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Abstract
Metabolites are key players in almost all biological processes, and play various functional roles
providing energy, building blocks, signaling, communication, and defense. Metabolites serve as
clinical biomarkers for detecting medical conditions such as cancer; small molecule drugs account
for 90% of prescribed therapeutics. Complete understanding of biological systems requires detect-
ing and interpreting the metabolome in time and space. Following in the steps of high-throughput
sequencing, mass spectrometry (MS) has become established as a key analytical technique for
large-scale studies of complex metabolite mixtures. MS-based experiments generate datasets of
increasing complexity and size.

The Dagstuhl Seminar on Computational Metabolomics brought together leading experts
from the experimental (analytical chemistry and biology) and the computational (computer sci-
ence and bioinformatics) side, to foster the exchange of expertise needed to advance computa-
tional metabolomics. The focus was on a dynamic schedule with overview talks followed by
break-out sessions, selected by the participants, covering the whole experimental-computational
continuum in mass spectrometry. Particular focus in this seminar was given to imaging mass
spectrometry techniques that integrate a spacial component into the analysis, ranging in scale
from single cells to organs and organisms.
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Metabolomics is the study of metabolites (the small molecules involved in metabolism) in
living cells, cell populations, organisms or communities. Metabolites are key players in
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almost all biological processes, play various functional roles providing energy, building blocks,
signaling, communication, and defense and serve as clinical biomarkers for detecting medical
conditions such as cancer. Small molecule drugs (many of which are derived from metabolites)
account for 90% of prescribed therapeutics. Complete understanding of biological systems
requires detecting and interpreting the metabolome in time and space.

Mass spectrometry is the predominant analytical technique for detecting and identifying
metabolites and other small molecules in high–throughput experiments. Huge technological
advances in mass spectrometry and experimental workflows during the last decade enabled
novel investigations of biological systems on the metabolite level. Research into computational
workflows, the simulation of tandem mass spectra, compound identification and molecular
networking have helped disentangle the vast amount of information that mass spectrometry
provides. Spatial metabolomics on different spatial scales from single cells to organs and
organisms has posed data analysis challenges, in particular due to an unprecedented data
volume generated that grows quadratically with the increase of spatial resolution.

Continued improvements to instruments, resolution, ionization and acquisition techniques
mean that metabolomics mass spectrometry experiments can generate massive amounts
of data, and the field is evolving into a “big data” science. This is particularly the case
for imaging mass spectrometry, where a single dataset can easily be many gigabytes or
even terabytes in size. Despite this dramatic increase in data, much of the data analysis
in metabolomics is still performed manually and requires expert knowledge as well as the
collation of data from a plethora of sources. Novel computational methods are required to
exploit spectral and, in the case of imaging, also spatial information from the data, while
remaining efficient enough to process tens to hundreds of gigabytes of data.

Dagstuhl Seminar 17491 on Computational Metabolomics: Identification, Interpretation,
Imaging built on the success of the first Computational Metabolomics Dagstuhl Seminar
(15492) in 2015. A number of topics overlapped with the 2015 seminar, while the focus on
imaging introduced new perspectives, participants and topics. In contrast to the first seminar,
17491 was a large seminar, with 45 very active participants and a large portion of young
scientists. From the first hours of the seminar, effort was made to integrate these young
scientists in the discussions and presentations and this paid off leading to lively discussions
involving all participants. Many participants were new to Dagstuhl and the concept of
Dagstuhl seminars, which led to a seminar that was a combination of being semi-structured
and spontaneous. Very positive feedback was received from all during a comprehensive
feedback session before lunch on Friday, including constructive ideas for a new focus for a
possible new seminar in 2019.

On the scientific side, the seminar covered numerous topics which were found to be most
relevant for the computational analysis of mass spectrometry data, and ranged from the
“dark matter in metabolomics” to “integrating spatial and conventional metabolomics”; see
the full report for a comprehensive description.

