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Abstract
This Dagstuhl Seminar represented a unique opportunity to bring together international experts
from the three research communities essential to tackling the HPC performance portability chal-
lenge: developers of large-scale computational science software projects, researchers developing
parallel programming technologies, and performance specialists. The major research questions
for the seminar were to understand challenges, design metrics, and prioritize potential solutions
for performance portability, management of data movement in complex applications, compos-
ability, and pathways to impact on the research community. The overall conclusion shared by
all participants was that performance portability in extreme scale computing can be achieved,
especially if parallel applications are designed with performance portability in mind from the
beginning. Making legacy application performance portable still requires enormous efforts and
expertise. In many instances it will likely require extensive refactoring.
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This report documents the program and the outcomes of Dagstuhl Seminar 17431 “Perform-
ance Portability in Extreme Scale Computing: Metrics, Challenges, Solutions”.

Performance Portability is a critical new challenge in extreme-scale computing. In
essence, performance-portable applications can be efficiently executed on a wide variety of
HPC architectures without significant manual modifications. For nearly two decades, HPC
architectures and programming models remained relatively stable, which allowed growth of
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complex multidisciplinary applications whose lifecycles span multiple generations of HPC
platforms.

Recently, however, platforms are growing much more complex, diverse, and heterogeneous
- both within a single system and across systems and generations. Details already known
from planned future systems indicate that this trend will continue (at least for the foreseeable
future). Current and planned future large-scale HPC systems consist of complex configurations
with a massive number of components. Each node has multiple multi-core sockets and often
one or more additional accelerator units in the form of many-core nodes or GPGPUs, resulting
in a heterogeneous system architecture. Memory hierarchies including caches, memory, and
storage are also diversifying in order to meet multiple constraints: power, latency, bandwidth,
persistence, reliability, and capacity. These factors are reducing portability, and forcing
applications teams to either spend considerable effort porting and optimizing their applications
for each specific platform, or risk owning applications that perform well on perhaps only one
architecture. The latter option would still require porting and optimizing effort for each new
generation of systems.

This Dagstuhl Seminar represented a unique opportunity to bring together international
experts from the three research communities essential to tackling this performance portability
challenge: developers of large-scale computational science software projects whose lifetime will
span multiple generations of systems, researchers developing relevant parallel programming
or system software technologies, and specialists in profiling, understanding, and modelling
performance. The major research questions for the seminar were:

To understand challenges, design metrics, and prioritize potential solutions for performance
portability: Solutions will need to synthesize existing concepts across multiple fields,
including performance and productivity modeling, programming models and compilation,
architectures, system software.
Management of data movement in complex applications: Diverse data movement patterns
dictated by different devices form one of the largest impediments to portable performance.
Addressing it will require cross-cutting solutions supporting more than one abstraction,
and will allow scientists to balance tradeoffs in these factors prior to design, development,
or procurement of an architecture, software stack, or application.
Composability: Many applications require flexibility and composability because they
address different physical regimes either within the same simulation, or in different
instances of simulations.
Pathways to impact on the research community: As the community becomes more reliant
on both more complex architectures and software stacks, it is especially important that we
develop the conceptual tools to facilitate research and practical solutions for performance
portability. The impact of ignoring this topic could be potentially devastating to the
quality and sustainability of computational science software, and consequently on the
science and engineering research they support. Thus a key element of the seminar will be
to tackle this challenge in major science community software projects.

The seminar started with a series of flash talks, where participants introduced themselves
in a two-minute one-slide presentation summarizing their contribution or interest in the
seminar by providing two to three bullet points on (i) Challenge/Opportunity (WHY?)
(ii) Timeliness (WHY NOW?) (iii) Approaches (HOW?) and (iv) IMPACT (SO WHAT?).
Each day started with a longer keynote presentation by a representative of one of the major
stakeholders in the field, followed by short presentations by participants grouped in sessions
with a common relevant theme. Each keynote or short talk session ended with an extensive
question-and-answer session and open discussion slot in which all the speakers from the
session took part.
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The overall conclusion shared by all participants was that performance portability in
extreme scale computing can be achieved, especially if parallel applications are designed
with performance portability in mind from the beginning. Model complexity and perform-
ance portability both require that frameworks be designed with composable components
incorporating layers of abstraction so that trade-offs can be reasoned about. Making legacy
application performance portable still requires enormous efforts and expertise. In many
instances it will likely require extensive refactoring. Similar design principles regarding
formulation of a flexible and composable framework apply for legacy software refactoring,
along with strong emphasis on rigorous verification built into the process. The seminar
recognized the challenges faced by the applications in adopting abstractions; converting
research prototypes to reliable production-grade product. The adverse structure of incentives
for both applications and abstractions, and the complexity of formulating a process or
collaboration between the two communities, may be bigger barriers than technical challenges
in making performance portability feasible. It is critical that the involved communities
and stakeholders are made aware of these challenges while seeking solutions for sustainable
computational science projects.
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3 Overview of Talks

3.1 Automatic Detection of Large Extended Data-Race-Free Regions
with Conflict Isolation

Alexandra Jimborean (Uppsala University, SE)

License Creative Commons BY 3.0 Unported license
© Alexandra Jimborean

Joint work of Alexandra Jimborean, Jonatan Waern, Per Ekemark, Stefanos Kaxiras, Alberto Ros
Main reference Alexandra Jimborean, Per Ekemark, Jonatan Waern, Stefanos Kaxiras, Alberto Ros: “Automatic

Detection of Large Extended Data-Race-Free Regions with Conflict Isolation”, IEEE Trans.
Parallel Distrib. Syst., Vol. 29(3), pp. 527–541, 2018.

