Report from Dagstuhl Seminar 17492

Multi-Level Modelling

Edited by
Joao Paulo A. Almeida'!, Ulrich Frank?, and Thomas Kiihne?

1 Federal University of Espirito Santo — Vitdria, BR, jpalmeida@ieee.org
2 Universitiat Duisburg-Essen, DE, ulrich.frank@uni-due.de
3  Victoria University of Wellington, NZ, thomas.kuehne@ecs.vuw.ac.nz

—— Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 17492 "Multi-Level
Modelling". This seminar brought together researchers and industry practitioners from the fields
of conceptual modeling, ontologies, and formal foundations to discuss and share the benefits of
Multi-Level Modelling (MLM), to develop an agreement on MLM terminology and scope, and
to drive future research directions in MLM. Some foundational presentations were given by the

seminar organizers to ground the discussions and provide an initial set of open questions which
would lead to the formation of the working groups. In addition, six industry representatives
gave talks explaining the needs, challenges, utility, and possible issues with adoption of MLM
in industry. Based on the original seminar goals, the talks, and the resulting discussions, four
working groups were established to investigate: the formal and ontological “Foundations” of MLM;
promising “Applications” and potential evaluation criteria for MLM methods; the “Dynamic
Aspects” of MLM, such as processes and behaviour; and, the use of and impact on “Model
Transformations” in the context of MLM.

Seminar December 3-8, 2017 — http://www.dagstuhl.de/17492

1998 ACM Subject Classification D.2 Software Engineering, D.2.13 Domain engineering
Keywords and phrases metamodeling, multi-level modeling

Digital Object Identifier 10.4230/DagRep.7.12.18

Edited in cooperation with Matt Selway

1 Executive Summary

Jodo Paulo A. Almeida (Federal University of Espirito Santo — Vitéria, BR)
Colin Atkinson

Ulrich Frank (Universitit Duisburg-Essen, DE)

Thomas Kiihne (Victoria University of Wellington, NZ)

License ) Creative Commons BY 3.0 Unported license
© Joao Paulo A. Almeida, Colin Atkinson, Ulrich Frank, and Thomas Kiihne

Multi-Level Modeling (MLM), i.e., the explicit exploitation of multiple levels of classification
when modeling, represents a significant extension to the traditional two-level object-oriented
paradigm with the potential to dramatically improve upon the utility, reliability and complex-
ity level of models. It therefore has benefits in many domains of modeling such as software
engineering, process modeling and enterprise modeling. Research into multi-level modeling
has increased significantly over the last few years, manifesting itself in lively debates in the
literature, four international workshops (MULTI 2014-2017), a published journal theme issue
(SoSyM), a special issue for the EMISA journal (in preparation), and a growing number
of tools and languages. While the enthusiasm around MLM provides momentum to this

Except where otherwise noted, content of this report is licensed

37 under a Creative Commons BY 3.0 Unported license
Multi-Level Modelling, Dagstuhl Reports, Vol. 7, Issue 12, pp. 18-49
Editors: Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

\\v pagstunL Dagstuhl Reports
RePORTs  Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://www.dagstuhl.de/17492
http://dx.doi.org/10.4230/DagRep.7.12.18
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

promising research area, the recent speed of growth and the focus on exploring new language

features has raised some challenges, including the following:

growing diversity of approaches On the one hand diversity is welcome in order to spawn a
competition of ideas but on the other hand it can slow down the approach’s growth and
industry adoption unless steps are taken to consolidate ideas and bundle resources.

lack of integration with related disciplines In particular, ontology engineering has over-
lapping application areas and could form a powerful synergy with MLM due to its
complementary strengths and weaknesses. Moreover, areas such as logic, philosophy, and
linguistics are also highly relevant for the further advancement of MLM.

neglect of real world applications It is natural to initially focus on core principles when
developing a new approach, but at some point it becomes important to make the transition
into industrial practice in order to validate claims about the utility and need for MLM,
and to promote the uptake of MLM in new domains and industries.

Goals

In order to address the aforementioned challenges the seminar brought together researchers
and industry practitioners from the areas of conceptual modeling, ontologies, and formal
foundations. In particular, to further the coherence of future research into multi-level
modeling, we aimed at

having some consolidating discussion on terminology and scope;

strengthening (formal) foundations; and

identifying objective criteria for comparing competing approaches, e.g., by developing

respective benchmarks in cooperation with modelers from industry.

Working Groups

A talk on “What is Multi-Level Modeling?” by Thomas Kiihne (cf. talk abstract) set the
stage for the terminology discussion and presented results from a survey that the organizers
ran prior to the seminar. The survey results were in good agreement with the ideas the talk
put forward in terms of what core multi-level modeling concepts are, such as “multiple levels
of abstraction”, “classification as the core abstraction principle”, “modeling the real world”

(as opposed to engineering languages). The survey design carefully avoided introducing

bias, hence there were no multiple-choice questions on subjects like this one. The lack of

answer standardization required a manual allocation into answer categories such as the
aforementioned ones, but only clear cut cases were counted. Overall, there was very little
controversy over what multi-level modeling constitutes. Furthermore, the survey nicely
confirmed that the initial seminar goals were congruent with what most participants found
to be interesting and important work in the area of multi-level modeling.

Two further talks were aimed at supporting the formation of working groups:

1. A talk on foundations and ontologies by Jodo Paulo A. Almeida contrasted ontology
engineering to language engineering, asked which questions should be addressed by a
foundation, and explored some answers.

2. A talk on applications by Ulrich Frank elaborated on challenges for multi-level modeling
in practical applications.

19

17492



20

17492 — Multi-Level Modelling

Subsequently four working groups were established by identifying the themes that both
aligned with the original workshop goals and garnered the highest interest among participants.

A working group on “Foundations” formed and decided to start on investigating which
ontological commitments and metaphysical choices may be required or useful for a foundation
of multi-level modeling (cf. “Foundations” group report, 4.1).

A working group on “Applications” set out to identify promising application domains for
MLM, find common properties for such application domains, identify anticipated benefits of
MLM, and determine evaluation criteria for MLM methods (cf. “Applications” group report,
4.2).

A further working group on “Dynamic Aspects” focused on a sub-area of enterprise
modeling, i.e., modeling process-related and/or dynamic behavior aspects (cf. “Dynamic
Aspects” group report, 4.3).

We strove to both address the originally planned goals of the seminar but also to allow
new goals to be formed, based on the final composition of the participants. As a result,
the group formation process yielded one more group that focused on transformations in the
context of multi-level modeling (cf. “Transformations” group report, 4.4).

Due to the overlap between foundation work and the area of “integration with ontologies”,
a group dedicated exclusively to exploring synergies between MLM and ontology engineering
did not emerge. We are hopeful that the working group on “Foundations” will explore more
of the synergy aspect in future collaborations.

Industry Focus

As closing the gap between academia and industry with respect to multi-level modeling was
a primary goal of the seminar, we had a total of six talks by industry representatives. These
talks gave the speakers an opportunity to explain actual needs, set challenges, comment on
utility, etc., plus allowed the audience to inquire about hurdles for adoption, etc. Please see
the industry talk abstracts included in this report for further details.

We, the organizers, are extremely grateful to the staff of Dagstuhl for providing a perfect
seminar venue and to the participants who not only made this seminar a success but also
provided a wealth of generous positive feedback.

The organizers, Dagstuhl, 2018
Joao Paulo A. Almeida

Colin Atkinson

Ulrich Frank

Thomas Kiihne



Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

2 Table of Contents

Executive Summary
Joao Paulo A. Almeida, Colin Atkinson, Ulrich Frank, and Thomas Kiihne

Overview of Talks

What is Multi-Level Modeling?
Thomas Kithne . . . . . . . . e e e e e e e

What Kind of Foundations do we Need for Multi-Level Modeling?
Jodo Paulo A. Almeida . . . . . . . . . .

On the Application of Multi-Level Modelling — Prospects and Challenges
Ulrich Frank . . . . . . . . . o e e e e

Implications When Migrating to Multi-Level Modeling (Industry Perspective)
Ta’id Holmes . . . . . . . . e e
Potential of Multi-Level Modelling in Model Based Systems Engineering: A “Na-
tional Research Lab” Perspective (Industry Perspective)

Philipp Martin Fischer . . . . . . . . . 0 e e e e

Personal View on Multi-Level Modeling (Industry Perspective)
Vinay Kulkarni . . . . . . . . e

Commercial Introduction — BORO Solutions (Industry Perspective)
Chris Partridge . . . . . . . . . 0 e

Multi-Level Modelling at BiZZdesign (Demo)
Maarten Steen . . . . . ..o

The MLM Application of FOM (Demo)
Mira Balaban . . . . . . . . e

Multi-Level Modelling in XModeler (Demo)
Tony Clark and Ulrich Frank . . . . . . .. . . o

The ML2 Multi-Level Modeling Language (Demo)
Jodo Paulo A. Almeida . . . . . . . . . .

Working groups

Formal Foundations and Ontology Integration

Cesar Gonzalez-Perez, Joao Paulo A. Almeida, Victorio Albani de Carvalho, Anne
Koziolek, Thomas Kiihne, Chris Partridge, Michael Schrefl, Matt Selway, and
Friedrich Steimann . . . . . . . . . e e e

Applications and Evaluation of MLM

Iris Reinhartz-Berger, Mira Balaban, Philipp Martin Fischer, Manfred Jeusfeld,

Agnes Koschmider, Wendy MacCaull, Bernd Neumayr, Maarten Steen, and Dustin

Wiiest . . . . o e e

Dynamic Aspects of Multi-Level Modelling
Georg Grossmann, Tony Clark, Ulrich Frank, and Vinay Kulkarni. . . . . . . . ..