The seminar has fully achieved its key goals: to foster the exchange of ideas between
the experimental and computational communities; to expose the novel computational de-
velopments and challenges; and, to establish collaborations to address grand and priority
challenges by bridging the best available data with the best methods.
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3 Overview of Talks

3.1 Challenges in “conventional” metabolomics
Corey Broeckling (Colorado State University – Fort Collins, US), and Nicola Zamboni (ETH
Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Corey Broeckling and Nicola Zamboni

Metabolomics is a field of research which relies on a broad collection of preparation and
analytical approaches and techniques. We began this conference by outlining the range of
approaches used and provide a quick overview of the problems with metabolomics that may
be addressed using computational approaches. We identified computational opportunities in
the following areas:
1. Increase in breadth and coverage of metabolomics
2. workflows for efficient, reusable and objective annotation
3. processing standards for interoperability and testing
4. systematic analysis of MS features
5. network-driven data mining
6. standardization / normalization of non-targeted metabolomics

3.2 Challenges in spatial metabolomics
Theodore Alexandrov (EMBL Heidelberg, DE)

License Creative Commons BY 3.0 Unported license
© Theodore Alexandrov

Spatial metabolomics is about capturing metabolome in its full complexity across various
spatial scales. Currently there are several methods, in particular imaging mass spectrometry,
which generate 1 TB of data per sample. Challenges are:
1. the interpretation of data,
2. data curation, and
3. multi-omics integration.
This requires cloud computing and collaboration.

3.3 Challenges in environmental exposomics and environmental
cheminformatics

License Creative Commons BY 3.0 Unported license
© Lee Ferguson and Emma Schymanski

Lee Ferguson (Duke University – Durham, US)

Identification of unknown pollutants and toxicants in environmental and biological samples
is complicated by incomplete molecular databases. Difficulty in prioritizing chemicals used
in commerce or causing adverse effects. Advances in mass accuracy, resolution and data
acquisition rates have increased data acquisition rates, but annotation remains difficult.
Priorities for future advancements include the incorporation of false discovery rates for
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both in silico and library-based MS/MS identification strategies. Incorporation of metadata
for molecular candidate prioritization will be critical to enhancing identification rates in
environmental samples. Computational methods for establishing networks associated with
molecules in environmental systems will be vital for understanding relationships among
pollutants.

Emma Schymanski (LCSB, University of Luxembourg, LU)

The dark matter in environmental (and small molecule) samples is still a huge challenge. We
have untreated wastewater discharged into rivers with measurable toxic effects that can not
be clarified with known (target) chemicals. Homologues (UVCBs, complex mixtures) are a
massive part of this dark matter with thousands of homologous series. On the other hand
we have 100,000s of complex chemical mixtures produced in thousands of tonnes where we
cannot even assign a structure to the complex name. How can we reconcile this?

3.4 False discovery rate estimation
License Creative Commons BY 3.0 Unported license

© Sebastian Böcker and Andrew Palmer

Sebastian Böcker (Universität Jena, DE)

FDR allows for an automated, objective and reproducible estimation of “how unsure we
are”: This is accepting the fact that in science, there is no “absolutely sure”. It is build on
the assumption that the score of the hit is allowing us to discriminate between true hits
(correct identifications) and bogus hits (incorrect identifications). For metabolomics we face
a number of issues and challenges:
1. ID rates are still much smaller for in silico tools than in, say, proteomics.
2. Spectral libraries are notoriously incomplete.
3. Separation by score is significantly worse than, say, in proteomics.
4. We have no ideas how to generate decoy structures, or how to transform them into

fragmentation spectra.

Andrew Palmer (EMBL – Heidelberg, DE)

Many scoring systems exist for measuring the quality of match between experimental data
and reference databases, for example tandem spectra of isotope patterns. At some point
a threshold must be established for those scores in order to separate the comparisons into
“interesting” and “uninteresting”. We discussed some newly developed approaches for estimat-
ing the false discovery rate for such comparisons in metabolomics experiments, in particular
the prediction and evaluation of target-decoy approaches and the requirements for accurate
estimation. It is clear that no approach is perfect but the community agrees that quantifying
database matching performance is essential.

http://creativecommons.org/licenses/by/3.0/
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3.5 Computational challenges in environmental metabolomics and
exposomics

David Wishart (University of Alberta – Edmonton, CA)

License Creative Commons BY 3.0 Unported license
© David Wishart

Humans are exposed to all kinds of chemicals throughout their lifetimes. These “environ-
mental” exposures account for many of the chronic diseases that develop later in life. In the
USA, more than 90% of all deaths (in 2013) could be attributed to some kind of chemical,
biological or environmental exposure. The measurement of chemical exposures – both within
the body and outside the body – is called exposomics. In this presentation I presented a
brief overview of exposomics and identified 6 key challenges that are facing the field. These
include:
1. the problem with automated workflows
2. the missing “pure” compound problem
3. the missing “metabolized” compound problem
4. the missing “observable” problem
5. the missing ontology problem and
6. the missing funding problem.
Potential solutions for each of these challenges are presented.

