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Preface

The papers in this volume were presented at the 21st International Conference on Principles
of Distributed Systems (OPODIS 2017), held on December 18–20, 2017, in Lisbon, Portugal.
The conference was organized by the University of Lisbon and took place at the Faculty of
Sciences.

OPODIS is an open forum for the exchange of state-of-the-art knowledge on distributed
computing. With strong roots in the theory of distributed systems, OPODIS has expanded
its scope to cover the whole range between the theoretical aspects and practical implementa-
tions of distributed systems, as well as experimentation and quantitative assessments. All
aspects of distributed systems are within the scope of OPODIS: theory, specification, design,
performance, and system building. Specifically, this year the topics of interest of OPODIS
included:

Design and analysis of distributed algorithms
Synchronization, concurrent algorithms, shared and transactional memory
Design and analysis of concurrent and distributed data structures
Communication networks (protocols, architectures, services, applications)
High-performance, cluster, cloud and grid computing
Mesh and ad-hoc networks (wireless, mobile, sensor), location and context-aware systems
Mobile agents, robots, and rendezvous
Internet applications, social systems, peer-to-peer and overlay networks
Distributed operating systems, middleware, and distributed database systems
Programming languages, formal methods, specification and verification applied to distrib-
uted systems
Embedded and energy-efficient distributed systems
Distributed event processing
Distributed storage and file systems, large-scale systems, and big data analytics
Dependable distributed algorithms and systems
Self-stabilization, self-organization, autonomy
Security and privacy, cryptographic protocols
Game-theory and economical aspects of distributed computing
Randomization in distributed computing
Biological distributed algorithms

We received 82 submissions, each of which was reviewed by at least four members of
the Program Committee with the help of external reviewers. Overall, the quality of the
submissions was very high. Out of the 82 submissions, 30 papers were selected to be included
in these proceedings.

Following last year’s practice, this edition of OPODIS proceedings appears in the Leibniz
International Proceedings in Informatics (LIPIcs) series. LIPIcs proceedings are available
online and free of charge to readers, and the production costs are paid in part from the
conference budget. The review process was done using EasyChair.

The Best Paper Award was given to Keren Censor-Hillel and Michal Dory for the paper
“Fast Distributed Approximation for TAP and 2-Edge-Connectivity”.

This year OPODIS had two distinguished invited keynote speakers: Luís E. T. Rodrigues
(INESC-ID, IST-UL, Portugal) and Roger Wattenhofer (ETHZ, Switzerland).

We would like to thank all authors for submitting their work to OPODIS. We are also
grateful to the members of the Program Committee for their hard work in reviewing papers
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Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão
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and their active participation in the online discussions. We also thank the external reviewers
for their help with the reviewing process.

Organizing this event would not have been possible without the time and the effort of
the Organizing Committee, notably Ibéria Medeiros responsible for the local arrangements
and web site, Miguel Matos who handled publicity, and João Leitão who managed the
proceedings.

On behalf of all participants we thank them for their work that made the conference a
truly enjoyable event beyond the scientific and technical aspects.

Finally, we would like to thank the Steering Committee members for their valuable advice
and all the sponsors for their support.

December 2017
James Aspnes (Yale University)
Alysson Bessani (Faculdade de Ciências, Universidade de Lisboa)
Pascal Felber (University of Neuchâtel)
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Causality for the Masses: Offering Fresh Data,
Low Latency, and High Throughput
Luís Rodrigues
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Abstract
The problem of ensuring consistency in applications that manage replicated data is one of the
main challenges of distributed computing. Among the several invariants that may be enforced,
ensuring that updates are applied and made visible respecting causality has emerged as a key
ingredient among the many consistency criteria and client session guarantees that have been
proposed and implemented in the last decade.

Techniques to keep track of causal dependencies, and to subsequently ensure that messages
are delivered in causal order, have been widely studied. It is today well known that, in order
to accurately capture causality one may need to keep a large amounts of metadata, for instance,
one vector clock for each data object. This metadata needs to be updated and piggybacked on
update messages, such that updates that are received from remote datacenters can be applied
locally without violating causality. This metadata can be compressed; ultimately, it is possible
to preserve causal order using a single scalar as metadata, i.e., a Lamport’s clock. Unfortunately,
when compressing metadada it may become impossible to distinguish if two events are concurrent
or causally related. We denote such scenario a false dependency. False dependencies introduce
unnecessary delays and impair the latency of update propagation. This problem is exacerbated
when one wants to support partial replication.

Therefore, when building a geo-replicated large-scale system one is faced with a dilemma: one
can use techniques that maintain few metadata and that fail to capture causality accurately, or
one can use techniques that require large metadata (to be kept and exchanged) but have precise
information about which updates are concurrent. The former usually offer good throughput at
the cost of latency, while the latter offer lower latencies sacrificing throughput. This talk reports
on Saturn[1] and Eunomia[2], two complementary systems that break this tradeoff by providing
simultaneously high-throughput and low latency, even in face of partial replication. The key
ingredient to the success of our approach is to decouple the metadata path from the data path
and to serialize concurrent events (to reduce metadata), in the metadata path, in a way that
minimizes the impact on the latency perceived by clients.
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Abstract
We present a new fault-tolerant distributed state machine to inherit the best features of its
“parents in spirit”: Paxos, providing strong consistency, and a blockchain, providing simplicity
and availability. Our proposal is simple as it does not include any heavy weight distributed failure
handling protocols such as leader election. In addition, our proposal has a few other valuable
features, e.g., it is responsive, it scales well, and it does not send any overhead messages.

1998 ACM Subject Classification C.4 Performance of Systems

Keywords and phrases Consensus, Crash Failures, Availability, Network Partition, Consistency

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.2

1 Introduction

Two fundamental philosophies to build fault-tolerant distributed state machines exist. One
is mentioned in every other newspaper: The blockchain [22] is a fault-tolerant data structure
to organize transactions. Its main advantage is its simplicity; the main disadvantage is that
a blockchain is only eventually consistent.

On the other hand, we have the various consensus and agreement protocols designed by
the distributed systems community, e.g., Paxos [16]. These protocols usually provide strong
consistency, but have scalability issues. The idea of this paper is to marry the two worlds in
a natural way, inheriting the best features of both.

We present piChain, a fault-tolerant distributed state machine (also known as repeated
consensus, agreement, ledger, log, history, event sourcing) based on a blockchain, with
integrated strong consistency. Our proposal is:

Fault-Tolerant: piChain can handle various types of faults, e.g., crashes, crash-recoveries,
message omissions, network partitions. It cannot handle arbitrarily malicious (“byzantine”)
faults, as we believe that there is a performance penalty many applications are not willing
to pay.
Fast: The basic functionality has no overhead; transactions can be created as fast as they
can be sent and received by the network. Strong consistency will usually be achieved in
one message round-trip time.
Quiet: If no new transactions are created, no messages need to be sent. In other words,
piChain needs no heartbeat.
Scalable: piChain works with just a few nodes as well as hundreds of nodes, in a single
location as well as distributed around the globe. There are no subroutines that produce
a quadratic number of messages. If shooting for scalability, each node needs to send and
receive only a few messages per transaction.
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Light: In comparison to other protocols, piChain is a light protocol, e.g., it does not have
an explicit leader election subroutine. As such, the piChain architecture should be simple
to understand and modify.
Available and Consistent: piChain provides both availability and strong consistency. As
such it will continue to try to process transactions even if the network is partitioned, and
only short intervals of connectivity of a majority of nodes are enough to commit again to
a globally consistent state. As such piChain works in harsh networking environments.

There are many applications that may benefit to have both availability and strong
consistency. For example, take an airline reservation system with two data centers. For each
flight, each data center may initially have an allowance of half the available seats. Even if the
two data centers are temporarily not connected because of a network partition, both data
centers can decide to sell seats based on their local allowance. When the whole system is
reconnected, the data centers can regain strong consistency, e.g., re-balance their allowance.

In the next section we present the architecture of piChain. Section 3 explains how piChain
differs from previous protocols. In Section 4 we explain why piChain is correct and efficient,
and in Section 5 we evaluate our implementation.

2 Architecture

In this section we describe the three ingredients of the piChain architecture, and how they
interact with each other.

2.1 Transactions and Blocks
We want to order and store transactions. Transactions can be, e.g., executable commands in
a storage system, or financial transactions. Apart from its content, each transaction includes
a unique ID, which is a combination of the unique ID of the node that created the transaction,
and a sequence number.1 Transactions are being sent to all the nodes in the system.2

Transactions are grouped in blocks, a block may contain many or just a single transaction.
Blocks are created by arbitrary nodes, like transactions they contain an ID, which is again a
combination of the ID of the creator of the block and a sequence number.

In addition, each block contains a pointer to a parent block.3 The parent of a newly
created block is the deepest block the creator has seen. What is the deepest block? Each
block contains a depth field, which is the total number of transactions the block and all its
ancestor blocks contain.4 If two blocks have exactly the same depth, we will use the unique
block ID to break ties.

1 The sequence number is simply how many transactions that node already created. These sequence
numbers help nodes to recover missing messages, e.g. if a node v has seen a transaction with ID (u,7)
by node u but not transaction (u,6), node v can ask node u or any other node about the missing
transaction.

2 If the system consists of just a few nodes, all messages are sent directly. If the system consists of
hundreds of nodes, one should rather use an overlay, and send all messages between neighbors using
flooding. Thanks to flooding, each node must only transmit or receive a constant number of messages
per transaction.

3 We use the usual family relations to describe relations between blocks, in particular parent, ancestor,
and descendent.

4 In other words, the depth of a block b is the sum of the depth of b’s parent and the number of transactions
block b contains.



C. Burchert and R. Wattenhofer 2:3

The root block is already available when the system is initialized; the root block has no
transactions, no parent, and its depth is 0. The transactions of a block may not contradict
the transactions of the blocks on the path to the root.5 After its creation a block is sent to
all nodes in the system.

In piChain, any node can create a block, the only question is when.6

2.2 Node States
Each node is in one of three states: quick, medium, or slow. This state describes the node’s
eagerness to create a block.

If a node is quick, it will create blocks quickly: whenever a quick node sees a new
transaction that it has not yet seen included in a block, it will instantly create a block with
this transaction.7

A slow node will only create a block if it has waited for a considerable time after seeing a
new transaction that is not yet in a block. The earliest time t for a slow node to consider
creating a block is when it should have received the block already by either a quick or a
medium node. In addition to this earliest time t, slow nodes will also randomly wait even
longer, long enough that only one (the fastest) slow node s will create a block in expectation,
as other slow nodes will see that block by s before they will create a block.

In contrast to quick and slow nodes, medium nodes only exist transiently. After learning
about a new transaction, a medium node waits until it should have received a block with
this transaction by a quick node.

Each node will upgrade its state as follows:

quick medium slow

Figure 1 The state transitions: A node promotes itself to the next faster state when it creates a
block. A node demotes itself to slow if it sees a block b by some other node, and either the creator
of b is quick or b is the new deepest block.

2.3 Strong Consistency
Whenever a quick node creates a block and is not already in the process of committing
another block, it may decide to commit this block. Committing a block commits all the
transactions in that block, and all the transactions in all the blocks on the path from the
root to that block.8 Committed blocks (transactions) are final and cannot be uncommitted
again. A committable block must be a descendant of all previously committed blocks, i.e.,
the committed blocks are totally ordered in tree of blocks. The first committed block is the
root block; the root block is the precursor of the second committed block, which in turn is

5 E.g., a transaction that commands to move a file cannot be included in a block if its parent block
included a transaction that deleted the file.

6 In contrast to the Bitcoin blockchain, nodes do not have to perform a proof of work in order to generate
a new block.

7 A quick node may also wait a bit to accumulate several transactions; however, other nodes must know
about such an intentional offset and adapt their timings accordingly.

8 Many of which may already be committed.
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Algorithm 1 Committing: Paxos with Blocks.

Quick Node

bprop = deepest block
bcom =⊥

Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1: Send try(bnew) to all nodes

Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7: Majority responded with ok(bprop,
bsupp):

8: bcom = bnew
9: if some response included bprop 6=⊥

then
10: bcom = bprop with deepest bsupp
11: end if
12: Send propose(bcom, bnew) to all nodes

Phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19: Majority responded with ack(bcom):
20: Send commit(bcom) to all nodes

All Nodes

bmax =⊥
bprop =⊥
bsupp =⊥

2: On receiving a try(bnew) message:
3: if bnew deeper than bmax then
4: bmax = bnew
5: Answer with ok(bprop, bsupp)
6: end if

13: On receiving a propose(bcom, bnew) mes-
sage:

14: if bnew = bmax then
15: bprop = bcom
16: bsupp = bnew
17: Answer with ack(bcom)
18: end if

again the precursor of the third committed block. In other words, every committed block
except the root block have the previous committed block as their precursor.

In order to commit a block, a quick node must convince a majority of nodes twice. This
works trivially if there is no competition, i.e., if there is a single quick node. If no node is
quick, blocks will transiently not be committed, even though new blocks are still created. If
there are multiple quick nodes (e.g. after a network partition), our protocol still works, as it
is a variant of Paxos, formally described in Algorithm 1.

In Algorithm 1, each node stores a list of already committed blocks, initially only the
root block is committed. For every committed block b, each node stores three variables bmax
(the deepest block seen in round 1), bprop (a proposed block) and bsupp (a block supporting
the proposed block). These are initially ⊥ for every block, including the root. In addition, a
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quick node q that initiates a the commit protocol temporarily also stores bcom (a compromise
block).

Every committed block (but the root block) has a precursor block. In order to commit a
new block bnew, a quick node needs to refer the last already committed block b, the precursor
block of the block to be committed. In order to avoid notational clutter in Algorithm 1, we
omitted all the precursor information. When we write that a node sends bx, we mean that
the node sends both the ID of its precursor block b (for reference) and the value of bx.

Moreover, Algorithm 1 can be pipelined: A quick node that passed phase two can already
start committing the next block. This becomes even more powerful with an implicit phase 1.
Every propose for a block can implicitly be a try(⊥) with an empty block of depth 0. This
way a successful phase 2 for a block always includes a successful phase 1 for the next round
and the quick node can directly propose a successor block again. In the regular case the
quick node is only sending one message type, a pipelined/truncated combination of a phase
3 (line 20) and phase 2 (line 12) message: “commit(b) and propose(bnew, ⊥)”. If some other
node intervenes with its own try message and reaches a majority in the first phase, the quick
node’s propose will fail in line 14 and the quick node has do to an explicit new phase 1.

After a block b is committed, there might be blocks which are neither a descendant of b
nor on the path from the root block to b. These blocks are removed; the transactions inside
these blocks may however be salvaged (if they do not contradict the transactions of the
committed blocks), by simply creating a new block with these transactions as a descendent
of b. Committing a block is also an opportunity to compact the log up to block b.

Finally, we could also use commits to implement node membership changes; we simply
add a new node u with a transaction t, and node u will be included as a voting node in
Algorithm 1 as soon as transaction t has been committed.

3 Related Work

There is no lack of protocols that try to solve the same problem as we do, e.g., Chubby [4],
Zookeeper [14], Spanner [7], CORFU [2]. The most recent heavy weight champion of this
class is probably Raft [23]. Indeed, Raft has been designed with a similar agenda in mind
(simplicity first, strong consistency, explicit timing, no byzantine failures). The main argument
in favor of piChain’s simplicity is its “lightness”: Raft (and its competitors) uses leaders,
and these leaders have their epochs (or terms) when they are ruling. Whenever a leader is
not responsive anymore, other nodes have to notice this first, then they have to agree that
they want a new leader, at which point a leader election algorithm is started.9 In piChain,
each node just decides by itself that something needs to be done: it directly promotes or
demotes itself without communication. Moreover, piChain is quiet in the sense that it does
not send any messages if there are no new transactions, whereas Raft needs some kind of
heartbeat. Finally, piChain provides scalability and availability out of the box.

The only heavy part of piChain is Algorithm 1, a blockchain version of Paxos [12, 16]. In
our opinion, Paxos and blockchains are a natural fit, since a blockchain orders transactions
which is then augmented to strong consistency with Paxos. In contrast to Paxos, piChain
introduces a new way to prevent proposers from interrupting ongoing commits. Lamport’s
Paxos cared about correctness rather than efficiency. Paxos is a truly seminal protocol that
is hard to get around these days.10 One may claim that Lamport’s original publication [16]

9 We would argue that the leader election algorithm of Raft is similar to the first Paxos round.
10When working on piChain we tried to deviate from Paxos more radically, without success.
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left message timing as a exercise to the reader, and that piChain is just an explanation how
to implement a repeated version of Paxos also known as multi-Paxos. Paxos was studied
in various dimensions over the years, e.g., [6, 17, 19, 21, 25]. We do not use any of these
improvements, just the original.

Depending on the application, commits do not have to be done often but just from time
to time, to shorten the blockchain. If the application depends on fast commits, we can also
commit each and every block. As we will discuss in Section 4, thanks to majority-only voting,
pipelining and truncating, piChain will be faster than three-phase commit [26].

In addition, piChain cares about availability, something Paxos did not bother with.
After Brewer [3] explained that consistency is not everything and availability should not be
forgotten, the pendulum is swinging back and forth between strong consistency and high
availability. We believe that there is value in having both, as many applications may want to
implement decisions even if they are not final.

Speaking of high availability: “Satoshi Nakamoto” introduced the concept of a blockchain
in a byzantine setting [22]. While his proof-of-work based system can tolerate byzantine
failures with anonymous nodes, generating blocks cannot be fast because of forks, and blocks
are never really committed [8, 10, 13].

Previous work tried to prevent forks of the Bitcoin blockchain by using strongly consistent
byzantine agreement to agree on blocks before adding them to the blockchain [9]. This is
implemented in various cryptocurrencies, e.g., the masternode system of Dash [11]. While
the byzantine setting is more difficult than piChain, those systems cannot recover from a
state of too many crashed nodes, as the block creators are themselves elected in blocks. The
system uses strong consistency to append to the blockchain. We believe that piChain is more
natural, ordering by the blockchain first and strong consistency later.

In the last 20 years we have seen an army of new protocols that try to cope with byzantine
(arbitrary, malicious) failures, e.g., PBFT [5], Farsite [1], Zyzzyva [15] and a byzantine
version of Paxos [18]. These protocols build on the earlier theoretical work, among others
again by Lamport [20, 24]. In many applications one must be able to tolerate byzantine
behaviour. However, Google or Amazon have developed their fault-tolerant distributed
systems to handle crash failures only. We believe that the cost of fully byzantine protocols
may be prohibitive for applications which need to be efficient. Nevertheless, one can add
byzantine tolerant elements to piChain, e.g. when creating a new transaction, nodes could
be asked to cryptographically authenticate the transaction.

4 Analysis

In this section we discuss why piChain is correct and efficient.

4.1 Transactions and Blocks
Let us start with some basics about transactions and blocks. First note that the blocks form
a tree: Every block has a parent, which is another block that has been created earlier. By
induction following the parent pointers brings us to earlier and earlier blocks, and ultimately
to the root block.

Also, every transaction will be in a block: Even if it is a slow node, the creator of the
transaction will include it in a block after it has not seen it in a block for long enough. If a
transaction is in a block b that is discarded because of committing a block which is neither an
ancestor nor a descendent of b, then the transaction is again on the market. If the transaction
does not contradict an already committed transaction, the nodes will put it in a block again.
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4.2 Node States
The waiting times of quick, medium, and slow nodes until they create a block are crucial to
the performance of piChain:

t

quick medium slow

Figure 2 Waiting time of nodes in different states: A quick node creates a block instantly when
seeing a new transaction. A medium node waits long enough to ensure not to compete with a quick
node. A slow node waits long enough to ensure to compete neither with a quick nor a medium node.
The figure represents a situation with one quick, three medium, and some slow nodes.

The waiting times depend on the network characteristics. To understand this aspect
better, let us first discuss a simplistic network model by assuming that the time to deliver
a message between any two nodes is always exactly 1 time unit, in both directions. Quick
nodes always immediately create a block when learning about a new transaction, also in
this simplified model. After learning about a new transaction, a medium node u should
wait time 1 + ε, unless the transaction was created by u, in which case u should wait time
2 + ε (as this is enough time to send the transaction to the quick node and send a block
with the transaction back). A slow node should wait time 3 + 2ε + r (or 4 + 2ε + r for a
self-created transaction), where the parameter r is a random time chosen uniformly in the
interval [0, n+ 1], where n is the number of nodes. In this simplified model, these timings
are the shortest possible timings allowed by the description in Section 2.2, as they allow the
faster nodes to deliver a block before a slower node will create one.

For example, let us assume that slow node s produces a transaction at time t, sending it
to the other nodes. If there is a medium node m, node m will learn about this transaction at
time t+ 1, create a block at time t+ 3 + ε, which will arrive back at slow node s at time
t + 4 + ε, right before the earliest possible time s may create a block. Arguing all other
cases is similar, we know that a quick node will not be challenged by a medium node, and a
medium node will not be challenged by a slow node.

In absence of quick and medium nodes, the random time r for the slow nodes makes
sure that there is a good chance only a single slow node creates a block. Moreover, using
a standard Chernoff bound one can show that with high probability at most O(logn) slow
nodes create a block within one time unit.

If there is exactly one quick node, and all others are slow, we call the system healthy.11
Our system should almost always be healthy. The healthy state is stable, since the timings
guarantee that the quick node will not be challenged by the other nodes. But what if
something does not work as anticipated, e.g. the single quick node crashes?

If the single quick node crashes (or the network has problems and does not deliver the
messages of the quick node), we have only slow nodes. If so, a slow node will jump in and
produce a block. There might be several such slow nodes, but there will be few. If there is

11Because of this, one might consider naming quick nodes “leaders”, slow nodes “followers”, and medium
nodes “candidates”. However, the term leader usually implies that the system guarantees to have at
most one. Our piChain architecture does not attempt to have such a guarantee, it does not even have an
explicit leader election subroutine. Instead nodes just update their state (quick, medium, slow) locally
without interacting with other nodes, so the classic terms seem inaccurate.
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q = 0
m > 1q > 1

q = 0
m = 0

election
healthy
q = 1
m = 0

q = 1
m > 0

q = 0
m = 1

Figure 3 Recovery of the network to the healthy state. The nodes of this graph represent all
possible states of the whole system: how many quick (q) nodes do we have and if relevant how many
medium (m) nodes. The election state is special, as it is characterized by possibly multiple medium
nodes, which have in-flight blocks. The in-flight blocks will demote all medium nodes except for the
one that created the deepest block, so only that node will become quick.

more than one slow node challenging the crashed quick node, they will all send out their
blocks more or less concurrently (otherwise they would had seen the other blocks before
creating one themselves). According to Figure 1, all of these fastest slow nodes become
medium nodes, but (unless there are further crashes or message omissions) all see all their
blocks before they produce a next block. Only one of these blocks is the deepest (even if
several have the same number of transactions we know that ties are broken by block ID), so
only one now-medium node will create a second block and become quick. All other medium
nodes see a deeper block and go back to slow again. This summarizes our implicit election.12
This is probably the most regular way to get back to the healthy state, but others exist, as
summarized in Figure 3.

So what if message delays are more realistic? The idea is to use previous measurements,
like in TCP. If a non-quick node v learns about a transaction created by node u, node v
considers the current message delays in the system. As described in Section 2.2, node v gives
the faster nodes enough time to deliver their blocks, based on previous delivery times. If a
node does not know anything about these times (e.g., the system just started), it can assume
a very crude upper bound on message delivery time. We would suggest for a slow node v
to wait for 2R + r · 0.5R + 2ε, where r is again a random value in [0, n+ 1], and R is the
absolute worst round-trip time any node has seen (or can imagine) when the network was
not faulty. This way, we will be back in the healthy state in expected time 3.5R (we have
2.5R time until the first slow node s creates a block,13, plus R time until node s creates a
second block).

We could optimize R a bit more aggressively if we have previous timing measurements.
Premature block creations will be handled gracefully in piChain, so they are no big deal
really. On the other hand, these slow waiting times will happen so rarely that they barely
matter for our overall system performance, so just choosing a high R is also fine. After all,
the system will be mostly in the healthy state, where the single quick node does not wait at
all.

12One might consider to “vaccinate” the healthy state: When we are in a healthy state, the single quick
node q may consider choosing another node as its “heir”; this heir would then assume a medium state,
and as such automatically be the first to create a block after the quick node crashed.

13 If n nodes choose a random value in [0, n + 1], the expected lowest value is 1.
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4.3 Strong Consistency
This brings us to the third part of the architecture, the commits. First of all, if the system
is healthy, Algorithm 1 reduces to a simple message ping pong: try-ok-propose-ack-commit
not unlike three-phase-commit (3PC). One may argue that Algorithm 1 is faster than 3PC
because the quick node does not have to wait for replies from all nodes, but merely a majority.
Also, Algorithm 1 can be pipelined, and a stable quick node can directly enter round 2, i.e.
in a healthy system, Algorithm 1 is truncated to lines 12–22.

If there are no quick nodes, we do not even attempt to commit a block. So the only
interesting remaining cases are multiple competing quick nodes (after a partition), or if there
are so many errors (crashes, message omissions) in the system that the quick node cannot
easily finish its commit because it does not get the needed majorities.

The principle why the algorithm works is built around the implication of accepting a
block proposal in round 2. A node u which answers ok in round 2 may have just been part
of a successful commit.14 To make sure only one block can be committed as a successor of a
previous commit, node u must not accept a proposal for any other block until the node can
be convinced that the commitment was unsuccessful. Luckily, any arriving propose message
that proposes a different block with a deeper support proves that the last proposal was
unsuccessful and the node can therefore safely support this new proposal. So in order to get
a successful commit, we need a uninterrupted “double whammy” of rounds 1 and 2.

We can formally proof this intuition. Let p = (bcom, bnew) be a successful successor for
committed block b, i.e., p was accepted by a majority of the nodes in round 2. Let p′ be
the first subsequent proposal. In order to not be ignored in round 1, p′’s support needs to
be deeper than p. Both p and p′ are seen by a majority of nodes, so there is a node which
has seen both p and p′. This node will report p to the quick node at the end of round 1.
Therefore the quick node leading the proposal had both to choose from in line 10. If p′ was
for a block different than p that block must have been proposed with a deeper support block,
as otherwise the quick node leading the commitment process would not have chosen it as the
compromise block. However this contradicts the assumption that p′ was the first proposal
with a deeper support after p, therefore there can only be one successful proposal and thus a
node which receives a new proposal with deeper support can assume all previous proposals
failed.

This proof also applies to the truncated version, as the order of message arrivals is
exactly the same. Every node simulates the arrival of a try message for the next round after
every propose message is accepted, this way the quick node does not violate the protocol by
omitting the first phase.

5 Evaluation

To test our implementation, we run it in a discrete event simulation to get accurate timings
not affected by distributed time measuring difficulties. Most failures have no effect on the
system, so we only tested a few rare but harsh scenarios. We have n = 20 nodes embedded
randomly in a square with diagonal 0.5, with distance being message delay, so the maximum
possible message delay is 0.5s. Transactions are created by random nodes at random times
with an average rate of 10 transactions per second. The nodes use a worst-case round-trip
time of R = 1s.

14Node u may not know that, though.
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Figure 4 piChain with n = 20. After 10s the single quick node crashes. No new blocks are
created until a slow node creates a block and becomes medium. A bit later, the same node becomes
quick, and blocks are again created and committed with a fast pace.

Figure 5 The network is partitioned into 8 resp. 12 nodes after 10s. Each side of the partition
quickly finds a single quick node that is adding blocks, but only the majority side can commit
its blocks. When the partition is resolved after 30s, the minority side temporarily loses its blocks
because of the committed blocks on the majority side (see discussion in second paragraph of Section
4.1).

Figure 4 shows an example how the network recovers to healthy after the quick node
crashed. Averaged over 100 runs of such crashes, the time until we are back to the healthy
state is 3.67s on average, with a standard deviation of 0.49s. This conforms with our
expectation of 3.5R. The variations can be explained by how we measure. In particular,
to get the protocol going, we need a transaction, and transactions first have to be created
and delivered. Further randomness is introduced by different waiting times of slow nodes.
Figure 5 presents the effects of a network partition.

In Section 4.2 we claimed that we always get back to the healthy state quickly. Figure 6
shows the actual times of the state chart of Figure 3.

In another experiment we analyze the behaviour of the algorithm in a highly unstable
situation, where nodes repeatedly crash and recover; while being crashed all messages of a
node are dropped. Two of the resulting plots are shown in Figure 7.



C. Burchert and R. Wattenhofer 2:11

Figure 6 The time piChain needs to become healthy when being started in a random state. The
start states are clustered according to Figure 3, e.g., when a third of the nodes is initially in each
category quick, medium, and slow, we add a measurement to class q > 1.

Figure 7 piChain with unstable nodes that crash and recover. The red curves show the number
of currently working nodes. In the upper plot crashes last for an average of 20s, in the lower plot for
0.2s, but both plots have the same average number of 11 working nodes. One can see that blocks are
generated quickly in both plots, but committing takes more time in the lower plot, since Algorithm 1
is often interrupted by crashes.
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Abstract
We investigate distributed algorithms for broadcasting in unreliable wireless networks. Our basic
setting is the signal to noise and interference ratio (SINR) model, which captures the physical
key characteristics of wireless communication. We consider a dynamic variant of this model in
which an adversary can adaptively control the model parameters for each individual transmission.
Moreover, we assume that the network devices have no information about the geometry or the
topology of the network and do neither know the exact model parameters nor do they have any
control over them.

Our model is intended to capture the inherently unstable and unreliable nature of real wireless
transmission, where signal quality and reception depends on many different aspects that are often
hard to measure or predict. We show that with moderate adaptations, the broadcast algorithm
of Daum et al. [DISC 13] also works in such an adversarial, much more dynamic setting. The
algorithm allows to broadcast a single message in a network of size n in time O(D·polylog(n+R)),
where D is the diameter and R describes the granularity of the communication graph.
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1 Introduction

In the signal to noise and interference (SINR) model (a.k.a. the physical interference model),
a message is received if and only if the ratio between the signal strength at the receiving node
and the combined strength of the background noise and any interfering signals is above a
given threshold. By now, the SINR model has become the standard communication model to
study wireless network algorithms. In the distributed algorithms literature, different variants
of the basic SINR model have been studied, based on the properties of the underlying
geometric space, how much geometric information the network devices have and how much
they know about the model parameters or the network topology.

One of the most general variants of the SINR model has been termed the ad hoc SINR
model by Daum et al. in [4], where they study the problem of broadcasting a message to all
nodes of a wireless network. In [4], it is assumed that the network nodes have no information
about the geometry or the topology of the network, prohibiting algorithms that utilize
advance knowledge about network topology and layout or the way that signals propagate in
space. The distances between the nodes are assumed to form a general growth-bounded metric
space. Furthermore, the nodes use uniform transmission powers, they have only approximate
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knowledge of the hardware and model parameters, and they do not have additional capabilities
like carrier sensing. Because the model makes only minimal assumptions, it allows to develop
algorithms that can operate in a quite general setting.

However, while the authors of [4] assume that the model parameters are only known
approximately, these parameters are still assumed to be uniform over the whole network and
static over time. As a result, whether a message is successfully received is determined by a
deterministic function depending on the system parameters and the geometry of the network.
However in real wireless networks, communication often turns out to be rather unreliable
and highly volatile, and system parameters tend to not be uniform over space and time [22].
As a result, practical wireless communication behaves in an inherently non-deterministic
way. Examples for such unpredictable communication behavior are background noise due to
coexisting networks or jamming, various multi-path effects due to changes of the environment,
or fluctuations in sending power or signal sensitivity among different wireless devices.

In order to improve practical applicability in the present paper, we consider an unreliable
variant of the ad hoc SINR model (which we will term the unreliable SINR model) by adding
a worst-case adversary, which decides to a given extent whether or not messages are received.
The adversary adds a dynamic and non-deterministic component to the model that allows
to capture non-uniform and dynamically changing SINR parameters. More concretely, we
assume that at each point in time and individually for each node, an adversary can adaptively
control the threshold on the signal to interference and noise ratio above which a message can
successfully be decoded (for a formal definition of the model, we refer to Section 3).

As our main contribution, we adapt the broadcast algorithm of Daum et el. [4] to work in
the unreliable SINR model. We show that with relatively modest adaptions, the algorithm
of [4] can also be used to efficiently solve the broadcast problem in the unreliable SINR model.
More specifically, let GC be the communication graph in which two nodes are adjacent if
they can reliably communicate with each other in the unreliable SINR model (if the signal to
noise ratio for the two nodes is sufficiently above the maximum threshold that the adversary
is allowed to choose). We prove that the global broadcast problem can be solved in time
O
(
D ·polylog(n+R) · βmax

βmin

)
, where D is the diameter of the communication graph GC , R

is the ratio of maximum to minimum distance between any two adjacent nodes in GC ,1
and [βmin, βmax] is the range within which the adversary can adaptively choose the SINR
threshold in each time slot and for each node.

The paper is structured as follows. In Section 2 we summarize existing work related to
broadcasting in the SINR model and non-deterministic distributed algorithms. In Section 3
we specify our model and give some notions used throughout the following sections. Section
4 gives an overview on the neighborhood dissemination process, which conducts one hop
of the global message broadcast. In Section 5 to Section 8 we analyze the neighborhood
dissemination protocol. Finally, in Section 9, we show that our abstract model, where the
adversary can only control the SINR threshold, in fact allows to also capture a more general
adversary, which controls all SINR-parameters.

1 Theoretically, any functional dependency R = f(n) is possible, e.g., for a series of nodes v1, . . . , vn+1
with decreasing distances d(vi, vi+1) = 1/f(i). However, we consider R ∈ ω(n) unlikely in practice. E.g.,
placing n nodes uniformly at random inside a square with sidelength re/

√
2 (where re is the effective

communication range), yields an expected granularity R ∈ Θ(n).
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2 Related Work

Broadcasting in the SINR Model. Broadcasting algorithms in conjunction with the SINR
model were first investigated in [10]. They consider local broadcast, where each node needs to
broadcast a message to all neighbors in the communication graph. Note that local broadcast
can be used as a building block to solve global broadcast. Subsequent publications on
broadcasting (local and global) in the SINR model include [13,14,25,26]. However, all the
aforementioned publications leverage assumptions that are incompatible with our conception
of the SINR model. Incongruities include in particular that nodes have knowledge of their
position or of distances to other nodes or that nodes can modify their sending power or have
carrier sensing capability.

Broadcasting in the Ad Hoc SINR Model. Most relevant for our work are distributed
information dissemination algorithms that work in the ad hoc SINR model as discussed in
Section 1. The first such algorithm is the local broadcast algorithm of [12], which can be
used to solve global broadcast in the ad hoc SINR model in time O(D∆C(logn)2), where ∆C

is the maximum degree of the communication graph GC . Note that ∆C is a potentially large
factor (e.g., in single-hop networks). In [4] the global broadcast problem is solved directly
in time O(D · polylog(n+R)). Recall that R is the ratio between the largest and smallest
distance between neighbors in the communication graph. The solution of [4] forms the basis
of our algorithm and we will point out the differences to the algorithm and analysis alongside.

For large and moderately large values of R, the result of [4] has been improved by
Jurdzinski, Kowalski, Rozanski, and Stachowiak [15], where it is shown that one can get rid
of the dependency on R and solve the global broadcast problem in time O(D log2 n).2 The
algorithm of [15] is based on finding an assignment of probabilities such that in each local
neighborhood, the sum of probabilities is upper and lower bounded by some constant.

Halldorsson et al. [11] use the concept of abstract Medium Access Control (abstract
MAC) layers introduced in [16] (and subsequently enhanced in [7]), to implement higher-level
procedures such as single and multi-message broadcast and consensus in the ad hoc SINR
model. The abstract MAC layer provides basic routines where run-times are bounded by
delay-functions. By proving upper bounds on delays in the ad hoc SINR model, they establish
an abstract MAC layer that permits single-message broadcast in O((D + logn) polylogR),
which is an improvement over [4].

The algorithm of [4] is the simplest and seemingly most robust of the global broadcast
algorithms in the ad hoc SINR model and we therefore decided to extend this algorithm to
the adversarial, unreliable SINR model considered in the present paper. However, it would
certainly be interesting to see whether the approaches of [11] and [15] can also be adapted to
work in a more dynamic and unreliable setting.

Adversarial Models in Wireless Networks. To the best of our knowlege, the only previous
paper that analyzes non-deterministic, adversarial behavior in combination with the SINR
model, is by Ogierman et al. [23]. They assume that the SINR noise parameter is controlled
by an adaptive adversary with a restricted energy budget during each interval of some
fixed length. The objective of [23] is to design a MAC layer that allows to achieve optimal
throughput. The algorithm has a constant competitive ratio and it is based on a protocol

2 The algorithm of [4] – which takes O(D logn(log?n+ logα+1 R)) time – is faster than the algorithm
of [15] if R≤2log1/c n for a sufficiently large constant c>α (α is the path loss exponent, see Section 3).
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designed in [24] for a simpler wireless network model. We note that the algorithm of [23]
heavily relies on the assumption that the nodes can use carrier-sensing.

Non-deterministic behaviour in the broader context of distributed networks has been
studied in various settings. Of particular interest in the context of the present paper is the
dual graph model introduced by [17]. The dual graph model considers graphs G = (V,E)
and G′ = (V,E′) with E ⊆ E′, where G is reliable and G′ contains unreliable edges, which
are controlled dynamically by an adaptive worst-case adversary. A message can only be
delivered from sender to receiver if no other neighbor (in the graph of currently active edges)
of the receiver sends. Broadcast in this framework was studied in [8, 17,19].

Another line of work [1,2,5,9,20,24] studies scenarios, where an adversary with a limited
energy budget per time may jam the single shared channel or a subset of multiple shared
channels, to the effect that no transmissions via the jammed channels are possible. However,
all of the aforementioned non-SINR models share the assumption that interference is a strictly
local and binary concept (a message is received if and only if exactly one node or neighbor
sends) and they all fail to capture the global and continuous interference concept of the SINR
model, which is more faithful to reality (cf. [21]).

3 Model and Preliminaries

Communication Model. Let V be a set of n point-shaped communication devices (we call
them nodes) embedded to distinct points of a metric space (X, d). For u, v ∈ V , let d(u, v)
denote the distance between the two points in X to which u and v are embedded. Nodes are
reliable and have unique identifiers. Time is divided into synchronous time slots, henceforth
also called rounds. In each round, each node can either transmit a message with a fixed
transmission power P or it can listen to the channel and thereby receive at most one message.
In addition, each node may conduct an arbitrary amount of computations during each round.
We do not explicitly restrict the size of messages, however, in addition to the size of the data
that needs to be broadcast we require at most O(logn) additional bits.

Let I ⊆ V \{u, v} be the set of nodes other than u, v∈V that are transmitting during a
round. Then v receives a message from u, iff u transmits, v listens, and

SINR(u, v, I) := P/d(u, v)α

N +
∑
w∈I P/d(w, v)α ≥ βv. (1)

We call the parameters P , N , α, and βv in Equation 1 the SINR parameters. The value of
P > 0 denotes the transmission power of all nodes. Further, the parameter N ≥ 0 describes
the background noise and α ≥ 2 specifies the power loss of the transmitted signals. Finally,
for each node v ∈ V , the threshold βv > 0 determines how large the signal to interference
and noise ratio at node v needs to be, such that v successfully decodes a signal.

In our abstract model, we assume that the SINR parameters P , N , and α are fixed and
that only the value of βv is subject to some variability and uncertainty. More specifically,
there are generally known lower and upper bounds βmin ≥ 1 and βmax > βmin on βv. In each
round and for all nodes v ∈ V , the actual value of βv is determined by a strongly adaptive
adversary arbitrarily in the range [βmin, βmax]. That is, the adversary can adjust the value
βv for each node and can thereby control to some extent, whether a given message is received
or not. We note that to keep our abstract model as simple as possible, we assume that
the adversary can only change βv while all other SINR parameters are fixed (and globally
known). In Section 9, we discuss how our abstract model can be used to capture a more
powerful adversary that can vary all SINR parameters within a given range.
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Communication Graph. We define the maximum range rm :=(P/Nβmin) 1
α , maximum safe

range rs := (P/Nβmax) 1
α and the effective range re := rs/(1 + ρ) for constant ρ > 0. For a

given I ⊆ V we call a transmission from u to v safe if SINR(u, v, I) ≥ βmax, otherwise the
transmission is called unsafe. For d(u, v) > rm no transmissions among u and v are possible.
For rs < d(u, v) ≤ rm only unsafe transmissions are possible. For d(u, v) ≤ rs and especially
d(u, v) ≤ re safe transmissions are possible (e.g., if I = ∅). Now we are able to formally
define the communication graph GC as (V, {{u, v}|u, v ∈ V, u 6= v, d(u, v)≤re}).

All nodes are assumed to know polynomial bounds on the number of nodes n and on
the ratio R := dmax

dmin
of the maximum distance dmax to the minimum distance dmin among

neighbors in the communication graph GC . The values of n and R appear only inside log
functions. Since it makes no difference in the asymptotic running time of our algorithm, we
will assume exact knowledge of n and R for simplicity. Further, we assume that the network
is growth-bounded in the following sense. There exists a constant δ ∈ [1, α) such that for any
subset of nodes S ⊆ V , for any v ∈ S and any x ∈ R+, the number of nodes from S that are
within distance x · dSmin of v is bounded by O(xδ), where dSmin := minu,v∈S,u 6=v d(u, v).3

Global Broadcast and Neighborhood Dissemination. In the present paper, we intend to
solve the global broadcast problem. There is a distinguished source node s that initially has
a broadcast messageM. The global broadcast problem is solved whenM is disseminated
to all nodes in V . We assume that a node v cannot participate in a global broadcast
algorithm before v learns the broadcast messageM. This assumption is sometimes known
as asynchronous start. We are interested in randomized algorithms that solve the global
broadcast problem with high probability (w.h.p.) that is, with probability at least 1− 1/nc
for a given, sufficiently large constant c > 0. The algorithms’ guarantees have to hold for
any strategy of the adversary, i.e., for every possible way in which the adversary may choose
βv for each round and node. We call an algorithm that fulfills these criteria robust.

Our solution to the global broadcast problem is based on a solution to the following
neighborhood dissemination problem. Assume that a subset S ⊆ V of the nodes knows some
messageM. Neighborhood dissemination is solved as soon as all neighbors N(S)4 of S in
GC knowM. Note that if D is the diameter of GC , the global broadcast problem can clearly
be solved by running neighborhood dissemination D times.

Spatial Reuse in Dense Networks. In dense networks we can take advantage of the fact
that signals fade polynomially with distance. At the same time, the interference from nodes
within a distance around v grows not too fast (when said distance is increased) due to the
growth bound. These properties potentially allow large numbers of concurrent transmissions
in densely packed areas. This is sometimes known as spatial reuse.

The following lemma gives a formalization of this property and is slightly adapted from
Daum et al. [4]. Assume that a set of active nodes all transmit with a fixed probability p
and that all other nodes are silent. Then there is a constant probability that two nodes can
communicate safely, given that they are within safe transmission range of each other and are
closer than the smallest distance among active nodes times a constant.

3 Intuitively, the growth bound can be interpreted as follows. Assume we grow the radius x of a sphere
around a node v. Then the interference caused by nodes at distance x fades faster (i.e. with 1/xα) than
the number of nodes within that sphere grows (i.e. with O(xδ)). This implies that the total interference
from distant nodes decreases (the important feature is δ < α), as we show in Lemma 1. This notion is
generalized for arbitrary subsets S ∈ V and ’normalized for granularity’ dSmin.

4 N(S) := {v ∈ V | there is u ∈ S such that (u, v) is an edge in GC}
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3:6 Broadcasting in an Unreliable SINR Model

I Lemma 1 (cf. [4]). Let S ⊆ V be a set of active nodes sending with fixed probability p. All
non-transmitting nodes listen. Consider two nodes u ∈ S and v ∈ V with d(u, v) ≤ c1 · re and
d(u, v) ≤ c2 · dSmin, where 0<c1<1+ρ, c2>0 are constants and dSmin =minx6=y∈S d(x, y). If v
listens, then a safe transmission from u to v takes place with constant probability µ ∈ (0, p).

Proof. We show SINR(u, v, I)≥ βmax. For this purpose we compute a bound on Imax
S′ (v)

defined as the maximum interference at v originating from S′ := {w∈S | d(v, w)≥k0 · dSmin}
with k0 ∈N. We partition S′=

⋃∞
k=k0

Rk along concentric rings Rk := {w∈S′ | k · dSmin≤
d(v, w)<(k+1) · dSmin} of thickness dSmin. Moreover, let Bk := {w∈S | d(v, w)<(k+1)dSmin}
be the nodes within a ball of radius (k+1)dSmin centered at v.

First we unwrap the definition of the growth bound |Bk| ∈ O((k+1)δ) = O(kδ): There
are constants k0, ζ > 0 such that |Bk| ≤ ζ · kδ for all k ≥ k0. This allows us to bound the
interference at v stemming from Rk0 . In the worst case (regarding the amount of interference
from Rk0) all of the at most ζ · kδ0 nodes in Bk0 are located in Rk0 , which gives us

Imax
Rk0

(v) =
∑

w∈Rk0

P

d(v, w)α ≤ ζ · k
δ−α
0

P

(dSmin)α
∈ O(kδ−α0 ) P

(dSmin)α
.

Now we bound the combined interference from the other rings Rk, with k > k0. Again,
we look at the worst case regarding interference at v. The maximum interference without
violating the growth bound is obtained when as many nodes as possible are as close to v
as possible. Therefore, Bk−1 contains as many nodes as the growth bound allows, implying
that |Rk| ≤ ζkδ−|Bk−1| ≤ ζ(kδ − (k−1)δ) ≤ ζδkδ−1 (the last inequality is given in Appendix
C Lemma 17). This leads us to

∞∑
k=k0+1

Imax
Rk

(v) ≤ ζδ
∞∑

k=k0+1
kδ−α−1 P

(dSmin)α

≤ ζδ
∫ ∞
k=k0

kδ−α−1dk
P

(dSmin)α
= ζδ

kδ−α0 P

(α− δ)(dSmin)α
∈ O(kδ−α0 ) P

(dSmin)α
.

Combining these results we observe Imax
S′ (v)≤κ(k0)P/(dSmin)α for a sequence κ(k0) ∈ O(kδ−α0 ),

which approaches 0 for k0 →∞. Assuming all nodes in S \ S′ remain silent we obtain

SINR(u, v, S′) =
P

d(u,v)α

N + Imax
S′ (v)

(∗)
≥ P

d(u,v)αP
rαs βmax

+ d(u,v)ακ(k0)P
(dSmin)α

(∗) : N= P
rαs βmax

(cf. def. of rs)

≥ P
cα1 r

α
e P

(1+ρ)αrαe βmax
+ (c2dSmin)ακ(k0)P

(dSmin)α

= βmax
cα1

(1+ρ)α︸ ︷︷ ︸
<1

+ cα2 βmaxκ(k0)︸ ︷︷ ︸
→0, for k0→∞

≥ βmax

for sufficiently large k0 ∈ Θ(1).5 Thus a safe transmission from u to v takes place with
probability µ ∈ p(1−p)O(kδ0) defined as the probability that all nodes in S \S′ are silent.6 J

5 Note that k0 does not depend on the size n, active nodes S, nor on the granularity R of the network.
Only on SINR parameters, growth bound exponent δ and c1, c2, which we deem all constant.

6 Daum et al. [4] propose to choose p such that µ(p, k0) is maximized.



F. Kuhn and P. Schneider 3:7

Algorithm 1 RobustDissemination. . high level description
S1 ← S . set of active nodes at start of this procedure
for phase φ← 1 to blogRc+ 2 do . number of phases limited due to Lemma 11

for Θ(Q logn) rounds do . Q determined in Lemmas 13,14
Nodes in Sφ sendM with probability p/Q . disseminateM to N(S)

Compute DIS Sφ+1 of H̃µ[Sφ] by executing subroutine ComputeDIS(µ, p) on all v∈S

4 Robust Broadcast Algorithm - Overview

The solution of the neighborhood dissemination problem lies at the core of the broadcast
algorithm by [4]. An algorithm solves neighborhood dissemination for a set of active nodes S
that already know a messageM, if after its execution, the neighborhood N(S) of S in the
communication graph GC also knowsM. Starting with a source node v as single active node
S = {v}, global broadcast can be solved by iteratively calling the neighborhood dissemination
routine, setting S = N(S) after each iteration. This wayM travels one hop along all shortest
paths in GC emanating from the source, thus solving global broadcast after at most D calls
of the neighborhood dissemination routine (D is the diameter of GC).

Algorithm RobustDissemination (introduced above) solves the neighborhood dis-
semination problem in a robust manner. This means that the synchronous execution of
RobustDissemination by all active nodes v ∈ S disseminates messageM to N(S) w.h.p.
and for any strategy of the adversary. It differs from [4] only in its subroutines and its
analysis.7 The dissemination ofM from S to N(S), relies on a graph structure Hµ[S] among
the set S of active nodes, named SINR-induced graph by [4]. The graph Hµ[S] contains all
edges among nodes in S with a probability of transmission success of at least µ.

In [4], active nodes approximate Hµ[S] by exchanging messages and computing the ratio
of successfully received messages in order to determine reliable links. In the unreliable SINR
model, the probability of transmission success is subject to adversary influence. In our
analysis we account for that by modifying the definition of Hµ[S] and classify edges into safe
and unsafe edges (implying that Hµ[S] is not unique, since the adversary may ’choose’ unsafe
edges). The structure Hµ[S] itself is implicit. We introduce a subroutine Transmit that,
when executed simultaneously by all nodes in S, ’probes’ connections and passes messages
only among those nodes in S which are sufficiently ’reliable’, while prohibiting communication
among all others, thereby inducing Hµ[S]. The details are covered in Section 5.

Algorithm RobustDissemination is grouped into phases during which active nodes
send. After each phase, active nodes are thinned out to decrease interference and enable
dissemination of M to more distant neighbors. In [4], this is achieved by calculating a
maximal independent set (MIS) on Hµ[S] and deactivating the nodes not in it. Due to
unreliable edges we are not able to compute a MIS of Hµ[S] in our scenario. Instead, we
use the well-known coloring algorithm of [18] to construct a structure we call Dominating
Independent Set (DIS) in O(logn log?n) rounds and has properties similar to a MIS (this
structure was used before in the context of dual graphs by [3]). The algorithm ComputeDIS
uses Transmit as a subroutine and is given and analyzed in Section 6.

We show that after calculating a DIS on S and deactivating all nodes not in it, the
minimal distance among remaining nodes in S at least doubles. Hence, after at most O(logR)
phases their distance exceeds re (remaining nodes are ’sparse’) and by then (at the latest)M

7 We adjust the proofs of [4] to this paper, thus knwoledge of [4] is recommended but not required.
Additionally we mark all lemmas, which have a direct counterpart in [4] with “(cf. [4])”.
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3:8 Broadcasting in an Unreliable SINR Model

is received by all nodes in N(S) w.h.p. The properties required for the analysis of Algorithm
1 are given in Section 7 where we adhere closely to the respective proofs provided in [4].8

In the following, we present the details and subroutines of RobustDissemination. We
show that key characteristics of the algorithm of [4] are conserved or transformed into similar
notions in the unreliable case. This enables us to prove the following theorem in Section 8.

I Theorem 2. Algorithm RobustDissemination solves neighborhood dissemination in the
unreliable SINR model robustly and in O(logn (log?n+ (logR)α+1 βmax

βmin
)) rounds.

We can solve global broadcast by repeating algorithm RobustDissemination D times,
a fact we note in the following corollary.

I Corollary 3. Algorithm RobustDissemination can be used to solve global broadcast in
the unreliable SINR model robustly and in O(D logn (log?n+ (logR)α+1 βmax

βmin
)) rounds.

5 SINR-Induced Graphs in the Unreliable SINR Model

Assume that during each round the active nodes in S send with the same probability p∈(0, 1),
which yields a random set I⊆S of transmitting nodes. For every pair of nodes u, v let σu,v
be the probability that SINR(u, v, I) ≥ βmax, i.e., the probability that a safe transmission
from u to v takes place. Let τu,v be the probability that SINR(u, v, I) ≥ βmin, i.e., an unsafe
transmission may take place (the adversary might decide). Obviously τu,v ≥ σu,v.

Let µ ∈ (0, p) be a given threshold probability. Then we call v a µ-safe neighbor of u and
(u, v) a µ-safe edge if both σu,v ≥ µ and σv,u ≥ µ. We highlight the fact that (u, v) is µ-safe
iff (v, u) is µ-safe as well, with the notation {u, v}. We call v a µ-unsafe neighbor of u and
(u, v) a µ-unsafe edge if τu,v ≥ µ and (u, v) is not µ-safe.

Define the (directed) SINR-induced graph Hµ[S] := (S,Eµ[S]) where (u, v) ∈ Eµ[S],
iff τu,v ≥ µ. This means Eµ[S] contains exactly the µ-safe and µ-unsafe edges. Let
Eµsafe[S] ∪ Eµunsafe[S] = Eµ[S] with Eµsafe[S] ∩ Eµunsafe[S] = ∅ be the partition of Eµ[S] into
µ-safe edges and µ-unsafe edges.

We cannot hope to determine Hµ[S] efficiently and exactly with a distributed algorithm
in the unreliable scenario, since the adversary might mask the existence of µ-unsafe edges.
Instead we settle for an ε-close approximation H̃µ[S] (for an ε ∈ (0, 1

2 ]).9 A graph H̃µ[S] :=
(S, Ẽµ[S]) is an ε-close approximation of Hµ[S] if and only if

Eµsafe[S] ⊆ Ẽµ[S] ⊆ E(1−ε)µ[S].

This entails that H̃µ[S] guarantees to include µ-safe edges with σu,v, σv,u ≥ µ and to exclude
edges with τu,v < (1− ε)µ. A graph H̃µ[S] may or may not include edges (u, v) with
τu,v ≥ (1−ε)µ and σu,v < µ or σv,u < µ, though. Due to these edges, an approximation
H̃µ[S] is not unique and communication in H̃µ[S] along these edges is inherently volatile.

Note that instead of computing H̃µ[S] (as in [4]), we utilize that communication via
Transmit(µ, p,M) (Algorithm 2) induces a graph H̃µ[S] by guaranteeing (w.h.p.) com-
munication along edges in Eµsafe[S] and inhibiting communication among edges (u, v) with
τu,v < (1−ε)µ w.h.p. (the adversary decides about the remaining edges in E(1−ε)µ[S]). We

8 Algorithm RobustDissemination uses the following constants: Network param. n,R, SINR param.
P,N, α, βmin, βmax, and tuning param. p, ε. Parameter µ is derived from these constants (cf. Lemma 1).

9 ε = 1
2 optimizes the run-time of Transmit(µ, p,Mv). The increased in-degree ∆ of H̃µ[S] associated

with this choice of ε is of comparatively little consequence regarding run-time.
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prove this in Lemma 5. The properties of H̃µ[S] are leveraged in the analysis of the DIS
(in whose computation we actually employ Transmit(µ, p,M), cf. Section 6) and in the
analysis of the neighborhood dissemination protocol (Section 7).

A convenient property of H̃µ[S] we immediately observe, is that its maximum in-degree
is bounded by ∆ := 1

(1−ε)µ , since a higher in-degree implies a node v that might receive∑
u∈N(v) τu,v ≥

∑
u∈N(v)(1−ε)µ > 1 messages in expectation, contradicting the fact that

nodes receive at most one message per round. Another property is shown by the subsequent
lemma, namely that there is a small enough constant µ, such that Hµ[S] contains all relatively
short edges as µ-safe edges. Since Eµsafe[S]⊆ Ẽµ[S], this lemma extends to H̃µ[S].

I Lemma 4 (cf. [4]). There exists µ ∈ (0, p), s.t. for any S ⊆ V and all u, v ∈ S, u 6= v with
d(u, v) ≤ min(2dSmin, re), dSmin = min

u 6=v∈S
d(u, v), it holds that {u, v} ∈ Eµsafe[S].

Proof. Since d(u, v) ≤ 2 · dSmin and d(u, v) ≤ re, this lemma is a corollary of Lemma 1. J

The following routine guarantees safe and fast message passing among µ-safe neighbors
in S w.h.p. Furthermore, it inhibits communication among nodes in S with low transmission
probability w.h.p. Edges along which communication takes place form a graph H̃µ[S].

Algorithm 2 Transmit(µ, p,Mv). . to be initiated simultaneously by each v ∈ S

for T ← c logn
ε2µ rounds do . c determined in Lemma 5 and ε ∈ (0, 1

2 ) fixed
Send pair (ID(v),Mv) of messageMv and own ID(v) with probability p

for T rounds do . list length constant, since nodes have at most 1
(1−ε)µ neighbors

With probability p, send list of IDs of which at least (1− ε
2 )µT messages were received

for all ID(u) in own ID-list do
if ID(u) is in own list and ID(v) is in the ID-list received from u then

Consider messageMu of u as received . receive messages where σu,v, σv,u≥µ
else discardMu . neglect messages where τu,v<(1−ε)µ

I Lemma 5. Algorithm Transmit(µ, p,Mv) takes O( logn
ε2µ ) rounds. If initiated simultane-

ously by each v ∈ S, then messages are received among µ-safe neighbors u, v (σu,v≥µ) w.h.p.
If τu,v<(1−ε)µ then w.h.p. no message of u is received by v. Furthermore, edges along which
messages are successfully received form an ε-close approximation H̃µ[S] of Hµ[S] w.h.p.

Proof. Let u, v ∈ S and let Xi := 1, if SINR(u, v, I) ≥ βmax in round i of the first loop, i.e., a
safe transmission from u to v takes place, and Xi := 0, else. Furthermore, let X :=

∑T
i=1Xi.

Assume (u, v) is µ-safe, i.e., σu,v, σv,u≥µ. Using a multiplicative Chernoff bound we show
that the event X ≤ (1− ε

2 )µT is very improbable.

P(X ≤ (1− ε

2)σu,vT ) ≤ exp(−ε
2σu,vT

8 ) = exp(− logn · c σu,v8µ ) ≤ n− c8 .

Analogously, the same result holds for messages sent from v to u. Let Au,v be the event
that v does not receive message Mu from u via algorithm Transmit(µ, p,Mv) that is
X ≤ (1− ε

2 )µT during the first loop or u does not receive v’s list during the second loop.
The second condition is even less likely than the first, hence P(Au,v) ≤ 2n− c8 ≤ n1− c8 .

This means that (for c>8) event Āu,v takes place w.h.p., i.e., v receives messageMu from
u. The same is true for event Āv,u. If both Āu,v and Āv,u occur, we have {u, v} ∈ Ẽµsafe[S]
in the graph H̃µ[S] induced by those edges along which messages are successfully received.
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3:10 Broadcasting in an Unreliable SINR Model

Now let Yi := 1, if SINR(u, v, I) ≥ βmin in round i of the first loop, i.e., an unsafe
transmission from u to v might take place, and Yi := 0, else. Let Y :=

∑T
i=1 Yi. Assume

τu,v < µ(1− ε) =: µ′ and let Bu,v be the event Y ≥ (1− ε
2 )µT . We obtain

P(Bu,v) = P(Y ≥ (1− ε

2)µT ) = P(Y ≥
1− ε

2
1− ε µ

′T ) ≤ P(Y ≥ (1 + ε

2)µ′T )

≤ exp(−ε
2µ′T

12 ) = exp(− logn · c µ
′

12µ ) = n−
c

12 (1−ε)
(ε≤ 1

2 )
≤ n−

c
24 .

Therefore, even if the adversary permits all transmissions with SINR(u, v, I) ≥ βmin during
the first loop, the total number will be lower than (1− ε

2 )µT w.h.p. Thus u is not in v’s list,
hence neither receives the others message thus (u, v), (v, u) /∈ Ẽµ[S] w.h.p. The probability
that at least one edge of the clique among active nodes C(S) := {(u, v) | u, v ∈ S, u 6= v} is
falsely in- or excluded in Ẽµ[S] is bounded by

P(
⋃

(u,v)∈C(S)

(Au,v ∪Bu,v)) ≤
∑

(u,v)∈C(S)

(P(Au,v) + P(Bu,v)) ≤
∑

(u,v)∈C(S)

(n1−c/8 + n−c/24) < n4−c/24.

This shows that for c > 96 w.h.p. all µ-safe edges are included in Ẽµ[S] and all edges which
are not even µ(1−ε)-unsafe are excluded w.h.p. J

Note that the definition of H̃µ[S] permits directed edges (u, v) ∈ Ẽµ[S] with (v, u) /∈ Ẽµ[S].
In practice, this happens if τu,v, τv,u ≥ µ(1−ε) and the adversary permits all transmissions
among u and v in the first loop of Algorithm 2 such that u and v are in each others lists.
Subsequently, the adversary allows only the transfer of v’s list to u but blocks all attempts
of u sending its list to v. Nevertheless, µ-safe edges are undirected w.h.p., since there will
occur sufficiently many safe transmissions between µ-safe neighbors, which the adversary
cannot block. In the following we use the notation {u, v} to highlight µ-safe edges.

6 Calculating Dominating Independent Sets

After each phase of message dissemination of nodes in S, we rely on the properties of H̃µ[S],
to thin out the set of nodes S so that message dissemination becomes feasible in areas of
high interference. In the basic algorithm [4] this is accomplished by determining a MIS of
H̃µ[S] and deactivating all nodes not in it. In unreliable scenarios we cannot guarantee
independence with respect to µ-unsafe edges since the adversary might mask their existence
during MIS-calculation. To loosen the requirements, we introduce a more general notion.

I Definition 6. Let G = (V,E,E′) be a graph with disjoint sets of undirected edges E and
directed edges E′. Subset V ′ ⊆ V is independent w.r.t. E if no two nodes in V ′ are connected
by an edge {u, v} ∈ E. Subset V ′ ⊆ V is dominating w.r.t. E ∪ E′ if for every node v ∈ V
either v ∈ V ′ or there exists a u ∈ V ′ such that (u, v) ∈ E ∪ E′. A Dominating Independent
Set (DIS) D ⊆ V of G is independent w.r.t. E and dominating w.r.t. E ∪ E′.

We exploit the fact that the in-degree of any valid graph H̃µ[S] is bounded by ∆∈O(1)
to calculate a DIS of (S,Eµsafe[S], E(1−ε)µ

unsafe [S]). First, we determine a (3∆ log ∆)2-coloring of
S with respect to the µ-safe edges Eµsafe[S] in O(logn log?n) rounds by adapting the method
of Linial [18], which uses ∆-cover-free families. Second, we calculate a DIS based on this
coloring by successively adding nodes of one color while sustaining the DIS condition.
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I Definition 7. A ∆-cover-free family F is a family of subsets of [m],10 such that for any
selection of distinct sets F0, . . . , F∆∈F it holds that F0 *

⋃∆
j=1Fj .

Erdős et al. show in [6] how such families can be constructed using polynomials over finite
fields. The proof of the following lemma provides the according construction procedure and
is given in Appendix A.

I Lemma 8. For prime power q, and integer d ∈ [q − 1] there is a b(q−1)/dc-cover-free
family F of size |F| = qd+1 of subsets of [q2].

From Lemma 8 we immediately obtain the following Lemma 9, which was suggested by
Linial in [18] as constructive alternative to his non-constructive proof of an even smaller
∆-cover-free family. For completeness, the lemma is derived in Appendix A.

I Lemma 9. For k ∈ N, there is a ∆-cover-free family F of subsets of [m] with |F| ≥ k and
m ≤ (3∆ log k)2.

Algorithm 3 ComputeDIS(µ, p). . to be initiated simultaneously by each v ∈ S
k0 ← ID(v) . assign colors, initially unique IDs
k ← n . k tracks upper bound of colors currently used
for O(log? n) times do . loop computes coloring w.r.t. µ-safe edges

Transmit(µ, p, k0) . send own color to neighbors in H̃µ[S]
Let k1, . . . , kt be the colors received from v’s neighbors in H̃µ[S]. . t ≤ ∆, ki ≤ k
Let F={F1, . . . , Fk} as in Lemma 9 . construction procedure in proof of Lemma 8
Choose new color k0 ∈ Fk0 \

⋃
ki 6=k0

Fki . new coloring is valid w.r.t. µ-safe edges
k ← (3∆ log k)2 . at most (3∆ log k)2 colors remaining (Lemma 9)

for l← 1 to k do . loop uses O(1)-coloring to compute DIS
if l = k0 then

Transmit(µ, p,’Do not join DIS and terminate! ’) . inform neighbors
Join DIS and terminate

else Transmit(µ, p, ∅) . All active nodes must initiate routine (Lemma 5)
if received message ’Do not join DIS and terminate! ’ then terminate

I Lemma 10. Algorithm ComputeDIS(µ, p) computes a DIS of (S,Eµsafe[S], E(1−ε)µ
unsafe[S]) in

O( logn
ε2µ log? n) rounds in a robust manner, when initiated simultaneously by all nodes in S.

Proof. We prove that during the first loop of ComputeDIS(µ, p) a valid coloring w.r.t.
µ-safe edges is maintained. Initially we have the trivial coloring by IDs. The rest can be
shown inductively. Presume that, at the beginning of a given loop cycle, we have a valid
coloring with respect to Eµsafe[S] of size at most k.

Due to the synchronous execution of Transmit(µ, p, kv) by each node v ∈ S (where
kv is the current color of v) every node receives at most t ≤ ∆ colors k1, . . . , kt ≤ k from
its neighbors w.h.p., since messages are only transmitted along edges of H̃µ[S] (Lemma 5)
whose in-degree is bounded by ∆. In particular, Transmit(µ, p, kv) guarantees that every
node receives the colors from all of its µ-safe neighbors w.h.p. (Lemma 5).

10For natural numbers n ≥ 1 we define [n] := {1, . . . , n}.
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3:12 Broadcasting in an Unreliable SINR Model

Note that v may also receive colors that conflict with its own, which stem from µ(1−ε)-
unsafe neighbors which are not µ-safe and whose messages were blocked by the adversary
during earlier loop cycles. However, since we only need to ensure a valid coloring with respect
to µ-safe edges, this does not concern us.

Now all nodes in S construct the same ∆-cover-free family F = {F1, . . . , Fk} of subsets
of [m] with m ≤ (3∆ log k)2, in accordance with Lemmas 8, 9.11 Each node v ∈ S picks a
new color k0 ∈ Fk0 \

⋃
ki 6=k0

Fki , which exists due to the ∆-cover-free property. Therefore,
neighbors that had different colors during previous rounds are (w.h.p.) still differently colored.
In particular, this implies that w.h.p. µ-safe neighbors remain differently colored.

In the second loop we use the coloring to determine a DIS of S. Let Dl be the subset
of nodes in S that have joined the DIS and let Tl be those that have terminated until (and
including) loop cycle l. W.h.p., ComputeDIS maintains the invariant that Dl is a DIS of
Tl, i.e., Dl ⊆ Tl is independent w.r.t. µ-safe edges and Dl dominates Tl w.r.t. µ-safe edges
and µ(1−ε)-unsafe edges.

For l = 0, this is obvious since T0 = D0 = ∅. Presume that Dl−1 is a DIS w.r.t. Tl−1
and let v ∈ Tl \ Tl−1. Since µ-safe neighbors are w.h.p. differently colored, v ∈ Dl \Dl−1
cannot have a µ-safe neighbor in Dl \Dl−1 (w.h.p.). Moreover, since Dl−1 informed its µ-safe
neighbors w.h.p. (Lemma 5), they already terminated during previous cycles. Therefore a
node v ∈ Dl \Dl−1 that joined the DIS during cycle l and terminated only then, cannot
have any µ-safe neighbors in Dl−1 (w.h.p.).

We already know that Dl−1 dominates Tl−1 w.r.t. µ-safe edges and µ(1− ε)-unsafe
edges (w.h.p.). Every node v ∈ Tl \ Tl−1 is either in Dl \ Dl−1 or was informed by a
neighbor u ∈ Dl \Dl−1 (possibly via a µ(1−ε)-unsafe edge), which means v is dominated by
u ∈ Dl \Dl−1. Therefore Dl \Dl−1 dominates Tl \ Tl−1, thus Dl dominates Tl (w.h.p.).

The first loop has the claimed runtime (cf. Lemma 5). The run-time of the second loop
depends on the size of the coloring. After at most O(log? n) cycles of the first loop there are
O((∆ log ∆)2) = O(1) colors left. Therefore the run-time of the second loop is dominated by
the run-time of the first, proving the claimed overall run-time. J

7 Neighborhood Dissemination Analysis

In this section we apply moderate changes to the technical parts given in [4] in order to reuse
them in our unreliable SINR model. Let φ be a phase of Algorithm 1: RobustDissemination,
let Sφ be the set of active nodes during phase φ and let dφ :=minu 6=v∈Sφ d(u, v), if |Sφ|≥2
and dφ := ∞, else. The following lemma proves that in a DIS Sφ+1 of Sφ12 the minimum
distance dφ+1 among nodes doubles, or is already larger than the effective communication
range re. The proof is provided in Appendix B.

I Lemma 11 (cf. [4]). Let φ be a phase of Algorithm 1. There exists a constant µ∈(0, p),
such that dφ≥2φ−1dmin or dφ>re, where dmin = min

u6=v∈V
d(u, v).

The next lemmas show that node v ∈N(S) receives the broadcast message M with a
guaranteed probability from its nearest active neighbor u ∈ Sφ, in case certain conditions are
met. These conditions include that u is in safe communication range and that there exists
a neighboring node w ∈ Sφ of u in Hµ[Sφ], which is not too close. With the existence of a

11According to our model, nodes have unlimited computing power during each round. Nevertheless
∆-cover-free families can be computed within polynomial time using the constructive proof of Lemma 8.

12We presume that µ, ε are fixed and abbreviate ’DIS of (S,Eµsafe[S], E(1−ε)µ
unsafe [S])’ with ’DIS of S’.
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relatively long edge (w, u)∈Eµ[Sφ] we can bound the interference at u using the knowledge
that w was able to transfer messages to u with a certain probability (τw,v ≥ (1−ε)µ).
Consequently, we are able to limit the interference at u’s (close) neighbor v. The proofs of
the following lemmas are given in Appendix B. We adhere closely to the proofs provided
in [4], although some adaptions and clarifications are required.

First, we limit the interference stemming from the set of nodes close to v and then
from the set of distant nodes. For this purpose, let V ′ ⊆ V be a subset of nodes and let
Xq
V ′ be the random number of nodes in V ′ that send, when each has individual sending

probability q. Moreover, let IqV ′(y) :=
∑
x∈V ′ sends P/d(x, y)α be the random interference at

y ∈ V stemming from sending nodes in V ′, given that nodes send with probability q. Then
Imax
V ′ (y) :=

∑
x∈V ′ P/d(x, y)α defines the maximum interference at y ∈ V from nodes in V ′.

I Lemma 12 (cf. [4]). Let φ be a phase of Algorithm 1. Let v ∈ N(S) and let u ∈ Sφ
be the node closest to v. Presume there exists w ∈ Sφ with an edge (w, u) ∈ Eµ[Sφ] and
let w be the farthest such neighbor of u. Let A= {x ∈ Sφ | d(u, x)≤ 2d(u,w)}\{u, v} and
Ā = Sφ\(A∪{u, v}). If active nodes send with probability p/Q, then there exists η∈Θ(βmin),
such that the following events occur simultaneously with probability at least (1−ε)µp

8Q ∈Θ(1/Q):
(i) Ip/QA (v) ≤ 2α+1P

Qβmind(u,v)α , (ii) I
p/Q

Ā
(v) ≤ 2α+1ηP

Qβmind(u,w)α , (iii) u sends and v listens.

Lemma 13 proves that there is a constant probability that v ∈ N(S) receivesM from u,
in case v is in communication range of u and the ratio d(u,w)/d(u, v) is above a threshold.

I Lemma 13 (cf. [4]). Let φ be a phase of Algorithm 1. Let v∈N(S) and u,w∈Sφ as in
Lemma 12. Then there exists Q̂∈O(βmax

βmin
2α), γ∈Θ((βmax

βmin
)1/α) such that for all Q ≥ Q̂, node

v receivesM safely with probability Θ(1/Q), if active nodes send with probability p/Q and
d(u, v) ≤ (1+ ρ

2 )re and d(u,w) ≥ γQ−αd(u, v).

Lemma 14 guarantees for each phase φ except the last that v∈N(S) receivesM w.h.p.
in this or previous phases, or v is still in safe communication range of an active neighbor.

I Lemma 14 (cf. [4]). Let φ ≤ logR+1 be a phase of Algorithm 1. Let v∈N(S) and let
uφ∈Sφ be the active node closest to v. Then there exists a Q∈Θ((logR)α), Q≥Q̂ such that
either v receivesM w.h.p. during phase φ or earlier, or d(uφ+1, v) ≤ re(1+ ρφ

2 logR ).

Finally, we show that if Sφ with |Sφ| ≥ 2 is ’sparse’ in the sense that dφ>re (which is a
typical case in at least one phase of Algorithm 1), then v∈N(S) receivesM from uφ ∈ Sφ.

I Lemma 15. Let φ be a phase of Algorithm 1. Let |Sφ| ≥ 2 and dφ > re. If for v ∈ V there
is a node u ∈ Sφ with d(u, v) < c1 · re with 0<c1<1+ρ, then v receivesM in phase φ w.h.p.

8 Proof of Theorem 2

Proof. Using the previous lemmas, we show that algorithm RobustDissemination is
correct and has the claimed run-time. For the correctness, we prove that any node v∈N(S)
receivesM w.h.p. during the last phase ψ := blogRc+2, at the latest.

Lemma 11 shows that for the minimum distance dφ=minu6=v∈Sφ d(u, v) among nodes in Sφ,
it holds that dφ≥2φ−1dmin or dφ>re. Hence, if φ> logR+1, then 2φ−1dmin>R ·dmin =dmax.
Therefore, in the last, ψ-th phase, we have dψ ≥ 2ψ−1dmin > dmax and consequently dψ > re
(recall that dmax is the maximum distance among any two nodes within range re of each
other). Thus, during the last phase ψ, either dψ=∞ in case |Sψ|=1, or the remaining nodes
in Sψ are sparse, in the sense that their minimum distance is greater than re.
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First we approach the case |Sψ|=1. For this purpose, let φ be the first phase for which
only one node remains in Sφ, i.e., either |S1| = 1 or |Sφ−1| ≥ 2. In case S1 = {u}, node
v ∈ N(S1) receivesM safely and w.h.p., during the inner loop where we disseminateM for
Θ(Q logn) rounds with probability p/Q. This is due to the fact that d(v, u)≤re (v∈N(S))
and there is no interference from any other node. Additionally, we choose the hidden constant
in Θ(Q logn) sufficiently large, such that u sends at least once during that loop w.h.p.

Otherwise (|Sφ−1| ≥ 2), we apply Lemma 14 on phase (φ−1), and see that either v has
receivedM already (in that case we are done) or d(uφ, v) ≤ re(1 + ρ(φ−1)

2 logR ) < re(1+ρ) = rs.
The latter condition implies that v is in safe communication range of the only active node uφ
in phase φ, hence v receivesM w.h.p. during round φ using the same argument as before.

Now consider |Sψ|≥2. Then Lemma 14 applies for phase (ψ−1) ≤ logR+ 1, therefore
either v already receivedM w.h.p. or d(uψ, v) ≤ re(1 + ρ(ψ−1)

2 logR ) ≤ c1 · re with c1 ≤ 1+ 3
4ρ.13

Since in the final phase ψ, Sψ is also sparse in the sense that dψ > re, the premise of Lemma
15 is fulfilled, thus v receivesM from its closest neighbor uψ in Sψ w.h.p.

During each phase we execute the sub-procedure ComputeDIS, which takesO(logn log?n)
rounds (Lemma 10). SendingM takes O(Q logn) ⊆ O(βmax

βmin
(logR)α logn) rounds each phase

(we determined Q in Lemma 14). We have blogRc+2 phases, therefore algorithm Robust-
Dissemination takes at most O(logn (log?n+ (logR)α+1 βmax

βmin
)) rounds. J

9 Adversary Reduction

Finally, we show that a seemingly stronger adversary, which controls all SINR-parameters
can be reduced to our abstract model, where it controls only βv. Assume that nodes know
only upper and lower bounds P ↑>P ↓>0, N↑>N↓>0, α↑>α↓≥1, and β↑>β↓≥1 on the true
SINR parameters Pv, Nv, α(u, v), βv. In each round and for all pairs of nodes u, v ∈ V , the
adversary determines the actual values Pv, Nv, α(u, v), and βv arbitrarily within the given
upper and lower bounds, thereby influencing the outcome of

SINR(u, v, I) := Pu/d(u, v)α(u,v)

Nv +
∑
w∈I Pw/d(w, v)α(w,v) ≥ βv.

The following theorem formalizes the fact that instead of picking values for all SINR
parameters Pv, Nv, α(u, v), βv within the given upper and lower bounds, the adversary can
equivalently modify only β′v within some enlarged interval [βmin, βmax] with βmin ≤ β↓ <

β↑ ≤ βmax, while the other SINR parameters remain static (and globally known).

I Theorem 16. For sufficiently large β↓ and a fixed set of uniform SINR parameters
P ∈ [P ↓, P ↑], N ∈ [N↓, N↑], α∈ [α↓, α↑], and β∈ [β↓, β↑], there are values βmax≥βmin≥1 such
that for any choice of Pv, Nv, α(u, v), βv within the bounds, there is a β′v ∈ [βmin, βmax] s.t.

Pu/d(u, v)α(u,v)

Nv +
∑
w∈I Pw/d(w, v)α(w,v) ≥ βv ⇐⇒ P/d(u, v)α

N +
∑
w∈I P/d(w, v)α ≥ β

′
v. (2)

Proof. For brevity, let SINRadv(u, v, I) be the formula with the adversary controlled parame-
ters Pv, Nv, α(u, v) (left-hand side of (2)) and analogously let SINRuni(u, v, I) be defined with
the uniform parameters P , N , α (right-hand side of (2)). For a given I ⊆ V \{u, v}, we inter-
pret Cu,v,I := SINRadv(u, v, I)−βv as connection strength from u to v. Recall that v receives
a message from u if and only if Cu,v,I ≥ 0. Similarly we define Cuni

u,v,I := SINRuni(u, v, I)−β.

13We assume logR ≥ 2. Otherwise the neighborhood dissemination can easily be solved with Lemma 1.
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Instead of going through the ramifications of the functional dependencies among the
SINR parameters occurring in Cu,v,I , we acknowledge that for the given bounds on the SINR
parameters and fixed I, the connection strength Cu,v,I , treated as function of the SINR
parameters, does not diverge. Hence there is a fixed range [C↓u,v,I , C

↑
u,v,I ], from which the

adversary chooses Cu,v,I . We define14 the largest negative deviation ∆− and the largest
positive deviation ∆+ of Cu,v,I from Cuni

u,v,I

∆− := min
u 6=v∈V, I⊆V

(
C↓u,v,I − C

uni
u,v,I

)
≤ 0, ∆+ := max

u6=v∈V, I⊆V

(
C↑u,v,I − C

uni
u,v,I

)
≥ 0.

Suppose the adversary influences the deviation of Cu,v,I from Cuni
u,v,I via a deviation variable

∆ ∈ [∆−,∆+], then

SINRadv(u, v, I) ≥ βv ⇐⇒ Cu,v,I ≥ 0 ⇐⇒ Cuni
u,v,I + ∆ ≥ 0

⇐⇒ SINRuni(u, v, I) ≥ β −∆ ⇐⇒ SINRuni(u, v, I) ≥ β′v,

for β′v ∈ [βmin, βmax] with βmin := β−∆+≤ β−∆− =: βmax. Retracing our definitions, we
see that βmin = β−∆+ ≥ 1 holds if and only if for all u, v ∈ V and all I ⊆ V \ {u, v} :

β − (C↑u,v,I − Cuni
u,v,I) ≥ 1 ⇐⇒ β↓ ≥ SINR↑(u, v, I)− SINRuni(u, v, I) + 1

where SINR↑(u, v, I) := C↑u,v,I + β↓ is the maximum value of SINRadv(u, v, I) with u, v, I
fixed. Hence the requirement βmin ≥ 1 is met iff

β↓ ≥ max
u,v∈V, I⊆V

(
SINR↑(u, v, I)− SINRuni(u, v, I) + 1

)
,

which completes the proof. J

Conveniently, our construction allows us to reduce the case where the default SINR
parameters in the network are non-uniform (e.g. nodes have different sending Power P or
background noise N) to the uniform case without changes to the model. This can be done by
transferring deviation in the connection strengths due to non-uniformity into the adversaries
control. Consequently, the range of deviation [∆−,∆+] from which the adversary may choose
the deviation ∆ of the true Cu,v,I from the presumed uniform connection strength Cuni

u,v,I

may become large depending on the extent of non-uniformity, thereby increasing the ratio
βmax/βmin = (β−∆−)/(β−∆+) (intuitively speaking: we ’bought’ uniformity with additional
adversary influence). We saw in the previous sections that βmax/βmin affects the run-time at
most linearly.15

Obviously, the construction in the proof of Theorem 16 was simplified by accounting
for the largest possible deviation of the true Cu,v,I from the uniform connection strength
Cuni
u,v,I for any pair (u, v) ∈ V 2, u 6= v and any interfering subset I ⊆ V . This may result in a

much bigger ratio βmax/βmin compared to the average deviation (again some intuition: we
exchanged simplicity for adversary influence).

Moreover, we point out that the qualitative construction in the proof (intentionally) omits
the intricate analysis of the dependence of βmax/βmin on the SINR parameters, the network’s
size, design and its layout. The ratio βmax/βmin obtained by the above construction does in
fact functionally depend on these parameters and might become large. However, we argue

14 In practice, ∆+ and ∆− could be determined via measurements.
15To minimize run-time, the choice of uniform SINR parameters P , N , α, β should minimize βmax

βmin
.
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that the size of βmax/βmin is moderate if the local SINR parameters Pv, Nv, α(u, v), βv are
relatively homogeneous and have a narrow range of variation due to the adversary.

In order to guarantee βmin ≥ 1, the default sensitivity parameter β of the network devices
needs to be designed large enough, so that β↓ does not decrease below the value given in the
proof. This shows that our construction has an inherent trade-off, where increased adversary
influence due to the aforementioned effects must be compensated with decreased sensitivity
to signal reception (and thus also decreased transmission range).
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A ∆-Cover-Free Families

Proof. (Lemma 8). Let Fq be the finite field with q elements. Let Pd = {a0+a1x+. . .+adxd |
ai ∈ Fq} be the set of polynomials with coefficients in Fq and degree at most d. For a
polynomial f ∈ Pd let Gf := {(x, f(x)) | x ∈ Fq} ⊆ F2

q be the graph of f over Fq. Consider
the family F := {Gf | f ∈ Fqd} ⊆ 2F2

q of graphs of polynomials from Pd over Fq.
Graphs of degree d or less intersect at most d times and since d < q, all graphs Gf of

polynomials f ∈ Pd are distinct, hence |F| = |Pd| = qd+1. For the same reason we have
G1 ∩G2 ≤ d for graphs G1, G2 ∈ F , hence b(q−1)/dc graphs are cover-free. J

Proof. (Lemma 9). We choose the smallest prime power q ≥ ∆ log k+ 1. Considering powers
of 2 we obviously have ∆ log k + 1 ≤ q ≤ 3∆ log k. Moreover, we choose d := log k. Then
we have b(q−1)/dc ≥ b(∆ log k)/ log kc = ∆, and due to Lemma 8, there is a ∆-cover-free
family F of size |F| = qd+1 ≥ (∆ log k + 1)log k ≥ k of subsets of [q2]. J

B Neighborhood Dissemination Analysis

Proof. (Lemma 12) The case |Sφ|≤1 is covered, since dφ=∞≥2φ−1dmin. In case |Sφ|≥2
we prove the lemma by induction on φ. Obviously, we have d1 ≥ dmin = 20dmin. Presume
that dφ ≥ 2φ−1dmin or dφ > re. If dφ > re is true, we have dφ+1 ≥ dφ > re and are done.
Otherwise, we have dφ≥2φ−1dmin. In Lemma 10 we showed that Sφ+1 is a DIS of Sφ, thus
independent w.r.t. Eµsafe[Sφ]. Therefore no two nodes from Sφ+1 are connected via a µ-safe
edge in Hµ[Sφ].

For a contradiction, assume dφ+1 < 2dφ and dφ+1 ≤ re. There are two nodes u, v ∈ Sφ+1
with d(u, v) = dφ+1. Let µ ∈ (0, p) be the constant from Lemma 4, such that Eµsafe[Sφ]
contains all edges not longer than than min(2dφ, re). Thus, u, v would be connected via a
µ-safe edge in Hµ[Sφ], a contradiction to the independence of the DIS Sφ+1. Consequently,
dφ+1 ≥ 2dφ ≥ 2φdmin (second inequality is due to the induction hypothesis) or dφ+1>re. J

Proof. (Lemma 11). If Xp
A >

2α
βmin

, then u cannot receive a message from w, because

SINR(w, u, I) ≤ P/d(u,w)α
IpA(u) ≤ P/d(u,w)α

Xp
AP/2αd(u,w)α < βmin.

However, since (w, u) ∈ Eµ[Sφ], we have SINR(w, u, I) ≥ βmin with probability at least
(1−ε)µ and therefore P(Xp

A ≤
2α
βmin

) ≥ (1−ε)µ. Now assume nodes send with probability
p/Q instead of p. We simulate this with a two step random experiment. First, we randomly

http://dx.doi.org/10.1109/INFOCOM.2014.6848224
http://dx.doi.org/10.1109/dcoss.2012.39
http://dx.doi.org/10.1016/j.tcs.2014.06.043
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determine a set C ⊆ A of candidate nodes, whereas the probability that x ∈ A becomes a
candidate is p. Second, the probability that a candidate x ∈ C actually sends is 1/Q. Using
the law of total probability and then Markov’s inequality we obtain

P
(
X
p/Q
A ≤ 2α+1

Qβmin

)
≥ P

(
|C| ≤ 2α

βmin

)
· P
(
X

1/Q
C ≤ 2α+1

Qβmin

∣∣∣∣ |C| ≤ 2α
βmin

)
≥ P

(
Xp
A ≤

2α
βmin

)
· P
(
X

1/Q
C ≤ 2E(X1/Q

C )
)
≥ (1−ε)µ

2 .

Therefore, with probability (1−ε)µ
2 the interference Ip/QA (v) is bounded by

I
p/Q
A (v) =

∑
x∈A sends

P

d(x, v)α ≤
X
p/Q
A P

d(u, v)α = 2α+1P

Qβmind(u, v)α .

Next, we limit the maximum interference Ip
Ā

(u) at u stemming from the set of distant nodes
Ā. Again, we utilize that (w, u) ∈ Eµ[Sφ].

(1−ε)µ ≤ P (SINR(w, u, I) ≥ βmin) = P
(
P/d(u,w)α
N + IpV (u) ≥ βmin

)
≤ P

(
P

Ip
Ā

(u)d(u,w)α ≥ βmin

)
= P

(
Ip
Ā

(u) ≤ P

βmind(u,w)α

)
.

(3)

Using the specific Chernoff bound from [4] given in Appendix C Lemma 18, we obtain

P

(
Ip
Ā

(u) ≤
E(Ip

Ā
(u))

2

)
≤ P

(
Ip
Ā

(u) ≤
pImax
Ā

(u)
2

)
≤ exp

(
−p2

αd(u,w)α
8P · Imax

Ā
(u)
)
. (4)

We show Imax
Ā

(u) ≤ η·P
pβmind(u,w)α with η := max

{
2, 8βmin

2α · ln 1
(1−ε)µ

}
∈ Θ(βmin). Assume

that Imax
Ā

(u) > η·P
pβmind(u,w)α . Then we obtain a contradiction to Equation 3 as follows

P
(
Ip
Ā

(u) ≤ P

βmind(u,w)α

)
η≥2
≤ P

(
Ip
Ā

(u) ≤ η · P
2βmind(u,w)α

)
≤ P

(
Ip
Ā

(u) ≤
pImax
Ā

(u)
2

)
(4)
≤ exp

(
−p2

αd(u,w)α
8P Imax

Ā
(u)
)
< exp

(
− 2αη

8βmin

)
≤ (1−ε)µ.

The upper bound of Imax
Ā

(u) can be used to bound Imax
Ā

(v). For any node x ∈ Sφ we have
d(u, x) ≤ d(u, v)+d(v, x) ≤ 2d(v, x), since u is closest to v among the nodes in Sφ. Therefore,
we obtain

IĀ(v) =
∑
x∈Ā

P

d(v, x)α ≤
∑
x∈Ā

2αP
d(u, x)α = 2αIĀ(u).

Markov’s inequality yields

P
(
I
p/Q

Ā
(v) ≤ 2E

(
I
p/Q

Ā
(v)
))
≤ P

(
I
p/Q

Ā
(v) ≤ 2p

Q
Imax
Ā

(v)
)
≥ 1

2 .

Thus, with probability at least 1
2 we have Ip/Q

Ā
(v)≤ 2p

Q I
max
Ā

(v)≤ 2α+1p
Q Imax

Ā
(u)≤ 2α+1ηP

Qβmind(u,w)α .

Finally, the probability that u sends and v listens is p
Q (1− p

Q ) ≤ p
2Q . Events (i), (ii) and (iii)

are independent, hence the probability that all of them to occur simultaneously is (1−ε)µp
8Q . J
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Proof. (Lemma 13). Assume that events (i), (ii) and (iii) from Lemma 12 occur. We use the
bounds on the interference to show that a safe transmission from u to v takes place. This is
the case if SINR(u, v, I) ≥ βmax, i.e., βmaxd(u, v)α(N + I

p/Q
A (v) + I

p/Q

Ā
(v)) ≤ P .

βmaxd(u, v)α
(
N + I

p/Q
A (v) + I

p/Q

Ā
(v)
)

≤ βmax

(
d(u, v)αN + 2α+1P

Qβmin
+ 2α+1ηPd(u, v)α

Qβmind(u,w)α

)
Lemma 12 (i), (ii)

≤ βmax

(
(1+ ρ

2)αrαeN + 2α+1P

Q̂βmin
+ 2α+1ηP

γαβmin

)
d(u, v) ≤ (1+ ρ

2 )re, d(u, v)α ≤ Qd(u,w)α
γα

≤ βmax

(
(1− αρ

2(1+ρ)α )(1+ρ)αrαeN + 2α+1P

Q̂βmin
+ 2α+1ηP

γαβmin

)
(1+ ρ

2 )α
Lemma 19
≤ (1+ρ)α− αρ

2

≤ P
(

1− αρ

2(1+ρ)α

)
+ βmax

(
2α+1P

Q̂βmin
+ 2α+1ηP

γαβmin

)
P = βmax(1+ρ)αrαeN

= P + P

(
βmax2α+1

βminQ̂
+ βmax2α+1η

βminγα
− αρ

2(1+ρ)α

)
≤ P Q̂∈O

(
βmax
βmin

2α
)
, γ∈O

(
(βmax
βmin

)1/α
)
.

In the last step, Q̂∈O(βmax
βmin

2α), γ∈O((βmax
βmin

)1/α) are chosen sufficiently large, such that the
term in the bracket becomes negative. Due to event (iii) u sends and v listens, thus v receives
M from u. Events (i), (ii) and (iii) occur with probability (1−ε)µp

8Q ∈ Θ(1/Q). J

Proof. (Lemma 14) Note that we assume logR ≥ 1 (otherwise the network is ’sparse’ and
broadcast is easy, see Lemma 1). We proof the claim inductively. Active node u1 ∈ S1 is
a neighbor of v ∈ N(S1) in the communication graph GC , thus d(u1, v) ≤ re by definition.
Presume that during phase φ either d(uφ, v) ≤ re(1 + ρ(φ−1)

2 logR ) or v has already receivedM.
We show that the same is true for phase φ+1. If v has already received M we are done.
Therefore, we concentrate on the case that d(uφ, v) is bound from above.

If there is no active node wφ∈Sφ for which an edge (wφ, uφ)∈Eµ[Sφ] exists, then uφ+1
is not dominated by a node in Sφ and therefore uφ+1 =uφ. With to the induction hypothesis,
we obtain d(uφ+1, v) ≤ re(1+ ρ(φ−1)

2 logR ) ≤ re(1+ ρφ
2 logR ). Otherwise, let wφ to be the farthest

node from uφ with an edge (wφ, uφ)∈Eµ[Sφ].
If d(uφ, wφ) ≥ γQ−1/αd(uφ, v), then Lemma 13 applies and we have a guaranteed

probability of Θ(1/Q) that v receivesM, in case active nodes send with probability p/Q. Since
we do exactly that for Θ(Q logn) rounds during phase φ of algorithm RobustDissemination,
node v receivesM w.h.p. (we adjust the constant in Θ(Q logn) accordingly).

Now consider the case d(uφ, wφ)<γQ−1/αd(uφ, v). Since uφ+1 6=uφ, node uφ is dominated
by some other node x∈Sφ+1, which is at distance at most d(uφ, wφ) from uφ. Thus, the nearest
neighbor uφ+1 ∈ Sφ+1 of v is at distance at most d(v, uφ+1) ≤ d(v, x) ≤ d(v, uφ) +d(uφ, x) ≤
d(v, uφ) + d(uφ, wφ). We obtain

d(v, uφ+1) ≤
(

1 + γ

Q1/α

)
d(v, uφ) ≤ re

(
1 + γ

Q1/α

)(
1 + ρ(φ− 1)

2 logR

)
(∗)
≤ re

(
1+ ρ(φ−1)

2 logR + γ(1+ρ/2)
Q1/α

)
≤ re

(
1+ ρφ

2 logR

)
(∗) : φ− 1 ≤ logR

The last step holds for a sufficiently large Q ∈ Θ(βmax
βmin

(logR)α), Q ≥ Q̂. J

Proof. (Lemma 15) Since Sφ is sparse the premise of Lemma 1 is fulfilled and v receivesM
from u with constant probability µ′ = p

Q (1− p
Q )k0 and k0∈Θ(1) (nodes send with probability

p/Q in each phase of Algorithm 1). Therefore, v receives M from u w.h.p. after sending
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with probability p/Q for O( logn
µ′ ) rounds.16 Define the constant probability µ := p(1− p)k0 .

We find

µ′ = p

Q
(1− p

Q
)k0 ≥ p

Q
(1− p)k0 = µ

Q
.

Hence (logn)/µ′ ≤ (Q logn)/µ. Therefore, v also receivesM w.h.p. if u sends with probability
p/Q for O(Q logn

µ ) rounds (i.e. longer). Since u sends for Θ(Q logn) rounds in the inner loop
of Algorithm 1 (with an appropriately chosen constant factor), we have proven the claim. J

C Inequalities

For the sake of completeness, the following lemmas give the specific bounds which we use in
the proofs of Lemma 1, Lemma 12 and Lemma 13. We refer to [4] for the proof of Lemma 18.

I Lemma 17. Let δ ≥ 1 and k ∈ N. Then kδ − (k−1)δ ≤ δkδ−1.

Proof. Let f(k) := kδ. Then f ′(k) := df(k)
dk = δkδ−1 is monotonous increasing since δ ≥ 1.

The mean value theorem states that there is a ξ ∈ (k−1, k), such that f(k) − f(k−1) =
f ′(ξ)(k − (k−1)) = f ′(ξ) ≤ f ′(k). J

I Lemma 18 (cf. [4]). Let X1, . . . , Xk be independent random variables with P(Xi=ai) = p

and P(Xi = 0) = 1−p for ai > 0 and p ∈ (0, 1). Let A :=
∑k
i=1 ai and â := maxi∈[k] ai.

Further let X :=
∑k
i=1Xi and λ := E(X) = pA. For any δ > 0 it holds that

P(X ≤ (1− δ)λ) ≤ exp(− δ2λ
2â ).

I Lemma 19. Let ρ ≥ 0 and α ≥ 2. Then (1+ρ)α ≤ (1+ ρ
2 )α + αρ

2 .

Proof. Let f(x) := xα − (x+1
2 )α − αx−1

2 . We proof the claim by showing f(1+ρ) ≥ 0.
First we note that f(1) = 0 fulfills the claim for ρ = 0. The claim is proved for ρ ≥ 0
if we can show f ′(x) := df(x)

dx ≥ 0 for x ≥ 1. We have x ≥ x+1
2 (since x ≥ 1). This is

equivalent to xα−1 ≥
(
x+1

2
)α−1 (since α ≥ 2). Hence xα−1− 1

2
(
x+1

2
)α−1 ≥ xα−1− 1

2x
α−1 ≥ 1

2
(since x ≥ 1, α ≥ 2). Finally, we obtain that f ′(x) = α

(
xα−1 − 1

2
(
x+1

2
)α−1︸ ︷︷ ︸

≥1/2

− 1
2
)
≥ 0. J

16The math is similar to what we did it in the proof of Lemma 5.
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Abstract
We present simple deterministic algorithms for subgraph finding and enumeration in the broadcast
CONGEST model of distributed computation:

For any constant k, detecting k-paths and trees on k nodes can be done in O(1) rounds.
For any constant k, detecting k-cycles and pseudotrees on k nodes can be done in O(n)
rounds.
On d-degenerate graphs, cliques and 4-cycles can be enumerated in O(d+ logn) rounds, and
5-cycles in O(d2 + logn) rounds.

In many cases, these bounds are tight up to logarithmic factors. Moreover, we show that the
algorithms for d-degenerate graphs can be improved to O(d/ logn) and O(d2/ logn), respect-
ively, in the supported CONGEST model, which can be seen as an intermediate model between
CONGEST and the congested clique.
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1 Introduction

Subgraph detection is a fundamental problem in algorithmics: given a fixed target graph H
and an input graph G, the task is to decide whether G contains a subgraph isomorphic to H.
This problem has been extensively studied in centralised algorithmics, and it is known that
depending on the graph H, this problem can have very different complexities – for example,
if H is a path, the problem can be solved in linear (in the number of nodes in G) time [1],
but for cliques this is thought not to be the case [12].

In this work, we study this problem in the CONGEST model of distributed computation.
So far, most work has either focused on (a) lower bounds for subgraph detection [13],
(b) randomised upper bounds [21, 17], or (c) property testing of H-freeness [20, 8, 17]. By
contrast, we focus on deterministic upper bounds, showing that simple techniques – indeed,
often techniques well-known in non-distributed algorithmics – result in essentially optimal
algorithms. Moreover, all our results work also in the weaker broadcast CONGEST model,
where nodes send the same message to all neighbours in each communication round.
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4:2 Deterministic Subgraph Detection in Broadcast CONGEST

Results: subgraph detection on general graphs. First, we give simple constant-time
detection algorithms for the case where H is either a path or a tree. These algorithms are es-
sentially translations of known centralised fixed-parameter algorithms, based on representative
families [23, 18, 24]. Specifically, we show that in the broadcast CONGEST model,

k-paths can be detected in O(k2k) rounds, and
any tree on k nodes can be detected in O(k2k) rounds1.

Using these algorithms as building blocks, we then give linear-time detection algorithms for
cycles and pseudotrees:

k-cycles can be detected in O(k2kn) rounds, and
any pseudotree (a graph with exactly one cycle) on k nodes can be detected in O(k2kn)
rounds.

All algorithms can be implemented so that any node that detects the existence of a copy of
H can also output full information about a single copy of H.

For odd k ≥ 5, Drucker et al. [13] have proven a lower bound of Ω(n/ logn) rounds
for detecting k-cycles, meaning that our cycle detection algorithm is optimal up to a
logarithmic factor for a constant odd k. For 4-cycles, Drucker et al. [13] gave a lower bound
of Ω(n1/2/ logn) rounds, and a weaker lower bound for longer even cycles (see Section 2); we
prove a simple extension of the Drucker et al. [13] lower bound by showing that for all even
k ≥ 6, detecting k-cycles requires Ω(n1/2/ logn) rounds in the CONGEST model.

Results: subgraph enumeration on sparse graphs. Second, we study subgraph detection
and enumeration on sparse input graphs. Specifically, we study a setting where the input
graph has small degeneracy; in distributed and parallel computing, this setting has been
studied in the context of e.g. symmetry breaking in the LOCAL model [2, 4] and enumerating
triangles and 4-cliques of planar graphs in the PRAM model [10]. Denoting by d the degeneracy
of the input graph, we show that in the broadcast CONGEST model,

k-cliques can be enumerated in O(d+ logn) rounds for any k,
3-cycles and 4-cycles can be enumerated in O(d+ logn) rounds, and
5-cycles can be enumerated in O(d2 + logn) rounds,

where enumeration means that every copy of the target subgraph H is output by some node
in the network.

This is as far as we can push this framework; we show that already detecting k-cycles
for k ≥ 6 requires Ω(n1/2/ logn) rounds on graphs of degeneracy 2. Moreover, a careful
examination of the Drucker et al. [13] lower bound constructions show that detecting 4-cycles
and 5-cycles requires Ω(d/ logn) rounds.

Finally, we discuss how the results on detecting subgraphs in sparse graphs can be
translated into the supported CONGEST model proposed by Schmid and Suomela [29]. In
this model, we can close many of the logarithmic gaps between the upper and lower bounds
that remain in the CONGEST model.

1 We note that the constant-round algorithms for path and tree detection were also independently
discovered by Fraigniaud et al. [19]; however, we give more detailed analysis in terms of the factors
dependent on k. In fact, very similar algorithms were independently discovered in four separate works
almost concurrently, including this one [22] and the papers of Fraigniaud et al. [19], Even et al. [16]
and Fischer et al. [17]. The last three appear as a joint paper in DISC 2017 [15]. While our work is
otherwise independent of the others, our pseudotree detection algorithm is motivated by the pseudotree
property testing results of Fraigniaud et al. [19].
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2 Related work

Subgraph detection upper bounds. For deterministic subgraph detection in the CONGEST
model, the only prior works we are aware of are the O(n1/2) round algorithm for 4-cycle
detection by Drucker et al. [13], and the independent discovery of the constant-round path
and tree detection algorithms [19, 15]. In the congested clique model, deterministic subgraph
detection algorithms were given by Dolev et al. [11] and Censor-Hillel et al. [9]; the latter
is in particular noteworthy from our perspective, as it used colour-coding techniques from
centralised fixed-parameter algorithmics to obtain fast cycle detection algorithms for cycles
of arbitrary length.

Randomised subgraph detection and listing in the CONGEST model has been recently
receiving attention from multiple authors. Izumi and Le Gall [21] gave an Õ(n2/3) round
algorithm for detecting triangles, and a O(n3/4 logn) round algorithm for enumerating
triangles. Independent of our work, Fischer et al. [17] gave a colour-coding algorithm that
can detect any constant-size tree on k nodes with constant probability in O(kk) rounds.

Subgraph detection lower bounds. As noted before, Drucker et al. [13] have studied lower
bounds for cycle detection in the CONGEST model. Specifically, their lower bound for k-cycle
detection is Ω(ex(n,Ck)/n logn) rounds, where ex(n,Ck) is the Turán number for cycles,
that is, the maximum number of edges in a k-cycle-free graph with n nodes. This lower
bound is Ω(n/ logn) for odd cycles, and Ω(n1/2/ logn) for 4-cycles. However, for longer
even cycles, this can give at most Ω(n1+2/k/ logn) due to known bounds for Turán numbers,
and matching bounds on Turán numbers are only known for k = 6 and k = 8; see e.g.
Pikhurko [28] and references therein.

To our knowledge, no other subgraph detection lower bounds are known in the CONGEST
model. In particular, proving lower bounds for triangle detection seems to be a particularly
difficult challenge. However, for the broadcast congested clique model, Drucker et al. [13]
give an Ω(n/e

√
logn logn) round lower bound, which also applies to the broadcast CONGEST

model. Moreover, for triangle enumeration lower bounds are known, also in the stronger
congested clique model [21, 26].

Property testing for H-freeness. Property testing of H-freeness in the CONGEST model
is another question that has received a lot of attention lately. In this setting, an algorithm
has to correctly decide with probability at least 2/3 if the input graph is (a) H-free – that
is, does not contain a subgraph isomorphic to H – or (b) ε-away from being H-free; in the
intermediate case, the algorithm can perform arbitrarily. See e.g. Censor-Hillel et al. [8] for
complete definitions.

Property testing algorithms for triangle-freeness were given by Censor-Hillel et al. [8];
for H-freeness for graphs on 4 nodes by Fraigniaud et al. [19] and Even et al. [16]; and for
H-freeness for most graphs on 5 nodes by Fischer et al. [17] Moreover, property testing
algorithms for tree and cycle freeness – using techniques of fixed-parameter algorithmics
flavour – have been discovered recently [16, 17, 19, 15].

3 Preliminaries

Set notation. Let N = {0, 1, . . .} be the set of non-negative integers. For integer n ≥ 1, we
use the notation [n] = {1, 2, . . . , n}. For any set A, we use 2A = {B : B ⊆ A} to denote the
power set of A.

OPODIS 2017



4:4 Deterministic Subgraph Detection in Broadcast CONGEST

Graphs. A graph is a pair G = (V,E), where V is the set of nodes and E ⊆ 2V is the set
of edges. We use n = |V | to denote the number of nodes in the graph. An orientation σ of
graph G is a labelling of the edges that assigns a direction σ({u, v}) ∈ {u → v, u ← v} to
every edge {u, v} ∈ E.

The open neighbourhood of a node v ∈ V is the set N(v) = {u ∈ V : {u, v} ∈ E}
and the closed neighbourhood is the set N+(v) = N(v) ∪ {v}. The degree of a node
v ∈ V is deg(v) = |N(v)|. The neighbours of v ∈ V with incoming and outgoing edges
under an orientation σ are denoted by Nin(v) = {u ∈ N(v) : σ({u, v}) = u → v} and
Nout(v) = N(v)\Nin(v). The indegree of v ∈ V under an orientation σ is indeg(v) = |Nin(v)|
and the outdegree is given by outdeg(v) = |Nout(v)|.

For a graph G, a subgraph G′ ⊆ G of G is a graph G′ = (V ′, E′), where V ′ ⊆ V

and E′ ⊆ E ∩ 2V ′ . The subgraph induced by the node set A ⊆ V is G[A] = (A,E′),
where E′ = {e ∈ E : e ⊆ A}. Similarly, the subgraph induced by an edge set F ⊆ E is
G[F ] = (V ′, F ), where V ′ = {u ∈ e : e ∈ F}. A graph G is d-degenerate if every subgraph
G′ ⊆ G contains a node with degree at most d. Every graph is trivially (n−1)-degenerate. We
note that degeneracy is within a constant factor of an another widely-used graph parameter
arboricity, that is, any graph with arboricity a has degeneracy a ≤ d ≤ 2a − 1; see e.g.
Barenboim and Elkin [3].

CONGEST and broadcast CONGEST. The CONGEST model is a variant of classical
LOCAL model of distributed computation with additional constraints on communication
bandwidth [27]. The distributed system is represented as a network G = (V,E), where each
node v ∈ V executes the same algorithm in synchronous rounds, and the nodes collaborate
to solve a graph problem with input G. Each round, all nodes
1. perform an unlimited amount of local computation,
2. send a possibly different O(logn)-bit message to each of their neighbours, and
3. receive the messages sent to them.
The time measure is the number of synchronous rounds required. Each node is assumed to
have a unique identifiers from the set {0, . . . ,poly(n)}.

