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Abstract
In this paper, we consider a uniform bipartition problem in a population protocol model. The
goal of the uniform bipartition problem is to divide a population into two groups of the same
size. We study the problem under various assumptions: 1) a population with or without a base
station, 2) weak or global fairness, 3) symmetric or asymmetric protocols, and 4) designated
or arbitrary initial states. As a result, we completely clarify constant-space solvability of the
uniform bipartition problem and, if solvable, propose space-optimal protocols.
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1 Introduction

1.1 The Background
A population protocol model [4] is an abstract model that represents computation on a
network of low-performance devices. We refer to such devices as agents and a set of agents as a
population. Agents can update their states by interacting with other agents, and proceed with
computation by repeating the pairwise interactions. The population protocol model can be
applied to many systems such as sensor networks and molecular robot networks. For example,
one may construct sensor networks to monitor wild birds by attaching sensors to them. In this
system, sensors collect and process data based on pairwise interactions when two sensors (or
birds) come sufficiently close to each other. Another example is a system of low-performance
molecular robots [22]. In this system, a large number of molecular robots compose a network
inside a human body and discriminate the physical condition. To realize such systems, many
protocols have been proposed as building blocks in the population protocol model [10]. For
example, they include leader election protocols [1, 2, 8, 15, 17, 19, 23, 24, 25], counting
protocols [9, 11, 12, 20], and majority protocols [1, 3, 6, 18].
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19:2 Constant-Space Population Protocols for Uniform Bipartition

In this paper, we consider a uniform bipartition problem, which divides a population
into two groups of the same size. The uniform bipartition problem is a special case of a
group composition problem, which divides a population into multiple groups to satisfy some
conditions. Some protocols for the group composition problem are developed as subroutines
to realize fault-tolerant protocols [16] and periodic functions [21]. However, the complexity
of the problem has not been studied deeply yet. For this reason, as the first step to study
the complexity of the group composition problem, we focus on the space complexity of the
uniform bipartition problem. Note that the uniform bipartition problem itself has some
applications. For example, we can reduce energy consumption by switching on one group and
switching off the other. In another example, we can assign a different task to each group and
make agents execute multiple tasks at the same time. This can be regarded as differentiation
of a population in the sense that initially identical agents are eventually divided into two
groups and execute different tasks. In addition, by repeating uniform bipartition, we can
divide a population into an arbitrary number of groups with almost the same size. For
example, by repeating uniform bipartition four times, we can make sixteen groups of the
same size. We can regroup the sixteen groups to three groups with almost the same size by
partitioning them into five, five, and six groups.

1.2 Our Contributions
For the uniform bipartition problem, we clarify solvability and minimum requirement of agent
space under various assumptions. More concretely, we consider four types of assumptions,
1) a population with or without a base station, 2) weak or global fairness, 3) symmetric or
asymmetric protocols, and 4) designated or arbitrary initial states. A base station (BS) is a
distinguishable agent with a powerful capability, and it is useful to realize good properties
while it limits the range of application. Fairness is an assumption on interaction patterns of
agents. While weak fairness assumes only that interaction occurs infinitely often between
each pair of agents, global fairness makes a stronger assumption on the order of interactions
(the definition is given in Section 2). Symmetric property of protocols is related to the power
of symmetry breaking in the population. Asymmetric protocols may include transitions that
make agents with the same states transit to different states. This requires a mechanism
to break symmetry among agents and its implementation is sometimes difficult with low-
performance agents such as molecular robots. Symmetric protocols do not include such
transitions. The assumption of initial states is related to the requirement of initialization
and the fault-tolerant property. If a protocol requires a designated initial state, we need
to initialize all agents to execute protocols. On the other hand, when the protocol allows
arbitrary initial states, initialization of agents other than the BS is not necessary. In addition,
even if agents enter arbitrary states due to transient faults, the system can eventually reach
the desired configuration by initializing the BS. If a protocol allows arbitrary initial states
and does not require a BS, the protocol is self-stabilizing because it can work from arbitrary
initial configurations.

For each combination of assumptions, we completely clarify constant-space solvability
of the uniform bipartition problem and, if solvable, give a space-optimal protocol (except
for protocols given in [16, 14]). The results are shown in Table 1. Each element of the
table represents the minimum number of agent states (except for a BS) to solve the uniform
bipartition problem on the setting. First, we consider protocols in the case of a single BS. If
protocols assume designated initial states, we prove three states are necessary and sufficient.
If protocols allow arbitrary initial states, four states are necessary and sufficient under global
fairness, while no constant-space protocol exists under weak fairness. Next, we consider



H. Yasumi, F. Ooshita, K. Yamaguchi, and M. Inoue 19:3

Table 1 The minimum number of states to solve the uniform bipartition problem, where n is the
number of agents.

BS Fairness
Designated initial states Arbitrary initial states

Asymmetric Symmetric Asymmetric Symmetric

Single BS Globally fair 3 3 4 4
Weakly fair 3 3 Ω(n) Ω(n)

No BS Globally fair 3* 4** Impossible Impossible
Weakly fair 3* Impossible Impossible Impossible

* A protocol with three states is proposed in [16].
** A protocol with four states is obtained by a general transformer in [14].

protocols in the case of no BS. If protocols assume designated initial states, three states
are necessary and sufficient for asymmetric protocols. However, if we focus on symmetric
protocols, no protocol exists under weak fairness and four states are necessary and sufficient
under global fairness. For the case of arbitrary initial states, we prove no protocol exists if we
assume no BS. This implies that a BS is necessary for protocols with arbitrary initial states.

1.3 Related Works
The population protocol model was introduced by Angluin et al. [4, 7]. They regard initial
states of agents as an input to the system, and resultant states of them as an output from
the system. Following this definition, they clarified the class of computable predicates in the
population protocol model.