Multi-Level Model Transformation
Dirk Draheim, Ta’id Holmes, and Manuel Wimmer . . . . . . . . . ... ... ...

Participants . . . . . . . . . e

18

21

17492



22

17492 — Multi-Level Modelling

3 Overview of Talks

3.1 What is Multi-Level Modeling?
Thomas Kiihne (Victoria University of Wellington, NZ)

License ) Creative Commons BY 3.0 Unported license
© Thomas Kiihne
Main reference Colin Atkinson, Thomas Kiithne: “The Essence of Multilevel Metamodeling”, in Proc. of the
«UML» 2001 - The Unified Modeling Language, Modeling Languages, Concepts, and Tools, 4th
International Conference, Toronto, Canada, October 1-5, 2001, Proceedings, Lecture Notes in
Computer Science, Vol. 2185, pp. 19-33, Springer, 2001.
URL http://dx.doi.org/10.1007/3-540-45441-1_3

A community will struggle to coherently grow unless it has a shared sense of which core
concepts define its discipline. The purpose of this talk was therefore to set the stage for
allowing the community to form a consensus about what the scope of multi-level modelling
(MLM) is and which aspects should be considered necessary versus those that either form
sub-disciplines or are better thought of being outside the intended scope.

To this end, I first provided an account of the history of MLM, in particular concerning
how MLM differs from prior work on language-oriented metamodeling, i.e., the use of multiple
linguistic type models. I argued that the use of domain-induced metahierarchies [1] implies a
modeller focus in contrast to the language-engineering perspective of prior metamodeling
work.

I then suggested a list of key characteristics that could be considered to be part of every
MLM approach. I contrasted these with existing choices that may or may not be considered
to also fall under the MLM umbrella. I briefly looked at some dimensions of variability that
are likely to give rise to MLM variants and referenced work that aimed to explore ways to
systematically evaluate and compare such variants [2, 3].

Finally, T motivated the four core topics of the seminar — Foundations, Ontologies,
Applications, and Evaluations by pointing out their role in providing a sound basis for MLM,
furthering MLM by integrating it with other disciplines, and demonstrating MLM’s relevance
with respect to two-level technology and industry applications.

I concluded the talk with an analysis of the responses we received to a survey we ran
prior to the seminar.

References

1 C. Atkinson and T. Kiithne. The essense of multilevel metamodeling. In M. Gogolla and
C. Kobryn, editors, Proceedings of the 4th International Conference on the UML 2000,
volume 2185 of LNCS, pages 19-33, Toronto, Canada, October 2001. Springer Verlag.

2 C. Atkinson, R. Gerbig, and T. Kithne. Comparing multi-level modeling approaches. In
Proceedings of the 1st International Workshop on Multi-Level Modelling, volume 1286 of
CEUR Workshop Proceedings, pages 43-52. CEUR, 2014.

3 C. Atkinson and T. Kithne. On evaluating multi-level modeling. In Proceedings of the
4th International Workshop on Multi-Level Modelling, volume 2019 of CEUR Workshop
Proceedings, pages 274-277. CEUR, 2017.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/3-540-45441-1_3
http://dx.doi.org/10.1007/3-540-45441-1_3
http://dx.doi.org/10.1007/3-540-45441-1_3
http://dx.doi.org/10.1007/3-540-45441-1_3
http://dx.doi.org/10.1007/3-540-45441-1_3

Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne 23

3.2 What Kind of Foundations do we Need for Multi-Level Modeling?
(in Language & Ontology Engineering)

Jodo Paulo A. Almeida (Federal University of Espirito Santo — Vitéria, BR)

License @ Creative Commons BY 3.0 Unported license
© Jodo Paulo A. Almeida

In this introductory talk, I have identified some key challenges to be addressed in a foundation
for multi-level modeling. First and foremost, I have tried to argue that it is paramount for
multi-level modeling as a discipline to investigate the guiding notion of “level”. While this
seems to be a trivial observation, different multi-level modeling approaches structure models
differently, sometimes using the same term “level” for different underlying organization
principles. Thus, “level” talk is, in many cases, semantically overloaded, with "levels" serving
different purposes. A foundation for multi-level modeling should identify the “job” that a
notion of “level” is put to. Foundations for multi-level modeling should allow us to understand
what are the options for the nature of the various organizing principles and clarify the relation
between terms such as “levels”, “potencies”, “orders”, “stages”, “layers”, “strata”, etc.

I have also identified some desiderata for a suitable foundation, discussing that it should
ideally:

Encompass different approaches, e.g., two-level, level-agnostic/blind, strictly stratified,

power-type based;

Serve to settle semantic questions;

Justify modeling choices or explain qualitative differences between modeling approaches;

Account for shallow and deep instantiation and other multi-level modeling mechanisms;

Account for language engineering and ontology engineering based on general principles

(since language engineering and ontology engineering have employed similar object-oriented

representation schemes).

In order to provoke discussions on foundations, the following questions were posed:
What is the nature of a (multi-level) model?

What is the nature of a “level”? (What principles arise from organization into “levels”?)
What does it mean for an entity to be in a “level”? (What is the job a “level” does?)
What is the nature of entities in a “level”?

What is the nature of relations between entities? (Within a “level” and across “levels”)

ARSI A

I have concluded that a suitable foundation for multi-level modeling would constitute an
ontology of multi-level phenomena, and that failing to make this ontology explicit results in
adopting a poor ontology inadvertently.

3.3 On the Application of Multi-Level Modelling — Prospects and
Challenges

Ulrich Frank (Universitit Duisburg-Essen, DE)

License ) Creative Commons BY 3.0 Unported license
© Ulrich Frank

It is undisputed that conceptual modelling is a prerequisite of designing large software systems.
However, the development and use of traditional modelling languages are compromised by
serious problems. First, there are no convincing criteria to clearly decide whether a certain

17492


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

24

17492 — Multi-Level Modelling

concept should be part of language or should rather be defined with the language. However,
the traditional paradigm requires corresponding decisions to be made. Second, the design
of modelling languages has to cope with an inherent conflict. On the one hand, a DSML
should include concepts that address the specific needs of a domain. Hence, it should aim
at modelling productivity. On the other hand, economies of scale demand for less specific
concepts in order to reach a wide scale of reuse. Third, there are concepts that make perfect
sense to us, and that would foster reuse and integration, which cannot be represented in
the traditional paradigm. Fourth, model-driven software development creates a notorious
problem, that is, the synchronization of models and code. In this presentation, it is shown
that multi-level modelling in general, the FMMLx and the Xmodeler in particular are suited
to overcome the limitations of the traditional paradigm. Furthermore, it is demonstrated
that multi-level modelling and programming enables self-referential systems, which clearly
contribute to more flexible systems and promote user empowerment.

3.4 Implications When Migrating to Multi-Level Modeling (Industry
Perspective)

To’id Holmes (Deutsche Telekom — Darmstadt, DE)

License ) Creative Commons BY 3.0 Unported license
© Ta’id Holmes

Modeling enables different stakeholders to participate in an engineering process. Therefore
modeling is (also) about roles, responsibilities, and collaboration in particular. What are the
effects and consequences when a traditional two-level modeling approach (i.e., comprising
a metamodel and models) is being transformed to a multi-level modeling approach where
part of the language engineering is delegated to a domain expert? What makes a model
“resilient” in regard to evolution? Which anti-patterns in modeling can be effectively avoided
(using tool-support)? Which best-practices can be incentivized? Is it possible to prepare for
the worst-case usage?” How would models look if language features were abused and could
an organization live with the (long-term) consequences? When is standardization indicated
(e.g., the higher model elements are located in a multi-level model the higher potential reuse,
the higher the need for standardization)?

3.5 Potential of Multi-Level Modelling in Model Based Systems
Engineering: A “National Research Lab” Perspective (Industry
Perspective)

Philipp Martin Fischer (DLR — Braunschweig, DE)

License ) Creative Commons BY 3.0 Unported license
© Philipp Martin Fischer

The lifecycle of a spacecraft follows a process of phases. There are important goals between
these phases such as a preliminary design review (PDR). These goals have to be successfully
passed by the whole project team. Usually they are connected to contractual conditions, e.g.
after the PDR the design is usually settled and the spacecraft will be built. Such contracts
consider agreements with industry and suppliers on part and equipment orders, etc. [1, 2]


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

Changing the design after the PDR may require contractual changes. These changes tend to
be expensive and have to be avoided. [3]

To avoid the aforementioned issues, model based systems engineering (MBSE) has been
introduced in satellite design. It is focusing on data bases that provide a conceptual data
model (CDM also known as meta model). The engineers start modeling the system within
such data bases usually on a functional level. The system model is then used as central
source of knowledge for further processes. [3] Such processes may cover on the fly analysis
[4], configuration of simulators [5], new ways of modelling including interactive visualization
[6] and emerging trends such as mixed reality. This notion of an MBSE approach has been
implemented e.g. in DLR’s data base called Virtual Satellite. Until today it is successfully
applied in early spacecraft design. [7] Nowadays, the data base is applied beyond the early
phases. Therefore it has to deal with more detailed information and has to cope with yet
unknown requirements of tomorrow. Accordingly the CDM has become more complex and
offers extension mechanisms. [3]

The success of these data bases is partly founded in their configuration control capabilities.