The broadcast CONGEST is a weaker version of CONGEST, with the additional constraint
that all nodes have to send the same message to each of their neighbours.

4 Finding paths, cycles and trees

Representative families. The general cycle and path detection algorithms are based on
representative families [24, 14]. For a basic intuition, consider a setting where we have a
collection of objects (in this case, sets) of size p, and we want to extend them by adding
at most q more elements. Representative families allow us to ‘compress’ our collection of
objects so that if a member of the original collection could be extended by specific q elements,
then the compressed collection also contains a member that can be extended by the same
elements. Indeed, while we only use the set family version of this theory, it can be extended
to matroids [18].

I Definition 1. Let A ⊆ 2[n]. We say that Â ⊆ A is q-representative for A if for each
B ⊆ [n] with |B| ≤ q, there is a set A ∈ A with A ∩B = ∅ if and only if there is Â ∈ Â with
Â ∩B = ∅.

I Theorem 2 ([14]). Let A ⊆ 2[n] consist of sets of size at most p. Then there is a
q-representative Â ⊆ A with |Â| ≤

(
p+q
p

)
.
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For our purposes it is sufficient to know that small representative families exist; however,
slightly worse bounds with corresponding efficient algorithms are known [23, 18, 14].

Finally, we will use the following simple fact about representative families:

I Lemma 3. Let C ⊆ B ⊆ A ⊆ 2[n]. If B is q-representative for A and C is q-representative
for B, then C is q-representative for A.

Together Theorem 2 and Lemma 3 imply that any inclusion-minimal q-representative
family for a family of sets of size at most p has size at most

(
p+q
p

)
.

Finding paths. We start by giving a simple path detection algorithm for the CONGEST
model, using a well-known technique from fixed-parameter algorithmics [24]. Intuitively,
the idea is to start with the trivial path detection algorithm that iteratively propagates full
information about paths of length at most ` = 1, 2, . . . , k in k phases. This will be quite slow
if there are lots of such paths; however, at each step, we construct a representative family for
the current set of paths to ensure that we only forward the essential ones.

Let k be fixed, and define for v ∈ V and ` ∈ {1, 2, . . . , k} the set family

Pv,` =
{
U ⊆ V : there is an `-path with node set U that ends at v

}
.

By definition, we have that

Pv,` =
⋃

u∈N(v)

{
{v} ∪ U : U ∈ Pu,`−1 and v /∈ U

}
.

The basic idea of the algorithm is that instead of explicitly constructing the families
Pv,1,Pv,2 . . . ,Pv,k, we iteratively construct families P̂v,1, P̂v,2 . . . , P̂v,k, where P̂v,` is a min-
imal (k − `)-representative family for Pv,`.

Specifically, the algorithm proceeds as follows:
1. For ` = 1, we have that Pv,1 = {{u, v} : u ∈ N(v)}. Each node v can obtain full

information about N(v) in single round, and then compute P̂v,1 locally.
2. For ` ≥ 2, after the families P̂v,`−1 have been constructed, each node v ∈ V broadcasts the

family P̂v,`−1 to all of its neighbours. Since P̂v,`−1 is a minimal (k− `+ 1)-representative
family for Pv,`−1, and Pv,`−1 consists of sets of size `, we have that |P̂v,`−1| ≤

(
k+1
`−1
)
≤ 2k+1.

In particular, P̂v,`−1 can be encoded using O
(
k
(
k+1
`−1
)

logn
)
bits, and broadcasting it to

all neighbours can be done in O
(
k
(
k+1
`−1
))

rounds.
3. Each node v ∈ V , after having received P̂u,`−1 for each u ∈ N(v), locally constructs the

set

P′v,` =
⋃

u∈N(v)

{
{v} ∪ U : U ∈ P̂u,`−1 and v /∈ U

}
.

We observe that P′v,` is (k− `)-representative for Pv,`. If W ⊆ V is a set of size k− ` that
does not intersect some U ∈ Pv,`, then there is some u ∈ N(v) and U ′ ∈ Pu,`−1 such that
W ∪ {v} does not intersect U ′. Since P̂u,`−1 is (k− `+ 1)-representative for Pu,`−1, there
is R ∈ P̂u,`−1 such that R does not intersect W ∪ {v}, and thus R ∪ {v} ∈ P′v,` does not
intersect W . Thus, computing a minimal (k − `)-representative family P̂v,` for P′v,` gives
a (k − `)-representative family for Pv,` by Lemma 3.

Clearly, there is a k-path terminating at v if and only if P̂v,k is non-empty. There are k
phases corresponding to ` = 1, 2, . . . , k in the algorithm, and each of these phases runs in
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O
(
k
(
k+1
`−1
))

rounds, where the hidden constant does not depend on `. Since it holds that is

k∑
`=1

k
(
k+1
`−1
)

= k

k∑
`=1

(
k+1
`−1
)
≤ k2k ,

the total running time is O(k2k).
Finally, let us observe that it is easy to modify this algorithm to find a k-path, in the

sense that each node v ∈ V that is an endpoint of a k-path has full knowledge of a single
k-path: we annotate each set U ∈ P̂v,` with a ‘witness’ `-path with node set U terminating
at v. This can be done without increasing the asymptotic communication cost.

I Theorem 4. Finding k-paths can be done in O(k2k) rounds in the broadcast CONGEST
model.

Finding cycles. We first note that it is easy to adapt the k-path algorithm to detect k-cycles
that contain a fixed node w ∈ V . We modify the definition of Pv,` to require that the paths
have w as a starting point; otherwise the algorithm proceeds as before. If any neighbour of
w detects a (k − 1)-path starting from w, then there is a k-cycle containing w; likewise, if
there is a k-cycle containing w, then some neighbour of w will detect a (k − 1)-path starting
from w. Running this cycle detection algorithm for all choices of the starting node in parallel
gives allows us to detect k-cycles in time O(k2kn):

I Theorem 5. In the broadcast CONGEST model,
1. finding k-cycles containing a fixed node w ∈ V can be done in O(k2k) rounds, and
2. finding k-cycles can be done in O(k2kn) rounds.

Finding trees. We now show how to extend the path detection algorithm to any target
graph H that is acyclic. Let H be a tree on k nodes. Fix an arbitrary node of H as a root,
and identify the nodes of H with 1, 2, . . . , k so that if i is a descendant of j then j > i. In
particular, node k is the root. Denote by H[i] the subtree of H rooted at node i, and denote
by si the number of nodes in H[i].

For v ∈ V and i ∈ {1, 2, . . . , k}, we define the set family

Tv,i =
{
U ⊆ V : there is a copy of H[i] with node set U and root v

}
.

Again, if we know Tu,j for all u ∈ N(v) and and j < i, we can compute Tv,i. Let c1, c2, . . . , c`
be the children of i in H. Then Tv,i contains exactly the sets of form

{v} ∪ U1 ∪ U2 ∪ · · · ∪ U` ,

where Ux ∈ Tu,cx for some u ∈ N(v) and Ux ∩ Uy = ∅ for all x 6= y.
Similarly to the path algorithm, for i = 1, 2, . . . , k, we iteratively construct (k − si)-

representative family T̂v,i for Tv,i:
1. If i is a leaf in H, then T̂v,i = Tv,i = {{v}}.
2. If i is an internal node in H with children c1, c2, . . . , c`, then we construct T′v,i by taking

all sets of form

{v} ∪ U1 ∪ U2 ∪ · · · ∪ U` ,

where Ux ∈ T̂u,cx for u ∈ N(v) and Ux ∩ Uy = ∅ for all x 6= y, and compute a minimal
(k − si)-representative family T̂v,i for T′v,i.
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We observe that after step i, each node v knows if there is a copy of H[i] that is rooted
at v, which implies the correctness of the algorithm. Time complexity follows by the same
arguments as in the path detection algorithm. To summarise:

I Theorem 6. For any tree H on k nodes, H-subgraph detection can be done in O(k2k)
rounds in the broadcast CONGEST model.

Finding pseudotrees. Recall that a pseudotree is a connected graph that has at most one
cycle, that is, a graph that consist of a tree and at most one additional edge. Let H be
a pseudotree on k vertices, and let us assume that it has a cycle. Let e = {u1, u2} be an
arbitrary edge on the cycle.

We slightly modify our tree detection algorithm to find a copy of H as follows. Consider
the tree H ′ obtained from H by deleting the edge e. We identify the nodes of H ′ with
1, 2, . . . , k as before, using u2 as the root node k; let us assume that u1 is identified with j.

The basic idea is to modify the tree detection algorithm to keep track which nodes of the
input graph can play the role of j in a copy of H ′. Specifically, when constructing the sets
T̂v,i, we keep track of which node plays the role of j in the copies of H ′[i] we have found so
far. This requires the following changes to the tree detection algorithm:

For i that is not on the unique path from j to k, no changes are required.
For the step corresponding to j, each node v ∈ V performs the step as before, but marks
itself as the node playing the role of j when broadcasting the constructed representative
family T̂v,j .
For i that is on the path from j to k, each node v ∈ V keeps track of T̂v,i separately for
each possible choice of j it sees.

After the algorithm is finished, all nodes check if they see a copy of H ′ where the node j is
one of their neighbours, which happens if and only if a copy of H exists in the graph. At
each step, each node has to broadcast at most n copies of the representative family, giving
us the following:

I Theorem 7. For any pseudotree H on k nodes, H-subgraph detection can be done in
O(k2kn) rounds in the broadcast CONGEST model.

5 Enumerating cliques and short cycles in degenerate graphs

Acyclic orientations with bounded outdegree. Our algorithms for enumerating cliques
and cycles in sparse graphs exploit the fact that degenerate graphs have acyclic orientations
with bounded outdegree. Once we have such an orientation, the nodes can co-ordinate how
to distribute the information about the edges present in the input graph, which avoids having
too much congestion over a single communication link.

For any α ∈ N, we say that σ is an α-bounded orientation [10] of G = (V,E) if
1. every node v ∈ V has outdegσ(v) ≤ α, and
2. the orientation σ is acyclic.
For brevity, we call such orientations simply α-orientations. The class of degenerate graphs
can be characterised by the existence of such orientations.

I Lemma 8. A graph G is d-degenerate if and only if there exists a d-orientation of G.

Barenboim and Elkin [2] gave efficient distributed algorithms for computing such ori-
entations under the name Nash–Williams forests-decompositions [25]. For the sake of
completeness, we formulate more or less the same algorithm here. Barenboim and Elkin [2]

OPODIS 2017



4:8 Deterministic Subgraph Detection in Broadcast CONGEST

also show how to compute such orientations even without knowing either the degeneracy, or
alternatively, the number of nodes in the network in O(logn) rounds using messages of size
O(logn).

I Lemma 9. If G is d-degenerate, then it has at most nd edges.

Proof. Consider the d-orientation given by Lemma 8. Counting the outgoing edges yields

|E| =
∑
v∈V

outdeg(v) ≤ nd. J

Let G be a d-degenerate graph and C > 2 be a constant. For all i ≥ 0, define iteratively
the node sets V0, V1, V2, . . . as follows:

V0 = V ,

Vi+1 = {v ∈ Vi : deg(v) > Cd} .

We note that each node can compute iv = max{i ∈ N : v ∈ Vi} in iv rounds.

I Lemma 10. We have that |Vi+1| ≤ 2/C · |Vi|.

Proof. Suppose the opposite holds, that is, there are h > 2/C · |Vi| nodes v ∈ Vi with
deg(v) > Cd. As G[Vi] ⊆ G is d-degenerate, counting the number of edges incident to these
h nodes yields that there are at least

Cdh

2 >
2 · |Vi|Cd

2C = |Vi| · d

edges, which contradicts Lemma 9. J

By the above lemma, we get that every iteration we lose a constant fraction 1/c of nodes,
where c = C/2. Thus, |Vi| ≤ n/ci and after r = logn/ log c+ 1 = logc n iterations we have

|Vr| =
n

clogc n+1 ≤ 1.

We can now compute an acyclic orientation of G using the above scheme. Each node
v ∈ Vi \ Vi+1 removed in iteration i orients any edge {v, u} with u ∈ Vi+1 towards u. Clearly
there will be at most Cd edges pointing away from v.

I Lemma 11 ([2]). Let G be a d-degenerate graph. For any constant ε > 0, we can compute
a (2d+ ε)-orientation of G in O(logn) rounds in the broadcast CONGEST model.

Enumerating cliques. We start with a k-clique enumeration algorithm that works in d-
degenerate graphs for any k ≤ d. Note that the scenario k > d is fatuous, as a d-degenerate
graph cannot contain a clique with more than d nodes. Let G = (V,E) be the input graph.
The algorithm is as follows:
1. Compute the α-orientation of G for α ∈ Θ(d).
2. Each v ∈ V broadcasts the endpoints Nout(v) of outgoing edges to all its neighbours.
3. Each v ∈ V locally constructs the induced subgraph G[F ], where

F = {{u,w} : u ∈ N+(v), w ∈ Nout(u)}.

4. Each v ∈ V outputs all k-cliques in G[F ].
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v

Figure 1 Example of the information gathered by the clique detection algorithm. Once an α-
orientation of the graph has been computed, the algorithm ensures that node v obtains all outgoing
edges of its neighbours (black edges). Neighbours of v are are dark gray and the edges not observed
by v are gray. Here, node v detects the triangle its part of.

Figure 1 illustrates the information gathered by the above algorithm.
In order to analyse the algorithm, first observe that the algorithm clearly only outputs

k-cliques that are present in G. We now argue that if G contains a k-clique, then some node
will list it in the output. Let K ⊆ V be a k-clique in G. Note that G[K] must contain a
sink node v ∈ K with respect to the α-orientation σ: if such a sink node does not exist,
then every node in G[K] would have positive outdegree implying that σ is not acyclic, which
is absurd. Hence, the sink node v ∈ K will receive the set Nout(u) from every u ∈ K. In
particular, we have

K ⊆
⋃

u∈N(v)

Nout(u).

Therefore, the sink node v detects the clique K in the subgraph H it constructs in the third
step, and thus, will list it in its output.

It remains to analyse the time complexity of the algorithm. By Lemma 11, the first step
takes O(logn) rounds. The second step takes O(α) rounds, as broadcasting a single identifier
requires O(logn) bits to be transmitted along each edge. Since there are at most α such
identifiers to be broadcast (as there are at most α outgoing edges) and α ∈ O(d), we get that
this step takes O(d) time. The remaining steps require no communication, and hence, all
nodes declare their output within O(logn+ d) rounds.

I Theorem 12. Let k ≤ d. In any d-degenerate graph G, enumerating k-cliques takes
O(d+ logn) rounds in the broadcast CONGEST model.

As triangles are 3-cliques, we immediately get the following corollary.

I Corollary 13. In any d-degenerate graph G, enumerating triangles takes O(d + logn)
rounds in the broadcast CONGEST model.

Enumerating 4-cycles. In the case of 4-cycles, it turns out that we can use the same
algorithm as for enumerating cliques, except we check for the existence of a 4-cycle in the
locally constructed subgraph G[F ] instead of a k-clique. Let C = {u, v, w, z} be a 4-cycle
in G. As before, we first obtain α-orientation σ of the d-degenerate input graph G using
Lemma 11. Since the orientation is acyclic, the cycle graph G[C] must have at least one
source and a sink in the orientation. In particular, there are three possible cases (up to
isomorphisms):
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v

u w

z

v

u w

z

v

u w

z

(1) (2) (3)

To show that some node detects the cycle C, we consider each of these three cases. In each
case, observe that u sends v the set Nout(u) and w sends the set Nout(w) to v. Thus, node v
learns about the edges {u, z} and {w, z} as z ∈ Nout(u) ∩Nout(w). Since v trivially knows
about the edges {u, v} and {v, w}, we get that in each case node v learns about all edges in
C and lists C in its output. Note that if we want that each 4-cycle is listed by exactly one
node, the nodes can detect if multiple nodes would be listing the same cycle C and output C
only if they are the node with smallest identifier having knowledge about it.

As the algorithm communicates the same information as the clique detection algorithm
given before, we get that the time complexity of detecting 4-cycles is the same.

I Theorem 14. In any d-degenerate graph G, enumerating 4-cycles takes O(d+logn) rounds
in the broadcast CONGEST model.

Enumerating 5-cycles. In order to enumerate 5-cycles, we use the same underlying idea,
but now nodes also communicate directed outgoing paths of length 2 instead of just single
outgoing edges. With this modification in mind, the algorithm is as follows:
1. Compute the α-orientation of G for α ∈ Θ(d).
2. Each v ∈ G broadcasts its endpoints Nout(v) of outgoing edges to all its neighbours.
3. Each v ∈ G broadcasts the set of outgoing length-2 paths

L(v) = {{u,w} : u ∈ Nout(v), w ∈ Nout(u)}

to all its neighbours.
4. Each v ∈ G locally constructs the subgraph G[F ], where

F =
{
{u,w} : u ∈ N+(v), w ∈ Nout(u)

}
∪

⋃
u∈Nout(v)

L(u).

5. Each v ∈ V outputs all 5-cycles in G[F ].

Let C = {u, v, w, x, y} be a 5-cycle in G. To see that the algorithm outputs the cycle C,
it suffices to show that some node v ∈ C learns about all the edges in C. As the α-orientation
is acyclic, the cycle C can be oriented in the following three ways (up to isomorphisms):

v

u w

x

(1)

y

v

u w

x

(2)

y

v

u w

x

(3)

y

To see that this is the case, one can readily observe that the length of the longest directed
path in an acyclically oriented 5-cycle has to be either 2, 3 or 4, and the length of this path
determines the orientation of all other edges.
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v

Figure 2 Example of information the nodes gather when executing the 5-cycle detection algorithm.
Once an α-orientation of the graph has been computed, the algorithm ensures that node v obtains
all outgoing length-1 and length-2 paths (black directed edges) of its neighbours. Neighbours of v
are are dark gray, nodes at distance two are light gray and nodes at distance three are white.

We argue that node v detects the cycle C in all cases. Observe that node x broadcasts
Nout(x) to u in the second step and node u broadcasts Nout(u) and L(u) to v in the second
and third steps, respectively. Since y ∈ Nout(x), we have {x, y} ∈ L(u) and x ∈ Nout(u).
Therefore, v learns about the path (u, x, y). Since w broadcasts Nout(w) to v, node v also
learns about the edge {w, y}. Since node v can trivially detect the edges {u, v} and {v, w},
it follows that node v detects the cycle C in the final step.

The time complexity of the first step is again O(logn). The second step consists of
broadcasting the set of up to α identifiers, which takes O(α) rounds as before. In the third
step, each node v ∈ G broadcasts L(v) which may contain up to O(α2) edges. Thus, the
third step takes O(α2) rounds. No communication occurs in the final steps of the algorithm,
which yields that the total time complexity of the algorithm is O(logn + α2). As we can
choose α ∈ Θ(d), we obtain the following result.

I Theorem 15. In any d-degenerate graph G, enumerating 5-cycles takes O(d2 + logn)
rounds in the broadcast CONGEST model.

6 Lower bounds

Lower bounds for long cycles. We first prove our lower bounds for the detection of long
cycles:

I Theorem 16. In the CONGEST model,
1. finding k-cycles for even k requires Ω(n1/2/ logn) rounds, and
2. there is no algorithm for finding k-cycles for k ≥ 6 that runs in O(f(d)nδ) rounds on

d-degenerate graphs for any function f and δ < 1/2.

Proof. We use a slight modification of the cycle detection lower bound construction of
Drucker et al. [13]; that is, we prove the lower bound by a reduction to known set disjointness
lower bounds in two-player communication complexity.

Specifically, given sets A and B over M -element universe, we construct a n-node graph
GA,B = (VA ∪ VB , E) such that (1) G[VA] depends only on A, (2) G[VB ] depends only on B,
(3) there are at most C edges crossing the cut (VA, VB), and (4) GA,B contains a cycle of
length k if and only if A and B are non-disjoint. This allows us to use any k-cycle detection
to solve 2-party set disjointness; Alice simulates all nodes in VA, Bob simulates nodes in VB ,
and messages over edges crossing the cut (VA, VB) are sent between players. By known lower
bounds, Ω(M) bits have to be sent over the cut, giving lower bound of Ω(M/C logn) rounds
in the CONGEST model.
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KA

KB 4 75 92

2 3 4 5

1 3

6 7 8 9 10

6 8 10

1

Figure 3 Example of the lower bound construction for k = 8, N = 5 and M = 25. A 8-cycle is
highlighted in black; note that a 8-cycle can occur only when the corresponding paths are present
both in KA and KB .

We show that for any k ≥ 6 and all N ∈ N, there is a construction satisfying the above
with parameters M ∈ Θ(N2), n ∈ Θ(N2) and C = 2N , with the additional property that
any graph obtained from this construction is 2-degenerate. This implies both of the claims.

Let k ≥ 6 and N ∈ N be fixed, and let A,B ⊆ 2[N2] be a set disjointness instance.
Let `1 = bk/2c and `2 = dk/2e. We take two disjoint copies KA and KB of a complete
bipartite graph KN,N on 2N nodes; assume that the nodes of the both copies are labelled in
a consistent manner with integers 1, 2, . . . , 2N , and that the edges are likewise consistently
labelled with the elements of 2[N2]. We now finish the construction as follows:
1. We connect nodes labelled with the same integer in KA and KB with an edge.
2. We remove each edge in KA if the corresponding element in 2[N2] is not in A, and we

remove each edge in KB if the corresponding element in 2[N2] is not in B.
3. We replace all remaining edges in KA with (`1 − 1)-paths, and all remaining edges in KB

with (`2 − 1)-paths.
It is now easy to verify that there are no k-cycles remaining inside either KA or KB, and
there is a k-cycle if and only if A ∩ B 6= ∅. The final graph has at most (k − 4)N2 + 4N
nodes and at most (k− 2)N2 + 2N edges; the cut between KA and KB has size 2N . Finally,
it is easy to see that the graph has degeneracy 2. For each path added in step (3), we pick
an internal node and orient all edges away from it, and orient the cut edges between KA and
KB arbitrarily; the resulting orientation has maximum outdegree two. J

Lower bounds for short cycles. We observe that the lower bounds given by Drucker et
al. [13] imply that finding 4-cycles and 5-cycles in d-degenerate graphs requires Ω(d/ logn)
rounds: a careful examination shows that their lower bound graph for 4-cycles has degeneracy
Θ(n1/2) and the lower bound graph for 5-cycles has degeneracy Θ(n). Thus, we have the
following:

I Theorem 17. Finding 4-cycles and 5-cycles in d-degenerate graphs requires Ω(d/ logn)
rounds in the CONGEST model.
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7 Extensions to the supported CONGEST

The supported CONGEST model. Finally, we discuss how our results can be extended
to the supported CONGEST proposed by Schmid and Suomela [29] for studying distributed
algorithms in the context of software defined networking (SDN).

In the supported CONGEST model, the underlying physical network topology is represen-
ted by a support graph G = (V,E) and the actual input graph H for the distributed algorithm
is an arbitrary subgraph of the support. The input graph H = (U,F ) inherits the identifiers
of the support graph and can be seen as the current logical state of the network. Each node
v in the network G is aware of the full topological information about G, but node v has only
local information about the current logical state of the network, that is, the actual input
graph H. That is, initially node v will know only which of the edges incident to it in G

are also present in H. Note that supported CONGEST can be seen as a relaxation of the
congested clique model: in the case of the congested clique model, the support graph is a
clique.

While many symmetry breaking problems are trivial in the supported CONGEST model,
the model remains interesting from the perspective of subgraph detection. Even though all
nodes will a priori know that any edge {u, v} not present in G will also not be in H, only
nodes u and v initially know whether {u, v} ∈ F as well. Thus, the difficulty now becomes
verifying which of the possible subgraphs in G remain in H.

Subgraph enumeration in sparse support graphs. We can modify the algorithms given in
Section 5 to run faster in the supported CONGEST model, in the case where the support
graph has bounded degeneracy. First, all nodes can locally determine the degeneracy of the
support graph G and compute (the same) d-orientation σ of G without any communication.
The orientation σ restricted to the input graph H will also be an d-orientation of the input
H. This saves the additive O(logn) term in the running time. Moreover, when the nodes
communicate their outgoing edges, as every node v ∈ V knows which outgoing edges of σ
can be present incident to u ∈ V , it suffices that each node u broadcasts d-length bit string
encoding which edges of G are present in the input H. With these modifications in mind, we
get the following result.

I Theorem 18. In any d-degenerate support graph G in the supported CONGEST model,
1. enumerating k-cliques can be done in O(d/ logn) rounds for any k,
2. enumerating 4-cycles can be done in O(d/ logn) rounds, and
3. enumerating 5-cycles can be done in O(d2/ logn) rounds.

In particular, in the case that the support graph has degeneracy O(logn), we can enumerate
cliques and 4-cycles in constant number of rounds in the supported CONGEST model.

Cycle detection lower bounds. Finally, we note that all lower bounds from the present
work as well as those by Drucker et al. [13] hold in the supported CONGEST. All these lower
bounds are obtained by starting from a fixed base graph G, and removing certain edges to
obtain a graph G′ that encodes a set disjointness instance. Taking the base graph G as the
support graph and G′ as the input graph yields identical lower bounds for the supported
CONGEST.
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8 Conclusions

Subgraph detection. We note that there still remain major open questions regarding
subgraph detection in the CONGEST model:

What is the complexity of general subgraph detection? In particular, can the subgraph
detection problem solved in linear number of rounds for any constant-size target graph
H, or are the target graphs that require a superlinear number of rounds? Note that
k-cliques, which appear to be the most difficult case for centralised subgraph detection,
can be trivially detected in O(n) rounds for any k.
What is the precise complexity of detecting even-length cycles? Is there an algorithm
matching the Ω̃(n1/2) lower bound we give, or can this lower bound be improved?

Fixed-parameter techniques. We remark that the many algorithmic techniques from fixed-
parameter cycle and path detection algorithms seem to translate very naturally to the
distributed limited bandwidth setting, as they effectively either (a) partition the task at hand
into multiple independent instances of an easier task (e.g. colour-coding), or (b) compress
the intermediate results of the computation (e.g. representative families). As noted before,
the seminal colour-coding technique of Alon et al. [1] has been used by various authors for
distributed algorithms [9, 16, 17]; indeed, the results in the present work can also be derived
via colour-coding, albeit with slightly worse dependence on k, by an easy modification of the
congested clique cycle detection algorithm of Censor-Hillel et al. [9]. We also expect that the
O(k2k) round running time for path detection could be improved with randomisation, for
example by using algebraic sieving techniques [6].

More generally, such fixed-parameter techniques are applicable in the centralised setting
beyond subgraph detection, and we expect this to be the case also in the distributed setting.
For example, it seems likely that constant-round distributed algorithms for the graph motif
problem can be obtained either via colour-coding or algebraic sieving [6, 5]. Indeed, this
general line of research may even have practical relevance, as evidenced by the efficient
parallel implementation of fixed-parameter graph motif algorithms by Björklund et al. [7].
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Abstract
Solving linear programs is often a challenging task in distributed settings. While there are good
algorithms for solving packing and covering linear programs in a distributed manner (Kuhn et
al. 2006), this is essentially the only class of linear programs for which such an algorithm is known.
In this work we provide a distributed algorithm for solving a different class of convex programs
which we call “distance-bounded network design convex programs”. These can be thought of as
relaxations of network design problems in which the connectivity requirement includes a distance
constraint (most notably, graph spanners). Our algorithm runs in O((D/ε) logn) rounds in the
LOCAL model and with high probability finds a (1+ε)-approximation to the optimal LP solution
for any 0 < ε ≤ 1, where D is the largest distance constraint.

While solving linear programs in a distributed setting is interesting in its own right, this class
of convex programs is particularly important because solving them is often a crucial step when
designing approximation algorithms. Hence we almost immediately obtain new and improved
distributed approximation algorithms for a variety of network design problems, including Basic
3- and 4-Spanner, Directed k-Spanner, Lowest Degree k-Spanner, and Shallow-Light Steiner
Network Design with a spanning demand graph. Our algorithms do not require any “heavy”
computation and essentially match the best-known centralized approximation algorithms, while
previous approaches which do not use heavy computation give approximations which are worse
than the best-known centralized bounds.
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1 Introduction

Distributed network design is a classical type of distributed algorithmic problem, going
back at least to the seminal work on distributed MST by Gallager, Humblet, and Spira [16].
By “network design”, we mean the class of problems which can be phrased as “given input
graph G, find a subgraph H which has some property P , and minimize the cost of H”.
Clearly different properties P , and different notions of cost, lead to very different problems.
One important class of problems are distance-bounded network design problems, where the
property P is that certain pairs of vertices are within some distance of each other in H (where
distance refers to the shortest-path distance). The most well-known type of distance-bounded
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network design problems are problems involving graph spanners, in which the distance
requirement is that the distance in H for all (or certain) pairs is within a certain factor
(known as the stretch) of their original distance in H. But there are many other important
versions of distance-bounded network design, such as the bounded diameter problem [12]
and the shallow-light Steiner tree/network problems [19].

Many of these problems are NP-hard, so they cannot be solved optimally in polynomial
time even in the centralized setting unless P=NP. Thus they have been studied extensively
from an approximation algorithms point of view, where we design algorithms which approxi-
mate the optimal solution but which run in polynomial time. For many of these problems, a
key step in the best-known centralized approximation algorithm is solving a linear program-
ming relaxation of the problem, and then rounding the optimal fractional solution into a
feasible integral solution. Interestingly, it is relatively common for the rounding to be “local”:
if we are in a distributed setting and happen to know the optimal fractional LP solution,
then the algorithm used to round this to an integral solution can be accomplished with a
tiny amount of extra time (either 0 or a small constant number of rounds). So the bottleneck
when trying to make these algorithms distributed is solving the LP, not rounding it.

Solving LPs in distributed settings has received only a small amount of attention, since
it unfortunately turns out to be extremely challenging in general. Most notably, Kuhn,
Moscibroda, and Wattenhofer [21] gave an efficient distributed algorithm (in the LOCAL
model of distributed computation) for packing/covering LPs. Unfortunately, the LPs used
for distance-bounded network design are not packing/covering LPs1, and hence we are not
able to use their techniques. Floréen et al. [15] also studied a special class of linear programs,
namely min-max LPs, in distributed settings, which also cannot be used for our problems
of interest. In this paper we show how to solve these LPs (and convex generalizations of
them) in the LOCAL model of distributed computation, which almost immediately gives the
best-known results for a variety of distance-bounded network design problems.

In particular, for many network design problems (Directed k-Spanner, Basic 3-
Spanner, Basic 4-Spanner, Lowest-Degree k-Spanner, Directed Steiner Network
with Distance Constraints with spanning demands, and Shallow-Light Steiner
Network with spanning demands) we give approximation algorithms which run in O(D logn)
rounds (where D is the maximum distance bound) and have the same approximation ratios
as in the centralized setting. Previous distributed algorithms for these problems with similar
round complexity have either used “heavy” computations (non-polynomial time algorithms)
at the nodes (in which case they can often do better than the best computationally-bounded
centralized algorithm), or give approximation bounds which are asymptotically worse than
the best centralized bounds. See Section 1.2 for more discussion of previous work.

1.1 Our Results

We give two main types of results. First, we give a distributed algorithm that (approximately)
solves distance-bounded network design convex programs with small round complexity.
We then use this result to (almost immediately) get improved distributed approximation
algorithms for a variety of network design problems.

1 They can be turned into packing/covering LPs through a projection operation, but unfortunately this
technique results in an exponential number of constraints, making [21] inapplicable. However, this
technique has been used in the centralized setting for the fault-tolerant directed k-spanner problem [9].
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1.1.1 Solving convex programs
Stating our main technical result (distributed approximations of distance-bounded network
design convex programs) in full generality requires significant technical setup, so we provide
an informal description here. See Section 4 for the full definitions and theorem statements
(Theorem 13 in particular). But informally, a distance-bounded network design convex
program is the following. We are given a graph G = (V,E), a set S ⊆ V × V , and for
each (u, v) ∈ S there is a set of “allowed” u− v paths Pu,v. Roughly speaking, we typically
assume that the allowed paths are short, and define D to be maximum length of such paths.
Informally, the integral problem is to find a subgraph H of G so that every (u, v) ∈ S is
connected by at least one path from Pu,v in H, and the goal is to minimize some notion of
“cost”. If our notion of “cost” is captured by an objective function g : R|E|≥0 → R (which is
typically linear, but which can be more general convex functions as long as they satisfy a
“partitionability” constraint – see Section 4 for the details), then the natural relaxation of
this problem is the following convex program, which has a variable xe for every edge and a
variable fP for every allowed path.

min g(x)

s.t.
∑

P∈Pu,v :e∈P
fP ≤ xe ∀(u, v) ∈ S,∀e ∈ E

∑
P∈Pu,v

fP ≥ 1 ∀(u, v) ∈ S

xe ≥ 0 ∀e ∈ E
fP ≥ 0 ∀(u, v) ∈ S,∀P ∈ Pu,v

Informally, the first type of constraint says that an allowed path is included only if all
edges in it are included, and the second type of constraint required us to include at least one
allowed path for each (u, v) ∈ S. We call this type of convex program a distance-bounded
network design convex program. It is clearly not a packing/covering LP due to the first
type of constraint, and hence there is no known distributed algorithm to solve this kind of
program. However, note that if the maximum length of any allowed path is constant, then
there are only a polynomial number of such paths, and hence the size of the convex program
is polynomial and so it can be solved in polynomial time in the centralized setting under
reasonable assumptions on g (see [17] for details on solving convex programs in polynomial
time).

Our main technical result is that we can approximately solve these optimization problems
even in a distributed setting. For any path P let `(P ) denote the length of the path (the
number of edges in it).

I Theorem 1. For any constant ε > 0, any distance-bounded network design convex program
can be solved up to a (1 + ε)-approximation in O(D logn) rounds in the LOCAL model,
where D = max(u,v)∈S maxP∈Pu,v `(P ). Moreover, if the convex program can be solved in
polynomial time in the centralized sequential setting, then the distributed algorithm uses only
polynomial-time computations at every node

The dependence on ε in the above theorem is hidden in the O(·) notation – see Theorem 13
for the full statement.

Our main technique is to use a distributed construction of padded decompositions, a
specific type of network decomposition which we explain in detail in Section 3. Padded
decompositions have been very useful for metric embeddings and approximation algorithms
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(e.g., [18, 20]), but to the best of our knowledge have not been used before in distributed
algorithms (with the exception of [10], which used a special case of them to give a distributed
algorithm for the fault-tolerant 2-spanner problem). Very similar decompositions, such as the
famous Linial-Saks decomposition [22], have been used extensively in distributed settings, but
the guarantees for padded decompositions are somewhat different (and we believe that these
decompositions may prove useful in the future when designing distributed approximation
algorithms). In Section 3 we give a distributed algorithm in the LOCAL model to construct
padded decompositions. These padded decompositions allow us to solve a collection of “local”
convex programs with the guarantees that a) most of the demands in S are satisfied in one
of the local programs, and b) the solutions of the local convex programs combine into a
(possibly infeasible) global solution with cost at most the cost of the global optimum. Then
by averaging over O(logn) of these decompositions we get a feasible global solution which is
almost optimal.

1.1.2 Distributed approximation algorithms for network design
Solving convex programming problems in distributed environments is interesting in its
own right, and Theorem 1 is our main technical contribution, but the particular class of
convex programs that we can solve are mostly interesting as convex relaxations of interesting
combinatorial optimization problems. Many of the problems are NP-hard, but there has
been significant work (some quite recent) on designing approximation algorithms for them
(see, e.g., [9, 6, 11, 5]). Almost all of these approximations depend on convex relaxations
which fall into our class of “distance-bounded network design convex programs”. This means
that as long as the rounding scheme can be computed locally, we can design distributed
versions of these approximation algorithms by using Theorem 1 to solve the appropriate
convex relaxation and then using the local rounding scheme.

We are able to use this framework to give distributed approximation algorithms for several
problems. Most of them are variations of graph spanners, which were introduced by Peleg
and Ullman [26] and Peleg and Schäffer [25], and are defined as follows.

I Definition 2. Let G = (V,E) be a graph (possibly directed), and let k ∈ N. A subgraph
H of G is a k-spanner of G if dH(u, v) ≤ k · dG(u, v) for all u, v ∈ V . The value k is called
the stretch of the spanner.

Before stating our results, we first define the problems. In the Basic k-Spanner problem
we are given an undirected graph G and a value k ∈ N. A subgraph H of G is a feasible
solution if it is a k-spanner of G, and the objective is to minimize the number of edges in H.
For k = 3, 4, the best-known approximation algorithm for this problem is Õ(n1/3) [5, 11]. If
the input graph G (and the solution H) are directed, then this is the Directed k-Spanner
problem, for which the best-known approximation is Õ(

√
n) [5]. If the objective is instead to

minimize the maximum degree in H then this is the Lowest-Degree k-Spanner problem,
for which the best-known approximation is Õ(n(1−1/k)2) [6].

The following theorem contains our results on distributed approximations of graph
spanners. Informally, it states that we can give the same approximations in the LOCAL
model as are possible in the centralized model.

I Theorem 3. There are algorithms in the LOCAL model that w.h.p.2provide the following
guarantees. For Directed k-Spanner, the algorithm runs in O(k logn) rounds and gives

2 By “with high probability" (or w.h.p.), we mean with probability at least 1 − 1/nc for some c ≥ 1.
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an Õ(
√
n)-approximation. For Basic 3-Spanner and Basic 4-Spanner, the algorithms run

in O(logn) rounds and gives an Õ(n1/3)-approximation. For Lowest-Degree k-Spanner,
the algorithm runs in O(k logn) rounds and gives an Õ(n(1−1/k)2)-approximation. All of
these algorithms use only polynomial-time computations at each node.

We emphasize that our algorithms for these spanner problems both match the best-known
centralized approximations and only use polynomial-time computations at each node. There is
significant previous work (see Section 1.2) on designing distributed approximation algorithms
for these and related problems that has only one of these two properties, but all previous
approaches which use only polynomial-time computations necessarily do worse than the best
centralized bound (or have much worse round complexity). At a high level, this is because
previous approaches (most notably [2]) do not actually use the structure of the centralized
algorithm: they only use the efficient centralized approximation as a black box. By going
inside the black box and noticing that they all use a similar type of convex relaxation, we
can simultaneously get low round complexity, best-known approximation ratios, and efficient
local computation.

It turns out that we can use our techniques for an even broader question: Directed
Steiner Network with Distance Constraints with a spanning demand graph. In this
problem there is a set S ⊆ V × V of demands, and for every demand (u, v) ∈ S there is a
length bound L(u, v). The goal is to find a subgraph H so that dH(u, v) ≤ L(u, v) for all
(u, v) ∈ S, and the objective is to minimize the number of edges in H. The state of the art
centralized bound for this problem is a O(n3/5+ε)-approximation [7], but if we further assume
that every vertex u ∈ V is the endpoint of at least one demand in S (which we will refer to
as a spanning demand graph) then it is straightforward to see that the centralized algorithm
of [5] for Directed k-Spanner can be generalized to give a Õ(

√
n)-approximation. Our

distributed version of this algorithm also generalizes, w.h.p. giving the following result.

I Theorem 4. There is an approximation algorithm in the LOCAL model for Directed
Steiner Network with Distance Constraints with a spanning demand graph with
approximation ratio Õ(

√
n) which runs in O((max(u,v)∈S L(u, v)) logn) rounds and uses only

polynomial-time computations.

Note that Directed k-Spanner and Basic k-Spanner are special cases of this problem,
where there is a demand for every edge and the length bound is just k times the original
distance. Interestingly, other network design problems which have proved important for
distributed systems are also special cases, including the Distance Preserver problem
(when L(u, v) = dG(u, v) for all (u, v) ∈ S), the Pairwise k-Spanner problem (where
L(u, v) = k · dG(u, v) for all (u, v) ∈ S), and the Shallow-Light Steiner Network
problem (where L(u, v) = D for all (u, v) ∈ S, for some global parameter D). Shallow-
Light Steiner Network in particular is a key component in state of the art systems for
reliable Internet transport [1], although in that particular application the demand graph
is not spanning. Extending our techniques to handle totally general demands by giving a
distributed version of [7] is an extremely interesting open question.

1.2 Related Work
While distributed solving of convex programs is a natural question, there is little previous
work in the LOCAL model. Possibly most related to our results is a line of work on
solving positive linear programs (packing and covering LPs). This was introduced by [23],
improved by [4], and then essentially optimal upper and lower bounds were given by [21].
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Unfortunately, the convex programs we consider are not positive linear programs due to the
“capacity” constraints in which some variables appear with positive coefficients while others
have negative coefficients.

A special case of our result was proved earlier in [10], who showed how to solve the LP
relaxation of Basic 2-Spanner in the LOCAL model in O(log2 n) rounds (they actually
show more than this, by giving a distributed algorithm for the fault-tolerant version of Basic
2-Spanner, but that is not germane to our results). Our techniques are heavily based
on [10], which is itself based on the ideas from [21]. In particular, [21] uses a Linial-Saks
decomposition [22] to solve “local” versions of the linear program in different parts of the
graph, and then combines these appropriately. To make this work for the Basic 2-Spanner
LP relaxation, [10] had to use padded decompositions, which can be thought of as a variant
of Linial-Saks with slightly different guarantees which, for technical reasons, are more useful
for network design LPs. In this paper we extend these techniques further by giving a more
general definition of padded decomposition which works for larger distance requirements,
showing how to construct them in the LOCAL model, and then showing that the basic
“combining” idea from [10] can be extended to handle these more general decompositions
and far more general constraints and objective functions.

The major type of combinatorial optimization problem which our techniques allow us
to approximate are various versions of graph spanners. There are an enormous number
of papers on spanners in both centralized and distributed models, but fewer papers which
attempt to find the “best” spanner for the particular given input graphs (most papers on
spanners give existential results and algorithms to achieve them, rather than optimization
results). These optimization questions (e.g., Basic k-Spanner, Directed k-Spanner, and
Lowest-Degree k-Spanner) have been considered quite a bit in the context of centralized
approximation algorithms and hardness of approximation [9, 5, 11, 6, 8], but almost all of
the known centralized results use linear programming relaxations, making them difficult
to adapt to distributed settings. Hence there have been only two results on optimization
bounds in distributed models: [10] and [2].

Barenboim et al. [2] provided a distributed algorithm using Linial-Saks decompositions
that for any integer parameters k, α, gives an O(n1/α)-approximation for Directed k-
Spanner in exp(O(α)) +O(k) time. This is an extremely strong approximation bound, and
in fact is better than even the best centralized bound. This is possible due to their use
of very heavy (exponential time) local computation. Our algorithms, on the other hand,
take polynomial time for local computations. Barenboim et al. [2] show that heavy local
computations can be removed from their algorithm by using a centralized approximation
algorithm for a variant of spanners known as client-server k-spanners, and in particular
that an f(k)-approximation for client-server k-spanner can be turned into an O(n1/αf(k))-
approximation algorithm running in exp(O(α)) + O(k) rounds in the LOCAL model for
minimum k-spanner with only polynomial local computation. So in order to achieve the same
asymptotic approximation ratio as the best-known centralized algorithm, the parameter α
must be Ω(logn) and hence the running time is polynomial in n, even though k might be
a constant. It is essentially known (though not written anywhere) that a variety of other
results with slightly different tradeoffs can be achieved through similar uses of Linial-Saks [13]
or refinements of Linial-Saks such as [14]. However, since all of these approaches treat the
centralized approximation algorithm as a black box, none of them can achieve the same
approximation ratio as the centralized algorithm without suffering a much worse (usually
polynomial) round complexity that the O(k logn) that we achieve.
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2 Preliminaries and Notation

The distributed setting we will be considering is the LOCAL model [24], in which time
passes in synchronous rounds and in each round every node can send an arbitrary message
of unbounded size to each of its neighbors in the underlying graph G = (V,E) (as always, we
will let n = |V | and m = |E|). This is in contrast to the CONGEST model, where nodes
can only send a message of size O(logn) to each of their neighbors in each round. We are
not focusing on the CONGEST model in this paper. We will assume that all nodes know n

(or at least know a constant approximation of n). Usually in this model the communication
graph is the same as the graph of computational interest; e.g., we will be trying to compute
a spanner of the communication graph itself. But for some applications we will want the
graph to be directed, in which case we make the standard assumption that communication is
bidirectional: the graph for which we are trying to compute a convex relaxation / network
design problem is directed, but messages can be sent in both directions across a link. In
other words, the communication graph is just the undirected version of the given directed
graph.

For any pair of nodes u, v ∈ V we define d(u, v) to be the distance between u and v in
the communication graph (i.e. the length of a shortest path between u and v regardless
of edge directions). We define B(u, k) to be an undirected ball of radius k from u in the
communication graph. More precisely, B(u, k) = {w ∈ V | d(u,w) ≤ k}. If x is a vector then
we use xi to denote the i’th component of x. Most of the time our vectors will be indexed by
edges in a graph, in which case we will also use the notation (xe)e∈E .

Given a partition of the vertices V of a graph, we will refer to each part of the partition
as a “cluster”. For any graph G = (V,E) and set S ⊆ V , we let E(S) denote the set of
edges in the subgraph induced by S, i.e., E(S) = {(u, v) ∈ E | u, v ∈ S}. We will frequently
need “restrictions” of vectors to induced subgraphs, so for any vector x ∈ Rm, we define
xS = (xSe )e∈E to be the vector in Rm where xSe = 0 if e 6∈ E(S) and xSe = xe if e ∈ E(S).

3 Padded decompositions

We will now define and give an algorithm to construct padded decompositions, which are one
of the key technical tools that we will use when designing algorithm to solve distance-bounded
network design convex programs. In this section all graphs are undirected and all distances
are with respect to this undirected graphs (in fact, the definition and our algorithm work
more generally for any metric space). Recall that B(u, k) denotes the undirected ball of
radius k from node u (in the communication graph), and diam(C) = maxu,v∈C dG(u, v),
which is often called the weak diameter. Intuitively, a (k, ε)-padded decomposition partitions
a graph into clusters, where nodes in each cluster are not too far in the original graph, and
balls of a radius k are preserved with probability at least 1− ε.

IDefinition 5. Given an undirected graph G, a (k, ε)-padded decomposition, where 0 < ε ≤ 1,
is a probability measure µ over the set of graph partitions (clusterings) that has the following
properties:
1) For every P ∈ supp(µ),3 and every cluster C ∈ P , we have: diam(C) ≤ O((k/ε) logn).
2) For every u ∈ V , it holds that Pr(∃C ∈ P | B(u, k) ⊆ C) ≥ 1 − ε. That is to say, the

probability that all nodes in B(u, k) are in the same cluster is at least 1− ε.

3 By supp(µ) we mean the set of partitions that have non-zero probability.
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5:8 Distributed Network Design Through Convex Programming

Algorithm 1: Sampling from a (k, ε)-padded decomposition of G = (V,E).
1 Let π : V → [n] be an arbitrary bijection from V to [n], and let r = ( 2

ε )k.
2 for v ∈ V do
3 Sample zv independently from a distribution with probability density function

p(zv) =
(

n
n−1

)
e−zv/r

r .
4 Set the radius rv = min(zv, r lnn+ k).
5 for u ∈ V do
6 Node u joins cluster C(v), such that

d(v, u) ≤ rv ∧ (π(v) < π(w) ∀w 6= v s.t. d(w, u) ≤ rw). // Node u joins
the cluster C(v), with cluster center v, which is the first node
in the permutation where d(v, u) ≤ rv.

This notion of padded decompositions is standard in metric embeddings and approximation
algorithms [18, 20], but to the best of our knowledge has not yet been used in distributed
algorithms. We first use a centralized algorithm (Algorithm 1) to sample from a (k, ε)-
padded decomposition, and then describe how it can be implemented in the LOCAL model.
Algorithm 1 and its analysis are similar to a partitioning algorithm proposed in [3], which
was shown to have a low probability of separating nodes in a close neighborhood. Due to
space constraints, proofs can be found in Appendix A.

For any partition P constructed by Algorithm 1, each cluster is clearly C(v) for some
v ∈ V . We call this special node v the center of cluster C(v). Later, we will use the center
of each cluster for solving locally defined convex programs.

I Lemma 6. Algorithm 1 partitions a given undirected graph G = (V,E) into a partition P
such that P is sampled from a (k, ε)-padded decomposition.

We will now use an idea similar to the one used in [10] to make Algorithm 1 distributed. In
[10] they only considered the special case of k = 1 and ε = 1/2, which is why we cannot
simply use their result as a black box.

I Lemma 7. There is an algorithm in the LOCAL model that runs in O(kε lnn) rounds and
samples from a (k, ε)-padded decomposition (so every node knows the cluster that it is in).

Proof. Without loss of generality, we assume that all nodes have unique IDs4. The sequence
of IDs in ascending order will determine the permutation π used in Algorithm 1, i.e. if
IDu < IDv then π(u) < π(v). The algorithm proceeds as follows until all nodes have been
assigned to a cluster: each node u ∈ V chooses a radius ru based on the distribution defined in
Algorithm 1. Then every u ∈ V simultaneously sends a message containing IDu to all nodes
in B(u, ru). After receiving all the messages, each node chooses the node with the smallest
ID as the cluster center. Then Lemma 6 implies that the clusters satisfy the properties of a
(k, ε)-padded decomposition. Since the radius that each node chooses is O((k/ε) logn), and
each node only communicates with nodes within its radius, the running time in the LOCAL
mode is O((k/ε) logn). J

4 We assume this since nodes can each draw an ID from a suitably large space, so the probability of a
collision is small enough that it does not affect the guarantees required by a padded decomposition.



M. Dinitz and Y. Nazari 5:9

4 Distributed distance bounded network design convex programming

In this section we prove Theorem 1, giving an algorithm similar to [10] which can almost
optimally solve distance-bounded network design convex programs. We first make all
definitions formal in Section 4.1, and in particular define formally the class of objective
functions where our results hold. Then in Section 4.2 we give a distributed algorithm which
solves these programs up to arbitrarily small error. All missing proofs can be found in
Appendix B.

4.1 Distance bounded network design convex programs
We will first describe a general class of objective functions that our algorithm applies to.
For a graph G = (V,E) and a set S ⊆ V , we let E(S) denote the set of edges in the
subgraph of G induced by S. Recall that for a vector x ∈ Rm (where m = |E|), we define
xS = (xSe )e∈E ∈ Rm to be the vector where xSe = 0 if e 6∈ E(S) and xSe = xe if e ∈ E(S).

I Definition 8. Given a graph G = (V,E), a function g : Rm 7→ R is convex partitionable with
respect to G if g is a non-decreasing5 and convex function with the following property: for all
partitions σ = {σ1, ..., σ`} of nodes in V , there exists a non-decreasing function hσ : R` 7→ R,
s.t. g(x) = hσ(g(xσ1), g(xσ2), ..., g(xσ`)) for all x = (xe)e∈E where xe = 0 for any edge e with
endpoints in different clusters of σ (equality does not need to hold for vectors x with nonzero
values on edges between clusters).

Convex partitionable functions for graphs are a natural class of functions for distributed
computing purposes. Moreover, this class includes many types of objective functions that are
of interest in network design problems, including p-norms and linear functions. For example,
if the function g is the p-norm with p ∈ Z≥0, then it is easy to verify that by setting the
function hσ to also be the p-norm for any partition σ of V , the conditions of Definition 8 are
satisfied. Note, since we consider non-negative values, an unweighted sum is just the 1-norm,
and the max function is the infinity norm, and hence they will also satisfy the conditions
of Definition 8. Similarly, in case of linear functions, it is easy to see that conditions of
Definition 8 are satisfied by setting hσ to be the unweighted sum.

There are also other, less trivial examples. For example, it is not hard to show the p-norm
of the degree vector (rather than just the edge vector) is also convex partitionable with
respect to G. An important special case of this is the ∞-norm of the degree vector, i.e.,
the maximum degree. Since we use this objective in some of our applications (i.e., for the
Lowest-Degree k-Spanner problem), we give a short proof of this case in Appendix B.
For an integral vector x ∈ Rm we can write g(x) = maxv∈V deg(v). By generalizing this
notation to all x ∈ Rm, we can define fractional node degrees as deg(v) =

∑
u:(v,u)∈E x(v,u)

6.

I Lemma 9. Given a graph G = (V,E), the function g(x) = maxv∈V (
∑
u:(v,u)∈E x(v,u)) is

convex partitionable w.r.t. G.

Now that this class of functions has been defined, we can formally define the class of
distance-bounded network design convex programs.

5 Let f(x1, ..., xk) be a multivariate function. We will say f is nondecreasing if the following holds: if
xi ≤ x′

i for all 1 ≤ i ≤ k, then f(x1, ..., xk) ≤ f(x′
1, ..., x

′
k).

6 Here we are considering out-degree of nodes in a directed graph. It is easy to see that Lemma 9 also
holds in cases of in-degree only or sum of out-degree and in-degree. The latter is what are interested in
for Section 5.
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5:10 Distributed Network Design Through Convex Programming

I Definition 10. Let S ⊆ V × V be a set of pairs in the graph G = (V,E), and for any pair
(u, v) ∈ S let Pu,v be a set of paths from u to v, which we sometimes call the set of “allowed”
paths. Let g be a non-decreasing convex-partitionable function of x = (xe)e∈E with g(~0) = 0.
Then we call a convex program of the following form a distance bounded network design CP:

min g(x)

s.t
∑

P∈Pu,v :e∈P
fP ≤ xe ∀(u, v) ∈ S,∀e ∈ E

∑
P∈Pu,v

fP ≥ 1 ∀(u, v) ∈ S

xe ≥ 0 ∀e ∈ E
fP ≥ 0 ∀(u, v) ∈ S,∀P ∈ Pu,v

As we will see in Section 5, many network design problems use linear (or convex) programming
relaxations that satisfy the conditions of Definition 10. A key parameter of such a program
is the length of the longest allowed path D = max(u,v)∈S maxp∈Pu,v `(p) (where `(p) is the
length of path p).

4.2 Distributed Algorithm
In order to solve these convex programs in a distributed manner, we will first use padded
decompositions to form a local problem using a simple distributed algorithm. Let P be a
partition sampled from a (k, ε)-padded decomposition (in particular, obtained by Lemma 7),
where 0 < ε ≤ 1. Recall that for each cluster C ∈ P , E(C) = {(u, v) ∈ E | u, v ∈ C}. We
define G(C) to be the subgraph induced by C. We prove the following lemma in Appendix B.

I Lemma 11. For each cluster C sampled from a (k, ε)-padded decomposition, there is a
distributed algorithm running in O(kε logn) rounds so that every cluster center knows G(C).

Let CP(G) be a distance bounded network design CP defined on graph G = (V,E).
We will define local convex programs based on a partition P of G that is sampled from
a (D,λ)-padded decomposition. The value of 0 < λ ≤ 1 will be set later based on the
parameters of our distributed algorithm. For each C ∈ P , let CP(C) be CP(G) defined
on G(C), but where only demands corresponding to any pair (u, v) ∈ S in which B(u,D)
is fully contained in C are included. We denote the set of these demands by N(C), more
precisely, N(C) = {(u, v) ∈ S | B(u,D) ⊆ C}. The objective will then be to minimize g(x) =
g
(
(xe)e∈E(C)

)
. In other words CP (C) is defined as follows:

min g(x)

s.t
∑

P∈Pu,v :e∈P
fP ≤ xe ∀(u, v) ∈ N(C),∀e ∈ E(C)

∑
P∈Pu,v

fP ≥ 1 ∀(u, v) ∈ N(C)

xe ≥ 0 ∀e ∈ E(C)
fP ≥ 0 ∀(u, v) ∈ N(C),∀P ∈ Pu,v

There is a technical subtlety about computing the function g on each cluster, which is
the fact that a solution 〈xC , fC〉 of CP(C) is only defined on G(C). While in practice xC is
a vector defined only on edges in E(C), in our analysis, we will assume that xC is a vector
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Algorithm 2: Distributed algorithm for approximating distance bounded network
design CPs.

1 Set λ = ε(1−ε)
(2−ε)(1+ε) and t =

⌈
16(1− ε2 )(1+ε) lnn

ε2

⌉
.

2 Sample from (D,λ)-padded decompositions t times by Lemma 7, and let Pi be the
partition obtained in the i’th run.

3 For each cluster C ∈ Pi, the center of cluster C computes G(C) (see Lemma 11).
4 The center of each cluster C ∈ Pi solves CP (C) and sends the solution 〈xC,i, fC,i〉 to

all nodes u ∈ C.
5 for e = (u, v) ∈ E do
6 Let Iu,v = {i | ∃C ∈ Pi : u, v ∈ C}.

// these are the iterations in which both endpoints are in same
cluster

7 x̃e ← min(1, 1+ε
t

∑
i∈Iu,v x

Cu,i,i
e ).

in R|E| and xCe = 0 for all e 6∈ E(C). This assumption does not impact the correctness of
algorithm. The following lemma is similar to Lemma 3.8 in [10], and we show that it holds
for our modified definition of local convex programs and for generalized objective functions
that satisfy Definition 8.

I Lemma 12. Let 〈x∗, f∗〉 be an optimal solution of CP (G) and let x∗C = (x∗e)e∈E(C). For
each cluster C ∈ P , let 〈x̃C , f̃C〉 be an optimal solution of CP(C). Then g(x̃C) ≤ g(x∗C).

Proof. We argue that the vector 〈x∗C , f∗C〉, where x∗eC = x∗e for all e ∈ E(C) and f∗p
C = f∗p

for all p ∈ Pu,v, is a feasible solution to CP(C). By definition of N(C) we have that
for any (u, v) ∈ N(C) all paths in Pu,v also appear in G(C), and therefore 〈x∗C , f∗C〉
satisfies both capacity and flow constraints of CP(C) for pairs (u, v) ∈ E(C) since they were
satisfied in CP(G). Since we assumed that 〈x̃C , f̃C〉 is an optimal solution of CP(C), we get
g(x̃C) ≤ g(x∗C). J

We now provide in Algorithm 2 a distributed algorithm for solving CP(G). The high level
idea is the following: we partition the graph t times, have cluster centers solve CP(C) of
their cluster using a sequential algorithm in each iteration, and then take an average over
the solutions for each edge. Intuitively, for each edge, by averaging over local solutions for
iterations in which the ball around that edge is in the same cluster, with high probability we
get a feasible global solution. In the proof of Theorem 13, we will show that this solution
gives a (1 + ε)-approximation solution to the LP, for an arbitrary 0 < ε ≤ 1.

We assume that all nodes know the values of D and ε. Let Cu,i denote the cluster that
node u belongs to in the i-th iteration, and let 〈xCu,i,i, fCu,i,i〉 be the fractional CP solution
of Cu,i, where 〈x

Cu,i,i
e , f

Cu,i,i
p 〉 is the fractional CP value for e = (u, v), and p ∈ Pu,v. Since

the objective is a function of edge vectors, what we mean by having a distributed solution to
a distance bounded network design CP is that each node u will know the value xe for all
the edges e incident to u. It is not hard to see that the algorithm could be modified so that
every node u can also know the flow value fp for each path p.

I Theorem 13. Algorithm 2 takes O((D/ε) logn) rounds to terminate, and it will compute
a solution of cost at most (1 + ε)CP ∗ to a bounded distance network design CP (Definition
10) with high probability, where CP ∗ is the optimal solution and 0 < ε ≤ 1. Moreover,
if the convex program can be solved sequentially in polynomial time, then all of the node
computations are also polynomial time.
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Proof. Correctness: We first show that with high probability the values x̃e, e ∈ E form a
feasible solution. Here we only need to show that a feasible solution for the flow values exist,
and do not require nodes to compute these values. Let Iu = {i : ∃C ∈ Pi, B(u,D) ⊆ C},
i.e. Iu is the set of iterations in which B(u,D) is contained in a cluster, and let Iu,v be the
set of iterations in which both u and v are in the same cluster. Since we need to implement
Algorithm 2 in a distributed manner, we use Iu,v in our implementation, while the analysis
is based on Iu. We can do so since by definition we have Iu ⊆ Iu,v, for any (u, v) ∈ E.

For any p ∈ Pu,v, we set the flow values to be f̃p = 1
|Iu|

∑
i∈Iu f

Cu,i,i
p ,i.e. f̃p is the average

over local flows in iterations in which B(u, k) is fully contained in a cluster. We will show that
this gives a feasible flow. First we argue that enough flow is being sent. For all (u, v) ∈ S,
we have,∑

p∈Pu,v

f̃p =
∑

p∈Pu,v

1
|Iu|

∑
i∈Iu

fCu,i,ip = 1
|Iu|

∑
i∈Iu

∑
p∈Pu,v

fCu,i,ip ≥ 1
|Iu|

∑
i∈Iu

1 ≥ 1.

We have used the fact that for each i ∈ Iu the solution corresponding to the CP of the cluster
containing u satisfies the constraint that

∑
p∈Pu,v :e∈p f

Cu,i,i
p ≥ 1, because for each such i we

know that (u, v) ∈ N(C).
Next, we will argue that the capacity constraints are also satisfied. The second property of

(D,λ)-padded decompositions implies that Pr(i ∈ Iu) ≥ 1− λ = 1− ε(1−ε)
(2−ε)(1+ε) = 1

(1− ε2 )(1+ε)
for each iteration 1 ≤ i ≤ t. By linearity of expectations we have E[|Iu|] ≥ t(1− λ). Since
each sampling is performed independently, by Chernoff bound for δ = ε/2, we get,

Pr(|Iu| ≤ t(1− λ)(1− δ)) = Pr
(
|Iu| ≤

t(1− ε
2 )

(1− ε
2 )(1 + ε)

)
= Pr

(
|Iu| ≤

t

(1 + ε)

)
≤ e−

(ε/2)2(1−λ)t
2 ≤ e−2 lnn = 1

n2 .

Hence by a union bound on all nodes we have that with high probability |Iu| > t/(1 + ε).
Therefore, for all (u, v) ∈ S, e ∈ E, we have (w.h.p.),∑

p∈Pu,v :e∈p
f̃p =

∑
p∈Pu,v :e∈p

1
|Iu|

∑
i∈Iu

fCu,i,ip = 1
|Iu|

∑
i∈Iu

∑
p∈Pu,v :e∈p

fCu,i,ip ≤ 1
|Iu|

∑
i∈Iu

xCu,i,ie

≤ min

1, 1
|Iu|

∑
i∈Iu,v

xCu,i,ie

 ≤ min

1, 1 + ε

t

∑
i∈Iu,v

xCu,i,ie

 = x̃e.

Upper bound: We will now show that the upper bound holds. Let 〈x∗, f∗〉 be an optimal
solution to CP(G). We have x̃e = min(1, 1+ε

t

∑
i∈Ie x

Cu,i,i
e ), and for each e = (u, v) and

1 ≤ i ≤ t, we set x̃ie = x
Cu,i,i
e if i ∈ Ie, and x̃ie = 0 otherwise. Note that 0 < (1+ ε)/t < 1, and

since g is a convex function and g(~0) = 0, by Jensen’s inequality we have g
( 1+ε

t x
)
≤ 1+ε

t g(x).
Then for x̃ = (x̃e)e∈E we can write:

g(x̃) = g
(
(x̃e)e∈E

)
≤ g

1 + ε

t

(∑
i∈Ie

xCu,i,ie

)
e∈E

 ≤ 1 + ε

t
g

(∑
i∈Ie

xCu,i,ie

)
e∈E


≤ 1 + ε

t
g

((
t∑
i=1

x̃ie

)
e∈E

)
≤ 1 + ε

t
g

(
t∑
i=1

(
x̃ie
)
e∈E

)
≤ 1 + ε

t

t∑
i=1

g
((
x̃ie
)
e∈E

)
.

In the final inequality, since g is convex, we used Jensen’s inequality to take the sum out of
the function. It is now enough to show that in each iteration i, it holds g((x̃ie)e∈E) ≤ g(x∗).
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Let x̃i = ((x̃ie)e∈E), and let Pi = {C1, C2, ..., C`} be the partition of V . Since g is a convex
partitionable function w.r.t. G, there exists a nondecreasing and convex function h : Rm 7→ R
for which we can write g(x̃i) = hPi(g(x̃i,C1), g(x̃i,C2), ..., g(x̃i,C`)), since x̃ie = 0 by definition
for edges which go between clusters (for simplicity we are denoting x̃i

Cj by x̃i,Cj ).
Recall that x∗C is the vector in which x∗Ce = x∗e for all e ∈ E(C) and x∗Ce = 0 otherwise.

By Lemma 12 we get that for all C ∈ Pi, g(x̃i,C) ≤ g(x∗C). Now we consider a vector x̂,
defined by setting x̂e = x∗e for all edge e with both endpoints in the same cluster, and x̂e = 0
otherwise. Since we assumed hPi to be nondecreasing, we get,

g(x̃i) = hPi(g(x̃i,C1), g(x̃i,C2), ..., g(x̃i,C`)) ≤ hPi(g(x∗C1), g(x∗C2), ..., g(x∗C`))
= hPi(g(x̂C1 , x̂C2 , ..., g(x̂C`)) = g(x̂) ≤ g(x∗).

For the last inequality we have used the fact that g is non-decreasing, and that for all e ∈ E,
x̂e ≤ x∗e (since either x̂e = x∗e or x̂e = 0). By plugging this into the above inequalities, we
will get g(x̃) ≤ 1+ε

t

∑t
i=1 g(x̃i) ≤ (1 + ε)g(x∗), which implies the claim that Algorithm 2

gives a (1 + ε)-approximation to the optimal solution.
Time Complexity: The decomposition step and sending the information within a

cluster takes O((D/ε) logn) rounds since the diameter of each cluster is O((D/λ) logn) =
O((D/ε) logn). Since each decomposition is independent, we can do all of them in parallel,
so steps 1-4 of the algorithm only take O((D/ε) logn) rounds in total. Clearly the rest of the
algorithm can be done in a constant number of rounds. Hence in total w.h.p. the algorithm
will take O((D/ε) logn) rounds. J

5 Distributed Approximation Algorithms for Network Design

In this section, we will focus on several network design problems which can be approximated
by first solving a convex relaxation using Algorithm 2 and then locally rounding the solution.
For that purpose, we will describe how each problem has a distance bounded network design
CP relaxation (Definition 10), and will then show that existing rounding schemes are local.
All missing proofs can be found in Appendix C.

5.1 Directed k-Spanner

Dinitz and Krauthgamer [9] introduced a linear programming relaxation for Directed
k-Spanner which is just a distance-bounded network design CP with demands pairs S = E,
allowed paths Pu,v which are the directed paths from u to v of length at most k, and objective
function g(x) =

∑
e∈E xe. They showed that this LP can be solved in polynomial time

(approximately if k is non-constant). We will denote this LP by LP (G). Clearly, LP(G) is a
distance bounded network design CP with D = k. Hence, Theorem 13 implies that we can
use Algorithm 2 to approximately solve this LP in O(k logn) rounds in the LOCAL model.

We now provide in Algorithm 3 a distributed rounding scheme that gives an O(n1/2 logn)-
approximation for Directed k-Spanner. This algorithm matches the best centralized
approximation ratio known [5], and is just the obvious distributed version of the algorithm
proposed in [5]. The difference is that here we truncate the shortest-path trees at depth k
(as opposed to full shortest-path trees), and nodes choose whether to become a tree root
independently (rather than chosen without replacement as in [5].

The following lemma is essentially from [5], with the proof requiring only slight technical
changes due to the slightly different algorithms. We sketch it for completeness in Appendix C.
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Algorithm 3: Distributed rounding algorithm for k-spanner.
Input :Graph G = (V,E), fractional solution 〈x, f〉 to LP(G).

1 E′ = ∅,∀v ∈ V : T inv = ∅, T outv = ∅.
2 for e ∈ E do
3 Add e to E′ with probability min(n1/2 · lnn · xe, 1).
4 for v ∈ V do

// Random tree sampling
5 Choose p uniformly at random from [0, 1].
6 if p < 3 lnn√

n
then

7 T inv ← shortest path in-arborescence rooted at v truncated at depth k.
8 T outv ← shortest path out-arborescence rooted at v truncated at depth k.

9 Output E′ ∪ (∪v∈V (T inv ∪ T outv )).// A node knows its portion of the output.

I Lemma 14. Given a directed graph G, LP(G) as defined, and a fractional solution LP ∗
to LP (G), the output of Algorithm 3 has size O(n1/2 · (n+ LP ∗) logn).

It is easy to see that this algorithm can be implemented in the LOCAL model.

I Lemma 15. Algorithm 3 runs in O(k) time in the LOCAL model.

We now immediately get our main result for Directed k-Spanner. Proof can be found in
Appendix C.

I Corollary 16. Algorithm 2 with D = k along with the rounding scheme in Algorithm 3
yields an O(n1/2 lnn)-approximation w.h.p. to Directed k-Spanner that runs in O(k logn)
time in the LOCAL model and uses only polynomial-time computations at each node.

5.2 Basic 3-Spanner and Basic 4-Spanner

If the input graph is undirected then stronger approximations are possible. In particular, for
stretch 3 and 4, there are Õ(n1/3)-approximations due to [5] (for stretch 3) and [11] (for stretch
4). Without going into details, both of these algorithms use the same LP relaxation as in
Directed k-Spanner, but round the LP differently. So in order to give distributed versions
of these algorithms, we only need to modify Algorithm 3 to use the appropriate rounding
algorithm (and change some of the other parameters in the shortest-path arborescence
sampling). Fortunately, both of these algorithms use rounding schemes which are highly local.
Informally, rather than sample each edge independently with probability proportional to the
(inflated) fractional value as in Algorithm 3, these algorithms sample a value independently
at each vertex and then include an edge if a particular function of the values of the two
endpoints (different in each of the algorithms) passes some threshold. Clearly this is a very
local rounding algorithm: once we have solved the LP relaxation using Theorem 13, each
node can draw its random value and then spend one more round to exchange a message
with each of its neighbors to find out their values, and thus determine which of the edges
have been included by the rounding. Thus the total running time is dominated by the time
needed to solve the LP, which in these cases is O(logn) using Theorem 13.
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5.3 Lowest-Degree k-Spanner
We now turn our attention to Lowest-Degree k-Spanner: Given a graph G = (V,E)
and a value k, we want to find a k-spanner that minimizes the maximum degree. We will
use the relaxation and rounding scheme proposed by Chlamtáč and Dinitz [6]. The linear
programming relaxation used in [6] is very similar to the Directed and Basic k-spanner LP
relaxation described earlier, with the difference being that a new variable λ is added to
represent the maximum degree, and so the objective is to minimize λ and constraints are
added to force λ to upper bound the maximum fractional degree. The proof of the following
result can be found in Appendix C.

I Theorem 17. Given a graph G = (V,E) (directed or undirected), and any integer k ≥ 1
there is a distributed algorithm that w.h.p. computes an Õ(∆(1−1/k)2)-approximation to the
Lowest-Degree k-Spanner problem, taking O(k logn) rounds of the LOCAL model and
using only polynomial-time computations at each node.

5.4 Directed Steiner Network with Distance Constraints
It is well-known that the centralized rounding of [5] for Directed k-Spanner is more general
than is actually stated in their paper. In particular, the randomized rounding for “thin” edges
gives the same guarantee even when each demand has a possibly different distance constraint.
This fact was used, e.g., in [7] in their algorithms for Distance Preserver, Pairwise
k-Spanner, and Directed Steiner Network with Distance Constraints. The
difficulty in extending the algorithm of [5] is not in the LP rounding, but rather because the
arborescence sampling technique used to handle thick edges in [5] (and in our Algorithm 3)
assumes that n is a lower bound on the optimal cost. This assumption is true for Directed
k-Spanner, but false for variants where there might be a tiny number of demands. However,
it is easy to see that if we assume the demand graph is spanning (i.e., assume that every node
is an endpoint of at least one demand) then the optimal solution must have at least n/2 edges,
and hence we can again just use [5] to get a Õ(

√
n)-approximation for Directed Steiner

Network with Distance Constraints as long as the demand graph is spanning.
While this is in the centralized setting, since our algorithm for Directed k-Spanner is

just a lightly modified distributed version of [5] (the only difficulty in the distributed setting
is solving the LP, which is why that is the main technical contribution of this paper), we can
easily modify it to give the same approximation for Directed Steiner Network with
Distance Constraints with spanning demand graphs. The only change is that we use
D = max(u,v)∈S L(u, v) instead of k when solving the linear programming relaxation (using
Theorem 13) and when truncating the shortest-path arborescences that we sample (note that
we have to assume that D is global knowledge, which is reasonable for spanner problems and
for Shallow-Light Steiner Network but may be less reasonable for other special cases
of Directed Steiner Network with Distance Constraints). This implies Theorem 4,
and all of the interesting special cases (Shallow-Light Steiner Network, Distance
Preserver, Pairwise k-Spanner, etc.) which it includes.
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A Proofs from Section 3

A.1 Proof of Lemma 6

The first property in Definition 5 is directly implied by the definition of rv for all nodes
v ∈ V . For the second property we consider an arbitrary node u ∈ V , and compute the
probability that the ball B(u, k) is not in any of the clusters in P . Consider an arbitrary
value 1 ≤ t ≤ n, let v ∈ V be the node such that t = π(v), and let z = zv be the real number
sampled by v. Also, for any x, y ∈ V , let d̃(x, y) = min(d(x, y), r lnn+ k). Let us also order
the clusters based on their center’s position in the permutation, so that Ct is the cluster
corresponding to t = π(v) (i.e. v is the cluster center of Ct). We define Xt to be the event
that if B(u, k) is not in the first t− 1 clusters, then it is also not in any of the remaining
clusters. We provide a recursive bound on Xt based on Xt+1. Then we will get the second
property once we show Pr(X0) ≤ ε. We need to define the following events:

At : B(u, k) does not intersect with any of the clusters C1, .., Ct−1.
M cut
t : (d̃(v, u)− k ≤ z < d̃(v, u) + k | At).

Mex
t : (z < d̃(v, u)− k | At).

Xt : (@j ≥ t : B(u, k) ⊆ Cj | At).
In other words, conditional on the event that B(u, k) is not in any of the first t− 1 clusters,
either B(u, k) ⊆ Ct, or else one the following two events will occur: M cut

t is the event that
B(u, k) partially intersects Ct, and Mex is the event that B(u, k) does not intersect Ct.

Now the event Xt occurs only when either M cut
t occurs or both Mex

t and Xt+1 occur
(i.e. when B(u, k) is not in Ct or any of the next clusters). Hence we can write Pr(Xt) ≤
Pr(M cut

t ) + Pr(Mex
t ) Pr(Xt+1). Recall that z is independently sampled from the density

function p(zv) =
(

n
n−1

)
e−zv/r

r , and thus M cut can be written as follows:

Pr(M cut
t ) =

∫ d̃(v,u)+k

d̃(v,u)−k
p(z)dz =

(
n

n− 1

)(
1− e−2k/r

)
e−(d̃(v,u)−k)/r

≤
(

n

n− 1

)
2k
r
e−(d̃(v,u)−k)/r.

Similarly, we can write,

Pr(Mex
t ) =

∫ d̃(v,u)−k

0
p(z)dz =

(
n

n− 1

)(
1− e−(d̃(v,u)−k)/r

)
.

We now inductively prove that Pr(Xt) ≤ (2 − t
n−1 )( 2k

r ). If t < n is the last step, then
Pr(Xt) = 0, and thus this bound clearly holds. Assume that the bound is true for Xt+1, we
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show that then it also holds for Xt. We have,

Pr(Xt) ≤ Pr(M cut
t ) + Pr(Mex

t ) Pr(Xt+1)

≤
(

n

n− 1

)(
2k
r

)(
1 + n− t− 2

n− 1

(
1− e−(d̃(v,u)−k)/r

))
.

Since e−(d̃(v,u)−k)/r ≥ e−(lnn) ≥ 1/n, we get that Pr(Xt) ≤
(

2− t
n−1

) ( 2k
r

)
. The second

property is then implied by the fact that Pr(X0) ≤ 2k
r = 2k

2k(1/ε) = ε.

B Proofs from Section 4

B.1 Proof of Lemma 9
Let σ = {σ1, ..., σ`} be a partition of nodes in V . For all 1 ≤ i ≤ `, we have g(xσi) =
maxv∈σi(

∑
u:(v,u)∈E x

σi
(v,u)). Then we can set hσ(y) = maxi∈[`](yi), y ∈ R`, where yi is

the i-th coordinate of y. Let σ(v) ∈ σ be the cluster that node v belongs to. For all
x = (x(u,v))(u,v)∈E , where x(u,v) = 0 for any (u, v) ∈ E s.t. σ(u) 6= σ(v) , we have,

g(x) = max
v∈V

 ∑
u:(v,u)∈E

x(v,u)

 = max
σi∈σ

max
v∈σi

(
∑

u:(v,u)∈E

xσi(v,u)


= max

σi∈σ
(g (xσi)) = hσ(g(xσ1), g(xσ2), ..., g(xσ`)).

It is also easy to see that the function hσ is convex and non-decreasing. Hence hσ satisfies
the conditions in Definition 8.

B.2 Proof of Lemma 11
The first property of (k, ε)-padded decompositions implies that for all nodes u ∈ C, we have
d(u, v) = O((k/ε) logn), where v is the center of cluster C. Each node u ∈ C that determines
v as the center of the cluster it belongs to, will send the information of its incident edges to
v. Since there is no bound on the size of the messages being forwarded, this can be done in
O((k/ε) logn) time.

C Proofs from Section 5

C.1 Proof of Lemma 14
Let Ns,t be the subgraph of G induced by the nodes on paths in Ps,t. Edge e ∈ E is called a
thick edge if |Ns,t| ≥ n1/2, and otherwise it is called a thin edge. The set E′ in Algorithm
3 satisfies the spanner property for all thin edges (as argued in [5]), and the random tree
sampling phase satisfies the spanner property for the thick edges. Each thick edge (s, t) is
spanned if at least one node in Ns,t performs the random tree sampling. This probability
is at least 1 − (1 − 3 lnn

n1/2 )n1/2 ≥ 1 − 1/n3. Then a union bound on all the edges (of size
at most O(n2)) implies that w.h.p. all thick edges are spanned. We now argue that the
output is an O(n1/2 logn)-approximation algorithm: at most O(n1/2 logn) arborescences
are chosen with high probability (each arborscence has O(n) edges), and we argued that
|E′| = O(n1/2 logn · LP ∗). Hence, the overall size of the output is O(n1/2 logn · (n+ LP ∗)).



M. Dinitz and Y. Nazari 5:19

C.2 Proof of Lemma 15
Each node v in G has received the fractional solutions xe corresponding to all edges e ∈ E
incident to v. The randomized rounding step can be performed locally: the node with the
smaller ID flips a coin, and exchanges the coin flip result with its corresponding neighbors. In
order to form T ini and T outi , v performs a distributed BFS algorithms by forming a shortest
path tree while keeping track of the distance from v. When the distance counter reaches k,
the tree construction terminates.

C.3 Proof of Corollary 16
We first run Algorithm 2 to solve LP(G) up to a constant factor (by setting ε = 1/2), which
takes time O(k logn) with high probability (Theorem 13). Since each cluster center can
solve the local LP in polynomial time, all computations are polynomial time. We then use
Algorithm 3 to round the fractional solutions of LP(G), which takes O(k) time. Since the
size of a k-spanner is at least Ω(n), Algorithm 3 then outputs an O(n1/2 lnn)-approximation
to the minimum (Lemma 14).

C.4 Proof of Theorem 17
It is easy to see that the LP relaxation proposed in [6] can be written as a distance bounded
network design CP where the objective is max

v∈V
(deg(v)) = max

v∈V

(∑
u:{v,u}∈E x{v,u}

)
(we do

not need to use their extra variable λ, since we can instead directly write the objective).
Lemma 9 implies that this function is convex partitionable w.r.t. G, and hence the Lowest-
Degree k-Spanner problem can be approximately solved (to within a constant factor) by
using Algorithm 2 with ε = 1/2. Next, we use the following rounding scheme proposed in [6]:
each edge e ∈ E is included in the spanner with probability x1/k

e . It is clear that this can
be done in a constant number of rounds, and hence the overall algorithm takes O(k logn)
rounds (by Theorem 13) in the LOCAL model. In [6], it was shown that this leads to a
Õ(∆(1−1/k)2)-approximation solution of the problem.
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Abstract
In the subgraph-freeness problem, we are given a constant-sized graph H, and wish to determine
whether the network graph contains H as a subgraph or not. Until now, the only lower bounds
on subgraph-freeness known for the CONGEST model were for cycles of length greater than 3;
here we extend and generalize the cycle lower bound, and obtain polynomial lower bounds for
subgraph-freeness in the CONGEST model for two classes of subgraphs.

The first class contains any graph obtained by starting from a 2-connected graph H for which
we already know a lower bound, and replacing the vertices of H by arbitrary connected graphs.
We show that the lower bound onH carries over to the new graph. The second class is constructed
by starting from a cycle Ck of length k ≥ 4, and constructing a graph H̃ from Ck by replacing
each edge {i, (i+ 1) mod k} of the cycle with a connected graph Hi, subject to some constraints
on the graphs H0, . . . ,Hk−1. In this case we obtain a polynomial lower bound for the new graph
H̃, depending on the size of the shortest cycle in H̃ passing through the vertices of the original
k-cycle.
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1 Introduction

In the subgraph-freeness problem, we are given a constant-size graph H, and the goal is to
determine whether the network graph contains a copy of H as a subgraph, or not. Subgraph-
freeness in the CONGEST network model has recently received significant attention from the
distributed computing community [4, 9, 10, 11, 12, 17], but until now, the only lower bounds
in the literature have been for cycles: in [7] it was shown that checking Ck-freeness requires
Ω̃(n) rounds for odd k and Ω̃(n2/k) rounds for even k. The lower bound for even cycles was
recently strengthened to Ω̃(

√
n) for any even k in [17]. In [1], it is shown that one-round

deterministic algorithms for triangle-detection require bandwidth Ω(∆ logn), where ∆ is the
degree of the graph, and if we restrict to one bit per round, Ω(log∗ n) rounds are required.

In this work we seek to improve our understanding of the subgraph-freeness problem by
broadening the class of graphs for which we know a polynomial lower bound, i.e., a lower
bound of the form Ω(nδ) for some δ ∈ (0, 1]. We give two classes of such graphs and prove
polynomial lower bounds for them.

The first class of graphs comprises all graphs that can be constructed by starting from
some 2-vertex-connected graph H for which we already know a polynomial lower bound
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(a) Vertex replacement (b) Edge replacement

Figure 1

(regardless of how it was proven), and attaching an arbitrary graph to each vertex of H (see
Fig. 1a). The graphs attached to different vertices may not share vertices or edges. We show
that the new graph H̃ requires the same number of rounds as the graph H that we started
with, up to a polylogarithmic factor, for both deterministic and randomized algorithms.

In particular, consider any connected graph G that is not a tree. (Trees are known to be
easy: for any constant-sized tree T , the T -freeness problem can be deterministically solved
in O(1) rounds [8].) The block cut tree of G is a decomposition of G into a tree of maximal
2-connected components C1, . . . , Ck, where the pairwise intersection of any two components
Ci, Cj (for i 6= j) is either empty or comprises a single vertex (called a cut vertex) [13]. Our
first result shows that if for some i we know a lower bound of Ω(nδ) on checking Ci-freeness,
then the entire graph G is also hard and requires Ω̃(nδ) rounds.

The second class of graphs takes a different approach: instead of replacing vertices, we
replace edges (see Fig. 1b). We start with the 4-cycle1 on {0, 1, 2, 3}, and replace each edge
{i, (i+ 1) mod 4} of the cycle with an arbitrary graph connecting vertices i and (i+1) mod 4,
subject to two constraints: the resulting graph after replacing the edges must remain 2-
connected, and no graph we added can contain the other three, connected to each other, as
a subgraph (see Section 4 for a more formal definition). We show that checking subgraph-
freeness for the resulting graph requires Ω̃(nδ) rounds, where the exponent δ ∈ (0, 1/2]
depends on the graphs with which the edges of C4 were replaced. For example, the second
class of graphs includes any cycle of length at least 4 (for which our result is identical to [17]),
as well as cycles with any number of chords, provided at least one of the smaller cycles
created has length at least 4, and the smaller cycles are not too unbalanced in size.

The two classes complement each other: the graphs in the first class are obtained by
starting from a 2-connected graph and replacing its vertices with other graphs, yielding a
graph that is not 2-connected; the second class allows us to prove lower bounds on H-freeness
for new subgraphs H that are 2-connected, and these can then be used to construct more
graphs in the first class.

The reductions we use to show lower bounds for the two classes of graphs are fairly simple,
but proving their correctness is non-trivial. For the first class, we take an algorithm for
detecting the more complicated graph H̃, and transform it into an algorithm for the simpler
graph H that we started with. This allows us to carry the lower bound over in the other

1 We can also start from a larger cycle, but this gives us no additional power, because larger cycles can be
constructed out of 4-cycles using our reduction. The lower bound we obtain would also not be higher.
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direction. The transformation works by having each node in the network graph choose some
vertex v in H, and “pretend” that it is the entire subgraph that we attached to vertex v in
H when we constructed H̃. We must show that our algorithm does not inadvertently create
copies of H̃ when the network graph does not contain a copy of H, and this is non-trivial.
For the second class of graphs we extend the reduction from the two-party communication
complexity of set disjointness used in [7] to show the hardness of C4-freeness. Again, the
difficulty lies in proving that in our reduction we do not create copies of H̃ when we do not
mean to.

1.1 Related Work
The problem of subgraph-freeness (also called excluded or forbidden subgraphs) has been
extensively studied in both the centralized and the distributed worlds. For the general
problem of detecting whether a graph H is a subgraph of G, where both H and G are part
of the input, the best known sequential algorithm is exponential [21]. When H is fixed and
only G is the input, the problem becomes solvable in polynomial time. For example, using
a technique called color coding, it is possible to detect a simple cycle of a specific size in
expected time that is the running time of matrix multiplication [2]. We use the color coding
technique in Section 3.

In the distributed setting, [10] and [11] very recently provided constant-round randomized
and deterministic algorithms, respectively, for detecting a fixed tree in the CONGEST model.
Both papers, as well as several others [3, 4, 12, 9] , also considered more general graphs,
but with the exception of trees, they studied the property testing relaxation of the problem,
where we only need to distinguish a graph that is H-free from a graph that is far from
H-free. (In [9] there is also a property-testing algorithm for trees.) Here we consider the
exact version.

Another recent work [15] gave randomized algorithms in the CONGEST model for triangle
detection and triangle listing, with round complexity Õ(n2/3) and Õ(n3/4), respectively, and
also established a lower bound of Ω̃(n1/3) on the round complexity of triangle listing. There
is also work on testing triangle-freeness in the congested clique model [5, 6] and in other, less
directly related distributed models.

As for lower bounds on H-freeness in the CONGEST model, the only ones in the literature
(to our knowledge) are for cycles. (In [7] there are lower bounds for other graphs, in
a broadcast variant of the CONGEST model where nodes are required to send the same
message on all their edges.) For any fixed k > 3, there is a polynomial lower bound for
detecting the k-cycle Ck in the CONGEST model: it was first presented by [7], which showed
that Ω(ex(n,Ck)/ log(n)) rounds are required, where ex(n,Ck) is the largest possible number
of edges in a Ck-free graph over n vertices (see [14] for a survey on extremal graphs with
forbidden subgraphs). In particular, for odd-length cycles, the lower bound of [7] is nearly
linear. Very recently, [17] improved the lower bound for even-length cycles to Ω(

√
n/ log(n))).

2 Preliminaries

We generally work with undirected graphs, unless indicated otherwise.
The CONGEST model is a synchronous network model, where computation proceeds

in rounds. In each round, each node of the network may send B bits on each of its edges,
and these messages are received by neighbors in the current round. As is typical in the
literature, we assume B = O(logn) here (the lower bounds generalize to other settings of B
in a straightforward manner).
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Notation. We let V (G), E(G) denote the vertex and edge set of graph G, respectively, and
use the following short-hand notation:

H ⊆ G for two graphs H,G stands for the subgraph relation: H ⊆ G iff V (H) ⊆ V (G)
and E(H) ⊆ E(G).
We use A ↪→ B to denote a function mapping all elements of A into B. Specifically, if G
contains a copy of H as a subgraph, we frequently let σ : H ↪→ G denote an isomorphism
mapping the nodes of H into V (G). When the isomorphism is onto, we use the usual →,
i.e., σ : H → H ′.
If σ : H ↪→ G is an isomorphism mapping H onto a copy of H in G, we let σ(H) denote
the image of H under σ. We have σ(H) ⊆ G.

I Definition 1 (Subgraph freeness). Fix a graph H of constant size. In the H-freeness
problem, the goal is to determine whether the input graph G contains a copy of H as a
subgraph or not, that is, whether there is a subgraph G′ ⊆ G which is isomorphic to H.

We say that a distributed algorithm A solves H-freeness with success probability p if
When A is executed in a graph containing a copy of H, the probability that all nodes
accept is at least p.
When A is executed in an H-free graph, the probability that at least one node rejects is
at least p.

We typically assume constant p, e.g., p = 2/3.
The graph classes we define assume some amount of vertex connectivity, defined below.

I Definition 2 (Vertex connectivity). We say that a graph G is k-connected, for k ≥ 1, if
removing any k vertices from G (along with all their incident edges) does not disconnect G.

In Section 4 we rely on a lower bound for two-party communication complexity: we
have two players, Alice and Bob, with private inputs X,Y , respectively. The players wish
to compute a joint function f(X,Y ) of their inputs, and we are interested in the total
number of bits they must exchange to do so (see the textbook [18] for more background on
communication complexity).

In particular, we are interested in the set disjointness function, where the inputs X,Y
are interpreted as subsets X,Y ⊆ [n], and the goal of the players is to determine whether
X ∩ Y = ∅. The celebrated lower bound of [16, 20] shows that even for randomized
communication protocols, the players must exchange Ω(n) bits to solve set disjointness with
constant success probability.

3 Vertex-Replacement Reduction

In this section we describe a reduction that allows us to take any 2-connected graph H for
which we know a polynomial lower bound, attach arbitrary connected graphs to the vertices
of H to obtain a new graph H̃, and obtain the same lower bound on H̃ as for H, up to a
logarithmic factor.

Let us describe more formally what we mean by “attaching graphs to the vertices of H”.

I Definition 3 (Graph attachment). Fix two graphs G,H over vertex sets V (G), V (H) with
a unique intersection, V (G) ∩ V (H) = {v}. We define an attached graph, G ∪H, as follows:
V (G ∪ H) = V (G) ∪ V (H), and E(G ∪ H) = E(G) ∪ E(H). We refer to vertex v as the
attachment point of G ∪H.

The attachment operation trivially has the following property, which we rely on in the
sequel:
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I Property 4. Let G = H1 ∪H2, with v ∈ V (H1) ∩ V (H2) the attachment point. Then for
any two vertices w1 ∈ V (H1), w2 ∈ V (H2), any path u1 = w1, u2, . . . , u` = w2 from w1 to w2
in H must include v (that is, for some 1 ≤ i ≤ ` we have ui = v).

I Definition 5 (Compatible graphs). Let G be a graph with V (G) = [s]. We say that a
sequence of graphs H0, . . . ,Hs−1 is compatible with G if
(1) For any i ∈ [s] we have V (Hi) ∩ V (G) = {i}, and
(2) For any i 6= j we have V (Hi) ∩ V (Hj) = ∅.
If H0, . . . ,Hs−1 are compatible with G, we use the short-hand notation G∪

⋃s−1
i=0 Hi to denote

the graph defined by attaching each Hi to G (the order in which we attach H0, . . . ,Hs−1
does not matter).

I Definition 6 (The class AH). Fix a graph H on vertices V (H) = [s]. The class AH
includes any graph given by H̃ = H ∪

⋃s−1
i=0 Hi for H0, . . . ,Hs−1 compatible with H.

See Figure 1a for an illustration.
Now we can state our main theorem for this section.

I Theorem 7. Let H be any 2-connected graph on V (H) = [s]. If solving H-freeness requires
Ω(nδ) rounds in graphs of size n for deterministic algorithms, then for any H̃ ∈ AH , solving
H̃-freeness requires Ω(nδ/ logn) rounds for deterministic algorithms. The same relationship
holds for randomized algorithms, except that if checking H-freeness requires Ω(nδ) rounds for
randomized algorithms, then checking H̃-freeness requires Ω(nδ/ log2 n) rounds.

To prove Theorem 7, we describe a randomized reduction, which takes an algorithm for
checking H̃-freeness, and constructs a randomized algorithm for checking H-freeness. This
allows us to carry the lower bound over in the other direction, from checking H-freeness
to checking H̃-freeness. This prove Theorem 7 for randomized algorithms; to prove it for
deterministic algorithms, we derandomize our reduction.2

3.1 The Reduction

Fix an algorithm Ã for checking H̃-freeness, with running time t(n) and success probability
p. We wish to use Ã to check H-freeness. To do this, we have each node v of the network
choose a “role in H”, c(v) ∈ V (H); we call c(v) the color of v. Each node v then “imagines”
that it is attached to a copy of Hc(v), and we simulate the run of Ã in the resulting network.

In the randomized reduction, each node chooses a random color; we call a copy of H
properly colored if each node chose a color that matches the vertex it is mapped to in H.

I Definition 8 (Properly-colored copies). Fix graphs G,H, such that G contains a copy of
H. Let σ : H ↪→ G map H onto its copy in G. We say that σ(H) is properly colored by an
assignment of colors c : V (G)→ V (H) if for each v ∈ σ(H) we have c(v) = σ−1(v).

Next we formally describe the algorithm A(c) that is executed for a given color assignment
c : V (G)→ V (H), where G is the network graph.

2 It is also possible to first derandomize the reduction and then apply it to either a randomized or
deterministic algorithm. However, we must first reduce the error probability of the randomized
algorithm, so either way we lose an additional log n factor.
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3.1.1 Construction of A(c)
We define a “virtual graph”, G̃c, where
(1) Each vertex v ∈ V (G) is replaced by (v, c(v)); let Gc be the resulting copy of G.
(2) Each v ∈ V (G) creates a “virtual copy” G̃v of the graph Hc(v), where each vertex

i ∈ Hc(v) is replaced by (v, i).
(3) G̃c = Gc ∪

⋃
v∈V (G) G̃v, that is, G̃c is obtained by attaching the copies G̃v for each

v ∈ V (G) to Gc.

Let Ũv = V (G̃v) denote the “virtual vertices” corresponding to the copy of Hc(v) attached
to vertex v (i.e., to vertex (v, c) in G̃c).

In A(c), we simulate the execution of Ã in the virtual graph G̃c, with each vertex v ∈ G
simulating all the vertices in Ũv (including “itself”, vertex (v, c(v)). At the end of the
execution, each vertex v accepts if all virtual vertices in Ũv accepted, and otherwise it rejects.

The running time of A(c) in G is the same as the running time of Ã in G̃c. Let
a = maxi |V (Hi)| be the maximum number of vertices simulated by a vertex of G in G̃c.
Then |V (G̃c)| ≤ a|V (G)|. Thus, the worst-case running time of A in G is bounded by t̃(an).

The algorithm A itself simply has each node v choose a random color c(v) ∈ V (H), and
then runs A(c). We will show that

If the graph contains a copy of H, then A accepts with probability at least p/ss;
If the graph does not contain a copy of H, then A accepts with probability at most 1− p.

3.1.2 What Could Go Wrong?
Before proving A correct, let us illustrate why the requirement that H be 2-connected is
necessary, and in general what could go wrong if we are not careful.

Figure 2 A bad example with a subgraph H that is not 2-connected.

Consider the graph H which is the line over vertices {0, 1, 2}, in increasing order. H is of
course not 2-connected. Let H0 be the graph containing only a single edge, {0, a}, and for
each i = 1, 2, let Hi be the single vertex i. The graph H̃ we obtain by attaching H0, H1, H2
to H is the line of length 3 (i.e., 3 edges).

Now let G be a graph comprising a single edge, {a, b}, and suppose that we were unlucky
and chose the color assignment c(a) = c(b) = 0. Then G̃c is a line of length 3, i.e., it contains
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H̃ as a subgraph. But G does not contain H as a subgraph, so our reduction would be
unsound if we applied it with this H.

Next we show that for subgraphs H that are 2-connected, our reduction is complete
and sound: the graph we construct contains a copy of H̃ iff the original graph contained a
properly-colored copy of H.

3.1.3 Completeness of A

Suppose that the original graph G contains a copy H, and let σ : H ↪→ G be an isomorphism
mapping H into G. Suppose further that σ(H) is properly colored by c. Conditioned on
this event, the new graph G̃c contains a copy of H̃, witnessed by the following isomorphism
σc: for each x ∈ H̃, if x ∈ Hj , then σc(x) = (σ(j), x). Thus, conditioned on the event that
we get a good coloring c, A(c) accepts with probability at least p. The overall acceptance
probability of A is at least p/ss.

3.1.4 Soundness of A

Now suppose that G does not contain a copy of H; we show that for any coloring c of G, the
corresponding graph G̃c does not contain a copy of H̃. Therefore A rejects with the same
probability that Ã rejects, i.e., at least p.

Suppose for the sake of contradiction that there is a coloring c of G such that G̃c does
contain a copy of H̃, and let us abuse notation by denoting G̃ = G̃c. We will show that there
is some “virtual copy” G̃v which contains infinitely many distinct copies of H, which is, of
course, impossible.

First we show that any copy of H in G̃ must be entirely contained in some G̃v.

I Observation 9. For any isomorphism σ : H ↪→ G̃, there is a vertex v ∈ V (G) such that
σ(H) ⊆ Ũv.

Proof. From our assumption, there is no copy of H in G, and therefore σ(H) 6⊆ G; that is,
σ(H) must contain some “virtual nodes”. Accordingly, there must be some “virtual part”, Ũv,
such that σ(H)∩ Ũv \ {v} 6= ∅. If σ(H) is only partially contained in Ũv (i.e., if σ(H) 6⊆ Ũv),
then removing (v, c(v)) from G̃ disconnects σ(H), because any path from vertices in Ũv to
vertices outside Ũv must pass through (v, c(v)) (Property 4). But H is 2-connected, and
therefore σ(H) must be entirely contained in Ũv. J

Now fix an isomorphism σ : H̃ ↪→ G̃, and let v be the vertex from Observation 9, such
that σ(H) ⊆ Ũv. Let i = c(v).

I Observation 10. σ(Hi) 6⊆ G̃v.

Proof. Recall that Ũv is the vertex set of G̃v, which is a copy of Hi; thus, |Ũv| = |V (Hi)|,
and we can only have σ(Hi) ⊆ Ũv if σ(Hi) = Ũv. But Ũv contains at least one vertex which
is not in σ(Hi): take any vertex j ∈ V (H) \ {i} (which exists because |V (H)| > 1), and since
σ(H) ⊆ Ũv and V (H)∩ V (Hi) = {i}, we have σ(j) ∈ Ũv \ σ(Hi). Therefore σ(Hi) 6= Ũv and
σ(Hi) 6⊆ Ũv. J

I Observation 11. We have (v, i) ∈ σ(Hi).

Proof. From Observation 10, there is some u ∈ Hi such that σ(u) 6∈ Ũv. In Hi, there is a
path π from u to i, because u, i ∈ Hi and Hi was assumed connected; the isomorphism σ

maps π onto a path σ(π) in G̃ from σ(u) 6∈ Ũv to σ(i) ∈ σ(H) ⊆ Ũv. By Property 4, the
path σ(π) must include (v, i), and therefore (v, i) ∈ σ(Hi). J
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For a vertex (v, x) ∈ G̃v, let σ′ be the isomorphism between G̃v and Hi given by
σ′(v, x) = σ(x). Note that σ′(G̃v) ⊆ σ(Hi) ⊆ G̃v.

We now construct a sequence of isomorphisms σ1, σ2, . . . : H → G̃v as follows:
σ0 = σ,
σj+1(x) = σ′(σj(x)) for any j ≥ 0, x ∈ H.

Note that a-priori, this sequence is not necessarily well-defined, because σ′ can map nodes of
G̃v to nodes outside G̃v. We will show that this does not happen to nodes of H, so that we
get infinitely many copies of H inside G̃v.

For any j > 0, let

dj = distG̃v
((v, i), σj(i)).

Also, let πj be a path of length dj between (v, i) and σj(i) in G̃v. (These definitions assume
that the sequence σ1, . . . , σj is well-defined up to index j, and accordingly we will only use
them under this assumption.)

I Observation 12. Let π ⊆ G̃v be a simple path between two vertices (v, x), (v, y) ∈ G̃v, such
that σ′(v, x), σ′(v, y) ∈ G̃v as well. Then σ′(π) ⊆ G̃v.

Proof. Assume for contradiction that σ′(π) 6⊆ G̃v, and let (v, w) ∈ π be some vertex such
that σ′(v, w) 6∈ G̃v. Split π into two sub-paths, π1 and π2, where π1 connects (v, x) to (v, w),
and π2 connects (v, w) to (v, y). The isomorphism σ′ maps π1, π2 into two simple paths
σ′(π1), σ′(π2) connecting σ′(v, x) to σ′(v, w) and σ′(v, w) to σ′(v, y), respectively. Since
σ′(v, w) 6∈ G̃v and σ′(v, x), σ′(v, y) ∈ G̃v, Property 4 asserts that σ(π1) and σ(π2) both
include node (v, i). But this means that σ(π) = σ(π1)σ(π2) is not a simple path, which is a
contradiction, as π is simple and σ′ is bijective. J

For convenience, let us denote σ0(i) = (v, i).

I Claim 13. Fix k > 0, and assume that σj(H) ⊆ G̃v for each j < k. Then for any 0 ≤ j < k

and 0 < ` < k with j + ` < k, there is a simple path π ⊆ G̃v of length d` connecting σj(i)
and σj+`(i).

Proof. By induction on j.
For j = 0, this is immediate from the definition of d` as the distance in G̃v between

σ0(i) = (v, i) and σ`(i).
For the induction step, suppose that the claim holds for j: there is a simple path π ⊆ G̃v

of length d` connecting σj(i) and σj+`(i). Assume that j + 1 + ` < k, and recall that we
assumed σr(H) ⊆ G̃v for each 0 ≤ r < k. Then in particular, σj+1(i) = σ′(σj(i)) ∈ G̃v and
σj+`+1(i) = σ′(σj+`(i)) ∈ G̃v. Thus we can apply Observation 12 to get that σ′(π) ⊆ G̃v.
This proves the claim, because σ′(π) connects σj+1(i) and σj+`+1(i) and has length d`. J

I Corollary 14. Fix k > 0, and assume that σj(i) ∈ G̃v for each j < k. Then for any
0 ≤ j < k and 0 < ` < k with j + `+ 1 ≤ k, there is a simple path of length d` connecting
σj(i) and σj+`(i).

Proof. If j + `+ 1 < k, this is Claim 13. If j = 0, this follows from the definition of dj , as in
the base case of Claim 13. Finally, if j + `+ 1 = k, then Claim 13 shows that there is a path
of length d` between σj−1(i) ∈ G̃v and σj+`−1(i) ∈ G̃v, and applying σ′ once more yields a
path of length d` between σ′(σj−1(i)) = σj(i) and σ′(σj+`−1(i)) = σj+`(i). J

I Claim 15. For each k ≥ 0 we have σk(H) ⊆ G̃v.
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Proof. By induction on k. The base case, k = 0, is by choice of v, i.
For the induction step, let k ≥ 1, and assume that σj(H) ⊆ G̃v for each j < k.
It suffices to find some j < k such that there is a path of length at most dj between

σj(i) and σk(i): since dj is the distance from σj(i) to (v, i), any path of length at most dj
starting at σj(i) ends inside G̃v. We therefore get that σk(i) ∈ G̃v, and since any copy of H
is entirely contained in some G̃w for w ∈ V (G) (Observation 9), σk(H) ⊆ G̃v.

Let us write k = 2j + b for j > 0 and b ∈ {0, 1}. By Corollary 14, there is a path π ⊆ G̃v
of length dj connecting σj+b(i) and σ2j+b(i) = σk(i). If k is even, i.e., b = 0, then we are
done, as there is a path of length dj between σj(i) and σk(i).

Suppose now that k is odd, i.e., b = 1. Then we just showed that there is a path of length
dj connecting σj+1(i) and σk(i). If dj ≤ dj+1, then we are done. Otherwise, dj > dj+1. By
Corollary 14, there is a path of length dj+1 < dj between σj(i) and σ2j+1(i) = σk(i), so
again we are done. J

Next we show that the copies σ1(H), σ2(H), . . . cannot overlap completely.
I Claim 16. For each 1 ≤ j < k we have σj(H) 6= σk(H).
Proof. By induction on j.

For the base case, observe that for any k > 1 we have σ(H) 6= σk(H): since H ∩Hi = {i},
we know that σ(H) ∩ σ(Hi) = {σ(i)}, but for all k > 1 we have σk(H) ⊆ σ(Hi). Therefore
σ(H) ∩ σk(H) ⊆ {σ(i)}, and since |H| > 1 we get that σ(H) 6= σk(H).

Now suppose the claim holds for j, and suppose for the sake of contradiction that
σj+1(H) = σk(H) for some k > j+1. Since σj+1(H) = σ′(σj(H)) and σk(H) = σ′(σk−1(H)),
and σ′ is bijective, we get that σj(H) = σk−1(H), which contradicts the induction hypothesis
(as k > j − 1). J

We have reached a contradiction: we have an infinite sequence of copies σ1(H), σ2(H), . . .
all contained in G̃v but no two are identical. This is impossible, because G̃v is finite.

3.2 Lower Bound for Randomized Algorithms
We can now use the reduction described above to prove Theorem 7 for randomized algorithms.

Proof of Theorem 7 for randomized algorithms. Fix an algorithm Ã for solving H̃-freeness,
with success probability p > 1/2 and running time t(n).

Our first step is to construct from Ã an algorithm Ã′, such that in graphs of size s ·n, the
success probability of Ã′ in solving H̃-freeness is at least p′ ≥ p such that 1− p′ < p′/ss, that
is, p′ > 1/(1 + 1/ss). To do this, we execute Ã sequentially C · logn times for some constant
C, and have each vertex accept iff the majority of iterations of Ã accepted. If the graph is
not H̃-free, the expected number of executions that accept is at least Cp logn, and if the
graph is H̃-free, the expected number of iterations that accept is at most C(1− p) logn. We
choose C a sufficiently large constant so that by Chernoff, if the graph contains a copy of H̃,
then a given vertex rejects with probability at most p′/(sn), and if the graph is H̃-free, then
the probability that all vertices accept is at most p′. A union bound then gives the desired
success probability for Ã′.