3.6 Improved molecular networks with LC-MS feature detection and
in silico annotation

Louis-Felix Nothias-Scaglia (UC – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Louis-Felix Nothias-Scaglia

Recent advances and challenges in MS-data preprocessing for molecular networking on GNPS
web-platform (http://gnps.ucsd.edu) were presented and discussed during the session. This
processing step improves qualitatively the molecular networks by filtering-out noisy features,
by reducing the data redundancy, and by enabling the discrimination of isomeric ions based
on the retention time. Additionally, this approach allows the integration of semi-quantitation
in the network which is a key for new mining strategy, such as the “bioactive molecular
networking” (Nothias, J. Nat. Prod., 2018, accepted). One of the most exciting outcome
of that development relies, is the possibility of using in silico annotation tools such as
Sirius / CSI:FingerID (Dührkop, PNAS, 2015) or Network Annotation Propagation. The
biggest challenge remains the need to optimize LC-MS feature detection parameters on a
dataset-basis, which hamper the systematic large-scale use of that approach on all public
dataset. The development of a LC-MS processing tool that would include an “auto-tuning”
feature is needed to solve that bottleneck.
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3.7 Issues in MS1 data processing and annotation
Julijana Ivanisevic (University of Lausanne, CH), Michael Andrej Stravs (Eawag – Dübendorf,
CH)

License Creative Commons BY 3.0 Unported license
© Julijana Ivanisevic, Michael Andrej Stravs

A presentation and subsequent discussions highlighted current unsolved issues in MS1 data
processing, including:

feature detection – i.e. chemical and bioinformatics noise
feature annotation – issues with componentization, i.e. grouping of isotopes, adducts etc.
batch correction as a problem of both experimental and computational approaches.

In the presentation it was pointed out that only small portion of acquired MS1 data is
indeed assigned as isotopes, adducts, etc. The amount of non-annotated MS1 data remains
extremely high (at least – more than a half of detected signals) implying the presence of
noisy features (i.e. detector artifacts, data artifacts) but especially that the redundancy is
still poorly annotated like in the case of multiple charged species, in-source fragments, etc.
Discussions highlighted the need for solid annotated test data necessary for the development
of improved computational approaches for feature detection and annotation.

3.8 In silico structure prediction with CSI:FingerID
Kai Dührkop (Universität Jena, DE)

License Creative Commons BY 3.0 Unported license
© Kai Dührkop

Identifying metabolite structures via tandem MS is one of the main challenges in metabolomics.
In silico / combinatorial fragmenters start from a hypothetical structure (taken from a
structure database) and match it against the measured spectrum, reporting some kind of
likelihood or match score. In contrast, CSI:FingerID predicts a hypothetical structure (in
form of a probabilistic molecular fingerprint) directly from the measured spectrum using
machine learning techniques. This allows to deal with so called “unknown unknowns” -
structures which are not contained in any structure database. But it is also a starting
point to extract knowledge from MS/MS data without the necessity to identify the exact
structure. We discussed about visualization of predicted structures and possible applications
for structure prediction.

3.9 Long-term monitoring of aquatic systems, combining LC-HRMS
and chemometric tools to highlight organic pollutants

Martin Loos (looscomputing – Dübendorf, CH)

License Creative Commons BY 3.0 Unported license
© Martin Loos

Liquid chromatography coupled to high-resolution mass spectrometry has become the method
of choice to trace highly diluted (yet possibly toxic) organic micropollutants. Despite their
widespread release, data mining workflows to prioritize trends of concern with respect to
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increasing pollutant concentrations have remained scarce within an environmental monitoring
context. Here, we have presented certain steps within any such workflow to automatize,
streamline and facilitate the fast detection of such patterns, even from n ≥ 1000 LC-HRMS
files.