URL http://dx.doi.org/10.1109/TPDS.2017.2771509

Data-race-free (DRF) parallel programming becomes a standard as newly adopted memory
models of mainstream programming languages such as C++ or Java impose data-race-
freedom as a requirement. We propose compiler techniques that automatically delineate
extended data-race-free (xDRF) regions, namely regions of code that provide the same
guarantees as the synchronization-free regions (in the context of DRF codes). xDRF regions
stretch across synchronization boundaries, function calls and loop back-edges and preserve
the data-race-free semantics, thus increasing the optimization opportunities exposed to
the compiler and to the underlying architecture. We further enlarge xDRF regions with a
conflict isolation (CI) technique, delineating what we call xDRF-CI regions while preserving
the same properties as xDRF regions. Our compiler (1) precisely analyzes the threads’
memory accessing behavior and data sharing in shared-memory, general-purpose parallel
applications, (2) isolates data-sharing and (3) marks the limits of xDRF-CI code regions.
The contribution of this work consists in a simple but effective method to alleviate the
drawbacks of the compiler’s conservative nature in order to be competitive with (and even
surpass) an expert in delineating xDRF regions manually. We evaluate the potential of
our technique by employing xDRF and xDRF-CI region classification in a state-of-the-art,
dual-mode cache coherence protocol. We show that xDRF regions reduce the coherence
bookkeeping and enable optimizations for performance (6.4 percent) and energy efficiency
(12.2 percent) compared to a standard directory-based coherence protocol. Enhancing the
xDRF analysis with the conflict isolation technique improves performance by 7.1 percent
and energy efficiency by 15.9 percent.

3.2 Is it performance portability when I’m using DGEMM?
Michael Bader (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Michael Bader

The earthquake simulation software SeisSol uses a high-order discontinuous Galerkin scheme
for discretisation of the seismic wave equations. The scheme is formulated via small element-
local matrix chain products; respective matrices include the matrix of quantities, stiffness
matrices, discrete Jacobians, etc. As matrices can be sparse or dense, the matrix chain
products are analysed for sparsity patterns of matrices, including intermediate and result
matrices. The LIBXSMM library is used to generated high-performance code on Intel
architectures.
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While the matrix notation provides a suitable abstraction layer for expressing the numerical
scheme, only a limited level of performance portability is reached by this approach. The
presentation’s goal was to discuss the current status and possible routes for extension and
improvement.

References
1 A. Heinecke, G. Henry, M. Hutchinson and H. Pabst: LIBXSMM: Accelerating Small Mat-

rix Multiplications by Runtime Code Generation, SC ’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis. DOI:
10.1109/SC.2016.83

2 C. Uphoff and M. Bader: Generating high performance matrix kernels for earthquake
simulations with viscoelastic attenuation. In W.W. Smari (ed.), Proceedings of the 2016
International Conference on High Performance Computing & Simulation (HPCS 2016), p.
908–916. IEEE, 2016.

3 C. Uphoff, S. Rettenberger, M. Bader, E.H. Madden, T. Ulrich, S. Wollherr and A.-A. Gab-
riel: Extreme Scale Multi-Physics Simulations of the Tsunamigenic 2004 Sumatra Megath-
rust Earthquake. SC ’17: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017

3.3 Performance Portability: Discussion Entry Points from Experience
in OpenMP

Carlo Bertolli (IBM TJ Watson Research Center – Yorktown Heights, US)
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In this talk I will provide a set of entry points for discussion related to performance portability
challenges in the implementation of OpenMP on GPU-enabled systems. I will give an overview
of how some of these challenges are being addressed by the OpenMP committee and what
the main hard problems with proposed solutions are. I will also show how the performance
portability issue spans beyond the traditional HPC community and is present in emerging
fields such as cognitive computing and related hardware acceleration technology.

3.4 Portability of Performance in Generic Code
Mauro Bianco (CSCS – Lugano, CH)

License Creative Commons BY 3.0 Unported license
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Joint work of Mauro Bianco, Oliver Fuhrer, Carlos Osuna, Thomas Schulthess, Hannes Vogt

Generic Libraries can offer separation of concerns between program developers and perform-
ance specialists by providing abstractions for algorithmic motifs, so as to hide low-level
details. As computing platforms diversify, the design of these libraries becomes more and
more complex and more and more targeted to specific application fields. There are however
some deep problems that make portability of performance extremely challenging in real-world
applications. The effect is the tendency to limit the applicability of particular generic inter-
faces to sub-sets of problems in the targeted application fields, thus making them less and
less general. By analyzing some of the characteristics of weather and climate applications,
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this talk will highlight some challenges in the development of a truly performance-portable
layer for this class of applications. Some of these challenges raise more general questions
about performance in HPC. The talk focuses on the engineering challenges, such as devel-
opment complexity, maintainability and interoperability with other languages. The result
of the development is a set of libraries for production applications for weather and climate
simulations to be used by different institutions.

3.5 Automatic Empirical Performance Modeling
Alexandru Calotoiu (TU Darmstadt, DE)
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Given the tremendous cost of an exascale system, its architecture must match the requirements
of the applications it is supposed to run as precisely as possible. Conversely, applications
must be designed such that building an appropriate system becomes feasible, motivating the
idea of co-design. In this process, a fundamental aspect of the application requirements are
the rates at which the demand for different resources grows as a code is scaled to a larger
machine. However, if the anticipated scale exceeds the size of available platforms this demand
can no longer be measured. This is clearly the case when designing an exascale system.
Moreover, creating analytical models to predict these requirements is often too laborious -
especially when the number and complexity of target applications is high. We discuss how
automated performance modeling can be used to quickly predict application requirements
for varying scales and problem sizes. Following this approach, we show how to determine the
exascale requirements of a code and use them to illustrate system design tradeoffs.

3.6 If the HPC Community were to create a truly productive
language...[how] would we ever know?

Bradford Chamberlain (Cray Inc. – Seattle, US)

License Creative Commons BY 3.0 Unported license
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In this talk, I strived to explore the relationship between productivity and performance
portability, particularly in the context of programming languages for High Performance
Computing. I began with a quick argument that we don’t really have productive languages
in HPC, and went on to characterize currently used HPC “languages” (broadly interpreted)
and what I imagine from productive languages. From there, I gave a brief, personal historical
perspective on the effort to define metrics for measuring productivity under the DARPA
HPCS program (2002-2012). I wrapped up with an argument that I believe productivity is
a highly personal, social choice and that, for that reason, our evaluations of productivity
should be more personal and social, supporting subjective decisions rather than analytic.
I introduced the (mainstream) Computer Language Benchmarks Game as an instance of
measuring properties of languages through programs written in those languages, and one
supporting interactions with the results and programs in various ways. This led to my first
suggestion which is that the HPC community would benefit from a similar arena. From
there, I turned to a brief description of Chapel, highlighting key policies that we have opted
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not to bake into the language in order to support productivity, a separation of concerns,
and performance portability: user-defined parallel iterators, domain maps for implementing
dense/sparse/associative domains & arrays, and locale models for representing the target
architecture. I then posed the question as to how languages like Chapel can advance to the
stage of being used “in HPC production,” suggesting that opportunities (like a Dagstuhl
seminar?) should be created for applications and languages people to pair program, cutting
past superficial familiarity with each others’ technologies.