Next, we use the transformation described above to obtain an algorithm A for solving
H-freeness with running time (Ct(sn) log(n)) in graphs of size sn. In graphs that contain a
copy of H, the probability that A accepts is at least p′/ss, and in graphs that are H-free the
probability that A accepts is at most 1− p′. Since we chose p′ so that 1− p′ < p′/ss, we can
again use C ′ · logn iterations of A for some constant C ′ to increase the success probability
to 2/3. The resulting running time is C · C ′ · t(sn) log2 n, and we know that Ω(nδ) rounds
are required for solving H-freeness; therefore, t(N) = Ω(Nδ/ log2 N). J
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3.3 Derandomizing the Reduction
To obtain a deterministic reduction, we use a trick often used in the context of graph coloring.
We fix a set of L color assignments c1, . . . , cL : [n]→ [s] with the following property:3

I Property 17. Take any graph G on n vertices containing a copy of H, and let σ : H ↪→ G

map H onto its copy in G. Then σ(H) is properly colored by at least one color assignment ci
for i ∈ [L].

I Lemma 18. There is a list c1, . . . , cL with L = O(logn) satisfying Property 17.

Proof. We choose L random color assignments, and show that for L = O(logn), the
probability that the list we sampled satisfies Property 17 is greater than zero.

Let s = |V (H)|, and let L = α logn, where α ≥ 1 is a constant we will fix later. Consider
a specific copy σ(H) of H, identified by the vertices v1, . . . , vs ∈ [n]. The probability that a
random assignment c : V (G)→ V (H) colors σ(H) properly is 1/ss. The probability that c
fails to color σ(H) properly is 1− 1/ss, and the probability that L random assignments all
fail to color σ(H) properly is(

1− 1
ss

)L
≤
(
e−1/ss

)L
= e−L/s

s

=
(

1
n

)α/ss

.

By union bound, the probability that a list of L random color assignments is bad for any
copy of H is bounded by ns · (1/n)α/ss , and choosing α a sufficiently large constant, this
probability is strictly smaller than one. J

I Corollary 19. If solving H-freeness requires Ω(nδ) rounds in graphs of size n for determ-
inistic algorithms, then solving H̃-freeness also requires Ω(nδ/ logn) rounds for deterministic
algorithms.

Proof. Fix c1, . . . , cL : V (G)→ V (H) satisfying Property 17, with L = O(logn).
Given a deterministic algorithm Ã for testing H̃-freeness, we construct a deterministic

algorithm A for testing H-freeness, by repeating the simulation from the proof of Theorem 7
with each ci for i ∈ [L]. If at least one iteration of Ã accepts, then A accepts.

If Ã requires t(n) rounds in graphs of size n, then A requires t(sn) logn rounds.
When we run A in a graph that does not contain a copy of H, we showed that no color

assignment produces a copy of H̃, and therefore Ã rejects in all of its iterations. Therefore,
A rejects as well.

When we run A in a graph that contains a copy of H, there is some i such that ci colors
the copy of H properly, and in this case we showed that the virtual graph G̃ contains a copy
of H̃. In iteration i, Ã accepts, and therefore so does A. J

4 Edge-Replacement Reduction

In this section we describe another reduction, which replaces the edges of a graph with other
graphs. We choose to work with the 4-cycle C4 as our starting graph whose edges we replace.
(Any larger cycle would do just as well but would not give us any additional results, as larger
cycles can be constructed from C4 by replacing a single edge with a line comprising several
edges.)

3 Here we assume that the nodes of the graph in which our algorithm is executed have IDs {1, . . . , n},
but this assumption is not necessary. The IDs can be drawn from a polynomially-large namespace; the
proof of Lemma 18 still goes through, with a larger constant.
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I Definition 20 (The class B). A graph H on vertices V = {0, . . . , k − 1} is in B if it satisfies
the following conditions:
(1) H is 2-connected, and
(2) There are four subsets V0, . . . , V3 ⊆ V such that

(a) Vi ∩ V(i+1) mod 4 = {(i+ 1) mod 4} for each i ∈ {0, . . . , 3},
(b) Vi ∩ Vj = ∅ for each i, j ∈ {0, . . . , 3} where j 6= (i+ 1) mod 4,
(c) The subgraph Hi induced by H on Vi is connected,
(d) For each i ∈ [3], the graph Hi does not contain a copy of the other three attached to

each other,
⋃
j 6=iHj .

For an illustration, see Figure 1b. We believe the last requirement is not necessary for the
reduction, but our current proof of soundness requires it.

Our approach for proving a lower bound for graphs in the class B is to modify the
reduction from [7], which was originally used to show a lower bound of Ω̃(

√
n) for checking

C4-freeness. As in [7], we require dense graphs that are free of cycles up to some length. We
use the construction of [19], as stated in [14], Theorem 4.47:

I Theorem 21 ([19]). For any n, g ≥ 1 there is a bipartite graph on n vertices, with girth at
least 2g + 2, and Ω(n1+ε(g)) edges, where

ε(g) =
{

2/(3g − 3), if g is odd,
2/(3g − 3 + 1), if g is even.

Now we can state our result:

I Theorem 22. For each H ∈ B there is some δ ∈ (0, 1/2] such that testing H-freeness
requires Ω(nδ) rounds for randomized algorithms.

The proof is a reduction from two-party communication complexity: we show that if
there is a fast algorithm for H-freeness for some H ∈ B, then we can construct from this
algorithm a communication-efficient protocol for set disjointness. Because we know that set
disjointness requires Ω(n) bits of communication, we obtain a lower bound on the number of
rounds required for H-freeness for H ∈ B.

Proof of Theorem 22. For each i = 0, . . . , 3, let ki be the distance between i and (i +
1) mod 4 in Hi, and let k =

∑3
i=0 ki. Assume w.l.o.g. that k0 + k2 ≥ k1 + k3 and k2 ≥ k0.

Observe that H contains the cycle Ck, passing through nodes 0, 1, 2, 3 in this order.
Fix a bipartite graph F with girth greater than bk/k0c and with m edges, {e1, . . . , em}.

Direct the edges from one side to the other, and let us denote (u, v)−1 = (v, u).
We reduce from set disjointness on m elements as follows.
Given inputs X,Y ⊆ [m], Alice and Bob jointly construct a graph GX,Y , which consists

of many copies of H0, . . . ,H3, where
Alice decides which copies of H0 to include in GX,Y , depending on her input X;
Bob decides which copies of H1 to include in GX,Y , depending on his input Y ;
The set of copies of H1, H3 that are included in GX,Y is fixed and does not depend on
the input.

The various copies of H0, . . . ,H3 are connected to each other at vertices 0, . . . , 3 in such a
way that a copy of H appears iff X ∩ Y 6= ∅.

Each of the copies of Hi is associated with a directed edge e ∈ [n]2, and accordingly, we
name each copy He

i , where i is the index of the graph Hi of which He
i is a copy, and e ∈ [n]2

is the edge with which it is associated.
We now describe the construction formally.
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Step 1: Creating copies of H0, . . . , H3

For an edge e = (u, v) ∈ [n]2 and a graph Hi where i ∈ [3], we create a copy of Hi denoted
H

(u,v)
i , over the vertices

V
(
H

(u,v)
i

)
= {(i, u), ((i+ 1) mod 4, v)} ∪ {(x, i, (u, v)) | x ∈ V (Hi) \ {i, (i+ 1) mod 4}} .

The original Hi is mapped onto its copy H(u,v)
i by the isomorphism σ

(u,v)
i , defined as follows:

The vertices i and (i+ 1) mod 4 of Hi are mapped by σ(u,v)
i to (i, u), ((i+ 1) mod 4, v) in

H
(u,v)
i , respectively. Vertices y are called the endpoints of H(u,v)

i . Note that these vertices
can be shared between different copies He1

i and He2
j ; we elaborate below, in Property 23.

Any other vertex, x ∈ V (Hi) \ {i, (i+ 1) mod 4}, is mapped by σ(u,v)
i to a “fresh vertex”

denoted (x, i, (u, v)), which is not shared with any other copy.

As we said, some of the copies share vertices; the following property characterizes the
copies that do and do not share vertices, and which vertices are shared.

I Property 23. For any (i, ui, vi) 6= (j, uj , vj),
If j = (i+ 1) mod 4 and vi = uj, then V (H(ui,vi)

i ) ∩ V (H(uj ,vj)
j ) = {((i+ 1) mod 4, vi)};

If i = (j + 1) mod 4 and vj = ui, then V (H(ui,vi)
i ) ∩ V (H(uj ,vj)

j ) = {((j + 1) mod 4, vj)};
If neither condition above holds, then V (H(ui,vi)

i ) ∩ V (H(uj ,vj)
j ) = ∅.

Selecting copies for GX,Y

Not all the copies He
i described above actually appear in the graph GX,Y constructed by the

players; as we said, the players choose which copies to include based on their inputs.
Recall that F is a bipartite graph with girth greater than bk/k0c and with m edges,

{e1, . . . , em}, which we directed from one side to the other. Recall also that X,Y ⊆ [m], so
Alice and Bob can view their inputs as sets of edges from F . The graph GX,Y is constructed
by attaching together four sets of copies:

GX,Y =
3⋃
i=0

{
He
i | e ∈ E

X,Y
i

}
,

where the edge set EX,Yi is given by:
For i ∈ {1, 3} we define EX,Yi = {(u, u) | u ∈ [n]},
For i = 0 we define EX,Y0 = {ex | x ∈ X}, and
For i = 2 we define EX,Y2 =

{
e−1
y | y ∈ Y

}
.

The Simulation

We describe how Alice and Bob simulate the execution of a distributed algorithm for testing
H-freeness in the graph GX,Y . Let GA be the subgraph of GX,Y induced by all the nodes
participating in copies He

0 for some e ∈ F , and let GB be the subgraph of GX,Y induced by
all the nodes participating in copies He−1

2 for some e ∈ F . Alice simulates all the nodes in
GA, and Bob simulates the nodes in GB ; the remaining nodes are simulated by both players,
using public randomness to agree on their random choices. Note that by construction, each
player knows all internal edges on their side of the graph (GA, GB respectively), and both
players know the structure of the shared part of the graph.
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In each round, Alice sends Bob the messages sent on each edge adjacent to nodes (0, u),
(1, u) for each u ∈ [n], and Bob sends Alice the messages sent on each edge adjacent to
nodes (2, u), (3, u) for each u ∈ [n]. The players then feed these messages to the nodes they
simulate, and also compute the messages sent on internal edges in GA (for Alice) or GB (for
Bob), and feed them in as well.

If ∆ is the total degree of nodes 0, 1, 2, 3 in H, then the total number of bits required for
each round of the simulation is ∆n logn = O(n logn).

Correctness of the Reduction

First, suppose x ∈ X ∩ Y , and let ex = (u, v). Then Alice and Bob both add copies
H

(u,v)
0 , H

(v,u)
2 , with H(u,v)

0 connecting nodes (0, u) and (1, v), and H(v,u)
2 connecting nodes

(2, v) and (3, u). Because in GX,Y there is always a copy H(v,v)
1 of H1 connecting (1, v) to

(2, v), and there is always a copy H(u,u)
3 of H3 connecting (3, u) to (0, u), we get a complete

copy of H.
Now suppose that X∩Y = ∅, and assume for the sake of contradiction that GX,Y contains

a copy of H.

I Observation 24. In GX,Y there is no copy of H which intersects at most one copy H(u,v)
i

for each i ∈ [3].

Proof. Suppose there is such a copy. Because |V (H)| =
∑3
i=0 |Vi|, this copy of H must also

intersect at least one copy H(ui,vi)
i for each i ∈ [3], and since H is connected, these four

subgraphs must share vertices (as there are no edges between the non-shared vertices of
two distinct copies). By Property 23, we must have vi = u(i+1) mod 4 for each i ∈ [3]. In
particular, v0 = u1 = v1 = u2, and v2 = u3 = v3 = u0. But such copies would only be added
to the graph if there exist edges ex = (u0, v0) ∈ E(F ) with x ∈ X, and ey = (v2, u2) ∈ E(F )
with y ∈ Y . Since v2 = u0 and u2 = v0, we get that x = y and hence X ∩ Y 6= ∅, contrary to
our assumption. J

I Claim 25. In GX,Y , any cycle Cd with d ≤ k is entirely contained in some copy He
i for

i ∈ [3] and e ∈ [n]2.

Proof. Consider a cycle Cd in GX,Y which is not entirely contained in any copy Hx
i . Let

(i1, e1), . . . , (ia, ea) be the sequence of copies of Hej

ij
through which Cd passes. Then C ′ =

e1, . . . , ea is a cycle: the various copies connect to each other only at their endpoints, and if
Cd enters some copy through one endpoint it must exit at the other (it is a simple cycle, so
it cannot exit through the vertex where it entered).

Recall that F is a bipartite graph with girth greater than bk/k0c.
Consider first a cycle Cd completely contained in Alice’s side of the graph, GA. Then

each edge ej of C ′ corresponds to a passage through copy Hej

0 and adds at least k0 edges, as
this is the distance between vertices 0 and 1 inside H0. However, the girth of F is greater
than bk/k0c, so |C ′| > bk/k0c, that is, Cd must pass through at least bk/k0c+1 copies before
the cycle can close. This yields a total length of at least (bk/k0c+ 1) · k0 > k ≥ d.

Next, suppose that Cd is entirely contained in GB . The same argument holds, except that
each passage through a copy of H2 adds k2 edges instead of k0. Since k2 ≥ k0 by assumption,
we still get a total length of at least (bk/k0c+ 1) · k2 ≥ (bk/k0c+ 1) · k0 > k ≥ d.

Finally, suppose Cd is not entirely contained in GA or in GB. Because the copies{
H

(u,u)
1 , H

(u,u)
3

}
u∈[n]

are not connected to each other, and Cd is not contained in any single
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copy, it must go through some copies of H0 and H2 as well. We know from Observation 24
that Cd cannot use only one copy of Hi for each i ∈ [3].

Since F is bipartite, Cd must use at least two copies of H0 from Alice’s side, two copies
of H2 from Bob’s side, and either two copies of H1 or two copies of H3. Therefore the length
of the cycle is at least 2(k0 + k2 + min(k1, k3)) ≥ k + 2 min(k1, k3) > k ≥ d. J

I Corollary 26. There exist i ∈ [3] and u, v ∈ [n] such that for each j 6= i, j ∈ [3] we have
σ(Hj) ⊆ H(u,v)

i .

Proof. From the definition of the class B, the graph H contains a cycle Ck passing through
vertices 0, 1, 2, 3, and from Observation 25, σ maps this cycle into some copy, that is,
σ(Ck) ⊆ H(u,v)

i for some i ∈ [3] and u, v ∈ [n].
Recall that H(u,v)

i is connected to the rest of GX,Y only at its own endpoints (i, u)
and ((i + 1) mod 4, v), and that in H, each subgraph Hj connects to the next subgraph
H(j+1) mod 4 at the endpoint (j + 1) mod 4. This means that there is at most one j ∈ [3]
such that σ(Hj) 6⊆ H(u,v)

i : all paths from σ(0), . . . , σ(3) to vertices outside H(u,v)
i must pass

through an endpoint of H(u,v)
i , either (i, u) or ((i + 1) mod 4, v). Thus, if there is some

x ∈ Hj such that σ(x) 6∈ H(u,v)
i , then any path from σ(x) to σ(j) must pass through (i, u)

or through ((i+ 1) mod 4, v). In fact, because H is 2-connected, there must be two paths
from σ(x) to σ(j), one using (i, u) and one using ((i+ 1) mod 4, v), otherwise removing one
endpoint would disconnect H. But this implies that (i, u), ((i+ 1) mod 4, v) ∈ σ(Hj), and
hence for any j′ 6= j there is no path inside σ(Hj′) from σ(j′) to any node outside H(u,v)

i

Because Hj′ is connected, we get that σ(Hj′) ⊆ H(u,v)
i .

We have now shown that there is at most one j ∈ [3] such that σ(Hj) 6⊆ H
(u,v)
i . Note

in addition that we cannot have σ(Hi) ⊆ H
(u,v)
i , as H(u,v)

i is isomorphic to Hi, and in
addition at least two nodes in H(u,v)

i are not in the σ-image of Hi (nodes (i+ 2) mod 4 and
(i+ 3) mod 4). It follows that if some Hj “escapes” H(u,v)

i , i.e., if σ(Hj) 6⊆ H(u,v)
i , then j = i.

In other words, for each j 6= i we have σ(Hj) ⊆ H(u,v)
i . J

From the corollary we get that there is some i ∈ [3] which contains a copy of
⋃
j 6=iHj ,

contradicting condition (d) of the class B. This concludes the proof of soundness for the
reduction.

Putting Everything Together

Let g = bk/k0c. By Theorem 21, there is a bipartite graph with girth greater than g and
m = Ω(n1+ε) edges, where ε = Θ(1/g). Set F to be such a graph.

The size of the graph GX,Y is bounded by m · (|V0|+ |V 2|) + n · (|V1|+ |V3|) ≤ n1+ε · s,
where s = |V (H)|. We know that to solve disjointness over m elements we require a total of
Ω(m) bits, and our simulation requires O(n logn) bits per round, so the number of rounds of
any randomized algorithm testing H-freeness in GX,Y is Ω(m/(n logn)) = Ω(nε/ logn) in
the worst case.

Now let us express this result in terms of the size of the graph GX,Y : set N = |V (GX,Y )| ≤
n1+εs, where s is the size of H (a constant). Then n = Θ(N1/(1+ε)), and the running time
we get is Ω(N ε/(1+ε)/ logN) rounds. J
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5 Conclusion

In this paper we made a step towards understanding which subgraphs are hard to detect in
the distributed setting: we showed that if H is a 2-connected graph that is hard to detect,
then any graph obtained from H by replacing its vertices with other graphs will also be
hard; and that if we take a cycle and replace its edges with other graphs, then under some
conditions, then resulting graph will still be hard.

In our view, the main open question raised by our work is the following: is there a
2-connected graph H such that H-freeness can be solved in sub-polynomial time? Or are all
2-connected graphs hard?

As we pointed out in Section 1, if indeed all 2-connected graphs are polynomially hard,
then our first reduction implies that any graph that is not a tree is polynomially hard, yielding
a strong dichotomy between trees, which only require O(1) rounds to detect [8], and any
other connected graph.
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Abstract
This paper introduces atomic deferral, an extension to TM that allows programmers to move
long-running or irrevocable operations out of a transaction while maintaining serializability: the
transaction and its deferred operation appear to execute atomically from the perspective of other
transactions. Thus, programmers can adapt lock-based programs to exploit TM with relatively
little effort and without sacrificing scalability by atomically deferring the problematic operations.
We demonstrate this with several use cases for atomic deferral, as well as an in-depth analysis of
its use on the PARSEC dedup benchmark, where we show that atomic deferral enables TM to
be competitive with well-designed lock-based code.
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1 Introduction

Transactional memory (TM) [9], originally proposed as a hardware extension to facilitate the
creation of scalable nonblocking data structures, is beginning to be widely available. It is
supported by major hardware vendors [14], and a Technical Specification for C++ Extensions
for Transactional Memory (henceforth, TMTS) has been proposed [10], and is (partially)
implemented by the GCC compiler [5], with support for both hardware (HTM) and software
(STM) implementations. Thus, programmers are at last able to use TM in production.

The appeal of TM is its simplicity: a programmer need only wrap an operation inside
a language-level “transaction”; a run-time system executes the transaction using custom
hardware and/or compiler-generated software instrumentation. The run-time system monitors
the low-level memory accesses of transactions, and allows concurrent transactions to execute
simultaneously as long as their memory accesses do not conflict. TM is particularly appealing
for data structures and applications with irregular or hard-to-predict memory accesses (e.g.,
the rebalancing operations of a red-black tree mutation), making them difficult to implement
efficiently using locks. As long as conflicts are rare, so that transactions can run concurrently
with few rollbacks, and the implementation of TM itself does not introduce too much overhead,
a TM-based implementation should be comparable in performance to lock-based code when
running single-threaded, and scale much better with multiple threads.

Unfortunately, there are only a few examples of TM being used in “real” software [11,18,25].
Why is TM not more widely adopted? One reason is that TM implementations often do
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introduce significant overhead, especially when transactions are large and there is no hardware
support. Another is that adapting a program to use TM is not always a simple matter of
replacing lock-based critical sections with transactions because transactions cannot execute
some kinds of operations (e.g., I/O and certain system calls), and most TMs do not support
condition synchronization and other important synchronization patterns. Achieving good
performance with TM often requires significant changes to the code both to reduce the size
and number of large transactions and to move “unsafe” operations within critical sections
out of transactions while still ensuring correct synchronization.

In this paper, we introduce language and run-time support for the atomic deferral of oper-
ations in transactions: deferred operations do not execute until after the transaction commits.
Unlike prior work on deferred operations, atomic deferral does not violate serializability:
concurrent transactions cannot observe an intermediate state in which the transaction’s up-
dates are complete but its deferred operation’s updates are not. This property is particularly
important for operations that perform output: if the output fails, compensating or retrying
operations can be performed as part of the deferred operation so that it appears to be atomic
with the deferring transaction.

We implement atomic deferral by introducing transaction-friendly locks, that is, locks that
can be acquired and released within transactions, and to which transactions can “subscribe”.
With these locks, programmers can “mix and match” lock-based and transaction-based
synchronization, using whichever is appropriate to the need. We use these locks to protect
shared data accessed by deferred operations. The atomicity of the transaction and its deferred
operation is preserved by acquiring the appropriate locks before committing the transaction.

The contributions of this paper are as follows:
We introduce a transaction-friendly implementation of mutual exclusion locks.
We present a mechanism for atomically deferring complex operations in transactions.
We describe a compiler extension that allows the compiler to coordinate deferred operations
with concurrent transactions without additional programmer effort.
We describe use cases for atomic deferral in benchmarks and real-world programs.
We show how atomic deferral can eliminate scalability bottlenecks in microbenchmarks
and the PARSEC dedup workload.

The remainder of this paper is organized as follows: In Section 2, we review salient
features of modern TM implementations. We provide an example of atomic deferral behavior
in Section 3. Section 4 describe atomic deferral, and how it can be implemented using
transaction-friendly locks. We discuss use cases in Section 5, and evaluate our implementation
in Section 6. We describe related work and future research directions in Sections 7 and 8.

2 Background: Transactional Memory

In this section, we describe salient features of TM, particularly as it is specified in the C++
TMTS [10] and implemented by GCC. The TMTS specifies two lexical blocks for using TM:
atomic blocks and synchronized blocks. Code within atomic blocks is restricted to ensure that
the effects of an aborted transaction can be efficiently undone. To enforce this restriction
statically, functions called while executing an atomic block must be declared transaction-safe.
Synchronized blocks lift this restriction at the cost of possibly serializing all transactions
(from both atomic and synchronized blocks) when executing an irrevocable operation (i.e.,
an operation that cannot be undone).

Although TM does not support condition synchronization, the retry operation proposed
by Harris et al. [6] can produce a similar effect: A transaction that finds that some required
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Figure 1 Motivation for atomic defer. On the left, T1’s transaction includes a long running
operation using C. On the right, C is locked, and then the operation on C is deferred until after the
transaction commits. The use of locking and deferral of the operation on C enables the operations
by threads T2 and T3 to progress more quickly, without violating serializability.

condition does not hold can invoke retry, which aborts the transaction and does not reschedule
it until some location in its read set has changed. Thus, the transaction appears to execute
only from a state in which the desired condition holds. (This differs from traditional condition
synchronization in that the transaction aborts, and so its effects before discovering that the
condition does not hold are undone.) The TMTS does not support retry directly, but it does
provide the ability for atomic blocks to abort themselves, which we can use to approximate
retry (albeit inefficiently).

The TMTS does not separate transactional and nontransactional memory: any location
can be accessed both transactionally and nontransactionally. This presents a challenge
to STM implementations known as the privatization problem [19]: Although semantically
concurrent transactional and nontransactional access to the same location is a data race
(which has undefined semantics in C++), a thread that uses a transaction to remove an
object from a shared data structure and accesses it nontransactionally afterwards may conflict
with another transaction that accessed the same object concurrently but is still “cleaning up”.
To avoid this problem, a thread must not access a privatized object nontransactionally until
every transaction that may have accessed that object has completed entirely (i.e., committed
or aborted, including clean up). Since an STM cannot, in general, determine when an object
is privatized, implementations typically wait after committing any writing transaction until
every concurrent transaction has completed entirely; this waiting is called quiescing.

When transactions repeatedly fail to commit due to repeated conflicts with other threads,
a TM implementation may manage contention by delaying some transactions to increase
the likelihood that others complete. Although contention management policies vary, most
TM implementations employ serialization as a last resort: a transaction that fails too many
times will request that all other transactions abort, and no new transactions commence,
until it completes. Unless the workload exhibits pathological conflicts, serialization should
be rare. In GCC, the default is for software transactions to serialize after 100 attempts, and
hardware transactions to serialize after 2. Dynamically tuning this parameter has been shown
to have a significant impact on some workloads [4]. Any nontrivial amount of serialization,
however, has a terrible effect on performance, particularly because serialization delays all
active transactions, even those from completely unrelated parts of the program (unlike locked
critical sections, which are partitioned by the locks that they acquire).

3 A Motivating Example

To motivate atomic deferral, consider the execution depicted on the left side of Figure 1,
which captures behavior we observed when transactionalizing the PARSEC dedup kernel [1].
T1 executes a transaction that first accesses locations A, B and C, and then does a lengthy
operation that accesses only C. Concurrently, T2 executes a transaction that accesses B.
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Because these transactions conflict, either one of them must abort, or T2 must wait until
T1 commits before it can proceed with the part of its transaction that accesses B, which is
what happens in this case. Because T1 may privatize some memory, after it commits, it must
quiesce, waiting for T2 to finish (either commit or abort).

The situation is even worse for T3, which accesses a completely different location, and so
does not conflict with either T1’s or T2’s transaction. Nonetheless, T3 might privatize some
memory, and thus it must quiesce until all concurrent transactions complete, so it must wait
for T1’s lengthy operation to complete, and then for T2’s transaction to complete afterwards
, before it can proceed.

Note, however, that T1 is only accessing C in the lengthy operation at the end of its
transaction. If it could defer that operation until after it commits, then T2 could start the
section of its code that accesses B earlier, and likely commit before T1 completes its lengthy
operation on C. T3 can also stop quiescing earlier (i.e., when T2 commits). This case is
depicted one the right side of Figure 1.

One problem with doing this, however, is that a thread accessing C after T1 commits
the initial part of its transaction but before T1 finishes its final lengthy operation on C will
see an intermediate state of T1’s transaction, violating atomicity. To avoid that, we should
prevent other threads from accessing C in that interval. This is represented by the small
“LC” and “RC” operations (for “lock C” and “release C” respectively). Achieving this is the
core conceptual contribution of this paper, and we show how to do it in the next section.

Prior studies of concurrent applications [12,18,21,23,24] found that output operations
and long-running operations occur often while locks are held. The consequences of such
operations are less severe in lock-based code than in programs with TM, primarily because
the lock-based programs use many locks: a long-running operation protected by lock L1 does
not impede a thread executing a critical section protected by L2. However, long-running
operations tend to hold as few locks as necessary.

4 Extending TM with Atomic Deferral

We support atomic deferral using two new keywords: the deferrable annotation on classes,
and the atomic_defer function, which takes as arguments a function and a list of objects,
each of which must be an instance of a deferrable class. To defer an operation, a programmer
calls atomic_defer with a function implementing the deferred operation and a list of all
the shared objects that this function may access. Fields of deferrable objects must not be
accessed directly, but only through getters and setters (a recommended software engineering
practice in any case). Thus, if o is an object with a deferrable class type and an expensive
method, then we can defer the execution of that method within a transaction by writing:

λ← () { o.expensive() }
atomic_defer(λ, o)

The deferred operation will be executed immediately after the enclosing transaction
commits, and in such a way that no other transactions can see a state that reflects the effects
of the transaction but not those of its deferred operation. A deferred operation will see any
effects of the transaction that occur after the call to atomic_defer. If atomic_defer is
called multiple times within a single transaction, the deferred operations will be executed
in the order of their respective calls to atomic_defer, and the effects of earlier deferred
operations will be visible to later ones.
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Listing 1: Implementation of atomic deferral.
// Extensions to classes annotated as deferrable
deferrable class T
lock : TxLock // implicit per-instance lock
. . . // programmer-defined fields

function transaction_safe Method(. . .)
// subscribe to the implicit lock
TxLock.Subscribe(lock)
// programmer-defined logic
. . .

function atomic_defer(l : λ, objs: Deferrable . . . )
// Use transaction to acquire locks without deadlock

1 transaction
2 for o : objs do
3 TxLock.Acquire(o)

4 deferred_ops.append(〈l, objs〉)

Additional Per-Thread TM Metadata:
// all deferred operations for current transaction
deferred_ops : list〈λ, list〈Deferrable〉〉

function TxEnd()
// Standard STM Commit; HTM uses a special instruction

1 ValidateReadsFinalizeWrites()
// STM-only: ensure transaction finishes before λs run

2 Quiesce()
// Reset thread’s TM metadata

3 move(tm_free_list, local_frees)
4 move(deferred_ops, local_defers)
5 ResetLists()

// Execute deferred operations
6 for 〈l, objs〉 ∈ local_defers do
7 l.execute()
8 for o ∈ objs do TxLock.Release(o)

// Reclaim memory, reset lists
9 for ptr ∈ local_frees do free(ptr)

4.1 Implementing Atomic Deferral

We implement atomic deferral by using locks to protect accesses to deferrable objects.
To provide atomicity, we acquire the locks required by the deferred operation before the
transaction commits. We also need a way to notify transactions that access a deferrable
object (directly as part of the transaction, not deferred) when the lock protecting it has been
acquired (by a transaction that calls atomic_defer with the object): such transactions must
abort and retry after the deferred operation has completed (and the corresponding locks
released).

To this end, we designed transaction-friendly locks, which can be acquired and released
within a transaction, and which provide a subscribe method. The subscribe method must be
called from within a transaction, which blocks (or aborts) until the lock is either free or held
by the subscribing thread. Multiple threads can subscribe to a lock if it is free. We describe
how we implement transaction-friendly locks in Section 4.2.

Pseudocode for implementing atomic deferral appears in Listing 1. In addition to providing
implementations for atomic_defer and deferrable, we modify the commit operation TxEnd.
This code assumes that TxLock is a class of transaction-friendly locks, and that Deferrable
is a base class for all deferrable classes.
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For deferrable classes, we add a field that maintains a transaction-friendly lock that
protects the class, and we inject a call to TxLock.Subscribe for this lock as the first
instruction of the transaction-safe version of every member function.1

The atomic_defer function first acquires the locks of all the deferrable objects passed
to it, and then appends all of its arguments (the function representing the deferred operation
and the list of deferrable objects it may access) to deferred_ops, a thread-local list of
deferred operations. This list will be used when the transaction commits, as described below.

When committing the transaction, we first proceed as usual, validating the read set,
finalizing the writes, and then quiescing to avoid privatization problems. Remember that
any object that might be accessed by deferred operations has already been locked (i.e., when
atomic_defer was called with the object), so no other transaction can see any writes to it.
We then execute the deferred operations in order, releasing the locks on the deferrable
objects associated with each deferred operation after that operation is complete. (If an
object is accessed by multiple deferred operations, each of them would have acquired the
corresponding reentrant lock, and so it is not actually released until the last such operation
completes.)

The enclosing transaction may have freed memory, which is normally deferred by the TM
after the transaction has quiesced. Because deferred operations may refer to memory that
was subsequently freed by the transaction, we delay the freeing of that memory a bit more,
until all the deferred operations have completed.

Because deferred operations may use transactions internally, we need to make deferred_ops
and tm_free_list available for their use. Thus, we copy them into local variables before
executing any of the deferred operations.

To argue that this implementation is correct, that is, that a transaction and its deferred
operations appear atomic, we draw an analogy with two-phase locking, a well-understood
technique known to guarantee atomicity. Specifically, a transaction can be thought of as
acquiring and holding a single global lock until the transaction commits. Because the lock for
every object accessed by deferred operations is acquired before the transaction commits, there
is an initial phase in which locks are only acquired (i.e., up to the point that the transaction
commits), and a concluding phase in which locks are only released (including the implicit
global lock released by the transaction on commit). So all locks are held between the time that
the commit operation is invoked and the time that the commit actually occurs. We must also
ensure that every access is protected by the appropriate lock, which is why the programmer
must provide, when calling atomic_defer, all the objects that the deferred operation may
access. If a deferred operation accesses some object not passed to atomic_defer, then a
data race may occur.

4.2 Transaction-Friendly Mutex Locks
The heart of our atomic deferral mechanism is a transaction-friendly mutual exclusion lock,
whose pseudocode appears in Listing 2. The TxLock is reentrant, storing an owner and a
count of the locking depth. In this manner, a thread that holds the lock may re-acquire it by
incrementing the count. Before any other thread can acquire the lock, the current owner
must release the lock as often as needed to ensure depth = 0. Since the implementation uses
transactions, the owner and depth fields need not be packed into a single machine word:

1 STM implementations typically maintain two versions of each transaction-safe function, one that is
called within transactions and one that is called when not in a transaction.
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Listing 2: A transaction-friendly, reentrant mutex lock.
Fields of TxLock Object:

owner : transaction_id // Lock holder ID
depth : Integer // For reentrancy

function TxLock.Acquire(l)
1 atomic

// Common case: lock is unheld
2 if l.owner = nil then
3 l.owner← me
4 l.depth← 1
5 return

// Handle reentrancy/nesting
6 else if l.owner = me then
7 l.depth← l.depth + 1
8 return

// Else wait (spin and/or yield CPU) until lock is released
9 spin()

10 retry

function TxLock.Subscribe()
// Must be in transaction to call

1 if owner 6= nil ∧ owner 6= me then
2 retry

function TxLock.Release(l)
1 atomic

// [Optional] Forbid handoff of held lock
2 if l.owner 6= me then
3 fatal error

// Handle reentrancy/nesting
4 else if l.depth > 1 then
5 l.depth← l.depth− 1
6 return

// Else no reentrancy/nesting
7 l.depth← 0
8 l.owner← nil

they are only accessed within transactions. A thread that is currently in a transaction may
acquire and/or release TxLocks, because it is correct in C++ to nest transactions. Among
other things, this means that a thread can acquire multiple locks in a deadlock-free fashion,
even without a global locking order: it need only issue all acquisitions inside of a transaction.

TxLocks are elidable within transactions, via the Subscribe method: a transaction that
subscribes to a TxLock blocks until the lock is either unheld, or held by the calling thread.
Subscription only reads the owner field, which allows concurrent subscription by multiple
threads. When any thread acquires the TxLock, all subscribing transactions will conflict
with the new lock owner, and will abort. When the TxLock is acquired, the C++ TMTS
ensures correct fence semantics: since the transaction accesses shared memory, the TM
implementation is required to guarantee that memory accesses preceding the transaction
order before it, and memory accesses following the transaction order after it.

If the C++ TMTS adds efficient support for retry, transactions could yield the CPU if
they attempt to acquire or subscribe to a lock that is held by another thread, and would be
woken automatically when the lock is released. In the meantime, we implement retry by
placing an atomic transaction inside a while loop, replacing the retry instruction with an
exception throw, and adding a break as the last statement in the transaction.
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Listing 3: Diagnostic logging from a critical section.
// Version with irrevocable
transactions

1 synchronized
// x is a mutable string
// i is a mutable integer

2 . . .
3 fprintf(stderr, str, x, i)
4 free(x) // Optional
5 . . .

// Deferrable for the log file’s
descriptor

class defer_fprintf: public
Deferrable

fd : file // output file
descriptor
. . .

// global instance of log file
descriptor

df : defer_fprintf(fd← stderr)

// Version with atomic_defer
1 atomic
2 . . .
3 tmp← sprintf(str, x, i)
4 λ←()
5 fprintf(df.fd, tmp)
6 free(tmp)
7 free(x) // Optional
8 atomic_defer(λ, df)
9 . . .

4.3 Practical Concerns
Deferring operations creates a nonlinear control flow within a program. This nonlinearity
is not observable to concurrent threads: the transaction and its deferred operations appear
to be a single, serializable operation. However, within the transaction, the programmer
must be mindful of a few challenges. First, the state of the object and thread-private data
at the time when the atomic_defer keyword appears is not immutable, and may change
in the suffix of the transaction that executes before the deferred operation. In addition,
the deferred operation does not execute transactionally, and thus races can occur if the
deferred operation accesses shared data not protected by the associated TxLocks. Second,
the programmer must encapsulate shared objects carefully. Consider a deferred operation
that performs a write of byte stream B to file descriptor F . If F is shared, then it should be
a field of a Deferrable object. If B is shared, then it, too, should be a field of a Deferrable
object. Programmers must decide if B and F should be fields of the same deferrable
object, or of multiple objects. Third, since system calls made within a deferred operation
happen immediately, some possibility for performance bottlenecks remains. For example,
an fsync within a deferred operation is often necessary. With atomic_defer, the fsync
and any associated error recovery can be atomic with the transaction, and will not block all
transactions. However, lengthy deferred operations will still block concurrent transactions
that call a method of the associated deferrable objects.

5 Programming With Atomic Defer

We now present examples of atomic_defer in real applications. The examples depict common
use cases, and show the deferral of increasingly complex operations without sacrificing
atomicity or resorting to serialization.

5.1 Basic Logging
In programs such as memcached [18] and Atomic Quake [27], critical sections occasionally
perform logging operations, such as error messages and diagnostic writes to per-thread logs.
The program does not require any ordering among logging operations: they are timestamped,
and the order can be determined post-mortem. The return values of the output operations
are typically ignored. An example appears in Listing 3.

When the values to be logged (x and i) are mutable shared data, existing programs resort
to irrevocability or they skip the logging operation. When the values can be encapsulated in
a Deferrable object, atomic_defer is a straightforward transformation: the output string
is prepared within the transaction, and the output is deferred until the end of the transaction.
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Listing 4: Durable output with guaranteed order.
// Deferrable wrapper for file descriptors
class defer_fd: public Deferrable

fd : file // output file descriptor
. . .

// Deferrable objects
fdD1 : defer_fd(fd← . . .)
buffD1 : defer_buffer(buf← . . . ,flag← false)
// Durable output to fdD1
atomic

1 . . .
2 λ←()
3 write(fdD1.fd, buffD1.buffer)
4 fsync(fdD1.fd)
5 buffD1.flag← true
6 atomic_defer(λ, fdD1, bufD1)

// Deferrable wrapper for output buffer

class defer_buffer: public Deferrable
buf : buffer // buffer data
flag: boolean // is buffer written?

// Deferrable objects
fdD2 : defer_fd(fd← . . .)
buffD2 : defer_buffer(buf← . . . ,flag← false)
// Conditional durable output to fdD2
atomic

7 Subscribe(buffD1)
8 if buffD1.flag then
9 λ←()

10 write(fdD2.fd, buffD2.buffer)
11 fsync(fdD2.fd)
12 buffD2.flag← true
13 atomic_defer(λ, fdD2, bufD2)

Note that this approach ensures ordering of all logging operations on the encapsulated file
descriptor. A simpler approach, when ordering is not needed, is to pass nil as the second
argument on line 8. This approach causes serialization only among transactions that use df .

Because transactional versions of existing programs tend to omit this instrumentation
in order to avoid serialization, we did not observe a performance impact when applying
atomic_defer to memcached. However, atomic deferral keeps the code robust and complete
without adding too much burden on programmer, and it makes it easier to debug programs
during development, by enabling non-serializing printf debugging.

5.2 Durable Output

Programs often rely on the fsync system call to persistent output. In some cases (e.g.,
durable database operations), it is necessary to order outputs based on the timing of fsync
calls, such that when there are two files: F1 and F2, F2is not updated until after F1’s updates
have reached the disk. Simply deferring an fsync operation in this case is insufficient. With
atomic_defer, we can encapsulate the completion status of the fsync in a Deferred object
that is associated with the deferred fsync operation.

In Listing 4, one thread executes the transaction (T1) on lines 1 to 6, and another executes
the transaction (T2) on lines 7 to 13. We wish to ensure that T2 does not write buffD2 to
file fdD2 unless T1’s write of buffD1 to file fdD1 has been persisted to disk. Since the flag
indicating the completion of T1’s fsync is encapsulated in a Deferrable object, and T1 sets
that flag in an operation that has been deferred, we know that buffD1’s implicit lock will be
held during the time that the flag is set, and will not be released until after the fsync returns.
Consequently, when T2 executes line 7, three cases are possible: (1) T1 has not yet executed
line 6, in which case line 7 returns, and then line 8 evaluates to false; (2) T1 has executed
line 6 but has not completed lines 3 to 5, in which case T2 will call retry and ultimately
land in the third case; or (3) T1 has completed its deferred execution of lines 3 to 5, in which
case T2 can subscribe to buffD1, and then observe a true value on line 8. Note that T2 can
only perform its write in the third case, which orders lines 3–5 before lines 10–12, and thus
the deferred outputs occur and reach the disk in the required order.
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Listing 5: MySQL critical sections in file pool management that are used in
asynchronous I/O.
// atomic_defer: types and variables
class file_system_t: public Deferrable
. . .
space_list : file_space_t

// wrap the file system as a deferrable object
file_system : file_system_t

mySQL_initialize (. . . )
// open tablespace data files

1 atomic
. . .

2 λ←()
3 for space ∈ space_list
4 for node ∈ space
5 node← open(. . . )

6 atomic_defer(λ,file_system)
. . .

mySQL_destroy (. . . )
// close tablespace data files

7 atomic
. . .

8 λ←()
9 for space ∈ space_list

10 for node ∈ space
11 close(node)

12 atomic_defer(λ,file_system)
. . .

mySQL_io_prepare (. . . )
13 close_more :
14 atomic

// check system states and select files
. . .

15 λ←()
16 if close(file) = −1
17 error
18 n_open← n_open− 1
19 if (n_open ≥ max_n_open)
20 need_close← true
21 goto end

// check the node to do I/O
22 if ¬node.open

// get file size, do an open and close
// save metadata for future I/O

23 if node.size = 0
24 node← open()
25 offset← lseek(file, 0,SEEK_END)
26 success← pread(two pages)
27 close(node)
28 node← open()
29 end :
30 atomic_defer(λ,file_system)

. . .

31 if (need_close)
32 goto close_more

5.3 Opening Files as Output

Our final example comes from the MySQL InnoDB storage engine. InnoDB maintains a
pool of file descriptors, which is protected by a lock. Metadata is associated with each file
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Figure 2 Atomic_defer performance on an I/O microbenchmark (a) - (d).

descriptor, and allows updates to files to be performed via asynchronous I/O. For example,
to append new records to the end of a file, a thread locks the pool, updates the size of the
file, and then unlocks the pool. It then issues an asynchronous write. Subsequent appends
will follow the same protocol, and hence will appear at a later point in the file, even if their
writes reach the disk earlier.

While reads and writes do not occur in critical sections, and hence would not serialize a
transactional version of InnoDB, the management of the pool depends on the ability to open
and close files dynamically, in order to stay below a pre-set maximum number of open files.
If a file must be opened when the pool is at capacity, then a thread will lock the pool, close
some other files that do not have outstanding accesses in-flight, and then open the new file.
In transactional InnoDB2, this operation requires irrevocability, and serializes all memory
transactions, to include those performing read-only queries of data within the database.

With atomic_defer, the pool becomes a Deferrable object. On any modification to
file descriptor metadata, a thread uses a transaction that subscribes to the pool. Thus, file
operations can proceed fully in parallel, since they use asynchronous I/O to perform their
file accesses, and transactions to operate on disjoint file metadata regions. In the uncommon
cases where files are opened and closed, the system calls are deferred from a transaction.
While the system calls are in-flight, concurrent accesses to the pool stall (via retry). Once
the pool is returned to a usable state, any suspended threads resume.

6 Performance Evaluation

We now present experiments that demonstrate the benefit of atomic_defer. We conduct
tests on two platforms. In charts depicting scalability up to 8 threads, the platform is a
4-core/8-thread Intel Core i7-4770 CPU running at 3.40GHz. This CPU supports Intel’s
TSX extensions for HTM, includes 8 GB of RAM, and runs a Linux 4.3 kernel. Experiments
with larger thread counts were conducted on a machine with two 18-core/36-thread Intel
E5-2699 V3 CPUs running at 2.30GHz. This CPU also supports TSX, includes 128 GB of
RAM, and runs a Linux 4.8 kernel. Our extensions were implemented in GCC 5.3.1. Results
are the average of 5 trials.

6.1 Performance of atomic_defer on a Transactional I/O
Microbenchmark

One motivation for atomic_defer is to avoid the serialization of synchronized transactions,
while allowing output that is atomic with respect to the transaction. We begin with a
microbenchmark study to observe the behavior of transactions that perform irrevocable
operations on files. Our microbenchmarks are patterned after work by Demsky and Tehrany [3].

2 Unfortunately, adding TM to InnoDB revealed a bug in GCC, which produces an internal compiler
error.
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Listing 6: An example of deferring I/O and system calls.
// Encapsulate streams in a Deferrable object
class defer_file: public Deferrable

input // input stream
output // output stream

// An array of files
dfs: defer_file[]
// Operation to be deferred

1 λ←(id, content)
// Read File

2 if ¬dfs[id].input.open() then error
// Get the length of the file

3 dfs[id].input.seekg(0, end)
4 len← dfs[id].input.tellg()
5 dfs[id].input.close()

// Write to the file and close
6 tmp← format(content, len)
7 dfs[id].output.write(tmp)
8 dfs[id].output.close()

// Irrevocable version of benchmark
1 synchronized
2 content← . . .
3 id← . . .
4 λ(id, content)

// atomic_defer version of benchmark
1 atomic
2 content← . . .
3 id← . . .
4 atomic_defer(λ(id, content), dfs[id])

Whereas they required custom instrumentation of system calls in order to make them
transaction safe, we run I/O operations without instrumentation, using either irrevocability
or atomic_defer. Listing 6 presents the general behavior of our microbenchmarks: a
transaction produces content and identifies a file to update. It then performs I/O, which
includes opening a file, reading the file length, and appending data to the file. The I/O
can be deferred or executed irrevocably. To use atomic_defer, we encapsulate the I/O
streams in deferrable objects, and then use atomic_defer to delay the operation on line 5.
Figure 2 presents experiments with four configurations of the microbenchmark. In each case,
threads cooperate to complete a total of 1M operations. The figure presents results for STM,
but trends for HTM are the same.

Figure 2a explores the overhead of atomic deferral when there is only one file, and hence no
concurrency, by comparing performance when transactions are replaced with a coarse-grained
lock (CGL), and when transactions use irrevocability (irrevoc), or atomic deferral (defer). We
see that the baseline GCC TM implementation (irrevoc) is well-tuned to handle irrevocability:
it serializes transactions early, avoids instrumentation, and achieves performance comparable
to CGL. In contrast, atomic_defer pays a constant overhead per transaction to support
rollback, even though no rollbacks occur. As the thread count increases, overheads due
to retry cause additional slowdown. This is partly a result of our retry implementation
aborting and immediately retrying, instead of de-scheduling the transaction until it can make
progress. Until the C++ TMTS includes efficient retry, this cost is unavoidable.

Figures 2b and 2c expand the number of files to 2 and then 4, and threads update files
with equal probability. We include another non-transactional baseline, with one fine-grained
lock (FGL) per file. We again see that single-threaded code has higher overhead when using
atomic_defer, due to instrumentation and the management of lambdas. While the behavior
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Listing 7: Deferring reliable output in PARSEC dedup.
function pipeline_out(buf, len, fd)

// fd may be unreliable, so monitor progress of
writes

1 (p, nsent, rv)← (buf, 0, 0)
2 while nsent < len
3 rv ← write(fd, p, len− nsent)
4 if transient_error(rv) then
5 continue
6 if fatal_error(rv) then error
7 nsent← nsent + rv
8 p← p + rv

9 fsync(fd)
10 free(buf)

// Version with irrevocable transactions
1 synchronized

. . .
2 pipeline_out(packet.buf, len)

. . .

// Version with atomic_defer: packet is now
deferrable

deferrable class packet
1 atomic

. . .
2 λ←()
3 pipeline_out(packet.buf, len)

. . .
4 atomic_defer(λ, packet)

of CGL and irrevoc is unchanged, deferral now shows scaling on par with fine-grained locks,
achieving indistinguishable performance at 2 and 4 threads. When the thread count greatly
exceeds the potential concurrency (e.g., 8 threads and 2 files, Figure 2b), we still see extra
overheads from retry. However, when there is enough concurrency in the workload (e.g., 4
files), atomic_defer scales well.

Finally, in Figure 2d transactions append to files that are kept open throughout the
experiment. There are still 4 files, but the smaller critical sections reveal an overhead in
the irrevocability mechanism: when one transaction becomes irrevocable, the others block,
possibly yielding the CPU. When the irrevocable transaction is brief, the overhead of yielding
becomes visible, and irrevoc degrades worse than CGL. Meanwhile, FGL has flat performance,
and defer overcomes latency at 1 thread to be competitive with FGL.

6.2 Performance of atomic_defer on PARSEC Dedup
Wang et al. reported [21] that PARSEC’s dedup kernel [1] ceased to scale when transactions
replaced locks. Dedup is a pipeline application, and the original file output stage performs
output while holding a lock; Wang’s version replaces that lock with an irrevocable transaction.
When the irrevocable transaction executes, it must serialize all concurrent transactions.

When we rewrote dedup’s output operation to use atomic_defer, irrevocability ceased to
cause performance degradation, but the benchmark still scaled poorly. A sketch of the code
transformation appears in Listing 7. Since the buffer to be output was already encapsulated
in a struct (“packet”), we made that struct deferrable and ensured that its fields were
accessed through getters and setters. Deferring the operation was then a one-line change,
which preserved the ordering of fsync operations and error handling with respect to output
and subsequent concurrent accesses. The performance of dedup with this change appears in
Figure 3 (a), as “+DeferIO”.

We discovered that the Compress function was marked as pure, because it does not access
any shared memory. Marking the function pure indicates to the compiler that the function
can be run without instrumentation, lacks side effects, and can be run from a non-irrevocable
context even when the compiler cannot prove that irrevocability is not needed. Compress
is a long-running function, and in HTM, it accesses more memory than can be tracked by
the HTM; the HTM execution serializes whenever a call to Compress exceeds the capacity
of the hardware. In STM, the call to Compress represents a period of time during which
other transactions can commit, but will delay in their quiesce operations. While the run-time
behaviors are different, the consequence is the same: when one transaction calls Compress,
other transactions cannot make progress.
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Figure 3 Performance of PARSEC dedup with atomic_defer.

Since Compress is pure, it can be deferred. We encapsulated the compressed buffer as a
deferrable object, so that the run-time system can suspend transactions when they attempt
to access a buffer that is locked for deferred compression. This has a profound impact on
both STM and HTM. In HTM, the transaction ceases to overflow hardware capacity, and
serialization is avoided. In STM, compression ceases to impede quiescence, and concurrent
threads can make forward progress. In Figure 3(a), we see that the “+DeferAll” curves for
both HTM and STM now compete with pthread locks, representing a 1.7x speedup for STM
and 2.7x speedup for HTM.

Lastly, we measure the impact of atomic_defer on the 36-core system, to see how
performance scales across chips and in the face of significantly more hardware parallelism.
In Figure 3 (b), the performance of the baseline HTM is not shown: the 32-thread STM
performance exceeds 270 seconds, and HTM never scales. When we employ atomic_defer
to move output and pure functions out of transactions, both STM and HTM improve by
roughly 10x compared to their respective TM baselines, reaching the same performance as
pthread locks. While these optimizations require more careful reasoning about the program,
we contend that these optimizations are still easier than reasoning about fine-grained locking.

7 Related work

Atomic deferral is a general mechanism for moving code out of transactions, but retaining
serializability, through the composition of TM with two-phase locking. As we have seen in
our examples and evaluation, atomic deferral offers an implementation-agnostic technique
for performing output operations and other system calls within transactions. It also enables
the movement of costly operations outside of the constrained environment presented by a
general-purpose TM. Our work bears resemblance to, and is inspired by, several prior works
in the areas of deferral, transactional system calls, irrevocability, and escape actions. Below,
we summarize the most significant relationships.

Support for Deferred Operations. Language-level support for deferred system calls was
first proposed by Carlstrom et al. [2], and expanded by Ni et al. [16]. These proposals
took a broad approach to deferral, and considered deferring operations for both committed
and aborted transactions. However, these deferred operations do not run atomically with
the parent transaction, nor can they access transactional data without either copying or
relying on ad-hoc synchronization in the deferred operation. Relative to these works, our
contributions are the addition of locks and the introduction of a two-phase locking pattern
that ensures serializability.
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Rossbach et al. [17] were first to use locks to coordinate transactions and non-transactional
code. Volos et al. [20] followed with a comprehensive approach to deferral focused on enabling
transactional system calls (including I/O). Volos extended the OS with “sentinel” locks,
which allowed software transactions to exclusively access file descriptors and other resources.
Using these sentinel locks, output operations could appear to execute in the context of a
transaction, but actually run after the transaction committed. On the one hand, Volos’s
work is more comprehensive than ours, as it deals with a wide array of system calls, and
requires less programmer effort to perform transactional I/O. On the other hand, our work
is more practical: it does not require a deadlock detection algorithm within the OS, or any
OS modifications; it is free of system calls, and hence compatible with HTM (today’s HTM
systems abort on any change of privilege); and it allows the programmer to control the
granularity at which operations are serialized (e.g., in the case of MySQL’s file descriptor
pool, where one lock abstractly covers an unbounded set of file descriptors). Our approach
also makes it easier to handle timing and errors in deferred operations; we are not aware of a
way to use Volos’s work to achieve the behaviors in Listings 4 and 5.

Irrevocable Operations. Prior work has encouraged the broad use of irrevocability [16] for
transactional I/O, contention management, and even as a performance optimization for to
reduce logging overheads in long-running STM transactions. Clearly atomic deferral does not
obviate irrevocability. In particular, our work assumed that the continuation of a transaction
does not depend on the result of the deferred operation. For output to unreliable media (e.g.,
Listing 7), atomic deferral is sufficient. However, if the error on line 6 ought to influence
operations after line 4 of the transaction on the right side of the listing, then irrevocability is
the only known solution.

Escape Actions. Another approach to reducing the costs targeted by atomic deferral is
the use of escape actions. These may be ad-hoc [26], or formalized as open nesting [15]
or transactional boosting [8]. Like atomic deferral, these mechanisms provide a way to
avoid logging overhead in complex operations, and also to perform I/O operations within
transactions. However, these techniques are rarely compatible with HTM [13] (an exception is
the IBM POWER TM [14]). Additionally, in STM, these techniques reduce the transactional
footprint, but still run in the context of an active transaction; consequently, they retain
the quiescence-associated delays shown in Figure 1. These techniques also require ad-hoc
compensating actions and error handlers. On the other hand, boosting techniques offer great
promise in areas where atomic defer is not useful, such as the creation of highly concurrent
data structures [7, 22].

8 Conclusions and Future Work

In this paper, we presented a technique for atomically deferring operations in memory
transactions. The key feature of our work is that concurrent transactions cannot detect
that an operation was deferred: the operation appears atomic with the corresponding
transaction, which retains serializability. The fundamental technique to enable atomic
deferral is composing transactions with locks and retry-based condition synchronization, to
facilitate a form of two-phase locking. With the deferred operation, transactions may perform
complex operations and access a subset of shared memory. Using atomic deferral allows
transactions to perform output without serializing, and was the foundation for a dramatic
improvement in the performance of the PARSEC dedup benchmark.
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Atomic deferral requires more complex reasoning by programmers than irrevocability,
and is less general. However, when applicable, it eliminates serialization overheads, and
shortens the time that transactions spend quiescing. In our view, the additional programmer
overhead to use atomic deferral is small, and more than justified by the benefits. For example,
we presented a scenario where atomic deferral can avoid serialization when managing file
descriptor pools in MySQL, and another where files can be updated in order, while obeying
strong persistence requirements.

As future work, we are interested in tools for automatically transforming output operations
into deferred operations, and studying the relationship between atomic deferral and nested
transactions. We are also interested in crafting a more formal correctness argument, which
may influence the use of transaction-friendly locks in a greater range of workloads.
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Abstract
In combining-based synchronization, two main parameters that affect performance are the com-
bining degree of the synchronization algorithm, i.e. the average number of requests that each com-
biner serves, and the number of expensive synchronization primitives (like CAS, Swap, etc.) that
it performs. The value of the first parameter must be high, whereas the second must be kept low.

In this paper, we present Osci, a new combining technique that shows remarkable perform-
ance when paired with cheap context switching. We experimentally show that Osci significantly
outperforms all previous combining algorithms. Specifically, the throughput of Osci is higher
than that of previously presented combining techniques by more than an order of magnitude.
Notably, Osci’s throughput is much closer to the ideal than all previous algorithms, while keep-
ing the average latency in serving each request low. We evaluated the performance of Osci in two
different multiprocessor architectures, namely AMD and Intel.

Based on Osci, we implement and experimentally evaluate implementations of concurrent
queues and stacks. These implementations outperform by far all current state-of-the-art concur-
rent queue and stack implementations. Although the current version of Osci has been evaluated
in an environment supporting user-level threads, it would run correctly on any threading library,
preemptive or not (including kernel threads).
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1 Introduction

The development of efficient parallel software has become a necessity due to the dominance
of multicore machines. One obstacle in achieving good performance when introducing
parallelism in modern applications comes from the synchronization cost incurred by those
parts of the application that cannot be parallelized. Efficient synchronization mechanisms
are then required to maintain this synchronization cost low.
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Whenever a parallel application wants to access shared data, a synchronization request
is initiated. In order to avoid races, these requests must be executed in mutual exclusion.
Therefore, a lower bound on the time to executem such requests is the time it takes for a single
thread to sequentially execute them, sidestepping the cost of the synchronization protocol.
An ideal synchronization protocol would not require more time than this, independently of
the number of the active threads and despite any contention on the accessed data. In practice,
even the best current synchronization protocols cause a drastic reduction in performance,
even in low contention.

Recent work [8, 9, 14] has focused on developing synchronization protocols implementing
the combining synchronization technique (first realized in [11, 31]). This technique has been
argued [8, 9, 14] to be very efficient. A combining synchronization protocol maintains a list
to store the pending synchronization requests issued by the active threads. A thread first
announces its request by placing a node in the list, and then tries to acquire a global lock. If
it does so, it becomes a combiner, and serves not only its own synchronization request, but
also active requests announced by other threads. Each thread that has not acquired the lock,
busy waits until either its request is executed by a combiner or the global lock is released.

CC-Synch [9] is a simple implementation of the combining technique which outperforms pre-
vious state-of-the-art combining algorithms including flat-combining [14] and OyamaAlg [26],
and other synchronization mechanisms such as CLH-locks [7, 19] and a simple lock-free
algorithm [9]. Nevertheless, Figure 1 indicates that the performance of CC-Synch is still far
from the ideal in a multicore machine equipped with 64 processing cores (more details on this
experiment are provided in Section 5); the ideal performance is measured by calculating the
time that it takes to a single thread to execute the total number of synchronization requests
(that are to be executed by all threads) sidestepping the synchronization protocol, as well as
the local work that follows each of the synchronization requests that it has to perform itself.

In this paper, we present a technique that significantly enhances the performance of
combining-based synchronization by reducing the number of expensive synchronization prim-
itives such as Compare&Swap (CAS) or Swap that are performed on the same shared memory
location, resulting in much fewer cache-misses and cpu backend stalls. Yet, this technique
results in algorithms that are as simple as using CC-Synch or any other synchronization
technique. The technique enables batching of the synchronization requests initiated by
threads running on the same core. The requests are batched in a single “fat” node, which is
then appended in the list of the announced synchronization requests by performing just a
single expensive synchronization primitive.

We study the impact on performance of this technique when combined with cheap context
switching. Specifically, we experimentally argue that its performance power is remarkable
when employed in an environment supporting user-level threads. We present Osci, a new
combining synchronization protocol which exploits this technique. Osci exhibits performance
that is surprisingly closer to the ideal than previous combining algorithms. We experiment
with Osci in a setting where a kernel-level thread running on each core has spawned a number
of user-level threads. Osci appropriately schedules the threads, using a fair implementation
of Yield (whenever a Yield is executed, the running thread voluntarily gives the control of
the core that it is running to some other thread), to achieve better performance.

Osci ensures that a thread p from the set Pc of threads running on a core c, initializes the
contents of a node nd and informs other threads in Pc that they can record their requests
there. So, p initiates a recording period for nd. Next time p is scheduled, it informs threads
in Pc that the recording period for nd is over and appends nd to the shared list of requests.
Thus, when nd is appended in the list, more than one requests by threads in Pc may have
been recorded in it. The combiner traverses the request list and serves all requests recorded
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Table 1 Summary of the known combining techniques.

Algorithm Primitives Scheduling-Aware

Blocking Algorithms
OyamaAlg [26] CAS, read-write No

flat-combining [14] CAS, read-write No
CC-Synch [9] Swap, read-write No

DSM-Synch [9] Swap, CAS, read-write No
Osci (this paper) Swap, CAS, read-write Yes

Wait-Free Algorithms
PSim [8] LL/SC, read-write, Fetch&Add No

PSim-x (this paper) LL/SC, read-write, Fetch&Add Yes

in each of the list nodes. Each of the other threads performs local spinning until either its
request is served by a combiner or the thread becomes the new combiner.

In modern NUMA architectures, the execution of a synchronization primitive (CAS, Swap,
etc.) on a shared memory location causes expensive cache misses and costs at least a few
thousands of cpu cycles. Specifically, such primitives usually involve a flooding of invalidation
messages performed by the coherence protocol [17] to those cores that keep a copy of the
contents of the shared memory location in their caches (read is usually cheaper since it
avoids causing any invalidation messages). In contrast to the expensive synchronization
primitives, a context switch (Yield) among user-level threads running on the same core may
cost no more than a hundred cpu cycles. In most locking and combining protocols, every
request issued by a thread performs at least one expensive synchronization instruction on a
common shared variable, resulting in a cache-line invalidation. For instance, in a queue lock,
this shared variable is the Tail of the queue. Thus, the application (or the announcement) of
k requests results in (at least) k cache invalidations, causing contention and increased traffic
on the interconnection network. By using cheap context switching, Osci creates fat nodes
containing batches of requests. It does so by attempting to pass the control of the processor
to all threads that are running on the same core, thus enabling them to announce new
requests at a very low cost. Each fat node may contain up to t > 1 requests (all issued by the
user-level threads that are running on the same core). In this way, Osci substantially reduces
the synchronization cost for announcing and applying batches of requests. Specifically, k
requests may cause only k/t cache line invalidations for their announcement, resulting to
substantially reduced coherence traffic on the interconnection network. As an immediate
consequence, Osci does not only achieve high combining degree but it also causes the smallest
amount of cache misses (all cache levels), due to low number of cache invalidations, and
the smallest amount of backend stalls than all the other protocols (see Section 5 for a more
detailed performance analysis).

We experimentally compare Osci with known synchronization algorithms, i.e. CC-Synch [9],
PSim [8], flat-combining [14], OyamaAlg [26], a blocking Fetch&Multiply implementation
based on CLH spin-locks [7, 19], and a simple lock-free implementation (see Table 1). (MCS
locks [21] exhibit similar performance to CLH locks.) Osci outperforms CC-Synch by a factor
of up to 11x (Figure 4b) without increasing the latency of CC-Synch. The performance
advantages of Osci over all other algorithms are even higher. It is noticeable that Osci’s
performance is not worse than that of CC-Synch when context switching is expensive (e.g. in
systems that do not support user-level threads). It is worth noting that employing user-level
threads in previous algorithms does not significantly improve their performance (see Table 2).
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Figure 1 Average throughput of the ideal implementation, and the CC-Synch [9] implementation
of a Fetch&Multiply object on a 64-core machine.

Osci is linearizable [15] (see Section 4 for a sketch of proof). Linearizability ensures that
in every execution α, each synchronization request executed in α, appears to take effect,
instantaneously, at some point in its execution interval.

We used Osci to get an implementation of a queue (OsciQueue) and a stack (OsciStack).
Experiments show that OsciQueue outperforms all current state-of-the-art implementations
of queues (combining-based or not), including LCRQ [25], CC-Queue [9], SimQueue [8], and
the lock-free queue in [22]. Section 5 reveals that OsciQueue is more than 4 times faster
than LCRQ [25], the state-of-the-art concurrent queue implementation. OsciStack exhibits
performance advantages similar to that of OsciQueue.

We also present PSim-x, a simple variant of PSim [8]. PSim is a practical universal
construction which implements the combining technique in a wait-free manner (wait-freedom
ensures that each active thread manages to complete the execution of each of its requests in
a finite number of steps). PSim can simulate any concurrent object given that only a small
part of the object’s state is updated by each request. In environments providing fast context
switching, PSim-x achieves a significantly increased combining degree in comparison to PSim.
This is done by using oversubscribing and applying appropriate scheduling on threads. As a
result, the performance of PSim-x is highly enhanced compared to that of PSim. Specifically,
PSim-x outperforms previous synchronization techniques (other than Osci). It also improves
upon Osci by being wait-free (assuming that failures occur at the core level rather than at the
thread level). Its performance, albeit lower than that of Osci, is still close to the ideal. The
same holds for PSimQueue-x, a concurrent queue implementation that is based on PSim-x.

It is noticeable that based on PSim-x, it is straightforward to implement, in a wait-free
manner and at a very low cost, useful complex synchronization primitives such as CAS on
multiple words (and many others), that are not provided by current architectures.

2 Related Work

The current state-of-the-art combining algorithm is CC-Synch [9]. CC-Synch employs a single
list to (1) store the synchronization requests and (2) implements the lock as a fast queue-based
CLH-like spin-lock [7, 19]. This made CC-Synch simpler than previous protocols [14, 26].
Moreover, CC-Synch causes a bounded number of cache misses per request and its combining
degree (i.e. the average number of requests served by a combiner) is argued [9] to be higher
than that of previous techniques. Osci shares some ideas with CC-Synch. However, Osci
applies a different technique from that of CC-Synch for announcing requests, batching them in
fat nodes before placing them in the list of the pending requests, and it features an additional
synchronization layer for the coordination of user-level threads in a way that the algorithm
works even with preemptive schedulers.

A hierarchical version of CC-Synch, called H-Synch [9], exploits the hierarchical commu-
nication nature of some systems which organize their cores into clusters and provide fast
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communication to the threads running on the same cluster, and much slower communication
among threads running on cores of different clusters. Our experiments that have been
conducted on (a) an AMD machine equipped with 4 AMD Opteron 6272 processors, and
on (b) an Intel machine equipped with 4 Intel Xeon E5-4610 processors, show that H-Synch
does not perform much better than CC-Synch in this kind of machines (similar results are
also presented in [9]). However, batching the requests of the threads running on the same
core can be considered as a form of performing hierarchical combining with the cores playing
the role of clusters. We have experimented with a variant of H-Synch which employs many
user-level threads per core and its performance is much worse than Osci (almost 2.5x slower).
The reason is that Osci applies combining in two levels, among the threads of a core and
across cores, whereas H-Synch uses a lock to synchronize threads across cores.

Although the employed thread model has been studied in other contexts [5, 30], to the
best of our knowledge, this is the first paper that studies the performance impact of fast
context switching in the context of combining-based synchronization. Fast context switching
is realized here by employing user-level threads. However, our algorithms can be utilized
efficiently in several other contexts, like, the Glasgow Haskell compiler [20], applications
based on several JAVA implementations [1, 23], OpenMP tasks [12], operating systems that
support scheduler activations [3], applications using User-Mode scheduling provided by the
recent versions of the Windows operating system [2], and tasks in Cilk-like environments [10].
The use of Yield does not play any role in the correctness of Osci and PSim-x. So, they
could work efficiently in any environment that exhibits fast context switching, preemptive or
not (even if the thread scheduling decisions were made by the operating system [3]).

Blocking implementations of the combining technique are presented in [9, 14, 26]. All are
outperformed by CC-Synch [9] and PSim [8]. Sagonas et. al [18] have designed a combining
technique, optimized for concurrent objects that support operations, which do not require to
return some value (e.g. the enqueue operation of a concurrent queue). Their experiments
show that their implementation outperforms CC-Synch and flat-combining in that case.

Holt et. al [16] present a generic framework based on flat-combining [14] suitable for
systems that communicate through message passing (clusters). With this framework, they
efficiently implement concurrent data structures much faster than their locking analogs.

Fast concurrent stack and queue implementations appear in [8, 9, 14, 25, 22, 27, 28, 29].
In [25], Morrison and Afek present a lock-free implementation of a concurrent queue, called
LCRQ. LCRQ outperforms CC-Queue [9] and the queue based on flat-combining [14]. Our
experiments show that OsciQueue outperforms LCRQ by a factor of more than 4 and
PSimQueue-x outperforms LCRQ by a factor of more than 2. In [28], Tsigas and Zhang
present a lock-free queue implementation which outperforms the lock-free queue of [22], as
well as a blocking queue based on spin-locks; the queue is implemented as a circular array.

3 Model

We consider a system of m processing cores on which n threads p0, . . . pn−1 (where n can be
much larger than m) are executed. On each of the m cores, t = n/m threads are executed
(for simplicity, let n mod m = 0); one of these t threads is a kernel thread which spawns the
other t− 1 threads as user-level threads (by calling a function called CreateThread). We
assume that thread pi is executed on core i/t. Without loss of generality, we assume that
thread pj·t is the kernel thread of core j. We remark that the operating system may decide
to move a kernel thread p (and all the user level threads that p has spawned) to another
core. Notice also that it is only for the simplicity of the presentation that we make the above
assumptions regarding the placement of the threads.
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The kernel is aware only of the kernel threads and makes decisions about scheduling. If the
kernel decides to switch context when one of these threads p has the CPU, p and all threads
it has spawned, stop executing until the operating system decides to allocate the CPU to p
again. A thread calls Yield whenever it wants to give the CPU. Then, a user-level scheduler,
implemented by the corresponding kernel thread, is activated to decide which of the t threads
of the core will next occupy the CPU. We assume that this choice is made in a fair manner.

We consider a failure model, where if a kernel thread p fails, then all threads executing in
the same core also fail at the same point in time as p.

4 Description of Algorithms

Description of Osci. Osci (Algorithm 1) maintains a linked list of nodes (initially empty)
for storing active requests. A shared pointer Tail, initially NULL, points to the last inserted
node in the list. Each node v is of type ListNode and contains the requests announced by
the active threads running on a single core c. These requests are recorded in the reqs field of
v, which is an array with as many elements as the number of threads running on c. A thread
pi, running on c, records its requests in the i mod t position of reqs (we note that for cases
where different number of threads run on each core, Osci still works).

One of the threads (let it be p) that have recorded requests in the head node of the list
plays the role of the combiner. A combiner traverses the list and serves the requests recorded
in each of the list nodes (lines 30-36), until either it has traversed all elements of the list or
it has served h requests in total∗ (line 37). If any of these conditions holds, the combiner
thread gives up its combining role by identifying one of the threads from those that have
recorded their requests in the next node to be the new combiner (lines 43-44). We remark
that at each point in time, if the list is non-empty, then there is exactly one combiner. On
the other hand, if the list is empty, then no combiner exists.

Each thread owns (only) two nodes of type ListNode and uses them interchangeably to
perform subsequent requests (lines 1 and 4), so the nodes are recycled in an efficient way.
The first thread (let it be pi) among those running on core c = bi/tc, that wants to apply a
request, tries to store a pointer to one of its nodes (let this node be nd) in Announce[c] (line
2) using CAS†. Notice that Announce[c] may also be accessed simultaneously by other threads
running on c. If pi’s CAS succeeds, pi records a struct of type ThreadReq in nd.reqs[i mod t].
This struct contains a pointer req pointing to the request that pi has initiated, the return
value ret for this request and two boolean variables completed and locked (to which we refer
as the locked and completed fields of pi). If both locked and completed are equal to false,
pi becomes the new combiner. Whenever pi performs spinning, it spins on its locked field; if
locked becomes false while completed is true, then a combiner has served pi’s request.

After pi has recorded its request, it changes the door field of nd from LOCKED (which was
initially) to OPEN (line 9) and calls Yield (line 10) to allow other threads running on c to
announce their requests in nd. We say that pi is a director of core j. A director executes
lines 4-18 and it is the only thread among those that run on the same core c that can later
be a combiner (no other thread on c can be a combiner while applying this current batch of

∗ In order to prevent a combiner from traversing a continuously growing list, an upper bound h on the
requests that p may serve is set; experiments show that h does not significantly affect performance; for
our experiments, we have chosen h = 2n.

† CAS implementations on real machines usually return true/false. For simplicity of the presentation, we
assume that CAS returns the old value of the memory location on which it is applied. We can trivially
make the algorithm work with CAS instructions that return true/false.
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Algorithm 1 Pseudocode for Osci.
constant t = dn/me, LOCKED= 0, OPEN= 1, CLOSE= 2; // m is the number of cores, n is the number of threads
struct ThreadReq { struct ListNode {

ArgVal req; ThreadReq reqs[0..t-1];
RetVal ret; int door;
boolean completed, locked; } struct ListNode *next; }

shared ListNode *Tail = NULL, *Announce[0..m-1] = {NULL};
private ListNode nodei[0..1] = {〈 {〈 ⊥, ⊥, false, true〉}, LOCKED, NULL〉};
private boolean togglei = 0;

RetVal Osci(ArgVal arg) { // pseudocode for thread pi, i ∈ {1, . . . , n}
ListNode *myNode, *tmpNode, *cur = NULL;
int offset = i mod t, counter = 0, j;

1 myNode = &nodei[togglei]; // choose one of the nodes of pi to use
2 cur = CAS(Announce[bi/tc], NULL, myNode);
3 if (cur == NULL) { // pi is the current director on core bi/tc
4 togglei = 1 - togglei;
5 myNode→reqs[offset].req = arg; // the director announces its request
6 myNode→reqs[offset].locked = true;
7 myNode→reqs[offset].completed = false;
8 myNode→next = NULL;
9 myNode→door = OPEN;
10 YIELD(); // pass control to some other thread
11 Announce[bi/tc] = NULL;
12 while (CAS(myNode→door, OPEN, CLOSE) != OPEN) YIELD();// close the door
13 tmpNode = SWAP(Tail, myNode); // append the node in the request list
14 if (tmpNode 6= NULL) { // pi is not the combiner
15 tmpNode→next = myNode; // set the next field of the previous node
16 while (myNode→reqs[offset].locked==true) YIELD();// pi calls Yield() instead of spinning
17 if (myNode→reqs[offset].completed==true) // check if pi’s request has already been applied
18 return myNode→reqs[offset].ret;

}
19 } else { // pi is not the director
20 while (CAS(cur→door, OPEN, LOCKED) != OPEN) // try to acquire the lock
21 if (cur→door == CLOSE) goto line 2; // if door is closed start from scratch
22 else YIELD();
23 myNode = cur;
24 myNode→reqs[offset] = <arg, ⊥, false, true>; // pi announces its request
25 myNode→door = OPEN;
26 while (myNode→reqs[offset].locked==true) YIELD();// yield to other threads of same core
27 if (myNode→reqs[offset].completed==true) // check if pi’s request has already been applied
28 return myNode→reqs[offset].ret;

}
29 tmpNode = myNode; // pi is the combiner
30 while(true) {
31 for (j = 0; j < t; j++) { // pi applies the requests of threads executing on core j
32 if (tmpNode→reqs[j].completed == false) {
33 apply tmpNode→reqs[j].req and store the return value to tmpNode→reqs[j].ret;
34 tmpNode→reqs[j].completed = true; // announce that tmpNode→ req[j] is applied
35 tmpNode→reqs[j].locked = false; // unlock the corresponding spinning thread
36 counter = counter + 1;

}
}

37 if (tmpNode→next == NULL or counter ≥ h) break;// h is an upper bound of the combined requests
38 tmpNode = tmpNode→next;

}
39 if (tmpNode→next == NULL) { // check if pi’s req is the only record in the list
40 if(CAS(Tail, tmpNode, NULL) == tmpNode) // attempt to set T ail to NULL
41 return myNode→reqs[offset].ret;
42 while (tmpNode→next == NULL) YIELD(); // some thread has in the mean time appended a node

}
43 for (j = 0; tmpNode→next→reqs[j].completed 6=false; j++) noop;
44 tmpNode→next→reqs[j].locked = false; // identify the new combiner
45 return myNode→reqs[offset].ret;

} // Osci
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operations). In case that the director becomes a combiner, it also executes lines 29-45. To
apply a request, a thread pj 6= pi that is also executed on c, first checks whether the door of
the node nd pointed to by Announce[c] is OPEN, and if this is so, it tries to acquire the door
by setting the value of door to LOCKED using CAS (line 20). If the CAS succeeds, pj records
its request in nd (lines 23, 24), unlocks the door (line 25), and repeatedly calls Yield (line
26) until some combiner either serves its request (lines 32-36) or informs pj to become the
new combiner (line 44).

Since we assume fair scheduling of threads on each core, it is guaranteed that at some
later point, pi is re-activated and executes from line 11 on. Then, pi changes the door field
of nd to CLOSE (line 12) using CAS to avoid synchronization problems with other threads
running on c that may simultaneously try to record their requests in nd. Next, pi appends
nd in the shared list by executing Swap (line 13). If pi has appended its node in an empty list
(i.e. if the condition of line 14 is false), or both the locked and completed fields in the entry
of nd→ reqs corresponding to pi, are equal to false (lines 16, 17), pi becomes a combiner.

If pi does not become a combiner, it updates the next field of the previous node to point
to its node (line 15), and repeatedly calls Yield (line 16) until a combiner either serves its
request or informs pi that it is the new combiner. In the first case, pi returns on line 18,
whereas in the second it executes the combiner code (lines 29-45).

If a thread pi evaluates the if condition of line 39 to true but unsuccessfully executes
the CAS on line 40, then some other thread pj has succeeded in updating Tail to point to a
node nd′ but it has not yet changed the next field of the node to which Tail was previously
pointed to point to nd′. Then, pi has to wait until pj sets next to point to nd′ (line 42), to
ensure that it will correctly choose the thread to become the next combiner (lines 43-44).
Notice that on lines 43-44, pi indicates the node with the smallest identifier among those that
have recorded their requests in nd′ as the new combiner. A combiner is the director of a core
and owns the first node of the list that contains requests unserved by previous combiners.

Osci is linearizable. If a thread p executes the CAS of line 2 successfully (i.e. it becomes
a director), and until the next time pi is scheduled and executes line 12, no other thread
on this core can become the director (since these threads will execute the CAS of line 2
unsuccessfully). Let α be any execution and consider a thread pi that executes an instance A
of Osci at some configuration C. Let Tail(C) be the value of Tail at C. For each i, 1 ≤ i ≤ n,
denote by mynodei(C) the value of variable mynode at C. If A executes the Swap of line 13
and gets NULL as the response, denote by Cf the configuration resulting from the execution
of line 13; in case there is at least one configuration C ′ in A such that mynodei(C ′)→ reqs[i
mod t].locked = false and mynodei(C ′) → reqs[i mod t].completed = false, denote by
Cf the first of these configurations. We say that pi is a combiner at C if Cf exists and C is
a configuration that follows Cf in which A is active. We prove that in each configuration
C, either Tail(C) equals NULL and there is no combiner at C, or Tail(C) points to a node
nd and there is exactly one combiner at C. We also prove that only a combiner executes
lines 30-45 implying that each request recorded in a list node is applied exactly once, as
needed to prove linearizability.

Description of PSim and PSim-x. PSim uses (1) an array Announce of n entries, where
each if the n threads announces its requests, (2) a bit vector Toggles which records the
threads that have active requests, and (3) an LL/SC object Tail, which stores a pointer to the
state of the object. Whenever a thread pi wants to apply a request, it announces its request
in Announce[i]. After that, it toggles Toggles[i] (by executing a Fetch&Add instruction) to
indicate that it has an active request. Thread pi discovers which requests are active using
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this vector and Toggles; pi serves the active requests by executing their code on a local copy
of the simulated state. Then, pi executes an SC in an effort to change Tail to point to this
copy. These actions may have to be applied by pi twice to ensure that its request has been
served. Together with the simulated state, PSim stores a response value for each thread.

In PSim-x, each thread p calls Yield after announcing its request. This increases the
combining degree of the algorithm. In most cases, when p is scheduled again, it finds out
that its request has been completed, so it does not pay the overhead of executing the rest of
the algorithm. These are the reasons for the better performance of PSim-x.

5 Performance Evaluation

We evaluated Osci and PSim-x in two different multiprocessor architectures. The first is a 64-
core machine consisting of 4 AMD Opteron 6272 processors. Each of these processors consists
of 2 dies and each die contains 4 modules, each of which contains 2 cores (64 logical cores).
The second one is an Intel 40-core machine equipped with 4 Intel Xeon E5-4610 processors.
Each processor consists of 10 cores, and each core executes two threads concurrently (80
logical cores). We used the gcc 4.8.5 compiler and the Hoard memory allocator [4] for all
experiments. The operating system was Linux with kernel version 3.4. We performed a lot
of experiments for different numbers of user level threads to achieve the best performance
for each algorithm. All algorithms were carefully optimized and for those that use backoff
schemes, we performed a lot of experiments to choose the best backoff parameters. To
prohibit the linux scheduler from doing unnecessary kernel thread migrations, threads were
bound in all experiments: the i-th thread was bound on core bi/tc, where t = dn/me. Most
of the commercially available shared memory machines provide CAS instructions rather than
supporting LL/SC. For our experiments, we simulate an LL on some object O with a simple
read, and an SC with a CAS on a timestamped version of O to avoid the ABA problem‡.

For our experiments, we developed a library that provides basic support for user level
threads. We note that our goal is not to present a new user-level threads library but to ensure
that we use a library which is simple and provides fast context switching. By replacing our
user-level threads library with any other library that ensures fast context switching, Osci and
PSim-x would exhibit similar performance gains. The thread on library we used supports the
operations CreateThread, Join, and Yield. A POSIX thread (kernel-level thread) runs on
each core. This thread calls CreateThread to spawn the other user-level threads running
on the same core. It calls Join to wait its children threads to complete. Yield activates a
user-level scheduler which passes control to some other thread executing on the same core.
Yield is implemented with a FIFO queue that stores the running threads on each processing
core. Moreover, Yield makes the appropriate calls to standard _setjmp/_longjmp functions
to context switch between user-level threads. For performance reasons, it is important that
the implementation of Yield is as fast as possible and the scheduler is fair.

For our experiments, we first consider a synthetic benchmark, called the Fetch&Multiply
benchmark, which is similar to that presented in [8, 9]. In this benchmark, a Fetch&Multiply
object is simulated using state-of-the-art synchronization techniques such as CC-Synch [9],
PSim [8], flat-combining [13, 14], a blocking implementation of a Fetch&Multiply object
based on CLH queue spin-locks [7, 19], OyamaAlg [26], and a simple lock-free implementation.
A Fetch&Multiply object supports the operation Fetch&Multiply(O, k) which returns

‡ The ABA problem occurs when a thread p reads a value A from a shared variable O and then a thread
p′ modifies O to the value B and back to A; when p executes again, it thinks that the value of O has
never changed which is incorrect.
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Table 2 Speedup of state-of-the-art synchronization algorithms when employing user level threads
(AMD Opteron).

Algorithm throughput Variant throughput speedup

CC-Synch 4.18 CC-Synch-x8 4.60 1.10
DSM-Synch 4.10 DSM-Synch-x8 4.58 1.12

H-Synch 4.23 H-Synch-x32 10.1 2.39
PSim 3.90 PSim-x64 23.2 5.94

Lock-Free 2.00 Lock-Free-x2 1.87 0.94
CLH 1.58 CLH-x4 1.70 1.08

flat-combining 2.99 flat-combining-x24 5.51 1.84
OyamaAlg 1.72 OyamaAlg-x16 2.80 1.63

the current value v of memory location O and updates the value of O to be v ∗ k. The
considered lock free implementation uses a single CAS object. When a thread wants to apply
a Fetch&Multiply, it repeatedly executes CAS until it succeeds; to increase the scalability, a
backoff scheme is employed. The Fetch&Multiply object is simple enough to exhibit any
overheads that a synchronization technique may induce while simulating a simple, small
shared object. To avoid long runs and unrealistically low number of cache misses [22, 8],
which may make the experiment unrealistic, we added some small local workload between
two consecutive executions of Fetch&Multiply in a similar way as in [9, 22]. This local
workload is implemented as a loop of dummy iterations whose number is chosen randomly
(to be up to 512). For our machine configuration, this workload is large enough to avoid long
runs and unrealistically low number of cache misses; still, it is small enough to allow large
contention in the simulated object (see Figure 4b for more details). Each instance of the
benchmark simulates 108 Fetch&Multiply, in total, with each of the n threads simulating
108/n Fetch&Multiply out of them. The average throughput is measured. Each experiment
is executed 10 times and averages are taken.

In Table 2, we present the throughput for (1) the original versions of the evaluated
algorithms (i.e. only one thread per core) and (2) their variants where many user level
threads per core are created (for executing the Fetch&Multiply benchmark). The x〈yy〉
suffix in their names indicates the number of user level threads that are executed per core, so
CLH-x4 indicates that CLH spin locks are evaluated with 4 user level threads per core. We
performed a lot of experiments for different numbers of user level threads in order to achieve
the best performance for each algorithm. We also report the additional speedup we gain
for each algorithm by using more than one user level thread per core. The performance of
these variants appears in column 4 of the table. The performance presented in Table 2 was
measured for the best number of user-level threads for each algorithm and it was performed
on the AMD machine. For blocking algorithms that perform spinning on some shared
variable, namely CC-Synch, flat-combining and the implementation based on CLH locks, we
(repeatedly) call Yield instead of spinning. For implementations that repeatedly perform CAS,
like OyamaAlg and the lock-free implementation, we call Yield between any two consecutive
attempts to execute CAS.

Table 2 shows that all algorithms other than PSim, H-Synch, flat-combining and OyamaAlg
do not exhibit any performance gain when employing user level threads. The main reason
for this is that the total number of atomic primitives (i.e. CAS, Swap and Fetch&Add) that
are executed by each of these algorithms is the same independently of how many user level
threads are employed. We note that the performance of the simple lock-free implementation
deteriorates for n > m, since then this variant (1) behaves similarly to the original algorithm
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(a) (b)

Figure 2 Average throughput of Osci while simulating a Fetch&Multiply object on (a) the AMD
machine (b) the Intel machine, for different numbers of user-level threads per core. The legends are
listed top to bottom in the order of the curve they refer to.

(the identity of the thread that repeatedly attempts to execute CAS at each point in time is
immaterial), and (2) has the additional cost of executing Yield.

It is noticeable that the performance of PSim improves by a factor of up to 5.9 when
using user-level threads. This performance gain is due to the fact that each thread in PSim-x
first announces its request, then calls Yield to allow to other threads on the same core to
announce their requests, and finally checks if its request has been applied. Only if this is
not so, PSim-x tries to serve all the pending requests. However, it turns out that in most
of the cases, this is not needed, so the request is completed without paying the overhead
of executing the combining part. This results in a big performance advantage of PSim-x.
The version of flat combining that uses user level threads increases its performance by a
factor of up to 1.84, while the performance of OyamaAlg increases by a factor of up to 1.63.
However, PSim-x is 4.21 times faster than flat-combing, 8.2 times faster than OyamaAlg, and
3.8 times faster than H-Synch. We remark that the maximum performance for flat-combining
is achieved for 24 user-level threads per core. Notice that H-Synch performs better than that
of CC-Synch and PSim but much lower than that of Osci and PSim-x.

Figures 2a and 2b show Osci’s performance for different numbers of user level threads per
core when executing the Fetch&Multiply benchmark on the AMD and the Intel architectures,
respectively. The x-axis of the diagram represent the number of cores, and the y-axis represents
the average throughput of Osci (over the 10 runs performed). Each line of the diagrams
corresponds to a different number of user-level threads per core. The local work between
two consecutive Fetch&Multiply is up to 512 dummy iterations. The first figure shows
that the performance of Osci increases as the number of user level threads increases. For
small numbers of user level threads per core (up to 8), the performance gain is significant.
Specifically, by using 4 user level threads per core, the performance of Osci is increased
almost 4x, and when 8 user level threads per core are used, the performance increases by a
factor of more than 6. However, smaller performance gains are illustrated in case of 16 or
more user level threads since then the dominant performance factor becomes the switching
overhead that Yield induces. Moreover, no significant improvement on Osci’s performance
is achieved when more than 32 threads are employed per core. Our experiments show that
for big numbers of threads per core (e.g. more than 64), the performance of Osci slightly
deteriorates. In the case of the Intel architecture (Figure 2b), the performance behavior
of Osci is very similar, since its performance increases as the number of user level threads
increases. The best performance for Osci is achieved for either 64 or 96 threads per core.

Figures 3a, 3b compare the performance of Osci and PSim-x with the other synchronization
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(a) (b)

Figure 3 Average throughput of Osci and PSim-x against other synchronization techniques on (a)
the AMD machine, and (b) the Intel machine.

techniques (the versions that use more than one thread per core) running the Fetch&Multiply
benchmark on the AMD and Intel machines, respectively. Driven by the results presented on
Figures 2a, 2b, we configured Osci to use 32 user-level threads per core on the AMD machine
and 64 on the Intel machine. Experiments showed that PSim-x scales well with 64 threads per
core on the AMD machine and with 128 threads per core on Intel. Figures 3a, 3b also show
the performance of an ideal implementation of the Fetch&Multiply. The throughput of the
ideal implementation is calculated by multiplying n with the throughput of the sequential
execution. This is higher than what the ideal algorithm would achieve (so this comparison
is not in favor of our algorithms). For n = 1, the ideal performance is almost the same
as the performance of Osci and CC-Synch [9] (and close to all other algorithms), since (1)
the dominant performance factor is the local work, (2) there is no contention, and (3) all
algorithms perform just 1 or 2 atomic primitives per request without causing cache misses.
Notice that the performance of the ideal algorithm scales linearly to the number of cores.

Figure 3a shows that Osci and PSim-x outperform all other synchronization techniques
(the versions that do not use more than one thread per core) by far. On the AMD machine,
Osci outperforms CC-Synch [9] by a factor up to 7.5 and PSim-x outperforms CC-Synch by a
factor up to 4.6. Recall that, Table 2 shows that the performance of CC-Synch, as well as of
all other algorithms, do not improve much when using more than one user-level thread per
core. This proves that the batching technique impacts performance significantly. Figure 3a
also shows that Osci is up to 6.8 times faster than the variant of flat-combining that employs
user-level threads and it is only up to 25% slower than the ideal. As expected [9], CC-Synch is
faster than PSim and that the simple lock-free version of Fetch&Multiply performs similarly
to CLH locks (on this benchmark). Figure 3b shows that the performance advantages of Osci
and PSim-x on the Intel machine are very similar to those on the AMD machine. Due to lack
of space, we focus our performance study of Osci and PSim-x on the AMD machine, from
now on. The performance behavior of Osci and PSim-x on the Intel architecture is similar.

Figure 4a provides a comparison of the performance of Osci and PSim-x to that of the
original algorithms (that employ just one thread per core). Similarly to Figure 3a, the
performance advantages of Osci and PSim-x are significant. Table 3 shows that Osci does not
significantly impact the average latency per operation. With 4 threads per core, the average
latency is slightly increased (by less than 5% whereas its throughput is 3.81 times higher than
that of CC-Synch. With 8 threads per core, the latency increases just 4 nsec (less than 29%)
whereas the throughput is 6.23 times higher. Notice that for local work that is greater than
1k, the dominant factor in system’s performance is the local work and not the overhead of
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Table 3 The impact of Osci in latency performance (random local work = 512).

CC-Synch Osci-x4 Osci-x8 Osci-x16 Osci-x32 H-Synch-x32
Average Latency (usec) 0.0142 0.0148 0.0182 0.0298 0.0541 0.0205

Throughput (millions ops/sec) 4.51 17.22 28.10 34.32 37.83 10.12

(a) (b)

Figure 4 (a) Average throughput of Osci and PSim-x against other synchronization techniques
while simulating a Fetch&Multiply object on the AMD machine. (b) Average throughput of Osci
and PSim-x with different values of random work for 64 cores.

the synchronization protocol (see Figure 4b). In this case the optimum performance should
be achieved with low numbers of user-level threads per core leading to also low latency.

In Figure 4b, we evaluate the performance of Osci and PSim-x for different values of local
random work on the AMD machine. In this benchmark, we use 64 user-level threads per core
for Osci in order to achieve the best performance. It is shown that Osci and PSim-x outperform
all the other synchronization, techniques (Osci outperforms CC-Synch and flat-combining by
a factor of up to 11, respectively). Even in cases where the contention is low (local random
work is equal to 4k), Osci and PSim-x perform better (more than 1.5 times faster) than
all other synchronization techniques. Smaller values of local work (and therefore higher
contention) are in favor of Osci and PSim-x. For relatively large amounts of random local
work, the experiment shows that the throughput starts to decline. For local work greater
than 16k, all synchronization techniques have similar performance, since then the local work
becomes the dominant performance factor. This experiment shows that Osci and PSim-x
would behave efficiently for a large collection of applications, since their performance is
tolerant for different amounts of local work that the application may execute. Additionally,
even with low contention, Osci and PSim-x perform better than all the other algorithms.

Table 4 sheds light on the reasons that Osci achieves good performance, providing the
average number of cache misses (all levels) per request, the average number of cpu cycles
spent in backend stalls per request, and the average combining degree achieved by each
algorithm. Given that all the memory footprints of our benchmarks were small comparing to
the processors’ cache size, the great majority of cache misses are cache-line invalidations due
to the coherency protocol. The number of cache misses and backend stalls was recorded with
perf linux tool. As shown in Table 4, Osci exhibits the lowest amount of cache misses among
all the other algorithms. Moreover, Osci causes the smallest number of cpu cycles spent in
back-end stalls. Therefore, Osci not only executes the smallest amount of cache misses but
also its cache-misses are the cheapest, since it spends the fewest cpu cycles in backend-stalls.
This is due to the fact that Osci is able to announce an entire batch of active requests
by executing just a single Swap. Similarly, the combiner reads (and applies) a batch of
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Table 4 Last level cache misses and cpu cycles spent in backend stalls per request (64 cores,
maximum random work = 64).

Algorithm cache-misses
(all levels)

cpu cycles spent in
backend stalls combining degree

Osci-x64 0.20 247.9 1404
PSim-x64 0.24 2306 1307

H-Synch-x32 0.47 666.1 32
CC-Synch 0.47 4210 1079

PSim 0.40 14300 22

requests without causing a cache miss for each request. We remark that all the other atomic
primitives executed by a thread, performing an instance of Osci, access memory locations
cached in the local core where the thread resides, avoiding invalidations on the caches of
remote cores. PSim-x achieves the second lowest number of cache misses. Even though
PSim-x’s cache misses are more expensive than H-Synch-x32’s (back-end stalls are more in
this case), H-Synch-x32 spends a significant amount of cpu cycles spinning on a central lock.
Also, the very low combining degree of H-Synch-x32 results in worse performance, comparing
to PSim-x; for a bigger number of threads per core, H-Synch’s performance deteriorates.
PSim-x operates in a more complicated way than Osci in order to achieve wait-freedom. The
main overhead of PSim-x compared to Osci is that, to execute a request, each thread locally
copies the state of the simulated object and an array of return values of size Ω(n). Due to
the over-subscription, the array of return values is pretty large in PSim-x. This results in a
larger amount of cache-misses and backend stalls comparing to Osci. As PSim-x is a simple
variant of PSim, the performance gains of PSim-x over PSim originate from the much better
combing degree of PSim-x. This results in much less cache misses and cpu stalls.

6 Queue and Stack Implementations

We implement and experimentally analyze a shared queue, called OsciQueue, based on the
two lock queue implementation by Michael and Scott [22]. In OsciQueue, the two locks of the
lock queue [22] are replaced by two instances of Osci. We also study a version of SimQueue [8]
that uses user level threads. This version is called PSimQueue-x.

In Figure 5a, we compare these queue implementations with state-of-the-art queue
implementations, like the lock-free LCRQ implementation recently presented by Morrison
and Afek in [25], the blocking CC-Queue implementation presented in [9], the wait-free
SimQueue [8] implementation, and the lock free queue implementation presented by Michael
and Scott in [22]. The experiment is performed on the AMD machine and it is similar to that
presented in [22, 8, 9]. Specifically, each of the n threads executes 108/n pairs of enqueue
and dequeue requests, starting from an empty data structure. This experiment is performed
for different values of n. Similarly to the experiment of Figure 3a, a random local work (up to
512 dummy loop iterations) is simulated between the execution of two consecutive requests
by the same thread. In the experiment of Figure 5a, the queue was initially empty. In our
environment, OsciQueue achieves its best performance for 64 user-level threads per core. We
use the LCRQ implementation that is provided in [24] and we performed a lot of experiments
to determine the appropriate ring size of LCRQ that achieves the best performance.

Figure 5a shows that OsciQueue outperforms all other queue implementations by far.
Specifically, OsciQueue is more than 4 times faster than LCRQ and more than 5 times faster
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(a) (b)

Figure 5 Average throughput of (a) OsciQueue, and (c) OsciStack.

than CC-Queue. It is also shown that PSimQueue-x outperforms LCRQ by a factor of 2. Notice
that OsciQueue’s performance is far from ideal by a factor of only 25%. Additionally, it ensures
wait-freedom which is stronger than lock-freedom ensured by LCRQ. As it is expected [25],
LCRQ has the best performance among all the other queue implementations. Recall that the
queue is initially empty in this experiment. We also performed a similar experiment where
the queue was initially containing 8192 elements. In this case, the performance results were
very similar to those of Figure 5a.

Based on Osci and PSim-x, we derive implementations for concurrent stacks, called
OsciStack and PSimStack-x, respectively. In Figure 5b, we compare their performance with the
state-of-the-art shared stack implementations. More specifically, OsciStack and PSimStack-
x were evaluated against CC-Stack [9], SimStack [8], the lock-free stack implementation
presented by Treiber in [27], a stack implementation based on CLH spin locks [7, 19], where
elimination has been applied when possible. The stack implementation recently presented
in [6] is designed for a client-server model and thus it is not evaluated in this paper.

Similarly to the experiment of Figure 5a, we measure the average throughput that each
algorithm achieves (every thread executes 108/n pairs of push and pop requests) for different
values of n. The random local work is set to 512. Figure 5b illustrates that OsciStack
outperforms by far all other stack implementations. Specifically, OsciStack is up to 7.1
times faster than CC-Stack. It is noticeable that PSimStack-x, which is a wait-free stack
implementation outperforms CC-Stack by a factor of up to 3.3.

7 Conclusions

In this paper a new combining technique, which is called Osci is presented. Osci shows
remarkable performance when paired with cheap context switching. We have experimentally
shown that Osci significantly outperforms all previous combining algorithms. Specifically,
the throughput of Osci is higher than that of previously presented combining techniques by
more than an order of magnitude. Notably, Osci’s throughput is much closer to the ideal
than all previous algorithms, while maintaining the average latency in serving each request
low. Osci is evaluated in two different multiprocessor architectures, namely AMD and Intel.

Based on Osci, we have implemented and experimentally evaluated implementations
of concurrent queues and stacks. These implementations outperform by far all current
state-of-the-art concurrent queue and stack implementations. Although the current version
of Osci has been evaluated in an environment supporting user-level threads, it would run
correctly on any threading library, preemptive or not (including kernel threads).
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Abstract
Many algorithms designed for shared-memory distributed systems assume the single-writer multi-
reader (SWMR) setting where each process is provided with a unique register that can only be
written by the process and read by all. In a system where computation is performed by a bounded
number n of processes coming from a large (possibly unbounded) set of potential participants,
the assumption of an SWMR memory is no longer reasonable. If only a bounded number of multi-
writer multi-reader (MWMR) registers are provided, we cannot rely on an a priori assignment of
processes to registers. In this setting, implementing an SWMR memory, or equivalently, ensuring
stable writes (i.e., every written value persists in the memory), is desirable.

In this paper, we propose an SWMR implementation that adapts the number of MWMR
registers used to the desired progress condition. For any given k from 1 to n, we present an
algorithm that uses n+k− 1 registers to implement a k-lock-free SWMR memory. In the special
case of 2-lock-freedom, we also give a matching lower bound of n + 1 registers, which supports
our conjecture that the algorithm is space-optimal. Our lower bound holds for the strictly
weaker progress condition of 2-obstruction-freedom, which suggests that the space complexity for
k-obstruction-free and k-lock-free SWMR implementations might coincide.
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1 Introduction

We consider a model of distributed computing in which at most n participating processes
communicate via reading and writing to a shared memory. The participating processes come
from a possibly unbounded set of potential participants: each process has a unique identifier
(IP address, RFID, MAC address, etc.) which we, without loss of generality, assume to be an
integer value. Given that processes do not have an a priori knowledge of the participating
set, it is natural to assume that they can only compare their identifiers to establish their
relative order, otherwise they essentially run the same algorithm [14]. This model is therefore
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called comparison-based [2]. In the comparison-based model with bounded shared memory,
we cannot assume that the processes are provided with a prior assignment of processes to
distinct registers. The only suitable assumption, as is the case for anonymous systems [16], is
that processes have access to multi-writer multi-reader registers (MWMR), without a prior
assignment.

In this paper, we study space complexity of comparison-based algorithms implementing an
abstract single-writer multi-reader (SWMR) memory. The abstract SWMR memory allows
each participating process to write to a private abstract memory location and to read from
the abstract memory locations of all other participating processes. The SWMR abstraction
can be further used to build higher-level abstractions, such as renaming [2] and atomic
snapshot [1].

To implement an SWMR memory, we need to ensure that every write performed by a
participating process on its abstract SWMR register is persistent: every future abstract read
must see the written value, as long as it has not been replace by a more recent persistent
write. To achieve persistence in a MWMR system, the emulated abstract write may have to
update multiple base MWMR registers in order to ensure that its value is not overwritten by
other processes. A natural question arises: How many base MWMR registers do we need?

In this paper, we show that the answer depends on the desired progress condition. It
is immediate that n registers are required for a lock-free implementation, i.e., we want to
ensure that at least one correct process makes progress. Indeed, any algorithm using n− 1
or less registers can be brought into the situation where every base register is covered, i.e., a
process is about to execute a write operation on it [4]. If we let the remaining process pi

complete a new abstract write operation, the other n− 1 processes may destroy the written
value by making a block write on the covered registers (each covering process performs its
pending write operation). Thus, the value written by pi is “lost”: no future read would find
it. It has been recently shown that n base registers are not only necessary, but also sufficient
for a lock-free implementation [8].

A wait-free SWMR memory implementation that guarantees progress to every correct
process can be achieved with 2n − 1 registers [8]. The two extremes, lock-freedom and
wait-freedom, suggest an intriguing question: is there a dependency between the amount of
progress the implementation provides and its space complexity: if processes are guaranteed
more progress, do they need more base registers?

Contributions. In this paper, we give an evidence of such a dependency. Using novel
covering-based arguments, we show that any 2-obstruction-free algorithm requires n+ 1 base
MWMR registers. Recall that k-obstruction-freedom requires that every correct process
makes progress under the condition that at most k processes are correct [15]. The stronger
property of k-lock-freedom [5] additionally guarantees that if more than k processes are
correct, then at least k out of them make progress.

We also provide, for any k = 1, . . . , n, a k-lock-free SWMR memory implementation that
uses only n+ k − 1 base registers. Our lower bound and the algorithm suggest the following:

I Conjecture 1. It is impossible to implement a k-obstruction-free SWMR memory in the
n-process comparison-based model using n+ k − 2 MWMR registers.

An interesting implication of our results is that 2-lock-free and 2-obstruction-free SWMR
implementations have the same optimal space complexity. Given that n-obstruction-freedom
and n-lock-freedom coincide with wait-freedom, we expect that, for all k = 1, . . . , n,
k-obstruction-free and k-lock-free (and all progress conditions in between [5]) require the
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same number n+ k − 1 of base MWMR registers. Curiously, our results highlight a contrast
between complexity and computability, as we know that certain problems, e.g., consensus,
can be solved in an obstruction-free way, but not in a lock-free way [11].

Related work. There has been a lot of work on space complexity in distributed computing,
e.g., [12, 10, 17].

Delporte et al. [9] studied the space complexity of anonymous k-set agreement using
MWMR registers, and showed a dependency between space complexity and progress con-
ditions. In particular, they provide a lower bound of n− k +m MWMR registers to solve
anonymous repeated k-set agreement in the m-obstruction-free way, for k < m. Delporte et
al. [7] showed that obstruction-free k-set agreement can be solved in the n-process comparison-
based model using 2(n− k) + 1 registers. This upper bound was later improved to n− k+m

for the progress condition of m-obstruction-freedom (m ≤ k) by Bouzid, Raynal and Sutra [3].
In particular, their algorithm uses less than n registers when m < k.

To our knowledge, the only lower bound on the space-complexity of implementing an
SWMR memory has been given by Delporte et al. [8] who showed that lock-free comparison-
based implementations require n registers.

Delporte et al. [8] proposed two SWMR memory implementations: a lock-free one, using n
registers, and a wait-free one, using 2n − 1 registers. These algorithms are used in [6] to
implement a uniform SWMR memory, i.e., assuming no prior knowledge on the number of
participating processes. Assuming that p processes participate, the algorithms use 3p+ 1
and 4p registers for, respectively, lock-freedom and wait-freedom.

Roadmap. The paper is organized as follows. Section 2 defines the system model and states
the problem. Section 3 presents a k-lock-free SWMR memory implementation. Section 4
shows that a 2-obstruction-free SWMR memory implementation requires n + 1 MWMR
registers and hence that our algorithm is optimal for k = 2. Section 5 concludes the paper
with implications and open questions. Secondary proofs, similar to those from [8], are
delegated to the appendix.

2 Model

We consider the asynchronous shared-memory model, in whicha bounded number n > 1 of
asynchronous crash-prone processes communicate by applying read and write operations to a
bounded number m of base atomic multi-writer multi-reader atomic registers. An atomic
register i can be accessed with two memory operations: write(i, v) that replaces the content
of the register with value v, and read(i) that returns its content. The processes are provided
with unique identifiers from an unbounded name space. Without loss of generality, we assume
that the name space is the set of positive integers.

2.1 States, configurations and executions

An algorithm assigned to each process is a (possibly non-deterministic) automaton that
accepts high-level operation requests as an application input. In each state, the process is
poised to perform a step, i.e., a read or write operations on base registers. Once the step is
performed, the process changes its state according to the result the step operation, possibly
non-deterministically and possibly to a step corresponding to another high-level operation.
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A configuration, or system state, consists of the state of all processes and the content of
all MWMR registers. In the initial configurations, all processes are in their initial states,
and all registers carry initial values.

We say that a step e by a process p is applicable to a configuration C, if e is the pending
step of p in C, and we denote by Ce the configuration reached from C after p performed e.
A sequence of steps e1, e2, . . . is applicable to C, if e1 is applicable to C, e2 is applicable
to Ce1, etc. A (possibly infinite) sequence of steps applicable to a configuration C is called
an execution from C. A configuration C is said to be reachable from a configuration C ′,
and denoted C ∈ Reach(C ′), if there exists a finite execution α applicable to C ′, such
that C = C ′α. If omitted, the starting configuration is the initial configuration, and we
write C ∈ Reach() if C is a reachable configuration for our algorithm.