In fact, the engineers require not just one model of the spacecraft but several. These models
are a master model, derived simulator models, or models for the actual satellites one and
two. The different models are needed to reflect differences e.g. a different electrical harness
for the simulator, or individual command ids for individual satellites. [3, 5] This is handled
by the product structures of the data bases. They are standardized to a certain extend
in the activities of European Ground Segment — Common Core (EGS-CC) as well as the
European Cooperation for Space Standardization Technical Memorandum (ECSS-E-TM)
10-23. [8, 9] These structures are used for a hierarchical decomposition of the system. The
first tree modelled, is usually a product tree. The engineers are using this tree for an initial

description of the required parts such as a reaction wheel (RW) or magnetic-torquer (MTQ).

They don’t yet model every instance of such a part. Instead, they are modelling them as an
idea of a type. The second tree is the configuration tree where these types are instantiated
into a virtual configuration of several RWs and MTQs. The final trees are the assembly
trees, which are based on the configuration trees but representing how actual satellites are
build. They reflect the assembly e.g. of an actual satellite number one and two. Since all
trees, including their parts, are based on each other, defining the mass of the RW once in
the product tree will update all its further instances in the configuration and assemblies
as well. Override functionality allows changing the values when needed or to combine the
information with so called realizations. These realizations represent the actual ordered parts
that have been delivered. E.g. their calibrations are measured and the best fitting parts
are now assigned to the assembly. The information such as a mass is modelled by so called
engineering categories. They are based on what is known as type/object pattern. [10, 11]
An engineering category defines a property such as a mass and assigning this category to an
element in the product tree instantiates it. Now information can be stored in the instance of
this property. [3]

Even though successful, there are some drawbacks, where Multi-Level Modeling promises
some reasonable improvements. For example, an engineering category for storing geometric
information of a part consists of a position, a size and a shape. These three properties
make sense at configuration level, but not yet at product level. At product level or type
level the position is simply not yet known. By today this is handled by either providing
arbitrary values or by complex class inheritance hierarchies. Nevertheless such handling is a
workaround rather than a proper solution to such problems.

25

17492



26

17492 — Multi-Level Modelling

Multi-Level Modelling and the idea of potencies and deep instantiation [12] in particular,
seems to offer a solution. Assigning a potency of two for the position property creates
awareness of this property already at product level. The actual value of that property
can now be set starting from configuration level. Considering another example based on
an engineering category for tele-commands, it consists of a purpose, e.g. RW turn on, an
equipment identifier as well as a satellite identifier. With the concept of potency and deep
instantiation, engineers are aware of all three properties already at product level. The actual
necessary information needs to be provided at the stages of configuration and assembly.

This approach works well with the accepted set of product structures. Nevertheless current
work indicates that there might be further trees needed in future applications. Introducing a
new integration tree in between configuration and assembly breaks the potency mechanism
for the tele-command example. A decrease of that potency with every level of instantiation
is not suitable. A fix to this issue could lead in the direction of context aware potencies.

At the moment, the MBSE data bases do not yet apply such Multi-Level Modelling.
Nevertheless, it can be seen that certain directions of Multi-Level Modelling could improve
the overall modeling activities. For sure this view is a highly practical driven adoption of the
theories of Multi-Level Modelling and potentially breaks some of the clear cut semantics.
Still it shows that these theories provide some answers to the problems of spacecraft related
models of today. In general, the described idea of applying potencies and deep instantiation
to the concept of engineering categories looks promising. In order to prove its applicability,
further research is needed and some first prototypes are envisaged for evaluation.

References

1 ECSS Secretariat. ECSS-M-ST-10C Space project management — Project planning and im-
plementation. ESA-ESTEC Requirements & Standards Division, Noordwijk, Netherlands,
2009.

2 NASA. Systems Engineering Handbook (NASA/SP-2007-6105 Rev 1). National Aeronaut-
ics and Space Administration, Washington, D.C. / USA, 2007.

3 P. M. Fischer, D. Liidtke, C. Lange, F.-C. Roshani, F. Dannemann and A. Gerndt. Im-
plementing model based system engineering for the whole lifecycle of a spacecraft. CEAS
Space Journal, 12 July 2017.

4 M. Deshmukh, V. Schaus, P. Fischer, D. Quantius, V. Maiwald and A. Gerndt. Decision
Support Tool for Concurrent Engineering in Space Mission Design. In Proceedings of the
19th ISPE International Conference on Concurrent Engineering, pages 497-508. Springer
London, 2013.

5 P. M. Fischer, H. Eisenmann and J. Fuchs. Functional Verification by Simulation based on
Preliminary System Design Data. In Proceedings of the 6th International Conference on
Systems & Concurrent Engineering for Space Applications (SECESA ), Stuttgart, Germany,
2014.

6 M. Deshmukh, R. Wolff, P. M. Fischer, M. Flatken and A. Gerndt. Interactive 3D Visual-
ization to Support Concurrent Engineering in the Early Space Mission Design Phase. In
Proceedings of the 5th CEAS Air and Space Conference, Delft, Netherlands, 2015.

7 P. M. Fischer, M. Deshmukh, V. Maiwald, D. Quantius, A. Martelo Gomez and A. Gerndt.
Conceptual Data Model — A Foundation for Successful Concurrent Engineering. In Con-
current Engineering: Research and Applications, 2017.

8 M. Pecchioli, A. Walsh, J. M. Carranza, R. Blommestijn, M.-C. Charmeau, M. Geyer,
C. Stangl, P. Parmentier, H. Eisenmann, J. Rueting, P. Athmann, W. Bothmer,
I. Krakowski, P.-Y. Schmerber, F. Chatte, P. Chiroli and M. Poletti. Objectives and
Concepts of the European Ground Systems Common Core (EGS-CC). In Simulation &
EGSE for Space Programmes, Noordiwjk, Netherlands, 2012.



Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

9 ECSS Secretariat. ECSS-E-TM-10-23A — Space engineering — Space system data repository.
ESA-ESTEC Requirements & Standards Devision, Noordwijk, Netherlands, 2011.

10 F. D. Lyardet. The Dynamic Template Pattern. In Proceedings of the 4th Pattern Lan-
guages of Programming Conference, Monticello, Illinois, USA, 1997.

11 R. Johnson and B. Woolf. Type object. In Pattern languages of program design 3, pages
47-65, Bosten, MA, USA, 1997. Addison-Wesley Longman Publishing Co., Inc.

12 C. Atkinson and T. Kiihne. Reducing accidental complexity in domain models. Software
& Systems Modeling, 7(3):345-359, July 2008. Springer Verlag.

3.6 Personal View on Multi-Level Modeling (Industry Perspective)
Vinay Kulkarni (Tata Consultancy Services — Pune, IN)

License ) Creative Commons BY 3.0 Unported license
© Vinay Kulkarni

Coming from the industry, I look at Multi Level Modeling (MLM) through a composite lens
comprising of need, effectiveness and robustness. I was involved in development of model
driven engineering technology for automating development of business applications. Several
large ( > 10 MLOC) applications are developed using this technology over past 20+ years.
MLM was not required barring one specific use-case in user interface modeling — the 3-levels
i.e., meta-meta, meta and user model, sufficed. My present research is on adaptive resilient
enterprises that calls for modeling languages and associated technology to specify predictive,
prescriptive and descriptive aspects of modern enterprises. Here too, I am unable to justify
MLM as the most appropriate modeling approach. I do see value of MLM for conceptual
space, but, that does not seem to trickle down to design and implementation spaces.

3.7 Commercial Introduction — BORO Solutions (Industry Perspective)
Chris Partridge (Brunel University, GB)

License ) Creative Commons BY 3.0 Unported license
© Chris Partridge

This presentation introduces BORO Solutions. It briefly introduces the company and its
main products. It provides an overview of the work done in a recent project. It outlines the
current research being done in one major area — a general theory of multi-levelling to include
mereology as well as classification and generalisation.

3.8 Muilti-Level Modelling at BiZZdesign (Demo)
Maarten Steen (BiZZdesign — Enschede, NL)

License ) Creative Commons BY 3.0 Unported license
© Maarten Steen
URL https://www.bizzdesign.com/enterprise-studio

BiZZdesign is a fast growing global software company that helps its customers to manage
change in their organization. BiZZdesign Enterprise Studio is an advanced, graphical

27

17492


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://www.bizzdesign.com/enterprise-studio

28

17492 — Multi-Level Modelling

modelling and analysis platform for a wide variety of enterprise, business and architecture
modelling techniques, such as ArchiMate, BPMN, DMN and UML. All these modelling
techniques:

Are graphical DSLs.

Based on international standards.

Support a specific domain or discipline.

Can be combined and cross-reference each other.

Adhere to a meta-model.

Which can be customized.

