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Abstract
This report provides an overview of the talks and the working group reports from the Dagstuhl
Seminar 17472 “Addressing the Computational Challenges of Personalized Medicine”. The sem-
inar brought together leading computational scientists with different backgrounds and perspect-
ives in order to allow for a cross-fertilizing and stimulating discussion. It thus joined expertise
that is usually scattered in different research communities. In addition, selected medical research-
ers, pharmacogenomics researchers and behavioral scientists provided their input and established
the link of the computational to the more medical aspects of personalized medicine (PM). The
talks and corresponding discussion spanned mainly three areas: 1) how to enhance prediction
performance of computational models for PM; 2) how to improve their interpretability; 3) how
to validate and implement them in practice.
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1 Executive Summary

Niko Beerenwinkel
Holger Fröhlich
Susan Murphy
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Personalized medicine (PM) is understood as a non-traditional medical approach, in which
patients are stratified based on their disease subtype, disease risk, disease prognosis or
treatment response using specialized diagnostic tests. High promises for the whole health
care sector are associated with PM, and correspondingly the topic has received a lot of
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attention during the last years. PM is tightly connected to and dependent on computational
sciences (computer science, mathematical modeling, computational statistics, bioinformatics).
Currently, shortcomings of computational methodology constitute an important bottleneck
for PM, which hinders full realization.

The goal of the planned seminar was to bring together an international and interdiscip-
linary group of experts in different computational science disciplines in order to discuss, how
some of the major existing computational challenges could be better addressed in the future,
namely:
1. how to enhance prediction performance of computational models for PM
2. how to improve their interpretability
3. how to validate and implement them in practice
The seminar joined together expertise that is usually scattered across different disciplines. The
seminar had a strict focus on computational methodology, but few selected non-computational
scientists closed the gap to the application field.
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3 Overview of Talks

3.1 Bayesian matrix factorization with side information
Yves Moreau (University of Leuven – Leuven, Belgium, moreau@esat.kuleuven.be)

License Creative Commons BY 3.0 Unported license
© Yves Moreau

Matrix factorization/completion methods provide an attractive framework to handle sparsely
observed data, also called “scarce” data. A typical setting for scarce data are is clinical
diagnosis in a real-world setting. Not all possible symptoms (phenotype/biomarker/etc.) will
have been checked for every patient. Deciding which symptom to check based on the already
available information is at the heart of the diagnostic process. If genetic information about
the patient is also available, it can serve as side information (covariates) to predict symptoms
(phenotypes) for this patient. While a classification/regression setting is appropriate for this
problem, it will typically ignore the dependencies between different tasks (i.e., symptoms).
We have recently focused on a problem sharing many similarities with the diagnostic task: the
prediction of biological activity of chemical compounds against drug targets, where only 0.1%
to 1% of all compound-target pairs are measured. Matrix factorization searches for latent
representations of compounds and targets that allow an optimal reconstruction of the observed
measurements. These methods can be further combined with linear regression models to
create multitask prediction models. In our case, fingerprints of chemical compounds are
used as “side information” to predict target activity. By contrast with classical Quantitative
Structure-Activity Relationship (QSAR) models, matrix factorization with side information
naturally accommodates the multitask character of compound-target activity prediction.
This methodology can be further extended to a fully Bayesian setting to handle uncertainty
optimally, which is of great value in this pharmaceutical setting where experiments are
costly. We have developed a significant innovation in this setting, which consists in the
reformulation of the Gibbs sampler for the Markov Chain Monte Carlo Bayesian inference of
the multilinear model of matrix factorization with side information. This reformulation shows
that executing the Gibbs sampler only requires performing a sequence of linear regressions
with a specific noise injection scheme. This reformulation thus allows scaling up this MCMC
scheme to millions of compounds, thousands of targets, and tens of millions of measurements,
as demonstrated on a large industrial data set from a pharmaceutical company. We have
implemented our method as an open source Python/C++ library, called Macau, which
can be applied to many modeling tasks, well beyond our original pharmaceutical setting.
https://github.com/jaak-s/macau/tree/master/python/macau.