Processes that take at least one step of the algorithm are called participating. A process is
called correct in a given (infinite) execution if it takes infinitely many steps in that execution.
Let Correct(α) denote the set of correct processes in the execution α.

2.2 Comparison-based algorithms
We assume that the processes are allowed to use their identifiers only to compare them with
the identifiers of other processes: the outputs of the algorithm only depend on the inputs, the
relative order of the identifiers of the participating processes, and the schedule of their steps.
Formally, we say that an algorithm is comparison-based, if, for each possible execution α, by
replacing the identifiers of participating processes with new ones preserving their relative
order, we obtain a valid execution of the algorithm. Notice that the assumption does not
preclude using the identifiers in communication primitives, it only ensures that decisions
taken in the algorithm’s run are taken only based on the their relative order of the identifiers.

In this model, m MWMR registers can be used to implement a wait-free m-component
multi-writer atomic-snapshot memory [1]. The memory exports operations Update(i, v)
(updating position i of the memory with value v) and Snapshot() (atomically returning the
contents of the memory). In the comparison-based atomic-snapshot implementation, easily
derived from the original one [1], Update(i, v) writes only once, to register i, and Snapshot()
is read-only. For convenience, in our upper-bound algorithm we are going to use atomic
snapshots instead of read-write registers.

2.3 SWMR memory
A single-writer multi-reader (SWMR) memory exports two operations: Write() that takes
a value as a parameter and Collect() that returns a multi-set of values. It is guaranteed
that, in every execution, there exists a reading map π that associates each complete Collect
operation C, returning a multi-set V = {v1, . . . , vs}, with a set of s Write operations
{w1, . . . , ws} performed, respectively, by distinct processes p1, . . . , ps such that:

The set {p1, . . . , ps} contains all processes that completed at least one write operation
before the invocation of C;
For each i = 1, . . . , s, wi is either the last write operation of process pi preceding the
invocation of C or a write operation of pi concurrent with C.

Note that our definition does not guarantee atomicity of SWMR operations. Moreover,
we do not require that processes are allocated with a unique MWMR register that can be
used as a single writer register. Instead, we simply require that processes are able to simulate
the use of single writer registers through implementing the SWMR memory.
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Intuitively, a collect operation can be seen as a sequence of reads on regular registers [13],
each associated with a distinct participating process. Such a collect object can be easily
transformed into a single-writer atomic snapshot abstraction [1].

2.4 Progress conditions

In this paper we focus on two families of progress conditions, both generalizing the wait-free
progress condition, namely k-lock-freedom and k-obstruction-freedom.

An execution α satisfies the property of k-lock-freedom [5] (1 ≤ k ≤ n) if at least
min(k,Correct(α)) correct processes make progress in it, i.e., complete infinitely many high-
level operations (in our case, Writes and Collects). The special case of n-lock-freedom is
called wait-freedom. The property of k-obstruction-freedom [11, 15] requires that every correct
process makes progress, under the condition that there are at most k correct processes. (If
more than k processes are correct, no progress is guaranteed.)

In particular, k-lock-freedom is a stronger requirement than k-obstruction-freedom (strictly
stronger for 1 ≤ k < n). Indeed, both require that every correct process makes progress
when there are at most k correct processes, but k-lock-freedom additionally requires that
some progress is made even if there are more than k correct processes.

3 Upper bound: k-lock-free SWMR memory with n + k − 1 registers

Consider a full-information algorithm in which every process alternates atomic snapshots and
updates, where each update performed by a process incorporates the result of its preceding
snapshot. Every value written to a register will persist (i.e., will be present in the result of
every subsequent snapshot), unless there is another process poised to write to that register.
The pigeonhole principle implies that k processes can cover at most k distinct registers at the
same time. Thus, if, at a given point of a run, a value is present in n registers, then the value
will persist. This observation implies a simple n-register lock-free SWMR implementation in
which a high-level Write operation alternates snapshots and updates of all registers, one by
one in the round-robin fashion, until the written high-level value is present in all n registers.
A high-level Collect operation can simply return the set of the most recent values (defined
using monotonically growing sequence numbers) returned by a snapshot operation. 0+0 The
wait-free SWMR memory implementation in [8] using 2n− 1 registers follows the n-register
lock-free algorithm but, intuitively, for each participating process, replaces register n with
register n − 1 + pos where pos is the rank of the process among the currently observed
participants. This way, there is a time after which every participating process has a dedicated
register to write, and each value it writes will persist. In particular, every value it writes will
be seen by all processes and will eventually be propagated to the n− 1 first registers.

To implement a k-lock-free SWMR memory using n+ k − 1 registers, a process should
determine, in a dynamic fashion, to which out of the last k − 1 registers to write. In our
algorithm, by default, a Write operation only uses the first n registers, but if a process
observes that its value is absent from some registers in the snapshot (some of its previous
writes have been overwritten by other processes), it uses extra registers to propagate its
value. The number of these extra registers depends on how many other processes have been
observed as making progress.
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Algorithm 1: k-lock-free SWMR implementation using n+ k− 1 MWMR registers.
1 View : list of triples of type (ValueType, IdType,N), initially set to ∅;
2 opCounter ∈ N, initially set to 0;

3 Write(v):
4 ActiveProcs = {id};
5 View = View ∪ (v, id, opCounter);
6 WritePos = 0;
7 WritePosMax = n;
8 do
9 Snap = MEM .snapshot();

10 ActiveProcs = ActiveProcs ∪ {pid, ∃(_, pid, c) ∈ Snap, ∀(_, pid, c′) ∈ View, c > c′};
11 View = View ∪ Snap;
12 Update(MEM [WritePos], View);
13 WritePos = WritePos + 1 (mod WritePosMax);
14 WritePosMax = min(n + |ActiveProcs| − 1, n + k − 1);
15 while |{m ∈ {1, . . . , n + k − 1}, (v, id, opCounter) ∈ Snap[m]}| < n;
16 opCounter = opCounter + 1;
17 End Write;

18 Collect():
19 Reads = MEM .snapshot();
20 V = ∅;
21 forall pid such that (_, pid, _) ∈ Reads do
22 V = V ∪ {v} with v such that (v, pid, max{c ∈ N, (_, pid, c) ∈ Reads}) ∈ Reads;
23 Return V ;
24 End Collect;

3.1 Overview of the algorithm

Our k-lock-free SWMR implementation, which uses n + k − 1 base MWMR registers, is
presented in Algorithm 1.

In a Write operation, the process adds the operation to be performed to its local
view (line 5). The process then attempts to add its local view, together with the outcome of
a snapshot, to each of the first WritePosMax registers, where WritePosMax is initially set
to n and then adapts to the number of processes observed as concurrently active (lines 8–15).
The writing process continues to do so until its Write operation value is present in at least n
registers (line 15).

In this algorithm, the k − 1 extra registers are used according to the liveness observed
by blocked processses. In order to be allowed to use the last register, a process must fail to
complete its write while observing at least k − 1 other processes completing their own. This
ensures that when a process access this last register, a kth process is able to be observed by
processes completing operations and thus will be helped to eventually complete.

The Collect operation is rather straightforward. It simply takes a snapshot of the memory
and, for each participating process observed in the memory, it returns its most recent value
(selected using associated sequence numbers, line 22).
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3.2 Safety
At a high level, the safety of Algorithm 1 relies on the following property of register content
stability:

I Lemma 2. Let, at some point of a run of the algorithm, value (v, id, c) be present in some
register r and such that no process is poised to execute an update on r (i.e., no process is
between taking the snapshot of MEM (line 9) and the update of r (line 12)), then at all
subsequent times (v, id, c) ∈ r, i.e., the value is present in the set of values stored in r.

The persistence of the values in a specific uncovered register (Lemma 2) can be used to
show the persistence of the value of a completed Write operation in MEM:

I Lemma 3. If process p returns from a Write operation (v, id(p), c) at time τ , then for any
time τ ′ ≥ τ there is a register containing (v, id(p), c).

The proofs of the two above lemmas follow the path proposed in [8] and are delegated to
the appendix.

With Lemma 3, we can derive the safety of our SWMR memory implementation (Sec-
tion 2.3):

I Theorem 4. Algorithm 1 safely implements an SWMR memory.

Proof. It can be easily observed that a triplet (v, id, c) corresponds to a unique Write
operation of a value v, performed by the process with identifier id. Therefore, a Collect
operation returns a set of values proposed by Write operations from distinct processes, and
thus the map π is well-defined.

By Lemma 3, the value (v, id, c) corresponding to a Write operation completed at time τ
is present in some register r for any time τ ′ > τ , thus, the set of values resulting from any
snapshot operation performed after time τ contains (v, id, c). Thus, for any complete Collect
operation C, π(C) contains a value for every process which completed a Write operation
before C was invoked. Also, as each value returned by a Collect is the one associated to the
greatest sequence number for a given process, it comes from the last completed Write or
from a concurrent one. J

3.3 Progress
We will show, by induction on k, that Algorithm 1 satisfies k-lock-freedom. We first show,
as in [8], that Write operations of Algorithm 1 are 1-lock-free (the proof is delegated to the
appendix):

I Lemma 5. Write operations in Algorithm 1 satisfy 1-lock-freedom.

The induction step relies primarily on the helping mechanism. This mechanism guarantees
that a process making progress eventually ensures that the processes it observes as having a
pending operation also make progress (the mechanism is similar to the one of the wait-free
implementation of [8]; the proof is also delegated to the appendix):

I Lemma 6. If a process q performing infinitely many operations sees (v, id(p), c), and if p
is correct, then p eventually completes its cth Write operation.

By the base case provided by Lemma 5 and Lemma 6, we have:

I Lemma 7. Write operations in Algorithm 1 satisfy k-lock-freedom.
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Proof. We proceed by induction on k, starting with the base case of k = 1 (Lemma 5).
Suppose that Write operations satisfy `-lock-freedom for some ` < k. Consider a run in
which at least `+ 1 processes are correct, but only ` of them make progress (if such a run
doesn’t exist, the algorithm satisfies (`+ 1)-lock-freedom). In this run, at least one correct
process is eventually blocked in a Write operation. According to Lemma 6, the ` processes
performing infinitely many Write operations eventually do not observe new values written
by other processes. By the algorithm, these processes eventually never write to the last
k − ` > 0 registers.

A correct process that never completes a Write operation will execute the while loop
(lines 8–15) infinitely many times, and thus, will infinitely often take a snapshot and update its
local view (line 9). In particular, it will eventually observe a new Write operation performed
by each of the ` processes completing infinitely many Write operations. It will then eventually
include at least `+ 1 processes in its set of active processes (i.e., the ` processes performing
infinitely many Write operations and itself). It will therefore eventually write to the (n+ `)th

register infinitely often. In the considered run, this register is written infinitely often only by
correct processes which do not complete new Write operations. The value from at least one
of such process will then be observed by the ` processes making progress. By Lemma 6, this
process will eventually complete its Write operation — a contradiction. J

Collect operations in Algorithm 1 clearly satisfy wait-freedom as there are no loops and
MWMR snapshot operations are wait-free. Thus Lemma 7 and the wait-freedom of Collect
operations imply:

I Theorem 8. Algorithm 1 is a k-lock-free implementation of an SWMR memory for n
processes using n+ k − 1 MWMR registers.

4 Lower bound: impossibility of 2-obstruction-free SWMR memory
implementations with n MWMR registers

The algorithm in Section 3 gives an upper bound of n+k−1 on the number of MWMR registers
required to implement an SWMR memory satisfying the k-lock-free progress condition in
the comparison-based model. In this section, we present a lower bound on the number
of MWMR registers required in order to provide a 2-obstruction-free, and hence also a
2-lock-free, SWMR memory implementation.

4.1 Overview of the lower bound
Our proof relies on the concepts of covering and indistinguishability.

A register is covered at a given point of a run if there is at least one process poised to
write to it (we say that the process covers the register). Hence, a covered register cannot
be used to ensure persistence of written data: by awakening the covering process, the
adversarial scheduler can overwrite it. This property alone can be used to show that n
registers are required for an obstruction-free (and hence also for a 1-lock-free) SWMR memory
implementation [4], but not to obtain a lower bound of more than n shared resources as
there is always one which remains uncovered.

Indistinguishability captures bounds on the knowledge that a process has of the rest of the
system. Two system states are indistinguishable for a process if it has the same local state in
both states and if the shared memory includes the same content. Thus, in an SWMR memory
implementation, a Write operation can safely terminate only if, in all indistinguishable states,
its value is present in a register that is not covered (by a process unaware of that value).
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In our proof, we work with a composed notion of covering and indistinguishability. The
idea is to show that there is a large set of reachable system states, indistinguishable to a given
process p, in which different sets of registers are covered. Intuitively, if a set of registers is
covered in one of these indistinguishable states, p must necessarily write to a register outside
of this set in order to complete a new Write operation. Hence, if such indistinguishable states
exist for all register subsets, then p must write its value to all registers. To perform infinitely
many high-level Write operations, p must then write infinitely often to all available registers.
But then any other process p′ taking steps can be masked by the execution of p (i.e., any
write p′ makes to a MWMR register can be scheduled to be overwritten by p). This way we
establish that no 2-obstruction free implementation exists, as it requires that at least two
processes must be able to make progress concurrently.

4.2 Preliminaries
Assume, by contradiction, that there exists a 2-obstruction-free SWMR implementation
using only n registers. To establish a contradiction, we consider a set of runs by a fixed
set Π of n processes in which every process performs infinitely many Write operations with
monotonically increasing arguments. Let R denote the set of n available registers.

Indistinguishability

A configuration C is said to be indistinguishable from a configuration C ′ for a set of
processes P , if the content of all registers and the states of all processes in P are identical
in C and C ′. Given a set of configurations D, let I(D, P ) denote that any two configurations
from D are indistinguishable for P .

We say that an execution is P -only, for a set of processes P , if it consists only of steps by
processes in P . We say that a set of processes P is hidden in an execution α if all writes
in α performed by processes in P are overwritten by some processes not in P , without any
read performed by processes not in P in between. Given a sequence of steps α and a set of
processes P , let α|P be the sub-sequence of α containing only the steps from processes in P .

I Observation 9. If a P -only execution α is applicable to a configuration C from a set of
configurations D indistinguishable for P , i.e., C ∈ D and I(D, P ), then α is applicable to
any configuration C ′ ∈ D, and it maintains the indistinguishability of configurations for P ,
i.e., I({C ′α,C ′ ∈ D}, P ).

Let us denote as Dα the set of all configurations reached from C ∈ D by applying α. A
similar observation can be made concerning hidden executions:

IObservation 10. Given an execution α applicable to C with C from a set of configurations D
indistinguishable for P, if processes in Π \ P are hidden in α, then α|P is applicable to
any C ′ ∈ D, and I({C ′α|P , C ′ ∈ D}, P ).

Coverings and confusion

We say that a set of processes P covers a set of registers R in some configuration C, if for
each register r ∈ R, there is a process p ∈ P such that the next step of p in C is a write on r
(the predicate is denoted Cover(R,P,C)).

Our lower bound result relies on a concept that we call confusion. We say that a set
of processes P are confused on a set of registers S in a set of reachable configurations D,
denoted Confused(P, S,D), if and only if:
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Figure 1 Processes {p5, p6, p7, p8} are confused on registers {r1, r2, r3, r4, r5}; an example of a
possible covering is given on the right.

1. I(D, P ).
2. |S|+ |P | = n+ 1.
3. For any process p ∈ Π \ P , there exist two registers rp, r

′
p ∈ S such that, for any

configuration D ∈ D, there exists D′ ∈ D, such that p covers rp in D and r′p in D′, or
vice versa, and D and D′ are indistinguishable to all other processes:

∀p ∈ Π \ P,∃rp, r
′
p ∈ S,∀D ∈ D,∃r ∈ {rp, r

′
p} :

Cover({r}, {p}, D) ∧ (∃D′ ∈ D, I({D,D′},Π \ {p}) ∧ Cover({rp, r
′
p} \ {r}, {p}, D′)).

4. For any strict subset R of S, there exists D ∈ D such that R is covered by Π \ P in D:

∀R ( S, ∃D ∈ D : Cover(R,Π \ P,D).

Intuitively, processes in P are confused on S in D, if D is a set of indistinguishable
configurations for P , such that any strict subset of S is covered by Π\P in some configuration
of D (Conditions 1 and 4). Additionally, we require that as much processes are confused
as possible (Condition 2) and that the property holds for a set of configurations D where
processes not in P might be covering only one out of 2 given registers and may be covering
them independently of other processes states in D (Condition 3).

In Figure 1, we give an example of confusing set of configuration D for 8 processes and 8
registers. Processes {p5, p6, p7, p8} are confused on registers {r1, r2, r3, r4, r5}. Registers are
represented as nodes, and pairs of registers that a process might be covering are represented
as edges. The set of indistinguishable configurations D for {p5, p6, p7, p8} are defined via
composition of states for p1, p2, p3 and p4 in which they, respectively, cover registers in
{r1, r2}, {r2, r3}, {r2, r4} and {r4, r5}. An example of a covering of {r1, r2, r3, r5} for some
particular execution is presented on the right side of Figure 1.

First, we are going to provide an alternative property for Condition 4 of the definition
of Confused(P, S,D). The idea is that, given (P, S,D) satisfying Conditions 1, 2 and 3,
Condition 4 is satisfied if and only if the graph induced by the sets of registers that may
be covered by processes in Π \ P (as represented in Figure 1) forms a connected component
over S. More formally, that Condition 4 is satisfied if and only if, for any partition of S
into two non-empty subsets S1 and S2, there is a process in Π \ P for which the set of two
registers it may be covering in D intersects with both S1 and S2:

I Lemma 11. ∀P ⊆ Π,∀S ⊆ R,∀D ⊆ Reach() satisfying Conditions 1, 2 and 3 of the
confusion definition, we have ∀R ( S, ∃D ∈ D : Cover(R,Π \ P,D) if and only if:

∀S1, S2 ⊆ S, (S1 6= ∅ ∧ S2 6= ∅ ∧ S1 ∪ S2 = S ∧ S1 ∩ S2 = ∅) :

∃r1 ∈ S1, r2 ∈ S2, p ∈ Π \P,D1, D2 ∈ D : (Cover({r1}, {p}, D1)∧Cover (({r2}, {p}, D2)) .
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Proof. Let us fix some P ⊆ Π, S ⊆ R, and D ⊆ Reach() satisfying Conditions 1, 2 and 3 of
the confusion definition.

First, let us assume that Condition 4 is also satisfied and consider any partition of S
into non-empty subsets S1 and S2 (i.e., S1 6= ∅, S2 6= ∅, S1 ∩ S2 = ∅ and S1 ∪ S2 = S).
Assume now that there does not exist any process p ∈ Π \ P such that p might be covering
a register from S1 or a register from S2 in D. This implies that processes in Π \ P can be
partitioned into two subsets Q1 and Q2 (with Q1 ∩Q2 = ∅ and Q1 ∪Q2 = Π \ P ) such that
processes in Q1, respectively Q2, may cover registers from S1, respectively S2, in D. By
construction of the partitions, we have |Q1|+ |Q2| = |Π \ P | and |S1|+ |S2| = |S|. Using
the fact that Condition 2 is satisfied by P and S we obtain from |S| + |P | = n + 1 that
|S1|+ |S2|+ (n− (|Q1|+ |Q2|)) = n+ 1, and thus, that |S1|+ |S2| = |Q1|+ |Q2|+ 1. This
implies that either |Q1| < |S1| or |Q2| < |S2|, w.l.o.g., let |Q1| < |R1|. Now consider r ∈ S2,
S \ {r} is a strict subset of S, and therefore Condition 4 implies that there exists D ∈ D such
that Cover(S \ {r},Π \ P,D). As registers in S1 can only be covered by processes from Q1,
then we have Cover(S1, Q1, D). Recall that, by the pigeonhole principle, a set of processes
cannot cover more registers than processes it contains. But |Q1| < |R1| — a contradiction.

Now let us assume that given any partition of S into non-empty subsets S1 and S2, there
exists a process p ∈ Π \ P such that p might be covering a register in S1 or a register in S2
in D. Let us show that any strict subset R of S is covered in some configuration from D and,
hence, that Condition 4 is satisfied. The idea consists in inductively selecting a subset of the
configurations in D by fixing a process in Π \ P to cover a new register of R. The trick is
to select a process which remains with a single choice if it wants to cover a register not yet
covered in all remaining configurations by other processes.

Let S0 be a non-empty subset of S. Let p0 be a process from Π\P which might be covering
a register r0 in S0 or a register r′0 in S \ S0 in D. Let us assume that such a process exists
and consider D0 to be the subset of D including all configurations in which p0 is covering r′0.
Now let S1 = S0 ∪{r′0} and repeat this process by selecting some p1 and computing D1 using
the same procedure, etc... As long as a process can be selected satisfying the condition, the
sets Si keeps increasing with i. Consider the round j at which the procedure fails to find
such a process. This implies that there is no process which might be covering a register from
either Sj or S \ Sj in Dj−1. Note that by construction Dj−1 is a non-empty subset of D.

If Sj 6= S, then Sj and S \ Sj forms a partition of S into two non-empty subsets. Thus,
by assumption, there exists a process q which might be covering a register rq in Sj or a
register r′q in S \ Sj in D. Consider some configuration D ∈ Dj−1. According to Condition 3
of the confusion definition, as D ∈ D, q is covering either rq or r′q in D, and there exists a
configuration D′ in which q is covering the other register in {rq, r

′
q}, relatively to D, and such

that D and D′ are indistinguishable to all other processes. As in D and D′, all processes
except q are in the same local state, either D′ ∈ Dj−1 or else q was a process selected in
some early iteration. But if q was selected in an earlier iteration, both rq and r′q would be
included in Sj . Thus D and D′ belong to Dj−1 and therefore q is a valid selection for pj .
This contradiction implies that therefore Sj = S.

By construction, all registers in Sj \ S0 are covered in all configurations in Dj−1. As
this is true for any non-empty S0 and as Sj = S, any strict subset of S is covered in some
configuration of D and therefore Condition 4 is satisfied. J

The alternative formulation of Condition 4 provided by Lemma 11 can be used to show
that, given any confusion for some non-empty P , S and D, we can identify a process p ∈ Π\P
and a register r ∈ S such that P ∪ {p} is confused on S \ {r} for a subset D′ of D:
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I Lemma 12. Given P ( Π, S ⊆ R and D ⊆ Reach():
Confused(P, S,D) =⇒ (∃p ∈ Π \ P,∃r ∈ S,∃D′ ⊆ D : Confused(P ∪ {p}, S \ {r},D′)).

Proof. Note that, according to Condition 3, a process may be covering exactly two registers
from S in D, thus, the sum of how many distinct processes may be covering each register
in S equals 2|Π \ P | = 2(n − |P |). But any register r ∈ S must be potentially covered at
least by one process in Π \ P in D as any strict subset of S may be covered (Condition 4).
Therefore, there exists a register rc ∈ S which can be covered by a single process pc ∈ Π \ P
in D. Indeed, if all registers in S might be covered by two distinct processes then the sum,
equal to 2(n− |P |), would be greater than or equal to 2|S|. This is not possible as according
to Condition 2, |P |+ |S| = n+ 1 and thus n− |P | < |S|.

Let us fix some Dc ∈ D and let Dc be the subset of D which includes all configurations in D
that are indistinguishable to pc from Dc. Let us show that Confused(P ∪{pc}, S \ {rc},Dc).
Condition 1 holds as by construction all configurations in Dc are indistinguishable to pc and
as they are indistinguishable to all processes in P , since Dc is a subset of D. It is immediate,
as we add a register and remove a process, that Condition 2 holds.

Now consider any process p ∈ Π \ (P ∪{pc}) and any configuration D ∈ Dc. As p ∈ Π \P
and D ∈ D, Condition 3 of the confusion definition implies that that there exists D′ ∈ D,
I({D,D′},Π \ {p}), such that p covers rp and r′p in D and D′ (respectively of vice-versa).
Since I({D,D′},Π \ {p}), D′ ∈ Dc, and since pc is the only process which may cover rc in D,
rp and r′p belong to S \ {rc}. Thus Condition 3 is verified for P ∪ {p}, S \ {rc} and Dc.

Lastly, let us consider some partition of S \ {rc} into two non-empty subsets S1 and S2.
Both (S1∪{rc},S2) and (S1,S2∪{rc}) form a partition of S in two non-empty subsets. Thus,
as Confused(P, S,D), we can apply Lemma 11 and obtain that ∃p1, p2 ∈ Π \ P such that p1,
respectively p2, might cover registers from either S1 ∪ {rc} or S2, respectively either S1 or
S2 ∪ {rc}, in D. It follows that pc cannot be both p1 and p2 as pc might cover only two
registers in D, one of which is rc. Thus, depending whether the other register belongs to S1
or S2, p1 or p2 is disctinct from pc. W.l.o.g, assume that it is p1. As pc is the only process
which may be covering rc, this implies that p1 might be covering a register from either S1
or S2. Furthermore, since Conditions 1, 2 and 3 applies to P ∪ {p}, S \ {rc} and Dc, we can
apply Lemma 11 to obtain that Condition 4 is also verified. J

We now show that the characterization can be used to increase the number of registers
that processes are confused on, by decreasing the number of confused processes:

I Lemma 13. Let P ( Π, S ⊆ R and D ⊂ Reach() such that Confused(P, S,D).
Given C ∈ D, if ∃p ∈ P, r1 ∈ S, r2 ∈ R \ S and if there exists P -only executions α1 and α2,
applicable to C such that I({Cα1, Cα2},Π \ {p}) and such that Cover({r1}, {p}, Cα1) and
Cover({r2}, {p}, Cα2), then we have Confused(P \ {p}, S ∪ {r2}, (Dα1) ∪ (Dα2)).

Proof. Following Observation 9, as α1 and α2 are P -only, and since D satisfies Condition 1
for P , (Dα1) ∪ (Dα2) satisfies Condition 1 for P \ {p}. Condition 2 trivially holds since a
process is removed from P and a register is added to S.

Condition 3 is satisfied for all processes in Π \ P and configurations in (Dα1) ∪ (Dα2)
as α1 and α2 are P -only, and since D satisfies Condition 3 for any process in Π \ P . As
configurations in D are indistinguishable to p, p may only cover r1 if D ∈ Dα1 and cover r2
if D ∈ Dα2. But as given any D ∈ D we have I({Dα1, Dα2},Π \ {p}) (as I(D, P ) following
Observation 9), Condition 3 is also satisfied for p.

Since Consition 1, 2 and 3 are satisfied, we can thus apply Lemma 11 to obtain that
Confused(P \ {p}, S ∪ {r2}, (Dα1) ∪ (Dα2)). Indeed, a partition of two non-empty subsets
of S ∪ {r2} can be reduced to a partition of two non-empty subsets of S unless it is the
partition S and {r2}. But p may cover either r1 ∈ S or r2. J



D. Imbs, P. Kuznetsov, and T. Rieutord 9:13

4.3 The lower bound
To establish our lower bound, we show that there is a set of reachable configuration D in
which there is a process confused on all n registers. Intuitively, we proceed by induction on
the number of “confusing” registers. For the base case, we show that the initial configuration
can lead to a confusion of all but one process on two registers:

I Lemma 14. ∃D ∈ Reach(),∃p ∈ Π,∃S ⊆ R : Confused(Π \ {p}, S,D).

Proof. Consider any two processes p1 and p2. Since the algorithm is comparison-based, the
first write the two processes perform in a solo execution is on the same register, let us call
it r. Let p1 execute solo until it is about to write to r and then do the same with p2, let C1
be the resulting configuration. Consider the execution α from C1 in which p1 executes until
it is poised to write to a register r′ 6= r and then p2 executes its pending write on r. This
execution is valid as p1 must eventually write to an uncovered register.

As p1 is hidden in α, C1α and C1α|{p2} are indistinguishable for all processes except p1
(Observation 10). In C1α, p1 is poised to write on r′, but in C1α|{p2}, p1 is poised to write
on r, thus we have Confused(Π \ {p1}, {r, r′}, {C1α,C1α|{p2}}). J

We now prove our inductive step. Given a set of configurations in which a set P of processes
is confused on a set S of registers, we can obtain a set of configurations in which a set P ′ of
processes are confused on a set S′ of strictly more than |S| registers:

I Lemma 15. ∃D ⊆ Reach(), P ( Π, S ( R : Confused(P, S,D)
=⇒ ∃D′ ⊆ Reach(), P ′ ⊆ Π, S′ ⊆ R, S ( S′ : Confused(P ′, S′,D′).

Proof. Given Confused(P, S,D), consider C ∈ D such that exactly |S| − 1 registers in S are
covered by processes in Π \ P . Then we can reach a configuration in which all registers not
in S are covered by processes in P . Indeed, when executed solo starting from C, a process
must eventually write to a register that is not covered in C. Thus, it must eventually write
either to a register in R\S or to the uncovered register in S. Recall that, as |S|+ |P | = n+1,
we have |R \ S| = |P | − 1. Thus, by concatenating solo executions of processes in P until
they are poised to write to uncovered registers, we reach a configuration Cα in which all
registers are covered, and let p be the process in P covering a register in S. Note that, as α
is P -only, we have Confused(P, S,Dα). Thus:

Cover(R \ S, P \ {p}, Cα) ∧ Confused(P, S,Dα}).

Now from this set of configurations, we are going to build a new one in which P is
confused on two distinct sets of registers. By Lemma 12, there exist pc ∈ Π \ P , r ∈ S
and D′ ⊆ D such that Confused(P ∪ {pc}, S \ {r},D′). Note that in D′, the state of pc can
be chosen to be the state from any configuration from D, and as we have Confused(P, S,D)
there must exists a configuration C ′ ∈ D in which pc covers a register rc ∈ S \ {r}. Let us
select D′ such that C ′ ∈ D′.

If p is executed solo from C ′α, it must write infinitely often to all registers in S to ensure
that it writes to an uncovered register. In a {p, pc}-only execution from C ′α, pc can hidden
for arbitrarly many steps as long as pc does not write to a register outside of S. But, as the
algorithm satisfies 2-obstruction-freedom, pc must eventually write to a register outside of S
in such an execution. Consider the {p, pc}-only execution β from C ′α in which pc is hidden
and such that pc execute until it is poised to write to some register r′ ∈ R \ S. Thus, we get
two configurations C ′αβ and C ′αβ|P ,indistinguishable to all processes but pc, in which pc

covers, respectively, r′ ∈ R \ S and rc ∈ S. Thus, the conditions of Lemma 13 hold for D′,
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pc, αβ and αβ|{p} and so we obtain Confused(P, (S ∪ {r′}) \ {r}, (D′αβ) ∪ (D′αβ|{p})). As
β is {p, pc}-only and pc is hidden in it, we have:

Cover(R \ S, P \ {p}, Cαβ) ∧ Confused(P, S,Dαβ|{p})∧

Confused(P, S ∪ {r′} \ {r}, (D′αβ) ∪ (D′αβ|{p})).

Moreover, all configurations in the formula above are indistinguishable to processes in P ,
because αβ is P ∪ {pc}-only and pc is hidden in it (Observation 10).

Let p′ ∈ P be the process that covers r′ in Cαβ. According to p or p′, every proper subset
of S or S ∪ {r′} \ {r} may be covered at the same time by processes in Π \ (P ∪ {p, p}), and
all other registers are covered by processes in P \ {p, p′}. Thus, from Cαβ, to complete a
Write, p or p′ must write to all registers in one of the sets S, S ∪ {r′} \ {r} or {r, r′}.

Consider any {p, p′}-only extension of Cαβ. If one of {p, p′} covers a register in S \ {r}, r
or r′, then the other process, in any solo extension, must write respectively to all registers in
{r, r′}, S or (S∪{r′})\{r}. In particular, since p′ covers r′ in Cαβ, p running solo from Cαβ

must eventually cover a register in S \ {r} (as |S| > 1, since |P | < n and |P |+ |S| = n+ 1).
Then p′ executing solo afterwards must write to r and r′. Let us stop p′ when it covers a
register r′′ 6= r for the last time before writing to r. Let γ be the resulting execution, and
E = Cαβγ be the resulting configuration. Let E and E ′ denote the sets of configurations
indistinguishable from E to P defined as Dαβ|{p}γ and (D′αβγ) ∪ (D′αβ|{p}γ) respectively.

Now the following two cases are possible:
1. r′′ 6∈ S ∪ {r′}: In this case, we let p continue until it is poised to write on r, and then,

we let the process in P \ {p, p′} which covers r′′ to proceed to its write. Let δ be this
{p, p′}-only execution from E. As p′ covers r ∈ S in Eδ and r′′ ∈ R \ S in Eδ|P\{p′},
as I({Eδ,Eδ|P\{p′}},Π \ {p′}), and as Confused(P, S, E), we can apply Lemma 13 and
obtain Confused(P \ {p′}, S ∪ {r′′}, (Eδ) ∪ (Eδ|P\{p′})).

2. r′′ ∈ S ∪ {r′}, and so r′′ ∈ (S ∪ {r′}) \ {r}: Then we have the following sub-cases:
Some step performed by p in its solo execution from E makes p′ to choose a register
other than r to perform its next write in its solo extension. Clearly, this step of p is
a write. From the configuration in which p is poised to execute this “critical” write,
let p′ run solo until it is poised to write to r and then let p complete its pending write.
Let Eδ be the resulting configuration.
Now consider the execution in which p completes its “critical” write, then p′ runs solo
until it covers a register r′′′ 6= r. Let Eδ′ be the resulting configuration. Note that the
states of the memory in Eδ and Eδ′ are identical. Thus, I({Eδ,Eδ′},Π \ {p′}). Note
that δ and in δ′ are {p, p′}-only executions, and that p′ covers r in Eδ and r′′′ in Eδ′.
a. If r′′′ ∈ S, as we have Confused(P, (S ∪ {r′}) \ {r}, E ′), applying Lemma 13, we

obtain Confused(P \ {p′}, (S ∪ {r′}), (E ′δ) ∪ (E ′δ′)).
b. If r′′′ ∈ R \ S, as we have Confused(P, S, E), applying Lemma 13, we obtain

Confused(P \ {p′}, (S ∪ {r′′′}), (Eδ) ∪ (Eδ′)).
Otherwise, no write of p is “critical”, and we let it run from E until it covers r (recall
that, as p′ covers r′′ ∈ (S ∪ {r′}) \ {r}, p must eventually write to all registers in S
or {r, r′} and, thus, to r). Let then p′ run until it covers r and let δ be the resulting
execution. From Eδ, let p′ run until it becomes poised to write to a register r′′′ 6= r for
the first time, and then let p perform its pending write on r. Let λ be this extension.
Note that as p′ is hidden in λ, we have I({Eδλ,Eδλ|{p′}},Π \ {p}). Also, δ and λ are
{p, p′}-only executions such that p′ covers r in Eδλ|{p} and covers r′′′ in Eδλ.
a. If r′′′ ∈ S, as we have Confused(P, (S ∪ {r′}) \ {r}, E ′), applying Lemma 13, we

obtain Confused(P \ {p′}, (S ∪ {r′}), (E ′δλ) ∪ (E ′δλ|{p})).
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b. If r′′′ ∈ R \ S, as we have Confused(P, S, E), applying Lemma 13, we obtain
Confused(P \ {p′}, (S ∪ {r′′′}), (Eδλ) ∪ (Eδλ|{p})). J

Our lower bound directly follows from Lemmata 14 and 15:

I Theorem 16. Any n-process comparison-based 2-obstruction-free SWMR memory imple-
mentation requires n+ 1 MWMR registers.

Proof. By contradiction, suppose that an n-register algorithm exists. We show, by induction,
that there is a reachable configuration in which a process is confused on all registers.
Lemma 14 shows that there exists a reachable configuration in which n − 1 processes are
confused on two registers. We can therefore apply Lemma 15 and obtain a configuration with
a confusion with strictly more registers. By induction, there exist then a set of configurations
D and p ∈ Π such that Confused({p},R,D).

Thus, any strict subset of R is covered by the remaining n − 1 processes in some
configuration in the (indistinguishable for p) set of configurations D. But a process p may
complete a Write operation if and only its write value is present in a register which is not
covered (by a process not aware of the value) in any of the configurations indistinguishable
to p. Therefore, in an infinite solo execution of p, p must write infinitely often to all registers.
But then any arbitrarily long execution by any other process can be hidden by incorporating
sufficiently many steps of p , violating 2-obstruction-freedom—a contradiction. J

5 Concluding remarks

This paper shows that the optimal space complexity of SWMR implementations depends
on the desired progress condition: lock-free algorithms trivially require n registers, while
2-obstruction-free ones (and, thus, also 2-lock-free ones) require n + 1 registers. We also
extend the upper bound to k-lock-freedom, for all k = 1, . . . , n, by presenting a k-lock-free
SWMR implementation using n+ k − 1 registers. A natural conjecture is that the algorithm
is optimal, i.e., no such algorithm exists for n+ k − 2 registers for all k = 1, . . . , n. Since for
k = 1, 2 and n, k-obstruction-freedom and k-lock-freedom impose the same space complexity,
it also appears natural to expect that this is also true for all k = 1, . . . , n.

An interesting corollary to our results is that to implement a 2-obstruction-free SWMR
memory we need strictly more space than to implement a 1-lock-free one. But the two
properties are, in general, incomparable: a 2-solo run in which only one process makes
progress satisfies 1-lock-freedom, but not 2-obstruction-freedom, and a run in which 3 or
more processes are correct but no progress is made satisfies 2-obstruction-freedom, but
not 1-lock-freedom. The relative costs of incomparable progress properties, e.g., in the
(`, k)-freedom spectrum [5], are yet to be understood.

An SWMR memory can be viewed as a stable-set abstraction with a conventional put/get
interface: every participating process can put values to the set and get the set’s content,
and every get operation returns the values previously put. For the stable-set abstraction,
we can extend our results to the anonymous setting, where processes are not provided with
unique identifiers. Indeed, we claim that the same algorithm may apply to the stable-set
abstraction for anonymous systems when the number of participating processes n is known.
But the question of whether an adaptive solution exists (expressed differently, a solution that
does not assume any upper bound on the number of participating processes) for anonymous
systems remains open.
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A Proofs for Algorithm 1 (k-lock-free SWMR implementation)

I Lemma 2. Let, at some point of a run of the algorithm, value (v, id, c) be present in some
register r and such that no process is poised to execute an update on r (i.e., no process is
between taking the snapshot of MEM (line 9) and the update of r (line 12)), then at all
subsequent times (v, id, c) ∈ r, i.e., the value is present in the set of values stored in r.

Proof. Suppose that at time τ , a register R contains (v, id, c) and no process is poised to
execute an update on R. Suppose, by contradiction, that R does not contain it at some time
τ ′ > τ . Let τmin, τmin > τ , be the smallest time such that (v, id, c) is not in R. Therefore, a
write must have been performed on R, by some process q, at time τmin with a view which does
not contain (v, id, c). Such a write can only be performed at line 12, with a view including
the last snapshot of MEM performed by q at line 9. Process q must have performed this
snapshot operation on R at some τR < τ as (v, id, c) is present in R between times τ and
τmin and as τR < τmin. Thus q is poised to write on R at time τ — a contradiction. J

I Lemma 3. If process p returns from a Write operation (v, id(p), c) at time τ , then for any
time τ ′ ≥ τ there is a register containing (v, id(p), c).

Proof. Before returning from its Write operation, p takes a snapshot of MEM at some time
τS , τS < τ (line 9), which returns a view of the memory in which at least n registers contain
the triplet (v, id(p), c). As p is taking a snapshot at line 9 at time τS , at most n− 1 processes
can be poised to perform an update on some register at time τS . As a process can be poised
to perform an update on at most one register at a time, there can be at most n− 1 distinct
registers covered at time τS . Therefore, at time τS , there is at least one uncovered register
containing (v, id(p), c), let us call it r. By Lemma 2, (v, id(p), c) will be present in r at any
time τ ′ > τS , and thus at any time τ ′ > τ as τ > τS . J

I Lemma 5. Write operations in Algorithm 1 satisfy 1-lock-freedom.

Proof. Suppose, by way of contradiction, that Write operations do not satisfy 1-lock-freedom.
Then, eventually, all n first registers are infinitely often updated only by correct processes
unsuccessfully trying to complete a Write operation. Thus, eventually each of the n first
registers contain the value from one of these incomplete Write operations. As there are
at most n− 1 covered registers when a snapshot is taken, one of these value is eventually
permanently present in some register (Lemma 2). This value is then eventually contained in
the local view of every correct process, and thus, will eventually be present in every update
of all the n first registers. The process with this Write value must therefore eventually pass
the test on line 15 and, thus, complete its Write operation — a contradiction. J

I Lemma 6. If a process q performing infinitely many operations sees (v, id(p), c), and if p
is correct, then p eventually completes its cth Write operation.

Proof. By Lemma 3, if process q returns from a Write operation with value (v, id(q), c′)
at time τ , then for any time τ ′ ≥ τ there is a register containing (v, id(q), c′). But note
that (v, id(q), c′) is written to a register only associated with q’s local view. Thus, as q
completes an infinite number of Write operations, each local view of q will eventually be
forever present in some register. It will then eventually be observed in every snapshot
taken by correct processes, and, therefore, included in their local view. This implies that
it will eventually be present in every register written infinitely often, in particular in the
first n registers. Process p will then eventually pass the test at line 15 and complete its
corresponding cth Write operation. J
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Abstract
We identify a design pattern for concurrent data structures, called teleportation, that uses best-
effort hardware transactional memory to speed up certain kinds of legacy concurrent data struc-
tures. Teleportation unifies and explains several existing data structure designs, and it serves
as the basis for novel approaches to reducing the memory traffic associated with fine-grained
locking, and with hazard pointer management for memory reclamation.
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1 Introduction

The emerging widespread availability of hardware transactional memory (HTM) [18] on
commodity processors such as Intel’s x86 [20] and IBM’s Power [7] architectures provides
opportunities to rethink the design and implementation of highly-concurrent data structures.

This paper identifies the teleportation design pattern, which uses best-effort hardware
transactional memory to reduce the memory costs of certain kinds of concurrent data
structures. Retrospectively, the teleportation pattern provides a common framework for
describing and explaining several heretofore unrelated techniques from the literature. Here,
we describe two novel applications of this design pattern: to reduce the memory overheads
associated with fine-grained locking, and with hazard pointer management for memory
reclamation.

In highly-concurrent data structures, a high-level operation (such as adding a value to a
hash set) is implemented as a sequence of atomic state transitions, where each transition is
identified with a memory operation. Memory operations include loads, (non sequentially-
consistent) stores, memory barriers, and atomic operations such as compare-and-swap (CAS).
Operations of concurrent threads can be interleaved.

This model encompasses both lock-based and lock-free data structures. For example,
a thread applying an operation to a lock-based data structure might spin until the lock
is free (repeated loads), acquire that lock (CAS, with implicit barrier), modify the data
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structure (loads and stores), and finally release the lock (store and memory barrier). A
thread traversing a lock-free data structure might read fields (loads, perhaps barriers) and
perform one or more CAS operations.

Sometimes, a thread’s sequence of memory operations has the property that if the thread
were to execute that sequence uninterruptedly, that is, without interleaving steps with
other threads, then some of the memory operations could be elided (omitted), because later
memory operations “undo” the effects of earlier ones. For example, Lock elision [25, 26] is
a well-known technique that exploits the observation that a matching lock acquisition and
release “cancel” one another, leaving the lock’s memory state unchanged at the end of the
critical section. If a thread executes a critical section as a best-effort hardware transaction,
then it can reduce memory traffic by eliding the lock acquisition and release.

The teleportation pattern retrofits an existing data structure with additional speculative
code paths chosen to elide memory operations. When a thread reaches a state where a
speculative alternative exists, it executes that path as a best-effort hardware transaction. If
that transaction fails for any reason, its effects are automatically discarded,

Within the transaction, the thread appears to execute as if it were running uninterruptedly,
with no interleaved steps by other threads. From the other threads’ viewpoints, the speculating
thread appears to transition instantaneously from the path’s initial state to its final state,
hence the name “teleportation”.

As discussed in the related work section, examples of mutually-canceling memory op-
erations include lock acquisition and release [25, 26], short-lived reference counters with
matching increments and decrements [11], and sequences of memory barriers that can be
coalesced into a single barrier [2].

This paper makes the following contributions. First, we believe that identifying the
teleportation design pattern itself is a useful addition to the lexicon, as it explains and
unifies several earlier techniques from the literature, and it provides a way to organize and
explain the new techniques described here. To be useful, a design pattern should help unify
and explain existing designs (e.g.,“both lock elision and telescoping are instances of the
teleportation pattern”), and it should suggest specific approaches to new problems (e.g., “can
we use the teleportation pattern to improve hazard pointers?”). It should be general enough
to apply to disparate situations, but not so general as to be meaningless.

Next, we show how the teleportation pattern can be applied to retrofit speculative fast
paths to well-known fine-grained locking algorithms such as lock-coupling [4] (or hand-over-
hand locking). Teleporting from one lock-holding state to another avoids the memory traffic
produced by locking and unlocking intermediate nodes.

Finally, we show how the teleportation pattern can be applied to retrofit speculative
fast paths to hazard pointer-based memory management schemes [24]. Teleporting from one
hazard pointer-publishing state to another, avoids the memory barriers needed to publish
intermediate nodes’ hazard pointers.

Experimental results on a 8-core Broadwell show that teleportation can substantially
boost the performance of fine-grained locking and lock-free hazard pointer management. In
some cases, the hazard pointer scheme with teleportation outperforms the same structure
with a faster but less robust epoch-based reclamation scheme.

2 List-Based Sets

Pointer-and-node data structures come in many forms: skiplists, hashmaps, trees, and others.
Here, for simplicity, we consider list-based sets, using data structures adapted from the Herlihy
and Shavit textbook [19]. There are three methods: add(x) adds x to the set, returning true
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Figure 1 Throughput in Million Operations Per Second (MOPS) for list implementation without
memory management.

if and only if x was not already there, remove(x) removes x from the set, returning true if
and only if x was there, and contains(x) returns true if and only if the set contains x. (We
will discuss trees and skiplists later.)

A set is implemented as a linked list of nodes, where each node holds an item (an integer),
a reference to the next node in the list, and possibly other data such as locks or flags. In
addition to regular nodes that hold items in the set, we use two sentinel nodes, called
LSentinel and RSentinel, as the first and last list elements. Sentinel nodes are never added,
removed, or searched for, and their items are the minimum and maximum integer values.

We consider three distinct list implementations: the lock-based list, the lazy list, and the
lock-free list. These three list algorithms are discussed in detail elsewhere [19].

Our lock-based list implementation employs fine-grained locking and is based on lock
coupling [4], sometimes called hand-over-hand locking. Each list node has its own lock. A
thread traversing the data structure first locks a node, then locks the node’s successor, then
releases the predecessor’s lock. While fine-grained locking permits more concurrency than
using a monolithic lock, it causes threads to acquire and release many locks, and restricts
parallelism because threads cannot overtake one another.

By contrast, in the so-called lazy list, each list node has a Boolean marked field indicating
whether that node’s value is really in the set. Threads navigate through the list without
acquiring locks. The contains() method consists of a single wait-free traversal: if it does
not find a node, or finds it marked, then that item is not in the set. To add an element to
the list, add() traverses the list, locks the target’s predecessor, and inserts the node. The
remove() method is lazy, taking two steps: first, mark the target node, logically removing it,
and second, redirect its predecessor’s next field, physically removing it.

Finally, the lock-free list replaces the lazy list’s lock acquisitions with atomic compare-
and-swap operations.

To establish a baseline for understanding the costs of synchronization and memory
management, we ran a simple synthetic benchmark comparing the lock-based, lazy, and
lock-free list implementations. We used an Intel Broadwell processor (Core D-1540) with
RTM and HLE enabled, running at 2 GHz. The machine has a total of 8GB of RAM shared
across eight cores, each having a 32 KB L1 cache. Hyper-threading was enabled, yielding a
total of sixteen hardware threads. Threads were not pinned to cores.

When there are 8 or fewer threads, each thread has its own core. Between 9 and 16
threads, hyperthreading ensures that each thread has its own hardware context, but threads
share caches. Beyond 16 threads, there are more threads than hardware contexts.

Each thread allocates nodes by calling the new operator, but for now nodes are not reused
after being removed from the list. We use a simple “test-and-test-and-set” spin lock, where a
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Figure 2 Throughput for list implementations with memory management.

thread spins reading the lock until it appears to be free, and then applies a compare-and-swap
to try to acquire the lock. If that compare-and-swap fails, the thread temporarily releases
the processor. To avoid false sharing, locks are padded so distinct locks occupy distinct cache
lines.

The list implementations were compared using a simple synthetic benchmark based on
the following parameters. List values range from zero to 10,000, and the list is initialized to
hold approximately half of those values. All measurements are executed for one second. The
number of threads varies from 1 to 24. Each time a thread calls an operation, it chooses
contains() with a probability that varies from 0 to 100, and otherwise calls add() or remove()
with equal probability.

All the experimental results reported here have the following structure. We ran experi-
ments with 100%, 90%, 80%, 50%, and 0% contains() calls. Because the cost of list operations
is dominated by navigation, all these mixtures produced similar curves. The graphs shown
here reflect a mixture of 80% contains(), 10% add(), and 10% remove() calls. Each execution
time shown in a graph represents an average over 10 executions.

Figure 1 compares the performance of the three list implementations on the benchmark
with no memory management. This graph is a baseline allowing us to separate the costs of
navigation (shown here) from the costs of memory management (shown later).

The lock-based list performs substantially worse than the other two because it acquires
and releases a lock each time it traverses a node, while the others navigate without locks,
acquiring locks or executing CAS operations only at the very end. Beyond 16 threads, there
are more threads than hardware contexts, and fine-grained locking becomes extremely slow
because some thread is always suspended while holding a lock, and while that thread is
suspended, no active thread can overtake it.

In the next section, however, we will see that Figure 1, while informative, can be
misleading, because none of these implementations performs any memory management.

3 Memory Management

We now add memory management to the three list implementations considered in the previous
section. To provide a common basis for comparison, we use the following simple structure.
Each thread keeps a thread-local pool of free nodes available for immediate reuse, and a
thread-local pool of retired nodes that have been removed from the list, but which may not
be ready to be reinitialized and reused. Both pools are implemented as lists, but because
they are thread-local, they do not require synchronization.
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When a thread needs to allocate a node to add to the list, it first tries to take a node
from its free pool. If the free pool is empty, it inspects the retired pool to determine whether
there are any nodes that can be moved to the free pool. If not, it calls the C++ new operator
to allocate a new node.

For the lock-coupling list, memory management is simple: as soon as a node is removed
from the list, it can be placed directly in the free pool, bypassing the retired pool.

For the lazy and lock-free lists, however, a node cannot be reused immediately after it is
retired because another thread, performing a lock-free traversal, may be about to read from
that node, presenting a so-called read hazard.

Hazard pointers [24] provide a non-blocking way to address this problem. When a thread
reads the address of the node it is about to traverse, it publishes that address, called a hazard
pointer, in a shared array. It then executes a memory barrier, ensuring that its hazard pointer
becomes immediately visible to the other threads. It rereads the address, and proceeds if the
address is unchanged, As long as the hazard pointer is stored in the shared array, a thread
that has retired that node will not reinitialize and reuse it. The memory barrier is the most
expensive step of this protocol.

For the lazy and lock-free lists with hazard pointers, each thread requires two hazard
pointers, one for the current node, and one for the previous node. To avoid false sharing,
shared hazard pointers are padded so that hazard pointers for different threads reside on
different cache lines.

For purposes of comparison, we also test an epoch-based reclamation scheme [12]. The
threads share a global epoch count to determine when no hazardous references exist to a
retired node in a limbo list. Each time a thread starts an operation that might create a
hazardous reference, it observes the current epoch. If all processes have reached the current
epoch, the global epoch can be advanced, and all nodes that were retired two epochs ago
can safely be recycled. A thread starting such an operation blocks only if its own free list is
empty, but there are retired nodes to be reclaimed when trailing threads catch up to the
current epoch. Each thread needs to keep track of retired pools the last three epochs only.
Careful signaling ensures that quiescent threads do not inhibit reclamation, but, as noted,
an active thread that encounters a delay inside an operation can prevent every other thread
from reclaiming memory.

Figure 2 shows the same benchmark for the same list implementations, except now
with memory management. The lazy and lock-free lists with hazard pointers have become
significantly slower because of the need to execute a memory barrier each time a node
is traversed, an operation almost as expensive as acquiring a lock. The lock-coupling
implementation is still slower than all, but it is significantly simpler than the other methods
that require non-trivial memory management code. Epoch-based reclamation does not
significantly slow down these data structures (but of course the “lock-free” list is no longer
lock-free).

4 Teleportation

Teleportation for lock-based data structures works as follows: a thread holding the lock for a
node launches a hardware transaction that traverses multiple successor nodes, acquires the
lock only for the last node reached, and then releases the lock on the starting node before it
commits. (For lock-free and lazy algorithms, the same observations hold, except replacing
lock acquisition and release with hazard pointer publication.)

Compared to simple fine-grained locking, teleportation substantially reduces the number
of lock acquisitions (or hazard pointer memory barriers) needed for traversals. Moreover, if
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a hardware transaction that attempts to teleport across too many nodes fails, the thread
can adaptively try teleporting across fewer nodes, and in the limit, it reverts to conventional
fine-grained locking manipulation.

4.1 Intel RTM
Although teleportation can be adapted to multiple HTM schemes, we focus here on Intel’s
transactional synchronization extension (TSX) [20], which supports hardware transactions
through the restricted transactional memory (RTM) interface.

When a hardware transaction begins execution, the architectural state is checkpointed.
Memory operations performed inside a transaction are tracked and buffered by the hardware
and become visible to other threads only after the transaction successfully commits. The
hardware detects memory access conflicts with other threads, both transactional and non-
transactional. If a conflict is detected, one transaction aborts: its buffered updates are
discarded and its state is restored.

In the RTM interface, a thread starts a hardware transaction by calling xbegin. If the
call returns XBEGIN_STARTED, then the caller is executing inside a hardware transaction.
Any other return value means that the caller’s last transaction aborted. While inside a
transaction, calling xend() attempts to commit the transaction. If the attempt succeeds,
control continues immediately after the xend() call in the normal way. If the attempt fails,
then control jumps to the return from the xbegin call, this time returning a code other than
XBEGIN_STARTED. While inside a transaction, calling xabort() aborts the transaction. A
thread can test whether it is in a transaction by calling xtest ().

4.2 Teleportation Algorithm
The heart of the teleportation algorithm is the teleport () method shown in Listing 1. (For
brevity, we focus on lock-based teleportation.) This method takes three arguments: a starting
node, the target value being sought, and a structure holding thread-local variables. The
arguments must satisfy the following preconditions: the starting node must be locked by the
caller, and the starting node’s successor’s value must be less than the target value. When
the method returns, the starting node is unlocked, the result node whose address is returned
is locked, and the result node’s value is greater than the starting node’s value, but less than
the target value.

The thread-local teleportLimit variable is the maximum distance the method will try to
teleport the lock. (In our experiments, we chose an initial value of 256, but the results were
insensitive to this choice.) The method initializes pred to the start node, and curr to the start
node’s successor (Lines 4–5). It then enters a loop. At the start of each iteration, it starts a
hardware transaction (Line 7), which advances pred and curr while curr−>value is less than
the target value (Lines 10–15), stopping early if more than teleportLimit nodes are traversed
(Line 14). On leaving the loop, the starting node is unlocked and pred is locked, teleporting
the lock from one to the other (Lines 16–17). If the transaction commits (Line 18), then the
limit for the next transaction is increased by 1 (Line 19), and the method returns pred.

If the commit fails, or if the transaction explicitly aborts, then the teleportation distance
is halved, and the outer loop is resumed (Line 21). However, we do not let the distance fall
below a threshold (we chose 201), because short teleportation distances harm performance,
especially in the tree algorithm. When too many failures occur (more than 10), the algorithm
reverts to standard fine-grained locking (Lines 28–30).

1 The exact value of constants used in our teleportation code had little effect on overall performance.
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Listing 1 Lock-based List: the teleport () method.

1 Node∗ teleport(Node∗ start,
2 T v,
3 ThreadLocal∗ threadLocal) {
4 Node∗ pred = start;
5 Node∗ curr = start−>next;;
6 int retries = 10;
7 while (−−retries) {
8 int distance = 0;
9 if (xbegin() == _XBEGIN_STARTED) {

10 while (curr−>value < v) {
11 pred = curr;
12 curr = curr−>next;
13 if ( distance++>threadLocal−>teleportLimit)
14 break;
15 }
16 pred−>lock();
17 start−>unlock();
18 _xend();
19 threadLocal−>teleportLimit++;
20 return pred;
21 } else {
22 threadLocal−>teleportLimit =
23 threadLocal−>teleportLimit/2
24 if (threadLocal−>teleportLimit<THRESHOLD)
25 threadLocal−>teleportLimit=THRESHOLD;
26 }
27 }
28 curr−>lock();
29 start−>unlock();
30 return curr ;
31 };

As noted, this method follows an additive increase, multiplicative decrease (AIMD)
strategy: the teleportation limit is incremented by 1 upon each successful commit, and halved
upon each abort. We experimented with several other adaptive policies without noticing a
dramatic difference. Overall, AIMD proved slightly better than the others.

Because atomic operations such as compare-and-swap are typically not permitted inside
hardware transactions, The spinlock’s lock() method calls xtest () to check whether it is in a
transaction. If so, and if the lock is taken, then the method explicitly aborts its transaction.
If, instead, the lock is free, it simply writes the value LOCKED and returns. Otherwise, if the
caller is not in a transaction, then it executes a simple “test-and-test-and-set” lock as before.

When teleport () traverses a node, it reads the node’s value and next fields, but not the
node’s spinLock field. (These fields are cache-aligned to avoid false sharing.) This omission
means that one teleporting thread can overtake another, which is impossible with conventional
fine-grained locking.

OPODIS 2017
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Listing 2 Lock-based list: remove() with teleportation.

1 bool remove(T v, ThreadLocal∗ threadLocal) {
2 Node∗ pred = &LSentinel;
3 bool result = false;
4 int retryCount = 0;
5 while (true) {
6 if (pred−>next−>value > v) {
7 result = false;
8 break;
9 } else if (pred−>next−>value == v) {

10 Node ∗nodeToDelete = pred−>next;
11 nodeToDelete−>lock();
12 pred−>next = nodeToDelete−>next;
13 free (nodeToDelete);
14 result = true;
15 break;
16 } else {
17 pred = teleport (pred, v, threadLocal );
18 }
19 }
20 pred−>unlock();
21 return result ;
22 }

The teleport () methods for the lazy and lock-free lists are similar, omitting hazard pointer
publication instead of locking.

4.3 How to teleport()
The lock-based remove() method, shown in Listing 2, sets pred to the local node (as discussed
above) and enters a loop (Lines 5–19). If the pred node’s successor’s value is greater than the
target value, then the value is not present in the list, so the method returns false (Line 6). If
the pred node’s successor’s value is equal to the target value, then we lock the successor and
unlink it from the list (Line 9). Finally, if the pred node’s successor’s value is less than the
target value, we call teleport () to advance pred, and resume the loop (Line 16).

The tree-based set’s range query method uses lock coupling. The range query method
takes a pair (k1, k2) and returns the set of all items in the set between k1 and k2. Range
queries are difficult for lists, but conceptually easy for unbalanced binary trees. Lock-coupling
provides an easy snapshot view of the data structure, but it performs poorly because it
acquires a lock for each traversed node, significantly reducing concurrency. Teleportation
improves performance, while maintaining the simplicity and the functionality of the lock-
coupling algorithm. The teleporting thread checks the traversed nodes’ locks and aborts if
any is locked. Since threads do not bypass locked nodes, locking a node freezes its subtree,
allowing a snapshot of the key range.

The range query method starts by searching for the lowest-level node whose subtree
contains all elements in the range. This search employs lock-coupling with teleportation.
Once the lock of the subtree’s root is acquired, the method gathered the nodes of the subtree
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Figure 3 Effects of teleportation on various lists. Graphs (a)-(c) show throughput in million
operations per second, higher is better. Graph (d) shows speedup, higher means teleportation is
more effective.

that are in the desired range one by one, making sure that previous operations have completed
and released the nodes’ locks. Finally, the subtree’s root lock is released.

The teleportation algorithm for the range queries is similar to the list teleportation
algorithm in Listing 1, except that it checks the visited node’s lock and aborts if the lock is
already held. In addition, it goes to the right if the current key is smaller than the maximum,
to the left if the current key is larger, and otherwise it acquires the target’s lock and commits.

4.4 An Optimization

One standard disadvantage of using fine-grained locking with a tree is that the lock of the
tree root becomes a bottleneck, serializing operations that could otherwise be executed in
parallel. To avoid high contention on the root, we add a simple, yet effective, optimization.
A precondition to the teleportation method is that the node it receives is locked. Our
optimization lets each thread have an artificial local node pointing to the sentinel first node
of the data structure, e.g., the root of the tree. The artificial local node is never reclaimed
and is always locked by the thread using it. A thread starts a search from its local node,
and teleports from there. This eliminates contention on the first node and has several
disadvantages. If two operations teleport on separate routes from the tree root node, they
will not conflict. But even for a list, since the teleportation length varies between threads,
there are multiple target nodes for the first teleportation, and contention is reduced. To see
that correctness is preserved, note that the node returned by the first teleportation is either
the sentinel node or a node reachable from it.
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4.5 Performance Measurements

Figure 3a shows how teleportation improves the performance of the lock-based list implemen-
tation. For a single thread, teleportation yields an approximate 1.5-fold speedup, increasing
to a 4-fold speedup at 16 threads.2

Figure 3b compares lazy list with various memory management schemes. It compares
the throughput for (1) the lazy list with hazard pointers, (2) the lazy list with epoch-based
management, and (3) the lazy list with hazard pointers and teleportation. Teleportation
speeds up lazy list with hazard pointers by 33% – 64%. Teleportation with hazard pointers
is just as fast as epoch-based reclamation, while eliminating the epoch-based scheme’s
vulnerability to thread delay. It is slower by 6% for a single thread, faster by 0% – 5% for
2 – 8 threads, slower by 1% – 9% for 9 – 16 threads, and faster by 18% – 30% for 17 – 24
threads. We also experimented with adding teleportation to the epoch-based scheme, but
we found that epoch-based performance is unaffected by teleportation because it does not
perform memory barriers between most transitions.

Figure 3c compares lock-free list with various memory management schemes. It compares
the throughput for (1) the lock-free list with hazard pointers, (2) the lock-free list with
epoch-based management, and (3) the lock-free list with hazard pointers and teleportation.
Teleportation speeds up the lock-free list with hazard pointers by 21% – 48%. When compared
against epoch-based reclamation, teleportation is slightly slower at low thread counts (5% –
15%), and slightly faster (7% – 21%) above 16 threads.

Figure 3 provides a clear picture of the teleportation speedups in the above measurements.
First, when applied to improve the performance of hand-over-hand locking; second, when
applied to the hazard pointers with lazy list; and third, when applied to the hazard pointers
scheme for the lock-free list.

Figure 4 compares the benchmark performances for the three list implementations, with
memory management and with teleportation. The lazy implementation performs best for
low thread counts - it is faster than the lock-free implementation by 7% – 13%. The locking
implementation does not perform as well as lazy or lock-free lists, but it is easier to develop,
maintain, and extend.
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4.6 Transaction Measurements
Figure 5 presents the average distance (number of nodes) a lock or hazard pointer is teleported
by each list algorithm, and Figure 5 shows the transaction commit rates. The lock-free
implementation is able to teleport around 50 nodes and its commit rate is about 95%. The
lazy implementation is able to teleport approximately 30 nodes at a transaction and the
commit rate is around 88%. The locking implementation has the highest commit rate, around
96, and average teleportation distance around 70.

Although only small percentage of transactions abort, it is instructive to examine why.
When a transaction aborts in RTM, it stores a condition code that indicates (more-or-less)
why it aborted. In our benchmarks, we observed four kinds of abort codes.

A capacity abort occurs if a transaction’s data set overflows the L1 cache for any reason.
A conflict abort occurs if one transaction writes to a location read or written by another
transaction.
An explicit abort occurs when the software calls xabort(). Here, this kind of abort means
that a transaction tried to lock a lock already held by another thread.
An unknown abort is any other kind of abort.

2 Fine-grained locking becomes very slow beyond 16 threads, but fine-grained locking with teleportation
works well beyond this limit because teleporting threads can overtake one another.
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Figure 6 shows the distribution of abort codes for the lock-based list teleportation, for 4,
8, and 12 threads. Most aborts are conflict and explicit aborts, which is a good result,
meaning that aborts are caused mostly by real conflicts and not by hardware limitations or
inaccuracies.

In addition to the linked list, we also implemented a skiplist based on the lazy list
with teleportation, and a binary tree with range queries based on lock-coupling. For both
implementations we used a micro-benchmark with a typical workload of 10% insertions, 10%
deletions, and 80% contain operations. For the binary tree we further added a range workload,
where the contain operations are replaced by range queries of length 10. In Figure 7 we
report execution times for the binary tree with range queries support, implemented with the
lock-coupling paradigm. It can be seen that the lock-coupling algorithm offers no scalability.
However, with teleportation, excellent scalability is obtained. In Figure 7 we present the
speedup of teleportation over the standard lock-coupling algorithm. With a single thread
there is almost no improvement, but for two threads and up the speedup is 3.1 – 12.

Finally, in Figure 8 and Figure 8 we consider the speedup and execution time of a lazy
skip list with and without hazard pointers teleportation. The teleportation speeds up the
lazy implementation by 2% – 20%.

5 Correctness

Although a formal model of teleportation is beyond the scope of this paper, we can sketch
what such a treatment would look like. There are multiple threads, where each thread is
a state machine that undergoes a sequence of state transitions. The threads communicate
through a (passive) shared memory. Each thread transition is associated with a memory
operation such as a load, store, memory barrier, or read-modify-write operation. Such a
model can be precisely captured, for example, using I/O Automata [21] or similar formalisms.
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We write a thread state transition as (s, m) → (s′, m′), where s is a thread state and
m is the corresponding memory state. An execution is a sequence of interleaved thread
transitions.

Assume we are given a base system B encompassing threads T0, . . . , Tn and memory M .
From B we derive a teleported system T encompassing the same number of threads T ′

0, . . . , T ′
n

and memory M . A map f carries each state of T ′
i to a state of Ti such that

every transition in B has a matching transition in T : for every transition (s, m)→ (s′, m′)
of B there is a transition (ŝ, m)→ (ŝ′, m′) of T such that f(ŝ) = s and f(ŝ′) = s′.
every transition of T corresponds to some atomic sequence of transitions of B: if (s, m)→
(s′, m′) is a transition of T , then there is a sequence of transitions of B, (si, mi) →
(si+1, mi+1), 0 ≤ i ≤ k, such that f(s) = s0, m = m0 and f(s′) = sk, m′ = mk.

From these conditions, it is not difficult to show that every execution of the teleported system
T maps to an execution of the base system B.

Informally, this model just says that checking correctness for a teleportation design
requires checking that the thread and memory states in T after teleportation match the final
memory states after an uninterrupted single-thread execution of B.

6 Related Work

As noted, Hardware lock elision (HLE) [25, 26] is an early example of the teleportation
pattern. In HLE, a critical section is first executed speculatively, as a hardware transaction,
and if the speculation fails, it is re-executed using a lock.

Another prior example of teleportation is telescoping, proposed by Dragojevic et al. [11]
Here, hardware transactions are used to traverse a reference-counted list without the cost of
incrementing and decrementing intermediate reference counts.

StackTrack [2] (arguably) incorporates the teleportation pattern within a more complex
design. It provides a compiler-based alternative to hazard pointers, in which hardware
transactions are overlaid on the basic blocks of non-transactional programs. On commit, each
such transaction publishes a snapshot of its register contents and local variables, effectively
announcing which memory locations that thread may be referencing.

There are a number of related techniques that resemble our use of teleportation in some
aspects, but either do not retrofit a viable prior design, or do not exist to minimize memory
traffic.

Makreshanski et al. [22] examine (among other issues) the use of hardware transactions
to simplify the conceptual complexity of lock-free B-trees by judicious introduction of
multi-word CAS operations. Here, the speculative path executes the multi-word CAS as
a hardware transaction, while the non-speculative fallback path uses a complex locking
protocol. Although this does not really retrofit speculative short-cuts to prior design, and
the overall goal is simplicity, not efficiency gain by reducing memory traffic.

BulkCompiler [1] proposes a novel hardware architecture where a compiler automatically
parcels Java applications into hardware transactions (called “chunks”). Lock acquisition and
release instructions within chunks can be replaced by memory reads and writes. Instead of
retrofitting an existing design, BulkCompiler requires specialized hardware and a specialized
compiler, while teleportation targets commodity platforms and compilers. BulkCompiler is
monolithic, operating automatically on entire applications.

Hand-over-hand locking, also known as lock coupling, is due to Bayer and Schkolnick [4].
Lock-free linked-list algorithms are due to Valois [28], Harris [14], and Heller et al. [16].
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Hazard pointers are due to Michael [24]. Other approaches to memory management for
highly-concurrent data structures include pass the buck [17], drop the anchor [5], epoch-based
techniques [14], and reference counting [10, 13, 27]. Hart et al. [15] give a comprehensive
survey of the costs associated with these approaches.

Several recent studies aimed at reducing the costs of hazard pointers. The Optimistic
Access scheme [9, 8] reduces the cost of memory barriers and hazard pointers by letting the
threads optimistically read memory without setting hazard pointers. This scheme provides a
mechanism that makes a thread aware of reading reclaimed memory and allow it to restart its
operation. The optimistic access scheme can be applied automatically in a garbage-collection-
like manner, and it fully preserves lock-freedom. Debra [6] extends epoch-based reclamation
by interrupting delayed threads and making them restart. Optimistic access and Debra
require the algorithm to be presented in a special form that allows restarting the operation
when needed.

Threadscan [3] mitigates the cost of hazard pointers by avoiding memory barriers and
interrupting all threads to gather their hazard pointers or their local pointers when needed.
Threadscan requires substantial support from the runtime system and the compiler. The
teleportation scheme presented in this paper does not require any special algorithmic form
and it does not require compiler support.

Read-copy-update [23] is a memory-management mechanism optimized for low update
rates, but does not permit fine-grained concurrency among updating threads.

7 Conclusion

State teleportation exploits best-effort hardware transactional memory (HTM) to improve of
memory management for highly-concurrent data structures. Because modern HTMs do not
provide progress guarantees, teleportation is designed to degrade gracefully if transaction
commit rates decline, either because of contention or because the platform does not support
HTM. In the limit, the data structures revert to their underlying memory management
schemes.

In this paper we illustrated the use of teleportation for improving the performance
of various data structures, including lock-based and lock-free lists, skiplists, and trees.
Teleportation successfully lowers the costs associated with multiple lock acquisition and with
memory barriers required by hazard pointers.

Naturally, there are limitations to be addressed by future work. Teleportation, like hazard
pointers, must currently be applied by hand, just like the underlying locking or hazard
pointers mechanisms. A future challenge is to automate this process.
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Abstract
Consider k robots initially located at the centroid of an equilateral triangle T of sides of length one.
The goal of the robots is to evacuate T through an exit at an unknown location on the boundary
of T . Each robot can move anywhere in T independently of other robots with maximum speed
one. The objective is to minimize the evacuation time, which is defined as the time required for
all k robots to reach the exit. We consider the face-to-face communication model for the robots:
a robot can communicate with another robot only when they meet in T .

In this paper, we give upper and lower bounds for the face-to-face evacuation time by k

robots. We show that for any k, any algorithm for evacuating k ≥ 1 robots from T requires
at least

√
3 time. This bound is asymptotically optimal, as we show that a straightforward

strategy of evacuation by k robots gives an upper bound of
√

3 + 3/k. For k = 3, 4, 5, 6, we
show significant improvements on the obvious upper bound by giving algorithms with evacuation
times of 2.0887, 1.9816, 1.876, and 1.827, respectively. For k = 2 robots, we give a lower bound
of 1 + 2/

√
3 ≈ 2.154, and an algorithm with upper bound of 2.3367 on the evacuation time.

1998 ACM Subject Classification I.1.2. Algorithms, D.1.3 Distributed programming

Keywords and phrases Distributed algorithms, Robots evacuation, Face-to-face communication,
Equilateral triangle

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.11

1 Introduction

Searching for an object at an unknown location in a specific domain in the plane is a well-
studied problem in theoretical computer science [1, 4, 5, 21, 22]. The problem was initially
studied when there is only one searcher, whom we refer to as a robot. The target is assumed
to be a point in the domain, and the robot can only find the target when it visits that point.
The goal then is to design a trajectory for the robot that finds the target as soon as possible.
Recent work has focused more on parallel search by several robots, which can reduce the
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11:2 Evacuating an Equilateral Triangle in the Face-to-Face Model

search time as the robots can distribute the search effort among themselves. The search time
by k robots is generally defined to be the time the first robot reaches the target.

A natural generalization of the parallel search problem, called the evacuation problem,
was recently proposed: consider several robots inside a region that has a single exit at an
unknown location on its boundary. All robots need to reach the exit, i.e., evacuate the region,
as soon as possible. This is essentially the parallel search problem where the exit is the
search target, however we are interested in minimizing the time the last robot arrives at
the exit. The problem was introduced in [8] (see also [10]), and a number of papers on this
problem have been published since then.

The evacuation problem substantially depends on the way robots can communicate among
themselves. Two models of communication have been proposed: in the wireless model, each
robot can communicate wirelessly with the other robots instantaneously, regardless of their
locations. In the face-to-face model, two robots can communicate with each other only when
they meet, i.e., when they occupy the same location at the same time. Since in the wireless
model robots can communicate with each other regardless of their locations, as soon as a
robot finds the exit, it can announce it to other robots. This is not possible in the face-to-face
communication, which makes the evacuation problem more challenging, due to the very
limited communication capabilities of robots.

In this paper, we study the problem of evacuating a unit equilateral triangle in the
face-to-face model with k robots, all of which are initially located at the centroid of the
triangle. Our objective is to design the trajectories of the robots so as to minimize the
worst-case evacuation time, which is defined as the time it takes for all the robots to reach
the exit.

Related work. A classical problem related to our paper is the well-known cow-path problem
introduced by A. Beck [4], in which a cow searches for a hole in an infinite linear fence. An
optimal deterministic algorithm for this problem and for its generalization to several fences
is known, e.g., Baeza-Yates et al. [2]. Since then several variants of the problem have been
studied [3, 6, 7, 11, 15, 16, 18, 17, 20].

Lopez-Ortiz and Sweet [20] asked for the worst-case trajectories of a set of robots searching
in parallel for a target point at an unknown location in the plane. Feinerman et al. [14] (see
also [13]) introduced a similar problem in which a set of robots that are located at a cell
of an infinite grid and being controlled by a Turing machine (with no space constraints)
need to find the target at a hidden location in the grid. In these two models of multi-robot
searching, the robots cannot communicate at all. By controlling each robot by asynchronous
finite state machine, Emek et al. [12] studied this problem in which the robot can have a
“local” communication in some sense and proved that the collaboration performance of the
robots remains the same, even if they possess a constant-size memory. Lenzen et al. [19]
extended this problem by introducing the selection complexity measure as another factor in
addition to studying the time complexity of the problem.

The evacuation problem with several robots has been studied in recent years under
wireless and face-to-face models of communications. For the wireless model, Czyzowicz
et al. [8] studied the problem of evacuating a unit disk, starting at the center of the disk.
They gave a tight bound of 4.83 for the evacuation time of k = 2 robots, as well as upper
and lower bounds of, respectively, 4.22 and 4.159 for k = 3. These bounds for k robots
become 3 + π/k +O(k−4/3) and 3 + π/k, respectively [8]. Czyzowicz et al. [11] also studied
the evacuation problem for k robots for unit-side squares and equilateral triangles in the
wireless model. For a unit-side square, they gave optimal algorithms for evacuating k = 2
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robots when located at the boundary of the square. Moreover, for an equilateral triangle,
they gave optimal evacuation algorithms for k = 2 robots in any initial position on the
boundary or inside the triangle. They also showed that increasing the number of robots
cannot improve the evacuation time when the starting position is on the boundary, but three
robots can improve the evacuation time when the starting position is the centroid of the
triangle. Recently, Brandt et al. [6] considered the evacuation problem for k robots on m
concurrent rays under the wireless model. Finally, the evacuation problem on a disk with
three robots at most one of which is faulty was recently studied by Czyzowicz et al. [9] under
the wireless model.

For the face-to-face model, Czyzowicz et al. [8] gave upper and lower bounds of, respect-
ively, 5.74 and 5.199 for the evacuation time of k = 2 robots initially located at the center of
a unit disk. Both the upper and lower bounds were improved by Czyzowicz et al. [10] to
5.628 and 5.255, respectively. Closing this gap remains open. When k = 3 the upper and
lower bounds for the face-to-face model are 5.09 and 5.514, respectively, and 3 + 2π/k and
3 + 2π/k −O(k−2) for any k > 3 [8].

Our results and organization. In this paper, we study the evacuation of k robots from an
equilateral triangle under the face-to-face model. We present the following results:

For k ≥ 3, we show that any algorithm for evacuating k robots from triangle T requires
at least

√
3 time. We prove that this bound is asymptotically optimal by giving a simple

algorithm that achieves an upper bound of
√

3 + 3/k.
We show that a significant improvement on the above upper bound can be obtained using
the Equal-Travel Early-Meeting strategy. In this strategy the travel time of all robots
is the same and they use a meeting point for all robots before the entire boundary is
explored to share information. Applying this strategy we design algorithms for k =2,3,4,5,
and 6 with evacuation times of ≈ 2.4114, 2.0887, 1.982, 1.8760 and 1.823, respectively.
For k = 2 we prove a lower bound of 2.154 on the evacuation time. We improve the
evacuation algorithm for k = 2 even further by replacing an early meeting with one or
several detours inside the triangle which improves the evacuation time to 2.3367.

We specify some preliminaries and notation in Section 2. Then, we give the proofs of our
lower bounds in Section 3, and present our evacuation algorithms in Section 4. We conclude
the paper with a summary of our results and a discussion of open problems in Section 5.

2 Preliminaries

For two points p and q in the plane, we denote the line segment connecting p and q by pq
and the length of pq by |pq|. Throughout the paper, we denote an equilateral triangle by T
and denote the vertices of T by A,B, and C. Thus we sometimes write ABC to refer to T .
We always assume that the sides of T have length 1 and every robot moves at maximum
speed 1. Throughout the paper we use the following triangle terminology:

By h we denote the height of the equilateral triangle. Observe that h =
√

3/2.
We denote by O the centroid of T (i.e., the intersection point of the three heights of T ).
We use x, and y to denote the distance of O to a vertex, and to the side of the triangle,
respectively; notice that x = 2h/3 =

√
3/3 and y = h/3 = x/2 =

√
3/6.

We define EA(T, k) to be the worst-case evacuation time of the unit-sided equilateral triangle
T by k robots using algorithm A, assuming the robots are initially located at the centroid of
the triangle, the exit is located at an unknown location on the boundary of the triangle, and
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the robots communicate using the face-to-face model. Also, we define E∗(T, k) to be the
optimal evacuation time of the triangle by k robots in the face-to-face model.

A deterministic algorithm for the evacuation problem by k robots takes as input the
triangle and the k robots located at its centroid, and outputs for each robot a fixed trajectory
consisting of a sequence of connected line segments or curves to be followed. We assume
every robot knows the trajectories of all the robots. A robot R follows its trajectory unless:

R sees the exit: R may then quit its trajectory and go to a point where it can intercept
another robot and inform it about the exit.
R meets another robot who has found the exit: R then quits its trajectory and proceeds
directly to the exit.

Observe that the robots are initially co-located, and the initial part of their trajectories
may be identical, i.e., when going to the boundary of the triangle. Later on, the trajectories
of two or several robots may intersect and the intersection point may be reached by all robots
at the same time. We call such a point a meeting point. A meeting point might be in the
interior of the triangle and it can serve as a place for the robots to exchange information
about the progress in the search for exit. If one of the robots has found the exit, they can
proceed towards it. Otherwise, the robots can continue in the search for the exit separately
or together. As shown in [11], and in Section 4, an algorithm with a meeting point in the
interior of the region can improve the evacuation time in some cases.

If the trajectory of a robot leaves the boundary of the triangle and returns to the boundary
without a planned meeting point, we say that the robot makes a detour. The robot may
make such a detour to enable another robot that has found the exit to intercept it. In the
absence of an interception, the robot has gained information about the absence of the exit in
some part of the boundary. A detour in the trajectories of two robots was used in [10] to
improve the evacuation time, and we use this strategy in Subsection 4.2.

3 Lower Bounds

In this section, we prove lower bounds on the evacuation time. We first show that regardless
of the number of robots,

√
3 is a lower bound on the evacuation time. This bound holds even

if the exit is known to be at one of the three vertices of the triangle.

I Theorem 1. Consider k robots R1, R2, . . . , Rk, initially located at the centroid of an
equilateral triangle T . In the face-to-face model the evacuation time of k robots E∗(T, k) ≥√

3 ≈ 1.732.

Proof. Consider a deterministic and arbitrary evacuation algorithm A for k robots. We
first run the algorithm to see which vertex is the last one visited by the robots (two or even
three vertices could be visited at the same time as the last ones in which case, we choose an
arbitrary one as last). Assume without loss of generality that A is the last vertex visited by
any of the robots; let I1 be the input in which the exit is at A. Consider the execution of
the algorithm on input I1, and let t be the time the second of the three vertices is visited by
some robot R. Without loss of generality, let this second vertex be B; that is, R visits vertex
B at time t on input I1. Let I2 be the input where the exit is at the remaining vertex C. We
argue that the evacuation time of the algorithm must be ≥ 3x on one of these two inputs.

If t ≥ 3x−1, then it takes an additional time 1 for robot R to reach the exit at A, leading
to a total evacuation time of at least 3x on input I1. Therefore, assume that t < 3x − 1.
Since R has to reach B before time 3x − 1, we claim that it is impossible for R to meet
a robot R′ that has already visited A or C before R reaches B at time t. Suppose R was
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able to meet R′ that had visited A (without loss of generality) at some meeting point M at
time tM . Then clearly tM ≥ x+ |AM |. After meeting R′, the robot R needs time at least
|MB| to get to B. We conclude that t ≥ tM + |MB| ≥ x+ |MB|+ |MA| ≥ x+ 1. However,
x+ 1 > 3x− 1, a contradiction. Thus, R’s trajectory to B, reaching B at time t < 3x− 1
cannot allow a meeting between R and any robot that has already visited A or C. Therefore,
the behaviour of the robot R must be the same on inputs I1 and I2 until time t when R
arrives at B. Observe now that t ≥ x. At time 2x, if the robot R is at distance > x from A,
the adversary puts the exit at A (input I1), and if it is at distance > x from C, it puts the
exit at C. Combined with the fact that at time 2x, the robot R can travel at most distance
2x− t ≤ x from B, we have the desired result. J

The above bound is asymptotically optimal, as we will describe a simple algorithm
in Section 4 that evacuates k robots in

√
3 + 3/k time from an exit situated anywhere

on the boundary. We remark also that in the wireless communication model, E∗(T, 6) =
2
√

3
3 (D. Krizanc, private communication, 2015), showing that for the equilateral triangle,

evacuation even with arbitrarily many robots takes much more time in the face-to-face model,
than evacuating only six robots in the wireless model.

When k = 2, we are able to prove a better lower bound of ≈ 2.15. The argument used
for the lower bound is an adversary argument: depending on what the algorithm does,
the adversary places the exit in such a way so as to force the claimed evacuation time.
The key insight can be summarized as follows: if an algorithm is to do better than the
claimed lower bound, either the robots cannot meet in a useful way to shorten the time
to reach the exit, or they simply cannot finish the exploration. To this end, we first prove
the following technical lemma. We first need some notation. For the equilateral triangle
ABC, let D,E and F denote the middle point of sides AB,AC and BC, respectively, and
let S = {A,B,C,D,E, F}. We say two points in S have opposite positions if one point is a
vertex of the triangle T and the other point is located on the opposite side of that vertex.
For example, the vertex C and a point in {A,D,B} have opposite positions.

I Lemma 2 (Meeting Lemma). Consider a deterministic algorithm A for evacuating two
robots that are initially at the centroid of an equilateral triangle T , and let p1, p2 ∈ S have
opposite positions. If A specifies a trajectory for one of the robots in which it visits p1 at
time t′ satisfying t′ ≥ 0.5 + y and a trajectory for the other robot in which it visits p2 at time
t such that t′ < t < 0.5 + h+ y = 0.5 + 4y, then the two robots cannot meet between time t
and t′.

Proof. Suppose for a contradiction that the robots meet at time t′ < tm ≤ t at some point z.
Since p1 and p2 have opposite positions |p1p2| ≥ h. Therefore, |p1z|+ |zp2| ≥ h. Moreover
|p1z| ≤ tm − t′ and |zp2| ≤ t− tm. This implies that

h ≤ |p1z|+ |zp2| ≤ (tm− t′)+(t− tm) = t− t′ < 0.5+h+y− t′ ≤ 0.5+h+y−0.5−y = h,

which is a contradiction. J

I Theorem 3. Consider 2 robots R1, R2, initially located at the centroid of an equilateral
triangle T . If the robots communicate using face-to-face model, then the evacuation time of
two robots E∗(T, 2) ≥ 1 + 4y = 1 + 2/

√
3.

Proof. Suppose for the purpose of contradiction, that there is a deterministic algorithm A
for evacuation by two robots, such that EA(T, 2) < 1 + 4y. We first focus attention on the
set of points S = {A,B,C,D,E, F}. There exists some input I on which the exit is the last
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Figure 1 (a) An illustration in support of the proof of the Meeting Lemma. (b) An illustration
in support of case 2 in the proof of Theorem 3.

point in S to be visited by either of the robots, according to the trajectories specified by
A. Let t be the time the fifth point of S is visited by a robot on input I. Let v1, v2, . . . , v6
be the order in which the points in M are visited by the robots, on input I; the exit is at
v6. Without loss of generality assume that v5 is visited by robot R1. Clearly, v6 is not yet
visited before time t; it may be visited at or after time t. First, note that since at least
five points are visited at or before time t, one of the robots must have visited at least three
points in M . It follows that t ≥ 1 + y. If t ≥ 0.5 + 4y, since the exit is at v6, which is at
least 0.5 away from R1, we obtain EA(T, 2) ≥ 1 + 4y, a contradiction. We conclude that
1 + y ≤ t < 0.5 + 4y.

We now consider the following exhaustive cases depending on whether v5 is a vertex of T
or a midpoint of a side of T .
Case 1. v5 is a vertex of T . Without loss of generality assume that v5 is C. See Figure 1(a).
If v6 is any of A,D,B, then at time t, R1 needs time at least h to arrive to v6, which implies
that E∗(T, 2) ≥ t + h ≥ 1 + 4y, a contradiction. So we conclude that v6 is at either E or
F . Since t < 0.5 + 4y, robot R1 could have visited at most one of A,D,B by time t. This
means that R2 must have visited at least two of A,D,B. Let v be the second vertex of the
set A,D,B to be visited by R2, and assume it arrives there at time t′. Note that t′ ≥ 0.5 + y.
By the Meeting Lemma, the two robots do not meet at any time between t′ and t on input I.

Now consider an input I ′ in which the exit is at v. Clearly the robots behave identically
on both inputs I and I ′ until time t′. After this time, R2 on seeing the exit at v may behave
differently; however robot R1 must behave exactly as in I unless it meets robot R2, which by
the Meeting Lemma, cannot happen until time t. Therefore, after time t, it takes at least an
additional h to reach the exit at v, giving a total evacuation time of at least t+ h ≥ 1 + 4y,
a contradiction.
Case 2. v5 is a midpoint of a side of T , and v6 is another midpoint: Without loss of
generality assume that v5 is E, and v6 is D; see Figure 1(b). Then, all three vertices must
have been visited before or at time t. Since R1 cannot visit two vertices before arriving at E
at time t < 0.5 + h+ y, we conclude that R2 must visit two vertices by time t. Referring to
Figure 1(b), consider the second vertex visited by R2. Observe that R2 cannot arrive there
before time 1 +x. (i) If it is B, then we put the exit at E. This way, R2 needs time at least h
to get to E from B and so E∗(T, 2) ≥ 1+x+h ≥ 1+4y. (ii) If it is C, then we put the exit at
D. Then, R2 needs time at least h to get to D from C and so E∗(T, 2) ≥ 1 + x+ h ≥ 1 + 4y.

We conclude that the second vertex visited by R2 must be A. We first note that R2
cannot have visited all F,B,A or all F,C,A by time t, as visiting either set of three points
takes time at least 0.5 + x+ h > 0.5 + y + h > t. So, R1 must have visited F and C (or F
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and B) before coming to E. Let P be the second of the two points visited by R1 before
going to E. Note that P could be F , C, or B, and suppose R1 visits P at time t′. Clearly,
t′ ≥ 0.5 + y. Since R2 must visit A at or before time t < 0.5 + 4y, by the Meeting Lemma,
the robots cannot meet at any time t′ ≤ tm ≤ t. In other words, R1 cannot meet R2 after
the latter has visited P and reach A on time. Now consider the input I ′ in which the exit is
at P . On input I ′, the robot R2 will have the same behavior as input I until it reaches A at
time t > 1 + x and then needs to get to the exit (which is at F or C or B). Therefore we
have E∗(T, 2) ≥ 1 + x+ h ≥ 1 + 4y, a contradiction.
Case 3. v5 is a midpoint of a side of T , and v6 is a vertex: Without loss of generality
assume that v5 is E. If v6 is B, then R1 needs time ≥ h to reach the exit, so on input I, the
evacuation time is at least t+ h ≥ 1 + h+ y. Therefore, assume without loss of generality
that v6 is A; see Figure 1(b). If a single robot visits both B and C, it takes time at least
2 + x > 1 + 4y to reach vertex A. Therefore, B and C must be visited by different robots.
We consider separately the two cases: R1 visits C and R2 visits B; and R1 visits B and R2
visits C.

Suppose R1 visits C before visiting E, and R2 visits B. First observe that R1 cannot also
visit D, as visiting C, D, and E takes time at least 0.5 + 4y, a contradiction to tE < 0.5 + 4y.
Therefore R2 must visit D in addition to B. Either R1 or R2 must visit F . If R2 visits F ,
Lemma 5 assures that EA(T, 2) ≥ 1 + 4y and if R2 does not visit F , Lemma 6 does the same.

Suppose instead that R1 visits B before visiting E and R2 visits C. Then R1 cannot
visit both D and F , as visiting D,B,F,E takes time at least 1.5 + y > 0.5 + 4y, Lemmas 7,
8, and 9 now assure that EA(T, 2) ≥ 1 + 4y for the cases when R1, in addition to visiting B
and E, visits F , visits D, and visits neither, respectively. J

For all the lemmas below, we assume that according to algorithm A, we have v5 = E

and v6 = A, and robot R1 visits E at time 1 + y ≤ tE < 0.5 + 4y. We start with a simple
observation that is used repeatedly.

I Observation 4. Let p be a point on the boundary. If at time 1 + 4y − |Ap|, both A and p
are unvisited then EA(T, 2) ≥ 1 + 4y.

Proof. Put the exit at whichever of the two points is visited later. Since at time 1+4y−|Ap|,
neither is visited, the time to evacuate is at least 1 + 4y − |Ap|+ |Ap| = 1 + 4y. J

I Lemma 5. If R2 visits B,D and F , and R1 visits C and E, then EA(T, 2) ≥ 1 + 4y.

Proof. First, observe that if B is not visited first of the three points B,D,F , then tB > 0.5+y.
Since E is visited by R1 and tE ≥ 1 + y, by the Meeting Lemma, R1 and R2 cannot meet
between tB and tE . Thus if the exit is at B, it will take R1 time at least tE + h ≥ 1 + 4y
to reach there. We conclude that B must be visited first. If R2 visits B, D, and F in that
order, then tF ≥ 1 + x, so by Observation 4, we have EA(T, 2) ≥ 1 + 4y. So, R2 must visit
B,F and D in this order.

Let P be the closest point from B on the BD line segment that is not visited by R2 before
it visits F . Then the time for R2 to reach F is at least |OP |+ |PB|+ |BF | (Figure 2, the blue
trajectory). Therefore, the earliest time R2 can reach P is |OP |+ |PB|+ |BF |+ |FP |. It can
be verified that for any pointM on the BD line segment, this time is more than 1+4y−|AM |,
therefore it is true for the point P defined above. Also, R1 cannot visit P on time: if it
visits P before C (Figure 2, the green trajectory), we have tE ≥ |OP | + |PC| + |CE| ≥
|OD|+ |DC|+ |CE| = 0.5 + 4y, and if it visits C before P (Figure 2, the red trajectory), we
have tE ≥ |OC|+ |CP |+ |PE| ≥ |OC|+ |CD|+ |DE| = 2y + 3y + 0.5. Thus neither robot
can visit P before time 1 + 4y − |AP |. The lemma now follows from Observation 4. J
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Figure 2 An illustration of possible trajectories of R1 and R2, in support of Lemma 5.

I Lemma 6. If R2 visits B and D and R1 visits C,F, and E, then EA(T, 2) ≥ 1 + 4y.

Proof. First observe that if R2 visits D before B, then tB ≥ 0.5 + y. Since E needs to be
visited by the other robot R1 and tE ≥ 1 + y, by the Meeting Lemma, R1 and R2 cannot
meet between tB and tE . Thus if the exit is at B, it will take R1 time at least tE +h ≥ 1+4y
to reach there. We conclude that B must be visited first. Also, clearly E is visited last by
R1. If R1 visits F before C, then tC ≥ 0.5 + y, and tD ≤ tE ≤ 0.5 + 4y, so by the Meeting
Lemma, R1 and R2 cannot meet before time 0.5 + 4y and after R2 visits B. Thus if the
exit is at B, it will take R1 time at least tE + h ≥ 1 + 4y to reach there, and we conclude
that EA(T, 2) ≥ 1 + 4y. Therefore, R1 must visit C,F , and E in that order. Using a similar
argument as in Lemma 5, we can see that there exists an unvisited point P on the CE
segment at time 1 + 4y − |AP |. It follows from Observation 4 that EA(T, 2) ≥ 1 + 4y. J

I Lemma 7. If robot R1 visits B,F and E, and R2 visits C and D, then EA(T, 2) ≥ 1 + 4y.

Proof. First observe that E must be visited last, and if R1 visits F before B then tE ≥ 0.5+4y.
So B must be visited before F . Now let P be a point at distance 0.3 from B on the BD
segment, and Q a point at distance 0.34 from C on the CE segment. It can be verified that
if R1 visits a point on the PD segment before arriving at B, then tE ≥ 0.5 + 4y. Similarly,
R1 cannot visit any point in the QC line segment if it is to reach E by time 0.5 + 4y. See
Figure 3 (a). Therefore the entire PD line segment and the entire QC line segments must
be visited by R2. Now we consider the order of visiting D,Q,C, P . If D or P are visited
before C, then C cannot be reached before 4y which means that if the exit is at A, R2 cannot
reach it before time 1 + 4y. So C has to be visited before P or D, Figure 3 (b). Regardless
of whether Q or C is visited first, it can be verified that it is impossible for R2 to reach P
before time 1 + 4y − |AP |, yielding the desired conclusion, using Observation 4. J

I Lemma 8. If robot R1 visits B,D and E, and R2 visits C and F , then EA(T, 2) ≥ 1 + 4y.

Proof. R2 must visit F before C, as otherwise as shown in the proof of Lemma 5, there will
be a point P on the CE segment that cannot be visited before time 1 + 4y − |AP |. If R1
visits D before B, then tE ≥ 0.5 + 4y. So R1 must visit B before D. By Observation 4, the
entire BC edge must be visited at or before time 1 + y. Let Q be the leftmost point on the
BC edge that is not visited by robot R1. Then R2 must visit the entire QC segment. Since
R2 must visit C before time 4y, we see that |BQ| > 0.236. As a result tD ≥ 1.13155. Let R
be the point at distance 0.05 from D on the the DA segment, and S be the point at distance
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Figure 3 (a) An illustration of possible trajectories of R1 and (b) possible trajectories of R2, in
support of Lemma 7.

0.03 from E on the EC segment. Using the assumption that it reaches E before time 0.5+4y,
it can be verified that R1 cannot visit either R or S before time 1.657 > 0.5 + 4y, and
1.661 > 0.5 + 4y respectively. Then since the SE segment must be visited by R2 before time
0.5 + 4y, R2 cannot reach R before time |OF |+ |FC|+ |CS|+ |SR| > 1.75 > 1 + 4y − |AR|.
It follows from Observation 4 that EA(T, 2) ≥ 1 + 4y. J

I Lemma 9. If robot R1 visits B and E, and R2 visits C,F, and D, then EA(T, 2) ≥ 1 + 4y.

Proof. We observe that D must be visited last; if F is visited last, tF ≥ 0.5 + 4y, and if C
is visited last, then tC ≥ 1 + y > 4y. In both cases, Observation 4 gives the desired result.
The rest of the proof is analogous to the case when robot R1 visits B,F,E. J

4 Evacuation Algorithms and Upper Bounds

In this section, we give evacuation algorithms for k robots, k ≥ 2, that are initially located
on the centroid of an equilateral triangle, and derive upper bounds on the evacuation time
by analyzing their performance.

Consider a straightforward strategy for evacuating k robots, that we call the Equal-
Exploration strategy: divide the boundary into k equal-sized contiguous sections of length
3/k each, and assign each robot to explore a unique section of the boundary. Each robot goes
to one endpoint of its assigned section, it explores its assigned section in time at most 3/k,
then it returns to the centroid to meet the other robots to share the result of its exploration.
Since the sections can be chosen so that no section begins at a vertex, each robot takes time
less than 2x for the total travel to and from the centroid. Thus, all robots are at the centroid
at time less than 2x+ 3/k. Finally, all robots travel together to the exit taking time at most
x. Clearly, this algorithm has evacuation time less than 3x+ 3/k =

√
3 + 3/k. Although very

simple, by Theorem 1, this bound is asymptotically optimal. As such, we have the following:

I Observation 10. The Equal-Exploration strategy for k robots has worst case evacuation
time less than

√
3 + 3/k.

In the rest of this section we propose several improvements of the above strategy and
obtain better upper bounds for k ≤ 6. However, our strategies can be easily used to obtain
evacuation algorithms for other values of k.

OPODIS 2017
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4.1 Equal-Travel Early-Meeting Algorithms
First notice that the time to travel from and to the centroid can vary by almost a factor of 2
for different robots. In particular, robots that are assigned a section of the boundary starting
or ending close to a midpoint have to travel a much smaller distance to or from the centroid,
than robots that are assigned a section of the boundary that starts/ends close to a vertex. In
the worst case the exit could be discovered by a robot that is the last to arrive at the centroid.
Thus, our second strategy, which we call the Equal-Travel strategy, divides the boundary
into sections in such a way that the total lengths of trajectories of all robots is equalized.
In other words, we aim to equalize the travel time of all robots. Clearly, the Equal-Travel
strategy should in general lower the evacuation time compared to the Equal-Exploration
strategy. For a general value of k, such a division into equal length trajectories requires a
solution of a system of equations of order 4, without a significant improvement for large
values of k, and thus we did not do it in general.

Second notice that in both the Equal-Exploration and Equal-Travel strategies, the robots
meet in the interior of the triangle after the entire boundary has been explored, and then
travel together to the exit. In the following we show that the evacuation time of a triangle
can be improved if the robots stop the exploration of the boundary early and go to a meeting
point before the boundary is explored entirely. After this early meeting, either the robots go
together to the exit, or they all go together to explore the rest of the boundary where the
exit is now known to be.

In the sequel, we describe Equal-Travel Early-Meeting algorithms that combine the equal
travel strategy with an early meeting. Such an algorithm for the evacuation of k robots
selects the location of the early meeting point. It divides the boundary into k+ 1 sections, of
which k require the same travel times, and are assigned to unique robots, and the last section
is a common section, to be explored together by all robots. In the first phase each robot
explores its assigned section (the last section remains unexplored) and returns to the meeting
point. If the exit has been found by one of them, all robots proceed to the exit. If the exit
has not been found, it must lie in the unexplored last section. The robots go together to
explore the common last section and evacuate together. By optimizing the position of the
meeting point, the location of the sections, and the length of the common section, we obtain
Early-Meeting algorithms with better performance than those using only the Equal-Travel
strategy. Next we give the details of the Early-Meeting algorithm for each k ∈ {2, 3, 4, 5, 6}.

I Theorem 11. There are Equal-Travel Early-Meeting algorithms for two and three robots
with evacuation times E∗(T, 2) ≤ 2.4113, and E∗(T, 3) ≤ 2.08872.

Proof. First we consider the case of 2 robots. Let p be the point in the middle of side BC,
and r1, r2 be points on sides AB, AC to be determined later, and the meeting point D be
the bisector of segment r1r2 as on Figure 4(a). R1 is assigned the section of the boundary
from p to B to r1, and R2 is assigned the section from p to C to r2, the rest of the boundary
being the final common section. Now, if the exit is discovered by R2 then R1 travels the
distance at most t1 = y+ 0.5 + |Br1|+ |r1D|+ |DC|. If the exit is discovered in the common
section, it travels distance at most t2 = y + 0.5 + |Br1|+ 2|r1D|+ 2|Ar1|. The worst-case
evacuation time is max(t1, t2). Solving the equation t1 = t2, we obtain |Br1| = 0.68868 and
the evacuation time is at most 2.4113.

Next, we consider the case of 3 robots. Consider the following instance of the Early-
Meeting strategy. Place points p1, r1, r2 on sides BC,BA,AC as shown in Figure 4(b), the
exact locations to be determined later. Centroid O is designated as the meeting point of
the robots. Point p2 is placed so that the distance |Op1|+ |p1p2| = x, the line segment p1p2
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Figure 4 Equal-Travel Early-Meeting trajectories for (a) two robots, and (b) three robots.

being designated as the common section. R1 is assigned the section of the boundary from
p1 to B and to r1, R2 the section from r1 to A to r2, and R3 the section from r2 to C to
p2. If one of the robots discovers the exit in its section, the other robots need to travel to it
from the meeting point at the centroid, which adds distance at most x. In this setup the
maximum distance robots travel are

t1 = |Op1|+ |p1B|+ |Br1|+ |r1O|+ x for R1,

t2 = |Op2|+ |p2C|+ |Cr2|+ |r2O|+ x for R2, and
t3 = |Or1|+ |r1A|+ |Ar2|+ |r2O|+ x for R3.

Solving the set of equations t1 = t2, t2 = t3 and then optimizing the position of p1, we
get that the optimal placement of points is |Bp1| = .4545932809, |Br1| = .4747719935 and
|Cr2| = .5454067191, and the evacuation time of the algorithm at most 2.08872. All equations
were solved and optimizations done using the Maplesoft [23]. J

It is easy to see that for k = 2 and k = 3 the Equal-Travel algorithms without any early
meeting have evacuation times y + 2.5 ≈ 2.788 and 2y + 1 + x ≈ 2.155, respectively.

We remark here that the Equal-Travel Early-Meeting algorithm for two robots given
above can be further improved by additional optimization of the position of the meeting
point D. We have not done it because in Section 4.2 we show a different strategy, applicable
only to two robots, which gives an evacuation time that is better than that obtained with
the optimized Early-Meeting strategy.

Clearly the approach used in Theorem 11 can be generalized to any k > 2. Start with
selecting a position p1 for the beginning of the common section and partition arbitrarily
the boundary by placing points r1, r2, . . . , rk−1, see Figure 5 for k = 4 and 5. Point p2 is
placed so that the distance |Op1|+ |p1p2| = x. Similarly as above, we obtain a system of
k− 1 equations for the values of r1, r2, . . . , rk−1 that produce equal travel time for all robots
in the first phase. Finally, by optimizing the value of p1 we get the final assignment of the
trajectories of robots. In this manner we obtained the following theorem.

I Theorem 12. There are Equal-Travel Early-Meeting algorithms for k = 4, 5, and 6 robots
with E∗(T, 4) ≤ 1.9816. E∗(T, 5) ≤ 1.876, E∗(T, 6) ≤ 1.8263, respectively.

Proof. Similar to the proof of Theorem 11 and thus omitted. J
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Figure 5 Establishing Equal-Travel Early-Meeting Trajectories of (a) four robots, and (b) five
robots. The common part of trajectories of the robots is shown as thick black line.

As one could expect, the improvement in the evacuation time obtained by adding an
early meeting to evacuation algorithms diminishes with increasing k. For 6 robots there is an
Equal-Travel algorithm with the evacuation time of 1.8411, which is only 0.065 more than
that of the algorithm from Theorem 12.

4.2 Equal-Travel with Detour Algorithms for Two Robots
If the evacuation problem is limited to two robots, the Equal-Travel Early-Meeting strategy
can be improved further by using an Equal-Travel with Detour strategy in which an early
meeting of two robots is replaced by a detour. This gives a further improvement on the
evacuation time. The idea of using a detour was originally mentioned in the context of
evacuating a disk with two robots in [8]. In this paper we show that a detour can also
improve the evacuation time in an equilateral triangle, and multiple detours can improve it
further.

As in the Equal-Travel Early-Meeting strategy, trajectories of both robots have the same
length. The trajectory for each robot consists of multiple sections of the boundary, separated
by detours. Each robot starts with the exploration of a section of the boundary. At some
point, the robot leaves the boundary and makes a detour inside the triangle (see Figure 6
for an example). If it is not intercepted by the other robot during the detour, the robot
concludes that the exit was not found by the other robot in its first section, and goes back
to the boundary to explore its second section of the boundary. After the robot has finished
exploring its second section of the boundary, it can make another detour, and so on. It is
critical that the detours are designed so that if one of the robots finds the exit in its section,
it has enough time to intercept the other robot during the corresponding detour of the other
robot. We point out the salient features of the detour strategy, and its differences from the
early meeting strategy:

There are no early meeting points; the trajectories of the robots do not intersect except
for the initial part to get to the boundary of the triangle, and at the very end. The detour
part of trajectories of robots inside the triangle only get close to each other. This makes
trajectories of the robots shorter.
Each robot is assigned more than one section of the boundary.
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Figure 6 The trajectories of two robots with one detour for each robot.

There is no common section of the boundary to be explored by both robots.
A robot can do multiple detours.

We first give the details of an Equal Travel with Detour algorithm with a single detour.

I Theorem 13. There is an Equal-Travel with Detour evacuation algorithm for two robots,
using a single detour, that has evacuation time ≤ 2.3838.

Proof. The Equal-Travel with Detour trajectories of the robots are shown in Figure 6. Points
q1 and q2 are located symmetrically on the sides AB and AC at distance z > 0.5 (the
exact value to be determined later) from B and C, respectively. Since the trajectories of
robots are symmetric, we specify below the trajectory of R2 only. R2 is assigned the section
from the midpoint of BC to C and from C to q2. It starts a detour at point q2 where it
goes in the direction of point B. Point r2 is chosen to be on the line segment q2B so that
z + |q2r2| = |r2B|.
From r2 the detour of R2 goes in the direction of point q1 until point p2 which is chosen so
that |q2r2| + |r2p2| = |p2q1|. The detour part of the trajectory of R2 terminates with the
line segment p2q2, where its trajectory continues with the section of the boundary from q2
to A. Let t1 = y + 0.5 + z + |q2B|, and t2 = y + 0.5 + z + |q2r2|+ |r2p2|+ |p2q2|+ 2(1− z).
We argue below that the worst case evacuation time of this algorithm is max(t1, t2). We
consider all possible locations for the exit on the sections of the boundary explored by R1
(the case when the exit is discovered by R2 is symmetric).