3.7 Should I port my code to a DSL?
Aparna Chandramowlishwaran (University of California – Irvine, US)

License Creative Commons BY 3.0 Unported license
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Main reference Laleh Aghababaie Beni, Aparna Chandramowlishwaran: “PASCAL: A Parallel Algorithmic

SCALable Framework for N-body Problems”, in Proc. of the Euro-Par 2017: Parallel Processing -
23rd International Conference on Parallel and Distributed Computing, Santiago de Compostela,
Spain, August 28 - September 1, 2017, Proceedings, Lecture Notes in Computer Science,
Vol. 10417, pp. 482–496, Springer, 2017.

URL http://dx.doi.org/10.1007/978-3-319-64203-1_35

In this talk, I’ll outline the key challenges in developing parallel algorithms and software
for two classes of applications – N-body solvers and structured grid finite volume solvers
on current and future platforms. Our goal is to reduce the apparent gap in performance
between code generated from high-level forms and that of hand-tuned code, which we
address using extensive characterization of the optimization space for these computations
and automating the process through domain-specific languages (DSLs) and code generators.
These application-specific compilers provide the domain scientists the ability to productively
harness the power of these large machines and to enable large-scale scientific simulations and
big data applications. However, the performance of DSLs has been a concern. Therefore, we
specifically ask whether CFD and N-body applications expressed in these DSLs can deliver a
sufficient combination of optimizations to compete with a hand-tuned code and what are its
limitations.

3.8 Exascale Scientific Computing : The Road Ahead
Kemal A. Delic (Hewlett Packard – Grenoble, FR) and Martin A. Walker

License Creative Commons BY 3.0 Unported license
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Theory and experimentation have been the hallmark of scientific inquiries for centuries, while
we observe the rising importance of simulation as the third, important pillar of scientific
explorations. The key driving factor is slowly evolving field of hyperscale computing, recently
augmented and accelerated through the confluence of artificial intelligence(AI), big data (BD)
and the internet of things (IoT), making it again a leading force in scientific and industrial
computing.

For the new scientific discoveries to happen, larger scale as well as different computing
infrastructure is required to enable and support bigger data collections and more efficient/ef-
fective algorithms.
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The rise of cloud computing,as a hyperscale computing infrastructure, has provided a
new arena for the execution of scientific workloads. Such an infrastructure has also enabled
great strides in the application of multilayered weighted networks often known as “neural
networks” for scientific enquiry. The universal approximation theorem, implies that such
networks can be constructed to solve partial differential equations, and therefore applied to
computing the consequences of scientific theories.

Construction of such networks (“training”, i.e. the determination of the number of nodes
and topology of the network, together with the values of the weights on each edge, and the
choice of trigger function at the nodes) requires extensive computing with large data volumes
on very large infrastructure until a sufficiently accurate model has been achieved. The
resulting model can then be executed (“inference”), either on general purpose or specialized
hardware accelerators. We believe that critical applications such as high-frequency trading
(HFT), self-driving cars and various drones, as wells as edge network devices will require
both: special hybrid architectures combining general purpose CPUs and specialized GPU,
TPU, FPGA for training, and special chips for on-board execution.

In conclusion, looking bravely into next 50 years, we see High Performance Computing
being augmented and advanced with AI, BD and IoT, evolving into Neuromorphic Computing
within the next 15 years and with Quantum Computing on a 50-year horizon.

This is an exciting opportunity for emerging generations of scientists advancing scientific
knowledge using new types of scientific instruments based on advances in computing sciences
and clever engineering, producing unprecedented exascale scientific machines. It is our high
hope that they will augment and accelerate the pace of scientific inquiries. Emerging Exascale
Computing Systems may enable advances similar to the scientific advances realized by the
invention of both the microscope and telescope a few centuries ago.

3.9 Beyond algorithmic patterns: tackling the performance portability
challenge with hardware paradigm optimisation patterns

Christophe Dubach (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
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Algorithmic patterns have emerged as a solution to exploit parallel hardware. Applications
are expressed at a high-level, using a small set of well known patterns of code adapted to each
application domain. This approach hides the hardware complexity away from programmers
and shifts the responsibility for extracting performance to the library writer or compiler.
However, producing efficient implementations remains a complicated task that needs to be
repeated for each newly introduced high-level pattern or whenever hardware changes.

The first part of the presentation will show how typical optimisations performed by GPU
programmers are expressible as optimisation patterns and how an optimisation space can be
defined in terms of provably correct rewrite-rules. Our initial results show that this approach
leads to performance portability on several classes of GPUs.

The second part of the talk will focus on showing how optimisation patterns could be
generalised to a larger classes of hardware including CPUs, GPUs, FPGAs and multi-node
clusters. The main idea is to develop an abstraction to reasons about hardware paradigms
(e.g. memory hierarchy, parallelism hierarchy, synchronisation primitives, communication
primitives) and a set of corresponding hardware-specific optimisation patterns. This would
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enable the automatic generation of an optimising code generator tailored for a particular
instance of a heterogeneous parallel machine (e.g. cluster of GPUs or FPGAs) using a
high-level description of the machine.

3.10 Kokkos: Performance Portability and Productivity for C++
Applications

H. Carter Edwards (Sandia National Labs – Albuquerque, US)

License Creative Commons BY 3.0 Unported license
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Joint work of H. Carter Edwards, Christian Trott, Daniel Sunderland, Daniel Ibanez, Nathan Ellingwood
Main reference H. Carter Edwards, Christian R. Trott, Daniel Sunderland: “Kokkos: Enabling manycore

performance portability through polymorphic memory access patterns”, J. Parallel Distrib.
Comput., Vol. 74(12), pp. 3202–3216, 2014.