3.2 Dynamic Patient Restratification Using Mobile Sensors
Kumar Santosh (University of Memphis – Memphis, USA, santosh.kumar@memphis.edu)

License Creative Commons BY 3.0 Unported license
© Kumar Santosh

Recent advances in wearable sensing and mobile computing have opened up unprecedented
opportunities to quantify dynamic changes in an individual’s health state as well as key
physical, biological, behavioral, social, and environmental factors that contribute to health and
disease risk, anytime and anywhere. For example, smart watches can not only track physical
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activity, but they can also be used to monitor stress (from pulse rate), eating, brushing,
driving, and smoking behaviors (from hand gestures). By simultaneous monitoring of changes
in health status, exposures to surrounding geographical, environmental, visual, social, and
digital worlds, and personal behaviors (both risky and healthy), mobile health (mHealth)
can help discover new predictors of health outcomes. By monitoring the exposure to these
health risk predictors, mobile health offers an opportunity to introduce temporal precision in
precision medicine, especially when mHealth data is used together with traditional sources of
biomedical data (e.g., genomics, clinical). Longitudinal nature of mHealth data and the fact
that it comes from the natural free-living environment allows dynamic decision making such
as adapting the treatments and interventions so as to maximize the efficacy and optimize
the timing of delivery. Continuous monitoring of the context surrounding the individual and
monitoring of the compliance and response to treatments and interventions offers additional
opportunities for dynamic optimizations in a human-in-the-loop model. Realizing these
potential presents a rich multi-disciplinary research agenda. It includes sensor design and
mobile system design for optimizing data collection with minimum user burden, mobile sensor
big data modeling to convert voluminous mobile sensor data into actionable information,
sensor-triggered intervention modeling that leverages dynamic optimization opportunities
to discover the most efficacious and temporally-precise treatments and interventions, and
engaging visualizations to encourage health and wellness-supporting daily behaviors using
new insights gained from mHealth data.

3.3 Causality
Marloes Maathuis (ETH Zürich – Zürich, Switzerland, maathuis@stat.math.ethz.ch)

License Creative Commons BY 3.0 Unported license
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Causal questions are fundamental in all parts of science. Answering such questions from
non-experimental data is notoriously difficult, but there has been a lot of recent interest and
progress in this field. I have discussed current approaches to this problem and have outlined
their potential as well as their limitations.

3.4 Hybrid models – combining mechanistic and statistical modeling
approaches

Andreas Schuppert (RWTH Aachen – Aachen, Germany, schuppert@aices.rwth-aachen.de)

License Creative Commons BY 3.0 Unported license
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Modeling for personalized medicine requires methods enabling to predict reliably the evolution
of the diseases, the response on therapies as well as the therapeutic adverse side effects for
individual patients. However, due to a lack of understanding of the broad range of mechanisms
affecting diseases and therapies, pure mechanistic modeling rarely results in satisfactory
precision. On the other side, pure machine learning – based modeling methods are hampered
by their conceptually high data demand for model training and their lack of extrapolation.
In patient populations, the intrinsic mutual control loops inside the system “patient” in
combination with the high variety of optional covariates result in statistically poor, biased
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distributions of data in high dimensional data spaces, hampering machine learning even in
large “real world evidence” data sets. Hence, a combination of mechanistic and machine
learning in a hybrid model is required in order to achieve the necessary precision of the models.
Hybrid modeling had been developed for chemical and biotechnological engineering in order
to tackle the lack of process data, combined with common lack of quantitative understanding
of the reaction kinetics . The mathematical basis of data representation by means of hybrid
models goes back to Hilbert’s famous 13th problem and has been intensively discussed by
Kolmogoroff, Arnold and Vitushkin . Later it could be shown that the knowledge of the
true system structure without any mechanistic knowledge is sufficient to break the curse of
dimensionality, to reduce the data demand for model training and to enable extrapolability
of the models . The inverse problem, namely the identification of model structures from data,
has recently been discussed in the context of systems biology . These results apparently
have a strong relationship to the current development of deep learning technologies. We
expect that a future integrative technology might result in a modeling platform satisfying
the requirements of personalized medicine.