MLM Challenges — a tool vendor’s perspective

At the workshop I presented the multi-level modelling-related challenges that we face as a
modelling tool vendor, as well as some of our pragmatic solutions. Below a summary of our
MLM challenges:
Many customers want to customize the standards-based metamodels we provide out of
the box.
Often there is a need for adorning concepts with additional properties/attributes that
are specific to a model, view or analysis, but if we would add these properties to the
metamodel they would appear in all models and views.
Users sometimes want to dynamically change the type of an object or relation, but this
may break constraints imposed by the metamodel.
When the metamodel is changed, existing models may not satisfy that metamodel anymore
and have to be migrated, which is a non-trivial task.
Whenever BiZZdesign publishes a new base metamodel, customers need to merge their
own metamodel customizations done on an earlier version, but this may lead to difficult
to resolve merge conflicts.
When we import models from other tools, we also need to import or map their metamodel
(customizations). We currently cannot do this on the fly.
Metamodel-model co-evolution is manageable in a single repository, but very hard in a
distributed version management system such as employed by our team server.

3.9 The MLM Application of FOM (Demo)
Mira Balaban

License @ Creative Commons BY 3.0 Unported license
© Mira Balaban
Joint work of Mira Balaban, Igal Khitron, Michael Kifer

The MLM theory of FOML is built around the notion of level, which is a class model.
This approach enables reuse of existing class model tools for correctness checking, problem
identification, repair and optimization. FOML provides an MLM application that is based
on level specification, with intra-level and inter-level constraints and inference rules, model
query and computation. The application exploits essential features of FOML that enable
unrestricted chains of instantiation and subtyping.

FOML is a path-oriented executable logic-programming language. It includes navigation
structures and polymorphic typing, and can support user-defined computation and reasoning.
FOML and its MLM application are available on SourceForge.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

1

MetaConstraints
——— {3 XCore

metaPackage fr

1
taPack
metarackage BicycleLanguage
PLE
metaPackage metaPackage
1
Choices
depends
TownBikes RacingBikes

Figure 1 Language definitions for product configuration.

3.10 Multi-Level Modelling in XModeler (Demo)

Tony Clark (Sheffield Hallam University, GB) and Ulrich Frank (Universitat Duisburg-Essen,
DE)
License ) Creative Commons BY 3.0 Unported license
© Tony Clark and Ulrich Frank
Joint work of Tony Clark, Ulrich Frank
Main reference Tony Clark, Paul Sammut, James S. Willans: “Applied Metamodelling: A Foundation for

Language Driven Development (Third Edition)”, CoRR, Vol. abs/1505.00149, 2015.
URL http://arxiv.org/abs/1505.00149

Multi-level modelling occurs naturally at all levels of system design, especially that which
takes a Language Engineering approach to Software Engineering. Such an approach involves
the definition of languages (domain-specific or general-purpose) that are to be used within
the definition of a system. Axiomatically, this approach leads to multiple levels since the
languages must be defined in a meta-language and the languages are instantiated to produce
particular occurrences which can be considered to exist at different phases of the system
development such as ‘specification’, ‘design’ or ‘run-time’. Furthermore, the approach is
greatly enhanced if the levels can be integrated or, ideally, if the levels can be freely mixed
(providing level information is clear when required). For example, any type of software tool,
typically manages representations of the program definition and the run-time of the program
at the same time: the design of such a system will naturally involve concepts that cross level
boundaries. Generalising this example to a Language Engineering approach means that the
design of any system will involve multiple levels that usefully cross boundaries as the use
of abstraction leads the designer to want to express information that relates to particular
instances at higher and higher the levels.

This talk provided an overview of the XModeler toolkit that has been designed to support
a Language Engineering approach to system design. It is based on a small core meta-model

29

17492


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1505.00149
http://arxiv.org/abs/1505.00149
http://arxiv.org/abs/1505.00149

30

17492 — Multi-Level Modelling

that is meta-circular and thereby allows any number of instantiation levels, including new
meta-languages. The demonstration showed how XModeler can be used to define a number
of languages relating to product configuration, each language supporting a different aspect
of the solution or problem domain. For example a language is defined to represent choices
within configurations. Another language is used to define constraints (in the style of OCL)
that are applied over a number of type boundaries (unlike OCL). The demonstration showed
that the XModeler defined languages can be used to define bicycle product-families (racing
bikes, touring bikes, domestic bikes) leading to instances that are product models whose
instances must conform to constraints defined on the product-family (or higher) levels. The
demonstration clearly shows the utility of the Language Engineering approach, the utility of
multiple-levels in modelling, and the utility of crossing type boundaries.

3.11 The ML2 Multi-Level Modeling Language (Demo)
Jodo Paulo A. Almeida (Federal University of Espirito Santo — Vitdria, BR)

License ) Creative Commons BY 3.0 Unported license
© Joao Paulo A. Almeida
Joint work of Jodo Paulo A. Almeida, Claudenir M. Fonseca, Victorio A. Carvalho

In this demonstration, the ML2 multi-level modeling language and accompanying Eclipse
plugin were presented. ML2 is a textual modeling language built in conformance with the
MLT* multi-level modeling theory [1]. It aims to address a comprehensive set of requirements
for multi-level modeling. It was developed in the scope of the M.Sc. thesis of Claudenir
M. Fonseca [2], in collaboration with Jodo Paulo A. Almeida and Victorio A. de Carvalho.
The proposed language is supported by a featured Eclipse-based workbench which verifies
adherence of the ML2 model to the MLT* rules. The capabilities of ML2 were demonstrated
in different modeling tasks involving multi-level domains. The language supports chains of
instantiation of arbitrary sizes, supports the notion of type “order” to guide the construction
of sound models, and also supports what is known as “orderless” type — a feature which
enables expressiveness of scenarios that defy stratification of a model into “orders”. It further
supports the so-called cross-level relations in order to address variations of the powertype
pattern, and supports the notion of “regularity attributes” to flexibly address the relations
between attributes of types at different orders. It was shown that the tool is capable of
detecting a number of modeling problems by enforcing ML2 syntactic rules.

References

1 Joao Paulo A. Almeida, Claudenir M. Fonseca, Victorio A. Carvalho. A Comprehensive
Formal Theory for Multi-Level Conceptual Modeling. Conceptual Modeling. ER 2017. Lec-
ture Notes in Computer Science, vol. 10650, Springer, 2017

2 Claudenir M. Fonseca. ML2: An Expressive Multi-Level Conceptual Modeling Language.
M.Sc. Thesis, Federal University of Espirito Santo, Brazil, 2017


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

<« IsAninstanceOf

Thing

Type Particular

Figure 2 Foundations of Multi-Level Models.

4 Working groups

4.1 Formal Foundations and Ontology Integration

Cesar Gonzalez-Perez (CSIC — Santiago de Compostela, ES), Joio Paulo A. Almeida (Federal

University of Espirito Santo — Vitéria, BR), Victorio Albani de Carvalho (Federal Institute of

Espirito Santo — Colatina, BR), Anne Koziolek (KIT — Karlsruher Institut fiir Technologie,

DE), Thomas Kiihne (Victoria University of Wellington, NZ), Chris Partridge (Brunel

University, GB), Michael Schrefl (Universitit Linz, AT), Matt Selway (University of South

Australia — Mawson Lakes, AU), and Friedrich Steimann (Fernuniversitit in Hagen, DE)
License ) Creative Commons BY 3.0 Unported license

© Cesar Gonzalez-Perez, Joao Paulo A. Almeida, Victorio Albani de Carvalho, Anne Koziolek,
Thomas Kiihne, Chris Partridge, Michael Schrefl, Matt Selway, and Friedrich Steimann

The group agreed that a foundation for multi-level modelling would benefit from discussing
the philosophical grounding of multi-level modelling, including an elaboration of required or
useful ontological commitments and metaphysical choices, plus attempts at standardising
terminology. However, the group also agreed that a recognition of the value of a philosophical
grounding must not come at the expense of losing sight of pragmatic engineering concerns.

The group decided to be inclusive of various fundamental choices and record consensus
as well as different options, i.e., not rule out anything unless it is clearly wrong.

Basics

Model elements refer to things in the world, regardless of a model’s genesis.

A model is an artefact external to our minds, constructed with the intention to represent
some portion of the world, where “world” means the set of absolutely everything, including
real and fictitious, natural and social.

There are particulars (i.e., individuals or ur-elements) and types in the world (see Figure 2).

Particulars cannot have instances, whereas types can (they may or may not). Instances of
types can be particulars or types, and particulars may be instances of types or not.

Types have a (classification) order and can be related by subtyping. There may be
different kinds of types, such as rigid types, phases, or roles.

The above consensus is partially and very roughly shown in Figure 2.

Instantiation

There are two options regarding the semantics of instance-of relationships:

31

17492


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

32

17492 — Multi-Level Modelling

! .

1 0\ 1

Figure 3 Possible architectures of type hierarchies.

1. All of them have the same semantics, regardless of the kind of type involved.
They have different semantics, depending on the kind of type involved.

In any case, direct instance-of relationships connect an instance to its most specific type
in a model, whereas indirect instance-of relationships connect an instance to all the types
that are ancestors of its most specific type in a model, with ancestry being fully determined
by subtyping relationships.

There are also two options regarding dynamic classification:

1. Tt exists only for non-rigid types, such as phases or roles.
2. Tt exists for any kind of type.

Overall Architecture

Type hierarchies may be constructed according to three different kinds of overall architecture

(see Figure 3):

1. Topless, without a defined top element and an infinite regression, as shown on the left-hand
side in the diagram below.

