries, respectively. If v1 ⊂ v2, then v2 is more up-to-date than v1.

Bootstrapping. We assume a non-empty initial view V (0) known to all processes. At
system startup, each server i ∈ V (0) receives an initial view v0 = {〈+, j〉 : j ∈ V (0)}.

Views vs. r/w operations. At any time t, r/w operations are executed only in V (t). When
a server i asks to join the system, these operations are disabled on it until an enable operations
event occurs. After that, i remains able to process r/w operations until it asks to leave the
system, which will happen after the occurence of a disable operations event.

I Definition 1 (FreeStore properties). FreeStore satisfies the following properties:
Storage Safety: The r/w protocols satisfy the safety properties of an atomic r/w
register [18].
Storage Liveness: Every r/w operation executed by a correct client eventually com-
pletes.
Reconfiguration – Join Safety: If a server j installs a view v such that i ∈ v, then
server i has invoked the join operation or i is member of the initial view.

E. Alchieri, A. Bessani, F. Greve, and J. Fraga 26:5

Reconfiguration – Leave Safety: If a server j installs a view v such that i 6∈ v ∧ (∃v′ :
i ∈ v′ ∧ v′ ⊂ v), then server i has invoked the leave operation.1
Reconfiguration – Join Liveness: Eventually, the enable operations event occurs at
every correct server that has invoked a join operation.
Reconfiguration – Leave Liveness: Eventually, the disable operations event occurs
at every correct server that has invoked a leave operation.

2.3 Additional Assumptions for Dynamic Storage
Dynamic fault-tolerant storage protocols [2, 12, 14, 17, 20] require the following additional
assumptions to deal with the dynamism.

I Assumption 2 (Fault threshold). For each view v, we denote v.f as the number of faults
tolerated in v and assume that v.f ≤ b |v.members|−1

2 c.

I Assumption 3 (Quorum size). For each view v, we assume quorums of size v.q =
d |v.members|+1

2 e.

These two assumptions are a direct adaptation of the optimal resilience for fault-tolerant
quorum systems [4] to account for multiple views and only need to hold for views present in
the generated view sequences (see Section 3).

I Assumption 4 (Gentle leaves). A correct server i ∈ V (t) that asks to leave the system at
time t remains in the system until it knows that a more up-to-date view V (t′), t′ > t, i 6∈ V (t′)
is installed in the system.

This assumption ensures that a correct leaving server will participate in the reconfiguration
protocol that installs the new view without itself, i.e., it cannot leave the system before a
new view accounting for its removal is installed. Other dynamic systems require similar
assumption: departing replicas need to stay available to transfer their state to arriving
replicas. Notice the fault threshold accounts for faults while the view is being reconfigured.

I Assumption 5 (Finite reconfigurations). The number of updates requested in an execution
is finite.

As in other dynamic storage systems, this assumption is fundamental to ensure r/w
operations termination. It ensures that a client will restart phases of a r/w operation a finite
number of times, and thus, eventually complete its operation. In practice, updates could be
infinite as long as each r/w is concurrent with a finite number of reconfigurations.

3 View Generators

View generators are distributed oracles used by servers to generate sequences of new views
for system reconfiguration. This module aims to capture the agreement requirements of
reconfiguration algorithms. In order to be general enough to be used for implementing
consensus-free algorithms, such requirements are reflected in the sequence of generated
views, and not directly on the views. This happens because, as described in previous
works [1, 2, 12, 14, 17], the key issue with reconfiguration protocols is to ensure that the
sequence of (possibly conflicting) views generated during a reconfiguration procedure will
converge to a single view with all requested view updates.

1 We can relax this property and adapt our protocol (Section 4) to allow that other process issues the
leave operation on behalf of a crashed process.

OPODIS 2017

26:6 Efficient and Modular Consensus-Free Reconfiguration for Fault-Tolerant Storage

For each view v, each server i ∈ v associates a view generator Gv
i with v in order to

generate a succeeding sequence of views. Server i interacts with a view generator through two
primitives: (1) Gv

i .gen_view(seq), called by i to propose a new view sequence seq to update v;
and (2) Gv

i .new_view(seq′), a callback invoked by the view generator to inform i that a new
view sequence seq′ was generated for succeeding v. An important remark about this interface
is that there is no one-to-one relationship between gen_view and new_view: a server i may
not call the first but receive several upcalls on the latter for updating the same view (e.g.,
due to reconfigurations started by other servers). However, if i calls Gv

i .gen_view(seq), it
will eventually receive at least one upcall to Gv

i .new_view(seq′).
Similarly to other distributed oracles (e.g., failure detectors [7]), view generators can

implement these operations in different ways, according to the different environments they
are designed to operate (e.g., synchronous or asynchronous systems). However, in this paper
we consider view generators satisfying the following properties.

I Definition 6 (View Generators). A generator Gv
i (associated with v in server i) satisfy

the following properties:
Accuracy: we consider two variants of this property:

Strong Accuracy: for any i, j ∈ v, if i receives an upcall Gv
i .new_view(seqi) and j

receives an upcall Gv
j .new_view(seqj), then seqi = seqj .