3.5 Visualizing and Integrating Biological Knowledge
Rudi Balling (University of Luxemburg – Luxemburg, rudi.balling@uni.lu)

License Creative Commons BY 3.0 Unported license
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The LCSB is engaged in a number of community efforts to develop novel tools for the
visualization, annotation and integration of network-encoded knowledge in biomedical research.
In order to capture the rapidly increasing information and inter-relationships between different
factors contributing to Parkinson’s disease (PD), we have established a “PD-map”. This
map is a manually curated knowledge repository and serves as a computationally tractable
representation of all known molecular interactions involved in the pathogenesis of Parkinson’s
disease. The disease map offers research-facilitating functionalities such as the overlay of
experimental data and the identification of drug targets on the map. A major effort is
also geared towards the development of genome-scale human and human gut metabolic
reconstructions integrating the full spectrum of metabolic and transport reactions that
can occur in a given organism. The goal is to develop a comprehensive knowledge base of
human metabolism integrating pharmacogenetic associations, large-scale phenotypic data
and structural information for proteins and metabolites.

3.6 Computational Analysis of Viral Drug Resistance
Thomas Lengauer (Max-Planck Institute for Informatics – Saarbrücken, Germany,
lengauer@mpi-inf.mpg.de)

License Creative Commons BY 3.0 Unported license
© Thomas Lengauer

We present a concrete case of translational research in computational biology in 4 steps. The
problem is to estimate the resistance to HIV to individual drug based on viral genotype and
to combinatorial therapies with respect to their estimated effectiveness.
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1. gene2pheno[resistance] estimates the level of resistance of HIV to individual inhibitors of
viral protease and reverse transcriptase. The software has first been online 15 years ago.
It is used in clinical practice, but has strong competition from expert rule systems. The
software interprets its predictions in terms of effect of individual mutations in the HIV
genome.

2. gene2pheno[coreceptor] Our “blockbuster” estimates viral coreceptor usage It provides a
significance estimate. There is no competition from rule based systems.

3. gene2pheno[THEO] ranks combinations of drug therapies w.r.t. estimated effectiveness.
In contrast to the previous tools this one has not entered clinical routine, partially because
the predictions are not interpreted.

4. g2p2 is our new development that is aimed at bringing therapy predictions to clinical
routine. It merges mathematical analysis with traditional schemes of therapy composition
and is interactive.

3.7 Enhanced translation of multi-modal stratification models, as a
basis for Precision Medicine

Michael Rebhan (Novartis AG – Basel, Switzerland, michael.rebhan@novartis.com)

License Creative Commons BY 3.0 Unported license
© Michael Rebhan

Progress in Precision Medicine and Personalized Health is linked to our ability to translate
increasingly complex ‘multi-modal stratification’ models from discovery to validation, and
finally to real world healthcare settings where they can generate impact on patient outcomes.
Such models need to be able to computationally deal with a diversity of signals from an
increasing number of ‘channels’ that can influence stratification, including those derived from
molecular biomarkers, imaging technology, and ‘digital biomarkers’, to name a few. Such
models would, down the road, help us predict not only the best intervention for a particular
patient, but also the best time and context for delivering it, considering disease progression
knowledge, patient needs and priorities, and different healthcare settings. In this session,
we will discuss the idea of co-designing an open innovation ecosystem for community-based
learning on such models, ‘on top’ of the current health data silos. As there are many
challenges on the translational path for these models, we will discuss potential solutions to
explore as a community. How to best conduct high quality clinical validation studies that
can help to bridge the gap between early research and responsible first use of multi-modal
stratification models in clinical decision making? How could outcome-based feedback loops
help with community-based learning, beyond the clinical institutions involved in patient care?
How can open learning ‘on top of the data silos’ look like, in practice? As we discuss those
challenges, we will try to consider the full complexity of the health innovation landscape with
its many stakeholders (patients, physicians, payers, basic / applied researchers, regulators
etc.), and real life challenges, as this will help us co-design meaningful translational paths.
In addition, we will discuss guiding principles that can help with the community build, e.g.
transparency (of data and algorithms), and their role in such an effort.
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4 Discussed Challenges and Possible Approaches

Author: Niko Beerenwinkel, Holger Fröhlich, and Susan Murphy

The following comprises a summary of the problems and possible approaches that were
discussed in different working groups and within the panel.