In addition to such computability researches, many algorithmic problems have been
considered in the population protocol model. For example, they include leader election
[1, 2, 8, 15, 17, 19, 23, 24, 25], counting [9, 11, 12, 20], and majority [1, 3, 6, 18]. These
problems are considered under various assumptions of a population with or without a base
station, global or weak fairness, symmetric or asymmetric protocols, designated or arbitrary
initial states. The leader election problem has been thoroughly studied for both designated
and arbitrary initial states. For designated initial states, many researches aim to minimize
the time and space complexity [1, 2, 17]. For arbitrary initial states, many papers have
developed self-stabilizing and loosely-stabilizing protocols [8, 15, 19, 23, 24, 25]. Cai et al.
[15] proposed a self-stabilizing leader election protocol with knowledge of n, and proved that
knowledge of n is necessary to construct a self-stabilizing leader election protocol, where
n is the number of agents. To overcome the requirement of knowledge of n, Sudo et al.
[24] proposed a concept of loose stabilization and gave a loosely-stabilizing leader election
protocol. The complexity and the requirement on communication graphs are improved later
[19, 23, 25]. The counting problem aims to count the number of agents and it has been
studied under assumptions of a single BS and arbitrary initial states. After the first protocol
was proposed in [12], the space complexity was gradually minimized [11, 20]. In [9], a time
and space optimal protocol was proposed. The majority problem is also a fundamental
problem in the population protocol model. In this problem, each agent initially has a color
x or y, and the goal is to decide which color gets a majority. For the majority problem,
many protocols have been proposed [1, 3, 6, 18]. Recently an asymptotically space-optimal
protocol for c colors (c > 2) has been proposed in [18].

As a similar problem to the uniform bipartition problem, a group composition problem is
studied in [16, 21]. Delporte-Gallet et al. [16] proposed a protocol to divide a population
into g groups of the same size. The protocol is asymmetric, assumes designated initial states,

OPODIS 2017



19:4 Constant-Space Population Protocols for Uniform Bipartition

and works under global fairness in the model of no BS. When g = 2, the protocol solves
the uniform bipartition problem with three states. However, the paper does not consider
other setting. Lamani et al. [21] studied a problem that divides a population into groups of
designated sizes. Although the proposed protocols assume arbitrary initial states, they also
assume that n/2 pairs of agents make interactions at the same time and that agents know n.
In addition, the protocol requires n states, that is, it is not a constant-space protocol.

2 Definitions

2.1 Population Protocol Model
A population A is defined as a collection of pairwise interacting agents. A protocol is defined
as P = (Q, δ), where Q is a set of possible states of agents and δ is a set of transitions on
Q. Each transition in δ is described in the form (p, q)→ (p′, q′), which means that, when
an agent in state p and an agent in state q interact, they change their states to p′ and
q′, respectively. In this paper, only deterministic protocols are considered. If transition
(p, q) → (p′, q′) satisfies p = q and p′ 6= q′, the transition is asymmetric; otherwise, the
transition is symmetric. For protocol P = (Q, δ), P is symmetric if every transition in δ is
symmetric, and P is asymmetric if every transition in δ is symmetric or asymmetric. Note
that a symmetric protocol is also asymmetric.

A global state of a population is called a configuration. A configuration is defined
as a vector of (local) states of all agents. We define s(a,C) as the state of agent a at
configuration C. When C is clear from the context, we simply write s(a). If configuration C ′
is obtained from configuration C by a single transition of a pair of agents, we say C → C ′.
For configurations C and C ′, if there is a sequence of configurations C = C0, C1, · · · , Ck = C ′

that satisfies Ci → Ci+1 for any i (0 ≤ i < k), we say C ′ is reachable from C, denoted by
C
∗−→ C ′.
If an infinite sequence of configurations E = C0, C1, C2, . . . satisfies Ci → Ci+1 for any

i (i ≥ 0), E is an execution of a protocol. An execution E is weakly fair if every pair
of agents in A interacts infinitely often. An execution E is globally fair if, for every pair
of configurations C and C ′ such that C → C ′, C ′ occurs infinitely often when C occurs
infinitely often. Intuitively, global fairness guarantees that, if configuration C occurs infinitely
often, every possible interaction at C occurs infinitely often. If C occurs infinitely often,
C ′ satisfying C → C ′ occurs infinitely often, and consequently C ′′ satisfying C ′ → C ′′ also
occurs infinitely often. This implies that, under global fairness, if C occurs infinitely often,
every configuration C∗ reachable from C also occurs infinitely often.

In this paper, we consider two models, one with a single BS (base station) and one with
no BS. In the model with a single BS, we assume that a single agent called a BS exists in A.
The BS is distinguishable from other non-BS agents while non-BS agents are identical and
cannot be distinguished. That is, state set Q is divided into state set Qb of a BS and state set
Qp of non-BS agents. The BS can be as powerful as needed, in contrast with resource-limited
non-BS agents. That is, we focus on the number of states |Qp| for non-BS agents and do not
care the number of states |Qb| for the BS. In addition, even if we consider protocols with
arbitrary initial states, we assume that the BS has a designated initial state while all non-BS
agents have arbitrary initial states. If we consider protocols with designated initial states, all
non-BS agents have the same designated initial states and the BS has another designated
initial state. In the model with no BS, no BS exits and all agents are identical. In this case,
they all have the same designated initial states or arbitrary initial states. In both models, no
agent knows the total number of agents in the initial configuration.
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2.2 Uniform Bipartition Problem

Let Ap be a set of all non-BS agents. Let f : Qp → {red, blue} be a function that maps a
state of a non-BS agent to red or blue. We define a color of a ∈ Ap as f(s(a)). We say agent
a ∈ Ap is red if f(s(a)) = red and agent a ∈ Ap is blue if f(s(a)) = blue.

Configuration C is stable if there is a partition {R, B} of Ap that satisfies the following
condition: 1) ||R| − |B|| ≤ 1, and 2) for every C∗ such that C ∗−→ C∗, each agent in R is red
and each agent in B is blue at C∗.