Weak Accuracy: for any i, j ∈ v, if i receives an upcall Gv
i .new_view(seqi) and j

receives an upcall Gv
j .new_view(seqj), then either seqi ⊆ seqj or seqj ⊂ seqi.

Non-triviality: for any upcall Gv
i .new_view(seqi), ∀w ∈ seqi , v ⊂ w.

Termination: if a correct server i ∈ v calls Gv
i .gen_view(seq), then eventually it will

receive an upcall Gv
i .new_view(seqi).

Accuracy and Non-triviality are safety properties while Termination is related to the
liveness of view generation. Furthermore, the Non-triviality property ensures that generated
sequences contain only updated views.

Using the two variants of accuracy we can define two types of view generators: P, the
perfect view generator, that satisfies Strong Accuracy and L, the live view generator, that
only satisfies Weak Accuracy. Our implementation of P requires consensus, while L can be
implemented without such strong synchronization primitive.

3.1 Perfect View Generators – P
Perfect view generators ensure that a single sequence of views is generated at all servers using
the generators. Our implementation for P (Algorithm 1) uses a deterministic Paxos-like
consensus protocol [19] that assumes a partially synchronous system model [9]. Under the
Paxos framework, any server of v can be a proposer (calling Paxosv.propose(seq)), but all
servers of v are acceptors and learners (they receive an upcall Paxosv.learn(seq′), even if
they did not propose anything). We also assume that once a value is learned for a Paxos
instance associated with v, this value is locked and no other value will be learned. Notice that
a server only proposes a sequence if the new views are strict extensions of v, ensuring Non-
triviality. Termination and Strong Accuracy properties comes directly from the Agreement
and Termination properties of the underlying consensus algorithm [7,19].

3.2 Live View Generators – L
Algorithm 2 presents an implementation for Live view generators (L). Our algorithm does
not require a consensus building block, being thus implementable in asynchronous systems.

E. Alchieri, A. Bessani, F. Greve, and J. Fraga 26:7

Algorithm 1 P associated with v - server i ∈ v.

upon Gv
i .gen_view(seq)

1) if ∀w ∈ seq : v ⊂ w then Paxosv.propose(seq) //starts a consensus in v

upon Paxosv.learn(seq′) // when decides by seq′ ...
2) Gv

i .new_view(seq′) // ... inform this to process.

Algorithm 2 L associated with v - server i ∈ v.
functions: Auxiliary functions

most_updated(seq) ≡ w : (w ∈ seq) ∧ (@w′ ∈ seq : w ⊂ w′)
variables: Sets used in the protocol

SEQv ← ∅ // proposed view sequence
LCSEQv ← ∅ // last converged view sequence known

procedure Gv
i .gen_view(seq)

1) if SEQv = ∅ ∧ ∀w ∈ seq : v ⊂ w then
2) SEQv ← seq
3) ∀j ∈ v, send〈SEQ-VIEW, SEQv〉 to j

upon receipt of 〈SEQ-VIEW, seq〉 from j
4) if ∃w ∈ seq : w 6∈ SEQv then
5) if ∃w, w′ : w ∈ seq ∧ w′ ∈ SEQv ∧ w 6⊂ w′ ∧ w′ 6⊂ w then
6) w ← most_updated(SEQv)
7) w′ ← most_updated(seq)
8) SEQv ← LCSEQv ∪ {w.entries ∪ w′.entries}
9) else
10) SEQv ← SEQv ∪ seq
11) ∀k ∈ v, send〈SEQ-VIEW, SEQv〉 to k

upon receipt of 〈SEQ-VIEW, SEQv〉 from v.q servers in v
12) LCSEQv ← SEQv

13) ∀k ∈ v, send〈SEQ-CONV, SEQv〉 to k

upon receipt of 〈SEQ-CONV, seq′〉 from v.q servers in v
14) Gv

i .new_view(seq′)

On the other hand, it can generate different sequences in different servers for updating the
same view. We bound such divergence by exploiting Assumptions 2 and 3, which ensure that
any quorum of the system will intersect in at least one correct server, making any generated
sequence for updating v be contained in any other posterior sequence generated for v (Weak
Accuracy). Furthermore, the servers keep updating their proposals until a quorum of them
converges to a sequence containing all proposed views (or combinations of them), possibly
generating some intermediate sequences before this convergence.

To generate a new sequence of views, a server i ∈ v uses an auxiliary function most_updated
to get the most up-to-date view in a sequence of views (i.e., the view that is not contained
in any other view of the sequence). Moreover, each server keeps two local variables: SEQv –
the last view sequence proposed by the server – and LCSEQv – the last sequence this server
converged. When server i ∈ v starts its view generator, it first verifies (1) if it already made a
proposal for updating v and (2) if the sequence being proposed contains only updated views
(line 1). If these two conditions are met, it sends its proposal to the servers in v (lines 2-3).