Enhancing Prediction Performance
Performance Metrics

It is necessary to consider performance metrics apart from the established area under ROC
curve (AUC). The choice of performance metric should depend on the actual prediction
problem at hand.

Data Quality and Systematic Biases

Data quality is one of the reasons behind low prediction performance. Data quality is a
continuous concern, specifically with respect to omics data. Robust loss functions in machine
learning methods should be considered.

Prediction performance is also affected, if the data represents unknown mixtures of
different biological origin. For example, tumor biopsies often contain a mixture of actual
tumor and stroma cells, which impacts measured gene expression. A possible approach is to
de-convolute the original data via mixture (regression) models. At this point a Gaussian
assumption for transcriptomics data seems feasible.

It is known that independently collected patient cohorts exhibit a systematic difference
in their expression profiles to the original training cohort. The recently introduced zero-sum
regression approach is a way to address this issue [1].

Feature Engineering and Extraction

Feature engineering remains a crucial topic for successful modeling, because it allows for
using prior knowledge. Such prior knowledge could also come from similar data, which has
been collected for different purposes.

In addition to feature engineering, extraction of (latent) meta-features is likely to be a
successful strategy. Methods include matrix factorization techniques as well as auto-encoder
networks.

Use of Multi-Modal Data

Multi-modal, longitudinal data is widely believed to provide a more detailed view on the
complex relationship between biology and clinical outcome, which we try to capture with
models in personalized medicine. Multi-modal patient trajectories are possibly embedded
into a lower dimensional latent space, in which patterns become more obvious than in the
original space. Matrix factorization approaches might be one way to identify a suitable latent
space.

Despite of a multitude of available methods multi-modal data integration remains a
challenge, specifically when fusion of static (e.g. genomic) and longitudinal data (e.g. clinical
features) is desired. In the data science literature early, intermediate and late integration
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schemes are discussed, which have all their advantages and disadvantages. The optimal data
fusion strategy is always data dependent and has thus to be found empirically.

In the future, data retrieved from web mining (patient blogs, social media) could play an
increasing role. It might be possible to use these data within a Bayesian learning scheme,
e.g. to define informative priors.

Improving Interpretability
Disease Maps

Disease maps describe cause-effect relationships between multi-modal molecular and clinical
data entities. Disease maps are not computational models per se, but could be used in two
different ways to obtain better interpretable prediction models:

Post-hoc analysis of features in the model, e.g. via enrichment analysis and variants
thereof.
Embedding of network information into feature selection.

Both approaches are established in principle, but may require further adaptation to a specific
problem, e.g. by defining subsets of the disease map, or extracting and engineering of
appropriate features based on data.

Disease maps could also help informing causal network inference (see next paragraph).

Causal Models

Predictive models are often highly complex and not necessarily causal, which hinders the
acceptance by physicians and limits scientific insights into the underlying pathophysiological
mechanisms. Judea Pearl has established a widely accepted theory of causality in the context
of probabilistic graphical models [2]. However, the graph structure of causal models can in
general only be identified from observational data up to equivalence classes. Nonetheless, it
is possible to predict bounds of intervention effects from purely observational data under
certain conditions [3]. There is a need to better evaluate these methods in the context of
personalized medicine. It has to be checked, how reproducible the results are and whether
causal network models could inform data collection (when and what to collect) in the future.
Moreover, the exact conditions under which for an individual prediction of causal intervention
effects are possible should be clarified.