2. Top-unified, with a self-referential top element (i.e. a loop), as shown centrally in the
diagram below.

3. Top-special, with a top element that is informally or axiomatically defined and is not a
proper instance of anything within the hierarchy, as shown on the right-hand side in the
diagram below.

These architectural kinds relate to Miinchhausen’s trilemma (https://en.wikipedia.org/
wiki/Minchhausen_ trilemma). In Figure 3, boxes represent model elements, and arrows
represent instance-of relationships.

Levels

Model levels are fully determined by instance-of relationships. However, there are other ways

in addition to levels to provide hierarchical structure to a model:

= Social or business usage, plus the associated hierarchy of creation and usage of models,
related to the process followed to incrementally commit to ontologies and further refine
them. For example, a small group may create a standard model that is later adopted
(and perhaps extended) by many users.


https://en.wikipedia.org/wiki/M�nchhausen_trilemma
https://en.wikipedia.org/wiki/M�nchhausen_trilemma

Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

Differences in level of abstraction, i.e., organising model elements according to how they
refer to the world in more or less abstract ways.

Specification relationships other than classification between model elements in different
levels, i.e., recognising that some model elements may work as specifications of other
model elements in the same model. The relationships occurring when using powertypes
are a notable example.

Levels may be used in combination, and/or coincide, with other structuring mechanisms

as described above, but should not be confused with them.

Levels may or not be numbered but are always fully ordered.

Level Organisation

There are two options regarding how to organise model elements into levels:

1.

Level = order, i.e., the level in which a type is placed is equal to its order. This fully
determines what level a type belongs to.

Level >= order, i.e., the level in which a type is placed is equal or higher than its order,
depending on domain semantics, and often informed by associations/links to other model
elements. Here, type order constrains but does not fully determines what level a type
belongs to.

Crossing Level Boundaries

Instance-of or subtyping relationships cannot flow from a level towards another below it.

One reason for this restriction is to avoid cycles.

There are two options as to whether associations or links may cross level boundaries:

1. They can
2. They cannot (cf. “strict metamodeling”)

Additional Topics

The group did not have the time to discuss the following relevant issues:

What are the options for further well-formedness rules?

Should foundations distinguish between types and other concepts such as templates?
The notions of prototype, template, or specification were not defined.

The semantics of instantiation were not fleshed out.

Can instance-of relationships span multiple (i.e. more than two) levels?

Are multiple top-level types possible in one model?

Are primitive types (such as Integer or String) and other related kinds of model elements
part of a foundation, or do they pertain to specific models?

Can primitive types be “imported” into multiple levels?

33

17492



34

17492 — Multi-Level Modelling

4.2 Applications and Evaluation of MLM

Iris Reinhartz-Berger (Haifa University, IL), Mira Balaban (Ben Gurion University — Beer
Sheva, IL), Philipp Martin Fischer (DLR — Braunschweig, DE), Manfred Jeusfeld (University
of Skovde, SE), Agnes Koschmider (KIT — Karlsruher Institut fir Technologie, DE), Wendy
MacCaull (St. Francis Xavier Univ. — Antigonish, CA), Bernd Neumayr (Universitit Linz,
AT), Maarten Steen (BiZZdesign — Enschede, NL), and Dustin Wiiest (Fachhochschule
Nordwestschweiz, CH)

License ) Creative Commons BY 3.0 Unported license

© Iris Reinhartz-Berger, Mira Balaban, Philipp Martin Fischer, Manfred Jeusfeld, Agnes
Koschmider, Wendy MacCaull, Bernd Neumayr, Maarten Steen, and Dustin Wiiest

This is a summary of the discussion in the working group entitled “Applications of MLM
and Evaluation of MLM Methods”, at Dagstuhl seminar 17492.

Our mission was to (1) identify promising application domains for MLM, (2) find common
properties for such application domains, (3) identify anticipated benefits of MLM, and (4)
determine evaluation criteria for MLM methods.

Application domains

We discussed several application domains that we believe are promising for multi-level
modelling:
Spacecraft engineering: this domain deals with highly complex products (i.e., composed
of many parts interacting with each other). Configuration rules exist both on the type
level and the instance level (e.g., requiring documentation of which individual physical
parts are used).
Enterprise architectures: enterprise architectures represent large sets of artefacts such
as business processes, application systems, and IT infrastructure components. This
application domain currently suffers from obstacles in customization at the type level.
Industrie 4.0 manufacturing and IoT: we did an extensive discussion on this application
domain, as elaborated below.

Industrie 4.0

Industrie 4.0 is the current trend of automation and data exchange in manufacturing

technologies. It includes cyber-physical systems, the Internet of things, cloud computing,

and cognitive computing. Important characteristics of this application domain are:

1. There are many product types, product variants, and product instances, calling for
individual mass-production and configuration control.

2. There are different types of models, e.g., conceptual, data, process, ontology models.

There is a need for interoperability, supporting a variety of communication protocols.

4. The lowest level, IoT, includes different resources: humans + machines and devices.

@

The first two characteristics suggest that there are opportunities for MLM to classify
products, their types, their composition, and categories. The third one indicates that MLM
may allow to reason which products, tools, and processes can be combined in a meaningful
way. Further, Industrie 4.0 shall lead to a massive set of things (individuals) that are
identified, belong to a certain type of things, and have the need to interact/combine with
other things. The move to more flexible mass productions will also require to manage large
sets of connected things that share some properties but that are also customized, i.e., have
their own set of individual properties and capabilities. In this scenario of configuration
control, MLM may improve comprehension of model and variant differences, as well as their
common ancestors, thus leveraging inference of communication protocol interoperability.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

Common properties and anticipated benefits

We further attempted to determine common properties of promising application domains for
MLM and we identified the following:

Existence of composition hierarchies at different levels (instances, types, metatypes)

Need for configuration control: adding/modifying components

“Materialization” /“Realization” links

Persistence of MLM models due to long lifespan of products

Different dimensions (views?) required by different stakeholders

Need for reuse at all levels

We discussed the following anticipated benefits of MLM: (a) supports avoiding accidental
complexity; (b) allows reuse during runtime; (¢) permits extension of models at runtime; (d)
supports easier evolution, updates, and maintenance; (e) promotes improved interoperability;
(f) permits generation of constraints from top to bottom (e.g. symmetry). With respect to
specialization, MLM promotes flexibility and propagation of properties down the hierarchy
and helps avoid problems of inheritance hierarchies, for example problems associated with
overriding.

Evaluation of MLM methods

We agreed that evaluation of MLM methods is very important. Hence, we suggested some
criteria, including avoidance or detection of modeling mistakes, amount of generated code
(i.e., reduction in the amount of manually-written code), compactness of the MLM model for
a given modeling problem (e.g., the “bicycle case”), suitability to a wide range of applications,
ease of changing, and understandability & comprehensibility. This is not meant to be a full
list of evaluation criteria. Further exploration of evaluation criteria and their mapping to the
anticipated benefits of MLM are needed.

4.3 Dynamic Aspects of Multi-Level Modelling

Georg Grossmann (University of South Australia — Mawson Lakes, AU), Tony Clark (Sheffield
Hallam University, GB), Ulrich Frank (Universitit Duisburg-Essen, DE), and Vinay Kulkarni
(Tata Consultancy Services — Pune, IN)

License @@ Creative Commons BY 3.0 Unported license
© Georg Grossmann, Tony Clark, Ulrich Frank, and Vinay Kulkarni

Motivation

Business process modelling and management face some challenges which can be addressed
by multi-level modelling approaches:
Current business process management tools have limited support for reuse.
Process model languages offer generic concepts such as activity and event only and do
not support domain specific concepts on a lower, more specific level.
Every process model, even though there will usually be general domain-specific knowledge,
has to be built from scratch.
Functionality such as copy, paste, and adapt are only provided as basic functionaliy on
individual modelling elements and are not part of a process modelling methodology to
increase reusability.

35

17492


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

36

17492 — Multi-Level Modelling

=== ===

Figure 4 Goal of MLM in process modelling is to have a hierarchy of process models.

These challenges are a threat to productivity, integrity and maintainability of business
processes in large and complex organisations such as health care, engineering, law enforcement
and enterprise resource planning [5].

The goal of MLM in process modelling is the ability to create and manage a hierarchy of
processes as shown in Figure 4 and capture knowledge about this hierarchy.

Opportunities

The main opportunity for multi-level approaches in process modelling is the reusability of
concepts on multiple levels:

There is generally a lack of abstraction in process modelling and MLM provides a basis
for a contribution in this area.

Reuse for processes seems to be a grand challenge. It would be interesting to investigate
further the reasons why it is challenging.

» Example 1. Defining an order management process: It should be possible to define a
reusable definition of a process that can be specialised to produce specific types of order
management processes. In addition, changes to the abstract definition should be propagated
to the specialisations.

» Example 2. Amazon: What would be needed to fully automate the system? People
are currently required to answer questions because the current system is not sufficiently
expressive. If the process and data models are sufficiently rich then queries such as “is this
product available?” can be automatically answered. Such models can also be used to predict
change or actually change the process, and could be relevant, for example, for modelling
adaptive systems.

Challenges

Some challenges we have identified during the Dagstuhl seminar discussion include:

Specialization of process types as discussed in related work [3, 6] is not applicable in a
straightforward way, as:

we are dealing with non-monotonic extension of control flow, and

substitutability constraints are often not satisfied.
Classification and instantiation:



Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

o chance
flor contract.