URL http://dx.doi.org/10.1016/j.jpdc.2014.07.003

Summary presentation of the Kokkos programming model and C++ library implementation
for performance portability and productivity of intra-node parallel computations across diverse
multicore and manycore architectures. This summary includes the “1+epsilon” versions
of application code for performance portability, and the programming model abstractions
enabling Kokkos to achieve this goal. An overview is given for Kokkos’ data parallel and
directed acyclic graph of tasks (task-dag) patterns to illustrate how Kokkos enables application
development productivity for intra-node parallel algorithms.

3.11 How to define upper performance bounds using analytic
performance models – Opportunities and Limitations

Jan Eitzinger (Universität Erlangen-Nürnberg, DE) and Georg Hager

License Creative Commons BY 3.0 Unported license
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Main reference Georg Hager, Jan Treibig, Johannes Habich, Gerhard Wellein: “Exploring performance and power
properties of modern multi-core chips via simple machine models”, Concurrency and Computation:
Practice and Experience, Vol. 28(2), pp. 189–210, 2016.

URL http://dx.doi.org/10.1002/cpe.3180

Talking about application performance on computer systems ideally requires to define an
analytic upper performance bound. Performance is defined by how a specific software
interacts with the machine, which is the processor, its memory hierarchy and external IO
devices as persistent storage and network. Many publications judge about ’good’ or ’bad’
performance in the light of comparisons to other implementations or hardware platforms.
Still the insight created by such statements is usually very small. Automatic machine learning
approaches fulfil certain purposes for predicting performance or are used to extrapolate
measurements. But are those methods generating a deeper understanding about bottlenecks
and optimisation opportunities? This talks tries to ignite a discussion about if and how
(preferably simple) analytic performance modelling can help to make sense of an observed
performance number and where its limitations are.
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3.12 Deploying performance portable code
Todd Gamblin (LLNL – Livermore, US)

License Creative Commons BY 3.0 Unported license
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URL https://computation.llnl.gov/projects/spack-hpc-package-manager

Performance portability is a hot research topic, but are code developers really striving for
it? HPC application teams are mainly tasked with producing good science, and ensuring
performance portability takes a lot of time. Application teams fighting to make deadlines do
some basic optimizations, but the risk/reward ratio for more sophisticated techniques is still
far too high. Current performance portability techniques require significant effort on the part
of the installer or the application developer. Most people installing HPC software are still
building from source, from scratch, with compilers the code developer may or may not have
tested with. The build is hard enough, even without considering a potential tuning phase.
Package managers provide a natural harness around source builds of HPC code. However,
most package managers in wide distribution sacrifice performance for potability and assume
lowest-common-denominator flags.

In this talk, we discuss Spack, a package manager for HPC, and how the Spack community
is looking to address performance portability at the software distribution level. We look at
how performance portability can affect software source and binary distributions, and what
type of additional infrastructure and tooling we would need to distribute tuned, optimized
software for all HPC users. Our hope is to one day democratize performance portability.

3.13 Porting Atmosphere Kernels on Various System
Lin Gan (Tsinghua University – Beijing, CN)

License Creative Commons BY 3.0 Unported license
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A summary of previous work on porting atmosphere kernels on different platform, including
the Sunway TaihuLight. Performance portability of atmosphere code is bad, so efforts have to
be made and patience is required. For Sunway system, different software is being developed
to make it easy for application to be ported.

3.14 Performance, Portability, and Dreams
William D. Gropp (University of Illinois – Urbana-Champaign, US)

License Creative Commons BY 3.0 Unported license
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URL http://wgropp.cs.illinois.edu/bib/talks/tdata/2017/dagstuhl-keynote.pdf

Why do we care about performance portability? A major reason is because a big part of
the programming crisis is caused by the challenge of obtaining performance on even a single
platform. And achieving performance is hard - systems are complex, behavior has random
elements, and the behavior of interactions between parts is hard to predict. And after more
than 20 years of relative architectural stability, processor architecture is diversifying, making
the problem even worse.
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But performance portability itself is not an absolute goal. Implicitly, performance
portability is intended to reduce the amount of work needed to achieve adequate performance.
How much programmer rework is acceptable to achieve performance portability? What
other limitations, such as code complexity or sensitivity to input data, are acceptable? And
there are dangers to making performance portability the goal. For example, one way to
achieve performance portability is to make all performance mediocre. Then performance is
similar on all platforms, but nowhere good. A good definition for performance portability is
clearly necessary, but a workable definition is quite difficult. Most current definitions are
either very difficult to apply (because they refer to a hard-to-determine theoretical achievable
performance) or are susceptible to odd effects (when based on some specific code and that
code’s performance; leading, for example, to the case where any single code is performance
portable by definition until a second code is created).

There are many different approaches to performance portability. These include enhance-
ments to existing languages, new programming languages, libraries, tools, and even general
techniques. The presentation provides a few examples that show that even for seemingly
simple examples, performance is difficult to achieve without exploiting information known
only at runtime. This suggests that approaches to performance portability need to include
ways to adapt, perhaps at runtime, to different input data and different system behavior.

We discuss the Illinois Coding Environment (ICE), an example of an approach that
uses annotations to an existing language to provide additional information that an guide
performance optimizations, and uses a framework that can invoke third-party tools to apply
performance enhancing transformations.

All approaches that rely on transformations to the user’s code must address the issue
of correctness - ensuring that any transformations do not introduce errors into the code.
We point out that it is necessary to prove such transformations are correct, but that is not
sufficient, because correctness requires that the entire system (including low-level software
and all hardware) also correctly execute the transformed code.

The presentation ends by arguing that rather than try to define what performance
portability is, the community should focus on the goals - making it easier for end users to
run an application code effectively on different systems, and making it easier for developers
to write, tune, and maintain an application for multiple systems.

3.15 Performance Portability Using Compiler-Directed Autotuning
Mary W. Hall (University of Utah – Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
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As current and future architectures become increasingly diverse, the challenges of developing
high-performance applications are becoming more onerous. The goal of compiler optimization
in high-performance computing is to take as input a computation that is architecture
independent and maintainable and produce as output efficient implementations of the
computation that are specialized for the target architecture. A compiler that is specialized
for an application domain can tailor its optimization strategy to increase effectiveness.
This talk describes how domain-specific optimizations can be combined with standard
polyhedral compiler transformation and code generation technology to achieve very high
levels of performance, comparable to what is obtained manually by experts. Polyhedral
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frameworks permit composition of complex transformation sequences with robust code
generation. Autotuning empirically evaluates a search space of possible implementations
of a computation to identify the implementation that best meets its optimization criteria
(e.g., performance, power, or both). Combining the three concepts, autotuning compilers
generate this search space of highly-tuned implementations either automatically or with
programmer guidance. We describe the application of this approach to three domains:
geometric multigrid and the stencil computations within them, tensor contractions and sparse
matrix computations.