Hybrid Models

Causal models are not necessarily pointing towards detailed biological mechanisms. On the
other hand fully mechanistic models are limited by the available background knowledge, which
is often incomplete. Hybrid models combine partially available quantitative mechanistic
and machine learning models into one unified framework. Within that framework machine
learning “black-boxes” detect and correct errors in the mechanistic part. Black-box and
mechanistic models can be integrated into a hybrid network and trained via mathematical
optimization methods. Hybrid models currently have a theory gap. Nonetheless, the approach
has been used successfully by Andreas Schuppert and colleagues for predicting drug response
in diabetes I (unpublished work): This was possible, because there is a mechanistic model
for diabetes I available. Behavioral aspects (eating, exercise, etc), which are also important
for the disease, can be put into the black-box model part. There is much less known about
diabetes II and consequently, there is no mechanistic model.
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Critical Transitions

The development of many diseases may be interpreted from the perspective of a phase
transition in a dynamical system. In physics this phenomenon is well known and appears in
many models. Reliable detection of phase transitions in disease development could ultimately
help to detect mechanistic biomarkers in the future and enable early disease diagnosis and
prevention. There are hints in the literature that phase transitions might be detectable
from data via simple statistical methods, such as variability and correlation. However, more
evaluation is needed to demonstrate the actual utility in the context of personalized medicine.

Enhancing Transition to Clinical Practice
Better Transparency and Interpretability of Models

The lack of interpretability and transparency is one of the key obstacles that hinders
acceptance of machine learning models by physicians and regulatory agencies. The pure focus
on prediction performance is misleading. Additional measures such as stability, enrichment
of existing knowledge and cross-study applicability should be considered. Moreover, there is
the need to link model predictions with a “narrative” that can be understood by doctors and
patients. Such a narrative may be generated in different ways:

by visualizing molecular features that drive the prediction, possibly also with the help of
disease maps
by showing different decision alternatives together with their confidences whenever possible
by showing and visualizing close patients from the training data (w.r.t. some metric)
by generating a medical report for each patient in an automated fashion
by linking latent model features back to biological knowledge

The latter point will require further research, but one possibility might be to look for
evolutionary conserved disease modules. This could at the same time open the door to better
utilize animal models.

Continuous Updating of Prediction Algorithms

There is a need for a clear and transparent process for continual iteration/updating and
revalidation for precision medicine software tools. The notion of CLIA (Clinical Laboratory
Improvement Amendments) labs provide a template for how health-related software tools
(diagnosis, prediction, decision support) developed to inform precision medicine can be
validated and re-validated in an clear, transparent manner as the tool is continually updated.
CLIA labs are certified labs that go through a process of regular re-certification and monitoring
by FDA and other regulatory agencies in the US. These labs follow a SOP, e.g. an approved,
transparent and documentation process. Currently CLIA labs monitor medical devices, which
can include software diagnosis tools. When a CLIA lab waives certification the tool can be
used in practice. Most importantly the developer of the tool can update the software tool.
However the CLIA labs are independent and decide when they will re-validate a software
tool (so maybe not each time you upload a new version).
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5 Conclusions

The current hype around AI and machine learning has to be contrasted with the reality, in
which we are facing a number of challenges in the context of personalized medicine. These
range from insufficient prediction performance over lack of model interpretability up to
difficulties to engage people moving further on to clinical practice with a given model.

The current machine learning hype is dangerous, because it rises inappropriate expect-
ations. In order to manage these expectations there is the strong need to better inform
physicians about the current opportunities, challenges and future potential of data science
in medicine. We therefore plan to publish a paper in a medical journal focusing on the key
learnings from this Dagstuhl seminar.

The overall vision formulated in the seminar was to enable a causal treatment of patients
with the right drug at the right time. We see a number of intermediate steps towards this
grand vision:

high dimensional causal graphical models
hybrid models
understanding of critical transitions
better use of the principles of evolution, e.g. by looking for evolutionary conserved disease
modules

All of these steps are computational. This underlines the crucial relevance of computational
models for enabling personalized medicine.
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