® NE
: V
contact prepared

cakulate
tems&eenditions termBcondmens ok ol

request
received satisfactory

Y(rm],
\/

o cnance

for contract

calculate
termsBeonditions

determine options. prepare contract

request
reoived

options
determined

termacondione contract prepared

oor,

V
o chance
for contract

.
y G /

\Wan @ O /

s eterm lculat ract .
=8 sk within it 9€temIne aptions options ot drions temdconditions PIEparE comi contract prepared
determines satisfactory.

o010 {]-®

i . pl p2 .
3 5 it handl hi

register Pl handle P2 archive e e anT . SR

T . blocked
check 3« d; > ()
i . 1 2 .
register pl handle P2 Sakive 0 ! register P handle P archive 2
(a) (b)

Figure 6 Example taken from van der Aalst et al.[6].

concepts require clarification with respect to the semantics of “process type” and
“process instantiation”, and
are usually given an extensional definition.
Complexity regarding:
(types of) resources required to execute process,
roles, and
constraints.

Figure 5 shows a credit application process example.
process which is specialized on the lower levels. Using existing specialisation techniques
would not allow such specialisation because they would identify it as inconsistent with their
specialisation rules. A more flexible approach is needed that formalises the relationship
between the processes and specifies what can be changed or adapted on a lower level.

Previous work on protocol inheritance [6] is too limited as shown in Figure 6a. Such an
approach would not allow to add activity = into a process on a lower, more specific level.

On the top level is a generic

37

17492



38

17492 — Multi-Level Modelling

ORDER SERVE PAY

@
®
®
®

full service restaurant

=N\
ORDER )
-
fast food restaurant
o @ @ @ -
all you can eat restaurant

church supper

.O initial state © final state

Figure 7 Restaurant transaction example from Figure 8 Restaurant transaction specialisa-
Wyner and Lee[7]. tions by Wyner and Lee[7].

Another related approach called “projection inheritance” [6] is shown in Figure 6b but
has similar limitations to protocol inheritance.

Another challenge mentioned above is the identification and separation of generalisation
vs. classification in process modelling. Wyner and Lee [7] provide an example of a restaur-
ant transaction shown in Figure 7. Possible specialisations of the generalised restaurant
transaction example are shown in Figure 8.

Use Cases

We have identified some use cases to demonstrate the benefits of MLM approach in process
modelling.

Adaptive Systems: Some question that need to be addressed in this context: What
needs to be automated within a company? Can models be used to minimize the effort in
contingency management?

A more specific use-case could be a supply chain in a car manufacturer organised around
3 tiers at different locations:

Current ERP systems can generate a production schedule for generating n cars per week.

In usual circumstances, something may happen that is not planned up-front, for example,

road closure, an accident, or natural disaster like fire.

Current strategies include slowing down the entire network to deal with delays.

Humans can cope with this strategy but not automated systems.

Simulation: Simulation can be used to help influence design decisions. What kinds of
abstraction and languages are required to capture simulations?

Regulatory Compliance: A challenge is the specification of compliance criteria within
a model. If possible then the system can check itself against the criteria and can verify
changes against compliance. Compliance checking should be automated as far as possible
using meta-information encoded in the system.



Jodo Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

"/ Figure 9 Some core concepts of MLM in pro- [/ Figure 10 Hierarchy concept of MLM in pro-
cess modelling. cess modelling.

Generic Process Modelling Language

General Business Process Modelling Language

Business Transaction Modelling Language

Order Management Modelling Language

Order Management Food Retailer Modelling Language

- - S S S sy

[ Order Management Food Retailer Process Type

' Figure 11 High-level illustration of the idea.

Proposal

The diagram shown in Figure 9 was discussed during the Dagstuhl seminar and shows a
simple semantic domain for process execution. This can be used to study how MLM applies
to process definitions. The idea is that process descriptions denote instances of the model
shown above. Another way of saying that is that a process definition is a predicate over
instances of the semantic domain model. Therefore meta-process definitions are predicates
that apply to both process definitions and process executions, and so on.

The diagram shown in Figure 10 is intended to capture the motivation for MLM in the
sense that there is a level distinction when the meta-level needs to refer to concrete data at
the type level and where the particular concrete data value influences the execution traces
that the process definition denotes. If this cannot be established then there is no need for a

39

meta-type level distinction and probably the information can be expressed using inheritance.
Note that there is no implication that inheritance and type-of cannot both span a given level.



40

17492 — Multi-Level Modelling

Another example is provided in Figure 11 to illustrate the idea. A more detailed example of
the idea is presented in Figure 12 (pg. 41).

Hierarchy of Knowledge about Processes:
stepwise abstraction of particular process traces
all invariant knowledge about all instances (which may be types) is moved to a higher
level
repeated up to a level, where no further abstraction is possible or useful
promises clear advantages
no redundant specification
domain-specific process modelling languages provide support with respect to productivity
(through reuse of knowledge)

Next steps

There is some related work available that needs to be investigated further: For example,
Schiitz [4] wrote a book about multi-level business processes based on his PhD thesis. Recent
surveys by La Rosa et al. [1] on variability in business process and configuration of business
processes [2] are potentially relevant as well. Further, the concepts of process instantiation
need to be refined. Collecting and studying larger examples of possible process hierarchies
is required as well as defining relationships between process levels. An analysis of the
combination of imperative and declarative process modelling might be worthwhile in this
context too.

References

1 M. La Rosa, W.M. Van Der Aalst, M. Dumas, and F.P. Milani. Business process variability
modeling: A survey. ACM Comput. Surv., 50(1):2:1-2:45, 2017.

2 M. La Rosa, M. Dumas, A. H.M. ter Hofstede, and J. Mendling. Configurable multi-
perspective business process models. Information Systems, 36(2):313-340, 2011. Special
Issue: Semantic Integration of Data, Multimedia, and Services.

3 M. Schrefl and M. Stumptner. Behavior-consistent Specialization of Object Life Cycles.
ACM Trans. Softw. Eng. Methodol., 11(1):92-148, January 2002.

4 C. Schiitz. Multilevel Business Processes — Modeling and Data Analysis. Springer, 2015.

5 U. Frank. Specialisation in business process modelling: Motivation, approaches and limita-
tions. Technical Report 51, Institut fiir Informatik und Wirtschaftsinformatik, Universitét
Duisburg-Essen, 2012.

6 W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science, 270(1-2):125-203, 2002.

7 G. M. Wyner and J. Lee. Process Specialization: Defining Specialization for State Diagrams.
Computational & Mathematical Organization Theory, 8(2):133-155, Jul 2002.



Jodo Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

‘Generic Level

A process trace is a sequence of activities (P) and

events (E).

* A process type may produce one to many event
types. i

= Every process instance has a start time and an end Start:time | 0.
time. End: Time

= A process instance produces exactly one event.

01

General Business Process Level ' BusinessObject 1+

* A business activity requires one to many business

objects.
* .. and zero to many business roles. Pos
* A business activity may be automated or not. maxTime: Time
* A business event may be machine detactable or automated: Boolean

E,
1
created: Time
11
0,* | BusinessRole

Ena

created: Time
detectable: Boolean

not.

Business Transaction Level

A business transaction consists of at least three
succeeding phases: initiation, negotiation, execution.
A business transaction requires at least one requestor
and one request handler. Both can be either human or
machines.

There are multiple types of business transactions that
follow this pattern.

General Order Management Process

An order management process is a specific type of
transaction.

The request consists of an order or a conditional
order.

Every request has to be followed by a response.

Flight Management Process

* The request is done by the customer through an
Internet platform.

* The price is either fixed or calculated with respect to
yield management considerations.

+ The order is confirmed after payment only.

+ There are various types of payment methods.

Flight Management Process Company A

* The request is done by the customer through the
company Internet platform.

* The price is calculated with respect to yield
management considerations.

* The order is confirmed after payment only.

+ Paymentis done through services A, B, and C.

Figure 12 Illustration of the idea using a specific example.

41

17492



42

17492 — Multi-Level Modelling

4.4 Multi-Level Model Transformation

Dirk Draheim (Talinn University of Technologies, EE), Ta’id Holmes (Deutsche Telekom —
Darmstadt, DE), and Manuel Wimmer (TU Wien, AT)

License ) Creative Commons BY 3.0 Unported license
© Dirk Draheim, Ta’id Holmes, and Manuel Wimmer

This is the report of the working group on transformation with regards to multi-level modeling
in the framework of the Dagstuhl seminar on Multi-Level Modelling. The aim of this report
is to identify and explain subjects of investigation in the area of multi-level model (MLM)
transformation. For this purpose, we will look at a concrete case of an industrial domain-
specific language (DSL) project in the domain of cloud data center deployment. Furthermore,
we walk through a series of exemplary technologies that are relevant to the field of multi-level
transformation.