An execution E = C0, C1, C2, . . . solves the uniform bipartition problem if there is a
stable configuration Ct in E. If each execution E of protocol P solves the uniform bipartition
problem, we say protocol P solves the uniform bipartition problem. The main objective of
this paper is to minimize the number of states for non-BS agents. Since the BS is powerful,
we do not care the number of states for the BS. When protocol P requires x states for non-BS
agents, we say P is a protocol with x states.

For simplicity, we use agents only to refer to non-BS agents in the following sections. To
refer to the BS, we always use the BS (not an agent).

3 Uniform Bipartition Protocols with a Single BS

In this section, we consider the uniform bipartition problem under the assumption of a single
BS. Recall that the BS is distinguishable from other non-BS agents, and we do not care the
number of states for the BS.

3.1 Protocols with Designated Initial States

In this subsection, we consider protocols with designated initial states. We give a simple
symmetric protocol with three states under global or weak fairness, and then prove that
there exists no asymmetric protocol with two states under global or weak fairness. This
implies that, in this case, three states are sufficient for asymmetric or symmetric protocols
under global or weak fairness.

3.1.1 A protocol with three states

In this protocol, the state set of (non-BS) agents is Qp = {initial, red, blue}, and we set
f(initial) = f(red) = red and f(blue) = blue. The designated initial state of all agents is
initial. The idea of the protocol is to assign states red and blue to agents alternately when
agents interact with the BS. To realize this, the BS has a state set Qb = {bred, bblue}, and its
initial state is bred. The protocol consists of the following two transitions.
1. (bred, initial)→ (bblue, red)
2. (bblue, initial)→ (bred, blue)

That is, when the BS in state bred (resp., bblue) and a non-BS agent in state initial interact,
the BS changes the state of the non-BS agent to red (resp., blue) and the state of itself to
bblue (resp., bred). When two non-BS agents interact, no state transition occurs. Clearly, all
non-BS agents evenly transit to state red or blue, and the difference in the numbers of red
and blue agents is at most one. Note that the protocol contains no asymmetric transition
and works correctly if every non-BS agent interacts with the BS. Therefore, we have the
following theorem.
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19:6 Constant-Space Population Protocols for Uniform Bipartition

I Theorem 1. In the model with a single BS, there exists a symmetric protocol with three
states and designated initial states that solves the uniform bipartition problem under global
or weak fairness.

3.1.2 Impossibility with two states

Next, we show three states are necessary to construct an asymmetric protocol under global
or weak fairness. This implies that, in this case, three states are necessary for asymmetric
or symmetric protocols under global or weak fairness because a symmetric protocol is also
asymmetric. That is, three states are necessary and sufficient in this case.

I Theorem 2. In the model with a single BS, no asymmetric protocol with two states and
designated initial states solves the uniform bipartition problem under global or weak fairness.

Proof. We prove that such a protocol does not exist even if its execution satisfies both global
and weak fairness. For contradiction, assume that such a protocol Alg exists. Without loss
of generality, we assume Qp = {s1, s2}, f(s1) = red, f(s2) = blue, and that the designated
initial state of all agents is s1. Let n is an even number that is at least four. We consider
the following three cases.

First, for population A of a single BS and n (non-BS) agents a1, a2, . . . , an, consider an
execution E = C0, C1, . . . of Alg that satisfies both global and weak fairness. According to
the definition, there exists a stable configuration Ct. That is, after Ct, the state of each
agent does not change even if the BS and agents in states s1 and s2 interact in any order.

Next, for population A′ of a single BS and n + 2 agents a1, a2, . . . , an+2, we define an
execution E′ = C ′0, C

′
1, . . . , C

′
t, C
′
t+1, . . . of Alg as follows.

From C ′0 to C ′t, the BS and n agents a1, a2, . . . , an interact in the same order as the
execution E.
After C ′t, the BS and n+ 2 agents interact so as to satisfy both global and weak fairness.

Since the BS and agents a1, . . . , an change their states similarly to E from C ′0 to C ′t, there
are n/2 + 2 agents in state s1 and n/2 agents in state s2 at C ′t. Moreover, the state of the BS
at C ′t is the same as the state of the BS at Ct. However, since the difference in the numbers
of red and blue agents is two, C ′t is not a stable configuration. Consequently, after C ′t, some
red or blue agent changes its state in execution E′.

Lastly, we consider execution E for population A again. Here, we consider interactions
after stable configuration Ct, and apply interactions in E′ to execution E. That is, we
consider the following execution after Ct: 1) when the BS and an agent in state s ∈ {s1, s2}
interact at C ′u → C ′u+1 (u ≥ t) in E′, the BS and an agent in state s interact at Cu → Cu+1
in E, and 2) when two agents in states s ∈ {s1, s2} and s′ ∈ {s1, s2} interact at C ′u → C ′u+1
(u ≥ t) in E′, two agents in states s and s′ interact at Cu → Cu+1 in E. We can construct
such an execution because, after stable configuration Ct, at least two agents are in s1 and at
least two agents are in s2. In this execution E, since interactions occur similarly to E′, some
red or blue agent changes its state similarly to E′ after Ct. This is a contradiction because
Ct is a stable configuration. J

3.2 Protocols with Arbitrary Initial States

In this subsection, we consider protocols with arbitrary initial states. Recall that, since a BS
is powerful, the BS can start the protocol from a designated initial state.
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3.2.1 Under global fairness
Under global fairness, we give a symmetric protocol with four states, and prove impossibility
of protocols with three states. That is, we show that four states are necessary and sufficient
to construct a (symmetric or asymmetric) protocol in this case.

3.2.1.1 A symmetric protocol with four states

Here we show a symmetric protocol with four states under global fairness. In this protocol,
each (non-BS) agent x has two variables rbx ∈ {red, blue} and markx ∈ {0, 1}. Variable rbx

represents the color of agent x. That is, for state s of agent x, f(s) = red holds if rbx = red

and f(s) = blue holds if rbx = blue. We define #red as the number of red agents and #blue
as blue agents. We explain the role of variable markx later.