Different servers of v may propose sequences containing different views and therefore
these views need to be organized in a sequence. When a server i ∈ v receives a proposal for
a view sequence from j ∈ v, it verifies (line 4) if this proposal contains some view it did not
know yet (notice a server could receive this message even if its view generator was not yet
initialized, i.e., SEQv = ∅). If this is the case, i updates its proposal (SEQv) according to two
mutually exclusive cases:

OPODIS 2017

26:8 Efficient and Modular Consensus-Free Reconfiguration for Fault-Tolerant Storage

Case 1 [There are conflicting views in the sequence proposed by i and the sequence
received from j (lines 5-8)]: In this case i creates a new sequence containing the last
converged sequence (LCSEQv) and a new view with the union of the two most up-to-date
conflicting views. This maintains the containment relationship between any two generated
view sequences.
Case 2 [The sequence proposed by i and the received sequence can be composed in a
new sequence (lines 9-10)]: The new sequence is the union of the two known sequences.

In both cases, a new proposal containing the new sequence is disseminated (line 11).
When i receives the same proposal from a quorum of servers in v, it converges to SEQv and
stores it in LCSEQv, informing other servers of v about it (lines 12-13). When i knows that a
quorum of servers of v converged to some sequence seq′, it generates seq′ (line 14).

Correctness (full proof in [3]). The algorithm ensures that if a quorum of servers converged
to a sequence seq′ (lines 12-13), then (1) such sequence will be generated (line 14) and (2)
any posterior sequence generated will contain seq′ (lines 8 and 10), ensuring Weak Accuracy.
This holds due to the quorum intersection: at least one correct server needs to participate in
the generation of both sequences and this server applies the rules in Cases 1 and 2 to ensure
that sequences satisfy the containment relationship. The Termination property is ensured by
the fact that (1) each server makes at most one initial proposal (lines 1-3); (2) servers keep
updating their proposals until a quorum agree on some proposal; and (3) there is always a
quorum of correct servers in v.

4 FreeStore Reconfiguration

A server running FreeStore reconfiguration algorithm uses a view generator associated
with its current view cv to process one or more reconfiguration requests (joins and leaves)
that will lead the system from cv to a new view w. Algorithm 3 describes how a server i

executes reconfigurations. In the following sections we first describe how view generators are
started and then we proceed to discuss the behavior of this algorithm when started with
either L (Section 4.2) or P (Section 4.3).

4.1 View Generator Initialization

Algorithm 3 describes how a server i processes reconfiguration requests and starts a view
generator associated with its current view cv (lines 1-7). A server j that wants to join
the system needs first to find the current view cv and then to execute the join operation
(lines 1-2), sending a tuple 〈+, j〉 to the members of cv. Servers leaving the system do
something similar, through the leave operation (lines 3-4). When i receives a reconfiguration
request from j, it verifies if the requesting server is using the same view as itself; if this is not
the case, i replies its current view to j (omitted from the algorithm for brevity). If they are
using the same view and i did not execute the requested reconfiguration before, it stores this
request in its set of pending updates RECV and sends an acknowledgment to j (lines 5-6).

For the sake of performance, a local timer has been defined in order to periodically process
the updates requested in a view, that is, the next system reconfiguration. A server i ∈ cv

starts a reconfiguration for cv when its timer expires and i has some pending reconfiguration
requests (otherwise, the timer is renewed). The view generator is started with a sequence
containing a single view representing the current view plus the pending updates (line 7).

E. Alchieri, A. Bessani, F. Greve, and J. Fraga 26:9

Algorithm 3 FreeStore reconfiguration - server i.
functions: Auxiliary functions

least_updated(seq) ≡ w : (w ∈ seq) ∧ (@w′ ∈ seq : w′ ⊂ w)
variables: Sets used in the protocol

cv ← v0 // the system current view known by i
RECV← ∅ // set of received updates

procedure join()
1) ∀j ∈ cv, send〈RECONFIG, 〈+, i〉, cv〉 to j
2) wait for 〈REC-CONFIRM〉 replies from cv.q servers in cv

procedure leave()
3) ∀j ∈ cv, send〈RECONFIG, 〈−, i〉, cv〉 to j
4) wait for 〈REC-CONFIRM〉 replies from cv.q servers in cv

upon receipt of 〈RECONFIG, 〈∗, j〉, cv〉 from j and 〈∗, j〉 6∈ cv
5) RECV← RECV ∪ {〈∗, j〉}
6) send〈REC-CONFIRM〉 to j

upon (timeout for cv) ∧(RECV 6= ∅)
7) Gcv

i .gen_view({cv ∪ RECV})
upon Gov

i .new_view(seq) //G generates a new sequence of views to update ov (usually ov = cv)
8) w ← least_updated(seq) //the next view in the sequence seq
9) R-multicast({j : j ∈ ov ∨ j ∈ w},〈INSTALL-SEQ, w, seq, ov〉)