3.10 Topic modelling for substructure discovery in metabolomics data:
state of the art and challenges ahead

Justin van der Hooft (Wageningen University, NL)

License Creative Commons BY 3.0 Unported license
© Justin van der Hooft

Mass Spectrometry-based metabolomics workflows result in large amounts of data often
containing fragmentation spectra of many detected molecules. Ever since fragmentation
spectra of biomolecules could be produced, data analysts have been looking for specific
fragmentation patterns that they could couple to key structures or substructures in their
samples. Doing so, they could start to structurally annotate the molecules in a complex
biological mixture. However, the manual analysis of MS/MS spectra is tedious and impossible
when faced with over 5000 MS/MS spectra for each sample. To overcome this hurdle,
computational approaches have been proposed over the last years. The application of topic
modelling, originally used for text-mining, to MS/MS data was recently introduced. In this
talk, the MS2LDA algorithm was introduced: concurring mass fragments and/or neutral losses
defined from fragmented molecules are discovered and grouped into Mass2Motifs (similar to
topics in text-mining). This is the first unsupervised approach that enables the detection of
potential substructures in mass spectrometry fragmentation data. Validation results using
standards from MassBank and GNPS were shown, as well as Mass2Motifs discovered in
beer samples. Indeed, MS2LDA found biochemically relevant substructures that could be
annotated with amino acid, sugar, and aromatic moieties, amongst others. Furthermore,
it was shown that MS1 comparisons can be mapped on the Mass2Motifs, thereby guiding
the user to relevant/interesting Mass2Motifs, for example, those more present or absent in
Indian Pale Ale (IPA) beers. Finally, it was discussed how to best take this approach forward,
in particular regarding annotation of the discovered fragmentation patterns. As is true for
text-mining, the discovered Mass2Motifs (topics) are a collection of fragments/losses (words)
that need to be interpreted by the user. It was concluded that further integration with other
tools and efficient storage of annotated Mass2Motifs are prerequisite for full exploitation of
this innovative approach.

17491
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3.11 Integrating mass spectrometry with other imaging modalities:
Improving biological insight through data-driven multi-modal
image fusion

Raf Van de Plas (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
© Raf Van de Plas

Studies in medicine and biology increasingly employ a multitude of different imaging techno-
logies to answer a specific biological question. A growing number of such multimodal imaging
studies include imaging mass spectrometry (IMS) as one of these modalities. Although
different modalities are routinely registered and overlaid to generate a single display, true
integration of data across technologies is largely left to human interpretation, resulting in a
significant underutilization of the potential of multi-modal measurements. This talk gives
an overview of our recent work on the integration or “fusion” of IMS with measurements
from other imaging modalities (Van de Plas et al., Nature Methods, 2015) and demonstrates
the potential of data driven image fusion for IMS through several predictive applications.
Example applications include:
1. the “sharpening” of IMS images, using microscopy measurements to predict ion distribu-

tions a la spatial resolution that exceeds that of measured ion images by ten times or
more;

2. the enrichment of biological signals and the removal of instrumental noise by multi-modal
corroboration; and

3. the prediction of ion distributions in tissue areas that were not-measured by IMS.
We also highlight more recent work in which contrary to fusing IMS with microscopy, our
data-driven fusion method is used to combine liver mass spectrometry-based modalities into
a single predicted modality that combines advantages of the several modalities. In this new
IMS-IMS fusion setting, MALDI-FTICR IMS measurements (lower spatial resolution, higher
mass resolution) enabling ion distributions to be predicted with both high spatial as well as
high mass resolution. Examples are shown in lipid imaging, where there is both a need to
spatially resolve fine tissue structure, as well as a need for high chemical specificity due to
nominal isobaric species.

4 Working groups

4.1 Metabolite structure ambiguity – representation, standardization,
and naming

Nils Hoffmann (ISAS – Dortmund, DE)

License Creative Commons BY 3.0 Unported license
© Nils Hoffmann

The structure of small molecules can not be fully established with current MS/MS methods.
Ideally, structures should be unambiguously resolvable down to the isomer level, however,
current mass spectrometric methods are limited to measuring accurate masses of precursor
and fragment ions. MSn fragmentation patterns can assist in the elucidation of structures,
but still fail to identify e.g. the positions of double bonds or specific ligands, since the
corresponding fragment masses are virtually identical.
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For lipids specifically, ambiguities exist concerning the position of double bonds in lipid
chains and how to encode them in a consistent naming scheme. The current nomenclature
uses lipid category abbreviations (e.g. PC) and encodings for the number of Carbon atoms in
the fatty acid (FA) side chains (R1, R2, R2 ...) of a lipid and optionally, the number of double
bonds (unsaturated bonds) in them, e.g. for a triglycerol with a total of 52 carbon atoms
and one double bond, the name would be reported as TG(52:1), or as TG(16:0_18:0_18:1)
if is known that one of the fatty acid chain consists of sixteen carbon atoms, the second FA
chain of eighteen, and the third one of eighteen carbon atoms with one double-bond at an
arbitrary position.