Clearly, if the exit is located on the line segment q1A, then the evacuation time is at
most t2. If the exit is found by R1 on the side BC, then it can intercept R2 at point r2 since
z + |q2r2| = |r2B|, and the robots reach the exit in time at most t1. Assume now that R1
finds the exit on the line segment q1A at D, see Figure 7. Consider the triangle with sides
y1, y2, y3 obtained by drawing a line though point D parallel with the line going through q1
and r2. Since z > 0.5, it is easy to see that |q1r2| < |Bq1| < |Br2| and by the similarity of
triangles y3 < y1 < y2. Let D′ be the intersection point of the line going through q1 and r2
with the line drawn through D and parallel with Br2. Since y1 + |DD′| < y2 + |DD′| = |Br2|,
when R2 reaches r2 robot R1 is at D′ to intercept R2, and the distance traveled by R2 from
r2 to D is y3 + |DD′| < |Br2|, and so the total time to reach D is less then t1. Notice that
if the value of y1 is so that the parallel line through D would not intersect the line segment
r2p2 then R1 can intercept R2 at p2 and the the evacuation time remains less than t1.
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Figure 7 Evacuation time for exit at D is less that that for B.

We have shown that the worst-case evacuation time is max(t1, t2). By equating t1 = t2,
we obtain z = 0.7151 and t1 = 2.3837. Thus the worst-case evacuation time of this algorithm
is 2.3837. J

Consider the Equal-Travel with Detour algorithm described above and suppose that the
robots do not find the exit in the first phase. That is, the robots will go back to points q1 and
q2 to explore the rest of the boundary of T (i.e., the line segments q1A and q2A). Observe
that for triangle 4Aq1q2, at this time the robots are in the same situation as they were when
visiting vertices B and C for the triangle 4ABC. Furthermore, like for the triangle 4ABC,
where the worst case occurs in the neighbourhood of B and C, the worst case for triangle
4Aq1q2 occurs when the exit is located in the neighbourhood of q1 or q2. Therefore, we
can use an additional detour in the triangle Aq1q2 and improve the evacuation time in the
top part as illustrated in Figure 8. However, to improve the evacuation time for the whole
triangle, we need to re-balance all of the worst case evacuation times in 4ABC. In particular,
we derive the expression t1 for the maximum evacuation time if the exit is discovered by R1
before reaching q1, the expression t2 for the maximum evacuation time if the exit is in the
line segment q1q

′
1, and the expression t2 for the maximum evacuation time if the exit is in

the line segment q′1A. By solving the equations t1 = t2, t2 = t3 we calculated the optimized
positions of q1, q2, q

′
1, q
′
2 using numerical calculations, obtaining |Bq1| = 0.666, Bq′1 = 0.9023

and the evacuation time 2.3367. Thus we have the following improved evacuation time.

I Theorem 14. There is an Equal-Travel with Detour evacuation algorithm for k = 2 robots
that uses two detours with the evacuation time at most 2.3367.

We remark that the use of an additional detour as above can be applied any number of
times in the upper part of the triangle. With each additional detour in the upper part of the
triangle we have one more case of maximal evacuation time and one more equation to add to
the system of equations to be solved. However, with each additional detour the upper part
of the triangle becomes much smaller, and thus the improvement in the evacuation time is
extremely tiny for more than two detours.
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5 Discussion

We studied the evacuation of an equilateral triangle by k robots, initially located at its
centroid. The robots can communicate only if they are in the same position at the same
time, i.e., they use the face-to-face communication. We showed a lower bound of

√
3 on the

evacuation time for any number k of robots, and gave a simple strategy that achieves this
bound asymptotically. We introduce the Equal-Travel Early-Meeting strategy for evacuation
algorithms in which the robots meet at an early meeting point inside the triangle before the
whole perimeter is examined. This strategy gave us upper bounds of 2.08872, 1.9816, 1.876
and 1.827 for k = 3, 4, 5, and 6 robots, respectively.

For k = 2 robots, we proved a lower bound of 1 + 2/
√

3 ≈ 2.154. We then show that
for k = 2 the Early-Meeting strategy can be improved by replacing the early-meeting by
shorter detours in the interior of the triangle, and obtained an upper bound of 2.3367 on the
evacuation time. This upper bound is achieved with two detours.

Although we limited our study to the evacuation of the equilateral triangle, the algorithmic
strategies used in this paper should be applicable to other search domains. Finding tight
bounds for the evacuation time in the face-to-face model remains an open problem. A clear
understanding of the search domains in which early meetings or detours are provably useful
also remains elusive.
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Abstract
Recent advances in distributed computing highlight models and algorithms for autonomous mo-
bile robots that self-organize and cooperate together in order to solve a global objective. As
results, a large number of algorithms have been proposed. These algorithms are given together
with proofs to assess their correctness. However, those proofs are informal, which are error prone.
This paper presents our study on formal verification of mobile robot algorithms. We first propose
a formal model for mobile robot algorithms on anonymous ring shape network under multiplicity
and asynchrony assumptions. We specify this formal model in Maude, a specification and pro-
gramming language based on rewriting logic. We then use its model checker to formally verify an
algorithm for robot gathering problem on ring enjoys some desired properties. As the result of
the model checking, counterexamples have been found. We detect the sources of some unforeseen
design errors. We, furthermore, give our interpretations of these errors.
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1 Introduction

Theoretical research on distributed mobile robot focuses mainly on computability aspects;
the goal is to determine whether a problem can be solved given some assumptions, such
as synchrony, multiplicity detection and chirality. Various models and problems have been
proposed for the last two decades (e.g. Suzuki and Yamashita first paper [18], or the book
from Flocchini et al. [15]). A few major models have emerged (e.g. ASYNC, weak multiplicity
detection) for which some of the main problems (e.g. gathering, exploration) are now fully
understood. In this work, we would like to take a step back and look at what have been
accomplished so far. Now that results are stable, it is the right time to spend some energy
carefully reviewing the proposed algorithms.

There have been already some efforts to unify and formalize existing results [9, 10, 8, 14].
While earlier papers described algorithms based on a (potentially long and cryptic) list of
rules (e.g. [4]), more recent publications usually describe algorithms based on mathematical
abstractions and real pseudo-codes (e.g. [8]). Naturally, at the same time, proofs become
also more formal. We believe this is going, of course, in the good direction. Being closer
to the mathematical world also makes these algorithms/proof well suited to be checked
systematically.
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12:2 Model Checking of Robot Gathering

Formal verification and related work. Classic distributed algorithms have been formally
verified [19, 17, 13, 12]. We aim to obtain similar achievements for distributed robot
algorithms. However, due to the mobility aspect, mobile robot algorithms are often complex,
arguably even more complex than classic distributed systems. This inherent difficulty explains
probably the limited number of attempts in obtaining formal verifications.

Recently Courtieu et al. [7] and Balabonski et al. [2] formally proved the correctness
of two gathering algorithms using the Coq proof assistant. In both cases, robots move
on the continuous 2-dimensional plane. The difference lies in the timing model; the first
paper considers the semi-synchronous (SSYNC) model while the second studies the fully-
synchronous (FSYNC) model (and remove some other assumptions). The asynchronous
model (ASYNC) is not considered in these papers since the gathering problem is generally
not solvable in ASYNC in continuous space (except for trivial cases).

Closely related to our current approach, Berard et al. [3] and Doan et al. [11] analyze the
perpetual exploration algorithm described in [4]. This algorithm, while being quite simple
(only 3 robots on the ring and 8 rules), was refuted. Both papers use similar techniques;
they formally specify the algorithm and then encode in Linear Temporal Logic (LTL) the
properties that should be satisfied. The first paper uses DiVinE and ITS tools, while the
second one uses Maude.

This paper is somehow an extension of [11] to a different problem. Note however that
this is not an easy generalization; our new formalization should accommodate any number
of robots instead of only three. The previous studies [7, 2, 3, 11] basically consider either
FSYNC or ASYNC without multiplicity assumption. The lack of multiplicity, of course,
simplifies the model. Here we consider ASYNC and the possibility for multiple robots to be
located on the same node.

Context. In this paper, we restrict our attention to discrete models only, and more spe-
cifically to the ring topology. About timing assumption, we consider the more general
asynchronous model ASYNC. In addition, we take into account multiplicity assumption,
which makes it much harder to formalize mobile robot algorithms. We present how to formal-
ize a mobile robot algorithm as a state machine and then specify the state machine in Maude.
Maude is a rewriting logic-based programming and specification language and equipped with
a powerful system (or environment). Rewriting logic makes it possible to naturally specify
dynamic systems, and the Maude system has an LTL model checker. We have demonstrated
in [13, 12, 11] that Maude allows us to specify distributed algorithms/systems more succinctly
than others. For instance, it supports associative and commutative operator attributes that
are very necessary to concisely specify mobile robot algorithms as showing in [11].

We then use the Maude LTL model checker to formally verify an algorithm for robot
gathering problem on ring enjoys desired properties. We focus on the gathering problem
and analyze the algorithm proposed by D’Angelo et al. [8] as a case study. As the result of
the model checking, counterexamples have been found. We detect the sources of unforeseen
design errors. We, furthermore, give our explanations on these errors.

Contributions. The paper presents a study on how to specify and model check mobile robot
algorithms. The contribution of this paper is the proof by example that formal methods must
be used to verify distributed robot algorithms. Indeed, even algorithms described and proven
using mathematical abstractions (may) still contain errors. While some of them are minor
and could have been detected by a careful reader (simple typos), some errors would have
been almost impossible to detect without model-checking. Said differently, we believe that
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informal and semi-formal mathematical proofs are not enough for this kind of algorithms.
The complexity of analyzing all situations may be too high for human brains.

Two main contributions are: (1) a formal model for mobile robot algorithms on anonymous
ring shape network under multiplicity and asynchrony assumptions – our model is general
enough and could be applied to other problems (in the ring); (2) a refutation by model
checking that the algorithm enjoys desired properties – in detail, the algorithm contains
design errors that prevent robots from gathering into one location.

The additional contributions are a preliminary set of Maude modules that could be
re-used for future verifications and the interpretations of the errors found. While it may not
be straightforward to understand Maude formalism, we hope that it may still be useful for
other people.

Outline. Section 2 describes the model, problem, and the main ideas of the algorithm under
study. Section 3 presents how we formalize and then specify the system in Maude. Section 4
describes our model checking of the algorithm, showing and explaining the result. Section 5
finally concludes the paper.

2 Robots Gathering in the Ring under ASYNC

As mentioned in the Introduction, we consider the classic gathering problem in the ring
under the asynchronous scheduler (ASYNC). We analyze the most general algorithm that
solves the problem for (almost) all initial configurations. The considered algorithm is said
to be general in a sense that it solves the problem for all valid (i.e. without multiplicity)
initial configurations outside of NG ∪ SP4, where (1) NG is the set of Non-Gatherable
configurations (such as periodic configurations), from which it is impossible to gather robots,
and (2) SP4 is the “small” set of SP ecial configurations with 4 robots from which it is still
unknown whether it is possible to gather robots (Bonnet et al. gave a partial answer [5]).

In the remainder of this section, we succinctly present the model, the problem, and the
algorithm under study. For each part, a more complete description can be found in the
original paper [8].

2.1 Computational Model
This model description is adapted from [5] for our specific context. The ring is anonymous,
that is, there is neither node nor edge labeling. The robots are identical, i.e., they are
indistinguishable and all execute the same algorithm. Moreover, the robots are oblivious and
disoriented, meaning that they have no memory of past actions, and they share no common
orientation (no chirality).

The robots cannot explicitly communicate, but have the ability to sense their environment
and see the relative positions of the other robots, in their local coordinate system. We assume
the global weak multiplicity detection; each robot can distinguish whether a node is empty,
occupied by one robot, or more than one robot. When there is strictly more than one robot,
we use the term multiplicity. Robots follow a three-phase behavior: Look, Compute, and
Move. During its Look phase a robot takes a snapshot of all robots’ positions. The collected
information (position of the other robots in the egocentric view) is used in the Compute
phase during which the robot decides to move or stay idle. In the Move phase, the robot may
move to one of the two adjacent nodes, as computed in the previous phase. The moves are
assumed to be instantaneous which means that, during a Look phase, robots can be located
on nodes only.
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12:4 Model Checking of Robot Gathering

The computational model we consider is the classic asynchronous ASYNC model [15].
It means that, the start and duration of each Look-Compute phases and the start of each
Move phase of each robot are arbitrary and determined by an adversary. Note that it is
possible for a robot to make a move based on a previously observed configuration which
is not the current one anymore (e.g. if its Look phase occurred before the Move phase of
another robot).

A move that has been computed (during a Compute phase) but not yet executed (in the
subsequent Move phase) is called a pending move.

2.2 Gathering Problem
The gathering problem requires each robot to terminate on the same node. The problem is
solved if all robots are on the same location and there is no pending move.

2.3 Gathering Algorithm
This paper analyzes the algorithm [8] for robot gathering. The algorithm executes these four
phases sequentially:
1. Starting from an initial configuration without multiplicity, the algorithm executes a

procedure MULTIPLICITY-CREATION that creates either one or two symmetric multi-
plicities.

2. A second phase named COLLECT consists in moving all but four robots in the previously
created multiplicities.

3. A third phase called MULTIPLICITY-CONVERGENCE makes the two multiplicities to
merge into a single one.

4. Finally the phase CONVERGENCE allows the remaining single robots to join the unique
multiplicity, which concludes the gathering.

This is a short (partially incorrect) summary. In some rare cases, the sequence of four
phases may be temporarily broken. (e.g. the system may go back to the COLLECT phase
while executing the CONVERGENCE phase). But eventually all robots should gather at
the same location.

The algorithm contains some specific subroutines for configurations with four or six
robots.1 At the moment, we decided not to include them in our analysis; as in the paper,
they could be dealt separately.

Plaintext vs. Pseudo-code. In [8], the algorithms are described and explained in plaintext
and also given in term of pseudo-codes. We think that the pseudo-code version contains
less ambiguities than the plaintext version. In (pseudo-)code, there is usually no place for
interpretation; it is thus either correct or incorrect. Since our goal is to formally model-check,
we believe that it makes more sense to base our analysis on the most formal available version.
That is why this paper analyzes the pseudo-code version of the algorithms.

This is certainly an arguable decision. Indeed, some of the errors, at least the ones from
Section 4.3, do not exist in the plaintext description of the algorithms. Other detected errors
may or may not exist in the plaintext version. We can not conclude anything about the
correctness of the plaintext algorithm since it is subject to interpretation.

1 The precise algorithm is not given for four or six robots, but refers to other papers.



H.T. T. Doan, F. Bonnet, and K. Ogata 12:5

3 Formal Model for Mobile Robot Algorithms

In this section, we propose a formal model for mobile robot algorithms on anonymous ring
shape network under multiplicity and asynchrony assumptions. Unavoidably, multiplicity
and asynchrony make arduous to formalize the systems. We pay much attention to this
problem and solve it in our model. To describe the model, we use state machines. A state
machine consists of a set S of states, some of which are initial states, and a binary relation T
⊆ S × S. Each element (s, s′) ∈ T is called a state transition from s to s′. We then transfer
this model into Maude specification language. In Maude, the basic units of specifications and
programs are modules. A module contains syntax declarations, providing suitable language
to describe a system. There are two kinds of modules: functional modules and system
modules. Functional modules are those in which data structures, such as pair and sequence,
are specified, and system modules are those in which systems, such as distributed systems,
are specified. A distributed system is formalized as a state machine and then the state
machine is specified in Maude as a system module.

For these systems, a state of the system is called a configuration. A configuration is
described in terms of a view starting from any robot and traversing the ring in one arbitrary
direction. When a robot wakes up, it takes the snapshot of the current configuration of
the system, and computes a move (called a computed move) based on this snapshot. The
computed move is either staying idle or moving to one of its adjacent nodes. In the latter
case, it moves to the adjacent node, eventually. In the following part, Maude notation is
used to describe state machines. We consider how to express a state and how to describe an
event as a state transition.

3.1 State Expressions
We denote a robot as a pair 〈I, P 〉, where I denotes the size of the interval2 between it and
the next robot, and P denotes the computed move. The value of P could be nil, fc or
fc− (fc stands for following the configuration). nil means that the robot has no pending
move (i.e last computed move was idle). fc (resp. fc−) means that the robot has a pending
move to the adjacent node located after it (resp. before it) following the direction of the
configuration. Initially, the computed move of each robot is nil. If P is nil, the robot may
be activated and will compute a new move and update P accordingly. If P is not nil, the
robot may be activated and will execute the move and update P to nil after the move. We
use the sort3 Pending to denote computed moves and the sort Pair to denote pairs. They
are expressed by the following operators that are constructors as specified with ctor.

op 〈_, _〉 : Int Pending → Pair [ctor] .

The sort Int is used for denoting integers. The operator 〈_, _〉 is used to construct Pair.
For c1 ∈ Int, c2 ∈ Pending, 〈c1, c2〉 ∈ Pair.

A configuration is expressed as a sequence of pairs. It contains the information about the
locations of all robots and their states. The corresponding sort is Config. Configurations are
defined by the following operators.

2 An interval is a maximal set of empty consecutive nodes.
3 The types of data are called sorts. A sort denotes the set of elements in the same type. For example,

the sort Nat is used to denote the set of Natural numbers. A sort is a subsort of another sort if and only
if the set denoted by the former is a subset of the one by the latter, and the latter is called a supersort
of the former.
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Figure 1 Some configurations. A dashed arrow represents a pending move. Black nodes represent
multiplicities.

subsort Pair < Seq .
op empS : → Seq [ctor] .
op _ _ : Seq Seq → Seq [ctor assoc id: empS] .
op {_} : Seq → Config [ctor].

where the sort Seq is used for sequences of pairs. empS denotes the empty sequence of
pairs. Seq is a supersort of Pair, which means that each Pair is treated as the singleton
sequence only consisting of the pair. The juxtaposition operator _ _ is used to construct
non-trivial sequences of pairs. For c1, c2 ∈ Seq, c1 c2 ∈ Seq. The juxtaposition operator _ _
is associative as specified with assoc, and empS is an identity of the operator specified with
id: empS.

A configuration is of the form {_} of a sequence. States of the system are expressed
as terms of the sort Config. A term of a sort S is a variable of S or f(t1, . . . , tn) if f is an
operator declared as f : S1 . . . Sn → S (n ≥ 0) and t1, . . . , tn are terms of S1, . . . , Sn. If f

has any underscores _, such as 〈_, _〉, then a different notation than f(t1, . . . , tn) is used,
such as 〈I, P 〉 that is a term of the sort Pair, where I is term of the sort Int and P is a
term of the sort Pending. Constructor terms are those consisting of constructors only and
variables. Ground term are those having no variables. Ground constructor terms hence are
those composed of constructors only and no variables . Ground constructor terms of the
sort Config express concrete states of the system. For example, the initial configuration of
the system as shown in Fig. 1(a) could be expressed as the view starting from the robot r
in clockwise order, {〈1, nil〉〈0, nil〉〈5, nil〉〈0, nil〉〈1, nil〉〈3, nil〉}. Let us assume that robot
r1 is activated, takes a look at the configuration, and computes a move. Assuming that
the move is to move to the node located after it, the system reaches the configuration as
shown in Fig. 1(b). It is expressed as {〈1, nil〉〈0, nil〉〈5, fc〉〈0, nil〉〈1, nil〉〈3, nil〉}. If the
robot r1 is activated again, it executes the move; the system becomes as shown Fig. 1(c)
which is expressed as {〈1, nil〉〈1, nil〉〈4, nil〉〈0, nil〉〈1, nil〉〈3, nil〉}. A robot is not allowed to
look at the second element of the pairs of other robots and it calculates a move based on
its own view of the system. For example, the view of robot r1 in Fig. 1(a) could be either
{〈5, nil〉〈0, nil〉〈1, nil〉〈3, nil〉〈1, nil〉〈0, nil〉} or {〈0, nil〉〈1, nil〉〈3, nil〉〈1, nil〉〈0, nil〉〈5, nil〉}
without knowing anything about clockwise order. It is worth noting that this allows us to
guarantee that robots have no sense of direction and do not know the pending moves of other
robots.

Due to the multiplicity assumption, it is possible that a robot moves to a node that
is occupied by other robots. The node is, or becomes a multiplicity. There may be more
than one of such robots in one multiplicity. Since the robots are anonymous, we can denote
all of them by a pair 〈I, P 〉 in which the value of I is set to the negative of the additional
number of robots located on the multiplicity (−3 indicates 3 additional robots, which means
a multiplicity of 4 robots). Note that this notation allows us to represent the exact number
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Figure 2 A transition graph of one specific initial configuration (a).

of robots in multiplicities. But robots do not have access to this information; they can
only know if there is a multiplicity (i.e. a negative number). Our encoding allows a simple
conversion to consider global strong multiplicity detection. For instance, the configuration as
shown in Fig. 1(d) assuming that there are two robots in each multiplicity, is expressed as
{〈2, nil〉〈−1, nil〉〈5, nil〉〈−1, nil〉〈2, nil〉〈3, nil〉}. We use this encoding to match as closely as
possible the definitions introduced in [8].

3.2 State Transitions

Because the Compute phase uses the snapshot of the system taken in the Look phase as input
and a robot does not perform any movements during two phases, to model the system, we
combine the two phases into one called the Look-Compute phase in which a robot takes the
snapshot of the system and computes a move. When either (1) a robot takes the snapshot of
the system and then computes a move, or (2) a robot executes its pending move, the current
configuration of the system changes to another. Such changes are called a state transition
(or a transition). A transition is expressed as a pair (l, r), where l and r are configurations.

Let us examine the following scenario. Given an initial configuration as shown in
Fig. 2(a) and assumed that both robots r1 and r2 are allowed to move, it may happen
that only one robot (assuming r1) looks at the system and computes a move, or both
r1 and r2 do. In the former case, the configuration of the system is transferred to the
one as shown in Fig. 2(b). The transition is named trans1 and expressed by the pair
(〈1, nil〉〈0, nil〉〈5, nil〉〈0, nil〉〈1, nil〉〈3, nil〉, 〈1, nil〉〈0, nil〉〈5, fc〉〈0, nil〉〈1, nil〉〈3, nil〉). In the
latter case, the configuration of Fig. 2(c) is established. The configuration of Fig. 2(d) is
obtained after r1 in the configuration of Fig. 2(b) executes its pending move. The configuration
of Fig. 2(e) and Fig. 2(f) are obtained from the configuration of Fig. 2(c). The graph in
Fig. 2 shows possible transitions from the initial configuration. A sequence of transitions
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12:8 Model Checking of Robot Gathering

starting from an initial configuration, e.g trans1, trans3, trans6, ..., is called a possible
execution. There may exist more than one execution from a given initial configuration.

We describe the actions of robots as transition rules. A transition rule is described in
the form of a rewrite rule. Each rewrite rule is defined only over Config that does not have
any sub-sorts and in the form L ⇒ R such that L only consists of constructors and variables.
We give here a simple example to explain how an action can be expressed as a transition
rule. The following transition rule describes the action corresponding to a robot executing
its pending move when there is no multiplicity in the system.

crl [fc-pending] : {S1 〈 I1, P 〉 〈 I2, fc 〉 S2} ⇒ {S1 〈 I1 + 1, P 〉 〈 I2 - 1, nil 〉 S2}
if nonMul({S1 〈 I1, P 〉 〈 I2, fc 〉 S2}).

where S1, S2 ∈ Seq, I1, I2 ∈ Int and P ∈ Pending are variables of those sorts; The function
nonMul returns true when the configuration has no multiplicity and false otherwise.

The above rule is a conditional writing rule and the condition is specified in the if part.
The rule then will be applied if the condition is satisfied. The configuration {S1 〈 I1, P 〉
〈 I2, fc 〉 S2} expresses any state such that the robot 〈 I2, fc 〉 holds a pending move fc
and the robot before it is 〈 I1, P 〉. Such a state may have some more robots before and
after the two robots that are expressed as S1 and S2, respectively. The ground constructor
term {〈1, nil〉〈0, nil〉〈5, fc〉〈0, nil〉〈1, nil〉〈3, nil〉} expresses the state as shown in Fig. 2(b).
There is no multiplicity in this configuration. The left-hand side of the above rewrite rule
fc-pending matches this ground term by substituting S1, I1, P, I2 and S2 with 〈1, nil〉, 0,
nil, 5 and 〈0, nil〉〈1, nil〉〈3, nil〉, and the rewrite rule can be applied to the term, changing it
to {〈1, nil〉〈1, nil〉〈4, nil〉〈0, nil〉〈1, nil〉〈3, nil〉} expressing the state as shown in Fig. 2(d). In
this way, a rewrite rule expresses a set of state transitions.

To make T, a set of transitions (s, s′), from rewrite rules L ⇒ R, let σ be a substitution
from the variables in L to appropriate constructor terms, σ(L) is a constructor term, but
σ(R) is not necessarily, and then it is necessary to reduce σ(R) with equations. Let nf(t) be
the term obtained by reducing t with equations. So, (σ(L), nf(σ(R))) is a state transition
obtained from L ⇒ R. Let σ(L)⇒ nf(σ(R)) be called a ground instance of L ⇒ R.

I Definition 1 (TRRS). Let TRRS be the set of all ground instances of the all transition
rules.

3.3 Formal Model
We formalize a mobile robot system as a state machine. The state machine includes the set
of all possible states as the set of all ground constructor terms SRS , the set of initial states
IRS and the binary relation over states TRS . IRS is a subset of SRS such that for each state
s ∈ SRS , there is no multiplicity and the configuration does not belong to NG ∪ SP4. TRS

is the binary relation over SRS made from TRRS .

I Definition 2 (MRS). The state machine formalizing a mobile robot system is MRS , where
1. SRS is the set of all ground constructor terms whose sorts are Config;
2. IRS is a subset of SRS such that (∀s ∈ IRS) (numMul(s) = 0) and (not ng&sp4(s));
3. TRS is the binary relation over SRS defined as follows:

{(l, r) | l ⇒ r ∈ TRRS}.
The function numMul counts the number of the multiplicities in the system and the function
ng&sp4 returns true when a configuration is in NG ∪ SP4 and false otherwise.

We specify this formal model in Maude specification languages. Note that our specification
is coherent [6]. The source files are available for download [1].
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4 Model Checking the Algorithm

Model checking is a verification technique that explores all possible system states and checks
whether a desired property that should be satisfied by an algorithm is satisfied. The desired
property is required to be formally expressed. A model checker then verifies whether the
formula is satisfied for all possible executions. If the formula is not satisfied, a counterexample
is found. We specify the formal model of the system in Maude. We then apply Maude
LTL model checker to formally verify the algorithm. The original paper [8] has given very
important lemmas, such as Lemma 5, 6, and 7, that state properties that need to be satisfied
at the end of each phase. These lemmas are used to model check the algorithm. We have
formally expressed these lemmas as LTL formulas [16]. We give here the formalization of
Lemma 6 as an example. Lemma 6 states a property that must be satisfied at the end
of the COLLECT phase. Namely, it states that the configuration obtained at the end of
the COLLECT phase contains two multiplicities and satisfies a condition (called located
condition) that the configuration needs to be in some specific configurations in which robots
are located in some specific locations. Note that the COLLECT phase can start only if
the initial configuration is symmetric or at one step from specific symmetric configurations.
To model check this lemma, we expressed it as an LTL formula. We define the atomic
propositions endOfColl and coll as follows:

C |= endOfColl = checkOfColl(C) .
C |= coll = checkColl(C) .
checkColl(C) = checkAllowedSym(C) and (numMul(C) == 2) and checkCondition(C) .

The function checkOfColl checks whether a system state C is at the end of the COLLECT
phase. The atomic proposition endOfColl, thus, is true if and only if the COLLECT phase
phase has just finished. The function checkAllowedSym checks whether a configuration is
an allowed symmetric configuration. The function checkCondition returns true when the
configuration satisfies the located condition and false otherwise. The atomic proposition coll,
thus, is true when the configuration is an allowed symmetric configuration containing two
multiplicities4 and satisfies the located condition and false otherwise.
The lemma then is formally expressed as an LTL formula as follows.

lemma6 = � (endOfColl → coll) ∧ ♦ endOfColl .
where � stands for always (globally) and ♦ stands for eventually (in the future).

Intuitively, the formula states that it is always true that the phase COLLECT will fi-
nally terminate and whenever the phase has been just over, then coll is true. This means
that the Lemma 6 is satisfied at the end of the COLLECT phase.
This formula is used to conduct the model checking for the algorithm. To model check, we
separate the formula into two sub-formulas and model check them separately in order to
easily detect the source of errors (if some are found). Namely, we use the two following
formulas:

lemma6-1 = ♦ endOfColl .
lemma6-2 = � (endOfColl → coll) .

As the result of the model checking, counterexamples are found. A counterexample is of the
form of a possible execution: it includes all visited states and the sequence of transition rules
applied. This helps to analyze counterexamples to detect the source of the detected errors.
We present two counterexamples as follows:

4 The mathematical notation == stands for equivalence.
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The first one results from the model checking of the formula lemma6-1.

reduce in EXPERIMENT : modelCheck(init, lemma6-1) .
rewrites: 89524096 in 40088ms cpu (40173ms real) (2233163 rewrites/second)
result ModelCheckResult: counterexample(

{{< 0,nil > < 1,nil > < 0,nil > < 3,nil>
< 0,nil > < 1,nil > < 0,nil > < 0,nil >},’w5-fo}

{{< 0,nil > < 1,nil > < 0,nil > < 3,nil > < 0,fc >
< 1,nil > < 0,nil > < 0,nil >},’FC22-pending}

{{< 0,nil > < 1,nil > < 0,nil > < 4,nil > < -1,nil >
< 1,nil > < 0,nil > < 0,nil >},’coll-a-1-fo2}

{{< 0,nil > < 1,nil > < 0,nil > < 4,fc- > < -1,nil >
< 1,nil > < 0,nil > < 0,nil >},’FC-23-pending},

{{< 0,nil > < 1,nil > < -1,nil > < 5,nil > < -1,nil >
< 1,nil > < 0,nil > < 0,nil >},deadlock})

The counterexample shows that the system falls into a deadlock state. Indeed, the config-
uration {〈0, nil〉〈1, nil〉〈−1, nil〉〈5, nil〉〈−1, nil〉〈1, nil〉〈0, nil〉〈0, nil〉} belongs to the kind of
configurations that need to be handled by the COLLECT phase. However, the COLLECT
phase could not deal with it. Thus, the system is not able to reach a valid state at the
end of the COLLECT phase. Analyzing this counterexample, we detect the error, which
is described later in Section 4.1. This also means that the algorithm fails in gathering all
robots in the same location.

The second counter-example results from the model checking of the formula lemma6-2.

reduce in EXPERIMENT : modelCheck(init, lemma6-2) .
rewrites: 15982060 in 7064ms cpu (7114ms real) (2262435 rewrites/second)
result ModelCheckResult: counterexample(

{{< 0,nil > < 1,nil > < 0,nil > < 3,nil >
< 0,nil > < 1,nil > < 0,nil > < 0,nil >},’w5-fo}

{{< 0,nil > < 1,nil > < 0,nil > < 3,nil >
< 0,fc > < 1,nil > < 0,nil > < 0,nil >},’FC22-pending}

{{< 0,nil > < 1,nil > < 0,nil > < 4,nil >
< -1,nil > < 1,nil > < 0,nil > < 0,nil >},’coll-a-1-fo1}

{{< 0,nil > < 1,nil > < 0,fc- > < 4,nil >
< -1,nil > < 1,nil > < 0,nil > < 0,nil >},’FC-23-pending},

{{< 0,nil > < 0,nil > < 1,nil > < 4,nil >
< -1,nil > < 1,nil > < 0,nil > < 0,nil >},’ofColl})

This counterexample occurs because the state

{〈0, nil〉〈0, nil〉〈1, nil〉〈4, nil〉〈−1, nil〉〈1, nil〉〈0, nil〉〈0, nil〉}

is at the end of the COLLECT phase, but the atomic propositions coll returns false. Specific-
ally, at end of the COLLECT phase, the configuration does not contain two multiplicities
and satisfy the located condition.

Since counterexamples are found, the lemma does not hold. The remainder of this section
reports on some errors that we have found. In addition, we also give our opinions about the
origins of these errors.
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Figure 3 Expected executions for the two specific symmetric configurations with two multiplicities.

4.1 Omission of Special Cases

We report here the error that corresponds to the first counterexample. The error occurs when
the algorithm deals with symmetric configurations with two multiplicities. Single robots in
such configurations should move such that the configuration eventually reaches a symmetric
one with (i) size nodes occupied, (ii) two multiplicities, (iii) two robots adjacent to these
multiplicities, and (iv) other robots in specific locations. However, it is not straightforward to
design a strategy for these robots. Two examples are shown in Fig. 3. For the configuration of
Fig. 3(a), the two symmetric robots are expected to move such that either the configuration
of Fig. 3(b) or Fig. 3(c) is obtained. In the same way, the configurations of Fig. 3(e) and
Fig. 3(f) are obtained from the configuration of Fig. 3(d).

Unfortunately, a counterexample is found. Our model checking detects that the algorithm
does not work correctly for the configuration of Fig. 3(d). The two single robots do not move
as expected. The same configuration is obtained instead of the configurations of Fig. 3(e),
3(f). Indeed, the algorithm only works correctly for configurations in which there are two
single robot adjacent to the two multiplicities, e.g. the configurations similar to the one of
Fig. 3(a), but it does not work for configurations such as the one of Fig. 3(d).

This error exists because some cases were missing. For instance, the configurations as
the configuration of Fig. 3(d) are not considered. That is why the algorithm is not able to
deal with them. This would be very difficult to detect without the help of an automatic tool.
The error leads to the fact that the system will fall to a deadlock state and all robots in
the system are unable to locate at the same location. This error could be fixed by finding
a strategy to deal with these case. However, we need to take care of the fact that the new
strategies may be conflicting with exiting strategies.

4.2 Design Errors (difficult to detect by mathematical proof)

This section report errors of a different kind compared to the one of Section 4.1. One of
the main issue to be handled by the algorithm concerns symmetric configurations in which
two symmetric robots are supposed to move symmetrically. Let us explain the idea with an
example. For the symmetric configuration as shown in Fig. 4(a), the two symmetric robots
r and r1 are allowed to symmetrically move. It may happen that both r and r1 move and
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(a)

r r
1

(c)(b)

r rr
1

r
1

Figure 4 Three configurations where (a) is some initial configuration, (b) is the configuration
obtained if only one robot moves, and (c) the one obtained if both symmetric robots move.

(a) (b) (c) (d) (f)

Figure 5 Five configurations. The gathering algorithm should follow the sequence (a), (b), (c),
(d), but the configuration (f) is actually obtained from (b).

the configuration of Fig. 4(c) is obtained. It may also happen that only r moves, while r1
already computed the move, but has not yet moved (means that it holds a pending move)
or r1 has not yet performed its Look-Compute phase and the configuration of Fig. 4(b) is
obtained. This configuration is an asymmetric configuration that may contain a possible
pending move (only robot r1 knows if it has already computed its move; other robots do
not know it). The procedures CHECK-REDUCTION and PENDING-REDUCTION are
designed to deal with this case. The robots in such configuration are supposed to detect
this situation and the robot r1 is expected to move in order to reach the configuration of
Fig. 4(c). It is not so difficult to design procedures that let robots in these configurations to
recognized these configurations and move as expected. However, the problem is when these
procedures are included in the entire program.

As written in [8], the procedure CHECK-REDUCTION also recognizes some other
configurations where PENDING-REDUCTION should not be applied. One of them is
the configuration depicted in Fig. 5(b). The authors use this configuration as an example
to explain the algorithm (Figure 3 in [8]). The algorithm is expected to work as follows:
since the configuration of Fig. 5(a) is symmetric with one robot on the axis, the robot
on the axis has to move, obtaining the configuration of Fig. 5(b). This configuration is
asymmetric and and contains only one supermin5. There is one important point emphasized
by authors: the robots can recognize that there are no pending moves in this configuration.
Therefore, the unique supermin is reduced until a multiplicity is created. In this example,
the configuration Fig. 5(c) is obtained, and then all robots join the unique multiplicity
one-by-one, until achieving the gathering as in Fig. 5(d). However, the algorithm actually
works as follows: from configuration of Fig. 5(b), the robot which is supposed to create a
multiplicity does not move. Instead two other robots move and we obtain the configuration of
Fig. 5(f) (instead of Fig. 5(c)). Checking each step of the execution and the transition rules
applied, we discover that the source of this error: Robots do not recognize the correct type

5 The definition of supermin is given in [8]. One characteristic of a supermin is that it is smallest interval.
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(a) (b) (c) (d)

Figure 6 Four configurations. The gathering algorithm should follow the sequence (a), (b), (c),
but the configuration (d) is actually obtained from (b).

of the configuration of Fig. 5(b), which is classified into a group named W7 that performs
the procedure CHECK-REDUCTION and PENDING-REDUCTION. When executing the
procedure CHECK-REDUCTION on this configuration, robots incorrectly categorize it
as an as asymmetric configuration with possible pending moves. Then the PENDING-
REDUCTION is executed while it should not be for this configuration. Thus, the two
symmetric robots decide to move. The configuration of Fig. 5(f) is obtained. This means
that the CHECK-REDUCTION and PENDING-REDUCTION procedures are not correct.
This error would be very difficult to detect manually. Indeed, the procedures are correct for
the configurations for which they are supposed to be used. It is only incorrect because it is
also applied to configurations that are not supposed to use these procedures6.

The second error is in the COLLECT phase. When entering into this phase, the
configuration of the system belongs to one of three categories. One of them is called COLL-
A-1. They are asymmetric configurations with one multiplicity that can be obtained from
symmetric configurations and while satisfying also some other conditions. To simulate how
the algorithm works, the authors give the scenario depicted in Fig. 6. The configuration
of Fig. 6(b) is in COLL-A-1. It is at one move from the symmetric configuration of
Fig. 6(a). When the configuration is in COLL-A-1, the algorithm checks whether the current
configuration satisfies some conditions. If the conditions are satisfied, it moves the robot and
re-establish the previous axis of symmetry, leading to a symmetric configuration with two
multiplicities. In this specific case, the configuration of Fig. 6(c) is obtained.

Unfortunately, instead of moving the robot and re-establishes the previous axis of sym-
metry, the algorithm moves both adjacent robots in the same direction. That means the
symmetric configuration with two multiplicities is not obtained. In this specific case, the
configuration of Fig. 6(d) is obtained. This error is somehow similar to the previous design
error, but at a different level; robot instead of configuration. Here, the robot that is supposed
to move (from the plaintext description of the algorithm) really moves, but an additional
robot also moves.

These design errors prevent the robots from gathering. Said differently, the algorithm
fails in gathering all robots in one location. Both errors could certainly be fixed by including
additional tests before computing the moves. However adding these tests may lead to other
problems and is therefore not straightforward.

6 As explained in Section 2, we analyze the pseudo-code of the algorithms [8]. It is unclear whether such
error exists in the informal plaintext description of the algorithm.
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4.3 Some minor errors
We also want to report some other small errors. They could be detected by carefully checking
the pseudo-code. However, it may be difficult to find where they are in the code. Fortunately,
we can also detect them by model checking.

4.3.1 Minor “typo” error
If a configuration is periodic, it is impossible to gather all robots to one location. Therefore,
it is important to detect whether a configuration is periodic or not. To check the periodicity,
the authors give the following procedure:

Input: a configuration C = (q0, q1, ..., qj) .
Output: true if C is periodic, false otherwise.
1. periodic := false .
2. for i := 0, 1, ..., j do if C = Ci then periodic = true.
3. return periodic .

where periodic is a boolean variable. It is expected to return true if the configuration
C is periodic, false otherwise. We discover that periodic returns true also for aperiodic
configurations. This is obviously wrong. The source of the error is that the condition C = C0
is true for any configuration C. Thus, the procedure always returns true for any input
configuration C. One needs to simply start iterations from i = 1 instead of i = 0.

4.3.2 Error of inattention
The second error detected is in the main procedure for phase MULTIPLICITY-CREATION
whose purpose is to create one multiplicity or two symmetric multiplicities. Since this is
the first phase of the algorithm, which deals with initial configurations, all possible initial
configurations are partitioned into seven groups. One of them is called W6. In this case, the
procedure is given as follows:

Input: CT, C = Q(r) = (q0, q1, ..., qj).
Case CT = W6
1. C′ := (q0 + 1, q1 − 1, ..., qj).
2. if C′ = C′ and q0 is odd then move towards q0;
3. else

C′′ := (q0, ..., qj−1 − 1, qj + 1).
if C′′j = C′′j and qj is odd then move towards qj ;

where C = Q(r) = (q0, q1, ..., qj) is the configuration that is perceived by robot r. C

corresponds to (q0, qj , qj−1, ...q1) in the case where C = (q0, q1, ..., qj−1, qj).
This code is supposed to handle asymmetric configurations that could have been obtained

from a symmetric configurations with an odd number of nodes and a node-edge symmetric
axis. In the above code, C ′ (or C ′′) is the configuration of the symmetric configuration. The
intention of the authors is to move a robot r in order to reach a new symmetric configuration
with the same original axis. One example taken from the Appendix of [8] is given in Fig. 7.
The configuration of Fig. 7(b) can be obtained from the symmetric configuration of Fig. 7(a).
Thus, the robot r is supposed to move and the configuration of Fig. 7(c) is obtained.

However, the algorithm does not make the robot r to move. We found that the error lies
in the conditions: q0 (or qj) is odd. Let us take a look at symmetric configurations (e.g as
shown in Fig. 7(a)) with odd number of nodes and one axis passing through an edge, we can
see that the interval crossed by the axis is on an odd interval. That means that q0 + 1 (or
qj + 1) is odd, but not q0 (or qj). The error can be fixed by updating the conditions to test
if q0 + 1 (or qj + 1) is odd. This error was probably made due to the confusion between the
configurations C and C ′ (or C ′′).
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(a) (b) (c)

r r

r

Figure 7 Three configurations, where (a) may lead to (b), and (c) presents the expected behavior
of the algorithm for the specific asymmetric configuration (b).

4.4 Summary of model checking
It is very common to use case analysis techniques to tackle non-trivial problems, such
as robot gathering. The authors in [8] have split the problem into many cases and used
different strategies to deal with them. In detail, they have partitioned not only the initial
configurations, but also the configurations in each phase. Since the authors need to consider a
large number of cases, there is a risk of missing some cases. Moreover, since different strategies
are used for each case, there could be some conflicts between these strategies. To prove the
algorithm, the authors have to consider all possible cases. However, it is exhausting for a
person to figure out all possible executions. Fortunately, a model checker strongly supports
to automatically check all possible executions. We have showed how to formally express the
desired properties as LTL formulas and conduct the model checking of the algorithm. The
model checking has found counterexamples. Analyzing these counterexamples, we found the
source of some errors that would be difficult to detect by handmade proof. These errors make
the algorithm fail in gathering all robots in one location. We also gave some explanations
about why such errors may have occurred. We hope it may be useful to avoid them in the
future.

5 Conclusion

How to formalize and model check a new software system is always challenging. We show in
this paper how to formalize and model check a new form of distributed system. We have
demonstrated the usefulness of model checking techniques to formally verify mobile robot
algorithms. Although informal proofs have been given in [8] to guarantee the correctness of
the algorithm, there remain some mistakes that are subtle and not easy to find by carefully
checking the algorithm, even by experts. We want to emphasize that our goal is not to blame
the authors or reviewers of the paper. When reading the paper, we also missed most of these
errors. But it means that it is indeed difficult and therefore we should really consider using
formal methods to check such algorithms.
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Abstract
We consider a distributed system consisting of autonomous mobile computing entities called
robots moving in the three-dimensional space (3D-space). The robots are anonymous, oblivious,
fully-synchronous and have neither any access to the global coordinate system nor any explicit
communication medium. Each robot cooperates with other robots by observing the positions of
other robots in its local coordinate system. One of the most fundamental agreement problems in
3D-space is the plane formation problem that requires the robots to land on a common plane, that
is not predefined. This problem is not always solvable because of the impossibility of symmetry
breaking. While existing results assume that the robots agree on the handedness of their local
coordinate systems, we remove the assumption and consider the robots without chirality. The
robots without chirality can never break the symmetry consisting of rotation symmetry and
reflection symmetry. Such symmetry in 3D-space is fully described by 17 symmetry types each
of which forms a group. We extend the notion of symmetricity [Suzuki and Yamashita, SIAM
J. Compt. 1999] [Yamauchi et al., PODC 2016] to cover these 17 symmetry groups. Then we
give a characterization of initial configurations from which the fully-synchronous robots without
chirality can form a plane in terms of symmetricity.
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1 Introduction

Self-organization of autonomous mobile computing entities, called agents, robots, or particles,
has gained much attention as real hardware robots, such as wheeled robots and drones,
become cheaper and widely available. Applications in robotics cover various cooperative
behavior, such as surveillance, exploration, and transportation. A swarm of autonomous
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mobile computing entities has also gained much attention in design and analysis of chemical
reactions of molecules, cells, and DNA strands. Cooperative behavior in biological systems
can be considered as self-organization of mobile computing entities, such as foraging ants,
schooling of fishes, and migration of birds. In theoretical distributed computing, a number
of models for these swarm systems have been proposed. For example, the autonomous
mobile robot model considers an autonomous mobile robot with very weak capabilities, i.e.,
without any global positioning system nor any communication medium [15]. The amoebot
model is inspired by amoeba [7], and the population protocol model considers delay-tolerant
networks [1]. The sticky particle model considers particles (or square tiles) moving to the
same direction according to an external force, like magnetic force [3]. Self-organization has
been formalized as the formation problem that requires the entities to form a given shape
(robot systems [15, 17, 12, 19], amoebot systems [8], and sticky particles [14]). In this paper,
we consider the formation problem by autonomous mobile robots in the three-dimensional
Euclidean space (3D-space). We focus on the robots with weakest abilities and investigate
an essential element that determines their self-organization ability.

We adopt the conventional autonomous mobile robot model [10]. A robot system consists
of a set of autonomous mobile robots, each of which is an anonymous (indistinguishable) point
in a specified space. Each robot has neither any access to the global coordinate system nor
any explicit communication medium. The robots cooperate with each other by observing the
positions of other robots, but their local observations may be inconsistent because each robot
uses its own local coordinate system. Formally, each robot repeats a Look-Compute-Move
cycle, where it takes a snapshot (i.e., local observation) of other robots in the Look phase,
computes its next position with a common algorithm in the Compute phase, and moves
to the next position in the Move phase. Each local coordinate system is an orthogonal
coordinate system in the specified space. It has an arbitrary unit length and the directions
of coordinate axes are arbitrary. Further more, they might not agree on handedness, i.e.,
they can be right-handed or left-handed, thus they lack chirality. A robot is oblivious if in a
Compute phase, it does not remember the past observations and the past computations and
can use the observation obtained in the Look phase of the current cycle. Otherwise, a robot
is non-oblivious, which means it is equipped with persistent local memory. A movement is
rigid if each robot reaches its next position in each move phase, otherwise non-rigid. A
configuration of a robot system is the set of positions of the robots observed in the global
coordinate system, in other words, a set of points. There are three timing models for the
execution of cycles: In the fully-synchronous (FSYNC) model, the robots execute the i-th
Look-Compute-Move cycle at the same time. In the semi-synchronous (SSYNC) model,
executions of cycles are synchronized but not all robots execute the i-th cycle at the same
time. In the asynchronous (ASYNC) model, no assumption is made except that the length
of each cycle is finite.

The pattern formation problem requires the robots to form a given target pattern. A
sequence of results by Suzuki and Yamashita [15, 17] and Fujinaga et al. [12] showed that
the set of formable pattern by anonymous robots is determined by initial symmetry among
the robots regardless of asynchrony and obliviousness. Consider an initial configuration of
four oblivious FSYNC robots with rigid movement, where they form a square and their local
coordinate systems are symmetric regarding the center (Figure 1a). The four robots cannot
break their symmetry forever from this initial configuration because they have the same
local observation and they execute a common algorithm synchronously. Thus the robots
cannot form, for example, a line. This worst case occurs in the ASYNC model (thus in the
SSYNC model) with non-rigid movement because they allow stronger synchronization and
rigid movement.
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(a) Rotation regarding the center. (b) Reflection regarding a mirror plane.

Figure 1 Symmetric initial positions and local coordinate systems in 2D-space. A solid arrow
shows an x-axis and a broken arrow shows an y-axis.

On the other hand, there are several crucial elements that reduce the set of formable
patterns, thus the self-organization power of a robot system. Dieudonné et al. showed that
anonymity prevents the robots from forming an arbitrary target pattern [9]. They showed
that unique leader enables the oblivious ASYNC (thus SSYNC and FSYNC) robots to
form an arbitrary target pattern. Yamauchi and Yamashita showed that when the visibility
(observation range) is limited, the oblivious FSYNC (thus SSYNC and ASYNC) robots
may increase their symmetry that cannot be resolved later [20]. Thus, limited visibility
substantially reduces the formable patterns. Cicerone et al. showed that an important
building block of the pattern formation algorithm for oblivious ASYNC robots in [12] does
not work correctly without chirality [4]. They pointed out that robots without chirality
may forever move symmetrically regarding the center of rotation or an axis of reflection
(Figure 1b). Interestingly, the common cause of these three crucial elements is also symmetry
among the robots.

As shown in Figure 1, the symmetry that the robots can never break is caused by
symmetric local coordinate systems. When the robots have chirality, a local coordinate
system is obtained by a uniform scaling, a translation, a rotation, or a combination of them
on the global coordinate system. Thus we can obtain symmetric local coordinate systems of
the robots with chirality by symmetric rotation operations. When the robots lack chirality,
reflection by mirror planes are added to symmetric rotation operations because reflection
changes handedness of local coordinate systems. For the robots with chirality in 2D-space,
Yamashita et al. introduced the notion of symmetricity of a set of points. We consider a
decomposition of a set P of points into regular m-gons centered at one point. We consider
that one point is a regular 1-gon with an arbitrary center and two points form a regular
2-gon with the center being the midpoint. The maximum value of such m is the symmetricity
ρ(P ) of P in 2D-space. When ρ(P ) is greater than one, the common center is the center of
the smallest enclosing circle of P , denoted by c(P ), and ρ(P ) is generally the order of the
cyclic group that acts on P . This definition is based on the fact that for each of these regular
m-gons there exist symmetric local coordinate systems regarding c(P ), and the robots with
such initial local coordinate systems cannot break the regular m-gon forever. However, when
c(P ) ∈ P , we have ρ(P ) = 1, meaning that the symmetry of P can be broken. This is
achieved by the robot on c(P ) leaving its current position.

Yamauchi et al. extended symmetricity to 3D-space [19]. Symmetric rotation operations
in 3D-space form SO(3) of infinite order, and its subgroups with finite order are the cyclic
groups, the dihedral groups, the tetrahedral group, the octahedral group, and the icosahedral
group. Each rotation group is recognized as the set of symmetric rotation operations on a
prism, a pyramid, a regular tetrahedron, a regular octahedron, and a regular icosahedron,
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respectively. The symmetricity %(P ) of a set P of points is the set of rotation groups G
such that the group action of G on P divides P into |G|-sets where |G| is the order of G.
They also showed that the robots on rotation axes can eliminate the rotation axes by leaving
their current position in the same way as 2D-space. This symmetry breaking results in, for
example, the fact that the robots can form a regular octahedron from a cube.

However, existing definitions of symmetricity assume chirality. In this paper, we consider
symmetry among robots without chirality in 3D-space, thus composite symmetry of rotation
and reflection. The combination results in O(3), and its subgroups with finite order consist
of seventeen symmetry groups, that are fully studied in group theory [2, 6]. We extend
the notion of symmetricity in [19] to these seventeen symmetry groups. Then we consider
the plane formation problem that requires the robots in 3D-space to land on a common
plane without making multiplicity. As already shown, the plane formation problem is not
always solvable because of the impossibility of symmetry breaking [18]. We validate our
definition of symmetricity by presenting a characterization of initial configurations from
which the robots can solve the plane formation problem. We first show a necessary condition
based on the fact that the robots cannot break their symmetricity forever. Then we show
a matching sufficient condition with a plane formation algorithm because existing plane
formation algorithms [18, 19] do not work without chirality. The highlight of our results is the
fact that when an initial configuration contains an “empty” mirror plane that does not contain
any robot, the robots cannot break their symmetry regarding this mirror plane, and they
cannot form a plane. This results in a decrease of solvable instances (initial configurations)
compared to the robots with chirality, i.e., when the robots with chirality initially occupy
the vertices of a cube, they can form a plane, while the robots without chirality cannot. On
the other hand, we show that when a mirror plane contains some robots, these robots can
eliminate the mirror plane by leaving their current positions. Thus our results partly extend
symmetry breaking phenomena of rotation axes to mirror planes.

By considering the robots with weakest observation abilities, we give the complete
description of symmetry of the robots in 3D-space. On the other hand, we assume strong
synchronization model and movement model, i.e., the FSYNC robots with rigid movement,
while existing literature considers the plane formation problem for FSYNC robots with rigid
movement [18] and for SSYNC robots with non-rigid movement [16]. The reason is twofold.
First, in terms of symmetry, the worst case is caused by FSYNC rigid movement. Since
such a worst case occurs in the SSYNC (thus ASYNC) model with non-rigid movement,
the impossibility is essentially determined by FSYNC model with rigid movement. Second,
although SSYNC (thus ASYNC) robots with non-rigid movement require carefully designed
algorithms, we can extend our plane formation algorithm to the SSYNC robots with non-rigid
movement in the same way as Uehara et al.’s techniques [16].

Related work
In terms of the pattern formation ability of a robot system, symmetry dominates other
elements such as anonymity, obliviousness, visibility, and chirality. The set of formable
patterns are characterized by the initial symmetricity among the robots. Regarding 2D-space,
it has been shown that irrespective of obliviousness and asynchrony, the robots with chirality
can form a target pattern F from an initial configuration P if and only if ρ(P ) divides ρ(F )
except the case where F is a point with multiplicity two [12, 15, 17]. The exception is called
the rendezvous problem, which is trivially solvable by FSYNC robots while not solvable by
SSYNC (thus ASYNC) robots. Yamauchi et al. partially generalized the results to 3D-space
by showing that irrespective of obliviousness, the FSYNC robots with chirality can form a
target pattern F from an initial configuration P if and only if %(P ) is a subset of %(F ) [19].
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In terms of symmetricity in 2D-space, the point formation problem and the circle formation
problem are expected to be solvable from any initial configuration. While the point formation
of two SSYNC (thus ASYNC) robots is unsolvable, more than two ASYNC robots can always
form a point [5]. Additionally, any number of oblivious ASYNC robots can form a circle
without chirality [11, 13].

Fujinaga et al. investigated the embedded pattern formation problem, where the target
pattern is given as a set of landmarks on the plane [12]. They showed that the oblivious
ASYNC robots can form any embedded target pattern by showing an algorithm that is based
on the “clockwise” minimum-weight perfect matching between the positions of the robots
and the landmarks. Based on this clockwise matching algorithm, Fujinaga et al. presented a
pattern formation algorithm for oblivious ASYNC robots with chirality [12]. Later Cicerone
et al. pointed out that the clockwise matching algorithm does not work when the robots
lack chirality, and showed a new embedded target pattern formation algorithm [4].

The plane formation problem was first introduced by Yamauchi et al. for FSYNC robots
with chirality and rigid movement [18]. Part of the motivation was to use these existing
distributed coordination techniques for 2D-space. However, they pointed that even when the
robots with chirality finish plane formation, they may not agree on the clockwise direction
(thus handedness) on the plane. Consider a configuration of two robots with right-handed
x-y-z local coordinate systems on a plane, where the z-axis of one robot points to the upward
and that of the other robot points to the downward. Then there is no way to make the two
robots agree on the clockwise direction. This fact highlights the importance of distributed
algorithms that do not require chirality.

2 Preliminary

2.1 Robot Model
Let R = {r1, r2, . . . , rn} be a set of n anonymous robots, each of which is a point in
3D-space. We use ri just for description. We consider discrete time t = 0, 1, 2, . . . and
let pi(t) = (xi(t), yi(t), zi(t)) ∈ R3 be the position of ri at time t in the global x-y-z
coordinate system Z0, where R is the set of real numbers. The configuration of R at time t
is P (t) = {p1(t), p2(t), . . . , pn(t)}. We denote the set of all possible configurations of R by
P3

n. We assume that the initial positions of robots are distinct, i.e., pi(0) 6= pj(0) for ri 6= rj

and |P (0)| = n.1 We also assume that n ≥ 4 since any three robots are on one plane.
Each robot ri has no access to the global coordinate system, and it uses its local x-y-z

coordinate system Zi. The origin of Zi is the current position of ri while the unit distance,
the directions, and the orientations of the x, y, and z axes of Zi are arbitrary and never
change. It is appropriate to denote Zi(t), but we use a shorter description. Each Zi is
either right-handed or left-handed. Thus the robots do not have chirality. We denote the
coordinates of a point p in Zi by Zi(p).

We consider the fully-synchronous (FSYNC) model, where the robots start the t-th
Look-Compute-Move cycle at the beginning of time (t − 1) and finishes it before time t
(t = 1, 2, . . .). Each of the Look phase, the Compute phase, and the Move phase of a
cycle is completely synchronized in each time step. At time t, each robot ri obtains a set

1 This assumption is necessary because when more than one robots are initially at one point, it is
impossible to separate them by a deterministic algorithm. While the impossibility results in this paper
considers executions possibly with multiplicities, the proposed algorithm does not make any multiplicity
in any execution.
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Zi(P (t)) = {Zi(p1(t)), Zi(p2(t)), . . . , Zi(pn(t))} in the Look phase. We call Zi(P (t)) the local
observation of ri at time t. Then ri computes its next position by a common algorithm ψ in
the Compute phase. A robot is oblivious if it does not remember the past observations and
the past computations, thus the input to ψ is Zi(P (t)). Otherwise, it is non-oblivious and
the input to ψ contains the past observations and the past computations. Finally, ri moves
to the next point in the Move phase. We assume that each robot always reaches its next
position in a move phase and we do not care for the route to reach there. Thus we consider
rigid movement.

An execution of an algorithm ψ from an initial configuration P (0) is a sequence of
configurations P (0), P (1), P (2), . . .. Given an algorithm ψ, there are multiple FSYNC
executions starting from P (0), however when the initial local coordinate systems of P (0) and
initial local memory content (if any) are fixed, the FSYNC execution is uniquely determined.

The plane formation problem requires that the robots land on a plane, which is not
predefined, without making any multiplicity. Hence point formation is not a solution for
the plane formation problem. We say that an algorithm ψ forms a plane from an initial
configuration P (0), if, regardless of the choice of initial local coordinate systems Zi for each
ri ∈ R, in any execution P (0), P (1), P (2) . . . there exists a finite t ≥ 0 such that (i) P (t) is
contained in a plane, (ii) |P (t)| = n, i.e., all robots occupy distinct positions, and (iii) once
the system reaches P (t), the robots do not move anymore.

For a set P of points, we denote the smallest enclosing ball (SEB) of P by B(P ) and its
center by b(P ). A point on the sphere of a ball is said to be on the ball, and we assume
that the interior and the exterior of a ball do not include its sphere. The innermost empty
ball I(P ) is the ball whose center is b(P ), that contains no point of P in its interior and
contains at least one point of P on its sphere. When all points of P are on B(P ), we say P
is spherical. When the robots occupy the vertices of a polyhedron, we say that the robots
form the polyhedron.

2.2 Symmetry by Rotations and Reflections
A symmetric rotation operation is an operation that rotates an object without changing its
appearance. If we consider a unit ball, there are infinitely many symmetric rotation operations,
and these operations form SO(3). The subgroups of SO(3) with finite order are the cyclic
groups Ck (k = 1, 2, . . .)2, the dihedral groups D` (` = 2, 3, . . .), the tetrahedral group T , the
octahedral group O, and the icosahedral group I. Each of them can be recognized as a set of
rotation operations on a pyramid with a regular k-gon base, a prism with a regular `-gon
bases, a regular tetrahedron, a regular octahedron, and a regular icosahedron, respectively.
In other words, they are determined by a set of rotation axes and their arrangements. A
k-fold axis admits rotations by 2πi/k (i = 1, 2, . . . , k). These k operations form the cyclic
group Ck of order k.

The dihedral group D` consists of a single `-fold axis called the principal axis and ` 2-fold
axes perpendicular to the principal axis, and its order is 2`. We abuse the term “principal
axis” for the single rotation axis of a cyclic group.

The tetrahedral group T consists of three 2-fold axes and four 3-fold axes, and its order is
12. The octahedral group O consists of six 2-fold axes, four 3-fold axes, and three 4-fold axes,
and its order is 24. The icosahedral group I consists of fifteen 2-fold axes, ten 3-fold axes,
and six 5-fold axes, and its order is 60. Clearly, multiple rotation axes of a rotation group

2 C1 consists of an identity element.
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intersect at one point. We call the cyclic groups and the dihedral groups 2D rotation groups,
and we call the remaining three rotation groups T , O, and I 3D rotation groups because a
3D rotation group does not act on a point on a plane.

Reflection by a mirror plane is an indirect symmetric operation. We consider composite
symmetry of rotation axes and mirror planes, i.e., subgroups of O(3) with finite order.
Each symmetry type also forms a group. The bilateral symmetry Cs consists of one mirror
plane and its order is 2. When there are more than one mirror planes, an intersection of
mirror planes introduces a rotation axis. Clearly, the rotation axes and mirror planes of
the symmetry type intersect at one point. The composition of Ck (k > 1) and a horizontal
mirror plane regarding the principal axis is denoted by Ckh. The order of Ckh is 2k. The
composition of Ck (k > 1) and k vertical mirror planes each of which contains the principal
axis is denoted by Ckv. The order of Ckv is 2k.

The composition of D` (` ≥ 2) and a horizontal mirror plane regarding the principal
axis is denoted by D`h. However, this horizontal mirror plane together with rotation axes
forces vertical mirror planes and the order of D`h is 4`. The composition of D` (` ≥ 2) and `
vertical mirror planes is denoted by D`v. The order of D`v is 4`.

The composition of T and three mutually perpendicular mirror planes, each of which
contains two 2-fold axes is denoted by Th. The order of Th is 24. The composition of T and
six mirror planes, each of which contains two 3-fold axes is denoted by Td. The order of Td

is 24. The composition of O and nine mirror planes is denoted by Oh. The order of Oh is 48.
The composition of I and fifteen mirror planes, each of which contains two 5-fold axes is
denoted by Ih. The order of Ih is 120.

Another type of composite symmetry is rotation reflection Sm, where a rotation regarding
a single m-fold axis and reflection by a horizontal mirror plane are alternated. S2 corresponds
to the central inversion, which is denoted by Ci.

Let S = {C1, Ci, Cs, Ck, Ckh, Ckv, D`, D`h, D`v, Sm, T, Td, Th, O,Oh, I, Ih | k = 2, 3, . . . ,
` = 2, 3, . . . ,m = 3, 4, . . .}. We call each element of S symmetry group. These seventeen
types of symmetry groups describe all symmetry in 3D-space [6].

We denote the order of G ∈ S with |G|. When G′ is a subgroup of G (G,G′ ∈ S), we
denote it by G′ � G. If G′ is a proper subgroup of G (i.e., G 6= G′), we denote it by G′ ≺ G.
For example, we have D2 ≺ T , T ≺ O, I, but O 6� I. If G ∈ S has a k-fold axis, Ck′ � G if
k′ divides k. For symmetry groups containing mirror planes, T ≺ Th ≺ Oh but Th 6≺ O. For
Sm, we have Cm/2 ≺ Sm ≺ Cmh.

See Appendix A for the detailed description of symmetry groups.

2.3 Rotation Group, Symmetry Group, and Symmetricity
We start with the symmetry of positions of robots, called symmetry group of a configuration,
that the robots can agree irrespective of their local coordinate systems. Then we introduce
symmetry of local coordinate systems, called symmetricity, that the robots can never break.
Note that the robots do not know local coordinate systems of other robots.

The rotation group γ(P ) of a set P ∈ P3
n of points is the rotation group that acts on

P and none of its proper supergroup in {Ck, D`, T,O, I | k = 1, 2, . . . , ` = 2, 3, . . .} acts on
P . The symmetry group θ(P ) of P is the symmetry group that acts on P and none of its
proper supergroup in S acts on P . Clearly, γ(P ) and θ(P ) are uniquely determined,3 and

3 See for example [6], that shows an algorithm to uniquely determine the symmetry group of a polyhedra.
The algorithm checks rotation axes, mirror planes, and a point of inversion. Since we consider a set of
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Table 1 Rotation group, symmetry group, and symmetricity of regular polyhedra.

Polyhedron Rotation group Symmetry group Symmetricity
Regular tetrahedron T Td {D2, S4}
Regular octahedron O Oh {D3, S6}
Cube O Oh {D4, D2h, D2v, C4h, S4}
Regular dodecahedron I Ih {D5, D2, S10}
Regular icosahedron I Ih {T, D3, S6}

γ(P ) is a subgroup of θ(P ) (γ(P ) � θ(P )). By the definition, when θ(P ) is either C1, Ci, Cs,
γ(P ) = C1. Table 1 shows the rotation group of a set of vertices of each regular polyhedron.

The group action of θ(P ) decomposes P into disjoint subsets. Let Orb(p) = {g ∗ p | g ∈
θ(P )} be the orbit of p ∈ P where ∗ denotes the action of g on s, and the orbit space
{Orb(p) | p ∈ P} = {P1, P2, . . . , Pm} is called the θ(P )-decomposition of P . Each element
Pi is transitive because it is one orbit regarding θ(P ).

Yamauchi et al. [18] showed that in configuration P without any multiplicity, the robots
with chirality can agree on the γ(P )-decomposition {P1, P2, . . . , Pm} of P and a total ordering
among the elements so that (i) P1 is on I(P ), (ii) Pm is on B(P ), and (iii) Pi+1 is not in the
interior of the ball centered at b(P ) and containing Pi on its sphere. Though their techniques
rely on chirality, we can extend it to robots without chirality. In [18], each robot translates
its local observations to a “celestial map” by considering I(P ) as the earth. It considers that
its current position is on the half line from b(P ) containing the north pole. Then, the robot
selects an appropriate robot to define the prime meridian and translates the position of each
robot to a triple consisting of its altitude, latitude, and longitude. The ordered sequence of
these triples is the local view of the robots. However, the lack of chirality does not allow the
robots to agree on the direction of longitude. Then we make a robot consider both directions
and select the direction that produces the smallest sequence. In the same way as [18], we
have the following property. We omit the proof because of the page limitation.

I Lemma 1. Let P ∈ P3
n and {P1, P2, . . . , Pm} be a configuration of n robots represented

as a set of points and its θ(P )-decomposition, respectively. Then we have the following two
properties:
1. For each Pi (i = 1, 2, . . . ,m), all robots in Pi have the same local view.
2. Any two robots, one in Pi and the other in Pj, have different local views, for all i 6= j.

By Lemma 1, the robots can agree on a total ordering of the elements P1, P2, . . . , Pm by
using the lexicographical ordering of the local views of each element. In the following, we
assume that P1, P2, . . . , Pm is sorted by this ordering.

We denote the set of local coordinate systems for configuration P with a set Q of
quadruples such that Q = {(oi, xi, yi, zi) | pi ∈ P} where oi is the position of pi ∈ P (i.e.,
the origin of Zi) and xi, yi, and zi are the coordinates of (1, 0, 0), (0, 1, 0), and (0, 0, 1) of
Zi observed in the global coordinate system Z0. We use (P,Q) to explicitly show the set
of local coordinate systems for P though Q contains P as {o1, o2, . . . , on}. We define the
symmetry group σ(P,Q) of (P,Q) as the symmetry group that acts on (P,Q) and none of
its proper supergroup in S acts on it. Clearly, we have σ(P,Q) � θ(P ). We define the
σ(P,Q)-decomposition of (P,Q) in the same way as the θ(P )-decomposition of P . We note
that the robots of P cannot obtain Q nor σ(P,Q) because they can observe only the positions
of themselves.

points and their convex-hulls, we can use the same algorithm.



Y. Tomita, Y. Yamauchi, S. Kijima, and M. Yamashita 13:9

Given a set P of points, θ(P ) determines the arrangement of its rotation axes and mirror
planes in P . We thus use θ(P ) and the arrangement of its rotation axes and mirror planes
in P interchangeably. For two groups G,H ∈ S, an embedding of G to H is an embedding
of each rotation axis and each mirror plane of G to one of the rotation axes and one of the
mirror planes of H with keeping their arrangement in G. Any k-fold axis of G is embedded
so that it overlaps a k′-fold axis of H, where k divides k′. Observe that we can embed G to
H if and only if G � H.

We also consider a G-decomposition of a set P of points for some G ≺ θ(P ) (G ∈ S)
for an embedding of G in θ(P ). Note that the robots cannot agree the ordering among the
elements of such a G-decomposition of P .

I Definition 2. Let P ∈ P3
n be a set of points. The symmetricity %(P ) of P is the set of

symmetry groups G ∈ S that acts on P (thus G � θ(P )) and there exists an embedding of G
to θ(P ) such that each element of the G-decomposition of P is a |G|-set.

We define %(P ) as a set because the “maximal” symmetry group that satisfies the definition
is not uniquely determined. Maximality means that there is no proper supergroup in S that
satisfies the condition of Definition 2. When it is clear from the context, we denote %(P ) by
the set of such maximal elements. See Table 1 as an example.

We can rephrase the definition of symmetricity of P as a set of symmetry groups formed
by rotation axes and mirror planes of θ(P ) that do not contain any point of P . This is because
a point on a rotation axis (a mirror plane, respectively) does not allow any decomposition
into |G|-sets for any G that contains the rotation axis. 4

We conclude this section with the following two lemmas, that validate the definition of
symmetricity.

I Lemma 3. For an arbitrary initial configuration P ∈ P3
n and any G ∈ %(P ), there exists a

set of local coordinate systems Q such that σ(P,Q) = G.

Proof. Let {P1, P2, . . . , Pm} be the G-decomposition of P for some embedding of G to θ(P ).
We show a construction of Q for P and G. Clearly, such embedding exists since G � θ(P ).
From the definition, |Pj | = |G| for j = 1, 2, . . . ,m. For each Pj , we arbitrary fix a local
coordinate system of one robot pi ∈ Pj . Then for each pk ∈ Pj , there exists a unique element
of G such that pk = gk ∗ pi and gk 6= g` if pk 6= p` for any p` ∈ Pj . Then we fix the local
coordinate system of pk by applying gk to the local coordinate system of pi. The local
coordinate systems Q obtained by this procedure satisfies the property. J

Lemma 3 shows that there exists an arrangement of local coordinate systems Q for any
initial configuration P and G ∈ %(P ) such that σ(P,Q) = G. Then, Lemma 4 shows that
the robots may forever caught in this initial symmetry.

I Lemma 4. Irrespective of obliviousness, for an arbitrary initial configuration P ∈ P3
n, any

G ∈ %(P ), and any algorithm ψ, there exists an execution P (0)(= P ), P (1), P (2), . . . such
that θ(P (t)) � G.

Proof. Let Q be initial local coordinate systems for P such that σ(Q,P ) = G for arbitrary
G ∈ %(P ). By Lemma 3, such Q always exists. Let {P1, P2, . . . , Pm} be the G-decomposition
of P . From this arrangement of initial local coordinate systems, for each Pj (j = 1, 2, . . . ,m),
the robots forming Pj keep their symmetry group G forever for any algorithm ψ. We first show

4 We assume that a set P of points does not contain any multiplicity. In other words, we consider an
initial configuration P .
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an induction for the oblivious FSYNC robots. For any pi, pk ∈ Pj , when ψ(Zi[P (0)]) = x

holds, we have ψ(Zk[P (0)]) = x and Z0[Zk(ψ(Zk[P (0)]))] = gk ∗ Z0[Zi(ψ(Zi[P (0)]))]. Let
Pj(1) ⊆ P (1) be the positions of robots of Pj in P (1). Thus θ(Pj(1)) = G and θ(P (1)) � G.
By an easy induction for t = 1, 2, . . ., we have the property for any P (t).

Non-obliviousness does not improve the situation. When the initial memory contents
are identical (for example, empty), the above discussion holds for the transition from P (0)
to P (1). During this transition, the robots in the same element Pj obtain the same local
observation, performs the same computation, and exhibits the same movement. Thus, their
local memory content are still identical in P (1) and they continue symmetric movement
during the transition from P (1) to P (2). J

3 Impossibility of Plane Formation

The following theorem shows a necessary condition for the FSYNC robots without chirality
to form a plane, that will be shown to be a sufficient condition in Section 4.

I Theorem 5. Irrespective of obliviousness, the FSYNC robots without chirality can form a
plane from an initial configuration P only if %(P ) contains neither any 3D rotation group
nor any 2D rotation group with horizontal mirror plane regarding the principal axis (except
C2h and Sm).

Proof. Let ψ be an arbitrary plane formation algorithm for an initial configuration P such
that %(P ) contains a 3D rotation group, Ckh (k ≥ 3), or D`h (` ≥ 2). We have the following
three cases.
Case A: %(P ) contains Ckh for some k ≥ 3.

Let Q be a set of initial local coordinate systems for P such that σ(P,Q) = Ckh ∈ %(P )
(k ≥ 3). From Lemma 4, irrespective of obliviousness, for any algorithm ψ, there exists an
execution P = P (0), P (1), P (2), . . . such that θ(P (t)) � Ckh for any t ≥ 0. Assume that
P (t′) be a terminal configuration. Then θ(P (t′)) is a supergroup of Ckh, and θ(P (t′))
has the mirror plane of θ(P ). The robots are on this mirror plane, otherwise the robots
are not on one plane because of their symmetry.
Let {P1, P2, . . . , Pm} be the σ(P,Q)-decomposition of P (= P (0)). For each Pi (1 ≤ i ≤ m)
and p ∈ Pi, there exists q ∈ Pi such that p and q are at symmetric positions regarding
the mirror plane of Ckh. By Lemma 4, the robots of Pi move with keeping the rotation
axis and the mirror plane of the embedding of Ckh in P . Thus p and q occupy the same
point on the mirror plane of Ckh in P (t′). Hence the robots cannot avoid multiplicity
and P (t′) is not a terminal configuration of the plane formation problem.

Case B: %(P ) contains D`h for some ` ≥ 2.
Let Q be a set of initial local coordinate systems for P such that σ(P,Q) = D`h ∈ %(P )
(` ≥ 2). By Lemma 4, irrespective of obliviousness, for any algorithm ψ, there exists an
execution P = P (0), P (1), P (2), . . . such that θ(P (t)) � D`h for any t ≥ 0. We have the
same discussion as Case A. If there exists a terminal configuration, the robots are on the
initial horizontal mirror plane of D`h. Hence, the robots cannot avoid multiplicity and
P (t′) is not a terminal configuration of the plane formation problem.

Case C: %(P ) contains a 3D-rotation group.
The impossibility for this case has been shown for robots with chirality in [18] and the
result holds for our robots because our model allows the robots with chirality. We note
that when %(P ) contains Td, Th, Oh or Ih, then it contains the corresponding rotation
group because it is a subgroup without any mirror plane.
Consequently, when %(P ) contains the above three types of symmetry groups, they cannot
form a plane. J
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4 Plane Formation Algorithm

In this section, we show a plane formation algorithm for oblivious FSYNC robots without
chirality and prove our main theorem. Theorem 6 gives a necessary and sufficient condition
for the FSYNC robots without chirality to solve the plane formation problem. In other
words, it gives a characterization of the initial configurations from which the plane formation
problem is solvable.

I Theorem 6. Irrespective of obliviousness, the FSYNC robots without chirality can form a
plane from an initial configuration P if and only if %(P ) contains neither any 3D rotation
group nor any 2D rotation group with horizontal mirror plane regarding the principal axis
(except C2h and Sm).

The necessity is clear from Theorem 5. We prove the sufficiency by presenting a plane
formation algorithm for solvable instances (i.e., initial configurations). Due to the page
limitation, we show a sketch of the proposed algorithm.

By the condition of the theorem, solvable instances are classified into the following three
types.
Type 1: Initial configuration P with θ(P ) ∈ {T, Td, Th, O,Oh, I, Ih} is in this type. By

the condition of Theorem 6, any initial configuration P of this type contains one of the
following polyhedra as an element of its θ(P )-decomposition, because some robots are on
some rotation axes: a regular tetrahedron, a regular octahedron, a regular dodecahedron,
and an icosidodecahedron.5

Type 2: Initial configuration P with θ(P ) ∈ {Ck, Ckh, Ckv, D`, D`h, D`v, Sm|k = 2, 3, . . . ,
` = 2, 3, . . . ,m = 3, 4, . . .} is in this type. By Theorem 6, θ(P ) does not have the
horizontal mirror plane or there are some robots on the horizontal mirror plane.

Type 3: Initial configuration P with θ(P ) ∈ {C1, Ci, Cs} is in this type.

The proposed algorithm handles these three types separately. The robots can agree on the
type of the current configuration and they execute the corresponding algorithm. In a Type 1
initial configuration, the robots first break their symmetry and translates an initial Type 1
configuration to another Type 2 or Type 3 configuration. In a Type 2 initial configuration,
the robots agree on a plane perpendicular to the principal axis and containing the center of
their smallest enclosing ball, and land on the plane. In a Type 3 initial configuration, if it is
an asymmetric configuration, the robots agree on a plane by using the total ordering among
themselves (Lemma 1). Otherwise, the robots agree on a plane other than the mirror plane
by using two elements of their θ(P )-decomposition and land on it.

In the following, we use a point and a robot at the point interchangeably.
We put several preparation steps before the execution of the main algorithm. These steps

are realized very easily in the FSYNC model without changing the initial symmetry of the
robots.
Removing the center. When b(P ) ∈ P , the robot on b(P ) leaves its current position so that

a resulting configuration will be asymmetric.
For symmetry breaking of Type 1. If initial configuration P is Type 1, we send Pi of the

θ(P )-decomposition of P forming one of the specified polyhedra to the interior of I(P ).

5 Points on rotation axes of a 3D rotation group also form a cube, a cuboctahedron, and a regular
icosahedron. However, a cube allows D2h to join its symmetricity, and the remaining two polyhedra
allow T (≺ O, I) to join their symmetricity.
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We select Pi with the minimum index among the elements satisfying the condition to
guarantee that no robot is on the track.

For symmetry breaking of Type 2. If initial configuration P is Type 2, we move Pj of the
θ(P )-decomposition of P on the horizontal mirror plane of θ(P ) to the interior of I(P ).
We select Pj with the minimum index among the elements satisfying the condition.

In the following, since the proposed algorithm is designed for the oblivious FSYNC robots,
it is always described for a current configuration.

4.1 Symmetry Breaking
We consider a Type 1 configuration P . Let {P1, P2, . . . , Pm} be the the θ(P )-decomposition
of P . The preparation step guarantees that P1 forms one of the following four polyhedra; a
regular tetrahedron, a regular octahedron, a regular dodecahedron, and an icosidodecahedron.
Then the proposed plane formation algorithm first makes the robots execute the go-to-center
algorithm (Algorithm 1) proposed in [18]. Each robot of P1 selects an adjacent face of the
polyhedron and moves to the center of the selected face. But it stops ε before the center to
avoid collisions. Clearly, Algorithm 1 does not depend on chirality. We have the following
lemma for any execution of Algorithm 1.

I Lemma 7. Let P and {P1, P2, . . . , Pm} be a Type 1 initial configuration and its θ(P )-
decomposition. Then there exists one element of Pi (1 ≤ i ≤ m) that forms one of the
following polyhedra; a regular tetrahedron, a regular octahedron, a regular dodecahedron, or
an icosidodecahedron. Then one step execution of Algorithm 1 translates P into another
configuration P ′ that satisfies (i) γ(P ′) is a 2D rotation group, and (ii) if γ(P ′) 6= C1, C2,
θ(P ′) does not have any horizontal mirror plane.

We present a sketch of the proof because of the page limitation. In [18], it is proved
that Algorithm 1 breaks the rotation symmetry of the specified polyhedra and that the
rotation group of any resulting configuration is a 2D rotation group. Since our robots lack
chirality, we consider the combination of 2D rotation groups and mirror planes for a resulting
configuration. We can show that the movement of the robots does not create any new mirror
plane, and any resulting configuration does not have any horizontal mirror plane (except
C2h).

Since this symmetry breaking occurs in P1, the (rotation) symmetry of the whole robots
decreases to a 2D rotation group.

4.2 Landing Algorithm
In this section, we show a plane formation algorithm for Type 2 and Type 3 initial configura-
tions. When γ(P ) of a current configuration P is a cyclic group or a dihedral group, our basic
strategy is to make the robots agree on the plane perpendicular to the principal axis and
containing b(P ). Each robot moves along a perpendicular to the agreed plane (Figure 2a).
However, this simple strategy results in collisions on the agreed plane because the plane can
be a mirror plane of θ(P ). To avoid multiplicities, the proposed algorithm consumes five
phases. The first three phases break the mirror plane of θ(P ) and resolves the collisions on
the target plane. The fourth phase makes the robots agree on the target plane and in the
fifth phase each robot computes the destinations of all robots to avoid any collision.

In any configuration P , the robots execute the algorithm with the smallest phase number.
The robots can easily agree on which phase to execute because the condition of the phases
divide the set of all configurations with 2D rotation groups into disjoint subsets. Depending
on the execution, some phases may be skipped.
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Algorithm 1 Go-to-center algorithm for robot ri [18].

Notation
P : Current configuration observed in Zi.
pi ∈ P : The position of ri (i.e., the origin of Zi).
{P1, P2, . . . , Pm}: θ(P )-decomposition of P , where P1 forms one of the four

polyhedra.
ε = `/100, where ` is the length of an edge of the polyhedron that P1 forms.

Algorithm
If pi ∈ P1 then

If P1 is an icosidodecahedron then
Select an adjacent regular pentagon face of P1.
Destination d is the point ε before the center of the face on the line
from pi to the center.

Else
// P1 is a regular tetrahedron, a regular octahedron, or a regular dodecahedron.

Select an adjacent face of P1.
Destination d is the point ε before the center of the face on the line
from pi to the center.

Endif
Move to d.

Endif

4.2.1 First phase: Removing the mirror plane

When θ(P ) has a horizontal mirror plane, our basic strategy allows multiplicities. By the
condition of Theorem 6, there is at least one element of the θ(P )-decomposition of P on
the horizontal mirror plane. To remove this mirror plane, we first make the robots of such
an element leave their current positions (Fig. 2b). Intuitively, the first phase makes these
robots select the upward direction or the downward direction regarding the horizontal mirror
plane and they move to the selected directions. Any resulting configuration does not have
the horizontal mirror plane any more because for each new positions of the robots, there is
no corresponding point regarding the horizontal mirror plane.

In the following, we assume that when the current configuration P has a rotation axis, it
does not have any horizontal mirror plane for the principal axis or θ(P ) = C2h.

4.2.2 Second phase: Collision avoidance for dihedral groups

When γ(P ) is a dihedral group, say D` or D`v, and the θ(P )-decomposition of P contains a
prism, our basic strategy makes multiplicities (Fig. 2c). By Theorem 6, θ(P ) does not have
a horizontal mirror plane, and there exists at least one element Pj that does not form such
a prism. The robots of Pi circulates toward the nearest point of Pj and twist their prism.
This movement resolves the collisions among the perpendiculars from the robots of Pi to the
target plane.

OPODIS 2017
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(a) Antiprism (b) Horizontal mirror plane (c) Prism

Figure 2 Basic idea of the landing algorithm and collision avoidance. (a) Basic idea. (b) Removing
the horizontal mirror plane. (c) Avoiding collisions by using an anti-prism.

4.2.3 Third phase: Collision avoidance on the principal axis
When γ(P ) is a dihedral group and some robots are on the principal axis, we need another
trick to resolve the collisions of these robots. Clearly, these robots form element(s) of the
θ(P )-decomposition of P and the size of each of such elements Pk is two.

We also use an element of Pj that forms a “twisted” prism in the same way as the
previous case. Each point of p ∈ Pk selects the nearest point of Pj , however in this case, the
robots of Pk do not move. Other robots consider the vertices of the twisted prism as possible
destinations of this fictitious move.

4.2.4 Fourth phase: Agreement of the target plane
The robots agree on the target plane. Depending on θ(P ) of the current configuration P , we
have the following five cases:
(i) When γ(P ) is a cyclic group or a dihedral group, the robots agree on the plane perpendic-

ular to the principal axis and containing b(P ). The exceptional case is when θ(P ) = C2h.
In this case, since the robots are not on one plane, there exists at least one element Pi

of the θ(P )-decomposition of P such that |Pi| = 4. Let i be the minimum index among
such elements. Then, the robots agree on the plane formed by Pi. Pi forms a rectangle
perpendicular to the horizontal mirror plane and the agreed plane is not a mirror plane
for P .

(ii) When θ(P ) is a rotation-reflection, the robots agree on the mirror plane of θ(P ).
(iii) When θ(P ) is a bilateral symmetry, the size of each element of the θ(P )-decomposition

of P is one or two. Since the robots are not on one plane, there exists at least one element
Pi such that |Pi| = 2 and forms a perpendicular line regarding the mirror plane. If there
is just one such element Pi, the robots agree on the plane defined by Pi (a line) and P1
(a point). If i = 1, then the algorithm uses P2 instead of P1. Otherwise, let Pi and Pj

be the elements with the minimum and second-minimum index of such elements. Then
the robots agree on the plane defined by these two elements. The selected plane is not a
mirror plane for P .

(iv) When θ(P ) is a central inversion, the size of each element of the θ(P )-decomposition of
P is one or two. Since the robots are not on one plane, there are more than one elements
of size two. Each of these elements form a line and they all intersect at the center of
inversion. Let Pi and Pj be such elements with the minimum and second-minimum index.
Then the robots agree on the plane defined by these two elements.
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(v) When θ(P ) is C1, by Lemma 1, the robots can agree on the total ordering of themselves
and agree on the plane defined by P1, P2, and P3.

4.2.5 Fifth phase: Computation of final positions
Let P and {P1, P2, . . . , Pm} be the current configuration and its θ(P )-decomposition. Through
the previous four phases, for each element Pi (i = 1, 2, . . . ,m), the foots of perpendiculars
from the points of Pi to the target plane do not overlap. However, the foot of perpendiculars
of different elements of the θ(P )-decomposition of P may overlap.

Then all robots locally compute the landing positions of all robots in the order of
P1, P2, . . . , Pm. An element with a smaller index has a higher priority, i.e., if the landing
positions of Pi are computed, any Pj (j > i) avoids them with a common rule. For example,
a point p is a destination of some robot in Pi, a small circle containing no other destination is
drawn, and a destination of q ∈ Pj is selected from this circle. Then this circle is considered
as possible landing positions for Pj so that any collision will be avoided in the succeeding
computation. Irrespective of handedness, all robots agree on all possible landing positions,
and each robot computes its collision-free landing point. Finally, the robots move to their
destinations in the same cycle.

As the non-oblivious robots can execute the proposed algorithm, we have the following
theorem, that together with Theorem 5, proves our main theorem.

I Theorem 8. Irrespective of obliviousness, the FSYNC robots without chirality can form a
plane from an initial configuration P if %(P ) contains neither any 3D rotation group nor
any 2D rotation group with horizontal mirror plane regarding the principal axis (except C2h

and Sm).

5 Conclusion

We considered the plane formation problem by FSYNC robots without chirality. We extended
the notion of symmetricity in [19] to the composition of rotation symmetry and reflection
symmetry. By using the symmetricity, we gave a characterization of initial configurations
from which the FSYNC robots without chirality can form a plane. We also showed a plane
formation algorithm for oblivious FSYNC robots without chirality.

One of the most important future directions is to investigate the effect of other system
elements in 3D-space. The ASYNC model and the SSYNC model are not thoroughly discussed
in 3D-space except the plane formation for SSYNC robots [16]. The effect of local visibility
also remains to be investigated.
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A Seventeen Symmetry Groups in 3D-space

We summarize the seventeen symmetry groups in 3D-space. Each rotation group is determined
by rotation axes, mirror planes, and their arrangement. Our results also heavily rely on the
order of each symmetry group and horizontal mirror planes. The following three tables show
these properties together with typical polyhedra each of which is obtained as an orbit of a
seed point in each symmetry group.

Table 2 Symmetry groups without rotation axis

Symmetry Order
C1 Identity element 1
Ci Point of inversion 2
Cs Single mirror plane 2

Table 3 Symmetry groups with 2D rotation groups

Principal axis Other axes Horizontal Order Orbits
mirror

Ck k-fold - N k

Ckh k-fold - Y 2k

Ckv k-fold - N 2k Pyramid with regular k-gon base
D` `-fold ` 2-fold axes N 2`

D`h `-fold ` 2-fold axes Y 4` Hexagonal prism for D6

D`v `-fold ` 2-fold axes N 4` Hexagonal anti-prism for D6v

Sm m-fold - Y m Hexagonal anti-prism for S12

Table 4 Symmetry groups with 3D rotation groups

Rotation axes (folding) Mirror planes Order Orbits
2 3 4 5

T 3 4 - - 0 12 Snub tetrahedron
Td 3 4 - - 6 24 Regular tetrahedron
Th 3 4 - - 3 24
O 6 4 3 - 0 24 Snub cube
Oh 6 4 3 - 9 48 Cube, regular octahedron
I 15 10 - 6 0 60 Snub icosahedron
Ih 15 10 - 6 15 120 Regular dodecahedron
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Abstract
We consider the problem of fault-tolerant parallel exhaustive search, a.k.a. “Treasure Hunt”,
introduced by Fraigniaud, Korman and Rodeh in [13]: Imagine an infinite list of “boxes”, one
of which contains a “treasure”. The ordering of the boxes reflects the importance of finding the
treasure in a given box. There are k agents, whose goal is to locate the treasure in the least
amount of time. The system is synchronous; at every step, an agent can ”open” a box and see
whether the treasure is there. The hunt finishes when the first agent locates the treasure.

The original paper [13] considers non-cooperating randomized agents, out of which at most
f can fail, with the failure pattern determined by an adversary. In this paper, we consider
deterministic agents and investigate two failure models: The failing-agents model from [13] and
a “black hole” model: At most f boxes contain “black holes”, placed by the adversary. When an
agent opens a box containing a black hole, the agent disappears without an observable trace.

The crucial distinction, however, is that we consider “barely communicating” or “indirectly
weakly communicating” agents: When an agent opens a box, it can tell whether the box has
been previously opened. There are no other means of direct or indirect communication between
the agents.

We show that adding even such weak means of communication has very strong impact on
the solvability and complexity of the Treasure Hunt problem. In particular, in the failing agents
model it allows the agents to be 1-competitive w.r.t. an optimal algorithm which does not know
the location of the treasure, but is instantly notified of agent failures. In the black holes model
(where there is no deterministic solution for non-communicating agents even in the presence of a
single black hole) we show a lower bound of 2f + 1 and an upper bound of 4f + 1 for the number
of agents needed to solve Treasure Hunt in presence of up to f black holes, as well as partial
results about the hunt time in the presence of few black holes.
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1 Introduction

Searching is one of the most studied problems in computer science. As the search space is
often huge, in order to speed up the search time a frequently used approach is to resort to
parallel and/or distributed search. However, employing a large number of parallel searching
agents gives rise to two important issues:

∗ This work has been supported by grant VEGA 2/0165/16.

© Stefan Dobrev, Rastislav Královič, and Dana Pardubská;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


14:2 Treasure Hunt with Barely Communicating Agents

how to efficiently coordinate them, so that the agents complement each other’s work
instead of being an obstacle to each other
how to deal with the inevitable failures, so that the search is successfully and efficiently
completed and no area of search space is omitted.

On one hand, a tight coordination is desired, so that the agents can efficiently split
their workload and react to behaviour/observations of other agents. On the other hand,
the coordination itself incurs costs that might overwhelm any gains obtained by using more
agents. This has motivated research into non-coordinated and weakly coordinated search
agents, as lack of coordination brings inherent robustness and resilience to failures and
tampering.

There are numerous variants of the search problem, differing in the structure of the search
space, the power and the number of search agents, the communication mechanisms available
to them and in the search space itself, the failure models, termination conditions as well as
cost and payoff functions.

The particular variant of the search problem we are interested in has been introduced by
Fraigniaud, Korman and Rodeh in [13]. It can be seen as an abstraction of a distributed
exhaustive search as employed by BOINC [2] (for Berkeley Open Infrastructure for Network
Computing), made famous for SETI@home. The goal is to exhaustively search the search
space, until a desired item (“treasure”, e.g. SETI signal, cryptographic key, . . . ) has been
found. The search space is linear in nature, in the sense that there is a total ordering of the
candidate solutions: given that a solution has not been found among the smaller candidates,
the next candidate contains the most preferred solution, is the most likely to contain a
solution, or is the least costly to check.

In this setting, a central server controls and distributes the work to volunteers. While
typically there is a strong control over work tasks (which can be made of desired granularity
and uniform size), there is very little control over the volunteer agents executing these work
tasks. Therefore, it is highly desirable (for practical, security and anonymity reasons) to
have no direct communication channels between the worker agents. Furthermore, for legacy
and efficient implementation reasons, it is unfeasible to add environmental communication
channels (e.g. whiteboards at the nodes of the search space). Hence, non-coordinated
protocols are a very good match. It has been shown in [13] that by employing randomized
agents, the cost of non coordination can be as low as a factor of 4.

Still, in this setting, there is a basic coordination mechanism which is always present, by
the very nature of the setting: For each work task, the server knows whether it has been
already solved or not. The central idea of this paper is to investigate how much can this
essentially free information help in efficiently solving the treasure hunt problem.

2 Model, Outline and Related Work

Consider a Treasure Hunt (parallel linear search) problem: Given is a (potentially infinite)
sequence of boxes, one of which contains a treasure. There are k deterministic agents in the
system, each with its own unique ID from {1, . . . , k} 1. Apart from the IDs, the agents are

1 In fact, it is sufficient that the IDs are unique, and from a range {1, . . . ,MAXID}, where MAXID is
an a-priori known upper bound on a maximal ID. A preprocessing phase of cost O(f log k logMAXID)
(where f is an upper bound on the number of failures/black holes) can compact the IDs into the desired
range, using standard parallel processing techniques. In order not to detract from the main focus of our
paper, we prefer to assume this has already been done prior to commencing the treasure hunt.
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identical, and have no means of communication. The system is synchronous and in each step
each agent may open one box to check whether it contains the treasure. We consider only
non-conflicting schedules2, i.e. schedules with the property that, during any time step, each
box is being accessed by at most one agent. When the box containing the treasure is opened,
the hunt is finished. The goal is to minimize the hunt time.

In a reliable system, k agents can locate the treasure in dx/ke steps, where x is the
(unknown) location of the treasure: in i-th step, the agent j simply opens the box k(i−1) + j.
Let us define the speedup as lim infx 7→∞ x/T (k, x) where T (k, x) is the hunt time with k

agents, if the treasure is in box x. Hence, in a reliable system, k agents achieve a speedup of
k. However, the just mentioned simple algorithm is very sensitive to errors: a failure of a
single agent may lead to the treasure not being found at all. In this paper we study faulty
systems; in particular we investigate treasure hunt under two failure models:

in the failing agents model, also used in [13], at most f < k agents may fail at any time
during the computation. The failure pattern describing at what times which agents fail is
chosen by an adversary.
in the black holes model, we assume that at most f of the boxes contain a black hole.
Whenever an agent opens a box with a black hole, the agent disappears without any
trace. Again, the locations of the black holes are chosen by the adversary.

Consider first the failing agents model. Denote Tf (k, x) the hunt time with k agents,
taken as the worst case over all possible failure patterns in which up to f agents fail. Clearly,
f = k−1 failing agents may be tolerated by a trivial algorithm in which every agent performs
a sequential scan, having Tf (k, x) = x+ k 3. However, this algorithm achieves only speedup
of 1. Moreover, for f = k−1 essentially nothing better can be done, since the best achievable
speedup for f failing agents is k/(f + 1) (see Claim 3.3).

The situation is even more bleak in the black hole model. Here even a single black hole
makes the problem unsolvable in the deterministic setting (Claim 3.5). The proof of this
heavily relies on the fact that the number of boxes is unbounded. If that is not true, the
problem becomes solvable – Corollary 4 shows that treasure hunt can be solved by O(

√
n lnn)

agents, where n is the number of boxes. The situation in randomized setting remains open.
The main contribution of this paper is to show that even a very limited means of

communication have great impact on the solvability of the problem. The sole means of
communication provided by the system is the following: When an agent opens a box, it
learns whether this box has been opened before.

Even though the agents have no way to directly communicate, they can deduce the
presence of faults from the presence of closed boxes which should have been opened by
the agents that died. However, such boxes can be identified only by opening them, thus
destroying any evidence; this read-once property makes algorithms in this setting rather
tricky.

As we shall see shortly in Claim 3.6, even this indirect communication channel increases
the power of the system: e.g. three agents can find the treasure in the presence of one black
hole. The aim of this paper is to investigate the power of this indirect communication. In
particular, the two central questions we try to answer are “How fast can barely communicating
agents find the treasure in the failing agents model?” and “How many black holes can be
tolerated in the black hole model?”.

2 This simplifies arguments and technical issues; as we will see, the cost is negligible.
3 The additive term is present because in order to ensure a non-conflicting schedule, the agents start their

scans one after another.
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For the first question, note that no speedup is possible in any of these models: indeed, in
both failure models it is possible that k− 1 agents die right at the beginning, leaving a single
deterministic agent to do essentially the whole search. That’s why we turn to competitive
analysis, which is a well-established tool for analyzing similar types of adversarial settings,
for the measurement of time efficiency: consider a setting where the agents are immediately
notified about a failure (or, in the black holes model, when an agent enters a black hole). In
this setting, there is a simple optimal algorithm which in each step assigns all k′ living agents
to the first k′ unopened boxes. We compare the hunt time of a distributed algorithm to the
hunt time of this optimal algorithm. In particular, the competitive ratio of an algorithm
with k agents is rk = lim supx 7→∞ supF TF (k, x)/OPTF (k, x) where F is the failure pattern
describing at what times which agents fail, x is the location of the treasure, and TF (k, x)
(resp. OPTF (k, x)) is the hunt time of the algorithm (resp. of the optimal algorithm). This
measure is somewhat similar to the non-coordination ratio of Fraigniaud, Korman, and Rodeh
[13]; the difference is that the latter considers the ratio of expected speedups, and as we have
seen the speedup is not useful in the deterministic case. Also note that if we fix a failure
pattern in which k − 1 agents die at the beginning, the measure becomes directly related to
speedup.

2.1 Our Results
We show that two agents (with the possibility that one of them fails) can achieve hunt time
TF (2, x) ≤ OPTF (2, x) + O(

√
x) (Claim 3.4). Since OPTF (2, x) ≥ x/2, the algorithm is

1-competitive. This result is generalized to k agents with the possibility that k − 1 of them
fail in Theorem 2, in which case a hunt time TF (k, x) ≤ OPTF (k, x) + O(k3√x) can be
achieved, again yielding a 1-competitive algorithm.

For the systems with black holes, we show that 2f + 1 agents are needed in order to
guarantee a successful treasure hunt with f black holes (Theorem 6). We provide an upper
bound in Theorem 8, showing that 4f+1 agents are sufficient. The downside of the algorithm
from Theorem 8 is that if the treasure is located at box x, boxes up to O(xf2) are used,
making heavy use of the fact that the number of boxes is unlimited. At the expense of
using O

(
(f ln f)2) agents, we develop in Theorem 9 an algorithm that uses only boxes up to

x+O
(
(f ln f)2) in the case the treasure is in box x. This algorithm can be tweaked to work

also for the setting where the number of boxes is finite (by having a set of agents dedicated
to exploring the last O

(
(f ln f)2) boxes).

2.2 Related Work
The first work evaluating the search time as a function of the location of the searched item
is [4, 5]. In this paper, which became a classic of online computing, the authors studied the
cow-path problem with a single agent, and showed that locating the treasure (gate in their
case) takes time 9d, where d is the distance from the origin. As in our model, the search
space is linear in nature and the search is for a single item. However, the principal difference
is that unlike in our model in which the agents have direct access to boxes and pay unit price
to access any box, in [5] the agent has to arrive to the box in order to search it, paying cost d
to reach a box at distance d from its current location. In fact, in [5] authors consider several
variants of the search problem, including searching in 2D and searching for large objects
of known shape (lines, circles) but unknown location. [3] considers parallel search of large
object by two robots, while the randomized version of the original cow-path problem was
studied in [16]. The generalization of the cow path problem to many agents is studied in [7],
where it is shown that independently of the number of agents, the group search cannot be
performed faster than in time 9d− o(d).
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A closely related research has been focused on ANTS problem, introduced in [12] and
motivated by modeling ants foraging for food. The agents (ants) are randomized non-
communicating Turing machines; the goal is to locate a treasure placed adversarially at
some distance d from the origin. It is shown that n ants are able to achieve speedup of n,
locating the treasure in time O(d+ d2/n). Further work focused on limiting the power of
the agents to finite machines [11] (but adding local communication), as well as considering
agent failures [20]. In [21], the trade-off between the speedup and selection complexity of the
ANTS problem is investigated, where the selection complexity is a measure of how likely
the search strategy is to evolve in a natural environment. In [8], an infinite d-dimensional
grid is explored by a group of probabilistic finite automata that can communicate only in
a face-to-face manner. The aim is to find a hidden treasure, and the main question is how
many agents are required to guarantee a finite expected hitting time. The destructive-read
aspect of opening boxes in our model corresponds precisely to the ANTS model with a single
pheromone. However, the crucial difference from our model is that ants have to pay the cost
of travelling to the searched location, while in our model any box can be accessed directly at
a unit cost.

Another closely related area of research deals with variants of the do-all problem: there
are p processors that must collectively perform n tasks, such that each task is performed by
at least one processor. The problem has been analyzed in a number of settings: synchronous
processors with crashes (and possible restarts) under various modes of communication
(full knowledge, message passing, etc.), asynchronous processors with adversarially limited
rendezvous communication, etc. For a survey of results see [14].

Treasure hunt as a rendezvous between a searching agent and a static one has been
studied in general graphs in [25, 26], in the context of universal traversal sequences. Finite
search space, paying for edge traversal and a single searching agent make these results only
tangentially relevant to our work. For a survey of results about the treasure hunt and
rendezvous of two agents see also the book [1].

There is a long history of searching with failures in the classical Ulam-Renyi two players
search game, where the failures represent incorrectness of the received answers. See [23] for
a comprehensive survey of older results, and [15] for an example of more recent result in this
area. Still, these works are only remotely related to our results.

In the black hole search problem introduced in [10, 9] (see [24] for a recent survey), some
nodes of the network are black holes – nodes which destroy without observable trace any
agent that enters them. The goal of the agents is to explore the network and locate all black
holes. As in the ANTS problem, the agents pay for moving along the network, however, the
primary focus is on establishing the number of agents necessary/sufficient to locate the black
holes. Another difference from our setting is that the black holes search is considered solved
only when all black holes have been identified, while in treasure hunt the hunt ends when
the first agent locates the treasure.

The paper motivating our work and the one with the model closest to ours is [13], in which
the authors show that k randomized non-cooperating agent achieve expected speedup of
k/4 + o(1) in solving the linear treasure hunt problem. In a recent follow-up [18], the authors
investigate a variant of the problem, where the treasure is placed uniformly at random in one
of a finite, large, number of boxes. They devise a non-coordinating algorithm that achieve a
speed-up of k/3 + o(1). In [19], an optimal algorithm for the case when the treasure is placed
randomly with a known distribution is presented, and its running time is calculated for
some specific distributions. The key differences are that we consider barely communicating
deterministic agents and extend the results also to the black holes model of failures.
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A somewhat related paper is [6], in which a similar problem is studied w.r.t. advice
complexity: Given a number of n closed boxes, an adversary hides k <

√
n items, each of

unit value, within k consecutive boxes. The goal is to open exactly k boxes and gain as many
items as possible.

3 Results

3.1 Building Blocks
As a point of interest, observe that given a long enough sequence of boxes guaranteed to
not have been opened yet, the agents may implement any fault-tolerant message passing
protocol; we present a general approach here. However, directly applying this approach on
standard fault-tolerant message-passing protocols would generally result in too high search
complexity. In the rest of the paper we use more efficient solutions specifically tailored to
the problem at hand.

Let us consider the usual synchronous setting with k processors that start with some
input values, and perform an r-round protocol, where in every round each processor receives
messages from all other processors, performs some local computation, and sends messages to
other processors. After r rounds, each processor has some output value. Moreover, a number
of processors may crash during the protocol; in particular, a processor may also crash in the
middle of the sending phase, in which case the messages to an arbitrary set of processors are
delivered. Suppose that we have k agents that are assigned the same input values as the
processors. We have the following observation:

I Claim 3.1. Consider a message passing protocol with k processors and r rounds, that
exchanges m-bit long messages, and tolerates 2f processor-crashes. This protocol can be
implemented by k agents in 2k(r − 1)(m+ 1) steps in the presence of 2f agent failures (or
f black holes), provided that at the beginning the agents agree on a set of (r − 1)k2(m+ 1)
unopened boxes.

Proof. The unopened boxes will be viewed as forming an arrayM [t, i, j], where t = 1, . . . , r−1
denotes the round, and i, j = 1, . . . , k are a pair of agents. The entry M [t, i, j] consists of
m + 1 boxes that represent a message sent from processor i to processor j in t-th round.
Each round t of the protocol is simulated as follows: at the beginning each agent j checks all
entries M [t− 1, i, j], i = 1, . . . , k (if t > 1). If the last (i.e. m+ 1st) box from an entry is
opened, it signals that the writing of M [t− 1, i, j] was successful, and in that case j considers
the opened/unopened status of the first m boxes of M [t−1, i, j] as bits of the message from i.
Then agent j performs the local computation of processor j, and then writes values M [t, j, i],
i = 1, . . . , k based on the messages sent by the protocol. The last entry of M [t, j, i] is opened
to signal successful write. Both reading and writing of a round require k(m+ 1) time steps,
with the exceptions that there is no read phase in round 1, and no write phase in round r.
So overall, the simulation takes 2k(r − 1)(m+ 1) steps. Since no messages are sent in the
last round, the overall number of boxes used by the communication is (r − 1)k2(m+ 1).

Clearly, if an agent fails, it can be interpreted as a failure of a processor in the message-
passing protocol. The last bit of M [t, i, j] ensures that if an agent fails in the middle of
writing an entry, incorrect message will not be considered.