upon R-delivery({j : j ∈ ov ∨ j ∈ w},〈INSTALL-SEQ, w, seq, ov〉)
10) if i ∈ ov then //i is member of the previous view in the sequence
11) if cv ⊂ w then stop the execution of r/w operations //if w is more up-to-date than cv stop r/w
12) ∀j ∈ w, send〈STATE-UPDATE, 〈val, ts〉, RECV〉 to j //i sends its state to servers in the next view
13) if cv ⊂ w then //w is more up-to-date than cv and the system will be reconfigured from cv to w
14) if i ∈ w then //if i is in the new view...
15) wait for 〈STATE-UPDATE, ∗, ∗〉 messages from ov.q servers in ov //... it updates...
16) 〈val, ts〉 ← 〈valh , tsh〉, pair with highest timestamp among the ones received //... its state...
17) RECV← RECV ∪ {update requests from STATE-UPDATE messages} \ w.entries
18) cv ← w //... and its current view to w
19) if i 6∈ ov then enable operations //i is joining the system
20) ∀j ∈ ov \ cv, send〈VIEW-UPDATED, cv〉 to j //inform servers in ov \ cv that they can leave
21) if (∃w′ ∈ seq : cv ⊂ w′) then //there are views more up-to-date than cv in seq...
22) seq′ ← {w′ ∈ seq : cv ⊂ w′} //... gather these views...
23) Gcv

i .gen_view(seq′) //... and propose them (going back to Algorithm 2)
24) else
25) resume the execution of r/w operations in cv = w and start a timer for cv //w is installed
26) else //i is leaving the system
27) disable operations
28) wait for 〈VIEW-UPDATED, w〉 messages from w.q servers in w and then halt

4.2 Reconfiguration using L

Overview. Given a sequence seq : v1 → . . . → vk → w generated by live view generators
(L) for updating a view v, Algorithm 3 ensures that only the last view w will be installed in
the system. The other k auxiliary views are used only as intermediate steps for installing w.

The use of auxiliary views is fundamental to ensure that no write operation executed in any
of the views of seq (in case they are installed in some server) “is lost” by the reconfiguration
processing. This is done through the execution of a “chain of reads” in which servers of v

transfer their state to servers of v1, which transfer their state to servers of v2 and so on until
servers of w have the most up-to-date state. To avoid consistency problems, r/w operations
are disabled during each of these state transfers.

It is important to remark that since we do not use consensus, a subsequence seq′ : v1 →
. . .→ vj , j ≤ k, of seq may lead to the installation of vj in some servers that did not know
seq and that these servers may execute r/w operations in this view. However, the algorithm
ensures these servers eventually will reconfigure from vj to the most up-to-date view w.

OPODIS 2017

26:10 Efficient and Modular Consensus-Free Reconfiguration for Fault-Tolerant Storage

Protocol. Algorithm 3 (lines 8-28) presents the core of the FreeStore reconfiguration
protocol. This algorithm uses an auxiliary function least_updated to obtain the least updated
view in a sequence of views (i.e., the one that is contained in all other views of the sequence)
and two local variables: the aforementioned RECV – used to store pending reconfiguration
requests – and cv – the current view of the server (initially v0).

When the view generator associated with some view ov (we use ov instead of cv because
view generators associated with old views, ov ⊆ cv, still active can generate new sequences)
reports the generation of a sequence of views seq, the server obtains the least updated view
w of seq and proposes this sequence for updating ov through an INSTALL-SEQ message sent
to the servers of both, ov and w. Once view generators could generate different sequences
at different processes, we employ a reliable multicast primitive [7] to ensure all correct
servers in ov and w process seq (lines 8-9). This primitive can be efficiently implemented in
asynchronous systems with a message retransmission at the receivers before its delivery [7].

The current view is updated through the execution of lines 10-28. First, if the server is a
member of the view being updated ov, it must send its state (usually, the register’s value
and timestamp) to the servers in the new view to be installed (lines 10-12). However, if the
server will be updating its current view (i.e., if w is more up-to-date than cv) it first needs to
stop executing client r/w operations (line 11) and enqueue these operations to be executed
when the most up-to-date view in the sequence is installed (line 25, as discussed below). A
server will update its current view only if the least updated view w of the proposed sequence
is more up-to-date than its current view cv (line 13). If this is the case, either (1) server i

will be in the next view (lines 14-25) or (2) not (line 26-28).

Case 1 [i will be in the next view (it may be joining the system)]: If the server will
be in the next view w, it first waits for the state from a quorum of servers from the
previous view ov and then defines the current value and timestamp of the register (lines
15-16), similarly to what is done in the 1st phase of a read operation (see Section 5).
After ensuring that its state is updated, the server updates cv to w and, if it is joining
the system, it enables the processing of r/w operations (which will be queued until line
25 is executed). Furthermore, the server informs leaving servers that its current view
was updated (line 20). The final step of the reconfiguration procedure is the verification
if the new view will be installed or not (in case it is an auxiliary view). If cv = w is
not the most up-to-date view of the generated sequence seq, a new sequence with more
up-to-date views than cv will be proposed for updating it (lines 21-23). Otherwise, cv is
installed and server i resumes processing r/w operations (lines 24-25).
Case 2 [i is leaving the system]: A server leaving the system only halts after ensuring
that the view w to which it sent its state was started in a quorum of servers (lines 27-28).

Although the algorithm restarts itself in line 23, it eventually terminates since the
number of reconfiguration requests is finite (Assumption 5). Furthermore, since all sequences
generated by L can be composed in an unique sequence, when the reconfiguration terminates
in all correct servers, they will have installed the same view with all requested updates.