In principle, the same issues arise not only in lipidomics, but similarly for other “small
molecules” (<1kDa) in environmental chemistry, glycomics, natural product chemistry
(flavonoids and terpenes) and metabolomics. We identified the following, cross-cutting
requirements for a nomenclature and representation of incomplete or ambiguous structural
information:
1. representation of such information as extended SMILES / SMARTS and InChI (with

extension of the current standard),
2. visualization of generalised structures, e.g. using CDK-depict, based on extended SMILES

or other structural representations,
3. curation and availability of uncertain structures in databases,
4. support for reporting of ambiguity / structural uncertainty in community data standards,

e.g. in mzTab, mzIdentML etc.,
5. search of patterns, e.g. conserved and variable substructures in structure databases
6. collapsing / superposition of defined, unique structures represented as a common conserved

and a “common” varying part (e.g. exact ligand positions in Markush structures).
We want to address these requirements by gathering examples from the different communities
that reflect the status quo of reporting ambiguous, not fully-resolved structures, especially
when identification is only based on MS1 / MS2 database identification. We intend to use
those to illustrate the benefit of having a common standard in a statement article that defines
the problems and shortcomings of current reporting of structural information and raises
awareness in and receives input from the affected communities.

We will work towards better interoperability between the tools used to generate extended
SMILES (support for Rs, *s, etc. in the CDK, ChemAxon, and OpenBabel) and to support
the encoding of uncertainty in ligand positions, e.g. for aromatic compounds, and to visualize
them.

4.2 R-based computational mass spectrometry
Michael Andrej Stravs (Eawag – Dübendorf, CH)

License Creative Commons BY 3.0 Unported license
© Michael Andrej Stravs

Features and benefits of the base package MSnlib for treatment of mass spectrometry data
were introduced, with a particular focus on the classes for representation of MS1 and MS2
spectra. A brief overview about features and interface of the new XCMS3 version were
presented. A discussion highlighted a current gap in packages for MS2 library management
and search, and adoption/extension of current approaches was discussed. Finally, the current
trend of “tidyverse” packages was briefly exposed, and benefits and drawbacks of a possible
adoption of “tidyverse” data structures were discussed.

17491
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4.3 Connecting genome and metabolome data: combining structural
information from genome and metabolome mining

Justin van der Hooft (Wageningen University, NL)

License Creative Commons BY 3.0 Unported license
© Justin van der Hooft

Metabolomics workflows result in the discovery of molecular families sharing common core
structures. Genome mining workflows result in the prediction of biosynthesis gene clusters
responsible for the production of specialized molecules – those gene clusters can then be
grouped in gene cluster families that produce similar molecules. Connecting genome and
metabolome mining workflows can enhance the structural and functional annotation and
identification of both metabolites and genes. By linking existing and novel networking
approaches, accelerated substructure annotation can be accomplished, which will facilitate
structural elucidation of specialized molecules. Through the link with the genome, the
microbial producers of these molecules can also be linked. This break-out session discussed
ideas and major challenges to exploit the linkage between these two largely separately
developed omics fields: the availability of paired data sets including validated links between
genome and metabolome; the type of statistics needed to correct for potential bias when
correlating presence/absence of molecular and gene cluster families across different strains;
the application of fragmentation trees to find substructures connecting to genes as well as
information on how substructures are linked; the application of biotransformation rules to both
substructures and complete structures; the use of (a subset of) CSI:FingerID substructures
to assess the likelihood that they are present in fragmented molecules; and the possibility to
also use transcriptomics data to assess if BGC are active or silent. It was concluded that
the currently available paired data sets are scattered and not easily accessible: cross-linking
tables and validated links are needed to apply machine learning tools. Furthermore, both
genome and metabolome mining are highly evolving fields that could benefit from integration;
examples for peptide-based specialized molecules were mentioned; however, for most classes
novel tools are needed. Exciting ideas to apply machine learning to combine specific structural
information from genome and metabolome mining were also shared.