On the other hand, note that every box is opened by at most two agents. Hence, a black
hole can kill at most two agents, which leads to a crash of at most two processors. J

I Remark. Note that in the end, some boxes of M [t, i, j] may remain unopened and hence
need to be explicitly “cleaned” later on.
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Observe that if in each round each processor communicates with at most one counterpart,
the time complexity is 2r(m + 1). Now we sketch how the simulation of message passing
mechanism from the previous protocol can be used to compact the agents’ IDs from a set
S = {1 . . . ,MAXID} to {1, . . . k}.

Let T be a complete binary tree with leaves corresponding to the set S. The leaves
representing the ID of some agent are assigned to that agent, other leaves are free.
Each internal vertex is assigned to the agent with the smallest ID in its subtree, or is free,
if there is no such agent. Note that this assignment can be constructed level-by-level: for
each internal vertex v there are at most two candidate agents. They don’t know each
other IDs, but may use a pre-determined place in the scratchpad (depending only on v)
to exchange messages and find out the IDs. Hence, from that point on each agent knows
which vertices are assigned to it.
Use a message passing converge-cast in the tree (each agent simulates all vertices assigned
to it) to collect the number of agents to the root. Along the way, collect also the number
of active agents in each left and right subtree.
Send this information back towards the leaves, where each agent computes its rank.
Verify that each agent has computed its rank: Agent with rank i writes in row i of a
k×k scratchpad and afterwards reads column i of the scratchpad. The number of opened
boxes must equal the computed number of agents.
If the verification fails (there must have been failure during the computation), repeat the
whole process again.

As the depth of the tree is logMAXID and f+1 repetitions are sufficient to have a failure-
free run, the computed values are at most k, and in each round each node communicates
only with its children and parent, we obtain:

I Claim 3.2. The processor labels can be compacted from {1 . . . ,MAXID} to {1, . . . k} in
O(f log k logMAXID) time steps.

Of course, compacting the IDs opens the boxes used in the scratchpads and can mess-up a
subsequent treasure hunt algorithm. In some algorithms (e.g. for Theorem 8), it is sufficient
to remember where the scratchpads used in the preprocessing end, so the new scratchpads
needed use unopened boxes. Otherwise, a subroutine using non-communicating agents can
be used to ensure opening of all boxes located in the pre-processing’s scratchpads.

In the sequel we shall use the following coordination problem (actually a binary consensus
on whether the agent 1 is alive) as a building block in more advanced algorithms: An
unknown subset of the agents is alive. There is a distinguished leader agent all alive agents
agree on (w.l.o.g.4 agent 1); however, the leader might not be alive. All agents have to agree
on a common boolean value, such that if 1 was dead at the beginning of the protocol, all
agents agree on false, and if 1 was alive and there were no faults during the protocol, all
agents agree on true. In view of Claim 3.1, we could use a well known simple consensus
protocol (see e.g. [22]) to solve the problem in O(k2) steps using O(k3) boxes. However,
there is a more efficient solution:

I Lemma 1. The coordination problem can be solved in 2k−2 steps, provided that the agents
agree on a set of k(k − 1)/2 unopened boxes.

4 If the agreed-upon leader is i, the agents cyclically assign themselves virtual IDs such that i gets 1:
agent (i + j) mod k gets virtual ID of 1 + j mod k.
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Proof. The boxes will be viewed as an upper triangular matrix M [i, j], i = 1, . . . , k; j =
i+ 1 . . . , k, such that open box M [i, j] is a signal from agent i to agent j that agent 1 was
alive at the beginning of the protocol.

Each agent has a boolean value that is initialized to true for agent 1, and false for other
agents. The algorithm for each agent consists of two phases. In the look phase, agent i > 1
in step i+ r − 1 opens box M [r, i] for r = 1, . . . , i− 1. If it finds the box already opened, it
sets its value to true. Afterwards, in the shout phase, an agent with value true opens box
M [i, r] in steps i− 2 + r for r = i+ 1, . . . , k. Note that the agent 1 (if alive) skips the look
phase and proceeds directly to the shout phase.

If agent 1 is not alive at the beginning of the protocol, by a simple minimization argument,
no agent can acquire value true: First, note that for every box M [i, j], if the agent i has
value true, it will open M [i, j] before agent j opens it. Let t be the first time when some
agent i obtains value true. To do so, it must have opened an already opened box M [t− i, i],
i.e. the agent t− i already had a value true – a contradiction.

Further, if agent 1 is alive, and there are no faults, it successfully opens all boxes M [1, i],
and subsequently every agent j finds an open box at M [1, j], acquiring value true.

Finally, we argue the agreement, i.e. if there is some surviving agent that finishes with
value true, then all surviving agents finish with value true. Let i be the smallest5 surviving
agent that finished with value true. Then i opened boxes M [i, j] for j > i in its shout phase,
and all larger surviving agents opened those boxes in their look phases and hence gained
value true. J

3.2 Hunt Time in the Failing Agents Model
First let us observe that in systems without communication, the best possible speedup is
k/(f + 1):

I Claim 3.3. Consider a system with k non-communicating agents, in which at most f < k

agents may fail. There is an algorithm that achieves hunt time Tf (k, x) ≤ x(f + 1)/k+
(

k−1
f

)
.

Moreover, for any algorithm, Tf (k, x) ≥ x(f + 1)/k.

Proof. For the upper bound, let m =
(

k
f+1
)
. We construct a schedule for m boxes and k

agents, such that after t =
(

k−1
f

)
= m(f + 1)/k steps, every box is opened by f + 1 distinct

agents. The algorithm repeats this schedule in sequence for first, second, etc. m-tuple of
boxes. Hence, if the treasure is somewhere in the i-th tuple (i.e. dx/me = i), at least one
agent opens the box with the treasure by the time

ti ≤ t
( x
m

+ 1
)

= x
f + 1
k

+
(
k − 1
f

)
.

What remains to be shown is how to construct the schedule. Consider a bipartite graph with
partitions A, B, where A contains k vertices, and B contains

(
k

f+1
)
vertices, corresponding

to all f + 1 element subsets of A. An edge connects every vertex from v ∈ A with all
vertices from B, such that v is in the corresponding set. Obviously, this graph has maximum
degree t =

(
k−1

f

)
, and following König [17], it can be colored by t colors. This coloring is

naturally interpreted as a schedule: an agent corresponding to a vertex from A opens a box
corresponding to a vertex from B in time that is represented by the color of the edge.

5 w.r.t. the virtual IDs
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For the lower bound, the same argument works: let x =
(

k
f+1
)

+ 1, and consider the first
x boxes. Let t =

(
k−1

f

)
, and consider the actions of the k agents in a fault-free execution over

the first t steps. Construct a t-colored bipartite graph of agents and boxes by connecting
an agent i with box j by an edge with color c iff the agent opened the box in time step
c. The graph has at most kt edges, so there must be a box x′ ≤ x that is visited at most
bkt/xc ≤ f times during the first t steps. Hence, if f agents may die, the adversary may
delay the opening of x′ to some time t′ > t. Putting it together we have

t′ > t = (x− 1)(f + 1)
k

≥ x′(f + 1)
k

− f + 1
k

and the result follows, since (f + 1)/k is at most 1. J

However, even barely communicating agents can achieve competitive ratio of 1:

I Claim 3.4. Two agents (with the possibility that one of them fails) can achieve hunt time
TF (2, x) ≤ OPTF (2, x) +O(

√
min{t1, x}), where t1 is the time of the failure.

Proof. The algorithm proceeds in phases, the aim of phase i is to open the next 2i boxes.
The agent A0 consecutively opens the even boxes, and the agent A1 opens the odd boxes.
At the end of the phase, each agent opens the last box that should have been opened by the
other agent. If agent Aj finds an unopened box, it means that A1−j died during the phase.
Aj then goes back over the boxes that should have been opened by A1−j , until it finds an
opened box. Aj then proceeds sequentially from the beginning of the next phase.

Obviously, each box is eventually opened. What must be argued is how long the hunt may
take compared to the optimal algorithm OPT . Note that in OPT , each agent that is alive
opens a new box, and the opened boxes always form a consecutive interval. In order to
obtain the result, we count the number of steps the algorithm behaves differently. First,
before the failure occurs in phase i, there is one time step of delay per phase, in which both
agents check each other. This accounts for at most i = O(

√
min{t1, x}) time steps. Finally,

after the failure of one agent, the remaining agent may proceed to the end of the phase, and
then return to find the treasure, accounting for another at most 2i = O(

√
min{t1, x}) time

steps. If the treasure is located beyond the phase in which the failure occurred, no additional
delay is incurred. J

Now let us generalize the result to k agents. The main idea it the same as in the previous
claim: proceed in phases of linearly increasing length, divide each phase among the surviving
agents, then check at the end if some agents died during the phase, and if so, finish their part.
However, care must be taken, because now also an agent finishing the part of an already
failed agent, may fail. Also, in order to divide the work among themselves, the agents need
to know the number of surviving agents, which is not always possible. We can formulate the
following theorem:

I Theorem 2. k agents (with the possibility that k − 1 of them fails) can achieve hunt time
TF (k, x) ≤ OPTF (k, x) +O(k3√x).
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Algorithm 1 Algorithm for one phase.
1: procedure Phase(i)
2: if i > 1 ∧ Si 6= Si−1 then
3: all agents check all ki−1di−1 boxes from phase i− 1
4: end if
5: divide the kidi boxes among the ki agents
6: each agent checks the assigned di boxes
7: compute set Si+1 using k3 boxes from phase i+ 1
8: end procedure

Proof. The algorithm proceeds in phases. Each phase i starts with a set Si ⊆ {1, . . . , k},
such that all agents agree on Si, and Si contains all agents that are alive at the beginning of
phase i. Initially S1 = {1, . . . , k}. Let ki = |Si|, and di = k3i. The aim of phase i is to check
kidi boxes.

The kidi boxes are divided among the ki agents such that each agent is responsible for one
class of boxes modulo ki. Agents spend di time steps to check the assigned class. However,
some agent may have died during the phase, and some of them might have already been
dead at the beginning. At the end of the phase, the agents agree on the new set Si+1 as
follows. Each agent j ∈ Si in turn uses the consensus algorithm from Lemma 1, using a fresh
set of k2 boxes from the next phase. If the result of the consensus algorithm is true, j is
included in the set Si+1. If, at the beginning of phase i + 1, Si = Si+1, it means that all
agents from Si were alive when the consensus computation started, and so all boxes from
phase i have been checked. If, on the other hand Si+1 6= Si, some agents from Si died. It
might have been during the consensus computation, but in any case, the boxes of phase i
must be rechecked. In order to avoid the necessity to argue about further failures, all agents
from Si+1 recheck all boxes from phase i. Since at least one agent is guaranteed to survive,
all boxes from phase i will be opened.

To argue about the speedup, we again count the number of time steps in which the
algorithm behaves differently from OPT . First, there are O(k2) time steps to compute the
set Si+1 in each phase. Since there are O(

√
x) phases, this account for O(k2√x) steps. Also,

there are at most O(k) failures, and each failure can trigger at most one recheck of a phase.
Since a phase contains at most O(k2√x) boxes, this accounts for another O(k3√x)

steps. J

3.3 Number of Agents in Black Holes Model
While in the failing agents model even a failure of k − 1 agents can be tolerated without
communication, in the black holes mode a single black hole can prevent any deterministic
non-communicating algorithm from finding the treasure:

I Claim 3.5. Consider a system with k non-communicating agents with a single black hole.
There is no algorithm that always successfully finds the treasure.

Proof. For a box given x, let the signature of x, τx = [tx,1, . . . , tx,k] be the k-tuple such that
tx,j is the first time that agent j opens x in a fault-free execution; if j never opens x, then
tx,j = ∞. If there are two boxes x, x′ such that τx ≤ τx′ , i.e. for all j tx,j ≤ tx′,j , then
placing a black hole in x and treasure in x′ results in the algorithm never finding the treasure.
To conclude, it is sufficient to find two such boxes. Let us call a pattern of a signature τx

the set of positions j for which τx,j =∞. Since there is a finite number of patterns (namely,
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less than 2k), and the number of boxes in unlimited, there is a pattern p that is shared by
infinitely many boxes. Let us fix a box b with pattern p, and count the maximum number of
boxes x (with pattern p) for which τx 6≥ τb. For any such box x there must be some index j
such that tx,j < tb,j , and tb,j is finite. However, for any (finite) integer d there is at most
one box x such that tx,j = d. Hence, there are at most finitely many boxes (with pattern p)
such that τx 6≥ τb. Since the number of boxes with pattern p is unlimited, there is a box x
for which τx ≥ τb. J

At the core of the proof of the previous claim is the fact that the sequence of boxes is
potentially unlimited. If there is an upper bound on the number of boxes, the situation is
much different.

I Lemma 3. For large enough z, let x = z4. Boxes [x] = {1, 2, . . . , x} can be cleared in z3

steps by g(x) agents without communication in the presence of at most z black holes, where
g(x) = O(z2 ln z).

I Corollary 4. For n ≥ f4, O(
√
n lnn) non-communicating agents can perform treasure hunt

in the presence of f black holes.

I Corollary 5. In the algorithm from Lemma 3, every box e is scheduled to be opened by at
least z + 1 agents.

Let us focus now on the barely communicating model. We start by observing that
enhancing the model with communication indeed makes it stronger, as it can now cope with
a single black hole:

I Claim 3.6. Three agents can find the treasure in the presence of one black hole.

Proof. The first agent, A, starts by sequentially opening the boxes, i.e. A opens box i

at time i, i = 1, 2, . . .. It is followed by two agents, B1, B2 opening even and odd boxes,
respectively, i.e. Bj opens box 2i+ 1− j at time 2i+ 1, i = 1, 2, . . .. If no box contains a
black hole, B1, B2 are always behind A, and see their boxes had already been opened. So
when there is a black hole, A finds it first, and dies there, followed by one of the agents B1,
B2. The other B agent survives, and finds an unopened box, z, in the next step. Then it
knows that the black hole is located in z − 1, so it can finish the search sequentially. J

Let us note that each black hole can kill at least two agents, giving us a lower bound on
the number of agents:

I Theorem 6. 2f + 1 agents are needed to perform treasure hunt in the presence of f black
holes.

Proof. For the sake of contradiction consider a treasure hunt algorithm with at most 2f
agents. We construct a configuration of f black holes such that in finite time all 2f agents
will be killed. Since the number of boxes is unlimited, if the treasure is located far enough, it
will not be found.

The configuration of black holes will be constructed in phases. First, consider the
computation C0 of the algorithm in a configuration without black holes. There must be a
box that is checked by at least two agents: if every box is checked by at most one agent, then
there must be an agent that is the only one to check at least two boxes. By placing a black
hole in the first one, and the treasure in the second one, we have a configuration in which
the algorithm fails to find the treasure. Consider the first time t1 when an agent checks an
already opened box x1. Construct a computation C1 by placing a black hole in box x1. We
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claim that up to time t1, the computations C0, and C1 are identical: indeed the agents are
deterministic, and up to time t1 each of them opens a yet unopened box. In C1, the black
hole at x1 killed two agents, the second one at time t1. Let S1 be the set of unopened boxes
at t1, and repeat the same argument. There must be a box from S1 that is opened by two
agents in C1 (after time t1). Construct a computation C2 by placing a black hole in the
first box x2 from S1 that is visited by a second agent at time t2. Up to t2, C1 and C2 are
identical: let t′2, t1 < t′2 < t2, be the time x2 is first opened by an agent A. Clearly, C1 and
C2 are identical up to t′2. After t′2, agent A in C1 either opened boxes outside S1 that were
already opened anyway, or another boxes from S1 that were never opened by another agent
(up to t2). In any case, the disappearance of A in C2 has no effect on the set of opened boxes
in C2. Hence, the black hole kills another two agents. Continuing this way, we find a set of
f black holes that kill all 2f agents. J

We now proceed to showing an asymptotically matching upper bound of 4f + 1. The
idea is to sequentially scan the boxes in phases, where i-th phase ensures that the i-th box is
opened. In order to do so, the agents elect a leader that probes the box, and let the others
know if it survived, using a fresh set of boxes. However, if the agents agree that the leader is
not alive, they still can not be sure whether the i-th box contains a black hole, since the
leader election algorithm itself might have failed. Hence, the i-th box must be checked once
more, maybe requiring several iterations in a single phase. However, care must be taken that
if the i-th box is indeed a black hole, not too many agents die there. First, let us formulate
the leader election algorithm that will be employed:

I Lemma 7. Using a set of k fresh boxes, the agents may perform an algorithm, such that
1. At most one agent declares itself a leader.
2. If the k boxes do not contain a black hole, exactly one leader is elected.

Proof. In the first step, agent i opens the i-th box. Then it scans the subsequent boxes,
until it either finds an opened box, or reaches the last box. In the latter case, the agent is
declared a leader. J

I Theorem 8. 4f + 1 agents are sufficient to find the treasure in the presence of f black
holes.

Proof. The algorithm works in phases, such that at the end of phase i, boxes {1, . . . , i}
(and possibly some others) are opened. A phase to check box x consists of several iterations.
Each iteration considers a fresh set of k2 + k + 1 boxes, called a scratchpad, that are used
for communication, and have the following structure: there are two sets of k boxes to
perform a leader election algorithm from Lemma 7, two sets of k(k− 1)/2 boxes to perform a
coordination algorithm from Lemma 1, and one box called survival flag. The iteration starts
by the agents performing a leader election. Subsequently, all agents except the leader perform
another leader election algorithm to elect a deputy. Next, the leader opens the survival
flag box, and immediately proceeds to check x, after which it performs the coordination
algorithm from Lemma 1 to signal the other agents. If the result of the coordination is true,
both the iteration, and the phase are ended, and a new phase starts to check the next box. If
the result of the coordination is false, the deputy checks the survival flag. If it was opened,
the deputy uses the second coordination algorithm to inform the other agents. If the result
of the second coordination is true, again, both the iteration, and the phase are finished. If
the result is false, new iteration of the same phase starts.

First, we show that at the end of a phase, box x was opened. The phase ends only when
at least one of the coordination algorithms results in true. The first one may result in true
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only when the leader survives the visit of box x. The second one only if the deputy finds the
survival flag open and survives to tell that to others. Hence, the leader also survives opening
the survival flag and as it immediately proceeds to open box x, x was definitively opened.

Second, let us note that if the scratchpad does not contain a black hole, the corresponding
iteration is the last iteration of a phase. Indeed, if there is no black hole in the scratchpad,
both leader, and deputy are successfully elected. The leader then successfully opens the
survival flag, and proceeds to open x. If it survives, it again successfully performs the
coordination, and phase ends. If the leader dies in x, the deputy reads the survival flag, and
successfully signals the others.

Finally, let us count how many agents may die. In any given iteration, agents may die
either in the scratchpad or in the box being checked, x. The scratchpads use fresh boxes in
each iteration, and each box in the scratchpad is accessed by at most two different agents.
Hence, a single black hole may kill at most two agents in a scratchpad. Note that the
particular box with the black hole will be checked at some later phase (playing the role of x)
where it may kill additional agents; these will be accounted for separately. Overall during
the whole computation, at most 2f agents die in scratchpads.

Now let us count the agents that die while entering the checked box x. Obviously, there
must be a black hole located in x, so there are at most f such boxes, each of them killing
several agents over a number of iterations. However, as argued above, an iteration without a
black hole in the scratchpad ends the phase. As there are, overall, at most f iterations with
a black hole in the scratchpad, at most 2f agents die when entering the checked box.

Altogether, at most 4f agents may die. J

While the previous theorem showed that 4f + 1 agents are sufficient, it relied heavily
on the fact that the number of boxes is unlimited. Indeed, in order to locate the treasure
in box x, boxes up to O(xf2) were used. A natural scenario, however, is that the number
of boxes is finite. The algorithm from the previous theorem can not be used in this case,
since it would not be able to find a treasure located in the last part of the boxes. In order to
remedy this situation, we propose another algorithm that uses more agents (in particular,
O
(
(f ln f)2) of them), but uses only boxes up to x+O

(
(f ln f)2) to locate the treasure in

box x. Although omitted in this paper, it is possible to adjust the algorithm to the setting
with finite number of boxes (by using a few additional agents).

The first idea is to use the algorithm from Lemma 3 to clean the scratchpad after each
iteration. However, it can not be used in a straightforward manner, since the size of the
scratchpad is quadratic in the number of agents, and Lemma 3 needs at least Ω(

√
n lnn)

agents to clean it. Therefore we shall implement a similar idea more carefully.
I Theorem 9. O(f2 ln2 f) agents can locate the treasure in the presence of f black holes,
even if the number of boxes is limited, provided that it is at least x+O(f2 ln2 f) where x is
the location of the treasure.

The algorithms from Theorems 8 and 9 are very slow, in fact much slower than a single
searching agent in absence of black holes. Hence, the question is: What kind of speedup can
be achieved in the presence of black holes, given sufficiently many agents?

As we see in the following theorem, a single black hole does not pose much of a problem:
I Theorem 10. In the presence of one black hole, k > 2, k even, agents can locate the
treasure in time T (k, x) ≤ x/(k − 2) +O(k +

√
x) ≤ OPT (k − 2, x) +O(k +

√
x).

Proof. Divide the sequence of boxes into k′ classes modulo k′ = (k − 2)/2 called rows. Each
row is divided into blocks, with i-th block being of length 2(k′ + i). Two explorer agents LEr

and REr are assigned to each row. In addition, there are two checking agents: LC and RC.
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Let sr,i, tr,i be the first and the last box of i-th block of row r. The algorithm works in
phases; the aim of each phase is to clear one block in each row. At the beginning of phase
i, the explorer agents in each row scan the block in opposite directions, i.e. the agent LEr

opens boxes starting by sr,i and finishing just before tr,i (i.e. without touching tr,i), while
REr symmetrically starts at tr,i and proceeds leftwards. If an explorer opens an already
opened box, its task in the current phase is finished; it then proceeds to the next phase (to
clear the next block). Let Ti = 1 +

∑i−1
j=1(k′ + j + 1); note that without any black hole, all

explorers start phase i in time step Ti.
The activity of the checking agents in block i is also counted in the phase i: The left

checking agent LC scans the sr,i boxes. If all of them have already been opened, it becomes
RC for the next phase. However, if it finds an unopened box in row r, it continues as LEr

in the current phase, and onwards. The RC agent works in a symmetrical way. Moreover,
the checking agents make sure not to start any activity in block i before time Ti + 1; this
ensures that they do not to interfere with the explorers.

First, let us consider an execution without a black hole. In this case, the explorers
are always ahead of checkers (who don’t play any role in the analysis yet), and they start
exploring each block i at time Ti. In each phase, all explorers open a new box in every step.
The only exception is the last step of the phase, when already opened boxes are probed
by all explorers. Hence, if the treasure is located in a box x in i-th block, the delay w.r.t.
OPT (k − 2, x) is at most the number of blocks (i.e. i− 1) plus the length of the block (i.e.
2(k′ + i)). As x ∈ Θ((k + i)2), the theorem holds.

Now let us consider a black hole located in a row r. All other rows are unaffected, and
proceed as in the case without black holes. Moreover, if the treasure is found before the
black hole, again, the analysis of the case without black holes applies. Let us focus only
on row r, and let us assume that the black hole is encountered before the treasure. If the
black hole is in the interior of the block (i.e. not the first or last box), both explorer agents
die, with no unopened boxes left in this block; both checkers find unopened boxes in the
next phase, become corresponding explorers for row r, and the algorithm proceeds without
further delays and faults. If the black hole is in the first box of row r at phase i, both LEr

and LC die there. REr checks the whole block i of row r, and proceeds to the next phase,
as well as RC. However, RC continues as LC in phase i+ 1, detects unopened first box and
becomes LEr. Analogously, if the black hole is in the last box of a block, the right explorer
and checker die there, and the left checker eventually becomes the right explorer for the rest
of the computation.

Note that the presence of the black hole in row r delays the exploration of row r by the
delay between the time the explorer would have started exploring the block, and the time
the checker checks whether it has indeed done so. As mentioned above, this delay is at most
r + i. J

Observe that the technique used in the proof of Theorem 10 cannot be extended to more
black holes. In fact, it is unclear what kind of speedup is possible in the presence of up to f
black holes.

4 Conclusions and Open Problems

We have shown that adding even very weak indirect coordination (namely, the ability to
detect whether a box has been previously opened, opening it and destroying the information
in the process) allows deterministic agents to solve treasure hunt (a) with competitive ratio 1
in the failing agents models, and (b) with asymptotically optimal number of agents in the
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black hole model. This is somewhat surprising, as this is in some sense the weakest natural
form of coordination.

Several research questions remain open:
what is the hunt time in the black hole model? We have some partial results for 1 and
2 black holes, but not a general solution. It is not clear whether it is possible to have
speedup of Ω(k − f).
how to solve treasure hunt with black holes using randomized non-coordinated agents?
How many agents are needed and what would be the speedup? What about allowing
both weak coordination and randomization?
our solutions are not robust w.r.t. to timing and ordering of boxes. How do you make
them robust and at what cost?
what is the weakest coordination (a) that still allows competitive ratio of 1 in the failing
agents model? (b) that allows to solve treasure hunt by deterministic agents?

Acknowledgement. We thank the anonymous referee for pointing out several inaccuracies
in the manuscript.

References
1 Steve Alpern and Shmuel Gal. The Theory of Search Games and Rendezvous. International

Series in Operations Research & Management Science. Springer US, 2006.
2 David P. Anderson. Boinc: A system for public-resource computing and storage. In 5th

IEEE/ACM International Workshop on Grid Computing, pages 4–10, 2004. URL: http:
//boinc.berkeley.edu.

3 Ricardo Baeza-Yates and René Schott. Parallel searching in the plane. Computational
Geometry, 5(3):143–154, 1995. doi:10.1016/0925-7721(95)00003-R.

4 Ricardo A. Baeza-Yates, Joseph C. Culberson, and Gregory J. E. Rawlins. Searching with
uncertainty extended abstract, pages 176–189. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1988. doi:10.1007/3-540-19487-8_20.

5 Ricardo A. Baeza-Yates, Joseph C. Culberson, and Gregory J.E. Rawlins. Searching in the
plane. Inf. Comput., 106(2):234–252, 1993. doi:10.1006/inco.1993.1054.

6 Hans-Joachim Böckenhauer, Juraj Hromkovic, Dennis Komm, Richard Královic, and Peter
Rossmanith. On the power of randomness versus advice in online computation. In Henning
Bordihn, Martin Kutrib, and Bianca Truthe, editors, Languages Alive - Essays Dedicated
to Jürgen Dassow on the Occasion of His 65th Birthday, volume 7300 of Lecture Notes in
Computer Science, pages 30–43. Springer, 2012. doi:10.1007/978-3-642-31644-9_2.

7 Marek Chrobak, Leszek Gąsieniec, Thomas Gorry, and Russell Martin. Group Search
on the Line, pages 164–176. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015. doi:
10.1007/978-3-662-46078-8_14.

8 Lihi Cohen, Yuval Emek, Oren Louidor, and Jara Uitto. Exploring an infinite space with
finite memory scouts. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, January 16-19, pages 207–224. SIAM, 2017. doi:10.1137/1.9781611974782.
14.

9 Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Searching for a
black hole in arbitrary networks: optimal mobile agents protocols. Distributed Computing,
19(1):1–99999, 2006. doi:10.1007/s00446-006-0154-y.

10 Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Mobile search
for a black hole in an anonymous ring. Algorithmica, 48(1):67–90, 2007. doi:10.1007/
s00453-006-1232-z.

OPODIS 2017

http://boinc.berkeley.edu
http://boinc.berkeley.edu
http://dx.doi.org/10.1016/0925-7721(95)00003-R
http://dx.doi.org/10.1007/3-540-19487-8_20
http://dx.doi.org/10.1006/inco.1993.1054
http://dx.doi.org/10.1007/978-3-642-31644-9_2
http://dx.doi.org/10.1007/978-3-662-46078-8_14
http://dx.doi.org/10.1007/978-3-662-46078-8_14
http://dx.doi.org/10.1137/1.9781611974782.14
http://dx.doi.org/10.1137/1.9781611974782.14
http://dx.doi.org/10.1007/s00446-006-0154-y
http://dx.doi.org/10.1007/s00453-006-1232-z
http://dx.doi.org/10.1007/s00453-006-1232-z


14:16 Treasure Hunt with Barely Communicating Agents

11 Yuval Emek, Tobias Langner, Jara Uitto, and Roger Wattenhofer. Solving the ANTS Prob-
lem with Asynchronous Finite State Machines, pages 471–482. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014. doi:10.1007/978-3-662-43951-7_40.

12 Ofer Feinerman, Amos Korman, Zvi Lotker, and Jean-Sebastien Sereni. Collaborative
search on the plane without communication. In Proceedings of the 2012 ACM Symposium
on Principles of Distributed Computing, PODC ’12, pages 77–86, New York, NY, USA,
2012. ACM. doi:10.1145/2332432.2332444.

13 Pierre Fraigniaud, Amos Korman, and Yoav Rodeh. Parallel exhaustive search without
coordination. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 312–323. ACM, 2016. doi:10.1145/2897518.2897541.

14 Chryssis Georgiou. Do-All Computing in Distributed Systems: Cooperation in the Presence
of Adversity. Springer Publishing Company, Incorporated, 1st edition, 2010.

15 Nicolas Hanusse, Dimitris J. Kavvadias, Evangelos Kranakis, and Danny Krizanc. Memory-
less search algorithms in a network with faulty advice. Theor. Comput. Sci., 402(2-3):190–
198, 2008. doi:10.1016/j.tcs.2008.04.034.

16 Ming-Yang Kao, John H. Reif, and Stephen R. Tate. Searching in an unknown environ-
ment: An optimal randomized algorithm for the cow-path problem. In Proceedings of
the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’93, pages 441–
447, Philadelphia, PA, USA, 1993. Society for Industrial and Applied Mathematics. URL:
http://dl.acm.org/citation.cfm?id=313559.313848.

17 Dénes König. Über graphen und ihre anwendung auf determinantentheorie und mengen-
lehre. Mathematische Annalen, 77(4):453–465, 1916. doi:10.1007/BF01456961.

18 Amos Korman and Yoav Rodeh. Parallel linear search with no coordination for a randomly
placed treasure. CoRR, abs/1602.04952, 2016. arXiv:1602.04952.

19 Amos Korman and Yoav Rodeh. Parallel search with no coordination. In Structural Inform-
ation and Communication Complexity - 24th International Colloquium, SIROCCO 2017,
Porquerolles, France, June 19-22, 2017, page to appear, 2017.

20 Tobias Langner, Jara Uitto, David Stolz, and Roger Wattenhofer. Fault-Tolerant ANTS,
pages 31–45. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. doi:10.1007/
978-3-662-45174-8_3.

21 Christoph Lenzen, Nancy Lynch, Calvin Newport, and Tsvetomira Radeva. Searching
without communicating: tradeoffs between performance and selection complexity. Distrib-
uted Computing, pages 1–23, 2016. doi:10.1007/s00446-016-0283-x.

22 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1996.

23 Andrzej Pelc. Searching games with errors - fifty years of coping with liars. Theor. Comput.
Sci., 270(1-2):71–109, 2002. doi:10.1016/S0304-3975(01)00303-6.

24 Mengfei Peng, Wei Shi, Jean-Pierre Corriveau, Richard Pazzi, and Yang Wang. Black hole
search in computer networks: State-of-the-art, challenges and future directions. Journal of
Parallel and Distributed Computing, 88:1–15, 2016. doi:10.1016/j.jpdc.2015.10.006.

25 Amnon Ta-Shma and Uri Zwick. Deterministic rendezvous, treasure hunts, and strongly
universal exploration sequences. ACM Trans. Algorithms, 10(3):12:1–12:15, 2014. doi:
10.1145/2601068.

26 Qin Xin. Faster treasure hunt and better strongly universal exploration sequences. CoRR,
abs/1204.5442, 2012. arXiv:1204.5442.

http://dx.doi.org/10.1007/978-3-662-43951-7_40
http://dx.doi.org/10.1145/2332432.2332444
http://dx.doi.org/10.1145/2897518.2897541
http://dx.doi.org/10.1016/j.tcs.2008.04.034
http://dl.acm.org/citation.cfm?id=313559.313848
http://dx.doi.org/10.1007/BF01456961
http://arxiv.org/abs/1602.04952
http://dx.doi.org/10.1007/978-3-662-45174-8_3
http://dx.doi.org/10.1007/978-3-662-45174-8_3
http://dx.doi.org/10.1007/s00446-016-0283-x
http://dx.doi.org/10.1016/S0304-3975(01)00303-6
http://dx.doi.org/10.1016/j.jpdc.2015.10.006
http://dx.doi.org/10.1145/2601068
http://dx.doi.org/10.1145/2601068
http://arxiv.org/abs/1204.5442


Anonymous Processors with Synchronous Shared
Memory: Monte Carlo Algorithms∗

Bogdan S. Chlebus1, Gianluca De Marco2, and Muhammed Talo3

1 Department of Computer Science and Engineering,
University of Colorado Denver, Denver, Colorado 80217, USA
bogdan.chlebus@ucdenver.edu

2 Dipartimento di Informatica, Università degli Studi di Salerno,
Fisciano, 84084 Salerno, Italy
demarco@dia.unisa.it

3 Bilgisayar Mühendisliği, Munzur Üniversitesi, 62000 Tunceli, Turkey
muhammedtalo@munzur.edu.tr

Abstract
We consider synchronous distributed systems in which processors communicate by shared read-
write variables. Processors are anonymous and do not know their number n. The goal is to assign
individual names by all the processors to themselves. We develop algorithms that accomplish
this for each of the four cases determined by the following independent properties of the model:
concurrently attempting to write distinct values into the same shared memory register either is
allowed or not, and the number of shared variables either is a constant or it is unbounded. For
each such a case, we give a Monte Carlo algorithm that runs in the optimum expected time and
uses the expected number of O(n logn) random bits. All our algorithms produce correct output
upon termination with probabilities that are 1−n−Ω(1), which is best possible when terminating
almost surely and using O(n logn) random bits.
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1 Introduction

We study naming algorithms in distributed systems consisting of anonymous processors that
communicate by reading from and writing to shared memory. We say that a parameter of
an algorithmic problem is known when it can be used in a code of algorithm. We restrict
our attention to synchronous systems and do not assume that the number of processors n
is known.

The model of synchronous systems with read-write registers is known as the Parallel
Random Access Machine (PRAM). It is a generalization of the Random Access Machine
model of sequential computation [16] to the realm of synchronous concurrent processing.

We consider two categories of naming problems depending on how much shared memory
is available for a PRAM. In one case, a constant number of memory cells is available. This
means that the amount of memory is independent from the number of processors n but as
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Table 1 Four naming problems, as determined by the PRAM model and the available amount
of shared memory, with the respective performance bounds of their solutions as functions of the
number of processors n. When time is marked as “polylog” this means that the algorithm comes in
two variants, such that in one the expected time is O(logn) and the amount of used shared memory
is suboptimal nO(1), and in the other the expected time is suboptimal O(log2 n) but the amount of
used shared memory misses optimality by at most a logarithmic factor.

PRAM Model Memory Time Algorithm

Arbitrary O(1) O(n) Arbitrary-Bounded-MC in Section 3

Arbitrary unbounded polylog Arbitrary-Unbounded-MC in Section 4

Common O(1) O(n logn) Common-Bounded-MC in Section 5

Common unbounded polylog Common-Unbounded-MC in Section 6

large as needed in an algorithm’s design. In the other case, the amount of shared memory
cells is unlimited, and how much is used by an algorithm depends on n. When an unbounded
amount of memory cells is assumed to be available, then the expected number of memory
cells that are actually used is considered as a performance metric.

Independently of the amount of shared memory available, we consider the two versions
of the naming problems that are determined by the semantics of concurrent writing. This
is represented by the corresponding PRAM variants, which are either the Arbitrary PRAM
or the Common PRAM.

Naming in the PRAM model is also considered in a companion paper [12], which is about
the same problem to assign names for the anonymous processors, with the only difference
that n is assumed to be known in [12], while we assume in this paper that n is unknown.
Whether n is known or not is reflected in the classes of algorithms we develop in these two
papers: these are Monte Carlo algorithms for an unknown n in this paper, and Las Vegas
algorithms for a known n in [12].

A summary of the results

We consider four naming problems in synchronous read-write shared memory. They are
determined by two independent specifications the naming problems: the amount of shared
memory and the PRAM’s variant.

The naming algorithms we give terminate with probability 1 and are all Monte Carlo.
Each algorithm uses the optimum expected number O(n logn) of random bits. We show that
a Monte Carlo naming algorithm that uses O(n logn) random bits has to have the property
that it fails to assign unique names with the probability that is n−Ω(1). All Monte Carlo
algorithms that we give have the optimum polynomial probability of error. The list of the
naming problems’ specifications and the corresponding algorithms with their performance
bounds are summarized in Table 1. Most proofs are omitted; they can be found in [13].

Previous and related work

The naming problem for a synchronous PRAM has not been previously considered in the
literature, to the best of the authors’ knowledge, except for the companion paper [12].
The problem of concurrent communication in anonymous networks was first considered by
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Angluin [3]. That work showed, in particular, that randomization is needed in naming
algorithms when executed in environments that are perfectly symmetric; other related im-
possibility results are surveyed by Fich and Ruppert [18]. There is a voluminous literature
on various aspects of computing and communication in anonymous systems, we concentrate
on the related topics for anonymous asynchronous distributed shared-memory systems.

We begin with work on naming in shared-memory systems with read-write registers. Lip-
ton and Park [23] considered naming in asynchronous distributed systems with read-write
shared memory controlled by adaptive schedulers; they proposed a solution that terminates
with positive probability, and which can be made arbitrarily close to 1 assuming that n
is known. Eğecioğlu and Singh [15] proposed a polynomial-time Las Vegas naming algo-
rithm for asynchronous systems with known n and read-write shared memory with oblivious
scheduling of events. Kutten et al. [22] provided a thorough study of naming in asynchronous
systems of shared read-write memory. They gave a Las Vegas algorithm for an oblivious
scheduler for the case of known n, which works in the expected time O(logn) while using
O(n) shared registers, and also showed that a logarithmic time is required to assign names
to anonymous processes. Additionally, they showed that if n is unknown then a Las Ve-
gas naming algorithm does not exist, and a finite-state Las Vegas naming algorithm can
work only for an oblivious scheduler. Panconesi et al. [24] gave a randomized wait-free
naming algorithm in anonymous systems with processes prone to crashes that communicate
by single-writer registers. The model considered in that work assigns unique single-writer
registers to nameless processes and so has a potential to defy the impossibility of wait-free
naming for general multi-writer registers proved by Kutten et al. [22]. Buhrman et al. [11]
considered the relative complexity of naming and consensus problems in asynchronous sys-
tems with shared memory that are prone to crash failures, demonstrating that naming is
harder that consensus.

Now we review work on problems in anonymous distributed systems different from nam-
ing. Aspnes et al. [4] gave a comparative study of anonymous distributed systems with
different communication mechanisms, including broadcast and shared-memory objects of
various functionalities, like read-write registers and counters. Alistarh et al. [2] gave ran-
domized renaming algorithms that act like naming ones, in that process identifiers are not
referred to; for more or renaming see [1, 6, 14]. Aspnes et al. [5] considered solving con-
sensus in anonymous systems with infinitely many processes. Attiya et al. [7] and Jayanti
and Toueg [21] studied the impact of initialization of shared registers on solvability of tasks
like consensus and wakeup in fault-free anonymous systems. Bonnet et al. [10] considered
solvability of consensus in anonymous systems with processes prone to crashes but aug-
mented with failure detectors. Guerraoui and Ruppert [19] showed that certain tasks like
time-stamping, snapshots and consensus have deterministic solutions in anonymous systems
with shared read-write registers prone to process crashes. Ruppert [25] studied the impact
of anonymity of processes on wait-free computing and mutual implementability of types of
shared objects.

A systematic exposition of shared-memory algorithm can be found in [8], when ap-
proached from the distributed-computing perspective, and in [20], when approached from
the parallel-computing one. General questions of computability in anonymous message-
passing systems implemented in networks were studied by Boldi and Vigna [9], Emek et
al. [17], and Sakamoto [26].
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2 Technical Preliminaries

Two operations are said to be performed concurrently when they are invoked in the same
round of an execution of a PRAM. We assume that concurrent reading from a memory
cell and writing to this same memory cell never occur. This can be made without loss of
generality for a synchronous PRAM because we can partition an execution into alternating
“writing” and “reading” rounds, which results in slowing the execution by at most a factor
of 2. The meaning of concurrent reading from the same memory cell is straightforward, in
that all the readers get the value stored in this memory cell.

Concurrent writing to the same memory location needs to be further clarified.
When multiple writers want to write the same value each in the same round to the same

memory cell, then we should assume that this value gets written. This scenario is so enticing,
that it leads to a PRAM variant called Common, for which it is assumed that only such
concurrent writes are legitimate, in that an attempt to write different values concurrently
to the same memory location results in a runtime error.

On the other hand, not having to worry about consistency of written values is also at-
tractive, which leads to a PRAM variant called Arbitrary. This model allows any admissible
value to be attempted to be written concurrently. A downside is that the model does not
determine the outcome of a write but only that one of the values gets written. A consequence
is that when we argue about correctness then all possible selections among the attempted
values as actually written successfully need to be considered.

Balls into bins

In the course of probabilistic analysis of algorithms, we will often model actions of processors
by throwing balls into bins. This can be done in two natural ways. One is such that memory
addresses are interpreted as bins and the values written represent balls, possibly with labels.
Then total number of balls considered will always be n, that is, be equal to the number of
processors of a PRAM. Another possibility is when bins represent rounds and selecting a
bin results in performing a write to a suitable shared register in the respective round.

Throwing balls into bins will be performed repeatedly in each instance of modeling the
behavior of an algorithm. Each instance of throwing a number of balls into bins is then
called a stage. There will be an additional numeric parameter β > 0, and we call the process
of throwing balls into bins the β-process, accordingly. This parameter β may determine
the number of bins in a stage and also when a stage is the last one in an execution of the
β-process.

When we sum up the numbers of available bins over all the stages of an execution of a β-
process until termination, then the result is the number of bins ever needed in this execution.
Similarly, the number of bits ever generated in an execution of a β-process is the sum of all
the numbers of random bits needed to be generated to place balls, over all the stages and
balls until termination of this execution.

Verifying collisions

We will use a randomized procedure for Common PRAM to verify if a collision occurs in
a bin. This procedure Verify-Collision was given in [12]; it is represented in Figure 1
for a direct reference. Bins are interpreted in two different ways. When algorithms use a
constant number of shared memory registers, then bins are typically interpreted as future
rounds during which verification for a collision will be performed, one verification in O(1)
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Procedure Verify-Collision (x)

initialize Heads[x]← Tails[x]← false
tossv ← outcome of tossing a fair coin
if tossv = tails

then Tails[x] ← true
else Heads[x] ← true

return Tails[x] = Heads[x]

Figure 1 A pseudocode for a processor v of a Common PRAM, where x is a positive integer.
Heads and Tails are arrays of shared memory cells. When the parameter x is dropped in a call
then this means that x = 1. The procedure returns true when a collision has been detected.

rounds. In such a scenario, procedure Verify-Collision is used without a parameter,
because just one shared memory register is needed to carry out one verification. When
algorithms use an unbounded array of shared registers, then bins are typically interpreted
as some designated shared registers. In such a scenario, procedure Verify-Collision is
invoked with a parameter indicating which bin is verified for collision, because multiple
verifications for collisions in different bins can be performed concurrently.

I Lemma 1 ([12, 13]). For an integer x, procedure Verify-Collision (x) executed by one
processor never detects a collision, and when multiple processors execute this procedure then
a collision is detected with probability at least 1

2 .

Properties of naming algorithms

Randomized naming algorithms are categorized as either Monte Carlo or Las Vegas, which
are defined as follows. A randomized algorithm is Las Vegas when it terminates almost surely
and the algorithm returns a correct output upon termination. A randomized algorithm is
Monte Carlo when it terminates almost surely and an incorrect output may be produced
upon termination, but the probability of error converges to zero with the size of input growing
unbounded. The naming algorithms we develop are all Monte Carlo and have the probability
of error converging to zero with a rate that is polynomial in n. Moreover, when incorrect
names are assigned, then the set of integers used as names makes a contiguous segment
starting from the smallest name 1 and the only possible kind of error is that duplicate
names are given.

A naming algorithm cannot be Las Vegas when n is unknown, as was observed by Kutten
et al. [22] for asynchronous computations against an oblivious adversary. An analogous fact
holds for synchronous computations.

I Proposition 1. There is no Las Vegas naming algorithm for a PRAM with n > 1 processors
that does not refer to the number of processors n in its code.

Proof. Let us suppose, to arrive at a contradiction, that such a naming Las Vegas algorithm
exists. Consider a system of n−1 ≥ 1 processors, and an execution E on these n−1 processors
that uses specific strings of random bits such that the algorithm terminates in E with these
random bits. Such strings of random bits exist because the algorithm terminates almost
surely.

OPODIS 2017



15:6 Anonymous Processors with Synchronous Shared Memory

Let v1 be a processor that halts latest in E among the n − 1 processors. Let αE be
the string of random bits generated by processor v1 by the time it halts in E . Consider an
execution E ′ on n ≥ 2 processors such that n processors obtain the same strings of random
bits as in E and an extra processor v2 obtains αE as its random bits. The executions E and E ′
are indistinguishable for the n−1 processors participating in E , so they assign themselves the
same names and halt. Processor v2 performs the same reads and writes as processor v1 and
assigns itself the same name as processor v1 does and halts in the same round as processor v1.
This is the termination round because by that time all the other processor have halted as
well.

It follows that execution E ′ results in a name being duplicated. The probability of
duplication for n processors is at least as large as the probability to generate two identical
finite random strings in E ′ for some two processors, so this probability is positive. J

We give algorithms that use the expected number of O(n logn) random bits with large
probability. The following fact allows to argue about their optimality with respect to the
number of random bits.

I Proposition 2 ([12, 13]). If a randomized naming PRAM algorithm executed by n anony-
mous processors is correct with some probability pn then it requires Ω(n logn) random bits
with the same probability pn.

If n is unknown, then the restriction O(n logn) on the number of random bits makes it
inevitable that the probability of error is at least polynomially bounded from below, as we
show next.

I Proposition 3. For unknown n, if a randomized naming algorithm is executed by n anony-
mous processors, then an execution is incorrect, in that duplicate names are assigned to
distinct processors, with probability that is at least n−Ω(1), assuming that the algorithm uses
O(n logn) random bits with probability 1− n−Ω(1).

Proof. Suppose the algorithm uses at most cn lgn random bits with probability pn when
executed by a system of n processors, for some constant c > 0. Then one of these processors
uses at most c lgn bits with probability pn, by the pigeonhole principle.

Consider an execution for n+1 processors. Let us distinguish a processor v. Consider the
actions of the remaining n processors: one of them, say w, uses at most c lgn bits with the
probability pn. Processor v generates the same string of bits with probability 2−c lgn = n−c.
The random bits generated by w and v are independent. Therefore duplicate names occur
with probability at least n−c · pn. When we have a bound pn = 1 − n−Ω(1), then the
probability of duplicate names is at least n−c(1− n−Ω(1)) = n−Ω(1). J

In gauging the optimality of performance of naming algorithms, we will refer to lower
bounds on time of such algorithms that can be found in [12, 13], we restate them here for
easy reference.

I Theorem 2 ([12, 13]). A randomized naming algorithm for a Common PRAM with n

processors and C > 0 shared memory cells operates in Ω(n logn/C) expected time when it
is either a Las Vegas algorithm or a Monte Carlo algorithm with the probability of error
smaller than 1/2.

I Theorem 3 ([12, 13]). A randomized naming algorithm for an Arbitrary PRAM with
n processors and C > 0 shared memory cells operates in Ω(n/C) expected time when it is
either a Las Vegas algorithm or a Monte Carlo algorithm with the probability of error smaller
than 1/2.
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The following fact holds for both Common and Arbitrary PRAMs.

I Theorem 4 ([12, 13])). A randomized naming algorithm for a PRAM with n processors
operates in Ω(logn) expected time when it is either a Las Vegas algorithm or a Monte Carlo
algorithm with the probability of error smaller than 1/2.

3 Arbitrary with Bounded Memory

We develop a naming algorithm for an Arbitrary PRAM with a constant number of shared
memory cells. The algorithm is called Arbitrary-Bounded-MC and its pseudocode is
given in Figure 2.

The underlying idea is to have all processors repeatedly attempt to obtain tentative
names and terminate when the probability of duplicate names is gauged to be sufficiently
small. To this end, each processor writes an integer selected from a suitable “selection range”
into a shared memory register and next reads this register to verify whether the write was
successful or not. A successful write results in each such a processor getting a tentative
name by reading and incrementing another shared register operating as a counter. One of
the challenges here is to determine a selection range from which random integers are chosen
for writing. A good selection range is large enough with respect to the number of writers,
which is unknown, because when the range is too small then multiple processors may select
the same integer and so all of them get the same tentative name after this integer gets
written successfully. The algorithm keeps the size of a selection range growing with each
failed attempt to assign tentative names.

There is an inherent tradeoff here, since on the one hand, we want to keep the size of used
shared memory small, as a measure of efficiency of the algorithm, while, at the same time,
the larger the range of memory the smaller the probability of collision of random selections
from a selection range and so of the resulting duplicate names. Additionally, increasing
the selection range repeatedly costs time for each such a repetition, while we also want to
minimize the running time as the metric of performance. The algorithm keeps increasing
the selection range with a quadratic rate, which turns out to be sufficient to optimize all the
performance metrics we measure. The algorithm terminates when the number of selected
integers from the current selection range makes a sufficiently small fraction of the size of the
used range.

The structure of the pseudocode in Figure 2 is determined by the main repeat-loop. Each
iteration of this loop begins with doubling the variable k, which determines the selection
range [1, 2k]. This means that the size of the selection range increases quadratically with
consecutive iterations of the main repeat-loop. A processor begins an iteration of the main
loop by choosing an integer uniformly at random from the current selection range [1, 2k].
There is an inner repeat-loop, nested within the main loop, which assigns tentative names
depending on the random selections just made.

All processors repeatedly write to a shared variable Pad and next read to verify if the
write was successful. It is possible that different processors attempt to write the same value
and then verify that their write was successful. The shared variable Last-Name is used
to proceed through consecutive integers to provide tentative names to be assigned to the
latest successful writers. When multiple processors attempt to write the same value to Pad
and it gets written successfully, then all of them obtain the same tentative name. The
variable Last-Name, at the end of each iteration of the inner repeat-loop, equals the number
of occupied bins. The shared variable All-Named is used to verify if all processors have
tentative names. The outer loop terminates when the number of assigned names, which is
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Algorithm Arbitrary-Bounded-MC

initialize k ← 1 /∗ initial approximation of lgn ∗/
repeat

initialize Last-Name← namev ← 0
k ← 2k
binv ← random integer in [1, 2k] /∗ throw a ball into a bin ∗/
repeat

All-Named ← true
if namev = 0 then

Pad ← binv
if Pad = binv then

Last-Name ← Last-Name + 1
namev ← Last-Name

else
All-Named ← false

until All-Named
until Last-Name ≤ 2k/β

Figure 2 A pseudocode for a processor v of an Arbitrary PRAM with a constant number of shared
memory cells. The variables Last-Name, All-Named and Pad are shared. The private variable name
stores the acquired name. The constant β > 0 is a parameter to be determined by analysis.

the same as the number of occupied bins, is smaller than or equal to 2k/β , where β > 0 is a
parameter to be determined in analysis.

I Theorem 5. Algorithm Arbitrary-Bounded-MC always terminates, for any β > 0.
For each a > 0 there exists β > 0 and c > 0 such that the algorithm assigns unique names,
works in time at most cn, and uses at most cn lnn random bits, all this with probability at
least 1− n−a.

Algorithm Arbitrary-Bounded-MC is optimal with respect to the following perfor-
mance measures: the expected time O(n), by Theorem 3, the expected number of random
bits O(n logn), by Proposition 2, and the probability of error n−O(1), by Proposition 3.

4 Arbitrary with Unbounded Memory

We develop a naming algorithm for Arbitrary PRAM with an unbounded amount of shared
registers. The algorithm is called Arbitrary-Unbounded-MC and its pseudocode is given
in Figure 3.

The underlying idea is to parallelize the process of selection of names applied in Sec-
tion 3 in algorithm Arbitrary-Bounded-MC so that multiple processes could acquire
information in the same round that later would allow them to obtain names. As algorithm
Arbitrary-Bounded-MC used shared registers Pad and Last-Name, the new algorithm
uses arrays of shared registers playing similar roles. The values read-off from Last-Name
cannot be used directly as names, because multiple processors can read the same values, so
we need to distinguish between these values to assign names. To this end, we assign ranks
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Algorithm Arbitrary-Unbounded-MC

initialize k ← 1 /∗ initial approximation of lgn ∗/
repeat

initialize All-Named← true
initialize positionv ← (0, 0)
k ← r(k)
binv ← random integer in [1, 2k/(βk)] /∗ choose a bin for the ball ∗/
labelv ← random integer in [1, 2βk] /∗ choose a label for the ball ∗/
for i← 1 to βk do

if positionv = (0, 0) then
Pad [binv]← labelv
if Pad [binv] = labelv then

Last-Name [binv]← Last-Name [binv] + 1
positionv ← (binv, Last-Name [binv])

if positionv = (0, 0) then
All-Named ← false

until All-Named
namev ← the rank of positionv

Figure 3 A pseudocode for a processor v of an Arbitrary PRAM, when the number of shared
memory cells is unbounded. The variables Pad and Last-Name are arrays of shared memory cells,
the variable All-Named is shared as well. The private variable name stores the acquired name. The
constant β > 0 and an increasing function r(k) are parameters.

to processors based on their lexicographic ordering by pairs of numbers determined by Pad
and Last-Name.

The pseudocode in Figure 3 is structured as a repeat-loop. In the first iteration, the
parameter k equals 1, and in subsequent ones is determined by iterations of the increasing
integer-valued function r(k), which is a parameter. We consider two instantiations of the
algorithm, determined by r(k) = k + 1 and by r(k) = 2k. In one iteration of the main
repeat-loop, a processor uses two variables bin ∈ [1, 2k/(βk)] and label ∈ [1, 2βk], which
are selected independently and uniformly at random from the respective ranges.

We interpret bin as a bin’s number and label as a label for a ball. Processors write their
values label into the respective bin by instruction Pad [bin]← label and verify what value
got written. After a successful write, a processor increments Last-Name[bin] and assigns the
pair (bin, Last-Name [bin]) as its position. This is repeated βk times by way of iterating the
inner for-loop. This loop has a specific upper bound βk on the number of iterations because
we want to ascertain that there are at most βk balls in each bin. The main repeat-loop
terminates when all values attempted to be written actually get written. Then processors
assign themselves names according to the ranks of their positions. The array Last-Name
is assumed to be initialized to 0’s, and in each iteration of the repeat-loop we use a fresh
region of shared memory to allocate this array.

I Theorem 6. Algorithm Arbitrary-Unbounded-MC always terminates, for any β > 0.
For each a > 0, there exists β > 0 and c > 0 such that the algorithm assigns unique names
and has the following additional properties with probability 1 − n−a. If r(k) = k + 1 then
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at most cn/ lnn memory cells are ever needed, cn ln2 n random bits are ever generated, and
the algorithm terminates in time O(log2 n). If r(k) = 2k then at most cn2/ lnn memory
cells are ever needed, cn lnn random bits are ever generated, and the algorithm terminates
in time O(logn).

The instantiations of algorithm Arbitrary-Unbounded-MC are close to optimality
with respect to some of the performance metrics we consider, depending on whether r(k) =
k + 1 or r(k) = 2k. If r(k) = k + 1 then the algorithm’s use of shared memory would be
optimal if its time were O(logn), by Theorem 3, but as it is, the algorithm misses space
optimality by at most a logarithmic factor, since the algorithm’s running time is O(log2 n).
Similarly, if r(k) = k+ 1 then the number of random bits ever generated O(n log2 n) misses
optimality by at most a logarithmic factor, by Proposition 2. On the pother hand, if
r(k) = 2k then the expected time O(logn) is optimal, by Theorem 4, the expected number
of random bits O(n logn) is optimal, by Proposition 2, and the probability of error n−O(1)

is optimal, by Proposition 3, but the amount of used shared memory misses optimality by
at most a polynomial factor, by Theorem 3.

5 Common with Bounded Memory

Algorithm Common-Bounded-MC, which we present in this section, solves the naming
problem for Common PRAM with a constant number of shared read-write registers. The
algorithm has its pseudocode in Figure 6. To make the exposition of this algorithm more
modular, we use two procedures Estimate-Size and Extend-Names. The pseudocodes
of these procedures are given in Figures 4 and 5, respectively. The private variables in
the pseudocode in Figure 6 have the following meaning: size is an approximation of the
number of processors n, and number-of-bins determines the size of the range of bins we
throw conceptual balls into.

The main task of procedure Estimate-Size is to produce an estimate of the number
n of processors. Procedure Extend-Names is iterated multiple times, each iteration is
intended to assign names to a group of processors. This is accomplished by the processors
selecting integer values at random, interpreted as throwing balls into bins, and verifying
for collisions. Each selection of a bin is followed by a collision detection. A ball placement
without a detected collision results in a name assigned, otherwise the involved processors
try again to throw balls into a range of bins. The effectiveness of the resulting algorithm
hinges of calibrating the number of bins to the expected number of balls to be thrown.

Balls into bins for the first time

The role of procedure Estimate-Size, when called by algorithm Common-Bounded-MC,
is to estimate the unknown number of processors n, which is returned as size, to assign
a value to variable number-of-bins, and assign values to each private variable bin, which
indicates the number of a selected bin in the range [1, number-of-bins]. The procedure tries
consecutive values of k as approximations of lgn. For a given k, an experiment is carried
out to throw n balls into k2k bins. The execution stops when the number of occupied bins
is at most 2k, and then 3 · 2k is treated as an approximation of n and k2k is the returned
number of bins.

I Lemma 7. For n ≥ 20 processors, procedure Estimate-Size returns an estimate size of
n such that the inequality size < 6n holds with certainty and the inequality n < size holds
with probability 1− 2−Ω(n).
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Procedure Estimate-Size

initialize k ← 2 /∗ initial approximation of lgn ∗/
repeat

k ← k + 1
binv ← random integer in [1, k 2k]
initialize Nonempty-Bins← 0
for i← 1 to k 2k do

if binv = i then
Nonempty-Bins ← Nonempty-Bins + 1

until Nonempty-Bins ≤ 2k
return (3 · 2k, k 2k) /∗ 3 · 2k is size, k 2k is number-of-bins ∗/

Figure 4 A pseudocode for a processor v of a Common PRAM. This procedure is invoked by
algorithm Common-Bounded-MC in Figure 6. The variable Nonempty-Bins is shared.

Procedure Extend-Names’s behavior can also be interpreted as throwing balls into
bins, where a processor v’s ball is in a bin x when binv = x. The procedure first verifies the
suitable range of bins [1, number-of-bins] for collisions. A verification for collisions takes
either just a constant time or Θ(logn) time.

A constant verification occurs when there is no ball in the considered bin i, which is
verified when the line “if binx = i for some processor x” in the pseudocode in Figure 5 is
to be executed. Such a verification is performed by using a shared register initialized to 0,
into which all processors v with binv = i write 1, then all the processors read this register,
and if the outcome of reading is 1 then all write 0 again, which indicates that there is at
least one ball in the bin, otherwise there is no ball.

A logarithmic-time verification of collision occurs when there is some ball in the cor-
responding bin. This triggers calling procedure Verify-Collision precisely β lgn times;
notice that this procedure has the default parameter 1, as only one bin is verified at a time.
Ultimately, when a collision is not detected for some processor v whose ball is the bin, then
this processor increments Last-Name and assigns its new value as a tentative name. Other-
wise, when a collision is detected, processor v places its ball in a new bin when the last line
in Figure 5 is executed.

To prepare for the next round of throwing balls, the variable number-of-bins may
be reset. During one iteration of the main repeat-loop of the pseudocode of algorithm
Common-Bounded-MC in Figure 6, the number of bins is first set to a value that is
Θ(n logn) by procedure Estimate-Size. Immediately after that, it is reset to Θ(n) by the
first call of procedure Extend-Names, in which the instruction number-of-bins ← size
is performed. Here, we need to notice that number-of-bins = Θ(n logn) and size = Θ(n),
by the pseudocodes in Figures 4 and 6 and Lemma 7.

In the course of analysis of performance of procedure Extend-Names, we consider a
balls-into-bins process; we call it simply the ball process. It proceeds through stages so that
in a stage we have a number of balls which we throw into a number of bins. The sets of
bins used in different stages are disjoint. The number of balls and bins used in a stage are
as determined in the pseudocode in Figure 5, which means that there are n balls and the
numbers of bins are as determined by an execution of procedure Estimate-Size, that is,
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Procedure Extend-Names

initialize Collision-Detected← collisionv ← false
for i← 1 to number-of-bins do

if binx = i for some processor x then
if binv = i then

for j ← 1 to β lg size do
if Verify-Collision then

Collision-Detected ← collisionv ← true
if not collisionv then

Last-Name ← Last-Name + 1
namev ← Last-Name
binv ← 0

if (number-of-bins > size) then
number-of-bins ← size

if collisionv then
binv ← random integer in [1, number-of-bins]

Figure 5 A pseudocode for a processor v of a Common PRAM. This procedure invokes procedure
Verify-Collision, whose pseudocode is in Figure 1, and is itself invoked by algorithm Common-
Bounded-MC in Figure 6. The variables Last-Name and Collision-Detected are shared. The
private variable name stores the acquired name. The constant β > 0 is to be determined in analysis.

the first stage uses number-of-bins bins and subsequent stages use size bins, as returned
by Estimate-Size.

The only difference between the ball process and the actions of procedure Extend-
Names is that collisions are detected with certainty in the ball process rather than being
tested for. In particular, the parameter β is not involved in the ball process (nor in its name).
The ball process terminates in the first stage in which no multiple bins are produced, so
that there are no collisions among the balls.

I Lemma 8. The ball process modeling the actions of procedure Extend-Names results in
all balls ending single in their bins and the number of times a ball is thrown, summed over
all the stages, being O(n), both events occurring with probability 1− n−Ω(logn).

The following Theorem 9 summarizes the performance of algorithm Common-Bounded-
MC (see the pseudocode in Figure 6) as a Monte Carlo one.

I Theorem 9. Algorithm Common-Bounded-MC terminates almost surely. For each
a > 0, there exists β > 0 and c > 0 such that the algorithm assigns unique names, works
in time at most cn lnn, and uses at most cn lnn random bits, each among these properties
holding with probability at least 1− n−a.

Proof. One iteration of the main repeat-loop suffices to assign names with probability 1−
n−Ω(logn), by Lemma 8. This means that the probability of not terminating by the ith
iteration is at most (n−Ω(logn))i, which converges to 0 with i growing to infinity.

The algorithm returns duplicate names only when a collision occurs that is not detected
by procedure Verify-Collision. For a given multiple bin, one iteration of this procedure
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Algorithm Common-Bounded-MC

repeat
initialize Last-Name← 0
(size, number-of-bins) ← Estimate-Size
for `← 1 to lg size do

Extend-Names
if not Collision-Detected then return

Figure 6 A pseudocode for a processor v of a Common PRAM, where there is a constant number
of shared memory cells. Procedures Estimate-Size and Extend-Names have their pseudocodes
in Figures 4 and 5, respectively. The variables Last-Name and Collision-Detected are shared.

does not detect collision with probability at most 1/2, by Lemma 1. Therefore β lg size
iterations do not detect collision with probability O(n−β/2), by Lemma 7. The number of
nonempty bins ever tested is at most dn, for some constant d > 0, by Lemma 8, with the
suitably large probability. Applying the union bound results in the estimate n−a on the
probability of error for sufficiently large β.

The duration of an iteration of the inner for-loop is either constant, then we call is short,
or it takes time O(log size), then we call it long. First, we estimate the total time spent
on short iterations. This time in the first iteration of the inner for-loop is proportional
to number-of-bins returned by procedure Estimate-Size, which is at most 6n · lg(6n),
by Lemma 7. Each of the subsequent iterations takes time proportional to size, which
is at most 6n, again by Lemma 7. We obtain that the total number of short iterations is
O(n logn) in the worst case. Next, we estimate the total time spent on long iterations. One
such an iteration has time proportional to lg size, which is at most lg 6n with certainty. The
number of such iterations is at most dn with probability 1 − n−Ω(logn), for some constant
d > 0, by Lemma 8. We obtain that the total number of long iterations is O(n logn), with
the correspondingly large probability. Combining the estimates for short and long iterations,
we obtain O(n logn) as a bound on time of one iteration of the main repeat-loop. One such
an iteration suffices with probability 1− n−Ω(logn), by Lemma 8.

Throwing one ball uses O(logn) random bits, by Lemma 7. The number of throws is
O(n) with the suitably large probability, by Lemma 8. J

Algorithm Common-Bounded-MC is optimal with respect to the following performance
metrics: the expected time O(n logn), by Theorem 2, the number of random bits O(n logn),
by Proposition 2, and the probability of error n−O(1), by Proposition 3.

6 Common with Unbounded Memory

We consider naming on a Common PRAM in the case when the amount of shared memory
is unbounded. The algorithm we propose, called Common-Unbounded-MC, is similar to
algorithm Common-Bounded-MC in Section 5, in that it involves a randomized experiment
to estimate the number of processors of the PRAM. Such an experiment is then followed by
repeatedly throwing balls into bins, testing for collisions, and throwing again if a collision is
detected, until eventually no collisions are detected.
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Procedure Gauge-Size-MC

k← 1
repeat

k← r(k)
binv ← random integer in [1, 2k]

until the number of selected values of variable bin is ≤ 2k/β
return ( d2k+1/βe )

Figure 7 A pseudocode for a processor v of a Common PRAM, where the number of shared
memory cells is unbounded. The constant β > 0 is the same parameter as in Figure 8, and an
increasing function r(k) is also a parameter.

Algorithm Common-Unbounded-MC has its pseudocode given in Figure 8. The algo-
rithm is structured as a repeat loop. An iteration starts by invoking procedure Gauge-Size,
whose pseudocode is in Figure 7. This procedure returns size as an estimate of the number
of processors n. Next, a processor chooses randomly a bin in the range [1, 3size]. Then it
keeps verifying for collisions β lg size, in such a manner that when a collision is detected
then a new bin is selected form the same range. After such β lg size verifications and pos-
sible new selections of bins, another β lg size verifications follow, but without changing the
selected bins. When no collision is detected in the second segment of β lg size verifications,
then this terminates the repeat-loop, which triggers assigning each station the rank of the
selected bin, by a prefix-like computation. If a collision is detected in the second segment of
β lg size verifications, then this starts another iteration of the main repeat-loop.

Procedure Gauge-Size-MC returns an estimate of the number n of processors in the
form 2k, for some positive integer k. It operates by trying various values of k, and, for a
considered k, by throwing n balls into 2k bins and next counting how many bins contain
balls. Such counting is performed by a prefix-like computation, whose pseudocode is omitted
in Figure 7. The additional parameter β > 0 is a number that affects the probability of
underestimating n.

The way in which selections of numbers k is performed is controlled by function r(k),
which is a parameter. We will consider two instantiations of this function: one is func-
tion r(k) = k + 1 and the other is function r(k) = 2k.

I Lemma 10. If r(k) = k + 1 then the value of size as returned by Gauge-Size-MC
satisfies size ≤ 2n with certainty and the inequality size ≥ n holds with probability 1 −
β−n/3.

If r(k) = 2k then the value of size as returned by Gauge-Size-MC satisfies size ≤
2βn2 with certainty and size ≥ βn2/2 with probability 1− β−n/3.

The following Theorem 11 summarizes the performance of algorithm
Common-Unbounded-MC (see the pseudocode in Figure 8) as a Monte Carlo one. Its
proof relies on mapping an execution of the β-process with verifications on executions of
algorithm Common-Unbounded-MC in a natural manner.

I Theorem 11. Algorithm Common-Unbounded-MC terminates almost surely, for a suf-
ficiently large β. For each a > 0, there exists β > 0 and c > 0 such that the algorithm
assigns unique names and has the following additional properties with probability 1 − n−a.
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Algorithm Common-Unbounded-MC

repeat
size← Gauge-Size
binv ← random integer in [1, 3 size]
for i← 1 to β lg size do

if Verify-Collision (binv) then
binv ← random number in [1, 3 size]

Collision-Detected ← false
for i← 1 to β lg size do

if Verify-Collision (binv) then
Collision-Detected ← true

until not Collision-Detected
namev ← the rank of binv among selected bins

Figure 8 A pseudocode for a processor v of a Common PRAM, where the number of shared
memory cells is unbounded. The constant β > 0 is a parameter impacting the probability of error.
The private variable name stores the acquired name.

If r(k) = k + 1 then at most cn memory cells are ever needed, cn ln2 n random bits are
ever generated, and the algorithm terminates in time O(log2 n). If r(k) = 2k then at most
cn2 memory cells are ever needed, cn lnn random bits are ever generated, and the algorithm
terminates in time O(logn).

The instantiations of algorithm Common-Unbounded-MC are close to optimality with
respect to some of the performance metrics we consider, depending on whether r(k) =
k + 1 or r(k) = 2k. If r(k) = k + 1 then the algorithm’s use of shared memory would
be optimal if its time were O(logn), by Theorem 3, but it misses space optimality by at
most a logarithmic factor, since the algorithm’s time is O(log2 n). Similarly, for this case of
r(k) = k+ 1, the number of random bits ever generated O(n log2 n) misses optimality by at
most a logarithmic factor, by Proposition 2. In the other case of r(k) = 2k, the expected
time O(logn) is optimal, by Theorem 4, the expected number of random bits O(n logn) is
optimal, by Proposition 2, and the probability of error n−O(1) is optimal, by Proposition 3,
but the amount of used shared memory misses optimality by at most a polynomial factor,
by Theorem 4.

7 Conclusion

We considered four variants of the naming problem for an anonymous PRAM, when the
number of processors n is unknown, and developed Monte Carlo naming algorithms for
each of them. The two algorithms for a bounded number of shared registers are provably
optimal with respect to the following three performance metrics: expected time, expected
number of generated random bits and probability of error. It is an open problem to develop
Monte Carlo algorithms for Arbitrary and Common PRAMs for the case when the amount
of shared memory is unbounded, such that they are simultaneously asymptotically optimal
with respect to these same three performance metrics: the expected time, the expected
number of generated random bits and the probability of error.
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Abstract
The amortized step complexity of an implementation measures its performance as a whole, rather
than the performance of individual operations. Specifically, the amortized step complexity of an
implementation is the average number of steps performed by invoked operations, in the worst case,
taken over all possible executions. The amortized step complexity of a wide range of known lock-
free implementations for shared data structures, like stacks, queues, linked lists, doubly-linked
lists and binary trees, includes an additive factor linear in the point contention—the number of
processes simultaneously active in the execution.

This paper shows that an additive factor, linear in the point contention, is inherent in the
amortized step complexity for lock-free implementations of many distributed data structures,
including stacks, queues, heaps, linked lists and search trees.
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1 Introduction

Evaluating the complexity of lock-free implementations, in which an operation may never
terminate, is best done through their amortized step complexity, defined as the average
number of steps performed by invoked operations, in the worst case taken over all possible
executions [12]. Amortized step complexity measures the performance of the system as a
whole, rather than the performance of individual operations.

Ruppert [12] defined this complexity measure and observed that upper bounds on the
amortized step complexity of a wide range of lock-free implementations of shared data
structures has an additive factor of ċ(op); ċ(op) is the point contention during an operation
op, namely, the number of processes simultaneously active during the execution interval of
op. These objects include stacks and queues [14], linked lists [6], doubly-linked lists [13] and
binary search trees [5]. Ruppert asks whether the additive factor of ċ(op) in the expression
for amortized step complexity for lock-free distributed data structures is inherent.
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This paper answers this question in the affirmative, for a wide range of shared data
structures, in particular, stacks, queues, heaps, linked lists and search trees. We prove two
classes of lower bounds.

The first, bounds the amortized number of Remote Memory References (RMRs) and it is
done by reduction to a variant of the set object, called sack. A sack supports two operations:
one operation adds an element, while another atomically removes an element and returns it
(returning ⊥ if the sack is empty). We prove that the amortized RMR complexity of any
implementation of a sack using reads, writes and conditional primitives (such as CAS), is at
least Ω(ċ). The proof is by reduction to the lower bound for mutual exclusion [10], which
we extend to hold for amortized step complexity. We show that several shared objects (i.e.,
stacks, queues and heaps) can easily be used to implement a sack with an O(1) additional
cost. This proves that the amortized RMR complexity of these shared objects is also at least
Ω(ċ), when the point contention is in O(

√
log logn).

We prove another set of lower bounds on the amortized step complexity of monotone
objects that do not support an atomic remove operation. The proof holds for data structures
that are implemented by a connected graph of nodes, like linked lists, skip lists or search
trees. The proof is more self-contained, but it bounds only the step complexity—a measure
that is larger than the RMR complexity. The lower bound of Ω(ċ) for the amortized step
complexity holds for implementations using 1-revealing primitives, a class including reads,
writes, LL/SC, test&set and CAS [3].1 The lower bound holds when the point contention is
in O(log logn).

Ruppert [12] provides analysis showing that the known lock-free implementations of
stacks and queues [14] have O(ċ(op)) amortized step complexity. In addition, he also observes
that:

The search, put and delete operations of the linked-list implementation presented in [6],
have O(n(op) + ċ(op)) amortized step complexity, where n(op) is the number of the
elements in the list when operation op is invoked.
The amortized step complexity of the search, put and delete on a non-blocking binary
tree [5] is O(h(op) + ċ(op)), where h(op) is the height of the tree at the beginning of the
operation op.
The amortized step complexity of put and delete in a doubly-linked list [13] is O(ċ(op)).
The wait-free union-find implementation [2] has O(α(n)+ ċ(op)) amortized step complex-
ity, where n is the number of elements in the sets and α(n) is the inverse of Ackermann
function.

Our lower bounds show that the ċ(op) component in the amortized step complexity of
these implementations is inherent, except perhaps for the last one, the wait-free union-find,
which remains an interesting open problem.

2 The Computation Model

In the asynchronous shared-memory model [10], n processes, p0, . . . , pn−1 communicate by
applying primitive operations (in short, primitives) to shared memory registers. Initially,
all shared registers hold the value ⊥. A process is described as a state machine, with a set
of (possibly infinitely many) states, one of which is a designated initial state, and a state
transition function.

1 Using primitives with more revealing power one can get a more efficient implementation of monotone
objects. For example, using swap primitive that is m/2-revealing [3], it is possible to implement an add
operation for a monotone linked list with O(1) step complexity.
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The executions of the system are sequences of events. In each event, based on its current
state, a process applies a primitive to a shared memory register and then changes its state,
according to the state transition function. An event φ in which a process p applies a
primitive op to register R is denoted by a triple 〈p,R, op〉. An execution α is a (finite or
infinite) sequence of events φ0, φ1, φ2, . . .. There are no constraints on the interleaving of
events by different processes, reflecting the assumption that processes are asynchronous.
The value of variable v after α is denoted val(v, α). Without loss of generality, we assume
that the value of a shared register is never set to ⊥ during an execution.

For an execution α and a set of processes P , α|P is the sequence of all events in α by
processes in P ; α|P is the sequence of all events in α that are not by processes in P . If
P = {p}, we write α|p instead of α|{p} and α|p instead of α|{p}. An execution α is P -only
if α = α|P , and it is P -free execution if α = α|P .

The basic primitives are read and write: A read(R) primitive returns the current value of
R and does not change its value. A write(v, R) operation sets the value of R to v, and does
not return a value. Every process can read from or write to every register, i.e., registers are
multi-writer multi-reader. A compare&swap (or CAS for short) primitive works as follows.
If the register R holds the value v, then after CAS (R, v, u) the state of R is changed to u
and true is returned (the CAS succeeds). Otherwise, the state of R remains unchanged and
false is returned (the CAS fails).

An implementation of a high-level object provides algorithms for each high-level opera-
tion supported by the object. Some transitions are requests, invoking a high-level operation,
or responses to a high-level operation. When a high-level operation is invoked, the pro-
cess executes the algorithm associated with the operation, applying primitives to the shared
registers, until a response is returned.

Let α′ be a finite prefix of an execution α. Process pi performing a high-level operation
op is active at the end of α′, if α′ includes an invocation of op without a return from op.
The set of the processes active at the end of α′ is denoted active(α′). The point contention
at the end of α′, denoted ċ(α′), is |active(α′)|.

Consider an execution α of an algorithm A implementing a high-level operation op.
For process pi executing operation opi, step(A,α, opi) is the number events by pi, when
executing opi in α. The step complexity of A in α, denoted step(A,α), is the maximum of
step(A,α, opi) over all operations opi of all processes pi.

The amortized step complexity of A in an execution α is the total number of shared-
memory events performed by all the operations initiated in α (denoted initiated(α)) divided
by the number of invoked operations:

amortizedStep(A,α) =

∑
opi∈initiated(α) step(A,α, opi)

|initiated(α)|

The amortized step complexity of A is the maximum of amortizedStep(A,α) over all possible
executions α of A:

amortizedStep(A) = max
α
{amortizedStep(A,α)}

Consider a bounded function S : N 7→ N . The step complexity of an algorithm imple-
menting operation op is S-adaptive to point contention if for every execution α and every
operation opi with interval βi, step(A,α, opi) ≤ S(ċ(βi)). That is, the step complexity of an
operation opi with interval βi is bounded by a function of the point contention during βi.

Similarly, the amortized step complexity of an algorithm A is S-adaptive to point con-
tention if for every execution α, amortizedStep(A,α) ≤ S(ċ(α)). That is, the amortized
step complexity of algorithm A in an execution α is bounded by a function of the point
contention during α.
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In this paper, we consider only the cache-coherent (CC) model. In the CC model, each
process has a local cache in addition to shared memory. A shared variable accessed by a
process is loaded to its local cache and remains locally accessible to the process until it is
modified by another process. Such a modification results with an update or an invalidation
of the cached variable, according to some cache-consistency protocol.

In many mutual-exclusion algorithms, a process busy-waits by repeatedly testing one or
more local “spin variables”. For such algorithms the number of shared memory operations
may be unbounded. Instead of counting the shared-memory operations, we count the number
of remote-memory-references (RMR) generated by the algorithm [1]. The RMR complexity
counts only events that cause process-memory interconnection traffic, and ignores events in
busy-wait loops on unchanged local variables.

Consider an execution prefix α′φ of α, where φi = 〈pi, v, opi〉. Following [10], φi is an
RMR event if φi is the first event in α in which pi accesses v (that is, pi does not access v
in α′) or φi is the first event in α in which pi accesses v after v was modified by another
process (that is, the last event in α′ that modifies v is performed by a process pj 6= pi).

The definition of RMR complexity is the same as the definition of step complexity, except
that we count only RMR events. Similarly, the definition of amortized RMR complexity is
the same as the definition of amortized step complexity, counting only RMR events.

3 Lower Bound for Sack Implementation and Related Objects

In this section we define a variation of set object, called sack, and use it to implement
mutual exclusion with additional O(1) cost (Algorithm 1). Then we show that sack can be
implemented from queues, stacks and heaps with additional O(1) cost (Lemma 7). An Ω(ċ)
lower bound for all these data structures then follows from the Ω(ċ) lower bound for mutual
exclusion [10], which we extend to amortized RMR complexity (Appendix A).

A sack object supports the put and draw operations, with the following specification:
S.put(v) adds element v to the sack S
S.draw() removes an arbitrary element from the sack S, and returns the removed element.

Note that we do not specify what element should be removed. If before the invocation
of the operation the sack is empty, the operation returns ⊥.

The mutual exclusion algorithm shown in this section uses a sack object combined with
a few additional CAS and R/W variables. A process can enter the critical section either
through a fast lane, winning the mutual exclusion associated with a CAS variable fastLane,
or through a waiting room, implemented using a sack object waitingRoom. After passing the
fast lane or the waiting room, a process has to win a 2-process mutual exclusion implemented
with a CAS variable gate, in order to enter the actual critical section (see Figure 1).

In more detail (see Algorithm 1 in the appendix), to enter the critical section, process pi
sets wants[idi] to TRUE, and adds itself to the set of the waiting processes (Line 1.3). Then
it tries to win the fast lane, performing a CAS on the fastLane variable (Line 1.4). If the
CAS succeeds and pi successfully writes 〈OCCUPIED, idi〉 to fastLane, then pi accesses the
gate mutual exclusion from the fast lane side (Line 1.9). If CAS on fastLane fails (Line 1.4),
then pi busy waits until privateGate[idi] becomes OPEN (Line 1.7), and then it accesses the
gate mutual exclusion from the waiting room side (Line 1.9).

In the exit section, pi sets its variable wants[idi] to FALSE (Line 1.12) to indicate to other
processes that it is not interested to enter the critical section and thus does need help. To
complete clean-up, pi sets privateGate[idi] to CLOSED (Line 1.13). If pi previously entered
gate mutual exclusion through the fast line (in this case fastLane = 〈OCCUPIED, id〉), then
it resets fastLane to OPEN performing a CAS (Line 1.14).
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fastLane
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(SACK object)

gate
(2-process ME)
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Figure 1 Mutual exclusion using a sack object and CAS presented in Algorithm 1.

Then pi tries to promote one of the processes from waitingRoom to enter the critical
section. The R/W variable promoted is used to keep track of the promoted process. If in the
exit section pi finds promoted equal to its own idi, then pi resets promoted to ⊥ (Line 1.16).
If pi finds no promoted process (promoted = ⊥, Line 1.18), then pi repeatedly removes a
process from waitingRoom, until it finds a process next that is still interested to enter the
critical section, or until waitingRoom is empty (Line 1.20). If the removed process next is
still interested to enter the critical section (wants[next] = TRUE), then pi promotes this
process by setting promoted = next (Line 1.22), and opens the next’s private gate by setting
privateGate[next] = OPEN (Line 1.23). Finally, pi releases the critical section associated
with gate by setting gate to TRUE (Line 1.26).

Below we prove the correctness and bound the RMR complexity of Algorithm 1.
The mutual exclusion property of the algorithm follows from the mutual exclusion prop-

erty of the gate block (Figure 1). A process pi enters critical section only after successful
CAS that sets gate to CLOSED (Line 1.9) and resets gate to OPEN, when it releases the
critical section (Line 1.26). Therefore, no two processes may be simultaneously inside the
critical section.

The following definition of a promoted process is used in the proof of deadlock freedom
and in the analysis of the RMR complexity of the algorithm.

A process pi is promoted if privateGate[idi] = OPEN. The next lemma shows that at
most one process is promoted at any point.

I Lemma 1. At any point of execution, if privateGate[idi] = OPEN, then promoted = idi.

Proof. Initially, for every process pj , privateGate[idj ] = CLOSED and the lemma trivially
holds.

Suppose that the lemma holds for an execution prefix α′, and let pi be the first process
that modifies privateGate after α′. Before pi sets privateGate[next] = OPEN in its exit
section (Line 1.23), pi sets promoted = next (Line 1.22). By the mutual exclusion property
of the algorithm, these steps are performed by pi in exclusion, and the lemma holds. J

The following technical lemma is used to prove that the algorithm has no deadlocks.

I Lemma 2. Let exiti be the execution interval corresponding to the exit section of a process
pi. Then one of the following holds:
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(a) at the end of exiti there is a promoted process pj, or
(b) pi’s invocation of waitingRoom.draw() returns ⊥ (Line 1.19).

Proof. If pi reads promoted = idj 6= ⊥ (Line 1.18), then by Lemma 1 and the mutual
exclusion property, privateGate[idj ] = OPEN at this point, and pj remains to be promoted
until the end of exiti. In this case, condition (a) holds.

If pi reads promoted = ⊥ (Line 1.18), and succeeds to set privateGate[next] = OPEN
(Line 1.23) then process next is promoted at this point, and it remains promoted until the
end of exiti, and condition (a) holds.

If pi reads promoted = ⊥ (Line 1.18) but it does not perform privateGate[next] = OPEN
(Line 1.23), then waitingRoom.draw() returns ⊥ (Line 1.19), implying condition (b). J

The next lemma proves the deadlock-freedom property of the algorithm. For simplicity,
we assume that each process enters the critical section at most once. Since the lower bound
presented in [10] holds for one-shot mutual exclusion, this suffices for our proof.

I Lemma 3. Algoritm 1 is deadlock-free.

Proof. Suppose that there is an execution α with prefix α′, such that after α′ there is a
process pi in its entry section, and from that point on no process ever enters the critical
section in α.

If pi’s CAS on fastLane succeeds (Line 1.4), then pi waits on the gate variable (Line 1.9).
This is a contradiction, since no process remains in the critical section associated with gate
forever.

Therefore, pi loses the fastLane in Line 1.4 and remains in waitingRoom forever, waiting
for privateGate[id] to be OPEN (Line 1.7).

Since pi’s CAS on fastLane fails, another process pj wins fastLane in its enter section
(Line 1.4) before pi’s CAS, and releases fastLane in its exit section (Line 1.14) after pi’s CAS.
Process pj performs waitingRoom.draw() (Line 1.19) after it releases fastLane (Line 1.14).
By assumption, pi remains in waitingRoom forever, and therefore, the waitingRoom.draw()
invocation of pj (Line 1.19) does not return ⊥.

Therefore, statement (a) of Lemma 2 holds, implying that some process pk is promoted
at the end of pj ’s exit interval. Eventually, pk accesses the gate mutual exclusion after it
reads privateGate[k] = OPEN (Line 1.23) or wins the fastLane (Line 1.4). Since gate mutual
exclusion has no deadlocks, eventually some process enters the critical section after α′, which
is a contradiction. J

Now we show that at any point, at most one process can access the gate mutual exclusion
from the fast lane, and at most one process from the waiting room side (Figure 1). This
implies that the gate mutual exclusion has constant RMR complexity (in addition to the
RMR complexity of the sack implementation for waitingRoom).

I Definition 4. A process pi is on fast lane if and only if fastLane = 〈OCCUPIED, idi〉.2

By the semantics of CAS and induction on the execution order, we have the following
lemma:

I Lemma 5. The execution intervals in which different processes pi and pj are on fast lane
are disjoint.

2 That is, pi is on fast lane after it successfully sets fastLane to 〈OCCUPIED, idi〉 (Line 1.4) and before
it successfully resets fastLane to EMPTY (Line 1.14) in the exit section.
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Lemma 5 implies that at any point, at most one process accesses gate mutual exclusion
from the fast lane, and Lemma 1 implies that at most one process accesses the gate mutual
exclusion from the waiting room. We have that at most two processes simultaneously access
the gate mutual exclusion and therefore, waiting for gate (Line 1.9) has a constant amortized
RMR complexity (each event that generates RMR can be charged to a successful entry to
the gate critical section). Each process is added and removed from the waiting room sack
at most once, and the rest of the operations in the entry and exit sections have a constant
RMR complexity. This implies:

I Lemma 6. Given an implementation of sack with O(f(ċ)) amortized RMR complexity.
Then there is a mutual exclusion algorithm with O(f(ċ)) amortized RMR complexity, using
in addition, R/W and CAS.

The following lemma shows that sack can be implemented from several shared objects,
with a constant additional cost:

I Lemma 7. The following data structures: queues, stacks and heaps, can be used to im-
plement the sack object operations with O(1) additional steps.

Proof. (a) queue operations enqueue and dequeue trivially implement the put and draw
operations of sack; (b) stack operations push and pop trivially implement the put and draw
operations of sack; (c) heap operations add and removeMax trivially implement the put and
draw operations of sack. J

Theorem 20 (presented in Appendix A), Lemma 6 and Lemma 7 imply the next theorem:

I Theorem 8. Any implementation of queues, stacks and heaps, from reads, writes and
conditional primitives has at least Ω(ċ) amortized RMR complexity.

4 Lower Bounds for Graph-Based Set Implementations

This section defines graph-based implementations of the set object (denoted graph-based-set),
and proves that any implementation of graph-based-set from 1-revealing primitives has an
Ω(ċ) amortized step complexity. This is a generalization of data structures that can be rep-
resented by a connected graph of nodes, like linked lists, skip lists or search trees. The lower
bound on the amortized step complexity of graph-based-set holds also for implementation of
these data structures.

To emphasize the nature of the data structures based on a connected set of nodes,
this section assumes the following memory model. Each shared variable contains one data
structure node, which has a data field and a constant number d of pointers connecting it
to other nodes (Figure 2). A process can read or modify all the components of a node in a
single computational step.3

The state of the shared memory after an execution prefix α can be represented by a
memory graph G(α) = (V,E), where V is set of the shared variables in the system, and
there is an edge vi → vj ∈ E if and only if after α, the shared variable corresponding to
vi ∈ V contains a pointer to the shared variable corresponding to vj ∈ V .

3 Many known implementations of linked data structures use a separate variable for each node com-
ponent, and a fixed memory offset to access different components of the node. These implementations
can be converted to graph-based-set preserving the asymptotic step complexity, by replacing each data
structure node with a linked list of graph-based-set nodes, having a separate node for each component.
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Figure 2 A graph-based representation of a set. Each node of the graph is stored in a separate
shared variable vi and contains a data field and a constant number of pointers. The pointers between
the nodes form the edges of the graph. An element vi is in the set iff it can be traced following the
pointers starting from the head node.

A graph-based-set implementation specifies a special node, head, and supports one oper-
ation, add(e), which adds an element e to the set. It should satisfy the following invariant:

an element e is in the graph-based-set S after an execution prefix α if and only if there
is a directed path from S.head to a node v with v.data = e, in the memory graph Gα.

Many linked-list and tree-based set implementations [4,7–9,11,16] satisfy this invariant.
In contrast to the RMR lower bound of Section 3, the lower bound for graph-based-set only
requires an add operation, and does not rely on an atomic remove operation.

We construct an execution of 3k processes, in which each process pi invokes add(idi) to
add its id to the set. We show that these 3k processes collectively perform Ω(k2) steps,
implying that any implementation of graph-based-set has at least Ω(k) = Ω(ċ) amortized
step complexity. The proof uses a technique similar to the Ω(ċ) lower bound on the step
complexity of adaptive collect [3].

We construct the execution in rounds, maintaining two disjoint sets of processes, the
invisible set P , initially containing all processes, and the visible set W , initially empty.
Intuitively, invisible processes are not aware of each other and do not detect each other’s
operations, while visible processes are possibly aware of other processes or vice versa.

In round r, each process that is still invisible after the previous round performs its next
event. These steps are scheduled so that after each round, at most 2 invisible processes
become visible. These processes cannot be erased from the execution. Instead, they are
stopped and take no steps in the later rounds. Some of the other invisible processes are
retroactively erased from the execution in order to keep the remaining processes invisible
after round r.

In each round, at most one process succeeds to add its id to the graph-based-set, and
at least k processes are invisible after k rounds. Since in each round each invisible process
takes one step, in k rounds the last k invisible processes collectively perform Ω(k2) steps,
implying an Ω(ċ) lower bound on the amortized step complexity.

To guarantee that a process pi remains invisible during the execution, we need to show
that no other invisible process reads information stored by pi, and that pi does not modify
any variable previously modified by another invisible process. Otherwise, pi cannot be erased
from the execution without affecting other processes. To formalize the notion of variables
affected by a process, we define a set of evidence variables. Intuitively, the evidence variables
of process pi are the variables that may contain “traces” of pi’s events, so that the values of
these variables may change if pi’s events are deleted from the execution.



H. Attiya and A. Fouren 16:9

I Definition 9 (Evidence Set of Variables). The evidence set of process p after execution
α, denoted evidence(p, α), is the set of the variables v whose values at the end of α would
change if the events of p are deleted from α, that is,

evidence(p, α) = {v | val(v, α) 6= val(v, α|p)}

For a set of processes P , evidence(P, α) = ∪p∈P evidence(p, α).

Now we define the notion of a set of processes that are invisible to each other. Intuitively,
erasing any subset of an invisible set of processes is undetectable by the remaining invisible
processes. To facilitate the inductive construction, we require some additional properties.

I Definition 10 (Invisible Set of Processes). A set P of processes is invisible in an execution
α if the following hold:
(a) for any subset Q ⊂ P , processes P \Q get the same responses in the executions α and

α|Q;
(b) for any subset Q ⊂ P , and for any process p ∈ P \Q, evidence(p, α) = evidence(p, α|Q);
(c) for any pair of processes p, q ∈ P , evidence(p, α) ∩ evidence(q, α) = ∅.
The corresponding set of visible processes are the active processes in α that are not in P ,
i.e., W = active(α) \ P .

Definition 10(a) means that erasing any subset Q of the invisible processes P is undetect-
able to the remaining invisible processes in P \ Q. Property (b) implies that erasing any
subset Q of invisible processes P does not affect the evidence sets of the remaining invisible
processes P \Q; it prevents an invisible process p ∈ P from modifying a variable previously
modified by another invisible process q ∈ P , and ensures that erasing p will not make q
visible. Property (c) states that the evidence sets of invisible processes are disjoint, so each
variable belongs to evidence set of at most one process.

The next lemma (proved in [3]) states that after erasing any subset of an invisible set
from an execution, the remaining processes still form an invisible set.

I Lemma 11. If a set of processes P is invisible in an execution α, then for every subset
Q ⊂ P , the subset (P \Q) is invisible in α|Q.

The following definitions of accessible variables and accessible processes are used to bound
the size of the underlying graph of graph-based-set.

I Definition 12 (Accessible Variables). A shared variable v is an accessible variable of a
process pi after an execution prefix α, if there is a variable v0 ∈ evidence(pi, α), and there is
a directed path from v0 to v in the graph Gα (Figure 3(a)).
The set of the accessible variables of pi after α is denoted accessibleVariables(pi, α).

I Definition 13 (Accessible Variables of a graph-based-set). The accessible variables of a
graph-based-set S after execution prefix α, denoted accessibleVariables(S, α), is the set of
variables v such that after α there is a directed path from S.head to v in the memory graph
Gα (Figure 3(b)).

I Definition 14 (Accessible Processes of a graph-based-set). The accessible processes of a
graph-based-set S after execution prefix α, denoted accessibleProcesses(S, α), are those whose
evidence variables are in the set of the accessible variables of S :

accessibleProcesses(S, α) = {pi : evidence(pi, α) ∩ accessibleVariables(S, α) 6= ∅}

OPODIS 2017
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(a)

 evidence(p)

accessibleVariables(p)

ip

(b)

accessibleVariables(S)

 

 S.head

S

Figure 3 (a) The accessible variables of process pi are the shared variables that can be accessed
through a directed path in the memory graph Gα, starting from a variable in evidence(pi, α). (b)
The accessible variables for a graph-based-set S are the shared variables that can be accessed through
a directed path in the graph Gα, starting from S.head.

Assume, without loss of generality, that a constant number of primitive types Op0,
Op1, . . ., Opt−1 is used, and each process applies primitives cyclically in this order during its
execution. That is, in its i-th step the process performs a primitive of type Opi mod t. Any
algorithm may be modified to follow this rule, by introducing dummy steps of the required
type. This increases the step complexity of the algorithm by a constant factor t, since the
algorithm uses a constant number of primitive types, and does not affect the asymptotic
step complexity.

Intuitively, the next definition implies that the events of invisible processes accessing the
same variable v with the same primitive Op can be ordered in such a way that at most m
of these processes are revealed, while the rest of the processes remain invisible.

I Definition 15 (m-Revealing Primitives [3]). Suppose that a set of processes P is invisible
in an execution α and consider a variable v 6∈ evidence(P, α). Suppose that there is a subset
Pk ⊆ P of k processes whose next events φ1, . . . , φk apply the same primitive Op to the
variable v:

∀p ∈ Pk : next_event(p, α) = 〈p, v,Op〉

We say that the primitive Op is m-revealing, for m ≥ 0, if there is a permutation π of the
next events φ1, . . . , φk and a subset Pm ⊆ Pk of size ≤ m, such that (P \ Pm) is invisible in
απ.

The next lemma provides the induction step for the lower bound proof, leading to a new
invisible set Pr+1, a corresponding visible set Wr+1 and a new state of the graph-based-set
S. Our goal is to keep the invisible set Pr+1 as large as possible, and the graph-based-set S
as small as possible, in order to carry out the induction for as long as possible.

I Lemma 16. Suppose that there is an execution αr such that:
(a) there is an invisible set Pr of size |Pr| = mr ≥ 2 and a corresponding visible set Wr of

size |Wr| = wr;
(b) each process pi ∈ Pr performs exactly r steps in αr;
(c) for every pair of processes pi, pj ∈ Pr,

accessibleVariables(pi, αr) ∩ accessibleVariables(pj , αr) = ∅;
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(d) for each process pi ∈ Pr, |evidence(pi, αr)| ≤ r and |accessibleVariables(pi, αr)| ≤ r(d+
1) (recall that d is the number of pointers that can be stored in a shared variable);

(e) for the graph-based-set S, |accessibleProcesses(S, αr)| ≤ r and
|accessibleVariables(S, αr)| = r(r+1)(d+1)

2 .
Then there is an execution αr+1 such that after αr+1:
(a1) there is an invisible set Pr+1 of size mr+1 ≥

√
mr

2d+3 and a corresponding visible set
Wr+1 of size wr+1 ≤ wr + 2;

(b1) each process pi ∈ Pr+1 performs exactly r + 1 steps in αr+1;
(c1) for every pair of processes pi, pj ∈ Pr,

accessibleVariables(pi, αr+1) ∩ accessibleVariables(pj , αr+1) = ∅.
(d1) for every process pi ∈ Pr+1, |evidence(pi, αr+1)| ≤ r + 1 and
|accessibleVariables(pi, αr+1)| ≤ (d+ 1)(r + 1);

(e1) for the graph-based-set S, |accessibleProcesses(S, αr+1)| ≤ r + 1 and
|accessibleVariables(S, αr+1)| = (r+1)(r+2)(d+1)

2 .

Proof. We show how to extend αr with one more round to obtain an execution αr+1, and
a set Pr+1 invisible in αr+1, such that each process in Pr+1 performs (r + 1) steps in αr+1
and properties (a1)—(e1) hold.

By the induction hypothesis (e), |accessibleProcesses(S, αr)| ≤ r. Hence, at most r
processes complete their add(idi) operations in αr. Since the rest of the invisible processes
pi ∈ (Pr \ accessibleProcesses(S, αr)) do not complete their add(idi) operations in αr, they
are poised to execute their next event φi = next_event(pi, αr) in round r+1. By assumption
and property (b), all the events φ1, φ2, . . . of the processes Pr in round r+ 1 apply the same
1-revealing primitive.

Four issues must be addressed in order to keep many processes invisible and S small:
(1) Avoid conflicts between the events of round r+1 and the events performed in the previous

rounds that may violate the properties of invisible set. Otherwise, if process pi in round
r+1 accesses a variable in the evidence set of another process pj , then pj cannot be later
erased from the execution without affecting the execution of pi. To simplify the proofs,
we require not only the evidence sets of the invisible processes to be disjoint, but also
their accessible sets.

(2) Ensure that the accessibleVariables of the invisible processes are disjoint (c1). The last
two kinds of conflicts are eliminated using inductive hypothesis (c) and applying Turán’s
Theorem.

(3) Ensure there are no conflicts between events in round r + 1. These are eliminated by
using the properties of 1-revealing primitives.

(4) Keep the size of accessibleVariables(pi) small, for every invisible processes pi, in order to
keep the size of accessibleVariables(S) and accessibleProcesses(S) small.

(1) Eliminating conflicts with the previous rounds. Consider a visibility graph G(V,E),
with vertices V corresponding to the processes in Pr. There are two kinds of edges in G

(see Figure 4): A solid edge pi → pj ∈ E exists if process pi accesses a variable vj ∈
evidence(pj , αr), pi 6= pj , in round r + 1. A dashed edge pi 99K pj ∈ E exists if a process
pi writes to a variable vi a pointer to a variable vj ∈ accessibleVariables(pj , αr), pi 6= pj , in
round r + 1.

We prove that for each process pi, there is at most one outgoing solid edge in the graph
Gαr+1 . By Definition 10(c) of the invisible set Pr, the evidence sets of the processes Pr are
disjoint. Therefore variable vj belongs to evidence set of at most one process pj ∈ Pr. In
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ip
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Figure 4 Example of the visibility graph G(V,E) used in the proof of Lemma 16.

round r + 1, process pi accesses at most one variable vj . Therefore, for each process pi ∈ V
there is at most one outgoing solid edge pi → pj ∈ E.

We also prove that for each process pi, there are at most d outgoing dashed edges
in Gαr+1 . If in round r, process pi writes to a variable vi a pointer to a variable vj ∈
accessibleVariables(pj , αr), for some process pj ∈ Pr. By inductive hypothesis (c), the
accessibleVariables of invisible processes are disjoint after αr. Since each variable contains
at most d pointers, there are at most d such processes pj . This implies that for each process
pi, the graph Gαr+1 contains at most d outgoing dashed edges pi 99K pj ∈ E.

Therefore, |E| ≤ (d+ 1)|V | and the average degree of Gαr+1 (as an undirected graph) is

2|E|/|V | ≤ 2(d+ 1)|V |/|V | ≤ 2(d+ 1).

Next, we apply the Turán’s theorem [15]:

I Theorem 17 (Turán). Let G(V,E) be an undirected graph, where V is the set of vertices
and E is the set of edges. If the average degree of G is r, then G(V,E) has an independent
set with at least

⌈
|V |
r+1

⌉
vertices.

It follows that G has an independent set V ′ ⊆ V with at least
⌈
|V |

(2d+3)

⌉
vertices (rep-

resented by shaded circles on Figure 4). We leave the processes corresponding to V ′ in the
execution (along with the visible processes Wr that cannot be erased), and erase all the
other invisible processes V \ V ′. That is, we define α′r = αr|V ′∪Wr . By the construction of
V ′, if a process p ∈ V ′ is about to access a variable v (in round r + 1 after α′r), then this
variable is not in the evidence set of any other process in V ′, and pi does not write to v a
pointer to a variable in the evidence set of another process in V ′. Therefore, there are no
conflicts between the primitives of round r + 1 and the primitives of rounds 1, . . . , r.

It is still possible that two processes p, q ∈ V ′ are about to access the same variable v
(not in the evidence set of any one of them) in round r+ 1, violating Properties (a) and (b)
of an invisible set (Definition 10). Thus, in order to keep the set of the processes invisible,
we should eliminate conflicts between events in round r + 1. We do this separately for
processes that access the variables from accessibleVariables(S, αr), and the processes that
do not access graph-based-set S.

(2) Eliminating conflicts between events in the same round. We next order the events
of round r+ 1 for the processes that do not access S. Let M(V ′) be the set of the variables
accessed by the processes in V ′ in round r + 1. Note that by the construction of V ′, if
distinct processes p, q ∈ V ′ access a variable v ∈M(V ′), then v is not in the evidence set of
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Figure 5 Induction step in the proof of Lemma 16.

any one of them. We use the properties of 1-revealing primitives to keep as many processes
in V ′ invisible as possible, revealing only a small fraction of them. Suppose that after α′r all
processes in V ′ are about to perform a 1-revealing primitive of type Op(r+1) mod t.

Let v1 ∈ M(V ′) be the variable that is accessed by the largest number of processes. In
round r+ 1, we keep all the processes accessing the variable v1, and exactly one process for
each variable in M(V ′) \ {v1}. Let V ′′ be the set of these processes (Figure 5). We define
α′′r = α′r|V ′′∪Wr

.
Now we will define the sequence of the next events of processes V ′′ for round r + 1.

Since V ′′ ⊆ Pr is invisible in αr, Lemma 11 implies that V ′′ is invisible in α′′r . Let
p1,1, p1,2, . . . , p1,l ∈ V ′′ be the processes that are about to access variable v1 by performing
events φ1,1, φ1,2, . . . , φ1,l. Note that all these events apply the same 1-revealing primitive
to v1. By Definition 15 of a 1-revealing primitive, there is a permutation π1 of the events
φ1,1, φ1,2, . . . , φ1,l such that after α′′rπ1, at most one of the processes p1,1, p1,2, . . . , p1,l, say
p(v1), becomes visible while the others remain invisible. By Definition 15, all other processes
that are invisible in α′′r are also invisible in α′′rπ1.

Finally, we schedule the events φj1 , . . . , φjm
of the processes that access the variables

M(V ′) \ {v1}, obtaining the execution αr+1 = α′′rπ1φj1 , . . . , φjm , in which each process in
V ′′ performs exactly r + 1 steps.

In the execution segment π1 defined above, only one process, p(v1), becomes visible,
while all other processes remain invisible. Consider the events φj1 , . . . , φjm scheduled at the
end of round r + 1. By the construction, there is exactly one process accessing each of the
variables M(V ′) \ {v1}, and after α′′rπ1, none of these variables belongs to evidence set of
the processes in V ′′. Therefore, after αr+1 = α′′rπ1φj1 , . . . , φjm

, processes V ′′ \ {p(v1)} form
an invisible set, denoted Pr+1.

(3) Bounding the size of the invisible set Pr+1 from below. Since |V ′| processes access
|M(V ′)| different variables, on average, |V ′|

|M(V ′)| processes access the same variable. Note
that the number of processes that access the variable v1 is more than the average |V ′|

|M(V ′)| .
As shown above, all the processes accessing v1 remain invisible except one process p(vi).
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Therefore, the number of invisible processes after the execution αr+1 is

|Pr+1| = |V ′′| − 1 ≥ |V ′|
|M(V ′)| + |M(V ′)| − 2 .

For simplicity of notation, denote |M(V ′)| = x. Using this notation, the number of processes
that are invisible after round r + 1 is mr+1 ≥ |V

′|
x + x− 2.

Differentiating by x and equating to 0, we get m′r+1(x) = − |V
′|

x2 + 1 = 0, implying
x =

√
|V ′|. Therefore, mr+1 is minimized with

|V ′|√
|V ′|

+
√
|V ′| − 2 = 2

√
|V ′| − 2 .

Taking |V ′| = mr/(2d+ 3) implies mr+1 ≥ 2
√

mr

2d+3 − 2 ≥
√

mr

2d+3 , showing property (a1).

(4) Bounding the size of the evidence set and the accessible nodes set. In round
r + 1, each invisible process pi performs one step at which it accesses at most one variable
v 6∈ evidence(pi, αr). Therefore, in round r + 1, at most one new variable is added to
the evidence set of pi, and the size of the evidence set grows at most by 1, showing that
evidence(pi, αr+1)| ≤ r + 1, as required by the first part of property (d1).

By inductive hypothesis (c), no variable vi ∈ accessibleVariables(pi, αr)\ evidence(pi, αr)
is in the evidence set of another process pj . Therefore, no such variable vi is modified by
any process in αr, it remains in its initial state ⊥ and does not contain a pointer to another
variable. This implies that for every variable v ∈ evidence(pi, αr), there are at most d
variables vi ∈ (accessibleVariables(pi, αr) \ evidence(pi, αr)) accessible from v. This implies

|accessibleVariables(pi, αr) \ evidence(pi, αr)| ≤ d · |evidence(pi, αr)|

that is, |accessibleVariables(pi, αr)| ≤ (d + 1) · |evidence(pi, αr)| ≤ (d + 1)(r + 1), implying
the second part of property (d1).