Introduction

Model transformation is a highly relevant topic. We find it in the form of engineering and
exploitation of domain-specific languages in many industrial projects. Also, we find it as
essential part of model-driven software engineering [14], i.e., any advanced computer-aided
software engineering (CASE) tool initiative and infrastructure, be in the form of forward,
reverse or simultaneous round-trip engineering or in the form of CASE tool integration.
Always, model transformation deals with the linguistic dimension of a background modeling
language infrastructure. Different approaches and terminologies exist for modeling language
infrastructures. In practice, we see a huge success of the meta-level type polymorphic
transformation approach based on the de-facto standard parser generator ANTLR!' and its
surrounding tool family. The industrial-strength Atlas Transformation Language (ATL)? —
which is oriented towards established Open Management Group (OMG)? terminology — is an
example of a systematic meta-level type-driven approach. Therefore, model transformation
is always an essential multi-level modeling research topic, even if it is agnostic to ontological
multi-level modeling. Subjects of investigation are always:

Design of the modeling language infrastructures

In particular, the reductionist syntactic and semantic core of modeling language infra-

structures

Model exchange languages

Design of organizational roles and processes in meta-model definition and exploitation

Transformation rules in terms of more than one linguistic meta-level

Beyond the yet unresolved issues in model transformation there is wide potential research
and design space in systematically combining ontological modeling with model transformation.
Here, additional subjects of investigation are:

Kinds of exploitation/operationalization of ontological instantiation

Domain-expert transformation languages

Object language-based transformation languages

Extension points in model transformation languages

Transformation rule refinement

L http://www.antlr.org
2 http://www.eclipse.org/atl
3 http://www.omg.org


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.antlr.org
http://www.eclipse.org/atl
http://www.omg.org

Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

DataCenter
name : EString
* $azs
AvailabilityZone Rack
racks
name : EString %~ |name : EString
desc : EString desc : EString
* $nodes
Node
name : EString
nodeType : NodeTypeName = standby
desc : EString
arch : Arch = amd64
ram : Eint
* $ disks * $ nics
Disk NIC
diskType : DiskType = HDD mac : EString
desc : EString dev : EString
dev : EString
1 &diskSize 1 $deviceID
Size DevicelD
size : EInt id : EInt
unit : Unit = GB
1 l/ net
NodeTypeName Network
standby name : EString
installation desc : EString
management vlanID : EInt
compute ip : EString
network netmask : EInt
storage

Figure 13 A Data Center Metamodel [11].

In-place transformation of object languages

Streamlined /moderated group/community-based domain-specific languages
Archetype modeling

Multi-staged model transformation

Multi-Level Model Transformation Case

Having coarsely introduced the field of model transformation in the specific context of
multi-level modeling, this section aims at investigating effects using a particular industrial
case. For this, the case is introduced first using previous work [11] that followed the classical
two-level modeling approach using models that comply to a metamodel. An alternative
modeling approach using multi-level models is drafted next. Finally, effects in regard to
model transformation are discussed that arise when moving to multi-level modeling.

43

17492



44

17492 — Multi-Level Modelling

Automated Data Center Deployment

Figure 13 depicts an example of a simple metamodel of data centers. Instances that describe
particular data centers are transformed via code generation. The resulting artifacts constitute
the basis for an automated infrastructure as a service (IaaS) deployment. Technologies that
realize such deployment from bare metal and that can be leveraged at this stage comprise
for example MAAS?* and JuJu® (cf. [11]). Following a model-based approach, the metamodel
and conforming models are agnostic towards these technologies. Further technologies such
as Fully Automatic Installation (FAI) [10] or TripleO® can be supported via additional
transformation templates.

Moving to a Multi-Level Model

In the presented metamodel, nodes and disks can be categorized by setting a specific type with
the help of an attribute. For instance, a particular node can be classified as a storage node.
Storage nodes, typically, aggregate a large number of storage capacity and therefore comprise
various disks. A disk, in turn, can be a traditional, mechanical hard disk drive (HDD) or a
solid-state drive (SSD).

Instead of typing instances of nodes and disks according to the metamodel and as
an alternative to such modeling there exists the possibility to leverage specialization via
inheritance relationships. The multi-level model depicted in Figure 14 defines a NODE as an
instance of (its powertype) NODETYPE. Using inheritance relationships, specialized concepts
such as STORAGENODE, COMPUTENODE, and NETWORKNODE can then be used directly
for instantiation (some PRODUCTS as examples). Finally, a data center (DC) is defined with
further instances such as an availibility zone (AZ), a rack, and different nodes.

Collaboration Aspects & Effects on Model Transformation

Using a multi-level modeling approach, part of the multi-level model can be created by a
domain expert. That is, the latter is empowered to describe the concepts for the particular
domain of expertise.

A data center expert may propose to further distinguish different STORAGENODES:
CONFIDENTIALSTORENODES shall host confidential, and thus sensitive, data. PERFORM-
ANTSTORAGENODES comprise SSDs to a good extent while BACKUPSTORAGENODES make
use of low priced storage (i.e., HDDs).

Delegating (at least parts of) the modeling from a language engineer to a domain expert
is interesting; particularly in case of large (domain-specific) models and taxonomies. This
is in contrast to a two-level modeling approach where DSL workshops often facilitate the
language engineering together with domain experts.

As model transformations operate on models they typically have to relate to concepts for
exploiting the semantics within a model. For this reason, in case a metamodel is changed,
co-evolution of respective model transformations usually needs to be performed. In a Multi-
level modeling approach the relation towards more specialized or instantiated concepts needs
to be clarified. That is, while it would be possible in the given example to transform all
of the STORAGENODES equally, it is not clear how to capitalize specializations without

4 http://maas.io
5 http://jujucharms.com
5 http://wiki.openstack.org/TripleO


http://maas.io
http://maas.io
http://jujucharms.com
http://wiki.openstack.org/TripleO

Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

oo NodeType

i
StorageType : H
instance of : ; is powertype of
o1 oo
. 7
Node : NodeType
StorageNode: StorageType ComputeNode NetworkNode
ConfidentialStorageNode | | PerformantStorageNode BackupStorageNode
02
Product1 : StorageNode Product2 : ComputeNode Product3 : NetworkNode
o3
DC_Dagstuhl : DC DC_Dagstuhl_AZ1 : AZ DC_Dagstuhl_AZ1_R1 : Rack
DC_Dagstuhl_SN1 : Producti DC_Dagstuhl_CN1 : Product2 DC_Dagstuhl_NN1 : Product3

Figure 14 A Multi-Level Model Describing a Data Center.

further domain knowledge. In fact, during deployment, all of such nodes shall be clustered
or pooled by a storage solution according to their type. To provide for this, an appropriate
model transformation needs to be implemented for the model-based approach. In addition,
CONFIDENTIALSTORENODES shall be located in a special (and protected) network.

Thus, model transformation may be subject to particular requirements that need to
be communicated by the domain expert in regard to model elements. For this, a multi-
level modeling tool support could offer domain experts the possibility to associate such
transformation requirements while specifying the semantics of various model elements. This
in turn could help language engineers to identify objectives for a model transformation.

45

17492



46

17492 — Multi-Level Modelling

Ideally the domain expert would be able to not only specify (parts of) the multi-level model
but also (part of) some model transformation, probably using a DSL suited for this very
purpose.

Another distinction of multi-level modeling is that a multi-level model, usually, is a
standalone model. In case of many multi-level models, standardization of at least the model
elements that are used and referenced by model transformations needs to be ensured across
all the multi-level models (and transformations).

In the following section we investigate model transformation approaches with a focus on
multi-level modeling.

Technologies Relevant to Multi-Level Modeling

In this section, we collect existing work on querying and manipulating multi-level models.
The outlined approaches may help in solving the aforementioned case. However, concrete
case studies have to be performed in the future to better understand the state-of-the-art in
multi-level model transformation. At the end of this section, we discuss some open points
that we have already identified by performing a first initial literature study.

In [13, 8] we have developed the generative programming language Genoupe as an extension
to C#. With Genoupe we introduced and realized static type checks for dynamically generated
types. In [6] we introduced reflective constraint writing that makes possible constraints
across the level of the modeling infrastructure (linguistic levels). In [3, 7] we developed
a model-based object-relational mapping tool that supports model/database evolution by
differentiating model versions and generating data transformation scripts. In [9] we have
provided an efficient and effective automatic modularization of ATL transformations.

One of the first papers discussing model transformations dealing with multiple levels is
the work by Pataricza and Varro [17]. They introduce generic and meta-transformations
based on the VIATRA [16] framework. In particular, meta-transformations allow to define
transformations on a particular level, but the execution of these transformations is not done
on the next level below, but on two levels below. This kind of transformation has been
demonstrated on typical linguistic hierarchies. The work by Guerra and de Lara [5] proposed
an extension for the Epsilon Transformation Language (ETL) to support multi-level models.
For instance, they introduce deep transformations which are related to meta-transformations
as introduced by Pataricza and Varro, but they are more general in the sense that the concrete
level can be specified on which the transformation is finally applied. Another interesting
aspect which is discussed by Guerra and de Lara is the possibility to refine rules to deal with
the specifics of more concrete instances. This would be indeed beneficial for the introduced
case. An interesting line for future research would be to compare the extension relationships
between transformation rules when applied for two-level models and multi-level models.
Finally, Atkinson et al. proposed an extension for ATL to deal with multi-level models [2].
Especially, for the input and output patterns of rules dedicated extensions allow to not only
match and generate instances of classes in a two-level fashion as it is provided by standard
ATL, but more options are provided to select a particular level. Based on these extensions,
deep transformations are possible to be defined. However, no means for redefinition of rules
are provided.

Synopsis.