4.4 Dark Matter
Ricardo Da Silva (UC – San Diego, US)
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Dark matter was defined as frequently observed spectral signals for which no annotation
can be assigned. The first source of dark matter was attributed to experimental design,
highlighting the importance of having controls, in order to differentiate real signal from noise
and contamination. The second source was attributed to spectrometric data pre-processing,
due to signal complexity (adducts, isotopes, fragments, contaminants) and also due to the
low accuracy of existing tools (missing peaks, integration of noise, split peaks, merged peaks).
The third source was attributed to the limited coverage of spectral libraries, data repositories,
specially for benchmark datasets, and the lack of connection between the known chemicals
and its biological source. The most important long term solutions cited were the expansion
of reference and raw data databases, as well as the design and analysis of benchmark datasets
by multiple orthogonal methods and multiple labs.
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4.5 Retention time and retention time prediction
Michael Witting (Helmholtz Zentrum – München, DE)
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Retention time (RT) represents an orthogonal information to mass spectrometry. It is
especially important to distinguish isomers which cannot be separated solely by MS and
MS/MS. In this beak-out group several small presentations showed the state-of-the art
in reporting RT data and predicting it. Different ways of improving RT prediction were
discussed and important parameters to model retention time order were collected. These
will serve as future reference for collecting metadata and data around RT and its prediction.

4.6 Data independent acquisition
Corey Broeckling (Colorado State University – Fort Collins, US)
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Several members discussed the increasingly common ‘data independent acquisition’ (DIA)
of MS/MS data. A workflow was presented for processing ‘all ion fragmentation’ data, an
acquisition approach in which no precursor selection is performed. The various flavors of
data independent acquisition methods that have been published were summarized graphically,
in an effort to inform developers of DIA processing workflows to design processing tools which
are sufficiently versatile to handle the many iterations. A considerable effort is being made
to update and expand the ramclustR package with novel clustering methods, and a novel R
based workflow was presented demonstrating efficacy in using extracted ion chromatograms
to remove contaminating signals from DIA spectra. More broadly, the attendees discussed
the many strengths of DIA approaches, as well as the frequent tradeoff between sensitivity
and selectivity, and the difference between actual (physical isolation defined by precursor
isolation window size) and processing assisted selectivity (overlapping windows can enable
contaminant signal subtraction).

4.7 Molecular networking and integration with annotation tools
Madeleine Ernst (UC – San Diego, US)
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Mass spectral molecular networks enable the observation of similarities and differences in
MS/MS fragmentation patterns of complex samples. MS/MS fragmentation patterns are
typical of a molecular structure, and molecular structures can thus be identified/annotated
manually or by using in silico approaches. This break-out session discussed ideas and
challenges to integrate molecular networks with in silico annotation tools. Mass spectral
molecular networking has been made widely accessible by Global Natural Products Social
Molecular Networking (GNPS), allowing the community to share, analyze and annotate
MS/MS data. Nevertheless, mass spectral molecular networking is currently a per-study
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approach and comparison of different datasets is only possible with limitations. Major
challenges discussed in this session ranged from questions on how to integrate information
on mass shifts in an automated way, simulate enzymatic reactions to predict molecular
structures and incorporate biochemical properties (e.g., pH, bioactivity) in the networks to
using network topology to improve in silico annotation. The need for sharing data with the
community and making datasets public was stressed as well as the aim of integrating all types
of information into the mass spectral molecular networks, ultimately enabling inter-study
comparisons.

4.8 Bridging the gap
Sarah Scharfenberg (IPB – Halle, DE)
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Metabolomics science faces several gaps, such as language and communication problems
between the tool developers and the experimentalist, insufficient visibility of available tools
and inappropriate usability of tools. Collaborative projects will fail as soon as one of the
involved parties assesses its part as a service. Early communication of study design should
be mandatory for each experimentalist who wants statistical support. To match the needs
of both sides, we should further go for user driven development, which is based on a real
study and a fixed problem and accompanied and constantly feedbacked by the corresponding
experimentalist. To improve the usage of existing tools we could provide more educational
documentation, such as webinars, video tutorials and example datasets.