Correctness (full proof in [3]). Algorithm 3 ensures that an unique sequence of views is
installed in the system due to the following: (1) if a view w is installed, any previously
installed view w′ ⊂ w is uninstalled and will not be installed anymore (lines 11, 18 and 25);
consequently, (2) no view more up-to-date than w is installed and the installed views form
an unique sequence. By Assumption 5, the reconfiguration procedure always terminate by
installing a final view vfinal . The Storage Safety and Storage Liveness properties are discussed

E. Alchieri, A. Bessani, F. Greve, and J. Fraga 26:11

in Section 5. The remaining properties of Definition 1 are ensured as follows. Reconfiguration
Join/Leave Safety are trivially ensured by the fact that only a server i sends the update
request 〈+, i〉/〈−, i〉 (lines 1-4). Reconfiguration Join/Leave Liveness are ensured by the fact
that if an update request from a server i is stored in RECV of a quorum, then it is processed
in the next reconfiguration since a quorum with the same proposal is required to generate a
view sequence (Algorithm 2). Moreover, update requests received during a reconfiguration
are sent to the next view (lines 12-17).

4.3 Reconfiguration using P
If P is used with the FreeStore reconfiguration protocol (Algorithm 3), all generators will
generate the same sequence of views (Strong Accuracy) with a single view w. This will lead
the system directly from its current view cv to w (lines 22-23 will never be executed).

5 Read and Write Protocols

This section discusses how a static storage protocol can be adapted to dynamic systems by
using FreeStore reconfigurations. Since reconfigurations are decoupled from r/w protocols,
they are very similar to their static versions. In a nutshell, there are two main requirements
for using our reconfiguration protocol. First, each process (client or server) needs to handle
a current view variable cv that stores the most up-to-date view it knows. All r/w protocol
messages carry cv and clients update it as soon as they discover that there is a more recent
view installed in the system. The servers reject any operation issued to an old view, and
reply their current view to the issuing client, which updates its cv. The client restarts the
phase of the operation it is executing if it receives an updated view. The second requirement
is that, before accessing the system, a client must obtain the system’s current view. This can
be done by making servers put the current view in a directory service [1] or making the client
flood the network asking for it. Notice this is an intrinsic problem for any dynamic system
and similar assumptions are required in previous reconfiguration protocols [2, 12,14,17,20].

In this paper we extend the classical ABD algorithm [4] for supporting multiple writers
and to work with the FreeStore reconfiguration. In the following we highlight the main
aspects of these protocols (complete algorithms are found in [3]). The protocols to read and
write from the dynamic distributed storage work in phases. Each phase corresponds to an
access to a quorum of servers in cv. The read protocol works as follows:

1st Phase: a reader client requests a set of tuples 〈val, ts〉 from a quorum of servers
in cv (val is the value the server stores and ts is its associated timestamp) and selects
the one with highest timestamp 〈valh, tsh〉; the operation ends and returns valh if all
returned pairs are equal, which happens in executions without write contention or failures;
2nd Phase: otherwise, the reader client performs an additional write-back phase in the
system and waits for confirmations from a quorum of servers in cv before returning valh.

The write protocol works in a similar way:
1st Phase: a writer client obtains a set of timestamps from a quorum of servers in cv

and chooses the highest, tsh; the timestamp to be written ts is defined by incrementing
tsh and concatenating the writer id in its lowest bits;
2nd Phase: the writer sends a tuple 〈val, ts〉 to the servers of cv, writing val with
timestamp ts, and waits for confirmations from a quorum.

The proposed decoupling of r/w protocols from reconfigurations (1) makes it easy to
adapt other static fault-tolerant register implementations to dynamic environments (as long
as they work in phases), (2) makes it possible to run r/w in parallel with reconfigurations,

OPODIS 2017

26:12 Efficient and Modular Consensus-Free Reconfiguration for Fault-Tolerant Storage

and (3) does not impact the performance of a r/w in periods without reconfigurations. This
happens because, differently from previous approaches [2, 12, 14, 17] where a r/w may access
multiple views, in FreeStore a client executes these operations only in the most up-to-date
installed view, which is received directly from the servers. To enable this, it is required that
r/w operations to be blocked during the state transfer between views.

Correctness (full proof in [3]). The above algorithms implement atomic storage in the
absence of reconfigurations [4]. When integrated with FreeStore, they also have to satisfy
the Storage Safety and Storage Liveness properties of Definition 1. We start by discussing
Storage Liveness, which follows directly from the termination of reconfigurations. As discussed
before, clients’ r/w operations are concluded only if they access a quorum of servers using
the same view as the client, otherwise they are restarted. By Assumption 5, the system
reconfiguration always terminate by installing some final view. Consequently, a client will
restart phases of its operations a finite number of times until this final view is installed in a
quorum. Storage Safety comes directly from three facts: (1) a r/w operation can only be
executed in a single installed view (i.e., all servers in the quorum of the operation have the
same installed current view), (2) all installed views form a unique sequence , and (3) any
operation executed in a view v will still be “in effect” when a more up-to-date view w is
installed. More precisely, assume 〈val, ts〉 is the last value read or written in v, and thus it
was stored in v.q servers from v. During a reconfiguration from v to w, r/w operations are
disabled until all servers of v send 〈val, ts〉 to the servers of w (line 12), which terminate the
reconfiguration only after receiving the state from a quorum of servers of v. Consequently,
all servers who reconfigure to w will have 〈val, ts〉 as its register’s state (lines 15-16). This
ensures that any operation executed in w will not miss the operations executed in v.