3.16 User Interfaces to Performance: Kernel Transformation with
Loopy

Andreas Klöckner (University of Illinois – Urbana-Champaign, US) and Matt Wala
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Focusing on the optimization of computational kernels, Loopy is a transformation-based pro-
gramming system embedded in Python that aims to assist with all stages of the performance
engineering process from within a single, user-exposed intermediate representation (IR). This
single IR is based on scalar assignemnt and polyhedrally-specified control flow. It is designed
to easily capture code at many levels of abstraction, ranging from high-level, mathematical
formulas to machine concerns such as vectorization, memory access patterns, parallelization,
ILP, and many more. A large cross-section of tuning concerns are amenable to modification
by transformations acting on the IR. The IR is capable of capturing data-dependent control
flow, global barrier synchronization (compiled to multiple GPU kernels for compatibility),
reductions, and prefix sums. In addition, the IR lends itself to counting and modeling
computational expense, enabling manual and automated tuning. Multiple targets allow code
generation for CPUs, Intel Knights machines as well as GPUs. A live demonstration of these
capabilities will be part of this presentation.

Applications for which Loopy has been demonstrated to achieve good performance across
architectures include high-order finite elements, chemical kinetics, and numerical linear
algebra.

3.17 CnC for future-proof application development
Kathleen Knobe (Rice University – Houston, US)

License Creative Commons BY 3.0 Unported license
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The history of computing shows us that we have limited ability to predict important archi-
tectural features or important optimization concerns too far in the future. The applications
that might have to be ported due to these changes are growing rapidly in number, size and
complexity. The cost of re-implementing an app or a suite of apps for each new architectural
advance or each new optimization goal is exorbitant.

Current approaches that address a range of foreseeable architectures and concerns are very
helpful. CnC is, instead, an approach that addresses the fact that there will be unforeseen
architectures with their unforeseen optimizations concerns.
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The basic approach is one of separation of concerns. This is critical
Not only for predicted architectures but for unpredicted architectures
Not only for predicted optimization goals but for unpredicted system styles and unpre-
dicted optimization goals.

The basic idea is to develop a program description that includes
Everything about the meaning of the program
Everything that might be useful for optimization

but it explicitly does not include anything that might have to be undone to improve
performance for some new, unforeseen architecture or optimization goal. This application
description is then paired with an appropriate tuning and/or runtime, and even a new
approach to tuning and/or runtime.

The initial motivation for CnC was to support the separation of concerns between the
activities of the domain-expert from those of the tuning-expert even within an individual but
also among distinct professionals, each with their own expertise. This isolation now supports
an unchanged application specification with a wide variety of specific tunings and even a
variety of runtime styles. We believe it inherently supports new, unpredicted architectures
and tuning goals. We also believe that a variety of current approaches to performance
portability would pair well with this style of application specification.

The talk will describe the CnC program description language showing the rationale for
its features. It will then describe briefly a wide variety of runtime systems and optimizations
that have already been implemented as well as some that we’re planning.

3.18 Performance Portability Challenges in FPGAs
Naoya Maruyama (LLNL – Livermore, US)

License Creative Commons BY 3.0 Unported license
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This talk will discuss performance portability challenges when using FPGAs as an accelerator.
Developing applications that run portability across devices including FPGAs is now feasible by
using common programming interfaces such as OpenCL. However, exploiting performance of
FPGAs tends to require FPGA-specific parallelization and optimization, causing performance
portability challenges. We will show several case studies using OpenCL-based benchmarks.
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3.19 Crossing the Chasm: How to develop weather and climate
models for next generation computers?

Chris Maynard (MetOffice – Exeter, GB)
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Weather and climate models are complex pieces of software which include many individual
components, each of which is evolving under the pressure to exploit advances in computing
to enhance some combination of a range of possible improvements (higher spatio/temporal
resolution, increased fidelity in terms of resolved processes, more quantification of uncertainty
etc). However, after many years of a relatively stable computing environment with little
choice in processing architecture or programming paradigm (basically X86 processors using
MPI for parallelism), the existing menu of processor choices includes significant diversity, and
more is on the horizon. This computational diversity, coupled with ever increasing software
complexity, leads to the very real possibility that weather and climate modelling will arrive
at a chasm which will separate scientific aspiration from our ability to develop and/or rapidly
adapt codes to the available hardware.

In this paper we review the hardware and software trends which are leading us towards
this chasm, before describing current progress in addressing some of the tools which we may
be able to use to bridge the chasm. This brief introduction to current tools and plans is
followed by a discussion outlining the scientific requirements for quality model codes which
have satisfactory performance and portability, while simultaneously supporting productive
scientific evolution. We assert that the existing method of incremental model improvements
employing small steps which adjust to the changing hardware environment is likely to be
inadequate for crossing the chasm between aspiration and hardware at a satisfactory pace, in
part because institutions cannot have all the relevant expertise in house. Instead, we outline a
methodology based on large community efforts in engineering and standardisation, one which
will depend on identifying a taxonomy of key activities – perhaps based on existing efforts
to develop domain specific languages, identify common patterns in weather and climate
codes, and develop community approaches to commonly needed tools, libraries etc – and
then collaboratively building up those key components. Such a collaborative approach will
depend on institutions, projects and individuals adopting new interdependencies and ways of
working.
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3.20 Performance portability: the good, the bad, and the ugly
Simon McIntosh-Smith (University of Bristol, GB)
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Achieving functional portability across a diverse range of computer architectures, such as
CPUs and GPUs, is already a big challenge. Adding performance portability, where the same
code performs well across those diverse architectures, is usually too ambitious a goal for
scientific software developers. But what are the fundamental reasons behind this problem?
Today, several parallel programming models can target a diverse range of hardware platforms:
OpenMP 4.5, OpenCL, Kokkos and SYCL are just a small list of open source approaches for
cross platform parallel programming. Why can’t we write one program in, say OpenMP 4.5,
and have this one code run well on GPUs from NVIDIA and AMD, and CPUs from Intel,
IBM, Cavium et al. What are the fundamental technical problems that make this hard?
And if we can enumerate and quantify these reasons, how can we then consciously design
codes to avoid the main performance portability inhibitors?