The basic strategy of the protocol is that the BS counts red and blue agents by counting
protocol Count [11] and changes colors of agents so that the numbers of red and blue agents
become equal. Protocol Count is a symmetric protocol that counts the number of non-BS
agents from arbitrary initial states under global fairness. Protocol Count uses only two states
for each non-BS agent. In protocol Count, the BS has variable Count.out that eventually
outputs the number of agents. More concretely, Count.out initially has value 0, gradually
increases one by one, eventually equals to the number of agents, and stabilizes. The following
lemma explains the characteristic of protocol Count.

I Lemma 3 ([11]). Let n be the number of non-BS agents. In the initial configuration,
Count.out = 0 holds. When Count.out < n, Count.out eventually increases by one under
global fairness. When Count.out = n, Count.out never changes and stabilizes.

To count red and blue agents, the BS executes two instances of protocol Count in parallel
to the main procedure of the uniform bipartition protocol. We denote by Countred and
Countblue instances of protocol Count to count red and blue agents, respectively. The BS
executes Countred when it interacts with a red agent. That is, the BS updates variables of
Countred at the BS and the red agent by applying a transition of protocol Countred. By this
behavior, the BS executes Countred as if the population contains only red agents. Therefore,
after the BS initializes its own variables of Countred, it can correctly count the number of
red agents by Countred (i.e., Countred.out eventually stabilizes to #red) as long as a set of
red agents does not change. Similarly, the BS executes Countblue when it interacts with
a blue agent, and counts the number of blue agents. The straightforward approach to use
the counting protocols is to adjust colors of agents after Countred.out and Countblue.out

stabilize. However, the BS cannot know whether the outputs have stabilized or not. For this
reason, the BS maintains estimated numbers of red and blue agents, and it changes colors of
agents when the difference in the estimated numbers of red and blue agents is two. Note
that, since the counting protocols assume that a set of counted agents does not change, the
BS must restart Countred and Countblue from the beginning when the BS changes colors of
some agents.

We explain the details of this procedure. The BS records the estimated numbers of red and
blue agents in variables C∗rb[red] and C∗rb[blue], respectively. In the beginning of execution,
these variables are identical to outputs of Countred and Countblue. If the difference between
C∗rb[red] and C∗rb[blue] becomes two, the BS immediately changes colors of agents. At the
same time, the BS updates C∗rb[red] and C∗rb[blue] to reflect the change of colors. After the
BS changes colors of some agents, it restarts Countred and Countblue from the beginning by
initializing its own variables of the counting protocols. Since the counting protocols allow
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19:8 Constant-Space Population Protocols for Uniform Bipartition

Algorithm 1 Uniform bipartition protocol.
Variables at BS:

C∗rb[c](c ∈ {red, blue}): the estimated number of c agents, initialized to 0
V ariables: variables of Countc(c ∈ {red, blue})

Variables at a mobile agent x:
rbx ∈ {red, blue}: color of the agent, initialized arbitrarily
markx ∈ {0, 1}: a variable of Countc(c ∈ {red, blue}), initialized arbitrarily

1: when a mobile agent x interacts with BS do
2: update markx and variables of Countrbx

at BS by applying a transition of Countrbx

3: if C∗rb[rbx] < Countrbx .out then
4: C∗rb[rbx]← Countrbx

.out

5: end if
6: if C∗rb[rbx]− C∗rb[rbx] > 1 then
7: C∗rb[rbx]← C∗rb[rbx]− 1
8: C∗rb[rbx]← C∗rb[rbx] + 1, rbx ← rbx

9: reset variables of Countred and Countblue at BS
10: end if
11: end when

arbitrary initial states of non-BS agents, the BS can correctly count red and blue agents
after that. Note that the BS does not initialize C∗rb[red] and C∗rb[blue] because it knows
such numbers of red and blue agents exist. If the output of Countred and Countblue exceeds
C∗rb[red] and C∗rb[blue], the BS updates C∗rb[red] and C∗rb[blue], respectively. After that, if
the difference between C∗rb[red] and C∗rb[blue] becomes two, the BS changes colors of agents.
By repeating this behavior, the BS adjusts colors of agents.

The pseudocode of this protocol is given in Algorithm 1. We define red = blue and
blue = red. Variable markx is a two-state variable of counting protocols Countred and
Countblue. Since the BS restarts the counting protocols whenever it changes colors of agents,
the BS keeps a set of red (resp., blue) agents unchanged until it restarts Countred (resp.,
Countblue). In addition, each agent is involved in either Countred or Countblue at the same
time. Hence it requires only a single variable markx to execute Countred and Countblue.
When two non-BS agents interact, no state transition occurs in this protocol and counting
protocols. When the BS and a red agent interact, they update markx and variables of
Countred at the BS by applying a transition of Countred. This means that they execute
Countred in parallel to the main procedure of the uniform bipartition protocol. After that,
if Countred.out is larger than C∗rb[red], C∗rb[red] is updated with Countred.out. If C∗rb[red]
is larger than C∗rb[blue] by two or more, the red agent changes its color to blue and the BS
updates C∗rb[red] and C∗rb[blue]. After updating, the BS resets variables of Countred and
Countblue, and restarts counting. When the BS and a blue agent interact, they behave
similarly.

In the following, we prove the correctness of Algorithm 1.

I Lemma 4. In any configuration, C∗rb[red] ≤ #red, C∗rb[blue] ≤ #blue and |C∗rb[red] −
C∗rb[blue]| ≤ 1 hold.