6 Discussion

6.1 DynaStore vs. FreeStore
This section discusses some differences between DynaStore [2] and FreeStore. Although
our focus is on comparing our approach with DynaStore, we also comment the relationship
between these protocols and SpSn [12] and SmartMerge [17].

Convergence Strategy. In DynaStore, the reconfiguration process generate a graph of views
through which it is possible to identify a sequence of established views (see Figure 1, left). A
view that is not established works as an auxiliary view, that must be accessed during r/w
operations. For any established view v, the maximum number of views that can immediately
succeed it is |v|, and new views representing the combinations of these views could also be
generated. In contrast, reconfigurations in FreeStore install only a single sequence of
views (see Figure 1, right). In this case, different generated sequences of views are organized
in an unique sequence of installed views. For each installed view v, our implementation of L
bounds the number of generated view sequences to |v| − v.q + 1. SpSn and SmartMerge also
install a sequence of ordered configurations (views).

Liveness. In DynaStore, a process executes a leave and halts the system. However, for
any time t, there is a bound on the number of processes that can leave the system without
compromising liveness. Let F (t) be the set of processes that crashed until time t and J(t)
(resp. L(t)) the set of pending joins (resp. leaves) at t. The liveness condition of DynaStore
states that fewer than |V (t)|/2 processes out of V (t) ∪ J(t) should be in F (t) ∪ L(t) [2]. In

E. Alchieri, A. Bessani, F. Greve, and J. Fraga 26:13

Table 1 Communication steps of r/w operations.

Operation Updated View Outdated View
DS SM SpSn FS DS SM SpSn FS

Read 12 8 14 2/4 19 16 22 4/6
Write 12 8 18 4 19 16 26 6

contrast, in FreeStore a process that executes a leave should wait for the installation of
the updated view (without itself). If this restriction is not respected, the leaving server is
considered faulty. This approach specifies a bound on the number of leaves for FreeStore:
fewer than |V (t)|/2 processes out of V (t) should be in F (t) ∪ L(t). SpSn does not specify a
liveness condition and SmartMerge uses policies to prevent the generation of unsafe views,
which in practice restricts the number of allowed leaves.

Normal Case Execution. In DynaStore, reconfigurations generate a graph of views through
which it is possible to identify a sequence of established views. A view that is not established
works as an auxiliary view, but must be accessed during r/w operations. For each view
(established or not), DynaStore associates a weak snapshot object that is used to store updates.
For any view v, its weak snapshot object wsov is supported by a set Sv of |v| static SWMR
registers, i.e., one register for each member of v. During a r/w on v, wsov must be accessed
twice to verify if some update was executed on v. Each access to wsov comprises two reads in
each register of Sv. Thus, to execute a r/w on v, it is necessary a total of 4|v| (4 sequential,
|v| parallel) quorum accesses, with two communication steps each. SpSn and SmartMerge
use a similar approach: before executing each r/w, a set of |v| SWMR registers must be
accessed to check for updates. In contrast, the overhead introduced by FreeStore on a
r/w is the local verification if the client view is equal to the current view of the servers.

R/W and Reconfiguration Concurrency. A r/w operation needs to traverse the graph of
views generated by DynaStore to find a view where it is safe to be executed (the most up-to-
date established view). During the transversal, each edge of the graph must be accessed in
order to verify if there is a more up-to-date view. For each view v, it is necessary to access its
weak snapshot object, which requires 2|v| (2 sequential, |v| parallel) quorum accesses. While
the system is converging to some established view, the r/w operation does not terminate.
Similarly, in SpSn and SmartMerge, a r/w concurrent with a reconfiguration also needs to
access intermediary views to find the most up-to-date installed view. FreeStore follows a
different approach that ensures r/w operations are directed to the most up-to-date installed
view v, without accessing any auxiliary view. However, after some sequence of views for
updating v is obtained, the r/w operations are stopped and can only terminate after the
installation of the most up-to-date view of this sequence. Therefore, in this sense our approach
resembles view-synchronous group communication [5, 6].

6.2 Performance of Read/Write Operations
Table 1 shows the number of communication steps demanded to execute a r/w operation
with DynaStore (DS) [2], SmartMerge (SM) [17], SpSn [12] and FreeStore (FS), for a
process that handles an updated or outdated view. A r/w operation in FreeStore requires
at most a third of the number of communication steps required to execute it in DynaStore
or SpSn and at most half of the steps required in SmartMerge. More important, it matches
the performance of static protocols in the absence of reconfigurations.

OPODIS 2017

26:14 Efficient and Modular Consensus-Free Reconfiguration for Fault-Tolerant Storage

Table 2 Communication steps for reconfiguration.