In my HPC research group we have been studying performance portability since 2009. We
have collected numerous case studies, where some codes are naturally performance portable,
some can be adapted to become performance portable, while others appear to be naturally
hostile to performance portability. Our initial research used OpenCL, but in the last few
years our focus has been on OpenMP 4.x, and the emerging C++ parallel programming
models that support cross-platform code generation (Kokkos, SYCL, Raja et al). Our
target application areas have included life science codes (mostly molecular dynamics), and
multi-physics codes (such as particle transport, heat diffusion and hydrodynamics).

In this talk I will describe our performance portability findings, including what we’ve
found does work, what doesn’t work, and where we think the most interesting open questions
are.

3.21 AnyDSL: A Compiler-Framework for Domain-Specific Libraries
(DSLs)

Richard Membarth (DFKI – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
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AnyDSL is a framework for the rapid development of domain-specific libraries (DSLs).
AnyDSL’s main ingredient is AnyDSL’s intermediate representation Thorin. In contrast
to other intermediate representations, Thorin features certain abstractions which allow to
maintain domain-specific types and control-flow. On these grounds, a DSL compiler gains
two major advantages:

The domain expert can focus on the semantics of the DSL. The DSL’s code generator can
leave low-level details like exact iteration order of looping constructs or detailed memory
layout of data types open. Nevertheless, the code generator can emit Thorin code which
acts as interchange format.
The expert of a certain target machine just has to specify the required details once.
These details are linked like a library to the abstract Thorin code. Thorin’s analyses
and transformations will then optimize the resulting Thorin code in a way such that the
resulting Thorin code appears to be written by an expert of that target machine.
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3.22 If you’ve scheduled loops, you’ve gone too far
Lawrence Mitchell (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Lawrence Mitchell

Joint work of David A. Ham, Miklós Homolya, Paul H. J. Kelly, Fabio Luporini, Lawrence Mitchell
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structure-preserving form compiler”, CoRR abs/1705.03667, 2017.
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The optimal loop schedule for a given algorithm is typically hardware dependent, even
with all other parameters of the algorithm fixed. When we manually port code to a new
hardware platform, we must understand the loop structure and then perform, in tandem,
data layout and loop reordering to achieve good performance. This is a difficult task. I
argue that requiring a compiler system to perform the same task will never work: the
scheduled loop nest does not offer enough information to the compiler for it to determine
the algorithmic structure. Instead, we should strive for program transformation steps that
operate on unscheduled DAGs. This is most easily achieved with DSLs, since no analysis is
required. I will say some things about how we achieve this in the context of finite element
codes, but will mostly be full of questions.

References
1 F. Rathgeber, D.A. Ham, L. Mitchell, M. Lange, F. Luporini, A.T.T. McRae, G.-T. Ber-

cea, G.R. Markall, and P.H. J. Kelly, Firedrake: automating the finite element method by
composing abstractions, ACM Transactions on Mathematical Software, 43 (2016), pp. 24:1–
24:27, https://doi.org/10.1145/2998441, https://arxiv.org/abs/1501.01809.

2 M. Homolya, R.C. Kirby, and D.A. Ham, Exposing and exploiting structure: optimal code
generation for high-order finite element methods, 2017, https://arxiv.org/abs/1711.02473.

3.23 Composing parallel codes while preserving portability of
performance

Raymond Namyst (University of Bordeaux, FR)
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Joint work of Raymond Namyst, Andra Hugo, Terry Cojean, Nathalie Furmento, Samuel Thibault, Pierre-André
Wacrenier

Future exascale computers are expected to exhibit an unprecedented degree of parallelism
together with a deeply hierarchical architecture, which only a few experts will be able to
exploit efficiently if no significant progress is made in HPC software development. This
situation is even more regrettable because there already exist many candidate applications
with the potential to occupy the massive number of computing resources promised by exascale
machines. Coupled applications for instance, which typically implement multi-physics and/or
multi-scale simulations, exhibit high degrees of parallelism.

For such applications, designing a completely new “exascale programming model” can not
be the answer, as rewriting coupled applications from scratch would require state-of-the-art
skills in several domains (e.g. astrophysics and machine learning). Building these applications
by reusing existing codes is thus the only reasonable way to go. The main challenge is thus
about enabling a smooth transition to exascale that would leverage a significant base of
existing codes and applications.
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Unfortunately, reusing parallel codes in HPC applications is not commonplace at all.
The main reason lies in current implementations of parallel libraries not being ready to
run simultaneously over the same hardware resources, causing resource oversubscription,
scheduling interferences, and other problems linked to unawareness of resource usage and
compatibility of execution models. This problem – known as the parallel composability
problem – significantly limits the way parallel codes can interact together.

This presentation covers the research topics raised by the challenge of “efficient parallel
code reuse”. In the light of our experience in the design of the StarPU task-based runtime
system, we discuss how these challenges could be addressed by future runtime systems and
programming environments.

References
1 C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, StarPU: A Unified Platform for

Task Scheduling on Heterogeneous Multicore Architectures, Concurr. Comput. : Pract.
Exper. 23 (2011) 187–198.

2 H. Pan, B. Hindman, K. Asanović, Composing parallel software efficiently with lithe, SIG-
PLAN Not. 45 (2010) 376–387.

3.24 Performance Portability through Device Specialization
Simon Pennycook (Intel – Santa Clara, US)
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We discuss the utility of shared definitions and metrics for “performance portability”, and
the implications of one such metric on the design of highly performance portable software.
Specifically, we demonstrate that maintaining multiple implementations of some limited
subset of application functionality can significantly improve performance portability, thereby
motivating improved mechanisms for managing function variants in software.