Finally, we show that the set accessibleVariables(S) can be kept relatively small, while
keeping enough processes invisible. Consider the processes PS,r ⊆ Pr, whose computational
events in round r + 1 access a variable in accessibleVariables(S, αr).

Let v be the node of graph-based-set S accessed by the largest number of processes in
PS,r in round r+1. We keep the processes accessing v (denoting them PS,r+1), and erase the
rest of the processes (Pr \ PS,r+1) from the execution. Since all the processes PS,r perform
the same 1-revealing primitive in round r + 1, by Definition 15, there is a permutation of
the computation events such that only one of these processes, pi, becomes visible, and the
rest remain invisible.

By induction hypothesis (d), |accessibleVariables(pi, αr)| ≤ r(d + 1). Therefore, in
round r + 1, the size of accessibleProcesses(S, αr) grows by at most 1, and the size of
accessibleVariables(S, αr) grows by at most r(d+ 1), implying property (e1) (Figure 6). By
inductive hypothesis (e),

|accessibleVariables(S, αr)| ≤
r(r + 1)(d+ 1)

2
Therefore,

|PS,r+1| ≥
|PS |

|accessibleVariables(S, αr)|
≥ 2|PS |
r(r + 1)(d+ 1)

The number of processes accessing S decreases more slowly than the number of other invisible
processes. Property (a1) bounds from below the number of invisible processes after αr+1. J
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Figure 6 Bounding the size of graph-based-set in Lemma 16.

By Lemma 16, the number of invisible processes after round r + 1 is mr+1 ≥
√

mr

2d+3 .
To prove the lower bound on the amortized step complexity, we start with the empty

execution α0 that satisfies the inductive hypothesis of Lemma 16 with the invisible set P0
containing all the n processes in the system. Then, we inductively construct execution αr
containing r rounds, using Lemma 16. We require that after αr there are |Pr| = r invisible
processes, i.e., mr = r. Solving this recurrence, we get m0 = (2d+ 3)2r−1r2r = ((2d+3)r)2r

2d+3 .
Since d is a constant, the total number of the processes in the system should be n ≥ m0 =
Ω(((2d+ 3)r)2r ), or r = O(log logn).

By Lemma 16(a1), in each of r rounds of the execution αr, at most 2 process becomes
visible and stopped, and r processes remain invisible after αr. The rest of the processes are
erased from the execution. Therefore, ċ(αr) = |Pr|+ |Wr| ≤ 3r = O(log logn).

By Lemma 16(e1), at most one process pi ∈ Pr completes its operation add(idi) in round
r, and each invisible process takes one step in each round, until it becomes visible. Therefore,
the total number of steps performed by the processes Pr in αr is at least r|Pr| = r2 = Ω(ċ2).

We have constructed an execution of ċ processes that collectively take Ω(ċ2) steps. There-
fore, the amortized step complexity of an operation add is in Ω(ċ2/ċ) = Ω(ċ), provided the
contention of the execution is in O(log logn). This implies the next theorem:

I Theorem 18. Any implementation of graph-based-set using any combination of 1-revealing
primitives has an execution of ċ processes, each performing one add operation, such that the
processes collectively take Ω(ċ2) steps, implying that the amortized (and hence, worst-case)
step complexity of the add operation is Ω(ċ), provided ċ ∈ O(log logn).

A data structure using a connected set of nodes is a graph-based-set, and therefore,
Theorem 18 implies the lower bound also for these data structures.

I Theorem 19. Any implementation of linked lists, skip lists, search trees and other data
structures based on graph-based-set, using any constant set of 1-revealing primitives, has an
execution of ċ processes, each performing one add operation, such that the processes collect-
ively take Ω(ċ2) steps. Therefore, the amortized (and hence, worst-case) step complexity of
the implementation is Ω(ċ), provided ċ ∈ O(log logn).

Acknowledgements. We would like to thank the referees for many helpful comments.

OPODIS 2017



16:16 Lower Bounds on the Amortized Time Complexity of Shared Objects

References
1 James H Anderson, Yong-Jik Kim, and Ted Herman. Shared-memory mutual exclusion:

major research trends since 1986. Distributed Computing, 16(2):75–110, 2003.
2 Richard J. Anderson and Heather Woll. Wait-free parallel algorithms for the union-

find problem. In Proceedings of the Twenty-third Annual ACM Symposium on The-
ory of Computing, STOC ’91, pages 370–380, New York, NY, USA, 1991. ACM. doi:
10.1145/103418.103458.

3 Hagit Attiya and Arie Fouren. Poly-logarithmic adaptive algorithms require revealing
primitives. Journal of Parallel and Distributed Computing, 109:102–116, 2017. doi:10.
1016/j.jpdc.2017.05.010.

4 Rudolf Bayer and Mario Schkolnick. Concurrency of operations on b-trees. Acta informat-
ica, 9(1):1–21, 1977.

5 Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. The amortized com-
plexity of non-blocking binary search trees. In Proceedings of the 2014 ACM Symposium
on Principles of Distributed Computing, PODC ’14, pages 332–340, New York, NY, USA,
2014. ACM. doi:10.1145/2611462.2611486.

6 Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In Proceedings of
the Twenty-third Annual ACM Symposium on Principles of Distributed Computing, PODC
’04, pages 50–59, New York, NY, USA, 2004. ACM. doi:10.1145/1011767.1011776.

7 Timothy Harris. A pragmatic implementation of non-blocking linked-lists. Distributed
Computing, pages 300–314, 2001.

8 Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N Scherer, and Nir
Shavit. A lazy concurrent list-based set algorithm. In Proceedings of the 9th international
conference on Principles of Distributed Systems, pages 3–16. Springer-Verlag, 2005.

9 Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan
Kaufmann, 2011.

10 Yong-Jik Kim and James H Anderson. A time complexity lower bound for adaptive mutual
exclusion. Distributed Computing, 24(6):271–297, 2012.

11 Maged M Michael. High performance dynamic lock-free hash tables and list-based sets. In
Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and architec-
tures, pages 73–82. ACM, 2002.

12 Eric Ruppert. Analysing the average time complexity of lock-free data struc-
tures. In Workshop on Complexity and Analysis of Distributed Algorithms,
2016. [http://www.birs.ca/events/2016/5-day-workshops/16w5152/videos/watch/
201612011630-Ruppert.html; accessed 22-Mar-2017].

13 Niloufar Shafiei. Non-Blocking Data Structures Handling Multiple Changes Atomically.
PhD thesis, York University, 2015.

14 R. Kent Treiber. Systems programming: Coping with parallelism. International Business
Machines Incorporated, Thomas J. Watson Research Center, 1986.

15 P. Turan. On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok,
48:436–452, 1941.

16 John D Valois. Lock-free linked lists using compare-and-swap. In Proceedings of the four-
teenth annual ACM symposium on Principles of distributed computing, pages 214–222.
ACM, 1995.

A Extending the Kim-Anderson Lower Bound
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Algorithm 1 Adaptive mutual exclusion using a set object and CAS
waitingRoom: a sack object, initially empty
promoted : a RW register, initially ⊥
fastLane: CAS register, initially EMPTY
gate: CAS register, initially OPEN
privateGate[0, . . . n− 1]: initially CLOSED
wants[0, . . . , n− 1] : initially FALSE

1: procedure enterCS(id)
2: wants[id] = TRUE . announce that the process needs to enter CS
3: waitingRoom.put(id) . add itself to the set of the waiting processes
4: if CAS (fastLane, EMPTY, 〈OCCUPIED, id〉) then . try to occupy the fast lane
5: continue . pi successfully passed the fast lane, continue to the gate mutual exclusion
6: else
7: wait until privateGate[id] == OPEN . wait until another process

. will open pi’s private gate
8: end if
9: wait until CAS (gate, OPEN, CLOSED) . try to win 2-process mutual exclusion
10: end procedure

11: procedure exitCS(id)
12: wants[id] = FALSE
13: privateGate[id] = CLOSED . clean-up
14: CAS (fastLane, 〈OCCUPIED, id〉, EMPTY) . if the fast lane occupied by pi, release it
15: if promoted = id then . if pi was the promoted process
16: promoted = ⊥ . the reset promoted to ⊥
17: end if
18: if promoted = ⊥ then . if there is no promoted process, promote one
19: do next = waitingRoom.draw() . remove some process from the sack
20: until (wants[next]==TRUE or next == ⊥) . until the removed process is interested

. to enter CS, or until waitingRoom is empty
21: if wants[next]==TRUE then . process next is interested to enter CS
22: promoted = next . promote next
23: privateGate[next] = OPEN . signal to next by opening its private gate
24: end if
25: end if
26: gate = OPEN . release the 2-process mutual exclusion
27: end procedure

In each round of the proof of [10, Lemma 7], at most two processes are added to the set
of finished processes Fin(H). Before a process p is added to Fin(H) in round j, it performs
j steps. The execution H has k rounds, and there is at least one process that is not in
Fin(H) at the end of round k; this process performs at least k steps. Let x be the number
of the processes in Fin(H) at the end of the execution: x = |Fin(H)|. The processes Fin(H)
are simultaneously active in H, therefore ċ(H) ≥ x. The total number of steps performed
by all processes in H is equal to the number of steps performed by the processes Fin(H),
which is at least

∑x/2
j=1 2j ≥ x2/4, plus k steps performed by the last process. Thus, the total

number of steps is x2/4+k, and the amortized step complexity is t(x) = (x2/4+k)/(x+1) =
Ω(x) = Ω(ċ(H)). Differentiating the last expression by x and equating to 0, we get that the
amortized step complexity is minimized at min t(x) = 1

2
(√

4k + 1− 1
)
for x =

√
4k + 1− 1.

That is, the construction guarantees amortized step complexity t(x) ≥ x/2 = Ω(ċ(H)).
The maximal number of processes in the system required for the construction is N(k) =

(2k+4)2(2k−1), implying k = O(log logN). Since x = O(
√
k), we have that x = O(

√
log logN).
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This gives the next observation:

I Theorem 20. For any given x, there is an execution H, with point contention ċ(H) ≥
x and RMR amortized step complexity amortizedStep(H) = Ω(ċ(H)), provided that x =
O(
√

log logN), where N is the total number of the processes in the system.
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Abstract
Two local-spinning queue-based mutual exclusion algorithms are presented that have several de-
sired properties: (1) their exit codes are wait-free, (2) they satisfy FIFO fairness, (3) they have
constant RMR complexity in both the CC and the DSM models, (4) it is not assumed that the
number of processes, n, is a priori known, that is, processes may appear or disappear intermit-
tently, (5) they use only O(n) shared memory locations, and (6) they make no assumptions on
what and how memory is allocated.

The algorithms are inspired by J. M. Mellor-Crummey and M. L. Scott famous MCS queue-
based algorithm [13] which, except for not having a wait-free exit code, satisfies similar properties.
A drawback of the MCS algorithm is that executing the exit code (i.e., releasing a lock) requires
spinning – a process executing its exit code may need to wait for the process that is behind it in
the queue to take a step before it can proceed. The two new algorithms overcome this drawback
while preserving the simplicity and elegance of the original algorithm.

Our algorithms use exactly the same atomic instruction set as the original MCS algorithm,
namely: read, write, fetch-and-store and compare-and-swap. In our second algorithm it is possible
to recycle memory locations so that if there are L mutual exclusion locks, and each process
accesses at most one lock at a time, then the algorithm needs only O(L + n) space, as compared
to O(Ln) needed by our first algorithm.
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1 Introduction

Concurrent access to resources shared among several processes must be synchronized in order
to avoid interference between conflicting operations. Mutual exclusion locks are still the de
facto mechanism for concurrency control on shared resources: a process accesses the resource
only inside a critical section code, within which the process is guaranteed exclusive access.
The popularity of this approach is largely due to the apparently simple programming model
of such locks, and the availability of lock implementations which are reasonably efficient.

Most of the mutual exclusion lock algorithms include busy-waiting loops. The idea is
that in order to wait, a process spins on a flag register, until some other process terminates
the spin with a single update operation. Unfortunately, under contention, such spinning may
generate lots of traffic on the interconnection network between the process and the memory,
which can slow other processes. To address this problem, it is important to distinguish
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Figure 1 Shared memory models. (a) Central shared memory. (b) Cache Coherent (CC). (c)
Distributed Shared Memory (DSM). P denotes processor, C denotes cache, M denotes shared memory.

between remote access and local access to shared memory, and to try to reduce the number
of remote accesses as much as possible.

We consider two machine architectures models: (1) Cache coherent (CC) systems, where
each process (or processor) has it own private cache. When a process accesses a shared
memory location a copy of it migrates to a local cache line and becomes locally accessible until
some other process updates this shared memory location and the local copy is invalidated;
(2) Distributed shared memory (DSM) systems, where instead of having the “shared memory”
in one central location, each process “owns” part of the shared memory and keeps it in its
own local memory. These different shared memory models are illustrated in Figure 1.

A shared memory location is locally accessible to some process if it is in the part of the
shared memory that physically resides on that process local memory. Spinning on a remote
memory location while its value does not change, is counted only as one remote operation
that causes communication in the CC model, while it is counted as many operations that
causes communication in the DSM model. An algorithm satisfies local spinning (in the CC
or DSM models) if the only type of spinning required is local spinning.

An algorithm that satisfies local spinning in a DSM system, is expected to perform well
also when executed on a machine with no DSM. The reason is that each process spins only
on memory locations on which no other process spins, thus eliminating hot-spot contention
caused by busy-waiting.

The MCS lock, due to John Mellor-Crummey and Michael Scott, is perhaps the best-
known and most influential local-spinning lock algorithm [13]. This important algorithm and
several variants of it are implemented and used in various environments. For example, Java
Virtual Machines use object synchronization based on variations of the MCS lock [7].

A code segment in an algorithm is wait-free if its execution by a process should require
only a finite number of steps and must always terminate regardless of the behavior of the
other processes. A drawback of the MCS lock is that releasing it is not wait-free and requires
spinning – a process that is releasing the lock may need to wait for the process that is trying
to acquire the lock to take a step before it can proceed. Thus, when there is high contention,
a releasing process may have to wait for a long time until a process that is trying to acquire
the lock is schedule. We present two new local-spinning algorithms which overcome this
drawback while preserving the simplicity and elegance of the original MCS algorithm.

The two new mutual exclusion algorithms, which are inspired by the MCS algorithm,
have several desired properties. These properties, formally defined in the next section, are:
(1) their exit codes are wait-free, (2) they satisfy FIFO fairness, (3) they have constant RMR
(remote memory reference) complexity in both the CC and the DSM models, (4) they do not
require to assume that the number of participating processes, n, is a priori known, that is,
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processes may appear or disappear intermittently, (5) they use only O(n) shared memory
locations, and (6) they make no assumptions on what and how memory is allocated1.

Except for property 1 above, the other properties are satisfied also by the MCS algorithm.
No previously published algorithm satisfies all these properties together.

Our algorithms use exactly the same atomic instruction set as the original MCS algorithm,
namely: read, write, fetch-and-store and compare-and-swap. In our second algorithm it is
possible to recycle memory locations so that if there are L locks, and each process accesses
at most one lock at a time, then the algorithm needs only O(L + n) space, as compared to
O(Ln) needed by our first algorithm.

2 Preliminaries

2.1 Computational model
Our model of computation consists of an asynchronous collection of n deterministic processes
that communicate via shared registers (i.e, shared memory locations). Asynchrony means
that there is no assumption on the relative speeds of the processes. Access to a register is
done by applying operations to the register. Each operation is defined as a function that
gets as arguments one or more values and registers names (shared and local), updates the
value of the registers, and may return a value. Only one of the arguments may be a name of
a shared register. The execution of the function is assumed to be atomic. Call by reference
is used when passing registers as arguments. The operations used by all our algorithms are:

Read: takes a shared registers r and simply returns its value.
Write: takes a shared registers r and a value val. The value val is assigned to r.
Fetch-and-store (FAS): takes a shared register r and a local register `, and atomically
assigns the value of ` to r and returns the previous value of r. (The fetch-and-store
operation is also called swap in the literature.)
Compare-and-swap (CAS): takes a shared register r, and two values: new and old. If the
current value of the register r is equal to old, then the value of r is set to new and the
value true is returned; otherwise r is left unchanged and the value false is returned.

Most modern processor architectures support the above operations.

2.2 Mutual exclusion
The mutual exclusion problem is to design an algorithm that guarantees mutually exclusive
access to a critical section among n competing processes [3]. It is assumed that each process
is executing a sequence of instructions in an infinite loop. The instructions are divided into
four continuous sections: the remainder, entry, critical and exit. The entry section consists
of two parts: the doorway which is wait-free, and the waiting part which includes one or
more loops. A waiting process is a process that has finished its doorway code and reached
the waiting part, and a beginning process is a process that is about to start executing its
entry section. It is assumed that a process may crash2 in its remainder section, but may not
crash in its entry, critical or exit sections. It is also assumed that a process always leaves its
critical section.

1 For example, in [2] it is assumed that all allocated pointers must point to even addresses.
2 A process that fails by crashing is a process that stops its execution in a definitive manner.
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The mutual exclusion problem is to write the code for the entry and the exit sections in
such a way that the following two basic requirements are satisfied.

Deadlock-freedom: If a process is trying to enter its critical section, then some process,
not necessarily the same one, eventually enters its critical section.
Mutual exclusion: No two processes are in their critical sections at the same time.

Satisfaction of the above two properties is the minimum required for a mutual exclusion
algorithm. For an algorithm to be fair, satisfaction of an additional condition is required.

FIFO (First-in-first-out): A beginning process cannot execute its critical section before a
waiting process executes its critical section.
Strong FIFO: A process that has not completed its doorway cannot execute its critical
section before a waiting process executes its critical section.

All our algorithms satisfy the slightly stronger strong FIFO requirement. To simplify the
presentation, when the code for a mutual exclusion algorithm is presented, only the entry
code and exit code are described, and the remainder code and the infinite loop within which
these codes reside are omitted.

2.3 Counting Remote Memory References
As already mentioned, for certain shared memory systems, it makes sense to distinguish
between remote and local access to shared memory. Shared registers may be locally-accessible
as a result of coherent caching, or when using distributed shared memory where shared
memory is physically distributed among the processors.

We define a remote reference by process p as an attempt to reference (access) a memory
location that does not physically reside on p’s local memory. The remote memory location
can either reside in a central shared memory or in some other process’ memory.

Next, we define when remote reference causes communication. (1) In the distributed
shared memory (DSM) model, any remote reference causes communication; (2) in the coherent
caching (CC) model, a remote reference to register r causes communication if (the value
of) r is not (the same as the value) in the cache. That is, communication is caused only by
a remote write access that overwrites a different process’ value or by the first remote read
access by a process that detects a value written by a different process.

Finally, we define time complexity when counting only remote memory references. This
complexity measure, called RMR complexity, is defined with respect to either the DSM model
or the CC model, and whenever it is used, we will say explicitly which model is assumed.

The RMR complexity in the CC model (resp. DSM model) is the maximum number of
remote memory references which cause communication in the CC model (resp. DSM
model) that a process, say p, may need to perform in its entry and exit sections in order
to enter and exit its critical section since the last time p started executing the code of its
entry section.

3 The First Algorithm

Our first algorithm has the following properties: (1) its exit code is wait-free, (2) it satisfies
strong FIFO fairness, (3) it has constant RMR complexity in both the CC and the DSM
models, (4) it does not require to assume that the number of participating processes, n, is a
priori known, (5) it uses only O(n) shared memory locations, (6) it makes no assumptions
on what and how memory is allocated, and (7) it uses exactly the same atomic instruction
set as the original MCS algorithm.
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3.1 An informal description
The algorithm maintains a queue of processes which is implemented as a linked list. Each
node in the linked list is an object with pointer field called next, boolean field called locked,
and status bit called status. Each process p has its own two nodes (i.e., elements), called
qp[0] and qp[1], which in a DSM machine can be assumed to be stored in process p’s local
memory. In addition, a shared object called T (tail), points to the end of the queue.

Each time a process p wants to enter its critical section it uses alternately one of its
two nodes. In its entry code a process threads itself (i.e., its node) to the end of the queue.
Afterwards, p checks its state which can be one of the following: (1) it is alone in the queue,
(2) its predecessor is in its exit section, or (3) its predecessor is either in its entry or critical
section. In the first two cases, p can safety enter its critical section, in the later case p spins
locally on its boolean locked field until it gets a signal from its predecessor that it is now at
the head of the queue. Once p is at the head of the queue it can enter its critical section.

In its exit code, a process signals to its successor to enter its critical section. The main
challenge is in implementing the part of the algorithm in which a releasing process signals its
successor, since the threading cannot be done in one atomic operation and requires several
remote accesses to the shared memory. This includes making T point to this process’ node
and making the process’ predecessor know the threaded process is its successor.

In the MCS algorithm, to prevent a race condition, the releasing process is required in its
exit code to wait until the threading is completed, and only then it may signal its successor
and exit. As a result, the exit code of the MCS algorithm is not wait-free. To resolve this
problem, we had to deal with a situation where the releasing process is in its exit section,
but since the threading of its successor has not been completed yet the releasing process does
not know who is its successor and thus has no way to signal anything directly to its successor
(unless it waits for the threading to be completed, which is not an option in our case).

So, in its exit code p first assigns the value unlocked to its status variable. Since p may
not know who is its successor, this assignment leaves a signal for p’s successor that it may
enter its critical section. However, this signal is done in p’s memory space, so its successor
cannot simply spin and wait for this signal, and checks for this signal only once.

Then, p checks if the threading of its successor (if there is one) is completed. If it isn’t,
there are two possibilities: (1) p is alone in the queue in which case p completes its exit
code, or (2) p is not alone, in which case its successor will check and notice the signal p left
in p’s status variable. If the threading of its successor is completed, again there are two
options: (1) the successor has already noticed the signal in p’s status variable in which case
p completes its exit code, or (2) its successor is spinning locally on its locked bit, in which
case p terminates the waiting by setting its successor’s locked bit to false. There are several
race conditions which are resolved using compare-and-swap operations as explained later.
The reason for using two nodes for each process is explained in details in Subsection 3.3.

3.2 The code of the algorithm and a detailed description
In the algorithms, the following symbols are used: “∗” to indicate pointer of a specified type,
“&” to obtain an object’s address, and “.” (dot) for integrated pointer dereferencing and field
access. The code of the algorithm appears in Figure 1. A detailed explanation follows.

We start with the entry code. In line 1, out of its two nodes, p chooses the node to use
in the current iteration, by inspecting current’s value. We notice that when p finishes the
iteration, it toggles the value of current (in line 16). In line 2, p initializes its current node
next pointer to NIL. During the execution next points to p’s successor in the queue, and p
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Algorithm 1 Program for process p.
Type: QNode: {next: QNode*, locked: bool, status ∈ {LOCKED, UNLOCKED}}
Shared: T : type QNode*, initially NIL // T points to the last item in the queue

qp[0, 1]: type QNode, both nodes initially {NIL, false, LOCKED}
// queue nodes belong to process p, and local to process p in the DSM model

Local: pred: type QNode*, initial value immaterial // process’ predecessor
succ: type QNode*, initial value immaterial // process’ successor
mynode: type QNode*, initially value immaterial // currently used node
current: ∈ {0,1}, initial value immaterial // index to current node

Enter Code:
1 mynode := &qp[current] // current node for this round, doorway begins
2 mynode.next := NIL
3 mynode.status := LOCKED
4 pred := FAS(T, mynode) // enter the queue, doorway ends
5 if pred 6= NIL then // enter CS if no predecessor
6 mynode.locked := true // prepare to wait
7 pred.next := mynode // notify your predecessor
8 if CAS(pred.status, UNLOCKED, LOCKED) = false then
9 await (mynode.locked 6= true) fi fi // wait for your predecessor’s signal

Critical Section
Exit Code:

10 mynode.status := UNLOCKED // notify successor it can enter its CS
11 if mynode.next = NIL then // if you don’t have a successor
12 CAS(T, mynode, NIL) // set T back to NIL if you are last
13 else if CAS(mynode.status, UNLOCKED, LOCKED) then // there is a successor
14 succ := mynode.next

15 succ.locked := false fi fi // notify successor it can enter its CS
16 current := 1− current // toggle for further use

has no successor yet. Later, the successor of p, if there is one, will update p’s next pointer in
line 7, and p will identify whether it has a successor, when executing line 11. In line 3, p

initializes its current node status field to LOCKED. In line 4, p gets T ’s value, and assigns a
pointer to its node into T . This line is the last line of the doorway, and it is where p threads
its node to the queue and gets a pointer to its predecessor node (if there is one). In line 5,
p validates whether it has a predecessor. If it doesn’t, it means that p is first in the queue
and can safely enter its critical section. If p has a predecessor, say q, it continues to line 6,
where it initializes its locked variable to true, which means p cannot enter its critical section
at the moment. In line 7, p notifies q that p itself is its successor. In line 8, p checks if q

already enabled it to enter its critical section, by assigning UNLOCKED to status. If the
compare-and-swap operation succeeds, p knows q already executed line 10, and exited its
critical section, so p can enter its critical section. In case the compare-and-swap fails, p waits
for its turn to enter its critical section in line 9 by local-spinning on its locked variable,
waiting for q to assign false to it (line 15).

Next we explain the exit code. In line 10, p assigns UNLOCKED to its status variable
immediately after it finishes executing its critical section. At that time, p may not know who
is its successor, so the first operation in the exit code is to leave a signal for the upcoming
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successor, so that it will be able to enter its critical section when the time comes. In line 11,
p checks if its successor (if there is one) has already notified who it is (that is, if its successor
already executed line 7). If it didn’t, p may be the only one in the queue. In line 12 p

checks whether T equals mynode, which is the node p inserted to the queue in line 4. If the
compare-and-swap succeeds, p is indeed alone in the queue, so it assigns NIL to T , which
returns the queue to its initial state. If the compare-and-swap in line 12 fails, it means that
there must be another process in the queue after p. Since p assigned UNLOCKED to its
status variable, its successor should notice it and be able to enter its critical section later
on. If p’s successor has executed line 7 before p has executed line 11, p will know who its
successor is. In line 13, p checks whether its successor already let itself enter into its critical
section after reading p’s UNLOCKED value in line 8. If the successor hasn’t done so yet,
the compare-and-swap operation succeeds, and p lets its successor enter its critical section
in lines 14-15 by setting the bit its successor spins on to false. In line 16, p toggles its
current, for the next iteration. The toggle is necessary to avoid deadlock.

3.3 Further explanations
In order to better understand the algorithm, we explain below three delicate design issues
which are crucial for avoiding deadlocks.
1. Why each process p needs two nodes qp[0] and qp[1]? The current variable is used to

avoid deadlock in the following execution: assume each process has one node instead of
two. Suppose process p is in its critical section, and process q finished its doorway. p

resumes and executes its exit code (lines 10, 11). p finishes its exit code while q is in
the queue, but q hasn’t informed p who it is yet. p leaves its status variable with the
value UNLOCKED, so that q will be able to enter its critical section. p starts another
iteration before q resumes and executes line 4. Another process q′ executes its entry code,
such that q′ is p’s successor. Notice that, in that execution, q and q′ share p’s node as
their predecessor (from two different iterations of p). If q′ executes line 7 before q, q can
override the assignment of q′ and assigns a pointer to its node into p’s next variable. q′

now moves on and waits in line 9, but there is no process to free q′ and a deadlock occurs.
This problem is resolved by having each process own two nodes. We only need two nodes
for each process, since the algorithm satisfies FIFO. p’s successor enters its critical section
before p enters its critical section in its next iteration. After p’s successor enters its
critical section, p’s node won’t be needed anymore, and p will be able to reuse it.

2. Is the order of lines 6 and 7 important? Line 6 must be executed before line 7, and their
order should not be changed. Assume we have two processes, p and q, where q is p’s
predecessor and we change the order of lines 6 and 7. We let p execute line 7 and suspend
it before executing line 6. In such a case, q can start executing its exit code. q will notice
it has a successor, and q will move on to execute line 15. Then, p will continue to execute
its code, and executes line 6. p assigns true to locked and misses q’s signal to enter its
critical section, and a deadlock occurs.

3. Is the order of lines 10 and the test in the if statement in line 11 important? Line 10
must be executed before the exited process checks in line 11 whether it has a successor.
If the UNLOCKED assignment is executed afterwards, a deadlock may occur. Assume
we have two processes, p and q, where q is p’s predecessor. q executes the first line of
the exit code, which is (after switching) “if mynode.next = NIL then”. Assume p hasn’t
executed line 7 yet, so the condition is true. Meanwhile, process p executes lines 5-9 and
waits at line 9. Process p cannot skip the compare-and-swap since q’s status variable is
LOCKED. q finishes its exit code without signaling to p, and thus p will spin in line 9
forever, causing a deadlock.
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3.4 Correctness proof
The following notions and notations are used in the proof.
1. Doorway: Process p is considered to be in its doorway while executing statements 1-4.
2. The ith iteration: Process p during its ith iteration (i.e, its ith attempt to enter its

critical section) is denoted by pi.
3. Follows, predecessor, successor: Consider an execution e. qj follows pi in e if and

only if pi finishes its doorway before qj . pi is the predecessor of qj in e if and only if
qj follows pi, and no other process finishes its doorway between the time pi finished its
doorway to the time qj finishes its doorway. If pi is the predecessor of qj then qj is said
to be the successor of pi.

I Lemma 1. For every process p at iteration i, pi has at most one predecessor.

Proof. The fact that a process may have only a single predecessor, follows from that fact that
the last step of the doorway (line 4) is an atomic fetch-and-store operation which updates T

and pred. J

I Lemma 2. Assume that for every pi and qj, if pi is the predecessor of qj then pi enters
its critical section before qj enters its critical section. Then, for every pi and qj, if pi is the
predecessor of qj then pi enters its critical section before any process that follows qj enters
its critical section.

Proof. Proof by induction on the number of processes m that follow qj . In the base case,
when m = 1, there is only one process, say rk, that follows qj . This means that qj is the
predecessor of rk. Therefore, according to the assumption made in the first part of the
lemma, qj enters its critical section before rk enters its critical section. Since pi enters its
critical section before qj , and qj enters its critical section before rk, by transitivity pi enters
its critical section before rk.

We assume that the lemma holds for m − 1 processes that follow qj , and prove that
it also holds for the mth process that follows qj . Let the mth process be rk. We denote
rk’s predecessor as r̂k. Notice that r̂k is the m − 1 process that follows qj . Thus, by the
induction hypothesis, pi enters its critical section before r̂k enters its critical section. r̂k is
the predecessor of rk, and thus, according to the assumption made in the first part of the
lemma, r̂k enters its critical section before rk enters its critical section. Since pi enters its
critical section before r̂k enters its critical section and r̂k enters its critical section before rk

enters its critical section, by transitivity pi enters its critical section before rk. J

I Lemma 3. For every pi and qj such that pi is the predecessor of qj , pi is the only process
that can assign false to qj’s mynode.locked.

Proof. By Lemma 1, qj has at most one predecessor. So, pi is qj ’s only predecessor. Clearly,
except for pi, any other process that qj follows will not be able to write to qj ’s mynode.locked.
Thus, throughout the algorithm, the only processes that write to qj ’s mynode.locked are qj

itself and pi. qj does it at line 6 and pi does it at line 15. At line 6, qj assigns true to locked,
thus, the only process that assign false is pi. J

I Lemma 4 (STRONG FIFO). If pi finishes its doorway before qj (begins or) finishes its
doorway, then pi enters its critical section before qj enters its critical section.

Proof. pi finished the doorway before qj finishes the doorway, therefore pi executes line 4
before qj does. There are two options:
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1. qj is pi’s successor.
2. qj follows pi, but qj is not pi’s successor.
According to Lemma 2, once we prove that pi enters its critical section before qj in case 1,
then it would immediately follow that pi enters its critical section before qj in case 2 as well.

Assume qj is pi’s successor and assume to the contrary that qj enters its critical section
before pi. There are two cases:
1. qj executes line 4 after pi executes line 12. In which case, pi entered its critical section

before qj , which contradicts the assumption.
2. qj executes line 4 before pi executes line 12. Therefore, T still points to pi’s qnode when

qj executes line 4 and qj gets pi’s qnode to its pred variable. Thus pred is not NIL, and
qj continues and executes line 8. Here we have two options as well:
a. The compare-and-swap operation in line 8 succeeds. The compare-and-swap succeeds

only if qj ’s pred.status is equal to UNLOCKED. pred is pi’s qnode, pi assigned its
status LOCKED value at the beginning of pi’s entry code. For it to change to
UNLOCKED, pi should execute line 10 in the exit code. This means that pi entered
its critical section before qj did, contradicting the assumption.

b. The compare-and-swap operation in line 8 fails. qj continues to line 9 and local-spins
on locked. The only way qj can enter its critical section is when some other process
writes false to locked. According to Lemma 3, pi is the only process that can assign
false to qj ’s locked. Notice that the only line where pi does this is at line 15, which is
in its exit code. In this case, pi entered its critical section before qj , contradicting the
assumption.

We proved that if pi finishes the doorway before qj finishes the doorway, then there is no
valid scenario where qj enters its critical section before pi. Therefore, pi enters its critical
section before qj does, implying that the algorithm satisfies strong FIFO. J

I Lemma 5. For every pi and qj, if pi is the predecessor of qj such that pi and qj are not
in their critical sections at the same time, then pi and rk are not in their critical sections at
the same time, for any other process rk that follows qj.

Proof. Proof by induction on the number of processes m that follow qj . In the base case,
m = 1: there is only one process, say rk, that follows qj . This means that qj is the predecessor
of rk. Assume pi is in its critical section. Since qj is not in its critical section at the same
time as pi and by Lemma 4 the algorithm satisfies strong FIFO, therefore qj enters its critical
section after pi. Also by Lemma 4, rk enters its critical section after qj . Therefore, rk cannot
be in its critical section at the same time as pi. Next, we assume that the lemma holds for
m− 1 processes that follow qj , and prove for m processes that follow qj . Let the mth process
be rk, and let rk’s predecessor be r̂k. Notice that r̂k is the m− 1 process following qj , and
therefore by the induction hypothesis pi and r̂k are not in their critical sections at the same
time. Thus, since by Lemma 4 the algorithm satisfies strong FIFO, rk is not in its critical
section at the same time as pi. J

I Lemma 6 (Mutual Exclusion). No two processes are in their critical sections at the same
time.

Proof. We assume that there are two processes, pi and qj at their critical sections at the
same time, and show it leads to a contradiction. Assume, without loss of generality, that
pi enters its critical section before qj . According to Lemma 4 the algorithm satisfies strong
FIFO, so pi finishes its doorway before qj , and therefore pi executes line 4 before qj . There
are two options:
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1. qj is pi’s successor.
2. qj follows pi, but qj is not pi’s successor.

By Lemma 5, once we prove that pi and qj are not in their critical sections at the same
time in case 1, then it would immediately follow that pi and qj are not in their critical section
at the same time in case 2. Let’s prove case 1: Assuming qj is pi’s successor, there are two
options:
1. qj executes line 4 after pi executes line 12. In this case, pi exits its critical section before

qj enters its critical section, which contradicts the assumption.
2. qj executes line 4 before pi executes line 12. Therefore, T still points to pi’s qnode when

qj executes line 4 and qj gets pi’s qnode assigned to its pred variable. Thus pred is not
NIL, and qj continues and executes line 8. In line 8, qj checks whether pi’s status is
UNLOCKED. Since pi executed line 4 before qj executed line 4, pi also executed line 3
before qj executed line 8. According to the assumption pi still hasn’t exited its critical
section, so its status is still LOCKED. Therefore the compare-and-swap fails and qj

continues to line 9. qj assigned true to its locked variable in line 6, and local-spins in line
9, waiting for some process to let it enter its critical section. By Lemma 3, pi is the only
process that can assign false to qj ’s locked. pi does this at line 15, which means that
for qj to enter its critical section, pi has to execute its exit code. This contradicts the
assumption that pi and qj are in their critical sections at the same time. J

I Lemma 7. For every pi and qj such that qj is pi’s predecessor, once qj assigned the value
false to pi’s locked variable, this value cannot be overwritten, until pi completes its exit code.

Proof. By Lemma 1, pi has only one predecessor, so qj is pi’s only predecessor. Throughout
the algorithm, the only processes that write to pi’s locked variable are pi itself and qj . pi

does this at line 6 and qj does this at line 15. We will show that if qj executes line 15, pi

must have already executed line 6 before that. qj executed line 15, therefore qj must have
executed the “else” clause of the “if” statement at line 11. So the “if” condition was false,
and qj ’s mynode.next was not equal to NIL. qj has only one successor which is pi. Since
qj ’s next variable was not NIL, pi has already executed line 7 and assigned its node to qj ’s
next. This implies that pi has already executed line 6, in which it assigns true to locked.
Therefore pi executed line 6 before qj executed line 15, and since there is no other process
that writes to pi’s locked variable, the (false) value was not overwritten. J

I Lemma 8 (Deadlock-freedom). If a process is trying to enter its critical section, then some
process, not necessarily the same one, eventually enters its critical section.

Proof. Assume to the contrary that some group of processes P are in their entry code and
none of them can ever access its critical section. Let pi be the first process in P to complete
its doorway. Thus, all the other processes in P follow pi. The fact that pi is not being
able to enter its critical section, means that pi is local-spinning at line 9, since all the other
lines in its entry code do not contain any loops, are wait-free and can be completed in a
constant number of pi steps. Any other execution path would lead pi to its critical section
and contradicts the assumption. From here it follows that:

When pi completed its doorway, pred was not NIL. Therefore, there exists process qj

such that qj finished the doorway before pi, but hasn’t executed line 12 that removes it
from the queue.
pi compare-and-swap operation at line 8 fails, therefore qj status was equal to LOCKED.
There are two options:
1. qj hasn’t executed line 10.
2. qj has already executed line 13, where the compare-and-swap operation ended success-

fully for qj .



R. Dvir and G. Taubenfeld 17:11

Since we assumed that pi is the first process to complete its doorway among the waiting
processes, and qj is pi’s predecessor, it follows that qj would eventually be able to enter
its critical section. Therefore, qj will necessarily exit its critical section and begin the exit
code. In both cases above, it is easy to see that the execution path of qj in the exit code
leads it to line 15, where qj writes false to pi’s locked variable. In addition, according to
Lemma 7, the value of pi’s mynode.locked field is never overwritten until pi completes it
exit code. Therefore, at some point pi will notice that mynode.locked = false and can
continue to its critical section. This contradicts the assumption that pi will not enter its
critical section. J

I Lemma 9 (Constant RMR complexity). The RMR complexity of Algorithm 1 is O(1) in
both the CC and DSM models.

Proof. By inspecting the algorithm, it is easy to count steps and see that except the busy-
waiting loop in line 9, it takes constant number of steps for a process to enter and exit its
critical section. Thus, it is sufficient to prove that, for every pi, pi performs O(1) RMRs at
line 9, because this is the only busy-waiting loop in the algorithm. We will prove that while
the process is executing the loop at line 9, it performs only a constant number of remote
memory references, in both models:

DSM model: pi spins on mynode.locked. mynode can be equal to either qp[0] or qp[1]
as follows from line 1 in the algorithm. Both of them initialized as local to process pi’s
memory and thus the algorithm performs O(1) RMRs in the DSM model.
CC model: We prove that in one iteration of a process, there is at most one cache
invalidation. Before spinning on mynode.locked, its value migrates to pi’s local cache,
since pi assigned to it at line 6. It is updated by another process only once, at line 15.
When a process updates mynode.locked, pi will have a cache invalidation and pi will
execute one remote memory reference to read the new value of mynode.locked. Since
the new value is necessarily equal to false, pi stops spinning on mynode.locked and
proceeds to its critical section. By Lemma 7, there is no other process that writes to pi’s
mynode.locked in the current iteration anywhere else in the algorithm. Therefore, there
is only one remote memory reference during the loop execution, and the algorithm has
O(1) RMR complexity in the CC model. J

I Lemma 10 (Wait-free exit code). Every process finishes its exit code within a bounded
number of its own steps.

Proof. Since the exit code is a straight-line code which does not contain either loops or await
operations, it immediately follows that any execution of the exit code will be completed in a
bounded number of a process’ own steps. J

I Theorem 11. Algorithm 1 satisfies mutual exclusion, deadlock freedom, wait-free exit,
strong FIFO fairness, and constant RMR complexity. Furthermore, it does not require to
assume that the number of processes, n, is a priori known, it uses only O(n) shared memory
locations, it makes no assumptions on what and how memory is allocated, and it uses exactly
the same atomic instruction set as the original MCS algorithm.

Proof. The properties mutual exclusion, deadlock freedom, wait-free exit, strong FIFO
fairness and constant RMR complexity, follows from Lemma 6, Lemma 8, Lemma 10, Lemma
4 and Lemma 9, respectively. The other properties are easily verified by inspecting the code
of the algorithm. J
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4 The Second Algorithm

The second algorithm satisfies the same properties as the first algorithm, as listed at the
beginning of Section 3. In addition, in the second algorithm it is possible to recycle memory
locations so that if there are L locks, and each process accesses at most one lock at a time, the
algorithm needs only O(L + n) space, as compared to O(Ln) needed by the first algorithm.

To simplify the presentation, we will assume that processes have unique identifiers.
However, for each process p, the value of one of its pointers is a unique number which can be
used as process p’s unique identifier instead of assuming that p itself is the unique identifier.
We elaborate more on this issue in Subsection 4.3, after the algorithm is presented.

4.1 An informal description

As in the previous case, the algorithm maintains a queue of processes which is implemented
as a linked list. Each process p has two different data elements that complete each other and
together represent a single node. The two data elements are called: qp which resides in p

local memory and access to it is considered local access, while nodep is handed over from
an exiting process to its successor at the end of the exit code, and access to it is considered
remote memory access. qp, which is not part of the queue, is a record with pointer field called
qnode which initially points to the nodep element, and boolean field called locked. nodep is
the element that initially p tries to thread into the linked list in its entry code.

In addition, a shared object called T (tail), points to the end of the queue. Initially, when
the queue is empty, T points to a dummy node, called node0, that enables the first process
which succeeds to enter the queue, to proceed to its critical section.

In its entry code a process threads itself (i.e., thread the element qp.qnode points to) to
the end of the linked list. A process has several ways to enter its critical section: it can enter
immediately if it is alone in the queue or if its predecessor is in its exit section, otherwise, it
has to spin locally until its predecessor assigns false to locked.

In the exit code p first assigns the value p (its ID which is different than 0) to its status
field of its node in the linked list. Since, p may not know who is its successor, this assignment
leaves a signal for p’s potential successor that it may enter its critical section. Then, p checks
if it has a successor. If it doesn’t then p completes its exit code. Otherwise, if p’s successor
has already noticed p’s status variable equals p, process p completes its exit code. If its
successor is spinning locally on its locked bit, p terminates the waiting by setting its successor
locked bit to false. In all the above cases, p always leaves its current node in the queue
(because this node includes the status field with the value p which indicates that its critical
section is free) and, before p completes its exit code, it removes from the queue and takes
ownership of the node of its predecessor (which is the current dummy node).

4.2 The code of the algorithm and a detailed description

We assume that each process has a unique identifier which is different than 0. The code of the
algorithm appears in Figure 2. It is important to notice that there are some statements in the
algorithm with multiple memory references. We use this style to keep the algorithm short and
simple. Only one shared memory location can be accessed in one atomic step! For example,
the statement in line 1, “qp.qnode.next := NIL” is equivalent to “localTemp := qp.qnode;
localTemp.next := NIL”, and the statement in line 7 “pred.next := qp.qnode” is equivalent
to “localTemp := qp.qnode; pred.next := localTemp”. A detailed explanation follows.
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Algorithm 2 Program for process p.
Type: QNode: {next: QNode*, local: LocalNode*, status: integer, pid: integer}

LocalNode: {qnode: QNode*, locked: bool}
Constant:

ZERO = 0 // it is assumed that 0 is not a process id
Shared: node0: type QNode, initially {NIL, NIL, 0, 0}

// a dummy node, enables the first process to enter its critical section
T : type QNode*, initially &node0 // T points to node0
nodep: type QNode, initial values are immaterial
qp: type LocalNode*, qnode initially &nodep, locked initial value is immaterial

// qp belongs to process p, and local to process p in the DSM model
Local: pred: type QNode*, initial value is immaterial // process’ predecessor

predP id: type integer, initial value is immaterial // process’ predecessor ID

Enter Code:
1 qp.qnode.next := NIL // initialization, doorway begins
2 qp.qnode.pid := p // process ids are unique and different than 0
3 qp.qnode.local = qp

4 qp.qnode.status := ZERO
5 qp.locked := true

6 pred := FAS(T, qp.qnode) // enter the queue, doorway ends
7 pred.next := qp.qnode // notify your predecessor
8 predP id := pred.pid

9 if CAS(pred.status, predP id, ZERO) = false then
10 await (qp.locked 6= true) fi // wait for your predecessor’s signal

Critical Section
Exit Code:

11 qp.qnode.status := p // notify successor it can enter its CS
12 if qp.qnode.next 6= NIL then // if you have a successor
13 if CAS(qp.qnode.status, p, ZERO) then
14 qp.qnode.next.local.locked := false fi fi // notify successor it can enter its CS
15 qp.qnode := pred // use predecessor’s node for the next iteration

We start with the entry code. In lines 1-5, p initializes its node. Notice p initializes all
of its fields except qp.qnode, which was already initialized before the execution began. In
line 6, p executes fetch-and-store to enter the queue. p gets T ’s value, which points to the
last item in the queue (which is also p’s predecessor), and assigns its qnode to T . Notice
that p assigns only its nodep to T , while qp can be accessed via nodep if needed. This is the
end of the doorway. In line 7, p notifies its predecessor that p is its successor. In line 8,
p copies its predecessor’s process ID to a local variable, to be used as an argument to the
compare-and-swap operation later. In line 9, p checks whether its predecessor has already
signaled p to enter its critical section. The predecessor does it by assigning its process ID to
its status in line 11. If the predecessor already assigned its process ID but did not change it
back to ZERO yet (line 13) then the compare-and-swap succeeds and p can enter its critical
section. If it fails, p continues to line 10 and starts spinning locally on its locked variable,
waiting for it to change to false so it can enter its critical section.
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Next we explain the exit code. In line 11, p assigns its process ID to its status variable,
and signals its potential successor that it can enter its critical section. In line 12, p checks
whether it has a successor. If next equals NIL it doesn’t have a successor and it continues
to line 15. If next is not NIL, it means that some process q already assigned itself as p’s
successor at line 7. In such a case, p continues to line 13, checking whether q has already
executed line 9 and let itself enter its critical section. If q executed line 9 and q’s compare-
and-swap ended successfully, p’s compare-and-swap in line 13 fails and p continues to line
15. If p’s compare-and-swap ends successfully, it means q hasn’t entered its critical section
yet. Since p assigned ZERO to its status in line 13, p must let q enter its critical section by
setting locked to false, and does so at line 14. In line 15, p assigns its predecessor’s node to
itself, and leaves its node to its successor. On p’s next iteration, it will use its predecessor’s
node, thus p will not override the status in its previous node when initializing its qnode at
the beginning of its next iteration. Therefore, p’s successor will be able to read and use p’s
status when needed and find out that it can enter its critical section.

4.3 Further explanations
In order to better understand the algorithm, we explain below several crucial design issues.
1. Do we really need to explicitly assume that the processes have unique identifiers? No, this

is done only to simplify the presentation. In the first algorithm, it is not assumed that
processes have unique identifiers. However, each process p has two unique memory nodes
qp[0] and qp[1], and it is possible to consider &qp[0] as the unique identifier of process p.
Similarly, in algorithm 2, the value of the pointer qp is a unique number which can be
used as process p’s unique identifiers. That is, in Algorithm 2, it is possible to replace p

with qp (assuming qp 6= 0) everywhere (i.e., in lines 2,11,13). This implies that also in
Algorithm 2 there is no need to explicitly assume that processes have unique IDs.

2. How does a process that does not need to spin know that it is at the head of the queue?
Whenever the values of the status field and of the pid field, of the first node (i.e.,
the dummy node) in the queue are equal, the process its node is the successor of the
dummy node can safely enter its critical section. Initially, node0 is the dummy node and
node0.status = node0.pid = 0, thus, the first process that threads itself into the queue,
can immediately enter its critical section. Also, when a process, say p, completes its
critical section, it always leaves its current node in the queue and takes ownership of the
node of its predecessor (which is the dummy node). Thus, its current node becomes the
new dummy node with both status and pid fields equal p, which will not block the next
process in line, since the compare-and-swap operation in line 9 would succeed.

3. Can’t we simply use UNLOCKED in lines 2,11 and 13, as done in algorithm 1, instead
of using the unique process identifier p? No, this is crucial for avoiding deadlocks. We
explain it by example. Consider the following scenario: There are two processes, p and q.

p starts first and enters its critical section;
q starts, run until after line 7 and becomes p’s successor in the queue;
p executes the code until after line 12. Since next 6= NIL, p enters the if statement;
q continues and enters its critical section;
q continues, finishes its exit code and takes p’s current qnode for its next iteration;
q starts its entry code, and executes until after line 11; p and q has the same qnode!

Now, here is the difference between using process identifiers and UNLOCKED: p continues,
When process identifiers are used, the compare-and-swap operation in line 13 fails and
p takes its predecessor’s qnode for its next iteration and completes its exit code.
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When UNLOCKED is used, the compare-and-swap operation in line 13 succeeds for p

and the shared qnode for p and q now contains the status ZERO. p will continue to
line 14, and p will complete its exit code. q executes its exit code and since it has no
successor, it skips lines 12-14 and exits. We got into a situation where the queue is
empty, and T points to a dummy node with status value ZERO! The next process to
enter will be spinning in line 10 forever.

The structure of the correctness proof of Algorithm 2 is similar to that of Algorithm 1.

5 Related Work

Mutual exclusion algorithms were first introduced by Edsger W. Dijkstra in [3]. Since
then, numerous implementations have been proposed [15, 7, 17]. The first queue-based
local-spinning mutual exclusion algorithms for the CC model were presented in [1, 6]. The
algorithm from [1] used the fetch-and-increment operation, while the algorithm from [6]
used the fetch-and-store (swap) operation. In these two algorithms different processes
may spin on the same memory location at the different times. Their RMR time complexity
in the CC model is a constant, while their time complexity in the DSM model is unbounded.

The famous MCS algorithm is from [13]. Unlike the previous two algorithms, the MCS
algorithm satisfies local spinning in both the CC model and the DSM model. In [9], a simple
correctness proof of the MCS lock is provided. An extension of the MCS Algorithm that
solves the readers-writers problem is presented in [14]. In [16] queue-based algorithm is
presented, which uses unbounded space, in which it is possible for a spinning process to
“become impatient” and leave the queue before acquiring the lock. A recoverable version of
the MCS algorithm, in which processes can fail and recover, was presented recently [4].

Another queue-based lock was developed by Craig [2] and, independently by Magnusson,
Ladin and Hagersten [11, 12]. As the MCS lock, the queue is implemented as a linked list,
but with pointers from each process to its predecessor. The algorithm uses fetch-and-set
operations and may outperform the MCS lock on cache-coherent machines. Its time complexity
in the CC model is a constant, while its time complexity in the DSM model is unbounded.

A variant of the above algorithm from [2], with constant time complexity in both the
CC and the DSM models was presented in [2]. For this variant to work, it must be assumed
that all allocated pointers point to even addresses. This assumption enables to pack two
shared registers into a single 32-bit word so that it is possible to atomically swap the two
registers as a unit. In [10], four local-spin mutual exclusion algorithms for the DSM model
using fetch-and-set operations were presented; all these algorithms use arrays of fixed size,
assume that the number of processes is a priori known, and are not suitable for a model
where processes may appear or disappear intermittently.

6 Discussion

We have presented two new mutual exclusion algorithms, that overcome a drawback of the
famous MCS algorithm, while preserving its simplicity, elegance and properties. It would be
interesting to design additional new algorithms, which would be based on our algorithms,
that implement other types of locks, such as readers-writers locks [14], abortable locks [8, 16]
and recoverable locks [4, 5], and would have constant RMR complexity, satisfy the wait-free
exit code property and other desired properties.
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Abstract
The cost of accessing shared objects that are stored in remote memory, while neglecting accesses
to shared objects that are cached in the local memory, can be evaluated by the number of remote
memory references (RMRs) in an execution. Two flavours of this measure – cache-coherent
(CC) and distributed shared memory (DSM) – model two popular shared-memory architectures.
The number of RMRs, however, does not take into account the granularity of memory accesses,
namely, the fact that accesses to the shared memory are performed in blocks.

This paper proposes a new measure, called block RMRs, counting the number of remote
memory references while taking into account the fact that shared objects can be grouped into
blocks. On the one hand, this measure reflects the fact that the RMR incurred for bringing a
shared object to the local memory might save another RMR for bringing another object placed
at the same block. On the other hand, this measure accounts for false sharing: the fact that an
RMR may be incurred when accessing an object due to a concurrent access to another object in
the same block.

This paper proves that in both the CC and the DSM models, finding an optimal placement is
NP-hard when objects have different sizes, even for two processes. In the CC model, finding an
optimal placement, i.e., grouping of objects into blocks, is NP-hard when a block can store three
objects or more; the result holds even if the sequence of accesses is known in advance. In the DSM
model, the answer depends on whether there is an efficient mechanism to inform processes that
the data in their local memory is no longer valid, i.e., cache coherence is supported. If coherence
is supported with cheap invalidation, then finding an optimal solution is NP-hard. If coherence
is not supported, an optimal placement can be achieved by placing each object in the memory of
the process that accesses it most often, if the sequence of accesses is known in advance.
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1 Introduction

In a typical multiprocessor, processes communicate by concurrently accessing objects in the
shared memory. To reduce the high cost of access to the shared memory, a fast memory,
local to each process, is used to cache recently-used objects. The cost of a cache hit – finding
an object in the process’s local memory – is negligible relative to the cost of a cache miss,
which requires an access to the shared memory. We assume that a block is not evicted from
the local memory unless it is required by some other process; that is, the local memory is
large and fully associative.

A remote memory reference (RMR) [25] is incurred for every cache miss, according to
one of two models: In the cache coherent (CC ) model, the first time a process accesses an
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object it puts the object in its local memory; subsequent reads and writes to the same object
by the same process are free, as long as no other process modifies the object between them;
otherwise, the object must be updated in the local memory again, incurring an RMR. In the
distributed shared memory (DSM ) model, each object is created in the local memory of some
process, before the first access to it occurs; an access to the local memories of other processes
incurs one RMR, while an access to the local memory is free. If cache coherence and cheap
data invalidation is supported then, like in the CC model, the object will be copied by other
processes for read operations, while write operations invalidate the copies at other processes.
Making a copy incurs an RMR, while accesses to an existing copy do not. If invalidation is
not supported, the object remains in the local memory of the process that created it, and
any access to it by a different process incurs an RMR.

Both models, however, ignore the fact that access to the shared memory is performed
in blocks, namely, several objects are placed together and moved together between local
memories and shared memory. When an object is read into the memory, all the objects in
the same block are moved, so that later accesses to them incur a cache hit. Similarly, if one
object is moved to another process, accesses to the other objects in the same block causes
a cache miss, even if no other process has accessed them in between. This phenomenon is
called false sharing [23, 11].

Many works deal with cache-conscious organization of the memory, namely, the placement
of objects in blocks so as to increase the number of cache hits, e.g., [8, 9, 20]. However, as
we discuss in Section 1, these works consider only single-process scenarios and do not take
into account the effects of concurrent access to blocks. Algorithms and lower bounds on the
number of RMRs, which capture the effects of concurrency, do not take into account the
granularity of memory accesses, which are done in blocks.

Our Contributions

We introduce the block RMRs complexity measure. In the CC model, when a process accesses
a block, an RMR is incurred when the block is brought to its cache, and later accesses to
the same block are free, as long as no other process writes an object in this block. For this
model, we prove that finding an optimal placement of objects into blocks, i.e., a placement
with a minimal number of block RMRs, is NP-hard when blocks can hold three or more
objects; the result holds even when the sequence of accesses is known and all objects have
the same size (Section 3.2). The problematic access sequence is a natural one, in which two
processes perform a traversal on a graph. When blocks can hold two objects of the same size
and the access sequence is known, we present an efficient algorithm for placing objects in
blocks for the block-based CC model (Section 3.1).

In the block-based DSM model, each block is created in a specific process when the
execution starts, and each access to a block not in a process’s own cache incurs an RMR.
If cache coherence is supported then an object may have several copies, in which case,
consecutive accesses to the same block are free, as long as no other process writes an object
in this block. If cache coherence is not maintained, then the object remains in the local
memory of the process that created it, and accesses from other processes incur an RMR,
while accesses of the creating process are free.

For the block-based DSM model, we prove that the number of block RMRs depends on
the cost of invalidation and existence of cache coherence. If invalidation cost is negligible and
cache coherence is supported then finding a placement of objects into blocks is NP-hard, even
if the access sequence is known and all objects have the same size. If cache coherence is not
supported, we show that the number of block RMRs is indifferent to the order of accesses
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in the sequence, and use this result to design an algorithm that finds a placement with an
optimal number of block RMRs, when the access sequence is known in advance. (The results
for the DSM model appear in Section 4.)

For both models, we prove that handling objects with varying sizes makes the problem
NP-hard (Appendix A). This result is achieved with an access sequence in which two processes
traverse a tree one after the other. Because of this result, the rest of the paper concentrates
on the case where all objects have the same size.

Related work

Remote memory references have been proposed as a way to predict the scalability of shared-
memory programs [25]. They have been applied for evaluating the complexity of mutual
exclusion algorithms and presenting lower bounds for it, in the CC and DSM models (see
the survey [3]). Other works investigated problems like leader election [16] and renaming [2].

False sharing [23, 11, 6] occurs when different objects, placed in the same block, are
accessed by different processes, causing cache misses that would not occur if the objects were
in separate blocks. Bolosky and Scott [6] introduced models for false sharing and compared
how well they align with the intuitive understanding of this phenomenon. Their interval
definition says that the cost of false sharing is the difference in performance between a policy
that makes optimal placement decisions, but enforces consistency on a whole-block basis,
and one that enforces consistency only for real conflicts between accesses. Our definitions
capture this formally by the difference between the number of block RMRs and the number
of RMRs, and allow us to prove the NP-hardness result conjectured in [6].

A large body of research studies memory locality for sequential computing. Cache-
conscious algorithms take into account the structure of the cache, i.e., cache size, block size,
placement of objects in blocks and other parameters, in order to minimize cache misses.
Petrank and Rawitz [20] showed that the problem of partitioning data into the blocks of
a single cache of limited size is NP-hard, and in fact, it is hard to approximate. Our NP-
hardness proof for the CC model employs multiple processes, instead of bounding the size of
the cache, and is achieved using traversals, rather than with an arbitrary access sequence as
in their result. However, we do not show that approximating the optimal solution is hard; in
fact, it is not, since the number of RMRs for the sequence divided by the size of the block is
a lower bound on the number of block RMRs.

Lavaee [18] showed that the problem of data packing, using a fully associative, limited-size
cache and for a single process, is NP-hard. By using multiple processes, our result is achieved
with a more natural access sequence that does not require dummy objects in order to fill the
cache and cause data to be evicted.

Afek et al. [1] introduce a memory allocation scheme that is cache index-aware, i.e., takes
into account that objects are placed in a cache “row” that coincides with their cache index,
which is a consecutive subset of the bits in their memory address.

Cache-oblivious algorithms [14, 22] optimize the object layout in the memory and their
design is indifferent to cache parameters, such as size and block size. For example, a
partitioning of tree nodes into blocks that reduces the number of blocks accessed is given by
van Emde Boas trees [24]. Cache-oblivious algorithms were suggested for matrix transposition
and FFT [14] for priority queues [4] and for sorting [14, 7, 12, 13]. All these algorithms are
designed for a single process and do not take multi-threading into account.

More recent work attempts to provide cache-oblivious algorithms in multiprocessing
environments. One such variant is the parallel cache-oblivious model [5]. In general, the
number of cache misses for algorithms in this model is higher than in the regular cache-
oblivious model, due to restrictions needed to minimize false sharing and memory imbalances
between sub-tasks. However, for some tasks, the asymptotic bounds are not affected.
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18:4 Remote Memory References at Block Granularity

Multi-core oblivious cache-oblivious algorithms [10] are unaware of both the number of
cores and the cache parameters. In these algorithms, different processes cooperate in order
to complete a single task and data placement is designed to avoid cache misses as much as
possible. Our work focuses on multi-process environment as well, but takes into account
possible contention between noncooperative tasks run by different processes which may access
the same object, for example, concurrent accesses to the same data structure. Our NP-
hardness results hold even when the block size B is known and use only two processes. This
makes them stronger and they also immediately apply to Multi-core oblivious cache-oblivious
algorithms.

2 RMRs and Block RMRs in the Cache Coherence Model

We consider an asynchronous system in which a set of n processes, P = {p1, . . . , pn}, execute
concurrently and communicate by accessing a set O of shared objects. Each process has a
local cache memory associated with it. Objects placed in the local memory can be easily
retrieved, and the cost of doing so is negligible compared with the cost of fetching objects
from another process’s local cache, or from the main shared memory. A process may read an
object’s current value, or write a new value to an object.

Objects may be part of the same data structure, for example, vertexes of a graph. A
common access pattern to such data structures is a traversal: a sequence of accesses by a
single process to the vertexes of the graph, where each pair of consecutive accesses in the
sequence π, either access the same vertex or adjacent vertexes.

The local memory is partitioned into blocks of size B, each of which can contain objects
whose combined sizes is at most B. The local memory can hold an unbounded number of
blocks and therefore, blocks are not evicted due to lack of space. A B-block placement of O is
a partition of the objects in O into disjoint sets (blocks), Õ = {O1, . . . , O`}, each containing
objects with a combined size of at most B. We assume each object can be placed in a single
block, and is not spread across blocks.1

If all objects have the same size, we will consider their size to be 1. In this case, a B-block
placement of O is Õ = {O1, . . . , O`} such that for each block |Oi| ≤ B.

An access sequence π is a sequence (pi1 , a1, oj1), . . . , (pim
, am, ojm

) such that pih
∈ P ,

ah ∈ {read,write} and ojh
∈ O, for every h, 1 ≤ h ≤ m.

There are two models for counting the number of remote memory references (RMRs) in
an access sequence π, the cache coherent (CC ) model and the distributed shared memory
(DSM ) model (see Figure 1). In this section, we concentrate on the CC model; the DSM
model is discussed in Section 4.

In the CC model, a remote memory reference (RMR) is incurred either on the first access
(whether it is a read or a write) to an object by a process or on the first access after a write
to the same object by another process. Formally, for an access sequence π = (pi1 , a1, oj1),
. . . , (pim

, am, ojm
)

#rmrCC(π) = |{(pih , ah, ojh ) ∈ π|(∀k, 1 ≤ k < h, (pih = pik ) =⇒ (ojh 6= ojk )) or
(∃k, 1 ≤ k < h, (ojk = ojh , ak = write, and pik 6= pih )

and (∀`, k < ` < h, (pih = pi` ) =⇒ (ojh 6= oj` )))}| .

1 Objects with size larger than B need more than one block. By placing an object in the minimal number
of blocks that can contain it (i.e., all parts of the object except perhaps one are placed in a block alone),
our results hold in this model, by ignoring the parts of the object that fill full blocks and taking into
account only the part of the object that remains and does not fill a full block.
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Figure 1 Models: Cache Coherence (left) and DSM (right).

Fix a B-block placement Õ = {O1, . . . , O`} for an access sequence π, as above. We count
the number of block accesses in π that incur a cache miss, i.e., the first access (either a read
or a write) to an object in a block, or an access after a write by another process to some
object in the same block:

#brmrCC(π, Õ) = |{(pih
, ah, ojh

) ∈ π|(ojh
∈ Ol) and

((∀k, 1 ≤ k < h, (pih
= pik

) =⇒ (ojk
/∈ Ol)) or

(∃k, 1 ≤ k < h, (ojk
∈ Ol, ak = write, and pik

6= pih
)

and (∀`, k < ` < h, (pih
= pi`

) =⇒ (oj`
/∈ Ol))))}| .

3 Block RMRs in the CC model

In the cache coherence model, all objects are in the main memory before the access sequence
is executed. Therefore, once the access sequence π is fixed, no optimization can reduce the
number of RMRs and it can be computed by a sequential pass over the access sequence π,
while tracking the last process that modified each object. Specifically, for every access, if
there was no previous access in the sequence to the same object by the process or if the
previous access was a modification by a different process, we increase the number of RMRs
by one and update the latest process to access the object.

Note that when each object is placed in a separate block, that is, in the assignment
Õ = {O1, . . . , On}, with |Oi| = 1, for every i, 1 ≤ i ≤ n, we have:

#brmrCC(π, Õ) = #rmrCC(π).

Therefore, #rmrCC(π) is an upper bound on the minimal number of block RMRs for the
sequence π.

Given a B-block placement of O, Õ = {O1, . . . , On}, let #rmrCC(oi, π) be the number
of accesses to the object oi that incur an RMR, i.e., an access to oi that caused the block
containing oi to be brought to the process’s local memory. For every access to oi that incurs
an RMR, there is a block RMR that brings oi to the accessing process, incurred by either
the access itself or a previous access to another object in the block. Therefore, the number
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18:6 Remote Memory References at Block Granularity

of block RMRs for objects in Oj is at least

max
oi∈Oj

(#rmrCC(oi, π)).

Since each block contains at most B objects, the number of block RMRs is at least

Σoi∈Oj
(#rmrCC(oi, π))

B
.

The overall number of block RMRs is the sum of block RMRs for the objects in each block
Oj and therefore, it is at least

ΣOj∈Õ

Σoi∈Oj
(#rmrCC(oi, π))

B
= #rmrCC(π)

B
.

Therefore, for every access sequence π,

#rmrCC(π)
B

≤ min
Õ

#brmrCC(π, Õ) ≤ #rmrCC(π).

We consider the question of optimally placing objects into blocks, in order to minimize
the number of block RMRs. We prove that for B > 2, the problem is NP-hard, even if the
sequence of accesses is known in advance, by showing a polynomial-time reduction from the
graph partitioning problem [17]. But first, we prove that there is a polynomial-time algorithm
for this problem when B = 2.

3.1 A Polynomial Algorithm for 2-Block Placement
A 2-block placement can be found with an algorithm for finding a maximum weighted
matching for a graph, which can be done in O(|V |2|E|) using linear programming [21].

I Definition 1 (Maximum Weighted Matching).
Input: Undirected graph G = (V,E), weights w(e) ∈ Q for each edge e ∈ E.
Question: Which matching, i.e., a set of pairwise non-adjacent edges, has maximum

weight (the sum of the weights of the edges in the matching)?

Given an input to the 2-block placement problem, we take the complete graph G = (V,E)
with a vertex vi ∈ V for every object oi ∈ O and an edge between every pair of vertexes.

The edge weights are calculated according to the access sequence π. For each access by
process pi to an object o1 and every object o2, we determine whether the access would incur
an RMR if o1 and o2 are placed in the same block. To do this, we check if o2 was previously
accessed by pi. If there is a previous access to o2 by pi, we check whether an access by
another process in between could invalidate the block in the local memory and decrease
the weight of the edge between o1 and o2. Otherwise, we check which previous access could
save an RMR if o1 and o2 are placed in the same block and increase the weight of the edge
between o1 and o2. For example, Figure 2(left) shows the final weights for the next access
sequence on four objects A,B,C,D:

(p1,write, A)(p1,write, B)(p2,write, C)(p3,write, D)(p2,write, C)

The weight of (A,B) is 1 because placing them in the same block would save a block RMR
on the access to B. The weight of (C,D) is -1 because placing them in the same block would
incur an extra block RMR on the second access to C (which does not happen if C is placed
in a singleton block).
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Figure 2 Graph with original weights (left) and after incorrect weight adjustment (right).

After the weights are calculated, we find a maximum matching in the weighted graph.
A matching and a 2-block placement naturally correspond to each other: the endpoints of
edges in the matching represent disjoint pairs of objects, and each pair can be placed in a
single block in the memory. The remaining objects are placed in singleton blocks.

The weights are calculated according to the access sequence π (Algorithm 1). We initialize
the weight for each edge to zero. Next we go over the access sequence, and for each access to
an object, check which previous accesses to other objects could either increase or decrease
the number of RMRs if they are put in the same block as the current object. For each access
(pih

, ah, ojh
) ∈ π, let (pik

, ak, ojh
) ∈ π be the previous access to the same object in π. If no

such access exists, for example, if (pih
, ah, ojh

) is the first access to the object, we look for
previous accesses by the same process. For every object o, whose most recent access (prior
to the h-th access) is by pih

, we increase the weight of (o, ojh
) by 1, since placing them in

the same block will avoid a block RMR on the access (pih
, ah, ojh

).
Now we assume (pj , aj , oj) exists. If pj = pi, then for each object o′, if there is a process

p′ 6= pi such that there is an index k such that j < k < i and pk = p′ and ok = o′, and this is
the most recent write to o′ prior to the i-th access, we decrease the weight of the edge (o′, oi)
by 1. For example, for three processes, objects O = {A,B,C,D}, and the sequence:

(p1,write, A), (p2,write, B), (p1,write, C), (p3,write, B), (p1,write, A),

the weight of the edge (A,B) will be decreased by 1, since there is a write to B by a process
other than p1 between the two accesses to A. Intuitively, if A and B are placed in the same
block then we will incur an extra RMR for this part of the sequence, which would not be
incurred had they been placed in different blocks.

If, on the other hand, pj 6= pi, then for each object o′ such that there is an index k,
j < k < i, pk = pi and ok = o′, and this is the most recent write to o′ prior to the i-th access,
we increase the weight of the edge (o′, oi) by 1. For example, for the sequence:

(p4,write, D), (p2,write, B), (p1,write, C), (p2,write, B), (p2,write, D)

the weight of the edge (B,D) will be increased by 1, since there is a write to B by process
p2 between the two writes to D by p2. Intuitively, if D and B are placed in the same block
then we will incur one less RMR for this part of the sequence than would have been incurred
had they been placed in different blocks.

Figure 3 shows the final weights of the graph for the sequence that is the concatenation
of the two previous sequences (all actions are writes):

(p1, A), (p2, B), (p1, C), (p3, B), (p1, A), (p4, D), (p2, B), (p1, C), (p2, B), (p2, D)
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Algorithm 1 Sequential pseudocode for calculating the weights.
calc_weights(G = (V,E), w, acc)

1: init w to zeros
//latest and latest_write are arrays of size |V | representing,
//respectively, the most recent access and write to an object

2: init latest to nulls
3: init latest_write
4: for i = 1...|acc|:
5: (curr_proc, curr_act, curr_obj) = acc[i]
6: prev_acc = latest[curr_obj]
7: if (prev_acc is null):

// Find which objects were previously accessed by the
// same process, and increase the corresponding weight

8: for obj = 1...|V |:
9: if (obj 6= curr_obj and latest[obj] 6= null):
10: (proc, temp1, temp2) = acc[latest[obj]]
11: if (proc == curr_proc):
12: w((obj, curr_obj))+ = 1
13: else:
14: prev_proc = acc[prev_acc][0]
15: for obj = 1...|V |:

// Check if the obj was accessed between the previous access
// to curr_obj and the current access

16: if(obj 6= curr_obj and latest[obj] 6= null

and latest[obj] > prev_acc):
17: (proc, temp1, temp2) = acc[latest[obj]]

// Putting obj and current_obj together can save a block RMR
18: if (prev_proc 6= curr_proc

and proc = curr_proc):
19: w((obj, curr_obj))+ = 1

// Putting obj and current_obj together can incur an extra block RMR
20: else if (latest_write[obj] 6= null

and latest_write[obj] > prev_acc
and prev_proc = curr_proc
and acc[latest_write[obj]][0] 6= curr_proc):

21: w((obj, curr_obj))− = 1
// Update latest and latest_write according to the access

22: latest[curr_obj] = i

23: if curr_act is a write:
24: latest_write[curr_obj] = i

I Lemma 2. If the matching MÕ ⊆ E corresponds to a 2-block placement Õ = {O1, . . . , O`},
then #rmrCC(π)− Σe∈MÕ

w(e) = #brmrCC(π, Õ).

Proof. Consider some block Oj ∈ Õ. If Oj = {a} is a singleton block, then the number of
RMRs incurred by access to a is #rmrCC(a), since accesses to other objects do not cause it
to move to a different cache. On the other hand, if Oj is mapped to some edge eOj

∈MÕ it
contains two objects, a and b. We count the block RMRs incurred by accesses to a and b.
For every access to a (and similarly b) there are three cases:
1. The access is counted as an RMR in #rmrCC(π) and a block RMR in #brmrCC(π, Õ).
2. The access is counted as an RMR in #rmrCC(π), but not in #brmrCC(π, Õ). This

happens only if the access to a was preceded by an access to b, that brought Oj to the
accessing process’ cache. This can happen in either the first access to a or in subsequent
ones. We note that for each such occurrence we increased w(eOj

) by 1.
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Figure 3 Graph after the weights are calculated.

3. The access is counted as an RMR #brmrCC(π, Õ), but not in #rmrCC(π). This happens
only if the access to a was preceded by an access to b, which moved the block Oj from
the process’ cache. We note that for each such occurrence we decreased w(eOj ) by 1.

Therefore, the number of block RMRs incurred by a and b is exactly

#rmrCC(a) + #rmrCC(b)− w(eOj ).

Summing over all blocks, we get:

#brmrCC(π, Õ) =
ΣOj∈Õ,Oj={a}(#rmrCC(a)) + ΣOj∈Õ,Oj={a,b}(#rmrCC(a) + #rmrCC(b)− w(eOj

)).

And thus:

#rmrCC(π)− Σe∈MÕ
w(e) = #brmrCC(π, Õ). J

Given this lemma, it is easy to see that if Σe∈MÕ
w(e) is maximized, then our target

function #brmrCC(π, Õ) is minimized. Finding the maximum for Σe∈MÕ
w(e) is finding a

maximum weight matching in a weighted graph, which can be solved in O(|V |2 · |E|) steps [21].
Since |V | = |O| and the graph is complete, this is in O(|O|3). The total complexity of the
algorithm depends on the calculation of edge weights. Using a straightforward approach,
for every access we must go over all previous accesses and update an edge to every object,
resulting in an O(|π|2 + |π| · |O|+ |O|3) time complexity. This can be improved by using a
hash table to remember the last read and write for each object while going over the access
sequence. This alleviates the need to go over all previous accesses; instead, we go over the
objects and find which were accessed in the relevant part of the sequence. This results in
O(|π| · |O|+ |O|3) time complexity.

The algorithm does not guarantee that between two solutions with the same minimal
number of block RMRs, it chooses the one with the smallest number of blocks. This can be
done by maximizing the number of blocks containing two objects, or equivalently, maximizing
the number of edges in the matching. Therefore, we look for a maximum-weight matching
with as many edges as possible.

We note that any such solution cannot contain negative-weighted edges, since removing
them would increase the total weight. Note also that removing 0-weighted edges still leaves
a maximum-weight matching. Therefore, the maximum-weight matching with the maximal
number of edges is comprised of a maximum-weight matching with as many 0-weighted edges
added to it as possible. By adding a small positive weight to the 0-weighted edges before
running the maximum-weight matching algorithm, we can ensure that as many such edges
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as possible will be added to the solution, since adding them will only increase the total
weight. This weight must be the same for all edges, since we do not prefer one 0-weighted
edge over the other. In addition, the weight must be small enough to ensure that the new
solution contains some original maximum-weight matching as a subset. For example, every
maximum-weight matching for the graph of the sequence:

(1, A)(1, B)(2, C)(3, D)(2, C)

must contain the edge (A,B), since it is the only edge with positive weight.
If the weight added to 0-weighted edges is 1, as shown in Figure 2(right), then a maximum-

weight matching on this graph is either the edges (A,D), (B,C) or (A,C), (B,D), neither of
which contain the edge (A,B). However, if we give all the 0-weighted edges a weight < 1

|E|
(for example 1

|V |2 ), the total weight of all the 0-weighted edges is smaller than 1. Since all
the positive-weighted edges weigh at least 1, any combination of originally 0-weighted edges
weighs less than the weight of those edges. Therefore, the solution found by the algorithm
must contain an original maximum-weight matching as a subset, otherwise, such a matching
will produce a higher total weight, contradicting the algorithm’s optimality in finding a
maximum-weight matching. This implies the next theorem:

I Theorem 3. In the CC model, there is a polynomial algorithm for finding a 2-block
placement, with the minimal number of block RMRs for a given access sequence, while
minimizing the total number of blocks used.

3.2 Hardness Proof for B-Block placement, B > 2
We now prove a hardness result for B-block placement with B > 2, by showing a polynomial-
time reduction from the graph partitioning problem, known to be NP-complete, even for a
fixed K ≥ 3 and even if all vertex and edge weights are 1 [17].

I Definition 4 (Graph Partitioning).
Input: Undirected graph G = (V,E), weights w(v) ∈ Z+ for each vertex v ∈ V and

l(e) ∈ Z+ for each edge e ∈ E, positive integers K and J .
Question: Is there a partition of V into disjoint sets V1, . . . , Vm, such that Σv∈Viw(v) ≤

K for 1 ≤ i ≤ m and such that if E′ ⊆ E is the set of edges that have their two endpoints in
two different sets Vi then Σe∈E′ l(e) ≤ J?

We redefine B-block placement as a decision problem.

I Definition 5 (B-Block Placement Decision).
Input: Two positive integers B and R, a set of n processes P = {p1, . . . , pn}, a set of

memory objects O, a sequence of accesses π = (p1, o1), . . . , (pm, om) such that for every i,
1 ≤ i ≤ m, pi ∈ P and oi ∈ O.

Question: Is there a partition of the objects in O into disjoint sets Õ = {O1, . . . , Ok}
such that |Oi| ≤ B and #brmrCC(π, Õ) < R?

Given that it is easy to calculate the number of RMRs, and it is an upper bound on the
number of block RMRs, a polynomial time algorithm for the decision problem can be used in
conjunction with a binary search to solve the optimization problem.2 Therefore, if we prove
that the decision problem is NP-hard, the minimization problem is also NP-hard.

2 That is, what is the minimal number of block RMRs for the sequence π. An optimal placement of
objects to blocks is not found in this way.
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We will use the input graph for which partitioning must be found as the underlying
data structure that two processes access simultaneously. Each process performs a traversal
and accesses the edges in DFS order. Processes access the edges in round-robin order, each
accessing the endpoints of an edge one after the other, before control is passed to the next
process. This access pattern ensures that putting the two endpoints of an edge in the same
block results in fewer block RMRs than if they are in different blocks. Therefore, given a
placement with fewer block RMRs, the partition into blocks induces a partition of the graph
into disjoint sets of vertexes, which gives a good solution to the graph partitioning problem.
Conversely, we prove that if there is no such placement, then there is no valid solution to the
graph partitioning problem.

In more detail, the input is an undirected graph G = (V,E), in which all edge and vertex
weights are 1, and positive integers K ≥ 3 and J .

We take two processes p1 and p2 and an object o for each vertex v ∈ V . For each edge
e ∈ E, e = (vi, vj) and process p, we define a subsequence

π(p,e) = (p, read, oi)(p,write, oi), (p, read, oj)(p,write, oj).

Let πe = π(p1,e), π(p2,e). Consider the following traversal in DFS order of the edges of the
graph: The traversal starts at an arbitrary vertex. When the traversal reaches a node, it
either immediately retreats through the same edge, if the node was already visited, or it
continues to visit the node’s neighbors, and then retreats through the same edge. Therefore,
each edge is visited twice during the traversal, and neighboring vertexes are accessed one
after the other. Let ei1 , . . . , ei2|E| be the sequence of edges in this traversal. We define
π = �1≤j≤2|E|πeij

. For each process p, the sequence of accesses is �1≤j≤2|E|π(p,eij
), which

is a traversal due to the choice of the order of the edges. The length of the access sequence π
is in O(|E)|, since it is a concatenation of 2|E| constant size sequences, and therefore, the
reduction is polynomial in the size of the input. Let B = K and R = 4(|E|+ J).

I Lemma 6. There is a B-block placement of O for sequence π with R or fewer block RMRs
if and only if there is a partitioning of the graph G under the K and J weight sum constraints.

Proof. Given a graph and a partition V1, . . . , Vm of the vertexes such that Σv∈Vi
w(v) ≤ K,

we define a B-block placement for B = K where Oi contains all the objects that correspond
to the vertexes in Vi. Since all weights are 1, the number of vertexes in Vi is at most K, and
so is the number of objects in Oi. Similarly, a B-block placement of the objects induces a
partition of the corresponding vertexes that satisfies the K = B constraint on the graph.

Let E′ be the set of edges with endpoints in different sets Vi. We argue that the number
of block RMRs for the sequence π is 4(|E|+ |E′|). After each subsequence πe, each block is
either still in the main memory or in the cache of process p2, since p2 modifies each block after
p1 modifies it. Therefore, if e = (vi, vj) and oi and oj , the corresponding objects, are in the
same block, then the number of block RMRs for πe is exactly 2, since each process must bring
the block into its cache (including the first process) in order to access oi, and then proceed to
access oj . Otherwise, if oi and oj are in different blocks, the number of block RMRs for πe is
exactly 4, since each process must access both blocks in turn. Therefore, since every edge is
traversed twice, the total number of block RMRs is 4|E\E′|+ 2 · 4|E′| = 4(|E|+ |E′|).

It remains to show that a solution to the B-block placement problem implies a solution to
the graph partitioning problem. If there is no B-block placement for B = K and the sequence
π with R = 4(|E|+ J) or fewer block RMRs, then for every placement and corresponding
graph partitioning, the number of block RMRs is 4(|E|+ |E′|) > R = 4(|E|+J) and therefore,
|E′| > J . Hence, there is no graph partitioning such that the size of every group is K or less
and the number of edges between different groups is J or less.
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Table 1 Remote memory references in variants of the DSM model.

Reads Writes Invalidation
DSM - With Coher-
ence

Free as long as data in local
memory is valid. Incurs an
RMR, otherwise.

Free if data in local memory
is valid, and incurs an RMR,
otherwise. Causes invalidation
of object copies in other local
memories.

Negligible

DSM - No Coher-
ence

Reads by object creator are
free. Other reads incur an
RMR.

Writes to an object by a non
creator process incur an RMR.
Writes by the owner are free.

Not supported

Conversely, if there is a B-block placement for B = K and the sequence π, with fewer
than R = 4(|E|+ J) RMRs, then 4(|E|+ |E′|) ≤ R = 4(|E|+ J), and |E′| ≤ J . Therefore,
the corresponding partitioning of G satisfies the constraints on K and J . J

This proves the next theorem:

I Theorem 7. In the CC model, the B-block placement decision problem, for B ≥ 3, is
NP-hard.

4 Block RMRs in the DSM Model

In the DSM model, an access to another process’ local memory incurs an RMR, depending on
the specific characteristics of the implementation. Some DSM systems incorporate some form
of cache coherence, i.e., a mechanism that ensures processes only read or write valid data,
and not data that was already overwritten by another process. We consider two variants
of the DSM model, depending on whether invalidating an object in a remote memory is
possible, and what is the cost of doing so (see Table 1).3

Each object o is created at a creator process, denoted creator(o), which is the owner of
the local memory in which o originally resides. The creator(o) process is chosen before the
first access to o. An object is valid when created, and therefore, accesses to the object are
free as long as they are just by the creator process. In all variants of the DSM model, we
may choose creator(o) according to whatever information we have on the access sequence.

If coherence is supported and invalidation cost is negligible (for example, see [19]), then
each read or write to an object not in the local memory causes the object to be copied
to the local memory, incurring an RMR. If the action is a write then other copies of the
object are invalidated, and the cost of doing so is negligible. Given an access sequence
π = (pi1 , a1, oj1), . . . , (pim

, am, ojm
), we formally define:

#rmrDSM−CC(π) = |{(pih , ah, ojh ) ∈ π|((pih 6= creator(ojh ))
and (∀k, 1 ≤ k < h, (pih = pik ) =⇒ (ojh 6= ojk )))

or (∃k, 1 ≤ k < h, (ojk = ojh , ak = write, and pik 6= pih )
and (∀`, k < ` < i, (pih = pi` ) =⇒ (ojh 6= oj` )))}| .

If coherence and invalidation are not supported, then every access, whether a write or a
read, to an object by a process other than its creator, incurs an RMR. Accesses to an object

3 In the full version of the paper we also consider a third variant, in which invalidation is supported, but
its cost is similar to an RMR.
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Table 2 Block remote memory references in variants of the DSM model.

Reads Writes Invalidation
DSM - With Coher-
ence

Free as long as data in local
memory is valid. Incurs an
RMR, otherwise.

Free if data in local memory
is valid, and incurs an RMR,
otherwise. Causes invalidation
of other copies in other local
memories.

Negligible

DSM - No Coher-
ence

Reads by the object’s creator
process are free. Other reads
incur an RMR.

Writes by owner process are
free. Other writes incur an
RMR.

Not supported

by its creator are free. That is:

#rmrDSM−No−CC(π) = |{(pih
, ah, ojh

) ∈ π|pih
6= creator(ojh

)}| .

To define block RMRs in these variants of the DSM model, consider a B-block placement
Õ = {O1, . . . , O`}. Each block Oi is associated with a creator process creator(Oi), which
creates all objects in Oi. The RMRs incurred for reads and writes is shown in Table 2, and
defined next.

If coherence is supported with negligible invalidation cost, then each access to an object
not in the local memory incurs an RMR; it causes a copy of the accessed block to appear in
the local memory. If the access is a write then all other copies of the block are invalidated.
Accesses to objects whose blocks are in the local memory are free. Formally:

#brmrDSM−CC(π, Õ) = |{(pih , ah, ojh ) ∈ π|(ojh ∈ Ol) and
(((pih 6= creator(Ol)) and

(∀k, 1 ≤ k < h, (pih = pik ) =⇒ (ojk /∈ Ol))) or
(∃k, 1 ≤ k < h, (ojk ∈ Ol, ak = write, and pik 6= pih )
and (∀`, k < ` < h, (pih = pi` ) =⇒ (oj` /∈ Ol))))}| .

When coherence is not supported, each access to a block by a process other than its
creator incurs an RMR; accesses by the creator are free. Formally:

#brmrDSM−no−CC(π) = |{(pih
, ah, ojh

) ∈ π|ojh
∈ O` and pih

6= creator(O`)}| .

The DSM model with coherence is similar to the CC model, except for the first access to
every block: If the first access to an object o is done by process p 6= creator(o), then the step
incurs an RMR; otherwise, no RMR is incurred. Therefore the number of RMRs depends on
the choice of creator(o) for these accesses, while other accesses are not affected.

We explain how the results for the CC model can be extended to this model. The
polynomial algorithm for blocks with B = 2 is adapted by changing the edge weights to
account for the objects being created in the process’ local memory instead of the main
memory. The NP-hardness result with B > 2 can also be adapted by a slight change in the
access sequence and the way edge weights are calculated (see Section B).

In the DSM model without coherence, the number of RMRs is minimized when each
object is created at the process that accesses it the most. Furthermore, it can be shown that
the minimal number of RMRs does not depend on the partitioning into blocks, just on the
choice of creator processes. This means that a simple greedy algorithm can be used to pick
the creator process for each object.
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5 Conclusions and Future Research Directions

This paper introduces a framework for studying the cost of accessing remote memory (whether
shared memory or data stored at another process), which takes into account the fact that
shared objects can be placed and moved together in larger blocks. We introduce a formal
complexity measure, called block RMRs, for both the CC and the DSM models. Our main
result shows that it is NP-hard to place objects into blocks in a way that minimizes the
number of block RMRs, even for a fixed access sequence. The result holds for both the CC
model and the DSM model with coherence and negligible invalidation cost, when a block can
contain three objects or more.

In the common situation, however, the access sequence is not known in advance. Instead,
we know it is from a family of sequences, typically, those generated by a particular concurrent
algorithm, for example, interleavings of (partial) traversals or searches by a subset of the
processes. It would be interesting to find block placement methodologies for such families, in
a way that exploits the benefits of moving several objects together. Taking this a step further,
it is interesting to look at probabilistic models where the access sequences are chosen from a
family of sequences with a known distribution. The goal is to choose a B-block placement
such that the expected number of block RMRs is minimized. In the DSM model without
coherence, these problems may have simple solutions in the form of choosing the object’s
creator to be the process that is expected to access it the most.

It would also be interesting to study the effects of bounding the local memory size, so it
can hold a bounded number of blocks, and limiting the cache associativity. It is likely that
in general, the problem is NP-hard due to our results as well as [20, 18].

Acknowledgements. We would like to thank Youla Fatourou, Danny Hendler, Erez Petrank
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A B-Block Placement for Objects with Varying Sizes

We prove that if objects have varying sizes, then the B-block placement problem is NP-hard
even for a simple traversal on a tree. Assume that each object oi has a size ai ∈ Z+, ai ≤ B,
and each object is placed in a single block (and not across more than one block). A B-block
placement is a partition of the objects in O into disjoint sets Õ = {O1, . . . , On} such that,
for every 1 ≤ j < n, Σoi∈Ojai ≤ B.

For both the CC and the DSM models, there is a reduction from the bin packing problem,
a well-known NP-complete problem [15].

I Definition 8 (Bin Packing).
Input: An integer R (the bin size), and ` items with sizes a1, . . . , a`.
Question: What is the minimum number M such that there is a partition of the ` items

into disjoint sets S1, . . . , SM such that Σi∈Sj
ai ≤ R for every j, 1 ≤ j ≤M?

Fix R to be the block size B, the number of objects to be ` and the size of an object
oi be ai. We define a tree T = (V,E) whose vertexes are vi for each object oi, and whose
edges are E = {(vi, vi+1)|1 ≤ i < `}. For processes p1, p2 ∈ P , consider the access sequence
π = (p1,write, o1), . . . , (p1,write, o`), (p2,write, o1), . . . , (p2,write, o`), in which p1 and p2
write to each object once.

An optimal algorithm for B-block placement packs the objects into the smallest number
of blocks possible: Since the size of the local memory is unlimited, any block read into the
local memory remains there until it is required by a different process in the CC and DSM
with coherence models.

Therefore, the number of block RMRs is equal to twice the number of blocks in which
the objects reside in the CC model and DSM with coherence models.

Thus, an algorithm that finds the optimal solution to the B-block placement problem also
finds a partitioning of objects of sizes a1, . . . , a` into blocks of size B = R, which minimizes
the number of blocks used. This yields an optimal solution to the bin packing problem. Since
bin packing is NP-complete [15], so is B-blocking for objects of varying sizes.

B NP-Hardness for DSM with Coherence and B > 2

We explain how to adapt the NP-hardness result for B ≥ 3. Given the parameters to the
graph partitioning problem, the parameters to the B-Block mapping are very similar: The
input is an undirected graph G = (V,E), weights w(v) ∈ Z+ for each vertex v ∈ V and
l(e) ∈ Z+ for each edge e ∈ E, and positive integers K and J . We assume that all weights
are 1, and K ≥ 3.

The access sequence is somewhat different: We take two processes p1 and p2, and an
object o for each vertex v ∈ V . For each edge e ∈ E, e = (vi, vj) and process p, we define a
subsequence

π(p,e) = (p, read, oi)(p,write, oi), (p, read, oj)(p,write, oj)).

Let πe = (π(p1,e), π(p2,e))|E|. We define π = �e∈Eπe. The length of π is O(|E|2) and therefore,
the reduction is in polynomial time. Let B = K and R = 4|E|(|E|+ J)− |V |.

Given the part of the access sequence corresponding to an edge e = (vi, vj),

πe = ((p1,write, oi), (p1,write, oj)), (p2,write, oi), (p2,write, oj)|E|,

the number of block RMRs is as follows: If both endpoints of e are in the same block, then
every access by p1, except perhaps the first one, incurs a block RMR. This is because at
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the end of π(p2,e) = (p2,write, oi), (p2,write, oj), the block is in p2’s local memory. The total
number of block RMRs is 2|E|, from which we reduce 1 if this is the first access to the block
containing oi and oj .

On the other hand, if the endpoints of e are in different blocks, then every access by
either p1 or p2 must move a block into its local memory, except perhaps the first two accesses
of p1. The total number of block RMRs is 4|E|, minus 1 or 2, depending on whether or not
this sequence accessed blocks for the first time.

Since at the end of each subsequence πe all blocks that were already accessed are in the
local memory of process p2, if |E′| is the number of edges with endpoints in different blocks,
the total number of RMRs is at most

2|E| · 2|E\E′|+ 4|E| · 2|E′| = 4|E|(|E|+ |E′|)

and at least

2|E| · 2|E\E′|+ 4|E| · 2|E′| − |V | = 4|E|(|E|+ |E′|)− |V |,

where |V | is the maximum possible number of blocks.
If there is no B-block ent for B = K and the sequence π with R = 4|E|(|E|+ J)− |V | or

fewer block RMRs exists, then for every placement and corresponding graph partitioning the
number of block RMRs is at least

4|E|(|E|+ |E′|)− |V | > R = 4|E|(|E|+ J)− |V |

and therefore |E′| > J . Hence, there is no graph partitioning such that the size of every
group is K or less and the number of edges between different groups is J or less.

Conversely, if there is a B-block placement for B = K with S blocks, and the sequence π,
induces fewer than R = 4|E|(|E|+ J) block RMRs, then

4|E|(|E|+ |E′|)− S ≤ R = 4|E|(|E|+ J)− |V |,

and therefore

4|E| · |E′| ≤ 4|E| · J − (|V | − S).

Since |V | − S > 0, we have |E′| ≤ J . Therefore, the corresponding partitioning of G holds
under the constraints on K and J .

This proves the following theorem:

I Theorem 9. In the DSM model with cache coherence and negligible invalidation, the
B-block placement decision problem is NP-hard, for B ≥ 3.
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Abstract
In this paper, we consider a uniform bipartition problem in a population protocol model. The
goal of the uniform bipartition problem is to divide a population into two groups of the same
size. We study the problem under various assumptions: 1) a population with or without a base
station, 2) weak or global fairness, 3) symmetric or asymmetric protocols, and 4) designated
or arbitrary initial states. As a result, we completely clarify constant-space solvability of the
uniform bipartition problem and, if solvable, propose space-optimal protocols.
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1 Introduction

1.1 The Background
A population protocol model [4] is an abstract model that represents computation on a
network of low-performance devices. We refer to such devices as agents and a set of agents as a
population. Agents can update their states by interacting with other agents, and proceed with
computation by repeating the pairwise interactions. The population protocol model can be
applied to many systems such as sensor networks and molecular robot networks. For example,
one may construct sensor networks to monitor wild birds by attaching sensors to them. In this
system, sensors collect and process data based on pairwise interactions when two sensors (or
birds) come sufficiently close to each other. Another example is a system of low-performance
molecular robots [22]. In this system, a large number of molecular robots compose a network
inside a human body and discriminate the physical condition. To realize such systems, many
protocols have been proposed as building blocks in the population protocol model [10]. For
example, they include leader election protocols [1, 2, 8, 15, 17, 19, 23, 24, 25], counting
protocols [9, 11, 12, 20], and majority protocols [1, 3, 6, 18].

© Hiroto Yasumi, Fukuhito Ooshita, Ken’ichi Yamaguchi, and Michiko Inoue;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 19; pp. 19:1–19:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


19:2 Constant-Space Population Protocols for Uniform Bipartition

In this paper, we consider a uniform bipartition problem, which divides a population
into two groups of the same size. The uniform bipartition problem is a special case of a
group composition problem, which divides a population into multiple groups to satisfy some
conditions. Some protocols for the group composition problem are developed as subroutines
to realize fault-tolerant protocols [16] and periodic functions [21]. However, the complexity
of the problem has not been studied deeply yet. For this reason, as the first step to study
the complexity of the group composition problem, we focus on the space complexity of the
uniform bipartition problem. Note that the uniform bipartition problem itself has some
applications. For example, we can reduce energy consumption by switching on one group and
switching off the other. In another example, we can assign a different task to each group and
make agents execute multiple tasks at the same time. This can be regarded as differentiation
of a population in the sense that initially identical agents are eventually divided into two
groups and execute different tasks. In addition, by repeating uniform bipartition, we can
divide a population into an arbitrary number of groups with almost the same size. For
example, by repeating uniform bipartition four times, we can make sixteen groups of the
same size. We can regroup the sixteen groups to three groups with almost the same size by
partitioning them into five, five, and six groups.

1.2 Our Contributions
For the uniform bipartition problem, we clarify solvability and minimum requirement of agent
space under various assumptions. More concretely, we consider four types of assumptions,
1) a population with or without a base station, 2) weak or global fairness, 3) symmetric or
asymmetric protocols, and 4) designated or arbitrary initial states. A base station (BS) is a
distinguishable agent with a powerful capability, and it is useful to realize good properties
while it limits the range of application. Fairness is an assumption on interaction patterns of
agents. While weak fairness assumes only that interaction occurs infinitely often between
each pair of agents, global fairness makes a stronger assumption on the order of interactions
(the definition is given in Section 2). Symmetric property of protocols is related to the power
of symmetry breaking in the population. Asymmetric protocols may include transitions that
make agents with the same states transit to different states. This requires a mechanism
to break symmetry among agents and its implementation is sometimes difficult with low-
performance agents such as molecular robots. Symmetric protocols do not include such
transitions. The assumption of initial states is related to the requirement of initialization
and the fault-tolerant property. If a protocol requires a designated initial state, we need
to initialize all agents to execute protocols. On the other hand, when the protocol allows
arbitrary initial states, initialization of agents other than the BS is not necessary. In addition,
even if agents enter arbitrary states due to transient faults, the system can eventually reach
the desired configuration by initializing the BS. If a protocol allows arbitrary initial states
and does not require a BS, the protocol is self-stabilizing because it can work from arbitrary
initial configurations.

For each combination of assumptions, we completely clarify constant-space solvability
of the uniform bipartition problem and, if solvable, give a space-optimal protocol (except
for protocols given in [16, 14]). The results are shown in Table 1. Each element of the
table represents the minimum number of agent states (except for a BS) to solve the uniform
bipartition problem on the setting. First, we consider protocols in the case of a single BS. If
protocols assume designated initial states, we prove three states are necessary and sufficient.
If protocols allow arbitrary initial states, four states are necessary and sufficient under global
fairness, while no constant-space protocol exists under weak fairness. Next, we consider
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Table 1 The minimum number of states to solve the uniform bipartition problem, where n is the
number of agents.

BS Fairness
Designated initial states Arbitrary initial states

Asymmetric Symmetric Asymmetric Symmetric

Single BS Globally fair 3 3 4 4
Weakly fair 3 3 Ω(n) Ω(n)

No BS Globally fair 3* 4** Impossible Impossible
Weakly fair 3* Impossible Impossible Impossible

* A protocol with three states is proposed in [16].
** A protocol with four states is obtained by a general transformer in [14].

protocols in the case of no BS. If protocols assume designated initial states, three states
are necessary and sufficient for asymmetric protocols. However, if we focus on symmetric
protocols, no protocol exists under weak fairness and four states are necessary and sufficient
under global fairness. For the case of arbitrary initial states, we prove no protocol exists if we
assume no BS. This implies that a BS is necessary for protocols with arbitrary initial states.

1.3 Related Works
The population protocol model was introduced by Angluin et al. [4, 7]. They regard initial
states of agents as an input to the system, and resultant states of them as an output from
the system. Following this definition, they clarified the class of computable predicates in the
population protocol model.

In addition to such computability researches, many algorithmic problems have been
considered in the population protocol model. For example, they include leader election
[1, 2, 8, 15, 17, 19, 23, 24, 25], counting [9, 11, 12, 20], and majority [1, 3, 6, 18]. These
problems are considered under various assumptions of a population with or without a base
station, global or weak fairness, symmetric or asymmetric protocols, designated or arbitrary
initial states. The leader election problem has been thoroughly studied for both designated
and arbitrary initial states. For designated initial states, many researches aim to minimize
the time and space complexity [1, 2, 17]. For arbitrary initial states, many papers have
developed self-stabilizing and loosely-stabilizing protocols [8, 15, 19, 23, 24, 25]. Cai et al.
[15] proposed a self-stabilizing leader election protocol with knowledge of n, and proved that
knowledge of n is necessary to construct a self-stabilizing leader election protocol, where
n is the number of agents. To overcome the requirement of knowledge of n, Sudo et al.
[24] proposed a concept of loose stabilization and gave a loosely-stabilizing leader election
protocol. The complexity and the requirement on communication graphs are improved later
[19, 23, 25]. The counting problem aims to count the number of agents and it has been
studied under assumptions of a single BS and arbitrary initial states. After the first protocol
was proposed in [12], the space complexity was gradually minimized [11, 20]. In [9], a time
and space optimal protocol was proposed. The majority problem is also a fundamental
problem in the population protocol model. In this problem, each agent initially has a color
x or y, and the goal is to decide which color gets a majority. For the majority problem,
many protocols have been proposed [1, 3, 6, 18]. Recently an asymptotically space-optimal
protocol for c colors (c > 2) has been proposed in [18].

As a similar problem to the uniform bipartition problem, a group composition problem is
studied in [16, 21]. Delporte-Gallet et al. [16] proposed a protocol to divide a population
into g groups of the same size. The protocol is asymmetric, assumes designated initial states,
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and works under global fairness in the model of no BS. When g = 2, the protocol solves
the uniform bipartition problem with three states. However, the paper does not consider
other setting. Lamani et al. [21] studied a problem that divides a population into groups of
designated sizes. Although the proposed protocols assume arbitrary initial states, they also
assume that n/2 pairs of agents make interactions at the same time and that agents know n.
In addition, the protocol requires n states, that is, it is not a constant-space protocol.

2 Definitions

2.1 Population Protocol Model
A population A is defined as a collection of pairwise interacting agents. A protocol is defined
as P = (Q, δ), where Q is a set of possible states of agents and δ is a set of transitions on
Q. Each transition in δ is described in the form (p, q)→ (p′, q′), which means that, when
an agent in state p and an agent in state q interact, they change their states to p′ and
q′, respectively. In this paper, only deterministic protocols are considered. If transition
(p, q) → (p′, q′) satisfies p = q and p′ 6= q′, the transition is asymmetric; otherwise, the
transition is symmetric. For protocol P = (Q, δ), P is symmetric if every transition in δ is
symmetric, and P is asymmetric if every transition in δ is symmetric or asymmetric. Note
that a symmetric protocol is also asymmetric.

A global state of a population is called a configuration. A configuration is defined
as a vector of (local) states of all agents. We define s(a,C) as the state of agent a at
configuration C. When C is clear from the context, we simply write s(a). If configuration C ′
is obtained from configuration C by a single transition of a pair of agents, we say C → C ′.
For configurations C and C ′, if there is a sequence of configurations C = C0, C1, · · · , Ck = C ′

that satisfies Ci → Ci+1 for any i (0 ≤ i < k), we say C ′ is reachable from C, denoted by
C
∗−→ C ′.
If an infinite sequence of configurations E = C0, C1, C2, . . . satisfies Ci → Ci+1 for any

i (i ≥ 0), E is an execution of a protocol. An execution E is weakly fair if every pair
of agents in A interacts infinitely often. An execution E is globally fair if, for every pair
of configurations C and C ′ such that C → C ′, C ′ occurs infinitely often when C occurs
infinitely often. Intuitively, global fairness guarantees that, if configuration C occurs infinitely
often, every possible interaction at C occurs infinitely often. If C occurs infinitely often,
C ′ satisfying C → C ′ occurs infinitely often, and consequently C ′′ satisfying C ′ → C ′′ also
occurs infinitely often. This implies that, under global fairness, if C occurs infinitely often,
every configuration C∗ reachable from C also occurs infinitely often.

In this paper, we consider two models, one with a single BS (base station) and one with
no BS. In the model with a single BS, we assume that a single agent called a BS exists in A.
The BS is distinguishable from other non-BS agents while non-BS agents are identical and
cannot be distinguished. That is, state set Q is divided into state set Qb of a BS and state set
Qp of non-BS agents. The BS can be as powerful as needed, in contrast with resource-limited
non-BS agents. That is, we focus on the number of states |Qp| for non-BS agents and do not
care the number of states |Qb| for the BS. In addition, even if we consider protocols with
arbitrary initial states, we assume that the BS has a designated initial state while all non-BS
agents have arbitrary initial states. If we consider protocols with designated initial states, all
non-BS agents have the same designated initial states and the BS has another designated
initial state. In the model with no BS, no BS exits and all agents are identical. In this case,
they all have the same designated initial states or arbitrary initial states. In both models, no
agent knows the total number of agents in the initial configuration.
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2.2 Uniform Bipartition Problem

Let Ap be a set of all non-BS agents. Let f : Qp → {red, blue} be a function that maps a
state of a non-BS agent to red or blue. We define a color of a ∈ Ap as f(s(a)). We say agent
a ∈ Ap is red if f(s(a)) = red and agent a ∈ Ap is blue if f(s(a)) = blue.

Configuration C is stable if there is a partition {R, B} of Ap that satisfies the following
condition: 1) ||R| − |B|| ≤ 1, and 2) for every C∗ such that C ∗−→ C∗, each agent in R is red
and each agent in B is blue at C∗.

An execution E = C0, C1, C2, . . . solves the uniform bipartition problem if there is a
stable configuration Ct in E. If each execution E of protocol P solves the uniform bipartition
problem, we say protocol P solves the uniform bipartition problem. The main objective of
this paper is to minimize the number of states for non-BS agents. Since the BS is powerful,
we do not care the number of states for the BS. When protocol P requires x states for non-BS
agents, we say P is a protocol with x states.

For simplicity, we use agents only to refer to non-BS agents in the following sections. To
refer to the BS, we always use the BS (not an agent).

3 Uniform Bipartition Protocols with a Single BS

In this section, we consider the uniform bipartition problem under the assumption of a single
BS. Recall that the BS is distinguishable from other non-BS agents, and we do not care the
number of states for the BS.

3.1 Protocols with Designated Initial States

In this subsection, we consider protocols with designated initial states. We give a simple
symmetric protocol with three states under global or weak fairness, and then prove that
there exists no asymmetric protocol with two states under global or weak fairness. This
implies that, in this case, three states are sufficient for asymmetric or symmetric protocols
under global or weak fairness.

3.1.1 A protocol with three states

In this protocol, the state set of (non-BS) agents is Qp = {initial, red, blue}, and we set
f(initial) = f(red) = red and f(blue) = blue. The designated initial state of all agents is
initial. The idea of the protocol is to assign states red and blue to agents alternately when
agents interact with the BS. To realize this, the BS has a state set Qb = {bred, bblue}, and its
initial state is bred. The protocol consists of the following two transitions.
1. (bred, initial)→ (bblue, red)
2. (bblue, initial)→ (bred, blue)

That is, when the BS in state bred (resp., bblue) and a non-BS agent in state initial interact,
the BS changes the state of the non-BS agent to red (resp., blue) and the state of itself to
bblue (resp., bred). When two non-BS agents interact, no state transition occurs. Clearly, all
non-BS agents evenly transit to state red or blue, and the difference in the numbers of red
and blue agents is at most one. Note that the protocol contains no asymmetric transition
and works correctly if every non-BS agent interacts with the BS. Therefore, we have the
following theorem.
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19:6 Constant-Space Population Protocols for Uniform Bipartition

I Theorem 1. In the model with a single BS, there exists a symmetric protocol with three
states and designated initial states that solves the uniform bipartition problem under global
or weak fairness.