Consensus-free Best Case Worst Case Consensus-based Best Case Worst Case
DynaStore [2] 23 18|v|+ 5 RAMBO [14] 7 7

SmartMerge [17] 11 6|v|+ 5 FreeStore (P) 5 5
SpSn [12] 14 8|v|+ 6

FreeStore (L) 4 7|v| − 2v.q − 1

6.3 Consensus-free vs. Consensus-based Reconfiguration
Table 2 shows the number of communication steps required to process a reconfiguration using
consensus-free (DynaStore, SmartMerge, SpSn and FreeStore with L) and consensus-based
(RAMBO and FreeStore with P) algorithms. We present the number of communication
steps for the best case scenario – when all processes propose the same updates in a reconfig-
uration – and for the worst case – when each process proposes different updates. In order to
simplify our analysis, we consider that no reconfiguration is started concurrently with the one
we are analyzing. Similarly, we assume a synchronous execution of the Paxos protocol [19],
which requires only three communication steps, for consensus-based algorithms.

FreeStore reconfiguration is significantly more efficient than previous consensus-based
and consensus-free protocols. FreeStore with P requires two less communication steps than
RAMBO and FreeStore with L outperforms other consensus-free approaches by almost
an order of magnitude. In particular, FreeStore with L presents the best performance
among all considered reconfiguration protocols in the best case, which is expected to be the
norm in practice. An open question is if this number constitutes a lower bound.

7 Experimental Evaluation

In this section we present an experimental evaluation of FreeStore (1) to quantify its
overhead when compared with the (static) ABD protocol in periods without reconfigurations,
and (2) to assess the negative impact of a reconfiguration in the system performance.

We implemented prototypes of the ABD [4], FreeStore and DynaStore [2] protocols
in the Go programming language and conducted two sets of experiments in Emulab [22]: a
micro-benchmark designed to evaluate the read and write throughput and latency in absence
of reconfiguration; and an execution showing the performance of dynamic algorithms during
faults and reconfigurations. We chose DynaStore to represent existing consensus-free dynamic
protocols [2, 12, 17] to show that design decisions such as checking a set of SWMR static
registers to verify if some reconfiguration occurred before executing each r/w and coupling the
execution of r/w and reconfigurations have a significant impact in the system performance.
Although comparing with DynaStore suffice for these goals, the interested reader can find a
more extensive experimental evaluation of reconfiguration protocols in [16].

Experimental Setup. We used 18 pc3000 (3.0 GHz 64-bit Pentium Xeon, 2GB of RAM
and gigabit network cards) connected by a 100Mb switched network. We run each server
in a separated machine, while the clients were uniformly distributed among the remaining
machines. The software installed was Fedora 15 64-bit with kernel 2.6.20 and Go 1.2.

Micro-benchmarks. We start by reporting the latency and throughput results for the
system configured with 3 servers (Figure 2). We used up to 18 clients to read or write a
value of 512 bytes. Both latency and throughput was measured at the clients: the latency is
the mean time demanded to perform a r/w operation discarding the 5% values with greater
variance; the throughput is the sum of all client operations completed in a interval.

E. Alchieri, A. Bessani, F. Greve, and J. Fraga 26:15

 0
 2
 4
 6
 8

 10
 12
 14

 0 2 4 6 8 10 12 14 16

La
te

nc
y

(m
s)

Throughput (kops/sec)

Freestore
Dynastore

ABD

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8

La
te

nc
y

(m
s)

Throughput (kops/sec)

Freestore
Dynastore

ABD

Figure 2 Latency vs. throughput for read (left) and write (right) operations; n = 3 and f = 1.

 1

 15

 0 30 40 60 80 100 120 140 160 180 200 220 240 300 320 340 360 420

 30 40 60 80 100 120 140 160 180 200 220 240 300 320 340 360
+4 +5

REC

-1 -2

REC

4 +6

REC

4 -3

REC REC

+7 -4

REC

(crash) (recovery) +8
+9

-5
-6

Th
ro

ug
hp

ut
 (k

op
s/

se
c)

Time (sec)

FreeStore
DynaStore

Figure 3 Throughput evolution across faults and reconfigurations for FreeStore and DynaStore.

These experiments show that FreeStore imposes a negligible overhead to the static
ABD protocols. This happens because these protocols are very similar: the difference is that
FreeStore messages must carry the current view to check if a client is using an updated
view (we used hashes of the views; the complete views were used only when necessary an
update in the client view). In contrast, DynaStore performs poorly because it must access a
set of static SWMR registers to check for view updates before executing each r/w operation.

Reconfigurations and faults. This experiment considers the behavior of FreeStore with
L (the result is similar with P) and DynaStore protocols under reconfigurations, failures and
recoveries. We observed how the throughput of these systems evolve over several events when
a demanding workload is applied. We used an initial view with 3 servers (v0 = {1, 2, 3}) and
18 clients that keep reading a value of 512 bytes over the course of 420 seconds. The results
in Figure 3 show that FreeStore significantly outperforms DynaStore.

In the experiment, servers 4-9 asked to join at times 30, 40, 160, and 320 (servers 7-
9), respectively, while servers 1-6 asked to leave at times 80, 100, 220, 340 (servers 4-6),
respectively. DynaStore reconfigurations occurred each time an update was requested [2],
while FreeStore reconfigurations were configured to occur periodically at each 60 seconds
(notice that at time 360, a FreeStore reconfiguration replaces all servers in the system).
Moreover, server 4 crashed and recovered at times 140 and 200, respectively.