3.25 Loop descriptors and cross-loop techniques: portability, locality
and more

Istvan Reguly (Pazmany Peter Catholic University – Budapest, HU)
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This talk will outline what additional information can be added to “parallel for” loops
about data accesses and how it enables high-level optimisations and portability. Adding
in a user contract that data is not modified outside of these loops, we then show how the
execution of these loops can be delayed, which enables cross-loop analysis and optimisations,
showing a few examples involving cache-blocking tiling and checkpointing. This talk aims to
prompt discussion on the further possible uses of per-loop and cross-loop techniques, and the
relaxation of domain-specific semantics.
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3.26 Characterizing Data Movement Costs: Tools Needed!
P. (Saday) Sadayappan (Ohio State University – Columbus, US)
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Data movement overheads dominate operation execution costs, both in terms of time
(performance) as well as energy. But while the computational complexity of algorithms (in
terms of number of elementary operations) is well understood, the data-movement complexity
of algorithms is not. A significant complication for users to reason about the inherent
data-movement complexity of computations is that unlike computational complexity, it is
not additive under composition. Tools for characterizing data-movement complexity will be
important in facilitating high performance, productivity, and performance-portability with
high-level frameworks.

3.27 Performance Portability Through Code Generation – Experiences
in the context of SaC

Sven-Bodo Scholz (Heriot-Watt University – Edinburgh, GB)
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This talk gives a bird’s eye view on the performance portability experiences made in the
context of compiling SaC into high-performance codes for a range of architectures. Particular
emphasis is being put on the challenges met, the interplay between language design and those
challenges, as well as a discussion on how these experiences compare to other approaches
such as DSLs, staging or library based solutions.

3.28 Orthogonal Abstractions for Scheduling and Storage Mappings
Michelle Mills Strout (University of Arizona – Tucson, US)

License Creative Commons BY 3.0 Unported license
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With ever increasing amounts of HW parallelism, it is becoming more and more critical to
reduce synchronization overhead and improve the data locality of computations. Reducing
synchronization overhead can be done by creating many, decent-sized tasks that are only
loosely synchronized. Improving data locality requires that the computation placed within
a single task reuses data and that that data fits within the memory resources where the
task is allocated. Reducing temporary storage is important as well. These activities require
scheduling across loops and in some cases function calls and modifying how data values are
mapped to storage locations.

Systems do this in a multitude of ways. For this discussion, some example approaches
from projects such as OP2, Chapel, Kokkos, CnC, and Loop Chaining will be overviewed.
What might an orthogonal abstraction stack for performance programming look like? How
would such an abstraction stack interact with performance portability?
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3.29 Mis-predicting performance
Nathan Tallent (Pacific Northwest National Lab. – Richland, US)
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Main reference Ryan D. Friese, Nathan R. Tallent, Abhinav Vishnu, Darren J. Kerbyson, Adolfy Hoisie:
“Generating Performance Models for Irregular Applications”, in Proc. of the 2017 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2017, Orlando, FL, USA,
May 29 - June 2, 2017, pp. 317–326, IEEE Computer Society, 2017.

URL http://dx.doi.org/10.1109/IPDPS.2017.61

Performance modeling gives insight into bottlenecks to performance portability. There
are several approaches to performance modeling. Analytical models promise insight by
representing program behavior using algebraic expressions that are a function of input
parameters. However, they can be time-consuming to create and may miss important corner
cases. Statistical and machine learning models can be more easily automated. However, they
easily confuse cause and correlation; and are only as good as their training sets.

This talk focuses on some of the open questions in modeling performance. We use
examples from recent work on modeling applications and workflows with irregular behavior,
e.g, input-dependent solvers, irregular memory accesses, or unbiased branches. This irregular
behavior often leads to long-latency events that are difficult to characterize when moving
between different systems or programming models.

3.30 Performance Portability with Pragmas – Wishful Thinking or Real
Opportunity?

Christian Terboven (RWTH Aachen, DE)

License Creative Commons BY 3.0 Unported license
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Since the evolution of OpenMP and OpenACC to de-facto standards in the HPC community,
directive-based parallelization offers a higher level of abstraction than system- or device-level
APIs. Both standards hide certain details from the programmer to focus on expressing
parallelism at different levels. To answer the question if directives can offer an opportunity
to enable performance portable programming, this contribution summarized and discussed
recent developments within OpenMP.

OpenMP 4.5 was released in 2015 and introduced a feature called locks with hints. It
enables the use of different lock types within a single program. Furthermore, it allows the
specification of a lock hint that the runtime can exploit to determine the most efficient
available implementation. For example the lock hint ‚speculative‘ may be realized by
hardware-supported memory transactions, if supported by the target architecture.

OpenMP TR5 was released in 2016 and provided an early view of memory management
support scheduled for inclusion in OpenMP 5.0. The addition of allocators as a concept
in OpenMP enables the use of different kinds of memory. Instead of targeting a dedicated
memory kind with a device-specific API, OpenMP TR5 allows to allocate from memory with
a specific feature, for example memory with the highest available bandwidth can be selected.
The concrete memory kind will be selected at runtime based on capabilities of the target
architecture.

Both examples illustrate how the use of directives can hide hardware-level details and how
the runtime system can apply optimizations under the hood. OpenMP and OpenACC differ
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in being prescriptive or descriptive. In the prescriptive approach of OpenMP, the programmer
explicitly instructs how parallelism is extracted from the application code and mapped to the
system. OpenACC tends to require fewer specific details from the programmer and leaves
more freedom and room for optimization to the compiler and runtime. The use of directives
over low-level APIs can contribute to the goal of performance portable programming, but
has to be complemented by other measures.

References
1 H. Bae, J. Cownie, M. Klemm and C. Terboven: A User-Guided Locking API for the

OpenMP Application Programming Interface. IWOMP 2014: 173–186, 2014.
2 J. Sewall, J. Pennycook, A. Duran, C. Terboven, X. Tian and R. Narayanaswamy: Devel-

opments in Memory Management in OpenMP. IJHPCN, to appear.

3.31 Thread and Data Placement on Multicore Architectures
Didem Unat (Koc University – Istanbul, TR)
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17-20, 2017, pp. 129–136, IEEE Computer Society, 2017.
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Placement of parallel tasks and data in current multicore machines is one of the key aspects
to achieve good performance. A thread placement policy is formulated by discovering
machine’s topology and analyzing application’s behavior of sharing data among parallel task.
This policy is used for binding application threads during its execution. Current binding
options supported by the runtime systems do not analyze application’s behavior and only
provide basic mapping policies. To improve the performance programmer has to put an extra
effort to understand core topology and memory hierarchy, then bind the tasks accordingly.
This process is not portable; programmer has to repeat the analysis when the platform or
application changes. We propose a thread mapping algorithm based on the communication
pattern and machine topology. Our algorithm is fair in other words, it tries to pair threads
that communicate most with each other and considers mutual preferences.