Proof. We prove by induction on the index k ≥ 0 of a configuration in an execution
C0, C1, C2, · · · , Ck, · · · . At the initial configuration C0, the lemma holds. Let us assume
that the lemma holds for configuration Ck and prove it for configuration Ck+1. From this
assumption, C∗rb[red] ≤ #red, C∗rb[blue] ≤ #blue and |C∗rb[red]− C∗rb[blue]| ≤ 1 hold at Ck.
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Assume that, when Ck transits to Ck+1, the BS and agent x interact. If Countrbx .out becomes
larger than C∗rb[rbx], the BS updates C∗rb[rbx] by C∗rb[rbx] ← Countrbx

.out (line 3). Note
that, in this case, C∗rb[rbx] increases by one from Lemma 3. In addition, C∗rb[red] ≤ #red and
C∗rb[blue] ≤ #blue still hold. Recall that |C∗rb[red]−C∗rb[blue]| ≤ 1 held before this update and
C∗rb[rbx] increases by one. Conseqently, at this moment (before line 5), |C∗rb[rbx]−C∗rb[rbx]| ≤ 1
or C∗rb[rbx]− C∗rb[rbx] = 2 holds. Next, we consider lines 5 to 9. If C∗rb[rbx]− C∗rb[rbx] ≤ 1
at line 5, lines 6 to 8 are not executed, and thus C∗rb[red] ≤ #red, C∗rb[blue] ≤ #blue and
|C∗rb[red]−C∗rb[blue]| ≤ 1 hold. If C∗rb[rbx]−C∗rb[rbx] = 2 at line 5, agent x changes its color
from rbx to rbx, C∗rb[rbx] decreases by one, and C∗rb[rbx] increases by one. This also preserves
C∗rb[red] ≤ #red, C∗rb[blue] ≤ #blue and |C∗rb[red] − C∗rb[blue]| ≤ 1. Therefore, the lemma
holds. J

I Theorem 5. Algorithm 1 solves the uniform bipartition problem. That is, in the model
with a BS, there exists a symmetric protocol with four states and arbitrary initial states that
solves the uniform bipartition problem under global fairness.

Proof. We define phase = C∗rb[red] + C∗rb[blue]. Initially, phase = 0 holds. We show that 1)
phase increases one by one if phase < n, and 2) Algorithm 1 solves the uniform bipartition
problem if phase = n.

First consider the initial configuration. Since we assume global fairness, Countred.out or
Countblue.out increases by one from Lemma 3 and at that time phase increases by one.

Let us consider the transition C → C ′ such that phase increases by one (i.e., line 4 is
executed) and phase < n holds at C ′. We consider two cases.

Case that lines 7 to 9 are not executed at C → C ′. In this case, since the BS does
not change sets of red and blue agents, it can correctly continue to execute Countred

and Countblue. Since phase < n = #red + #blue holds, either #red > C∗rb[red] or
#blue > C∗rb[blue] holds. Consequently, from Lemma 3, either Countred.out > C∗rb[red]
or Countblue.out > C∗rb[blue] holds eventually because we assume global fairness. At that
time, C∗rb[red] or C∗rb[blue] increases by one and hence phase increases by one.
Case that lines 7 to 9 are executed at C → C ′. In this case, the BS changes sets of red
and blue agents. At that time, the BS initializes its own variables of counting algorithms
Countred and Countblue. Since the counting algorithms work from arbitrary initial states
of agents, the BS can correctly execute Countred and Countblue from the beginning under
global fairness. Similarly to the first case, from Lemma 3, either Countred.out > C∗rb[red]
or Countblue.out > C∗rb[blue] holds eventually. Then, phase increases by one.

Lastly, consider the transition C → C ′ such that phase increases by one and phase = n

holds at C ′. From phase = n, C∗rb[red] + C∗rb[blue] = n = #red + #blue holds, and
consequently C∗rb[red] = #red and C∗rb[blue] = #blue hold from Lemma 4. This implies that
Countred.out and Countblue.out never exceed C∗rb[red] and C∗rb[blue] after that, respectively.
Therefore, C∗rb[red] and C∗rb[blue] are never updated and consequently agents never change
their colors any more. Since |#red−#blue| = |C∗rb[red]− C∗rb[blue]| ≤ 1 holds from Lemma
4, we have the theorem. J

3.2.1.2 Impossibility with three states

Here we show the impossibility of asymmetric protocols with three states.

I Theorem 6. In the model with a single BS, no asymmetric protocol with three states and
arbitrary initial states solves the uniform bipartition problem under global fairness.
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Proof. For contradiction, assume that such a protocol Alg exists. Without loss of generality,
we assume that the state set of agents is Qp = {s1, s2, s3}, f(s1) = f(s2) = red, and
f(s3) = blue. We consider the following three cases.

First, consider population A = {a0, . . . , an} of a single BS and n agents such that n is
even and at least 4. Assume that a0 is a BS. Since each agent has an arbitrary initial state,
we consider an initial configuration C0 such that s(ai) = s3 holds for any i(1 ≤ i ≤ n). Note
that the BS a0 has a designated initial state at C0. From the definition of Alg, for any
globally fair execution E = C0, C1, · · · , there exists a stable configuration Ct. Hence, both
the number of red agents and the number of blue agents are n/2 at Ct. After Ct, the color
of agent ai (i.e., f(s(ai))) never changes for any ai(1 ≤ i ≤ n) even if the BS and agents
interact in any order.

Next, consider population A′ = {a′0, . . . , a′n+2} of a single BS and n+ 2 agents. Assume
that agent a′0 is a BS. We consider an initial configuration C ′0 such that s(a′i) = s3 holds
for any i (1 ≤ i ≤ n + 2). From this initial configuration, we define an execution E′ =
C ′0, C

′
1, · · · , C ′t, · · · using the execution E as follows.

For 0 ≤ u < t, when ai and aj interact at Cu → Cu+1, a′i and a′j interact at C ′u → C ′u+1.
For t ≤ u, an interaction occurs at C ′u → C ′u+1 so that E′ satisfies global fairness.