While there exist approaches for out-place transformations based on VIATRA [16], ETL,
and ATL, to the best of our knowledge, there are no dedicated transformation approaches



Joao Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne

for in-place transformations. Such kind of transformations would be of interest for several
scenarios such as refactorings, co-evolution repairs, automating edit operations, and defining
operational semantics. However, based on the extensions done for out-place transforma-
tion scenarios, a deeper comparison and analysis of the new features may also ease the
development of extensions for in-place transformation languages. Another direction worth
to follow would be the investigation of multi-level programming languages which may be
employed for transformation implementations. An experiment may be to combine existing
transformation languages and multi-level languages which reside on the same technology.
For instance, combining SiTRA [1] — a transformation library for Java — with DeepJava [12]
or RubyTL [4] with DeepRuby [15] may show how the concepts of multi-level modeling and
model transformation primitives work together.

References

1 D. H. Akehurst, B. Bordbar, M. J. Evans, W. G. J. Howells, and K. D. McDonald-Maier.
Sitra: Simple transformations in Java. In O. Nierstrasz, J. Whittle, D. Harel, and G. Reg-
gio, editors, Model Driven Engineering Languages and Systems, pages 351-364, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

2 C. Atkinson, R. Gerbig, and C. V. Tunjic. Enhancing classic transformation languages
to support multi-level modeling. Software & Systems Modeling, 14(2):645-666, May 2015.
doi:10.1007/s10270-013-0384-y.

3 B. Bordbar, D. Draheim, M. Horn, I. Schulz, and G. Weber. Integrated model-based soft-
ware development, data access and data migration. In Model Driven Engineering Languages
and Systems, volume 3713 of LNCS, pages 382-396, Berlin Heidelberg, 2005. Springer Berlin
Heidelberg.

4 J. S. Cuadrado, J. G. Molina, and M. M. Tortosa. RubyTL: A practical, extensible trans-
formation language. In A. Rensink and J. Warmer, editors, Model Driven Architecture
— Foundations and Applications, pages 158-172, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

5 J. de Lara and E. Guerra. Domain-Specific Textual Meta-Modelling Languages for Model
Driven Engineering, pages 259-274, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-31491-9_20.

6 D. Draheim. Reflective constraint writing. Transactions on Large-Scale Data- and
Knowledge-Centered Systems, 24:1-60, 2016.

7 D. Draheim, M. Horn, and I. Schulz. The schema evolution and data migration framework
of the environmental mass database IMIS. In Proceedings of SSDBM 2004 — the 16th
International Conference on Scientific and Statistical Database Management, pages 341—
344. TEEE Press, 2004.

8 D. Draheim, C. Lutteroth, and G. Weber. Generative programming for C#. ACM SIG-
PLAN Notices, 40(8):29-33, 2005.

9 M. Fleck, J. Troya, M. Kessentini, M. Wimmer, and B. Alkhazi. Model transformation
modularization as a many-objective optimization problem. IEEE Transactions on Software
Engineering, 43(11):1009-1032, 2017.

10 M. Gartner, T. Lange, and J. Rithmkorf. The fully automatic installation of a Linux
cluster. Technical Report 379, Computer Science Department, University of Cologne,
December 1999. [accessed in February 2018]. URL: http://e-archive.informatik.uni-koeln.
de/id/eprint/379.

11 T. Holmes. MING: Model- and view-based deployment and adaptation of cloud datacen-
ters. In M. Helfert, D. Ferguson, V. Méndez Munoz, and J. S. Cardoso, editors, Cloud
Computing and Services Science, CLOSER 2016, Revised Selected Papers, volume 740 of

47

17492


http://dx.doi.org/10.1007/s10270-013-0384-y
http://dx.doi.org/10.1007/978-3-642-31491-9_20
http://e-archive.informatik.uni-koeln.de/id/eprint/379
http://e-archive.informatik.uni-koeln.de/id/eprint/379

48

17492 — Multi-Level Modelling

12

13

14

15

16

17

Communications in Computer and Information Science, pages 317-338. Springer, 2016.
URL: doi:10.1007/978-3-319-62594-2_16.

T. Kuehne and D. Schreiber. Can programming be liberated from the two-level style: Multi-
level programming with Deepjava. In Proceedings of the 22Nd Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems and Applications, OOPSLA ’07, pages
229-244, New York, NY, USA, 2007. ACM. URL: doi:10.1145/1297027.1297044.

C. Lutteroth, D. Draheim, and G. Weber. A type system for reflective program generators.
Journal Science of Computer Programming, 76(5):392-422, 2011.

M. Wimmer, M. Brambilla, and J. Cabot. Model-Driven Software Engineering in Prac-
tice, 2nd edition. Morgan & Claypool Publishers, 2017. Synthesis Lectures on Software
Engineering.

B. Neumayr, C. G. Schiitz, C. Horner, and M. Schrefl. DeepRuby: Extending Ruby with
dual deep instantiation. In MODELS, 2007.

D. Varré, G. Bergmann, A. Hegediis, A. Horvath, I. Rath, and Z. Ujhelyi. Road
to a reactive and incremental model transformation platform: three generations of the
VIATRA framework. Software & Systems Modeling, 15(3):609-629, Jul 2016. doi:
10.1007/s10270-016-0530-4.

D. Varré and A. Pataricza. Generic and Meta-transformations for Model Transformation
Engineering, pages 290-304, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. doi:
10.1007/978-3-540-30187-5_21.


http://dx.doi.org/10.1007/978-3-319-62594-2_16
http://dx.doi.org/10.1145/1297027.1297044
http://dx.doi.org/10.1007/s10270-016-0530-4
http://dx.doi.org/10.1007/s10270-016-0530-4
http://dx.doi.org/10.1007/978-3-540-30187-5_21
http://dx.doi.org/10.1007/978-3-540-30187-5_21

Jodo Paulo A. Almeida, Ulrich Frank, and Thomas Kiihne 49

Participants

= Jodo Paulo Almeida
Federal University of Espirito
Santo — Vitéria, BR

= Mira Balaban
Ben Gurion University —
Beer Sheva, IL

= Tony Clark
Sheffield Hallam University, GB

= Victorio Albani de Carvalho
Federal Institute of Espirito
Santo — Colatina, BR

= Dirk Draheim
Talinn University of Technologies,
EE

= Philipp Martin Fischer
DLR - Braunschweig, DE

= Ulrich Frank
Universitdt Duisburg-Essen, DE

= Cesar Gonzalez-Perez
CSIC — Santiago de Compostela,
ES

= Georg Grossmann
University of South Australia —
Mawson Lakes, AU

- Ta’id Holmes

Deutsche Telekom —
Darmstadt, DE

= Manfred Jeusfeld
University of Skovde, SE

= Agnes Koschmider

KIT — Karlsruher Institut fir
Technologie, DE

= Anne Koziolek

KIT — Karlsruher Institut fiir
Technologie, DE

= Thomas Kiihne

Victoria University of
Wellington, NZ

= Vinay Kulkarni

Tata Consultancy Services —
Pune, IN

= Wendy MacCaull
St. Francis Xavier Univ. —
Antigonish, CA

= Bernd Neumayr
Universitdt Linz, AT

= Chris Partridge
Brunel University, GB

= Iris Reinhartz-Berger
Haifa University, IL

= Michael Schrefl
Universitiat Linz, AT

= Matt Selway
University of South Australia —
Mawson Lakes, AU

= Maarten Steen
BiZZdesign — Enschede, NL

= Friedrich Steimann
Fernuniversitiat in Hagen, DE

= Manuel Wimmer

TU Wien, AT

= Dustin Wiiest
Fachhochschule Nordwestschweiz
— Windisch, CH

17492



	Executive Summary João Paulo A. Almeida, Colin Atkinson, Ulrich Frank, and Thomas Kühne
	Table of Contents
	Overview of Talks
	What is Multi-Level Modeling? Thomas Kühne
	What Kind of Foundations do we Need for Multi-Level Modeling? João Paulo A. Almeida
	On the Application of Multi-Level Modelling – Prospects and Challenges Ulrich Frank
	Implications When Migrating to Multi-Level Modeling (Industry Perspective) Ta'id Holmes
	Potential of Multi-Level Modelling in Model Based Systems Engineering: A ``National Research Lab'' Perspective (Industry Perspective) Philipp Martin Fischer
	Personal View on Multi-Level Modeling (Industry Perspective) Vinay Kulkarni
	Commercial Introduction – BORO Solutions (Industry Perspective) Chris Partridge
	Multi-Level Modelling at BiZZdesign (Demo) Maarten Steen
	The MLM Application of FOM (Demo) Mira Balaban
	Multi-Level Modelling in XModeler (Demo) Tony Clark and Ulrich Frank
	The ML2 Multi-Level Modeling Language (Demo) João Paulo A. Almeida

	Working groups
	Formal Foundations and Ontology Integration Cesar Gonzalez-Perez, João Paulo A. Almeida, Victorio Albani de Carvalho, Anne Koziolek, Thomas Kühne, Chris Partridge, Michael Schrefl, Matt Selway, and Friedrich Steimann
	Applications and Evaluation of MLM Iris Reinhartz-Berger, Mira Balaban, Philipp Martin Fischer, Manfred Jeusfeld, Agnes Koschmider, Wendy MacCaull, Bernd Neumayr, Maarten Steen, and Dustin Wüest
	Dynamic Aspects of Multi-Level Modelling Georg Grossmann, Tony Clark, Ulrich Frank, and Vinay Kulkarni
	Multi-Level Model Transformation Dirk Draheim, Ta'id Holmes, and Manuel Wimmer

	Participants