In addition to thread placement, in a memory subsystem where there are different types of
memories, placement of data objects becomes a programming issue because the programmer
has to decide which objects to place on which types of memory. We propose an object
placement algorithm that places program objects to fast or slow memories by considering
characteristics of each memory type. Our algorithm uses the reference counts and type of
references (read or write) to make an initial placement of data. By placing objects according
to our placement algorithm, we are able to achieve a speedup of up to 2x with 6 applications
under various system configurations.
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3.32 A Heterogeneous Talk: thoughts on portability, heterogeneous
computing, and graphs

Ana Lucia Varbanescu (University of Amsterdam, NL)
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In this talk, we discuss performance portability from the perspective of programming models
and heterogeneous computing. We further discuss the implications of irregular applications
and data-dependent performance variability on such issues as performance portability and
heterogeneous computing. Finally, we briefly introduce HyGraph, our runtime-based solution
for heterogeneous graph processing. HyGraph is a novel graph-processing system for hybrid
platforms which delivers performance by utilizing both the CPU and the GPU concurrently.
Contrary to the state-of-the-art approach of statically partitioning the workload beforehand,
HyGraph delivers performance by dynamic scheduling of jobs onto both the CPU and the
GPU, thus providing automatic load balancing and superseding the need for the user to
manually define a static workload distribution. Additionally, HyGraph minimizes the inter-
process communication overhead by carefully overlapping computation and communication.
Our results demonstrate that HyGraph can deliver system-level “efficiency portability” on
different, large-scale systems.

3.33 Challenges with Different approaches for Performance Portability
Mohamed Wahib (AIST – Tokyo, JP)
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The approaches for tackling the performance portability problem typically fall under one, or
a mix, of the following: DSLs, compiler-based approaches, source-to-source translators, and
libraries. Considering the diversity in pros and cons for each of those approaches, it is hard for
the programmer to decide on which approach to follow. This is especially challenging when
the programmer has to address performance portability for legacy code. This presentation
compares experiences in addressing performance portability, using each of the approaches
mentioned above. Main pitfalls and limitations, for some legacy real-world applications, are
also discussed.

3.34 Deep memory hierarchies and performance portability
Michele Weiland (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
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Memory hierarchies are becoming deeper and more complex, and byte-addressable SCM is
blurring the line between memory and storage. How users and applications can benefit from
new memory technologies depends on how new layers in the memory hierarchy are exposed
and used. The question is: whose responsibility is it to guarantee transparent use of deep
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memory hierarchies? Can the application developer expect this to be dealt with on a system
level, or will it require direct intervention at the programming level? In this presentation I
will look at the implications of complex memory hierarchies for performance and performance
portability.

3.35 Musings on Performance Portability
Michael Wolfe (NVIDIA Corp., US)
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The term “performance portability” has been used for at least twenty years. Some people
argue that it is not achievable, and even that it’s not desireable. This is folly. However, there
is a tension between three P’s: Performance, Productivity, and Portability. Each user or
organization needs to optimize this function. Generally, any program can be made to run
faster with greater programming effort, such as using machine language, but the productivity
cost could be prohibitive. Similarly, programming in machine language reduces portability,
even across different generations of the same instruction set architecture. But different people
and organizations will have different pain thresholds for how much performance they are
willing to give up to get some degree of productivity and of portability. Perhaps we should
rename this discussion “Productive Performance Portability.”

Let’s review some successes in performance portability across the ages: 1957: The Fortran
compiler from IBM, which had a goal to generate code that was as fast as hand-written
machine language, allowed programs that could port across machines, and has been extremely
successful for over 60 years now. 1977: Vectorizing compilers virtualized the details of vector
code generation and allowed programmers to take advantage of vector instructions, and
now SIMD instructions, without having to know details such as the vector or SIMD register
length, and became the dominant method for programming vector computers. 1997: MPI
was introduced earlier in the decade, but by 1977 it had replaced all previous message passing
libraries, and remains the most common method for scalable programming, across thousands
of nodes on a supercomputer network.

Now it’s 2017, and we have highly scalable nodes, with many dozens or hundreds of
compute units, all with shared memory or high-speed interconnected memories. Can we
achieve productive performance portability across the range of such systems? I argue that
we should be able to, because they all share many characteristics: Many processing elements,
SIMD execution, multithreading, hardware caches. There have been a number of approaches,
including languages, compilers, runtime systems, and numerical libraries. All of these may
have a role to play. However, if there’s a lesson to learn from history it’s that we need to train
programmers, many or most of whom are more interested in science than in programming,
how to write programs that perform well and that will port to future computer systems as
well. Vectorizing compilers played a role in training programmers for those machines, by
giving immediate and precise feedback about how well the loops vectorized and why they
did not. Such tools should be explored for future productive performance portability as well.
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4 Open problems

4.1 Performance Portability via Automatic Region-based Auto-tuning
Philipp Gschwandtner (Universität Innsbruck, AT)
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Optimizing parallel programs for modern architectures and striving for performance port-
ability is a notoriously difficult task. The increasing complexity of multi- and many-core
platforms, hardware details such as topologies, caches, and links and multiple layers of
nested parallelism pose a limiting factor when designing both faster hardware and software in
contemporary HPC. Auto-tuning has become increasingly popular to mitigate this issue, but
still lacks key features for pervasive use throughout the community. First, many auto-tuner
systems require user directives that e.g. describe performance relationships or bottlenecks,
or specify a list of tunable parameters and ranges of valid settings. Second, most parallel
programs can be subdivided into several regions, whose optimal tunable parameter settings
might differ, and whose optimization might have adverse effects on subsequent regions -
harming overall performance. These issues are greatly aggravated by parameter setting
overheads, non-contiguous, combinatorial parameter spaces, and multi-objective optimiza-
tion environments. To address this problem, a fully automatic, region-based auto-tuner is
needed, minimizing user effort in realizing performance portability. The auto-tuner should
automatically identify program code regions of interest, find promising parameter spaces for
a given set of user objectives, and explore them efficiently.
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