Since the BS and agents a1, . . . , an change their states similarly to E from C ′0 to C ′t,
s(a′i) = s(ai) holds for 1 ≤ i ≤ n. Hence, there exist n/2 red agents and n/2 + 2 blue agents
at C ′t. Consequently C ′t is not a stable configuration. This implies that there exists a stable
configuration C ′t′ for some t′ > t. Clearly at least one blue agent becomes red from C ′t to
C ′t′ . That is, for some configuration C ′t∗(t ≤ t∗ < t′), an agent in state s3 transits to state s1
or s2 at Ct∗ → Ct∗+1. Assume that t∗ is the smallest value that satisfies the condition.

Finally, for A we define an execution E′′ = C ′′0 , C
′′
1 , · · · using executions E and E′ as

follows.
Let C ′′u = Cu for 0 ≤ u ≤ t. That is, E′′ reaches stable configuration C ′′t in similarly to
E.
For t ≤ u ≤ t∗, we define an execution so that interaction at C ′u → C ′u+1 also occurs
at C ′′u → C ′′u+1. Concretely, when a′i and a′j interact at C ′u → C ′u+1, we define ai′ and
aj′ as follows and they interact at C ′′u → C ′′u+1. If i ≤ n, let i′ = i. Otherwise, since
s(a′i) = s3 holds at C ′u (because no agent in state s3 changes its state from C ′t to C ′t∗),
choose i′(≤ n) such that both s(ai′) = s3 and i′ 6= j hold. Similarly, if j ≤ n, let j′ = j.
Otherwise choose j′(≤ n) such that both s(aj′) = s3 and j′ 6= i′ hold. Such i′ and j′
exist since at least two agents in state s3 exist (because n ≥ 4 holds and no agent in state
s3 changes its state from C ′t to C ′t∗).

Clearly, for t ≤ u ≤ t∗ and i ≤ n, s(ai) at C ′′u is equal to s(a′i) at C ′u. Additionally, at
C ′′t∗ → C ′′t∗+1, an agent in state s3 transits to s1 or s2 as well as C ′t∗ → C ′t∗+1. This means
that the agent changes its color at C ′′t∗ → C ′′t∗+1, which contradicts that C ′′t is a stable
configuration. J

I Remark. Recall that Section 3.1.1 gives a protocol with three states and designated
initial states. In the protocol, the state set of agents is Qp = {initial, red, blue}, we set
f(initial) = f(red) = red and f(blue) = blue, and the designated initial state is initial. The
important point is that the designated initial state (i.e., initial) has the same color as one of
other states (i.e., red).

In the proof of Theorem 6, we consider an execution such that all agents have the same
initial state in the initial configuration. The difference from the above protocol is that the
initial state does not have the same color as any other state. This means, even if we consider
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a protocol with three states and designated initial states, there exists no protocol such that
the designated initial state does not have the same color as any other state. This fact holds
even if the number of states is larger than three. J

3.2.2 Under weak fairness
Under weak fairness, we prove that no protocol with constant states solves the uniform bipar-
tition problem. To prove this impossibility, we borrow techniques used in the impossibility
proof for the counting problem [12]. This work shows that, in the model with a single BS,
when the upper bound of the number of non-BS agents is n, no asymmetric protocol with
n− 2 states and arbitrary initial states solves the counting problem under weak fairness. We
can apply the proof in [12] to the uniform bipartition problem in a straightforward manner.

I Theorem 7. Let n be an even number that is at least four. In the model with a single BS,
when the upper bound of the number of non-BS agents is n, no asymmetric protocol with
n− 3 states and arbitrary initial states solves the uniform bipartition problem under weak
fairness.

Proof. For contradiction, assume that such a protocol Alg exists. We consider the following
two cases.

First, consider population A = {a0, . . . , an−2} of a single BS and n− 2 agents such that
a0 is a BS. We consider an initial configuration C0 such that initial states of a0, . . . , an−2
are s0, . . . , sn−2 (s0 is a designated initial state of the BS). Since the upper bound of the
number of non-BS agents is n and agents do not know the number of agents, Alg should work
correctly even if the number of non-BS agents is n− 2. This implies that, for any execution
E = C0, C1, · · · , Ct, · · · , there exists a stable configuration Ct. Since the number of states
for non-BS agents is n − 3, there exists y, ap, and ap′ such that configurations satisfying
y = s(ap) = s(ap′) appear infinitely many times after Ct.

Next, consider population A′ = {a′0, . . . , a′n} of a single BS and n agents such that a′0
is a BS. We consider an initial configuration C0 such that initial states of a′0, . . . , a′n are
s0, . . . , sn−2, y, y, respectively. For A′ we define an execution E′ = C ′0, C

′
1, · · · , C ′t, · · · using

the execution E as follow.
For 0 ≤ u ≤ t − 1, when ai and aj interact at Cu → Cu+1, a′i and a′j interact at
C ′u → C ′u+1.

Clearly, s(a′i) = s(ai) holds at C ′t for any i (0 ≤ i ≤ n− 2). Since s(a′n) = s(a′n−1) = y holds
at C ′t, the difference in the numbers of red and blue agents remains two and consequently C ′t
is not a stable configuration.

After C ′t, we define an execution as follows. This definition aims to make n− 2 agents
behave similarly to E and two agents keep state y.