This experiment shed light in how reconfigurations impact the performance of concurrent
r/w operations. The mean time required for a FreeStore reconfiguration was 19 ms, with
r/w operations blocked for only 4 ms (see Algorithm 3). Increasing the size of the value
stored in the system may lead this time to increase. However, in all previous works on
asynchronous reconfigurations [2, 12,17], the state transfer happens during a r/w operation
and, consequently, the time to finish these operations will also increase.

OPODIS 2017

26:16 Efficient and Modular Consensus-Free Reconfiguration for Fault-Tolerant Storage

8 Conclusions

This paper presented a new approach to reconfigure fault-tolerant storage systems, which
clarifies the differences between relying or not on consensus for agreement in the next
view to be installed. The main result is a protocol that is simpler and cheaper (in terms
of communication steps for either r/w operations or reconfigurations) than the previously
proposed solutions. Furthermore, our approach fully decouples the execution of r/w operations
and reconfigurations, imposing a negligible overhead to the static ABD protocol. Another
interesting result is that, in the best case, FreeStore consensus-free reconfiguration is
faster than protocols based on consensus.

A final contribution of this work is the introduction of a new abstraction called view
generator. We believe that exploring different instantiations of this abstraction and their
properties is an important avenue for future work.

References
1 Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, Jean-Philippe Martin, and Alexander

Shraer. Reconfiguring replicated atomic storage: A tutorial. Bulletin of EATCS: The
Distributed Computing Column, 2010.

2 Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. Dynamic atomic
storage without consensus. Journal of the ACM, 58:7:1–7:32, 2011.

3 Eduardo Alchieri, Alysson Bessani, Fabiola Greve, and Joni Fraga. Efficient and modular
consensus-free reconfiguration for fault-tolerant storage. ArXiv, 2016. arXiv:1607.05344.

4 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-
passing systems. Journal of the ACM, 42(1):124–142, 1995.

5 Kenneth Birman and Thomas Joseph. Exploiting virtual synchrony in distributed systems.
In Proc. of the 11th ACM Symp. on Operating Systems Principles (SOSP’87), 1987.

6 C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Distributed
Programming (2nd Edition). Springer-Verlag, 2011.

7 Tushar Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM, 43(2):225–267, 1996.

8 Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Marko Vukolić. Fast access to distrib-
uted atomic memory. SIAM Journal on Computing, 39(8):3752–3783, 2010.

9 Cyntia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. Journal of ACM, 35(2):288–322, 1988.

10 Rui Fan and Nancy Lynch. Efficient replication of large data objects. In Proc. of the 17th
Int. Symp. on Distributed Computing (DISC’03), 2003.

11 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

12 Eli Gafni and Dahlia Malkhi. Elastic configuration maintenance via a parsimonious spec-
ulating snapshot solution. In Proc. of the 29th Int. Symp. on Distributed Computing
(DISC’15), 2015.

13 David Gifford. Weighted voting for replicated data. In Proc. of the 7th ACM Symp. on
Operating Systems Principles (SOSP’79), 1979.

14 Seth Gilbert, Nancy Lynch, and Alex Shvartsman. Rambo: A robust, reconfigurable atomic
memory service for dynamic networks. Distributed Computing, 23(4), 2010.

15 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programing Languages
and Systems, 13(1), 1991.

16 Leander Jehl and Hein Meling. The case for reconfiguration without consensus. In Proc.
of the 20th Int. Conf. on Principles of Distributed Systems (OPODIS’16), 2016.

http://arxiv.org/abs/1607.05344

E. Alchieri, A. Bessani, F. Greve, and J. Fraga 26:17

17 Leander Jehl, Roman Vitenberg, and Hein Meling. Smartmerge: A new approach to
reconfiguration for atomic storage. In Proc. of the 29th Int. Symp. on Distributed Computing
(DISC’15), 2015.

18 Leslie Lamport. On interprocess communication (part II). Distributed Computing, 1(1):203–
213, 1986.

19 Leslie Lamport. The part-time parliament. ACM Transactions Computer Systems,
16(2):133–169, 1998.

20 Jean-Philippe Martin and Lorenzo Alvisi. A framework for dynamic Byzantine storage. In
Proc. of the 34th Int. Conf. on Dependable Systems and Networks (DSN’04), 2004.

21 Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Dynamic Reconfiguration: A
Tutorial. In Proc. of the 19th Int. Conf. on Principles of Distributed Systems (OPODIS’15),
2015.

22 Brian White et. al. An integrated experimental environment for distributed systems and
networks. In Proc. of the 5th Symp. on Operating Systems Design and Implementations
(OSDI’02), 2002.

OPODIS 2017

	Introduction
	Preliminary Definitions
	System Model
	Dynamic Storage Properties
	Additional Assumptions for Dynamic Storage

	View Generators
	Perfect View Generators – P
	Live View Generators – L

	FreeStore Reconfiguration
	View Generator Initialization
	Reconfiguration using L
	Reconfiguration using P

	Read and Write Protocols
	Discussion
	DynaStore vs. FreeStore
	Performance of Read/Write Operations
	Consensus-free vs. Consensus-based Reconfiguration

	Experimental Evaluation
	Conclusions