4.9 Creating the “perfect” benchmark / reference dataset
Corey Broeckling (Colorado State University – Fort Collins, US)
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The “perfect benchmark dataset” discussion began by trying to define the computational
problems in data processing, including being able distinguish signal from noise and metabolites
from artifacts. The concept of theoretical data and what sort of artifacts we might be able
to predict/model was discussed, in an effort to determine how realistic the predicted data
would be. A small “ring trial” was proposed, with a sample set based on the notion of
a sample set containing a moderately complex (20 - 100) set of pure authentic standard
compounds. This compound mixture will be analyzed under realistic conditions as if it
were an authentic sample set. The sample mixture could additionally be sent to interested
labs for analysis. Computational collaborators would be delivered data from one or more
laboratories rather than samples. Participants intend to move the concept forward with a
more detailed planning document.
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4.10 Integrating spatial and conventional metabolomics
Andrew Palmer (EMBL – Heidelberg, DE)
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The computational communities that focus on traditional metabolomics and imaging mass
spectrometry have both approached the large scale processing of mass spectra from different
perspectives. This session was an opportunity for both communities to describe their experi-
ments, data, and processing strategies to seek opportunities for the exchange of ideas and
methodologies. After all participants had an opportunity to present their methodologies, dis-
cussion focussed on the similarities between imaging mass spectrometry and high throughput
flow injection experiments: both in terms of the experimental aims (to maximally annotate
the peaks present) and data (large numbers of high resolution mass spectra from complex
mixtures). To begin to assess the efficacy of computational strategies across these modalities
a source of well characterised publically available data from flow injection studies needs to
be identified.

4.11 Ab initio network reconstruction challenges
Fabien Jourdan (INRA-ENVT – Toulouse, FR)
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First part of the discussion was about sharing views on network research field related to
metabolomics. In fact, “network” is a very versatile concept used for many applications
from molecular networks (nodes represent fragmentation spectra and edges cosine score) to
biochemical networks (nodes are compounds and edges correspond to metabolic reactions).
It is thus of utmost importance to define carefully what nodes and edges are modelling.
Discussion then focused on the lack of identifier standardisation between modelling and
metabolomics community. In particular, as a community, we advice that more care should
not be taken when curated metabolic networks in order to provide InChIKeys and InChIs.
The other issue, related to other break-out session, is the necessity of providing identifiers
with flexible substructures identifiers (e.g. to deal with class of lipids). Finally, reconstruction
from peak lists was discussed (ab initio reconstruction). This approach is based on mass shifts
between masses in a peak list. If the mass shift corresponds to a biochemical transformation
mass difference (e.g. methylation) then an edge is added. This definition implies the presence
of a lot of false positive edges. Discussion then focused on ways to automatically filter out
these edges.
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4.12 Version control and CI for MS/MS libraries
Steffen Neumann (IPB – Halle, DE)
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The Spectral Libraries session dealt with spectral libraries, such as GNPS, MassBank or
HMDB. We discussed several routes to get spectra into libraries, ranging from conversion
of existing (in-house) libraries to automated workflows extracting clean spectra from raw
data. The MassBank team presented an approach to use established processes from software
engineering, in particular version control and continuous testing. MassBank is moving
towards a github-supported workflow in the near future, and first prototypes were shown.
Such setups also simplify large-scale automatic curation, for structures, additional metadata
and links. Several participants have done curation and processing of libraries, and these
could then be fed back to the repositories.

4.13 False discovery rates
Marcus Ludwig (Universität Jena, DE)
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It is understood that false discovery rate estimation is a necessity to allow comprehensive
statistical analysis of structural identifications from mass spectrometry data. Currently no
computational method provides a score to sufficiently separate true and bogus hits. Some
strategies already applied in proteomics might help, such as fitting score distributions and
estimating p-values. We discussed whether improvements on the measurement side might
provide better data to discriminate between different candidates. However, it is unclear if
mass spectrometry data provides enough information to distinguish highly similar metabolites.
Due to metabolites large structural diversity and insufficient information we might need to
reformulate what we can in fact deduce from the data and what we accept as a “correct“ hit.

4.14 Feature prioritization
Sarah Scharfenberg (IPB – Halle, DE)
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Feature prioritization is one of the main steps in a biological study although it is sparsely
addressed in general MS1 workflows. Reducing the number of correlated variables in advance
also positively affects the outcome of the multivariate analysis. Strongly dependent on the
study goal there is a set of commonly used methods, such as PCA, PLS, variable clustering,
fold changes, hypothesis testing, random forests, or a combination of these. Based on MSMS
networks or visual models it is possible to connect feature intensities to bioactivities or
regions. A proper experiment design enables strict criteria on how to select the relevant
features, e.g. the most differentially expressed features.
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