Until y = s(a′p) = s(a′p′) holds, if ai and aj interact at Cu → Cu+1, a′i and a′j interact at
C ′u → C ′u+1.
To define the remainder of E′, we first define procedure Proc(q, q′), which creates a
sub-execution from two indices q and q′. Procedure Proc(q, q′) can be applied to a
configuration such that y = s(a′p) = s(a′p′) = s(a′n−1) = s(a′n) holds. After that,
Proc(q, q′) creates a sub-execution similar to E such that all agents in A(q, q′) = (A′ −
{a′p, a′p′ , a′n−1, a

′
n}) ∪ {a′q, a′q′} interact each other and the last configuration also satisfies

the above condition. The concrete definition of Proc(q, q′) is as follows. When ai and
aj interact at Cu → Cu+1, a′i and a′j interact at C ′u → C ′u+1 if i, j /∈ {p, p′}. If i = p or
j = p, a′q joins the interaction instead of a′p. If i = p′ or j = p′, a′q′ joins the interaction
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instead of a′p′ . Procedure Proc(q, q′) continues these behaviors until all agents in A(q, q′)
interact each other and satisfy s(a′q) = s(a′q′) = y.
By using Proc(q, q′), we define the remainder of E′ to satisfy weak fairness as fol-
lows: Repeat Proc(p, p′), Proc(p, n − 1), Proc(p, n), Proc(n − 1, p′), Proc(n, p′), and
Proc(n, n− 1).

Clearly, E′ makes n− 2 agents behave similarly to E and two agents keep state y. Hence, E′
never converges to a stable configuration. Since E′ is weakly fair, this is a contradiction. J

I Remark. Theorem 7 implies that no protocol with at most n− 4 states solves the uniform
bipartition problem under the same assumption. This is because, if a protocol with ns states
(ns ≤ n− 4) is given, we can transform it to a protocol with n− 3 states by adding n− 3−ns

dummy states. Hence, at least n− 2 states are necessary to solve the uniform bipartition
problem under this assumption.

On the other hand, the sufficient number of states to solve the uniform bipartition problem
under this assumption is not known. To clarify the matching lower and upper bounds of the
number of states is an open problem. J

4 Uniform Bipartition Protocols with No BS

In this section, we consider the uniform bipartition problem under the assumption of no BS.
That is, all agents are identical.

4.1 Protocols with Designated Initial States

In this subsection, we consider protocols with designated initial states. Since we consider the
model with no BS, all agents have the same initial state in the initial configuration.

4.1.1 Asymmetric protocols

First, we consider asymmetric protocols in this case. Since three states are necessary in the
model with a BS from Theorem 2, three states are also necessary in the model with no BS.
In addition, Delporte-Gallet et al. [16] gives a protocol with three states. This implies that
three states are necessary and sufficient in this case.

Here, we briefly explain the protocol proposed in [16]. In this protocol, the state set of
agents is Qp = {initial, red, blue}, and we set f(initial) = f(red) = red and f(blue) = blue.
The designated initial state of all agents is initial. The protocol consists of a single asymmetric
transition (initial, initial)→ (red, blue). In this protocol, when two agents in state initial
interact, one agent transits to red and the other transits to blue. This implies that the number
of agents in state red is always the same as the number of agents in state blue. Eventually
all agents (possibly except one agent) transit to state red or blue. From f(initial) = red,
the difference in the numbers of red and blue agents is at most one. Note that the protocol
works correctly if every pair of agents interacts once.

I Theorem 8 ([16]). In the model with no BS, there exists an asymmetric protocol with
three states and designated initial states that solves the uniform bipartition problem under
global or weak fairness.
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4.1.2 Symmetric protocols
Next, we consider symmetric protocols in this case. For this setting, we give three results: 1)
a protocol with four states under global fairness, 2) impossibility with three states under
global fairness, and 3) impossibility under weak fairness. These results show that, in this
case, four states are necessary and sufficient to construct a symmetric protocol under global
fairness, and no symmetric protocol exists under weak fairness.

4.1.2.1 A protocol with four states under global fairness

We can easily obtain a symmetric protocol with four states by a scheme proposed in [14].
The scheme transforms an asymmetric protocol with α states to a symmetric protocol with
at most 2α states. By applying the scheme to an asymmetric protocol in Section 4.1.1 and
deleting unnecessary states, we can obtain a symmetric protocol with four states.

For self-containment, we briefly explain the obtained protocol. Since no symmetric
protocol solves the uniform bipartition problem for a population of two agents, we assume
that a population consists of at least three agents. In this protocol, the state set of agents
is Qp = {initial, initial′, red, blue}, and we set f(initial) = f(initial′) = f(red) = red and
f(blue) = blue. The designated initial state of all agents is initial. The protocol consists of
the following seven transitions.
1. (initial, initial)→ (initial′, initial′)
2. (initial′, initial′)→ (initial, initial)
3. (initial, initial′)→ (red, blue)
4. (initial, red)→ (initial′, red)
5. (initial, blue)→ (initial′, blue)
6. (initial′, red)→ (initial, red)
7. (initial′, blue)→ (initial, blue)

The main behavior of the protocol is similar to the previous asymmetric protocol with
three states. However, since asymmetric transition (initial, initial) → (red, blue) is not
allowed in symmetric protocols, the scheme in [14] introduces a new state initial′. Transition
3 implies that, when agents in states initial and initial′ interact, they become red and blue,
respectively. In addition, agents in states initial and initial′ become initial′ and initial

respectively when they interact with some agents (except for interaction between one in state
initial and one in state initial′). From global fairness, if at least two agents are in state
initial or initial′, some two agents eventually enter states initial and initial′. After that, if
the two agents interact, they enter states red and blue.

Figure 1 shows an example execution of the protocol for a population of four agents.
Initially all agents are in state initial (Fig. 1 (a)). After interactions (a1, a2) and (a3, a4), all
agents enter state initial′ (Fig. 1 (b)). Similarly, after interactions (a1, a4), (a2, a3), (a1, a3),
and (a2, a4), all agents have the same state (Fig. 1 (c) and (d)). If these interactions happen
infinite times, all agents keep the same state and never achieve the uniform bipartition.
However, under the global fairness, such interactions do not happen infinite times. This is
because, if some configuration C occurs infinite times, every configuration reachable from C

should occur. This implies that, before a configuration in Fig. 1 (d) occurs infinite times,
interactions (a1, a2) and (a1, a3) happen in this order from the configuration. Then, a1 and
a3 enter states red and blue, respectively (Fig. 1 (e) and (f)). After that, in a similar way,
the remaining agents eventually enter red and blue like Fig. 1 (g) and (h).

Theorem 8 and correctness of the scheme in [14] derives the following theorem.
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Figure 1 An example execution of the protocol. Symbols i, i′, r, and b represent states initial,
initial′, red, and blue, respectively. Arrows represent interactions of agents.

I Theorem 9. In the model with no BS, when the number of agents is at least three, there
exists a symmetric protocol with four states and designated initial states that solves the
uniform bipartition problem under global fairness.

4.1.2.2 Impossibility results

In the following, we show two impossibility results.

I Theorem 10. In the model with no BS, no symmetric protocol with three states and
designated initial states solves the uniform bipartition problem under global fairness.

Proof. For contradiction, assume that such a protocol Alg exists. Without loss of generality,
we assume that the state set of agents is Qp = {s1, s2, s3}, f(s1) = f(s2) = red, and
f(s3) = blue. Consider population A = {a1, . . . , an} of n agents such that n is even and at
least 6. First, assume that the designated initial state of all agents is s3. Clearly, Alg has
transition (s3, s3)→ (si, si) for some i 6= 3. However, since n/2 agents in state s3 exist at a
stable configuration, some agents change their states from s3 to si at the stable configuration.
This implies that agents change their colors. Therefore, a designated initial state is s1 or s2.

Next, assume that the designated initial state of all agents is s1 (Case of s2 is the
same). Since Alg is a symmetric protocol and all the initial states are s1, Alg includes
(s1, s1)→ (si, si) for some i 6= 1. This implies that all agents can transit to state si from the
initial configuration. Hence, Alg also includes (si, si)→ (sj , sj) for some j 6= i. When i = 3,
since n/2 blue agents exist at a stable configuration and they are in state s3, the blue agents
become red by transition (s3, s3)→ (sj , sj). Therefore, i 6= 3 holds.

The remaining case is i = 2. If j = 3, that is, Alg includes (s2, s2) → (s3, s3), red
agents (i.e., agents in state s1 or s2) change their colors at a stable configuration because
Alg includes (s1, s1) → (s2, s2) and (s2, s2) → (s3, s3). This implies j = 1. In this
case, Alg includes (s2, s2) → (s1, s1). Since some agents should transit to state s3, Alg
includes (s1, s2)→ (sk, sl) such that k or l is 3. At a stable configuration, there exist n/2
agents with states s1 or s2. However, these agents can transit to state s3 from transitions
(s1, s2)→ (sk, sl), (s2, s2)→ (s1, s1), and (s1, s1)→ (s2, s2). This is a contradiction. J

I Theorem 11. In the model with no BS, no symmetric protocol with designated initial
states solves the uniform bipartition problem under weak fairness.

Proof. For contradiction, assume that such a protocol Alg exists. We assume that the state
set of agents is Qp = {s1, s2, . . .}. Consider population A = {a1, . . . , an} of n agents such
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that n is even and at least 2. Let si1 be the designated initial state of all agents, that is,
s(ai) = si1 holds for any i (1 ≤ i ≤ n) at the initial configuration. Clearly, symmetric
protocol Alg has transition (si1 , si1)→ (si2 , si2) for some si2 . This implies that, if all pairs
of two agents in state si1 interact, all agents transit to si2 . Similarly, if all pairs of two agents
in state si2 interact, all agents transit to the same state (say si3).

When the above execution is repeated, configurations such that all agents have the same
state appear infinitely often. By changing pairs of two agents, we can make the above
execution under weak fairness. If all agents are in the same state, such a configuration is not
stable because the colors of all agents are the same. This is a contradiction. J

4.2 Protocols with Arbitrary Initial States
In this subsection, we consider protocols with arbitrary initial states. We show that, in this
case, no protocol solves the uniform bipartition problem. That is, to allow agents to start
from arbitrary initial states, a single BS is necessary.

I Theorem 12. In the model with no BS, no asymmetric protocol with arbitrary initial states
solves the uniform bipartition problem under global fairness

Proof. For contradiction, assume that such a protocol Alg exists. Assume that n is even
and at least 4. We consider the following two cases.

First, for population A = {a1, . . . , an} of n agents, consider an execution E = C0, C1, · · ·
of Alg. From the definition of Alg, there exists a stable configuration Ct. Hence, both the
number of red agents and the number of blue agents are n/2 at Ct. After Ct, the color of
agent ai (i.e.,f(s(ai))) never changes for any ai (1 ≤ i ≤ n) even if agents interact in any
order.

Next, for population A′ = {a′i|f(s(ai, Ct)) = red} of n/2 agents, consider an execution
E′ = C ′0, C

′
1, · · · of Alg from the initial configuration C ′0 such that s(a′i, C ′0) = s(ai, Ct) holds

for any i (1 ≤ i ≤ n/2). Since all agents are red at C ′0, some agents must change their colors
to reach a stable configuration. This implies that, after Ct in execution E, agents change
their colors if they interact similarly to E′. This is a contradiction. J

5 Conclusion

In this paper, we completely clarify constant-space solvability of the uniform bipartition
problem and minimum requirement of agent space under various assumptions. This paper
leaves many open problems:

In the model of a single BS, how many states are necessary and sufficient to develop a
uniform bipartition protocol with arbitrary initial states under weak fairness?
Is it possible to extend our results to the uniform k-partition problem, which divides a
population into k groups of the same size. Is it possible to construct a general protocol
to solve the uniform k-partition problem? How many states are required to solve the
problem?
What is the relation between the uniform bipartition problem and other problems such
as counting, leader election, and majority?
What is the time complexity of the uniform bipartition problem under probabilistic
fairness? The uniform bipartition problem has a close relationship to computation of
function f(n) = n/2. The time complexity of n/2 computation has been studied in [5, 13].
Is it possible to derive the time complexity of the uniform bipartition problem from the
results?
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