3.1.2 Impossibility with two states

Next, we show three states are necessary to construct an asymmetric protocol under global
or weak fairness. This implies that, in this case, three states are necessary for asymmetric
or symmetric protocols under global or weak fairness because a symmetric protocol is also
asymmetric. That is, three states are necessary and sufficient in this case.

I Theorem 2. In the model with a single BS, no asymmetric protocol with two states and
designated initial states solves the uniform bipartition problem under global or weak fairness.

Proof. We prove that such a protocol does not exist even if its execution satisfies both global
and weak fairness. For contradiction, assume that such a protocol Alg exists. Without loss
of generality, we assume Qp = {s1, s2}, f(s1) = red, f(s2) = blue, and that the designated
initial state of all agents is s1. Let n is an even number that is at least four. We consider
the following three cases.

First, for population A of a single BS and n (non-BS) agents a1, a2, . . . , an, consider an
execution E = C0, C1, . . . of Alg that satisfies both global and weak fairness. According to
the definition, there exists a stable configuration Ct. That is, after Ct, the state of each
agent does not change even if the BS and agents in states s1 and s2 interact in any order.

Next, for population A′ of a single BS and n + 2 agents a1, a2, . . . , an+2, we define an
execution E′ = C ′0, C

′
1, . . . , C

′
t, C
′
t+1, . . . of Alg as follows.

From C ′0 to C ′t, the BS and n agents a1, a2, . . . , an interact in the same order as the
execution E.
After C ′t, the BS and n+ 2 agents interact so as to satisfy both global and weak fairness.

Since the BS and agents a1, . . . , an change their states similarly to E from C ′0 to C ′t, there
are n/2 + 2 agents in state s1 and n/2 agents in state s2 at C ′t. Moreover, the state of the BS
at C ′t is the same as the state of the BS at Ct. However, since the difference in the numbers
of red and blue agents is two, C ′t is not a stable configuration. Consequently, after C ′t, some
red or blue agent changes its state in execution E′.

Lastly, we consider execution E for population A again. Here, we consider interactions
after stable configuration Ct, and apply interactions in E′ to execution E. That is, we
consider the following execution after Ct: 1) when the BS and an agent in state s ∈ {s1, s2}
interact at C ′u → C ′u+1 (u ≥ t) in E′, the BS and an agent in state s interact at Cu → Cu+1
in E, and 2) when two agents in states s ∈ {s1, s2} and s′ ∈ {s1, s2} interact at C ′u → C ′u+1
(u ≥ t) in E′, two agents in states s and s′ interact at Cu → Cu+1 in E. We can construct
such an execution because, after stable configuration Ct, at least two agents are in s1 and at
least two agents are in s2. In this execution E, since interactions occur similarly to E′, some
red or blue agent changes its state similarly to E′ after Ct. This is a contradiction because
Ct is a stable configuration. J

3.2 Protocols with Arbitrary Initial States

In this subsection, we consider protocols with arbitrary initial states. Recall that, since a BS
is powerful, the BS can start the protocol from a designated initial state.
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3.2.1 Under global fairness
Under global fairness, we give a symmetric protocol with four states, and prove impossibility
of protocols with three states. That is, we show that four states are necessary and sufficient
to construct a (symmetric or asymmetric) protocol in this case.

3.2.1.1 A symmetric protocol with four states

Here we show a symmetric protocol with four states under global fairness. In this protocol,
each (non-BS) agent x has two variables rbx ∈ {red, blue} and markx ∈ {0, 1}. Variable rbx

represents the color of agent x. That is, for state s of agent x, f(s) = red holds if rbx = red

and f(s) = blue holds if rbx = blue. We define #red as the number of red agents and #blue
as blue agents. We explain the role of variable markx later.

The basic strategy of the protocol is that the BS counts red and blue agents by counting
protocol Count [11] and changes colors of agents so that the numbers of red and blue agents
become equal. Protocol Count is a symmetric protocol that counts the number of non-BS
agents from arbitrary initial states under global fairness. Protocol Count uses only two states
for each non-BS agent. In protocol Count, the BS has variable Count.out that eventually
outputs the number of agents. More concretely, Count.out initially has value 0, gradually
increases one by one, eventually equals to the number of agents, and stabilizes. The following
lemma explains the characteristic of protocol Count.

I Lemma 3 ([11]). Let n be the number of non-BS agents. In the initial configuration,
Count.out = 0 holds. When Count.out < n, Count.out eventually increases by one under
global fairness. When Count.out = n, Count.out never changes and stabilizes.

To count red and blue agents, the BS executes two instances of protocol Count in parallel
to the main procedure of the uniform bipartition protocol. We denote by Countred and
Countblue instances of protocol Count to count red and blue agents, respectively. The BS
executes Countred when it interacts with a red agent. That is, the BS updates variables of
Countred at the BS and the red agent by applying a transition of protocol Countred. By this
behavior, the BS executes Countred as if the population contains only red agents. Therefore,
after the BS initializes its own variables of Countred, it can correctly count the number of
red agents by Countred (i.e., Countred.out eventually stabilizes to #red) as long as a set of
red agents does not change. Similarly, the BS executes Countblue when it interacts with
a blue agent, and counts the number of blue agents. The straightforward approach to use
the counting protocols is to adjust colors of agents after Countred.out and Countblue.out

stabilize. However, the BS cannot know whether the outputs have stabilized or not. For this
reason, the BS maintains estimated numbers of red and blue agents, and it changes colors of
agents when the difference in the estimated numbers of red and blue agents is two. Note
that, since the counting protocols assume that a set of counted agents does not change, the
BS must restart Countred and Countblue from the beginning when the BS changes colors of
some agents.

We explain the details of this procedure. The BS records the estimated numbers of red and
blue agents in variables C∗rb[red] and C∗rb[blue], respectively. In the beginning of execution,
these variables are identical to outputs of Countred and Countblue. If the difference between
C∗rb[red] and C∗rb[blue] becomes two, the BS immediately changes colors of agents. At the
same time, the BS updates C∗rb[red] and C∗rb[blue] to reflect the change of colors. After the
BS changes colors of some agents, it restarts Countred and Countblue from the beginning by
initializing its own variables of the counting protocols. Since the counting protocols allow
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Algorithm 1 Uniform bipartition protocol.
Variables at BS:

C∗rb[c](c ∈ {red, blue}): the estimated number of c agents, initialized to 0
V ariables: variables of Countc(c ∈ {red, blue})

Variables at a mobile agent x:
rbx ∈ {red, blue}: color of the agent, initialized arbitrarily
markx ∈ {0, 1}: a variable of Countc(c ∈ {red, blue}), initialized arbitrarily

1: when a mobile agent x interacts with BS do
2: update markx and variables of Countrbx

at BS by applying a transition of Countrbx

3: if C∗rb[rbx] < Countrbx .out then
4: C∗rb[rbx]← Countrbx

.out

5: end if
6: if C∗rb[rbx]− C∗rb[rbx] > 1 then
7: C∗rb[rbx]← C∗rb[rbx]− 1
8: C∗rb[rbx]← C∗rb[rbx] + 1, rbx ← rbx

9: reset variables of Countred and Countblue at BS
10: end if
11: end when

arbitrary initial states of non-BS agents, the BS can correctly count red and blue agents
after that. Note that the BS does not initialize C∗rb[red] and C∗rb[blue] because it knows
such numbers of red and blue agents exist. If the output of Countred and Countblue exceeds
C∗rb[red] and C∗rb[blue], the BS updates C∗rb[red] and C∗rb[blue], respectively. After that, if
the difference between C∗rb[red] and C∗rb[blue] becomes two, the BS changes colors of agents.
By repeating this behavior, the BS adjusts colors of agents.

The pseudocode of this protocol is given in Algorithm 1. We define red = blue and
blue = red. Variable markx is a two-state variable of counting protocols Countred and
Countblue. Since the BS restarts the counting protocols whenever it changes colors of agents,
the BS keeps a set of red (resp., blue) agents unchanged until it restarts Countred (resp.,
Countblue). In addition, each agent is involved in either Countred or Countblue at the same
time. Hence it requires only a single variable markx to execute Countred and Countblue.
When two non-BS agents interact, no state transition occurs in this protocol and counting
protocols. When the BS and a red agent interact, they update markx and variables of
Countred at the BS by applying a transition of Countred. This means that they execute
Countred in parallel to the main procedure of the uniform bipartition protocol. After that,
if Countred.out is larger than C∗rb[red], C∗rb[red] is updated with Countred.out. If C∗rb[red]
is larger than C∗rb[blue] by two or more, the red agent changes its color to blue and the BS
updates C∗rb[red] and C∗rb[blue]. After updating, the BS resets variables of Countred and
Countblue, and restarts counting. When the BS and a blue agent interact, they behave
similarly.

In the following, we prove the correctness of Algorithm 1.

I Lemma 4. In any configuration, C∗rb[red] ≤ #red, C∗rb[blue] ≤ #blue and |C∗rb[red] −
C∗rb[blue]| ≤ 1 hold.

Proof. We prove by induction on the index k ≥ 0 of a configuration in an execution
C0, C1, C2, · · · , Ck, · · · . At the initial configuration C0, the lemma holds. Let us assume
that the lemma holds for configuration Ck and prove it for configuration Ck+1. From this
assumption, C∗rb[red] ≤ #red, C∗rb[blue] ≤ #blue and |C∗rb[red]− C∗rb[blue]| ≤ 1 hold at Ck.
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Assume that, when Ck transits to Ck+1, the BS and agent x interact. If Countrbx .out becomes
larger than C∗rb[rbx], the BS updates C∗rb[rbx] by C∗rb[rbx] ← Countrbx

.out (line 3). Note
that, in this case, C∗rb[rbx] increases by one from Lemma 3. In addition, C∗rb[red] ≤ #red and
C∗rb[blue] ≤ #blue still hold. Recall that |C∗rb[red]−C∗rb[blue]| ≤ 1 held before this update and
C∗rb[rbx] increases by one. Conseqently, at this moment (before line 5), |C∗rb[rbx]−C∗rb[rbx]| ≤ 1
or C∗rb[rbx]− C∗rb[rbx] = 2 holds. Next, we consider lines 5 to 9. If C∗rb[rbx]− C∗rb[rbx] ≤ 1
at line 5, lines 6 to 8 are not executed, and thus C∗rb[red] ≤ #red, C∗rb[blue] ≤ #blue and
|C∗rb[red]−C∗rb[blue]| ≤ 1 hold. If C∗rb[rbx]−C∗rb[rbx] = 2 at line 5, agent x changes its color
from rbx to rbx, C∗rb[rbx] decreases by one, and C∗rb[rbx] increases by one. This also preserves
C∗rb[red] ≤ #red, C∗rb[blue] ≤ #blue and |C∗rb[red] − C∗rb[blue]| ≤ 1. Therefore, the lemma
holds. J

I Theorem 5. Algorithm 1 solves the uniform bipartition problem. That is, in the model
with a BS, there exists a symmetric protocol with four states and arbitrary initial states that
solves the uniform bipartition problem under global fairness.

Proof. We define phase = C∗rb[red] + C∗rb[blue]. Initially, phase = 0 holds. We show that 1)
phase increases one by one if phase < n, and 2) Algorithm 1 solves the uniform bipartition
problem if phase = n.

First consider the initial configuration. Since we assume global fairness, Countred.out or
Countblue.out increases by one from Lemma 3 and at that time phase increases by one.

Let us consider the transition C → C ′ such that phase increases by one (i.e., line 4 is
executed) and phase < n holds at C ′. We consider two cases.

Case that lines 7 to 9 are not executed at C → C ′. In this case, since the BS does
not change sets of red and blue agents, it can correctly continue to execute Countred

and Countblue. Since phase < n = #red + #blue holds, either #red > C∗rb[red] or
#blue > C∗rb[blue] holds. Consequently, from Lemma 3, either Countred.out > C∗rb[red]
or Countblue.out > C∗rb[blue] holds eventually because we assume global fairness. At that
time, C∗rb[red] or C∗rb[blue] increases by one and hence phase increases by one.
Case that lines 7 to 9 are executed at C → C ′. In this case, the BS changes sets of red
and blue agents. At that time, the BS initializes its own variables of counting algorithms
Countred and Countblue. Since the counting algorithms work from arbitrary initial states
of agents, the BS can correctly execute Countred and Countblue from the beginning under
global fairness. Similarly to the first case, from Lemma 3, either Countred.out > C∗rb[red]
or Countblue.out > C∗rb[blue] holds eventually. Then, phase increases by one.

Lastly, consider the transition C → C ′ such that phase increases by one and phase = n

holds at C ′. From phase = n, C∗rb[red] + C∗rb[blue] = n = #red + #blue holds, and
consequently C∗rb[red] = #red and C∗rb[blue] = #blue hold from Lemma 4. This implies that
Countred.out and Countblue.out never exceed C∗rb[red] and C∗rb[blue] after that, respectively.
Therefore, C∗rb[red] and C∗rb[blue] are never updated and consequently agents never change
their colors any more. Since |#red−#blue| = |C∗rb[red]− C∗rb[blue]| ≤ 1 holds from Lemma
4, we have the theorem. J

3.2.1.2 Impossibility with three states

Here we show the impossibility of asymmetric protocols with three states.

I Theorem 6. In the model with a single BS, no asymmetric protocol with three states and
arbitrary initial states solves the uniform bipartition problem under global fairness.
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Proof. For contradiction, assume that such a protocol Alg exists. Without loss of generality,
we assume that the state set of agents is Qp = {s1, s2, s3}, f(s1) = f(s2) = red, and
f(s3) = blue. We consider the following three cases.

First, consider population A = {a0, . . . , an} of a single BS and n agents such that n is
even and at least 4. Assume that a0 is a BS. Since each agent has an arbitrary initial state,
we consider an initial configuration C0 such that s(ai) = s3 holds for any i(1 ≤ i ≤ n). Note
that the BS a0 has a designated initial state at C0. From the definition of Alg, for any
globally fair execution E = C0, C1, · · · , there exists a stable configuration Ct. Hence, both
the number of red agents and the number of blue agents are n/2 at Ct. After Ct, the color
of agent ai (i.e., f(s(ai))) never changes for any ai(1 ≤ i ≤ n) even if the BS and agents
interact in any order.

Next, consider population A′ = {a′0, . . . , a′n+2} of a single BS and n+ 2 agents. Assume
that agent a′0 is a BS. We consider an initial configuration C ′0 such that s(a′i) = s3 holds
for any i (1 ≤ i ≤ n + 2). From this initial configuration, we define an execution E′ =
C ′0, C

′
1, · · · , C ′t, · · · using the execution E as follows.

For 0 ≤ u < t, when ai and aj interact at Cu → Cu+1, a′i and a′j interact at C ′u → C ′u+1.
For t ≤ u, an interaction occurs at C ′u → C ′u+1 so that E′ satisfies global fairness.

Since the BS and agents a1, . . . , an change their states similarly to E from C ′0 to C ′t,
s(a′i) = s(ai) holds for 1 ≤ i ≤ n. Hence, there exist n/2 red agents and n/2 + 2 blue agents
at C ′t. Consequently C ′t is not a stable configuration. This implies that there exists a stable
configuration C ′t′ for some t′ > t. Clearly at least one blue agent becomes red from C ′t to
C ′t′ . That is, for some configuration C ′t∗(t ≤ t∗ < t′), an agent in state s3 transits to state s1
or s2 at Ct∗ → Ct∗+1. Assume that t∗ is the smallest value that satisfies the condition.

Finally, for A we define an execution E′′ = C ′′0 , C
′′
1 , · · · using executions E and E′ as

follows.
Let C ′′u = Cu for 0 ≤ u ≤ t. That is, E′′ reaches stable configuration C ′′t in similarly to
E.
For t ≤ u ≤ t∗, we define an execution so that interaction at C ′u → C ′u+1 also occurs
at C ′′u → C ′′u+1. Concretely, when a′i and a′j interact at C ′u → C ′u+1, we define ai′ and
aj′ as follows and they interact at C ′′u → C ′′u+1. If i ≤ n, let i′ = i. Otherwise, since
s(a′i) = s3 holds at C ′u (because no agent in state s3 changes its state from C ′t to C ′t∗),
choose i′(≤ n) such that both s(ai′) = s3 and i′ 6= j hold. Similarly, if j ≤ n, let j′ = j.
Otherwise choose j′(≤ n) such that both s(aj′) = s3 and j′ 6= i′ hold. Such i′ and j′
exist since at least two agents in state s3 exist (because n ≥ 4 holds and no agent in state
s3 changes its state from C ′t to C ′t∗).

Clearly, for t ≤ u ≤ t∗ and i ≤ n, s(ai) at C ′′u is equal to s(a′i) at C ′u. Additionally, at
C ′′t∗ → C ′′t∗+1, an agent in state s3 transits to s1 or s2 as well as C ′t∗ → C ′t∗+1. This means
that the agent changes its color at C ′′t∗ → C ′′t∗+1, which contradicts that C ′′t is a stable
configuration. J

I Remark. Recall that Section 3.1.1 gives a protocol with three states and designated
initial states. In the protocol, the state set of agents is Qp = {initial, red, blue}, we set
f(initial) = f(red) = red and f(blue) = blue, and the designated initial state is initial. The
important point is that the designated initial state (i.e., initial) has the same color as one of
other states (i.e., red).

In the proof of Theorem 6, we consider an execution such that all agents have the same
initial state in the initial configuration. The difference from the above protocol is that the
initial state does not have the same color as any other state. This means, even if we consider
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a protocol with three states and designated initial states, there exists no protocol such that
the designated initial state does not have the same color as any other state. This fact holds
even if the number of states is larger than three. J

3.2.2 Under weak fairness
Under weak fairness, we prove that no protocol with constant states solves the uniform bipar-
tition problem. To prove this impossibility, we borrow techniques used in the impossibility
proof for the counting problem [12]. This work shows that, in the model with a single BS,
when the upper bound of the number of non-BS agents is n, no asymmetric protocol with
n− 2 states and arbitrary initial states solves the counting problem under weak fairness. We
can apply the proof in [12] to the uniform bipartition problem in a straightforward manner.

I Theorem 7. Let n be an even number that is at least four. In the model with a single BS,
when the upper bound of the number of non-BS agents is n, no asymmetric protocol with
n− 3 states and arbitrary initial states solves the uniform bipartition problem under weak
fairness.

Proof. For contradiction, assume that such a protocol Alg exists. We consider the following
two cases.

First, consider population A = {a0, . . . , an−2} of a single BS and n− 2 agents such that
a0 is a BS. We consider an initial configuration C0 such that initial states of a0, . . . , an−2
are s0, . . . , sn−2 (s0 is a designated initial state of the BS). Since the upper bound of the
number of non-BS agents is n and agents do not know the number of agents, Alg should work
correctly even if the number of non-BS agents is n− 2. This implies that, for any execution
E = C0, C1, · · · , Ct, · · · , there exists a stable configuration Ct. Since the number of states
for non-BS agents is n − 3, there exists y, ap, and ap′ such that configurations satisfying
y = s(ap) = s(ap′) appear infinitely many times after Ct.

Next, consider population A′ = {a′0, . . . , a′n} of a single BS and n agents such that a′0
is a BS. We consider an initial configuration C0 such that initial states of a′0, . . . , a′n are
s0, . . . , sn−2, y, y, respectively. For A′ we define an execution E′ = C ′0, C

′
1, · · · , C ′t, · · · using

the execution E as follow.
For 0 ≤ u ≤ t − 1, when ai and aj interact at Cu → Cu+1, a′i and a′j interact at
C ′u → C ′u+1.

Clearly, s(a′i) = s(ai) holds at C ′t for any i (0 ≤ i ≤ n− 2). Since s(a′n) = s(a′n−1) = y holds
at C ′t, the difference in the numbers of red and blue agents remains two and consequently C ′t
is not a stable configuration.

After C ′t, we define an execution as follows. This definition aims to make n− 2 agents
behave similarly to E and two agents keep state y.

Until y = s(a′p) = s(a′p′) holds, if ai and aj interact at Cu → Cu+1, a′i and a′j interact at
C ′u → C ′u+1.
To define the remainder of E′, we first define procedure Proc(q, q′), which creates a
sub-execution from two indices q and q′. Procedure Proc(q, q′) can be applied to a
configuration such that y = s(a′p) = s(a′p′) = s(a′n−1) = s(a′n) holds. After that,
Proc(q, q′) creates a sub-execution similar to E such that all agents in A(q, q′) = (A′ −
{a′p, a′p′ , a′n−1, a

′
n}) ∪ {a′q, a′q′} interact each other and the last configuration also satisfies

the above condition. The concrete definition of Proc(q, q′) is as follows. When ai and
aj interact at Cu → Cu+1, a′i and a′j interact at C ′u → C ′u+1 if i, j /∈ {p, p′}. If i = p or
j = p, a′q joins the interaction instead of a′p. If i = p′ or j = p′, a′q′ joins the interaction
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instead of a′p′ . Procedure Proc(q, q′) continues these behaviors until all agents in A(q, q′)
interact each other and satisfy s(a′q) = s(a′q′) = y.
By using Proc(q, q′), we define the remainder of E′ to satisfy weak fairness as fol-
lows: Repeat Proc(p, p′), Proc(p, n − 1), Proc(p, n), Proc(n − 1, p′), Proc(n, p′), and
Proc(n, n− 1).

Clearly, E′ makes n− 2 agents behave similarly to E and two agents keep state y. Hence, E′
never converges to a stable configuration. Since E′ is weakly fair, this is a contradiction. J

I Remark. Theorem 7 implies that no protocol with at most n− 4 states solves the uniform
bipartition problem under the same assumption. This is because, if a protocol with ns states
(ns ≤ n− 4) is given, we can transform it to a protocol with n− 3 states by adding n− 3−ns

dummy states. Hence, at least n− 2 states are necessary to solve the uniform bipartition
problem under this assumption.

On the other hand, the sufficient number of states to solve the uniform bipartition problem
under this assumption is not known. To clarify the matching lower and upper bounds of the
number of states is an open problem. J

4 Uniform Bipartition Protocols with No BS

In this section, we consider the uniform bipartition problem under the assumption of no BS.
That is, all agents are identical.

4.1 Protocols with Designated Initial States

In this subsection, we consider protocols with designated initial states. Since we consider the
model with no BS, all agents have the same initial state in the initial configuration.

4.1.1 Asymmetric protocols

First, we consider asymmetric protocols in this case. Since three states are necessary in the
model with a BS from Theorem 2, three states are also necessary in the model with no BS.
In addition, Delporte-Gallet et al. [16] gives a protocol with three states. This implies that
three states are necessary and sufficient in this case.

Here, we briefly explain the protocol proposed in [16]. In this protocol, the state set of
agents is Qp = {initial, red, blue}, and we set f(initial) = f(red) = red and f(blue) = blue.
The designated initial state of all agents is initial. The protocol consists of a single asymmetric
transition (initial, initial)→ (red, blue). In this protocol, when two agents in state initial
interact, one agent transits to red and the other transits to blue. This implies that the number
of agents in state red is always the same as the number of agents in state blue. Eventually
all agents (possibly except one agent) transit to state red or blue. From f(initial) = red,
the difference in the numbers of red and blue agents is at most one. Note that the protocol
works correctly if every pair of agents interacts once.

I Theorem 8 ([16]). In the model with no BS, there exists an asymmetric protocol with
three states and designated initial states that solves the uniform bipartition problem under
global or weak fairness.
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4.1.2 Symmetric protocols
Next, we consider symmetric protocols in this case. For this setting, we give three results: 1)
a protocol with four states under global fairness, 2) impossibility with three states under
global fairness, and 3) impossibility under weak fairness. These results show that, in this
case, four states are necessary and sufficient to construct a symmetric protocol under global
fairness, and no symmetric protocol exists under weak fairness.

4.1.2.1 A protocol with four states under global fairness

We can easily obtain a symmetric protocol with four states by a scheme proposed in [14].
The scheme transforms an asymmetric protocol with α states to a symmetric protocol with
at most 2α states. By applying the scheme to an asymmetric protocol in Section 4.1.1 and
deleting unnecessary states, we can obtain a symmetric protocol with four states.

For self-containment, we briefly explain the obtained protocol. Since no symmetric
protocol solves the uniform bipartition problem for a population of two agents, we assume
that a population consists of at least three agents. In this protocol, the state set of agents
is Qp = {initial, initial′, red, blue}, and we set f(initial) = f(initial′) = f(red) = red and
f(blue) = blue. The designated initial state of all agents is initial. The protocol consists of
the following seven transitions.
1. (initial, initial)→ (initial′, initial′)
2. (initial′, initial′)→ (initial, initial)
3. (initial, initial′)→ (red, blue)
4. (initial, red)→ (initial′, red)
5. (initial, blue)→ (initial′, blue)
6. (initial′, red)→ (initial, red)
7. (initial′, blue)→ (initial, blue)

The main behavior of the protocol is similar to the previous asymmetric protocol with
three states. However, since asymmetric transition (initial, initial) → (red, blue) is not
allowed in symmetric protocols, the scheme in [14] introduces a new state initial′. Transition
3 implies that, when agents in states initial and initial′ interact, they become red and blue,
respectively. In addition, agents in states initial and initial′ become initial′ and initial

respectively when they interact with some agents (except for interaction between one in state
initial and one in state initial′). From global fairness, if at least two agents are in state
initial or initial′, some two agents eventually enter states initial and initial′. After that, if
the two agents interact, they enter states red and blue.

Figure 1 shows an example execution of the protocol for a population of four agents.
Initially all agents are in state initial (Fig. 1 (a)). After interactions (a1, a2) and (a3, a4), all
agents enter state initial′ (Fig. 1 (b)). Similarly, after interactions (a1, a4), (a2, a3), (a1, a3),
and (a2, a4), all agents have the same state (Fig. 1 (c) and (d)). If these interactions happen
infinite times, all agents keep the same state and never achieve the uniform bipartition.
However, under the global fairness, such interactions do not happen infinite times. This is
because, if some configuration C occurs infinite times, every configuration reachable from C

should occur. This implies that, before a configuration in Fig. 1 (d) occurs infinite times,
interactions (a1, a2) and (a1, a3) happen in this order from the configuration. Then, a1 and
a3 enter states red and blue, respectively (Fig. 1 (e) and (f)). After that, in a similar way,
the remaining agents eventually enter red and blue like Fig. 1 (g) and (h).

Theorem 8 and correctness of the scheme in [14] derives the following theorem.
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Figure 1 An example execution of the protocol. Symbols i, i′, r, and b represent states initial,
initial′, red, and blue, respectively. Arrows represent interactions of agents.

I Theorem 9. In the model with no BS, when the number of agents is at least three, there
exists a symmetric protocol with four states and designated initial states that solves the
uniform bipartition problem under global fairness.

4.1.2.2 Impossibility results

In the following, we show two impossibility results.

I Theorem 10. In the model with no BS, no symmetric protocol with three states and
designated initial states solves the uniform bipartition problem under global fairness.

Proof. For contradiction, assume that such a protocol Alg exists. Without loss of generality,
we assume that the state set of agents is Qp = {s1, s2, s3}, f(s1) = f(s2) = red, and
f(s3) = blue. Consider population A = {a1, . . . , an} of n agents such that n is even and at
least 6. First, assume that the designated initial state of all agents is s3. Clearly, Alg has
transition (s3, s3)→ (si, si) for some i 6= 3. However, since n/2 agents in state s3 exist at a
stable configuration, some agents change their states from s3 to si at the stable configuration.
This implies that agents change their colors. Therefore, a designated initial state is s1 or s2.

Next, assume that the designated initial state of all agents is s1 (Case of s2 is the
same). Since Alg is a symmetric protocol and all the initial states are s1, Alg includes
(s1, s1)→ (si, si) for some i 6= 1. This implies that all agents can transit to state si from the
initial configuration. Hence, Alg also includes (si, si)→ (sj , sj) for some j 6= i. When i = 3,
since n/2 blue agents exist at a stable configuration and they are in state s3, the blue agents
become red by transition (s3, s3)→ (sj , sj). Therefore, i 6= 3 holds.

The remaining case is i = 2. If j = 3, that is, Alg includes (s2, s2) → (s3, s3), red
agents (i.e., agents in state s1 or s2) change their colors at a stable configuration because
Alg includes (s1, s1) → (s2, s2) and (s2, s2) → (s3, s3). This implies j = 1. In this
case, Alg includes (s2, s2) → (s1, s1). Since some agents should transit to state s3, Alg
includes (s1, s2)→ (sk, sl) such that k or l is 3. At a stable configuration, there exist n/2
agents with states s1 or s2. However, these agents can transit to state s3 from transitions
(s1, s2)→ (sk, sl), (s2, s2)→ (s1, s1), and (s1, s1)→ (s2, s2). This is a contradiction. J

I Theorem 11. In the model with no BS, no symmetric protocol with designated initial
states solves the uniform bipartition problem under weak fairness.

Proof. For contradiction, assume that such a protocol Alg exists. We assume that the state
set of agents is Qp = {s1, s2, . . .}. Consider population A = {a1, . . . , an} of n agents such
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that n is even and at least 2. Let si1 be the designated initial state of all agents, that is,
s(ai) = si1 holds for any i (1 ≤ i ≤ n) at the initial configuration. Clearly, symmetric
protocol Alg has transition (si1 , si1)→ (si2 , si2) for some si2 . This implies that, if all pairs
of two agents in state si1 interact, all agents transit to si2 . Similarly, if all pairs of two agents
in state si2 interact, all agents transit to the same state (say si3).

When the above execution is repeated, configurations such that all agents have the same
state appear infinitely often. By changing pairs of two agents, we can make the above
execution under weak fairness. If all agents are in the same state, such a configuration is not
stable because the colors of all agents are the same. This is a contradiction. J

4.2 Protocols with Arbitrary Initial States
In this subsection, we consider protocols with arbitrary initial states. We show that, in this
case, no protocol solves the uniform bipartition problem. That is, to allow agents to start
from arbitrary initial states, a single BS is necessary.

I Theorem 12. In the model with no BS, no asymmetric protocol with arbitrary initial states
solves the uniform bipartition problem under global fairness

Proof. For contradiction, assume that such a protocol Alg exists. Assume that n is even
and at least 4. We consider the following two cases.

First, for population A = {a1, . . . , an} of n agents, consider an execution E = C0, C1, · · ·
of Alg. From the definition of Alg, there exists a stable configuration Ct. Hence, both the
number of red agents and the number of blue agents are n/2 at Ct. After Ct, the color of
agent ai (i.e.,f(s(ai))) never changes for any ai (1 ≤ i ≤ n) even if agents interact in any
order.

Next, for population A′ = {a′i|f(s(ai, Ct)) = red} of n/2 agents, consider an execution
E′ = C ′0, C

′
1, · · · of Alg from the initial configuration C ′0 such that s(a′i, C ′0) = s(ai, Ct) holds

for any i (1 ≤ i ≤ n/2). Since all agents are red at C ′0, some agents must change their colors
to reach a stable configuration. This implies that, after Ct in execution E, agents change
their colors if they interact similarly to E′. This is a contradiction. J

5 Conclusion

In this paper, we completely clarify constant-space solvability of the uniform bipartition
problem and minimum requirement of agent space under various assumptions. This paper
leaves many open problems:

In the model of a single BS, how many states are necessary and sufficient to develop a
uniform bipartition protocol with arbitrary initial states under weak fairness?
Is it possible to extend our results to the uniform k-partition problem, which divides a
population into k groups of the same size. Is it possible to construct a general protocol
to solve the uniform k-partition problem? How many states are required to solve the
problem?
What is the relation between the uniform bipartition problem and other problems such
as counting, leader election, and majority?
What is the time complexity of the uniform bipartition problem under probabilistic
fairness? The uniform bipartition problem has a close relationship to computation of
function f(n) = n/2. The time complexity of n/2 computation has been studied in [5, 13].
Is it possible to derive the time complexity of the uniform bipartition problem from the
results?
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Abstract
Enumerating all consistent states of a parallel computation that satisfy a given predicate is an im-
portant problem in debugging and verification of parallel programs. We give a fast algorithm to
enumerate all consistent states of a parallel computation that satisfy a stable predicate. In addi-
tion, we define a new category of global predicates called count predicates and give an algorithm
to enumerate all consistent states (of the computation) that satisfy it. All existing predicate
detection algorithms, such as BFS, DFS and Lex algorithms, do not exploit the knowledge about
the nature of the predicates, and thus may visit all global states of the computation in the worst
case. In comparison, our algorithms only visit the states that satisfy the given predicate, and
thus take time and space that is a polynomial function of the number of states of interest. In
doing so, they provide a significant reduction – exponential in many cases – in time complexities
in comparison to existing algorithms.
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1 Introduction

Predicate detection [18, 11] is a powerful technique for verifying parallel programs. It allows
inference based analysis to check many possible system states based on a single execution of
the program. It involves three key steps: (a) obtaining an execution trace of the program,
(b) modeling this trace as a partial order, and (c) checking all possible states of the model
that are consistent with the partial order against a predicate that encodes the violation of
any constraint or invariant. A large body of work uses this approach to verify distributed
applications, as well as to detect data-races and other concurrency related bugs in shared
memory parallel programs [10, 14, 21, 25].

In many debugging/analysis applications, we may be interested in analyzing each consist-
ent global state – often called a consistent cut – of a parallel program that satisfies a given
predicate. For example, while debugging an implementation of the Paxos [24] algorithm,
a programmer might only be interested in analyzing consistent cuts when all the promise
messages of a particular round have been delivered. Another scenario is when a programmer
knows that her program exhibits a bug only after the system has executed a certain number
of, let us say k, events. For these two scenarios, our predicate definitions are: B = all
promises have been delivered, and B = at least k events have been executed. Both of these
predicates fall under the category of stable predicates. A stable predicate is a predicate that
remains true once it becomes true. In addition, some predicates are defined on the count of
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Figure 1 Computation on two processes with six events.

{}

{a} {e}

{a, b} {a, e}

{a, b, c} {a, b, e}

{a, b, c, e} {a, b, e, f}

{a, b, c, e, f} {a, b, e, f, g}

{a, b, c, e, f, g}

Figure 2 Lattice of Consistent Cuts for Figure 1.

some specific types of events in the system. We call such global predicates count predicates.
This category of predicates encodes many useful conditions for debugging/verification of
parallel programs. For example, B = exactly two promise messages have been received is a
count predicate.

Let us call the partial order model of the execution trace a computation. If we are
interested in enumerating all possible consistent cuts of a computation that satisfy a global
predicate B that is of either a stable or a count predicate, then we currently only have
one choice: traverse all the cuts using existing traversal algorithms (such as BFS [11], DFS
[1], and Lex [16, 17] and check which ones satisfy B. This is generally wasteful because
we traverse many more cuts than needed – especially if the subset of cuts satisfying B is
relatively small. For example, consider the computation in Figure 1, and the predicate B =
at least 4 events have been executed. Figure 2 shows all the consistent cuts of the computation
as a distributive lattice using the vector clock notation. There are five such cuts in which
at least four events have been executed. Using the BFS, DFS, or Lex traversal algorithms,
however, we will have to visit all the twelve cuts to find these five.

We present the first algorithms to efficiently enumerate the subset of consistent cuts that
satisfy stable or count predicates without enumerating other consistent cuts that do not
satisfy them. Our algorithms take time and space that is a polynomial function of the number
of consistent cuts of interest. Thus, when compared to existing algorithms for enumerating
such consistent cuts, the time complexities of our algorithms are significantly – exponentially
for many cases – better.
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Figure 3 Vector clocks of events for computation of Figure 1.

2 Background

We model a computation P = (E,→) on n processes {P1, P2, . . . , Pn} as a partial order on
the set of events, E. The events are ordered by Lamport’s happened-before (→) relation [23].
This partially ordered set (poset) of events is generally partitioned into chains:

I Definition 1 (Chain Partition). A chain partition of a poset places every element of the
poset on a chain that is totally ordered. Formally, if α is a chain partition of poset P = (E,→)
then α maps every event to a natural number such that

∀x, y ∈ E : α(x) = α(y)⇒ (x→ y) ∨ (y → x).

Generally, a computation on n processes is partitioned into n chains such that the events
executed by process Pi (1 ≤ i ≤ n) are placed on ith chain.

Mattern [26] and Fidge [13] proposed vector clocks, an approach for time-stamping events
in a computation such that the happened-before relation can be tracked. For a program on n
processes, each event’s vector clock is a n-length vector of integers. Note that vector clocks
are dependent on chain partition of the poset that models the computation. For an event e,
we denote e.V as its vector clock. Throughout this paper, we use the following representation
for interpreting chain partitions and vector clocks:

If there are n chains in the chain partition of the computation, then the lowest chain
(process) is always numbered 1, the second lowest chain is numbered 2, and so on, with
the highest chain being numbered n.
A vector clock on n chains is represented as a n-length vector: [en, en−1, ..., ei, ..., e2, e1]
such that the rightmost (first from right) entry denotes the number of events executed on
P1, second from right entry denotes events executed on P2, and so on, such that the left
most (nth from right) entry holds the number of events executed on Pn.

Hence, if event e was executed on process Pi, then e.V [i] is e’s index (starting from 1) on Pi.
Also, for any event f in the computation: e→ f ⇔ ∀j : e.V [j] ≤ f.V [j]∧∃k : e.V [k] < f.V [k].
A pair of events, e and f , is concurrent iff e 6→ f ∧ f 6→ e. We denote this relation by
e||f . Note that concurrent events must occur on separate processes. Figure 3 shows the
corresponding vector clocks of the computation shown in Figure 1. Event b is the second
event on process P1, and thus using the notation described above its vector clock is [0, 2].
Event g is the third event on P2, but it is preceded by f , which in turn is causally dependent
on b on P1, and thus the vector clock of f is [3, 2].

I Definition 2 (Consistent Cut). Given a computation (E,→), a subset of events C ⊆ E forms
a consistent cut if C contains an event e only if it contains all events that happened-before e.
Formally, e ∈ C ∧ f → e =⇒ f ∈ C.

A consistent cut captures the notion of a global state of the system at some point during
its execution [3]. We use the term cut for a possible global state of the computation which
may or may not be consistent. When the global state is consistent, we use the term consistent
cut.
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Figure 4 Posets in Uniflow Partitions.

Consider the computation shown in Fig 1. The subset of events {a, b, e} forms a consistent
cut, whereas the subset {a, e, f} does not; because b→ f (b happened-before f) but b is not
included in the subset.

Vector Clock Notation of Cuts. So far we have described how vector clocks can be used to
time-stamp events in the computation. We also use them to represent cuts of the computation.
If the computation is partitioned into n chains, then for any cut G, its vector clock is a
n-length vector such that G[i] denotes the number of events from Pi included in G. Note
that in our vector clock representation the events from Pi are at the ith index from the right.

For example, consider the state of the computation in Figure 1 when P1 has executed
events a and b, and P2 has only executed event e. The consistent cut for this state, {a, b, e},
is represented by [1, 2]. Note that cut [2, 1] is not consistent, as it indicates execution of f on
P2 without b being executed on P1.

I Definition 3 (Lexical Order on Consistent Cuts). Given any chain partition of poset P that
partitions it into n chains, we define a total order called lexical order on all consistent cuts of
P as follows. Let G and H be any two consistent cuts of P . Then, G <l H ≡ ∃k : (G[k] <
H[k]) ∧ (∀i : n ≥ i > k : G[i] = H[i])

I Theorem 4. [12, 26] Let C(E) denote the set of all consistent cuts of a computation
(E,→). C(E) forms a finite distributive lattice under the relation ⊆.

Figure 9 in Appendix A, shows the twelve consistent cuts of the computation in Figure 1
in set notation and their corresponding vector clock notation.

Rank of a Cut. Given a cut G, we define rank(G) =
∑
G[i]. The rank of a cut corresponds

to the total number of events, across all processes, that have been executed to reach the cut.

3 Uniflow Chain Partition

We now discuss a special chain partition of a poset called uniflow chain partition. A uniflow
partition of a poset P is its partition into nu chains {µi | 1 ≤ i ≤ nu} such that no element
in a higher numbered chain is smaller than any element in lower numbered chain; that is
if any element e is placed on a chain i then all elements smaller than e must be placed on
chains numbered lower than i. For poset P , chain partition µ is uniflow if

∀x, y ∈ P : µ(x) < µ(y)⇒ (y 6→ x) (1)

Visually, in a uniflow chain partition all the edges between separate chains always point
upwards. Figure 4 shows two posets with uniflow partitions. Whereas Figure 5 shows two
posets with partitions that do not satisfy the uniflow property. The poset in Figure 5a can
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Figure 5 Posets in (a) and (c) are not in uniflow partition: but (b) and (d) respectively are their
equivalent uniflow partitions.

be transformed into a uniflow partition of three chains as shown in Figure 5b. Similarly,
Figure 5c can be transformed into a uniflow partition of two chains shown in Figure 5d.
Observe that:

I Lemma 5. Every poset has at least one uniflow chain partition.

Proof. Any total order that is an extension of the poset is a uniflow chain partition in which
each element is a chain by itself. In this trivial uniflow chain partition the number of chains
is equal to the number of elements in the poset. J

For any poset P , the number of chains in any of its uniflow partition is always less than
or equal to |P | (the number of elements in poset). Let us now focus on finding a uniflow
chain partition of our poset model of a parallel computation.

We define a total order, called uniflow order, on the events of the computation based on
its uniflow chain partition. Recall from Equation 1 that for any event e, µ(e) denotes its
chain number in µ. Let pos(e) denote the index of event e on chain µ(e). Note that a chain
is totally ordered, and thus for any two events on the same chain one event’s index will be
greater than the other’s.

I Definition 6 (Uniflow Order on Events, <u). Let µ be uniflow chain partition of a compu-
tation P =(E,→) that partitions it into nu chains. We define a total order called uniflow
order on the set of events E as follows. Let e and f be any two events in E. Then,
e <u f ≡ (µ(e) < µ(f)) ∨ (µ(e) = µ(f) ∧ pos(e) < pos(f))

For example, in Figure 5b we have a <u e as µ(a) = 1 and µ(e) = 2; and e <u f as
µ(e) = µ(f) = 2, pos(e) = 1 and pos(f) = 2.

The problem of finding a uniflow chain partition is a direct extension of finding the jump
number of a poset [9, 2, 32]. Multiple algorithms have been proposed to find the jump
number of a poset; which in turn arrange the poset in a uniflow chain partition. Finding
an optimal (smallest number of chains) uniflow chain partition of a poset is a hard problem
[9, 2]. Bianco et al. [2] present a heuristic algorithm to find a uniflow partition, and show in
their experimental evaluation that in most of the cases the resulting partitions are relatively
close to optimal. We use the online algorithm given in [7] to find a uniflow partition for a
computation.

Recall that for the vector clock notation of a cut G, G[i] denotes the number of events
included from chain i. The vector clocks of events, and cuts, of a computation are dependent
on the underlying chain partition, and hence we re-generate the vector clocks of the events
for the uniflow partition. This is a simple task using existing vector clock implementation
techniques, and we omit these details.

Note that the set of consistent cuts of a computation remains the same irrespective of
the chain partition used. Hence, if the computation’s uniflow partition is different from its
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original chain partition, we re-map the vector clock of consistent cuts in uniflow partition to
the vector clocks of cuts in original partition. For the details of this step, we refer the reader
to [7].

The structure of uniflow chain partitions can be used for efficiently obtaining bigger
consistent cuts. After we find a uniflow chain partition of a computation, and regenerate the
vector clocks of events as per this partition, we have the following result.

I Lemma 7 (Uniflow Cuts Lemma). Let P be a poset with a uniflow chain partition {µi | 1 ≤
i ≤ nu}, and G be a consistent cut of P . Then any Hk ⊆ P for 1 ≤ k ≤ nu is also a
consistent cut of P if it satisfies:

∀i : k < i ≤ nu : Hk[i] = G[i], and

∀i : 1 ≤ i ≤ k : Hk[i] = |µi|.

Proof. Using Equation 1, we exploit the structure of uniflow chain partitions: the causal
dependencies of any element e lie only on chains that are lower than e’s chain. As G is
consistent, and Hk contains the same elements as G for the top (nu−k) chains, all the causal
dependencies that need to be satisfied to make Hk have to be on chain k or lower. Hence,
including all the elements from all of the lower chains will naturally satisfy all the causal
dependencies, and make Hk consistent. J

For example, in Figure 4b, consider the cut G = [1, 2, 1]1 that is a consistent cut of the
poset. Then, picking k = 1, and using Lemma 7 gives us the cut [1, 2, 3] which is consistent;
similarly choosing k = 2 gives us [1, 3, 3] that is also consistent. Note that the claim may
not hold if the chain partition does not have uniflow property. For example, in Figure 5c,
G = [2, 2] is a consistent cut. The chain partition, however, is not uniflow and thus applying
Lemma 7 with k = 1 gives us [2, 3] which is not a consistent cut as it includes the third event
on P1, but not its causal dependency – the third event on P2.

We now define the notion of a base cut: a consistent cut that is formed by including
events from µ in a bottom-up manner.

I Definition 8 (l-Base Cut). Let G be a consistent cut of a computation P =(E,→) with
uniflow partition µ. Then, we call G a l-base cut if ∀j ≤ l : G[j] = |(µj)|

Thus, in a l-base cut we must include all the events from each chain that is same or
lower than µl in the uniflow partition µ. In Figure 5b, {a, e, b} (or [1, 1, 1] in its vector clock
notation) is a consistent cut. It is a 1-base cut as it includes all the elements from chain µ1,
but it is not a 2-base cut as it does not include all the events from the chain µ2.

4 Enumerating Consistent Cuts Satisfying Stable Predicates

A predicate B is stable if once it becomes true it stays true. Some examples of stable
predicates are: deadlock, termination, loss of message, at least k events have been executed,
and at least k′ messages have been sent.

I Definition 9 (Stable Predicate). Let C be the set of all consistent cuts of a computation.
A predicate B defined on C is called stable if and only if ∀G,H ∈ C : G ⊆ H implies that if
B(G) is true then B(H) is also true.

1 Recall that in our vector clock notation ith entry from the right in the vector clock represents the events
included from ith chain from the bottom in the uniflow chain partition.
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Algorithm 1 EnumerateStable((E,→), B).
Input: Computation (E,→) in its uniflow chain partition µ, B: a stable predicate
Output: Enumerate all consistent cuts satisfying B.
1: G = GetMinCut(B, {}) // find the lexically smallest consistent cut satisfying B
2: while G 6= null do
3: enumerate(G) // enumerate the cut
4: G = GetMinCut(B,G) // find the next lexically smallest consistent cut >l G satisfying B

Algorithm 2 GetMinCut(B,G).
Input: B: a stable predicate, G: a consistent cut
Output: lexically smallest consistent cut >l G that satisfies B
1: 〈H, c〉 = GetBiggerBaseCut(B,G)
2: return BackwardPass(B, c− 1, H)

Thus, for any stable predicate B the lattice of consistent cuts can be split in two parts using
a boundary: every consistent cut higher than the boundary satisfies B, and no consistent
cut lower than the boundary satisfies B. Figure 10 (in Appendix, page 18) presents a
visualization for this concept. Our goal is to enumerate all consistent cuts of a computation
P =(E,→) that satisfy a stable predicate B. Note that if the empty cut, {} satisfies B, then
by the stability property of B all the consistent cuts of the computation satisfy B. In this
case, the problem is equivalent to traversing all the consistent cuts of a computation. We can
use a fast traversal algorithm such as QuickLex [5] to do so. We now focus on the non-trivial
case, and present our algorithm that enumerates only the consistent cuts that satisfy B, and
does not enumerate the remaining parts of the lattice of consistent cuts.

Recall that C(E) represents the set of all consistent cuts of the computation P =(E,→).
Let SB ⊂ C(E) be the set of all consistent cuts of P that satisfy a stable predicate B. We
use P ’s uniflow partition µ to enumerate them in their lexical order based on the uniflow
partition. Let G and H be two consistent cuts of P , then applying the definition of lexical
order (Definition 3) over nu chains, we get G <l H ≡ ∃k : (G[k] < H[k]) ∧ (∀i : nu ≥ i > k :
G[i] = H[i]).

We use the EnumerateStable routine in Algorithm 1 for this enumeration. We first
find the lexically smallest consistent cut G that satisfies B. We then find the next cut that
is lexically greater than G and satisfies B, and repeat the process after re-assigning G to
this cut. We stop when no such lexically greater cut satisfying B is found.

Given a consistent cut G, and a stable predicate B, we use the GetMinCut routine in
Algorithm 2 to find the lexically smallest cut that is greater than G and satisfies B. We use
two sub-routines for this task: GetBiggerBaseCut and BackwardPass.

The GetBiggerBaseCut routine in Algorithm 3 takes a consistent cut, G, and returns
a pair: the first entry is the lexically smallest l-base cut (Definition 8) H lexically greater
than G that satisfies B, and the second entry is the chain number from which we added the
last event to H before returning the result. If no such cut H can be found, then we return
〈null,−1〉. We start by copying G into H, and from the lowest chain, i = 1, add events to H
that are not included in it. Each time we add an event e (not already present in H) to H, we
form a bigger consistent cut, and then check if this H satisfies B. Note that we move from
lower chains to higher, and by the property of uniflow chain partition, we know that adding
events in this order will not violate any causal dependencies and keep the cut consistent. At
the first instance of finding a bigger cut that satisfies B, we stop and return the pair 〈H, i〉,
where i is the chain number in µ on which we found e. If we consume all the events from a
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Figure 6 A computation on two processes in: (a) its original non-uniflow partition, (b) equivalent
uniflow partition.

Algorithm 3 GetBiggerBaseCut(B,G).
Input: B: a stable predicate, G: a consistent cut
Output: pair 〈H, i〉: H is the smallest base cut that is lexically greater than G and satisfies B, i is

the chain number in µ from which we added the last event to H.
1: H = G

2: for (i = 1; i ≤ nu; i = i+ 1) do // go from lowest chain to highest
3: j = index of the smallest event on chain µi that is not included in H
4: for (; j ≤ |µi|; j = j + 1) do // use events on chain i not included in G
5: H = H ∪ {µi[j]} // add event to cut H
6: // H is guaranteed to be lexically greater than G now
7: if B(H) then // if H satisfies B
8: return 〈H, i〉 // return H and chain number of the event
9: return 〈null,-1〉 // no cut lexically greater than G and satisfying B was found

chain, we move to the chain immediately above and repeat this process.
Let us illustrate the execution with an example. Consider the computation in Figure 6b

and the predicate B=P2 has executed two or more events, and the call GetBiggerBaseCut
(B, {c}). We use the uniflow partition, and starting at µ1, with H = G = {c}, we add the
first and only event of this chain, a, to H and get {a, c} that is greater than G but does not
satisfy B, as a was executed on P1 in the computation. We now jump to chain µ2, and find
the first event on µ2 that is not included in H. This event is b, the second event on chain.
We add it to H and get H = {a, b, c} that still does not satisfy B. We now move to the third
chain, and add its only event d to H. We now have H = {a, b, c, d} and it satisfies B. We
return 〈H = {a, b, c, d}, i = 3〉.

The BackwardPass routine (in Algorithm 4) takes three arguments: a stable predicate
B, a chain number start, and a consistent cut G that satisfies B. It returns a consistent
cut H such that H satisfies B, and H is the lexically smallest member of the set: {G′ ⊆
G : G′[j] = G[j], start + 1 ≤ j ≤ nu}. Thus, H is the lexically smallest consistent cut
H ≤l G that satisfies B such that H and G include the same set of events from chains
start + 1 and higher. Note that whenever start = nu, we have start + 1 > nu, and the
routine returns without changing the passed cut. We start from the given chain number
and traverse backwards on it removing the events as long as the resulting cut continues
to satisfy B. If removing an event will cause the cut to become inconsistent or not satisfy
B, we do not remove the event and move to the chain immediately below. Consider the
computation in Figure 6b and the predicate B=P2 has executed two or more events, and the
call BackwardPass (B, 2, {a, b, c, d}). We start at chain i = 2, and remove the last event
on this chain, b, from H, to get K = {a, c, d}. This cut satisfies B as it has two events c and
d that were executed on P2. We now update H = K = {a, c, d}. We then try to remove c the
first event on chain µ2 from H, but get the cut K = {a, d} that is not consistent – d’s causal
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Algorithm 4 BackwardPass(B, start,G).
Input: B: a stable predicate, start: a chain number (from µ) such that 0 < start < nu, G: a

base cut that satisfies B.
Output: H: Lexically smallest consistent cut ≤ G that satisfies B and has H[k] = G[k] for

start+ 1 ≤ k ≤ nu.
1: H = G

2: for (j = start; j ≥ 1; j = j − 1) do // iterate from start argument chain to lower chains
3: for (e = H[j]; e ≥ 1; e = e− 1) do // from last event on chain to first
4: K = H \ {µj [e]} // remove event from cut
5: if K is inconsistent then // removing the event violated consistency
6: break // break inner loop on events to move to the lower chain
7: // K must be consistent now
8: if B(K) then // K is consistent, smaller than G, and satisfies B
9: H = K // update H to this cut

10: return H

dependency c is not included in this cut. Hence, H is not changed, and kept as {a, c, d}. We
now move to the lower chain µ1. We again cannot remove the only event from this chain
(event a) as it will make the cut inconsistent. We now have exhausted all the chains, and thus
at the end return H = {a, c, d} which is lexically smaller than G = {a, b, c, d} and satisfies
B.

For the computation in Figure 6b and the predicate B=P2 has executed two or more
events, let us find the lexically smallest cut that satisfies B. We use the GetMinCut routine,
and since we are interested in finding the lexically smallest cut, we start with G = {}. Calling
GetBiggerBaseCut (B, {}) returns 〈H = {a, b, c, d}, i = 3〉 as shown earlier. Now calling
BackwardPass (B, 2, {a, b, c, d}) returns {a, c, d}. This is the lexically smallest cut of the
computation that satisfies B.

Let us now go through a run of EnumerateStable routine. For the computation
in Figure 6b and the predicate B=P2 has executed two or more events, we have already
seen that lexically smallest cut that satisfies B is {a, c, d}. We enumerate this cut at line
3 (in Algorithm 1) and then call GetMinCut (B, {a, c, d}). This in turn will first call
GetBiggerBaseCut (B, {a, c, d}), and the result is 〈H = {a, b, c, d}, i = 2〉. The second
call (in GetMinCut) is BackwardPass (B, 1, {a, b, c, d}) that returns G = {a, b, c, d}, and
we enumerate it. The next call of GetMinCut (B, {a, b, c, d}) will return null as there is no
cut greater than {a, b, c, d}. Hence, the loop will now terminate, and we have enumerated all
the cuts that satisfy B.

We present the proof of correctness for these algorithms in this paper’s extended version
[6]. The routines presented here can be implemented without the regeneration of vector
clocks for uniflow partition. We can also optimize them for improved runtime by using
some additional space. We present these implementation details, and their optimizations in
Appendix B.

5 Enumerating Consistent Cuts satisfying Count Predicates

Many applications involve analysis of computations based on some specific type of events.
The type of an event is defined either in the context of the system under consideration,
or in the context of the analysis problem. For example, we can categorize events in a
message-passing computation in three base types: send event, receive event, and local event.
Similarly, in a shared memory parallel computation that uses locks, we can define three
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Figure 7 A computation in uniflow partition.

base types: acquire-lock event, release-lock event, and thread-local event. Analyzing such
computations may require us to check all consistent cuts that satisfy counting conditions on
a type of event. For example, we may be interested in analyzing the computation when a
certain number of send events have occurred, or a certain number of messages have been
received. We call such predicates count predicates. Count predicates are used in multiple
debugging and analysis applications. For example, while debugging an implementation of
Paxos [24] algorithm, a programmer might only be interested in analyzing possible system
states when kth propose message has been sent, or k′ promise messages have been delivered.
Another scenario is when a programmer knows that a program exhibits a bug only after the
system has executed a certain number of events. We use the notion of colors to represent
types. We assume that by default each event in a computation is colored white. Then,
every event of interest is assigned a color where each color represents a type categorization.
Note that an event can have only one color, and on assigning a color c to it, we replace
its previously assigned color. For example, in the Paxos implementation scenario discussed
earlier, we may assign the color blue to all the events that send a propose message, and the
color red to all the events that deliver promise messages. We then define the notion of a view
of a consistent cut with respect to a color:

I Definition 10 (view(G, c)). Let each event e of the computation P = (E,→) be colored
with a color c from the set of colors C. Then for a consistent cut G of P we define view(G, c)
as the set of events that are included in G and are colored c.

For example, consider the computation shown in Figure 7. The events in this computation
are colored either white or blue. Given the cut G = {a, b, e} in this computation, we have
view(G,white) = {a, b, e}, and view(G, blue) = {}. For G = {a, b, c, d, e, f, g}, we get
view(G,white) = {a, b, c, e, g}, and view(G, blue) = {d, f}.

We now use the view with respect to a color to define a count predicate.

I Definition 11 (Count Predicate). Let P = (E,→) be a computation, and c be a color from
the set of colors C. A predicate B is called a count predicate if it can be written in the form:
|view(G, c)| = k ∈ N, for any consistent cut G of P .

If c is the color used in defining B, then we use the notation countB(G) = |view(G, c)|.
Observe that for a count predicate B, we get:

countB(G) ≤ rank(G).
If H is a consistent cut such that G ⊆ H then countB(H) ≥ countB(G).
If K is a consistent cut such that G ⊂ K and countB(K) > countB(G), then ∃H : (G ⊂
H ⊆ K) ∧ countB(H) = countB(G) + 1.

Given that B is defined with respect to one color c, for brevity and ease of notation we
usually write view(G) for view(G, c) when c is obvious from the context.

We now present an algorithm to enumerate all consistent cuts of a computation (E,→) that
satisfy a count predicate B. We use the computation’s uniflow partition µ for enumerating
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Algorithm 5 EnumerateCount((E,→), B).
Input: Computation (E,→) in its uniflow chain partition µ, B: a count predicate
Output: Enumerate all consistent cuts satisfying B.
1: G = GetMinCut(B, {}) // now G is the smallest cut satisfying B
2: while G 6= null do
3: EnumSameViewCuts(B,G)
4: G = GetSuccessor(B,G)

Algorithm 6 EnumSameViewCuts(B,G).
Input: B: a count predicate, G: a consistent cut that satisfies B.
Output: Enumerate each consistent cut H that is ≥l G and satisfies view(G) == view(H).
1: enumerate(G)
2: H = G

3: K = G

4: for (i = 1; i ≤ nu; i = i+ 1) do // go from lowest chain to highest
5: j = index of the first event on chain µi that is not included in H
6: for (; j ≤ |µi|; j = j + 1) do // use events not included in G
7: H = H ∪ {µi[j]} // add event to cut
8: if view(H) == view(G) then // same view
9: K = H // update cut

10: enumerate(K)
11: else // B(H) = false; countB(H) must have increased
12: H = K // retain old cut
13: break // break the inner loop on events; move to the chain above

these cuts in their lexical order. Algorithm 5 shows our approach outline. First we find the
lexically smallest cut that satisfies B. Given the properties of B, we know that adding new
events to any consistent cut G can either increase countB(G) or keep it same. Thus, using
the uniflow chain partition µ we can use the GetMinCut routine from Algorithm 2 to find
the lexically smallest cut that satisfies B. This works because the lexically smallest cut that
satisfies the count predicate countB(G) = k is also the lexically smallest cut that satisfies
the stable predicate countB(G) > k − 1. We then repeatedly enumerate lexically bigger cuts
that satisfy B using two sub-routines: EnumSameViewCuts and GetSuccessor.

EnumSameViewCuts in Algorithm 6 takes two arguments: a count predicate B, and
a consistent cut G that satisfies B. It uses the uniflow chain partition µ to enumerate all
the consistent cuts that satisfy the predicate and have the same view with respect to the
color c used to define B. For example, consider the predicate B=number of blue events is 1,
and the computation in Figure 7. Calling EnumSameViewCuts with G = {a, b, e, f} will
enumerate three cuts: {a, b, e, f}, {a, b, e, f, g}, {a, b, c, e, f, g} as they have the same view –
the same blue event f has been executed in all of them. The routine goes from lower chains
to higher, and on each chain adds events in their increasing order to the cut. We know from
the structure of uniflow chain partition that the resulting cut will be consistent. If it has the
same view, then we enumerate it. Otherwise, if the view is different, by the properties of B
we know that adding more events from the same chain will also give a different view than
the one we seek. Hence, we move to the chain above, and repeat the steps.

Given a consistent cut G that satisfies B, GetSuccessor routine in Algorithm 7 finds a
consistent cut H such that H satisfies B and view(G) 6= view(H). For example, suppose B =
number of blue events is 2. Then for the computation in Figure 7, given G = {a, b, c, d, e, f},
we have GetSuccessor (B,G) = {a, b, e, f, g, h}. This is because view({a, b, c, d, e, f}) is

OPODIS 2017



20:12 Fast Detection of Stable and Count Predicates in Parallel Computations

Algorithm 7 GetSuccessor(B,G).
Input: B: a count predicate, G: a consistent cut satisfying B
Output: K: lexically smallest consistent cut >l G that satisfies B and view(G) 6= view(K)
1: V = view(G)
2: r = countB(G)
3: K = G // Create a copy of G in K
4: for (i = 1; i ≤ nu; i++) do // lower chains to higher
5: ind = index of the first event on chain µi that is not included in K
6: for (; ind ≤ |µi|; ind = ind+ 1) do // move forward on chain
7: K = K ∪ {µi[ind]} // add event to cut
8: if view(K) 6= V then // K is lexically greater than G and has a different view than G
9: for (j = i− 1; j > 0; j −−) do // first reset lower chains

10: remove all elements on µj from K

11: //K may not be consistent: fix causual dependencies on all lower chains
12: for (j = i+ 1; j ≤ nu; j + +) do
13: for (k = i− 1; k > 0; k −−) do
14: S = causal dependencies of events from chain µj on chain µk

15: K = K ∪ S
16: //K is a consistent cut now, and view(K) 6= view(G)
17: if B(K) == true then
18: return K // K satisfies B, and is the successor cut we want
19: if countB(K) < r then // K can be used to construct the lexically bigger cut that

satisfies B
20: return GetMinCut(B,K)
21: return null // could not find a candidate cut

i j k

e f g

a b c

h

d

µ3

µ2

µ1

Figure 8 A computation in uniflow partition.

the set with two blue events: {d, f}. The next lexically bigger consistent cut that has two
blue events and has a different view is the cut {a, b, e, f, g, h} with two blue events: f and h.

In this routine, we start at the lowest chain in a uniflow poset, and if possible increment
the cut by one event on this chain. If the new cut has the same view, we move on to the
next event. When we encounter an event whose addition changes the view of the resulting
cut K, we reset the entries on lower chains, and then make K consistent by satisfying all
the causal dependencies. Note that at this point view(K) is guaranteed to be different than
view(G). However, K may not satisfy B as it may have a lower countB . If that is the case,
we make countB(K) == countB(G) by calling the GetMinCut routine to find lexically
smallest cut that is greater than K and satisfies B. If we have tried all chains and did not
find a suitable cut, then G is the largest consistent cut satisfying B and we return null.

Consider the computation in Figure 8 which is in a uniflow partition. Given the predicate B
= number of blue events is 2, and consistent cut G = {a, b, c, d, e, f} that satisfies B, consider
the call of GetSuccessor (B,G). We find V = view(G) = {c, f}, and r = countB(G) = 2,
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and create K = G. We start from the bottom chain µ1 but there is no event in µ1 that is
not included in K. We move on to µ2 and find the next event not in K: event g. We add it
to K at line 7, to make K = {a, b, c, d, e, f, g}, which is bigger than G but view(K) == V

as g is not a blue event. We then move on to the next event in µ2 which is h. Adding it to
K makes K = {a, b, c, d, e, f, g, h}. Now K is bigger than G and view(K) = {c, f, h} which
is different than V . We now remove all the events (lines 9–10) from lower chain µ1, and get
K = {e, f, g, h}. This cut is not consistent, and we make it consistent by executing lines
12–15 and add all the causal dependencies required: {a, b}. We now have K = {a, b, e, f, g, h}.
At line 17, we get countB(K) which is 2; thus we have our result and we return this K. Hence,
GetSuccessor (B,G) = {a, b, e, f, g, h} whose view is {f, h}. If we call GetSuccessor
(B, {a, b, e, f, g, h}), we get {a, b, c, i, j} whose view is {c, j}.

We present the proof of correctness for these algorithms in this paper’s extended version
[6]. The algorithms presented in this section can be implemented without regeneration
of vector clocks for uniflow partition. In addition, we can optimize them for improved
runtime performance using some additional space. We discuss these implementation details
in Appendix B.

6 Complexity Analysis

Consider the computation P = (E,→) whose uniflow partition µ has nu chains. We now
present the time and space complexity of the optimized versions of our algorithms for
detecting stable and count predicate for P .

Using the optimized implementations discussed in Appendix B.1, we know that computing
and storing the vector J requires O(n · |E|) time and space. This task is only performed once.
After computing J , each call to GetBiggerBaseCut takes O(n log |E|) time with binary
search: there are O(log |E|) search iterations, and for each such iteration, we require O(n)
time to check if the consistent cut under consideration satisfies the predicate. Similarly, using
the optimized implementation from Appendix B.2, BackwardPass takes O(nu · n2 · logm)
time, where m = max1≤j≤nu |µj |, in the worst case. Hence, getting a consistent cut result
from GetMinCut in the representation corresponding to original chain partition takes
O((nu · n · logm+ log |E|) · n) time in the worst case.

Based on this, we can state that for a stable predicate B enumerating all consistent cuts
of P = (E,→) that satisfy B takes O((nu · n · logm+ log |E|) · n) time per cut.

Let us now analyze the EnumSameViewCuts routine. Given a cut G, the routine adds
events not already present in G to form bigger cuts, and then checks if the cut satisfies the
predicate B. There are at |E − G| events that are not present in G. Hence, in the worst
case the two for loops at lines 4 and 6 perform O(|E −G|) iterations in combination. Each
time we form a bigger cut by adding an event, we check if the view of the cuts remains the
same (at line 8). Finding view(H) requires O(n) time. Thus, EnumSameViewCuts takes
O(n · |E −G|) in the worst case.

We now analyze the optimized version of GetSuccessor routine. Recall that with the
projection based optimization, we first call the ComputeProjections routine that takes
O(n · nu) time. We need O(n · nu) space to store the computed projections. We then iterate
over nu chains, and perform O(n) work in finding viewK and then O(n) work in taking
the component-wise maximum of proj[i− 1] and the vector clock of event being included.
Thus, in the worst case we perform O(n · nu) work before returning a result. Note that, we
may call GetMinCut routine at the end to return the correct result. As per our earlier
analysis, that requires additional O((nu · n · logm+ log |E|) · n) time. Hence, in the worst
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Table 1 Space complexities of algorithms for detecting a stable or count predicate in the lattice
of consistent cuts; here m = |E|

n
.

Algorithm Space Required

BFS [11] O( mn−1

n
)

DFS [1] O(|E|)
Lex [17] O(n)
QuickLex [5] O(n)
This paper* O((nu + |E|) · n)

Table 2 Time complexities for enumerating all consistent cuts of C(E) that satisfy a stable
predicate B. Here ∆ is the maximum in-degree of an event in the computation.

Algorithm Time

BFS [11] O(n2 · |C(E)|)
DFS [1] O(n2 · |C(E)|)
Lex [17] O(n2 · |C(E)|)
QuickLex [5] O(n ·∆ · |C(E)|)
This paper* O(n · |SB | · (nu · n · logm+ log |E|))

case GetSuccessor takes O((nu · n · logm+ log |E|) · n) time and requires O(n · nu) space.
In Table 1, we compare the worst-case space complexities of our optimized algorithm

against those of detecting the predicate using the BFS, DFS, and Lex traversal algorithms.
Let SB ∈ C(E) denote the set of consistent cuts that satisfy the stable or count predicate

B for the computation P = (E,→). Then, based on our analysis we have the following
result:

I Theorem 12. Enumerating all consistent cuts in SB takes O(f · |SB |) time using the
algorithms given in this paper; where f is a polynomial function of |E| and n.

In comparison, enumerating all the cuts of SB using the existing algorithms such as BFS,
DFS, Lex (or QuickLex) may take O(|C(E)|) time in the worst case. Note that the |C(E)|
can be exponentially bigger than |SB |. Table 2 compares the worst-case time complexities of
these algorithms to enumerate all consistent cuts in SB when B is stable.

7 Related Work

We first discuss the algorithms for traversal of cuts in the lattice of consistent cuts of a
computation. Cooper and Marzullo [11] gave the first algorithm for global states enumeration
which is based on breadth first search (BFS). Let i(P ) denote the total number of consistent
cuts of a poset P . Cooper-Marzullo algorithm requires O(n2 · i(P )) time, and exponential
space in the size of the input computation. Alagar and Venkatesan [1] presented a depth
first algorithm using the notion of global interval which reduces the space complexity to
O(|E|). Steiner [31] gave an algorithm that uses O(|E| · i(P )) time, and Squire [30] further
improved the computation time to O(log|E| · i(P )). Pruesse and Ruskey [29] gave the first
algorithm that generates global states in a combinatorial Gray code manner. The algorithm
uses O(|E| · i(P )) time and can be reduced to O(∆(P ) · i(P )) time, where ∆(P ) is the
in-degree of an event; however, the space grows exponentially in |E|. Later, Jegou et al. [22]
and Habib et al. [20] improved the space complexity to O(n · |E|). Ganter [16] presented an
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algorithm, which uses the notion of lexical order, and Garg [17] gave the implementation
using vector clocks. The lexical algorithm requires O(n2 · i(P )) time but the algorithm itself
is stateless and hence requires no additional space besides the poset. Paramount [4] gave
a parallel algorithm to traverse this lattice in lexical order, and QuickLex [5] provides an
improved implementation for lexical traversal that takes O(n ·∆(P ) · i(P )) time, and O(n2)
space overall.

For enumerating only the consistent cuts that satisfy a given predicate, computation
slicing is an abstraction technique to reduce the state space for model checking a single
program trace [27, 28, 8]. But the known efficient algorithms for computation slicing generally
require the predicate to be regular. Hence, this technique does not apply to stable or count
predicates.

8 Conclusion and Applications to Other Fields

The ubiquity of multicore and cloud computing has significantly increased the degree of
parallelism in programs. This change has in turn made verification and analysis of large
parallel programs even more challenging. For such verification and analysis tasks, the
algorithms presented in this paper can provide much faster runtimes in comparison to
existing algorithms. In many cases, this reduction in runtime can be exponential, and also
allows us allows us to analyze computation with high degree of parallelism with relatively
small memory footprint.

Our algorithm for detecting count predicates has a wide-ranging potential scope in
analysis of parallel computations. In addition to predicate detection for verifying correctness,
it can also be used to analyze logs of distributed protocols such as Paxos, and various
distributed systems for performance related analysis. Further optimizations of this algorithm
can provide improved runtimes for its implementation which can make it an appealing choice
as a lightweight and fast component in online runtime verification systems.

Observe that many useful analysis criterion can be written in the form of stable predicates.
For example, if we are interested in analyzing logs of a distributed system to identify causes
of a system failure or performance degradation, we can create stable predicates that include
either thresholds or upper bounds for performance load factors. By using these predicates,
we can then use our algorithm (Algorithm 1) to efficiently find only those system states that
are of interest to us without going through the states that came before them. A promising
future application of our work is implementation of a system that accepts either a stable or
count predicate and returns the set of consistent cuts satisfying it.

The applications of our algorithms extend to the problem of stable marriage [15, 19]. The
stable marriage problem involves finding a stable matching of women and men and ensure that
there is no pair of woman and man such that they are not married to each other but prefer
each other over their matched partners. Many variations of the problem with additional
constraints have been studied. Some examples include man-optimal or woman-optimal
matchings, and introducing the notion of regret. We can use the algorithms developed in this
paper to enumerate matchings that meet a given lower-bound or upper-bound, or any other
combination of such criteria on the overall cumulative regret of the matching, or individual
regrets of actors.

The notion of consistent cut of a computation, directly maps to the notion of order ideals
in a lattice. Multiple problems in the field of lattice theory require enumeration of a specific
level of order ideals, or a range of levels. Our algorithms can be used to enumerate order
ideals of a lattice that satisfy some stable properties without visiting other levels of the
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lattice. Our algorithm for enumerating cuts satisfying count predicate can also be used to
traversing order ideals of a sub-lattice without visiting ideals outside the sub-lattice. No
known algorithm in lattice theory has the ability to perform such traversals without visiting
other ideals of the lattice – whose total number can be exponentially bigger than the size of
the sub-lattice of interest.
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A Visual Illustrations for Lattice of Consistent Cuts
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{a, b, c} {a, b, e}

{a, b, c, e} {a, b, e, f}

{a, b, c, e, f} {a, b, e, f, g}

{a, b, c, e, f, g}

(a) Set of Events Representation.
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[0, 2] [1, 1]

[0, 3] [1, 2]

[1, 3] [2, 2]

[2, 3] [3, 2]

[3, 3]

(b) Vector Clock Representation.

Figure 9 Lattice of Consistent Cuts for Figure 1.

Satisfies B

Figure 10 Illustration: Visual representation for some stable predicate B: the cuts in the blue
region of the lattice satisfy a stable predicate, and cuts in the white region do not.

B Optimized Implementation

In this section, we discuss optimized implementations of our algorithms for detecting stable
and counting predicates.

First, note that we do not need to regenerate the vector clocks of the computation for its
uniflow chain partition. In implementing our algorithms based on the uniflow chain partition,
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c d
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P2

(a) Computation.

c

b

a

d

µ1

µ2

µ3

(b) Uniflow Partition.

G = {a} =⇒ Gu[0] = 1, Gu[1] = 0, Gu[2] = 0
G = {a, c} =⇒ Gu[0] = 1, Gu[1] = 1, Gu[2] = 0
G = {a, c, b} =⇒ Gu[0] = 1, Gu[1] = 2, Gu[2] = 0
G = {a, c, d} =⇒ Gu[0] = 1, Gu[1] = 1, Gu[2] = 1
G = {a, b, c, d} =⇒ Gu[0] = 1, Gu[1] = 2, Gu[2] = 1

(c) G values and their respective Gu vectors.

Figure 11 Illustration: Maintaining indicator vector Gu for a cut G.

c : [1, 0] d : [2, 1]

a : [0, 1] b : [1, 2]
P1

P2

(a) Computation.

a : [0, 1]

c : [1, 0] b : [1, 2]

d : [2, 1]

µ1

µ2

µ3

(b) Uniflow Partition.

a : [0, 1]
c : [1, 0]
b : [1, 2]
d : [2, 1]

(c) Events in Uniflow
Order.

J [1] = [0, 1]
J [2] = [1, 1]
J [3] = [1, 2]
J [4] = [2, 2]

(d) J Vector.

Figure 12 Illustration: Computing J vector for optimizing GetBiggerBaseCut.

µ, we only reposition the events on their respective uniflow chains. There are nu such chains,
and each of them is stored as an array in which whose entries store the original vector clocks,
and the state variables for each event. For example, the computation on two processes in
Figure 12a is not in uniflow partition. Figure 12b shows its uniflow partition on three chains.
Note that we have retained the original vector clocks of the events, and only repositioned
them on three chains.

We achieve this by replicating the process described in [7]. In short, we use a vector
Gu, called indicator vector, of length nu, to keep track of which event is included in G. In
Figure 11, we show an illustration with multiple G cuts, and their respective indicator vectors.
Whenever we add an event e from chain µi to G we update Gu[i] to the index of e. Thus,
finding the index of the first event on chain µi not included in G can be implemented as
ind = Gu[i] + 1, and takes constant time. Given the indicator vector Gu, we can find its
equivalent cut G in O(nu + n2) time. For details, we refer the interested reader to Section
4.2 of [7].

B.1 GetBiggerBaseCut
In the GetBiggerBaseCut routine we add events to any cut in increasing uniflow order
(Definition 6). We do not skip any event, and only return 〈H, c〉 when the cut satisfies a
predicate B. Given a uniflow chain partition µ, we can optimize the runtime for this routine
by using additional O(n · |E|) space.

The computation P =(E,→) on n processes has |E| events, and each event has a vector
clock of length n. We first collect and store all the events in the uniflow order. Let J represent
the array that stores the vector clocks of events in their increasing uniflow order. Now, for
2 ≤ i ≤ |E| we compute element-wise max of vector clocks in entries J [i] and J [i− 1], and
store the result in J [i]. Thus, for a computation on n processes J [i] and J [i− 1] are both
vector of length n, and we have:

J [i][k] = max (J [i][k], J [i− 1][k]), 2 ≤ i ≤ |E|, 1 ≤ k ≤ n.

We can now use this vector J to find the result of GetBiggerBaseCut for any predicate
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B. Moreover, given that J will contain entries (vector clocks) in increasing order, we can
perform binary search on it to find the result. If a predicate B is stable, we perform the
binary search using its evaluation (true or false) on the cuts, and return the smallest entry
in J on which B evaluates to true.. If B is a counting predicate, then we use countB to
guide the binary search, and return the smallest entry in J for which countB matches the
requirement in B.

Consider the computation in Figure 12a that has four events, and its uniflow partition in
Figure 12b. The increasing order on the vector clocks of all the four events is in Figure 12c.
Starting from the bottom (vector [0, 1]), and performing the joins, we get J as shown in
Figure 12d. Now, given a predicate B that is stable or counting, we can perform the binary
search on this J to find the result of GetBiggerBaseCut for this computation.

Computing and storing the vector J requires O(n · |E|) time and space. After computing
J , each call to GetBiggerBaseCut takes O(n · log |E|) time with binary search: there are
O(n · log |E|) iterations, and for each such iteration we take O(n · log |E|) time to check the
consistent cut satisfies the predicate.

B.2 BackwardPass
In BackwardPass routine, we iterate on chains in top to bottom manner, and try to remove
as many events from a cut G from the end of the chain as possible. We only stop removing
events from a chain i if G becomes inconsistent or B(G) becomes false on removal. Then,
we move to chain i − 1. We can exploit the properties of stable and counting predicates,
and use binary search, instead of linear search used in Algorithm 4 to remove events on
each chain. This is possible possible because for a stable or counting predicate, if removal
of an event from a chain makes the predicate become false (from true) then we know that
removing any smaller events on that chain will never make it true. Using this implementation,
BackwardPass takes O(nu · n2 · logm) time, where m = max1≤j≤nu |µj |, in the worst case.
This is because the outer loop on the uniflow chains takes O(nu · n2 · logm) iterations in
the worst case. In the inner body of this loop, we check if removal of an event makes the
resulting cut inconsistent, and this check requires O(n2) time. There are O(logm) search
iterations for such an event in the worst case.

B.3 GetSuccessor
We optimize the routine GetSuccessor by replicating the strategy of computing projections
as per [7]. Whenever the routine is called, we compute the causal dependencies, called
projections, of the input consistent cut on each chain in µ, and store them in a vector
called proj. We then use this vector to fix the causal dependencies on each chain in O(n)
time (see [7] for details). For this optimization, we require O(nu · n) space to store the
computed projections, and by using them we can find the result of GetSuccessor in
O((nu + log |E| + nu logm) · n) time in the worst case. As logm > 1 for most of the
computations, we can simplify this bound to O((log |E|+ nu logm) · n).

We illustrate with the computation shown in Figure 13a that was originally on two
processes. Suppose we want the lexical successor of G = [1, 2]. Then, for each chain, starting
from the top, using the vector Gu we compute the projection of events included in G on
lower chains. For the consistent cut G = [1, 2], we have Gu[3] = 0, Gu[2] = 2, Gu[1] = 1.
Hence, on the top-most chain, the projection is empty and we have proj[3] = [0, 0]. On chain
µ2, the projection must include the combined vector clocks of events included form chain
µ3, and µ2. As Gu[2] = 2, we take the vector clock of second event on µ2, and perform a
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[1, 0]
[1, 2]

[0, 1]

[2, 1]

µ1

µ2

µ3 proj[3] = [0, 0]
proj[2] = [1, 2]
proj[1] = [1, 2]

G = [1, 2], Gu[1] = 1, Gu[2] = 2, Gu[3] = 0

(a) n = 2, nu = 3.

µ1

µ2

µ3

G = [1, 3, 2], Gu[1] = 2, Gu[2] = 3, Gu[3] = 1
proj[3] = [1, 0, 0]
proj[2] = [1, 3, 1]
proj[1] = [1, 3, 2]

(b) n = 3, nu = 3.

Figure 13 Illustration: Projections of cuts on uniflow chains.

element-wise max operation for its entries and proj[3]. We thus get proj[2] = [1, 2]. We then
move to chain µ1 and find the vector clock of event against entry Gu[1] = 1 which is the
first event on µ1, with vector clock [0, 1]. We then set proj[1] = max(proj[2], [0, 1]), which is
element-wise max of two arrays [1, 2], and [0, 1]. Thus, we get proj[1] = [1, 2].

Figure 13b shows another illustration of computing the projection vector proj on a
computation with three processes that forms a uniflow chain partition by default.
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Abstract

The tree augmentation problem (TAP) is a fundamental network design problem, in which the
input is a graph G and a spanning tree T for it, and the goal is to augment T with a minimum
set of edges Aug from G, such that T ∪Aug is 2-edge-connected.

TAP has been widely studied in the sequential setting. The best known approximation ratio
of 2 for the weighted case dates back to the work of Frederickson and JáJá, SICOMP 1981.
Recently, a 3/2-approximation was given for the unweighted case by Kortsarz and Nutov, TALG
2016, and recent breakthroughs by Adjiashvili, SODA 2017, and by Fiorini et al., 2017, give
approximations better than 2 for bounded weights.

In this paper, we provide the first fast distributed approximations for TAP. We present a
distributed 2-approximation for weighted TAP which completes in O(h) rounds, where h is the
height of T . When h is large, we show a much faster 4-approximation algorithm for the unweighted
case, completing in O(D +

√
n log∗ n) rounds, where n is the number of vertices and D is the

diameter of G.

Immediate consequences of our results are an O(D)-round 2-approximation algorithm for
the minimum size 2-edge-connected spanning subgraph, which significantly improves upon the
running time of previous approximation algorithms, and an O(hMST +

√
n log∗ n)-round 3-

approximation algorithm for the weighted case, where hMST is the height of the MST of the
graph. Additional applications are algorithms for verifying 2-edge-connectivity and for augment-
ing the connectivity of any connected spanning subgraph to 2.

Finally, we complement our study with proving lower bounds for distributed approximations
of TAP.
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1 Introduction

The tree augmentation problem (TAP) is a central problem in network design. In TAP, the
input is a 2-edge-connected1 graph G and a spanning tree T of G, and the goal is to augment
T to be 2-edge-connected by adding to it a minimum size (or a minimum weight) set of edges
from G. Augmenting the connectivity of T makes it resistant to any single link failure, which
is crucial for network reliability. TAP is extensively studied in the sequential setting, with
several classical 2-approximation algorithms [9,13,15,18], as well as recent advances with the
aim of achieving better approximation factors [1, 5, 8, 21].

TAP is part of a wider family of connectivity augmentation problems. Finding a minimum
spanning tree (MST) is another prime example for a problem in this family, but, although an
MST is a low-cost backbone of the graph, it cannot survive even one link failure. Hence, in
order to guarantee stronger reliability, it is vital to find subgraphs with higher connectivity.
The motivation for considering TAP is for the case that adding any new edge to the backbone
incurs a cost, and hence if we are already given a subgraph with some connectivity guarantee
then we would naturally like to augment it with additional edges of minimum number or
weight, rather than to compute a well-connected low-cost subgraph from scratch. Connectivity
augmentation problems also serve as building blocks in other connectivity problems, such as
computing the minimum k-edge-connected subgraph. A natural approach is to start with
building a subgraph that satisfies some connectivity guarantee (e.g., a spanning tree), and
then augment it to have stronger connectivity.

Since the main motivation for TAP is improving the reliability of distributed networks, it
is vital to consider TAP also from the distributed perspective. In this paper, we initiate the
study of distributed connectivity augmentation and present the first distributed approximation
algorithms for TAP. We do so in the CONGEST model [29], in which vertices exchange
messages of O(logn) bits in synchronous rounds, where we show fast algorithms for both
the unweighted and weighted variants of the problem. In addition to fast approximations
for TAP, our algorithms have the crucial implication of providing efficient algorithms for
approximating the minimum 2-edge-connected spanning subgraph, as well as several related
problems, such as verifying 2-edge-connectivity and augmenting the connectivity of any
spanning connected subgraph to 2. Finally, we complement our study with proving lower
bounds for distributed approximations of TAP.

1.1 Our Contributions
Distributed approximation algorithms for TAP
Our first main contribution is the first distributed approximation algorithm for TAP. In
particular, our algorithm provides a 2-approximation for weighted TAP in the CONGEST
model, summarized as follows.

I Theorem 1.1. There is a distributed 2-approximation algorithm for weighted TAP in the
CONGEST model that runs in O(h) rounds, where h is the height of the tree T .

The approximation ratio of our algorithm matches the best approximation ratio for
weighted TAP in the sequential setting. Its round complexity of O(h) is tight if h = O(D),
where D is the diameter of G. This happens, for example, when T is a BFS tree, and follows
from a lower bound of Ω(D) rounds which we show in Section 6.

1 A graph G is 2-edge-connected if it remains connected after the removal of any single edge.
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However, the height h of the spanning tree T may be large, even if the diameter of G is
small, which raises the question of whether the dependence on h is necessary. We address
this question by providing an algorithm for unweighted TAP that has a round complexity
of O(D +

√
n log∗ n) rounds, which is significantly smaller for large values of h. This only

comes at the price of a slight increase in the approximation ratio, from 2 to 4.

I Theorem 1.2. There is a distributed 4-approximation algorithm for unweighted TAP in
the CONGEST model that runs in O(D +

√
n log∗ n) rounds.

Applications

The key application of our TAP approximation algorithm is an O(D)-round 2-approximation
algorithm for the minimum size 2-edge-connected spanning subgraph problem (2-ECSS),
which is obtained by building a BFS tree and augmenting it to a 2-edge-connected subgraph
using our algorithm.

I Theorem 1.3. There is a distributed 2-approximation algorithm for unweighted 2-ECSS
in the CONGEST model that completes in O(D) rounds.

The time complexity of our algorithm improves significantly upon the time complexity of
previous approximation algorithms for 2-ECSS, which are O(n) rounds for a 3

2 -approximation
[22] and O(D +

√
n log∗ n) rounds for a 2-approximation [33].

In addition, our weighted TAP algorithm implies a 3-approximation for weighted 2-ECSS.
Other applications of our algorithms are an O(D)-round algorithm for verifying 2-edge-
connectivity, and an algorithm for augmenting the connectivity of any connected spanning
subgraph H of G from 1 to 2.

Lower bounds

We complement our algorithms by presenting lower bounds for TAP. We first show that
approximating TAP is a global problem which requires Ω(D) rounds even in the LOCAL
model [25], where the size of messages is not bounded.

I Theorem 1.4. Any distributed α-approximation algorithm for weighted TAP takes Ω(D)
rounds in the LOCAL model, where α ≥ 1 can be any polynomial function of n. This holds
also for unweighted TAP, if 1 ≤ α < n−1

2c for a constant c > 1.

Theorem 1.4 implies that if h = O(D) then our TAP approximation algorithms have
an optimal round complexity. We also consider the case of h = ω(D) and show a family
of graphs, based on the construction in [32], for which Ω(h) rounds are needed in order to
approximate weighted TAP, were h = Θ(

√
n

log n ).

I Theorem 1.5. For any polynomial function α(n), there is a Θ(n)−vertex graph of diameter
Θ(logn) for which any (perhaps randomized) distributed α(n)-approximation algorithm for
weighted TAP with an instance tree T ⊆ G of height h = Θ(

√
n

log n ) requires Ω(h) rounds in
the CONGEST model.

Theorem 1.5 implies that our algorithm for weighted TAP is optimal on these graphs.
In particular, there cannot be an algorithm with a complexity of O(f(h)) for a sublinear
function f .
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1.2 Technical overview of our algorithms
As an introduction, we start by showing an O(h)-round 2-approximation algorithm for
unweighted TAP, which allows us to present some of the key ingredients in our algorithms.
Later, we explain how we build on these ideas and extend them to give an algorithm for the
weighted case, and a faster algorithm for unweighted TAP.

Unweighted TAP
A natural approach for constructing a distributed algorithm for unweighted TAP could be to
try to simulate the sequential 2-approximation algorithm of Khuller and Thurimella [18]. In
their algorithm, the input graph G is first converted into a modified graph G′. Then, the
algorithm finds a directed MST in G′, which induces a corresponding augmentation in G.

When considered in the distributed setting, this approach imposes two difficulties. The
first is that we cannot simply modify the input graph, because it is the graph that represents
the underlying distributed network, whose topology is given and not under our control.
The second is in the directed MST procedure, as finding a directed MST efficiently in the
distributed setting seems to be difficult. The currently best known time complexity of this
problem is O(n2) for an asynchronous setting [14], which is trivial in the CONGEST model.

We overcome the above using two key ingredients. First, we bring into our construction
the tool of computing lowest common ancestors (LCAs). We show that building G′ and
simulating a distributed computation over it can be done by an efficient computation of
LCAs, and we achieve the latter by leveraging the labeling scheme for LCAs presented in [2].

Second, we drastically diverge from the Khuller-Thurimella framework by replacing the
expensive directed MST construction by a completely different procedure. Roughly speaking,
we show that the simple structure of G′ allows us to find an optimal augmentation in G′
efficiently by scanning the input tree T from the leaves to the root and performing the
following procedure. Each vertex sends to its parent information about edges that may be
useful for the augmentation since they cover many edges of the tree, and the vertices use the
LCA labels in order to decide which edges to add to the augmentation.

While a direct implementation of this would result in much information that is sent
through the tree, we show that at most two edges need to actually be sent by each vertex.
Thus, applying the labeling scheme and scanning the tree T result in a time complexity of
O(h) rounds, where h is the height of T . Finally, we prove that an optimal augmentation in G′
gives a 2-approximation augmentation for G, which gives a 2-approximation for unweighted
TAP in O(h) rounds.

Weighted TAP
Our algorithm for the unweighted case relies heavily on the fact that we can compare edges
and decide which one is the best for the augmentation according to the number of edges they
cover in the tree. However, once the edges have weights, it is not clear how to compare edges.
This is because of the tension between light edges that cover only few edges and heavier edges
that cover many edges. Therefore, Theorem 1.1, which applies for the weighted case, cannot
be directly obtained according to the above description. Hence, sending two edges per vertex
up in the tree, as we do for the unweighted case, is insufficient. That is, the number of edges
that should be considered for the augmentation could be much larger and vertices cannot
decide locally which edges are useful without feedback from their ancestors in the tree.

Nevertheless, we show how to overcome this by introducing a technique of having each
vertex send to its parent edges with altered weights. The trick here is that we modify the
weight that is sent for an edge in a way that captures the cost for covering each edge of
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the tree. This successfully addresses the competing needs of covering as many tree edges as
possible, while using the lightest possible edges, and allows focusing on a smaller number of
edges that may be useful for the augmentation. Finally, using standard pipelining, this gives
a time complexity of O(h) rounds for the weighted case as well.

Faster unweighted TAP
Both of our aforementioned algorithms rely on scanning the tree T , which results in a time
complexity that is linear in the height h of the tree T . In order to avoid the dependence on
h, one must be a able to add edges to the augmentation without scanning the whole tree.

However, if a vertex v does not get information about the edges added to the augmentation
by the vertices in the whole subtree rooted at v, then it may add additional edges in order
to cover tree edges that are already covered. But then we are no longer guaranteed to get an
optimal augmentation in G′, or even a good approximation for it.

Nevertheless, we are still able to show a faster algorithm for unweighted TAP, which
completes in O(D +

√
n log∗ n) rounds. The key ingredient in our algorithm is breaking the

tree T into fragments and applying our 2-approximation for unweighted TAP algorithm on
each fragment separately, as well as on the tree of fragments. Since our algorithm does not
scan the whole tree, it may add different edges to cover the same tree edges, which makes
the analysis much more involved. The approximation ratio analysis is based on dividing the
edges to different types and bounding the number of edges of each type separately, using a
subtle case-analysis. Although our algorithm does not find an optimal augmentation in G′,
it gives a 2-approximation for it, which results in a 4-approximation augmentation for the
original graph G.

1.3 Related Work

Sequential algorithms for TAP
TAP is intensively studied in the sequential setting. Since TAP is NP-hard, approximation
algorithms for it have been studied. The first 2-approximation algorithm for weighted
TAP was given by Frederickson and JáJá [9], and was later simplified by Khuller and
Thurimella [18]. Other 2-approximation algorithms for weighted TAP are the primal-dual
algorithm of Goemans et al. [13], and the iterative rounding algorithm of Jain [15].

Recently, a new algorithm achieved a 1.5-approximation for unweighted TAP [21], and
recent breakthroughs give approximations better than 2 for bounded weights [1,8]. Achieving
approximation better than 2 for the general weighted case is a central open question.
See [17, 20] for surveys about approximation algorithms for connectivity problems. Also, the
related work in [1] gives an overview of many recent sequential algorithms for TAP.

Related work in the distributed setting
While ours are the first distributed approximation algorithms for TAP itself, there are
important related studies in the distributed setting.

MST. In the distributed setting, finding an MST, which is a minimum weight subgraph
with connectivity 1, is a fundamental and well studied problem (see, e.g., [6, 7, 10, 11, 23, 28]).
The first distributed algorithm for this problem is the GHS algorithm that works in O(n logn)
time [10]. Following algorithms improved the round complexity to O(D +

√
n log∗ n) [11, 23].
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k-ECSS. For the minimum weight 2-edge-connected spanning subgraph (2-ECSS) problem,
there is a distributed algorithm of Krumke et al. [22]. Their approach is finding a specific
spanning tree and then augmenting it to a 2-edge-connected graph. In the unweighted case,
they augment a DFS tree following the sequential algorithm of Khuller and Vishkin [19],
which results in an O(n)-round 3

2 -approximation algorithm for 2-ECSS. In the weighted case
they augment an MST and suggest a general O(n logn)-round 2-approximation algorithm
for weighted TAP, which gives an O(n logn)-round 3-approximation algorithm for 2-ECSS.
Our algorithms for TAP imply faster approximations for unweighted and weighted 2-ECSS.

Another distributed algorithm for unweighted k-ECSS is an O(k(D +
√
n log∗ n))-round

algorithm of Thurimella [33] that finds a sparse k-edge-connected subgraph. The general
framework of the algorithm is to repeatedly find maximal spanning forests in the graph
and remove their edges from the graph (this framework is also described in sequential
algorithms [17, 26]). This gives a k-edge-connected spanning subgraph with at most k(n− 1)
edges. Since any k-edge-connected subgraph has at least kn

2 edges, since the degree of each
vertex is at least k, this approach guarantees a 2-approximation for unweighted k-ECSS.

Fault-tolerant tree structures. Another related problem is the construction of fault-tolerant
tree structures. Distributed algorithms for constructing fault tolerant BFS and MST struc-
tures are given in [12], producing sparse subgraphs of the input graph G that contain a BFS
(or an MST) of G \ {e} for each edge e, for the purpose of maintaining the functionality of a
BFS (or an MST) even when an edge fails. However, TAP is different from these problems
in several aspects. First, we augment a specific spanning tree T rather then build the whole
structure from scratch. In addition, since we need to preserve only connectivity when an
edge fails and not the functionality of a BFS or an MST, optimal solutions for TAP may be
much cheaper.

Additional related problems. Another connectivity augmentation problem studied in the
distributed setting is the Steiner Forest problem [16,24]. There are also distributed algorithms
for finding the 2-edge-connected and 3-edge-connected components of a connected graph
[30, 31], and distributed algorithms that decompose a graph with large connectivity into
many disjoint trees, while almost preserving the total connectivity through the trees [4].

1.4 Preliminaries
For completeness, we first formally define the notion of edge connectivity.

I Definition 1.6. An undirected graph G is k-edge-connected if it remains connected after
the removal of any k − 1 edges.

The Tree Augmentation Problem (TAP). In TAP, the input is an undirected 2-edge-
connected graph G with n vertices, and a spanning tree T of G. The goal is to add to T
a minimum size (or a minimum weight) set of edges Aug from G, such that T ∪ Aug is
2-edge-connected. In the weighted version, each edge has a non-negative weight, and we
assume that the weights of the edges can be represented in O(logn) bits.

I Definition 1.7. An edge e in a connected graph G is a bridge in G if G\{e} is disconnected.

I Definition 1.8. A non-tree edge e = {u, v} covers the tree edge e′ if e′ is on the unique
path in T between u and v, i.e., if e′ is not a bridge in T ∪ {e}.
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A graphG is 2-edge-connected if and only if it does not contain bridges. Hence, augmenting
the connectivity of T requires covering of all the tree edges.

Models of distributed computation. In the distributed CONGEST model [29], the network
is modeled as an undirected connected graph G = (V,E). Communication takes place in
synchronous rounds. In each round, each vertex can send a message of O(logn) bits to each
of its neighbors. The time complexity of an algorithm is measured by the number of rounds.
Our algorithms work in the CONGEST model, where some of our lower bounds hold also in
the stronger LOCAL model [25], where the size of messages is not bounded.

In the distributed setting, the input to TAP is a rooted spanning tree T of G with root r,
whose height is denoted by h. The tree T is given to the vertices locally, that is, each vertex
knows which of its adjacent edges is in T and which of those leads to its parent in T .2 For
each vertex v 6= r, we denote by p(v) the parent of v in T . The output is a set of edges Aug,
such that T ∪Aug is 2-edge-connected. In the distributed setting it is enough that at the
end of the algorithm each vertex knows which of the edges incident to it are added to Aug.

All the messages sent in our algorithms consist of a constant number of ids, labels and
weights, hence the maximal message size is bounded by O(logn) bits, as required in the
CONGEST model.

Roadmap. In Section 2, we describe our O(h)-round 2-approximation algorithm for un-
weighted TAP, and in Section 3 we extend it to the weighted case. In Section 4, we show
applications of these algorithms, in particular for approximating 2-ECSS, and in Section 5
we present our faster algorithm for unweighted TAP. We present lower bounds for TAP in
Section 6, and discuss questions for future research in Section 7. Full details of our algorithm
for weighted TAP, as well as main proofs for it appear in Appendix A. Full details and proofs
appear in the full version [3].

2 A 2-approximation for Unweighted TAP in O(h) rounds

As an introduction, we start by describing an O(h)-round 2-approximation algorithm, AT AP ,
for unweighted TAP. Here we give a high-level description of AT AP . Full details and proofs
appear in [3]. The general structure of AT AP is as follows. It starts by building a related
virtual graph G′ as in [18]. Afterwards, we diverge completely from the approach of [18] since
we cannot simulate it efficiently in the distributed setting, as explained in the introduction.
Instead, AT AP finds an optimal augmentation in G′, and converts it to an augmentation Aug
in G. We show that the size of Aug is at most twice the size of an optimal augmentation
in G. All the communication in the algorithm is on the edges of the graph G, since G′ is
a virtual graph. In order to simulate the algorithm on G we use labels that represent the
edges of G′.

Building G′ from G. AT AP starts by building a related undirected virtual graph G′. To
simplify the presentation of the algorithm it is convenient to give an orientation to the edges
of G′. However, we emphasize that G′ is an undirected graph, that is, we do not address the
notion of directed connectivity. The graph G′ is defined as follows (as in [18]). The graph
G′ includes all the edges of T , and they are all oriented towards the root r of T . For every

2 If a root and orientation are not given, we can find a root r and orient all the edges towards r in O(h)
rounds using standard techniques.
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Figure 1 There are two cases for every non-tree edge in G. The left graph shows the first case,
where the edge {u, v} is between an ancestor and a descendant in T . The right graph shows the
second case, where t = LCA(u, v).

non-tree edge e = {u, v} in G there are two cases (see Figure 1). If u is an ancestor of v in
T , we add the edge {u, v} to G′, oriented from u to v. Otherwise, denote t = LCA(u, v). In
this case we add to G′ the edges {t, u} and {t, v}, oriented from t to u and to v, respectively.

In order to build the graph G′ in the distributed setting, we use the labeling scheme for
LCAs of Alstrup et al. [2]. This labeling scheme assigns labels of size O(logn) bits to the
vertices of a rooted tree with n vertices, such that given the labels of u and v it is possible
to infer the label of their LCA. The algorithm for computing the labels can be implemented
in O(h) rounds in the distributed setting.

Since G′ is a virtual graph, the rest of the communication in the algorithm is only over
the tree edges. In order to simulate the rest of the algorithm over G′, it is enough that
each vertex knows only the tree edges incident to it (which is its input), and the labels of
the non-tree edges incoming to it in G′. Using the labeling scheme, each vertex learns this
information by exchanging labels with all of its neighbors. For more details, see [3].

The Correspondence between G and G′. A non-tree edge e = {u, v} in G covers all the
edges in the unique path in T between u in v. To build G′ from G, for each non-tree edge
e ∈ G, we added one or two corresponding edges to G′, which together cover exactly the
same tree edges as e. This allows us to show that an optimal augmentation in G′ gives a
2-approximation augmentation in G, when we replace each edge of the augmentation in G′
by a corresponding edge in G. For full details and proofs see [3].

Finding an optimal augmentation in G′. In the graph G′, all the edges that are not tree
edges are between an ancestor and a descendant of it in T . This allows us to compare edges
and define the notion of maximal edges. Intuitively, the notion of maximal edges would
capture our goal that during the algorithm, when we cover a tree edge, we would like to cover
it by an edge that reaches the highest ancestor possible, allowing us to cover many tree edges
simultaneously. This motivates the following definition. Let v be a vertex in the tree, and
let e = {u,w} and e′ = {u′, w′} be two edges between ancestors u, u′ of v and descendants
w,w′ of v. We say that e is the maximal edge among e and e′ if and only if u is an ancestor
of u′. If u = u′ we can choose arbitrarily one of them to be the maximal edge.

In order to cover all tree edges of G′, we assign each vertex v 6= r in G′ with the
responsibility of covering the tree edge {v, p(v)}. In our algorithm AAug for finding an
optimal augmentation in G′, the tree T is scanned from the leaves to the root, and whenever
a tree edge that is still not covered is reached, it is covered by the vertex responsible for it,
using the maximal edge possible. For doing so, it is enough that each vertex v sends to its
parent information about at most two edges. One of them is the maximal edge that was
already added to the augmentation in order to cover the tree edge {v, p(v)}, and one is the
maximal edge possible to cover the tree edge {v, p(v)}. We show that using the LCA labels
of edges, vertices can compute easily if a tree edge is covered, and which edge is the maximal
edge. The full description of the algorithm AAug is given in [3].
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Correctness proof. Denote by A the solution obtained by AAug, and by A∗ an optimal
augmentation in G′. We show in [3] that A is an optimal augmentation in G′. The key
ingredient is to show a one-to-one mapping from A to A∗. For each edge e ∈ A, we look at
the tree edge t(e) = {v, p(v)} where v is the vertex that decides to add e to the augmentation.
We map e to an edge e∗ ∈ A∗ that covers t(e). Showing that this mapping is one-to-one is
based on the fact that when we add a new edge to the augmentation, it is the maximal edge
possible. In addition, we show that the time complexity of the algorithm is O(h) rounds.
Since an optimal augmentation in G′ corresponds to a 2-approximation augmentation in G,
this gives the following.

I Theorem 2.1. There is a distributed 2-approximation algorithm for unweighted TAP in
the CONGEST model that runs in O(h) rounds, where h is the height of the tree T .

3 A 2-approximation for Weighted TAP in O(h) rounds

In this section, we give a high-level description of our algorithm for weighted TAP. Full
details and main proofs appear in Appendix A. Our algorithm for weighted TAP, AwT AP ,
has the same structure of AT AP . It starts by building the same virtual graph G′, and then it
finds an optimal augmentation in G′. The only difference in building G′ is that now each
edge e is replaced by one or two edges in G′ with the same weight that e has. The proof that
an optimal augmentation in G′ corresponds to an augmentation in G with at most twice the
cost of an optimal augmentation in G is the same as in the unweighted case.

The difference is in finding an optimal augmentation in G′. In the unweighted case, for
each vertex v, the only edge incoming to v in G′ that was useful for the algorithm was the
maximal edge. However, when edges have weights, potentially all the edges incoming to v
may be useful for the algorithm, and we can no longer use the notion of maximal edges in
order to compare edges. This is because of the tension between heavy edges that cover many
edges of the tree, and light edges that cover less edges of the tree. To overcome this obstacle,
we introduce a new technique of altering the weights of the edges we send in the algorithm.
We next describe how our new approach allows us to find an optimal augmentation in G′.

Finding an Optimal Augmentation in G′. In the weighted case, it is not clear anymore
how to compare edges. A vertex v may have many optional edges that cover {v, p(v)}, where
one of them has the minimum weight, but other edges cover more tree edges. In order to
cover the tree edge between v and its parent, it is best to add the edge with minimum weight.
However, in order to cover additional tree edges, we may want to add one of the other edges.
Since v alone does not have enough information to resolve this trade-off, one could have
the vertices propagate all the edges up in the tree, but this would accumulate to too much
information, which would render the algorithm very slow.

Instead, we pinpoint the exact source of the trade-off between length and weight of covering
edges, as follows. Let minv be the weight of the minimum weight edge that covers {v, p(v)}.
The intuition behind our approach is that in order to cover the tree edge {v, p(v)} we must
pay at least minv. Thus, minv captures the cost of covering this tree edge. Therefore, before
sending to its parent information about relevant edges, v alters their weights by reducing
from them the weight minv. In terms of p(v), the reduced weights represent the extra cost
incurred when choosing any of these edges in order to cover additional tree edges. Using the
reduced weights in our algorithm instead of the original ones is crucial for selecting which
edges to add to the augmentation, and allows to divide the weight of an edge in a way that
captures the cost for covering each tree edge. In addition, we show that using this approach,
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sending information about at most h edges from each vertex to its parent suffices for selecting
the best edges for the augmentation.

The Algorithm. Our algorithm consists of two traversals of the tree: from the leaves to
the root and vice versa. As in AAug, each vertex v is responsible for covering the tree edge
{v, p(v)}.

In the first traversal, each vertex v computes the weight minv of the minimum weight
edge that covers the tree edge {v, p(v)} according to the weights of the edges it receives from
its children, and the weights of the edges incoming to it. It also computes the weights of the
minimum weight edges that cover the path from v to each of its ancestors u, according to
the weights v receives in the algorithm. Then, v subtracts minv from the weights of these
edges, and sends them to its parent with the altered weights.

In the second traversal, we scan the tree from the root to the leaves. Each child v of r
adds to the augmentation the edge having weight minv. It informs the relevant child who
sent it, if exists, and informs its other children it did not add their edges. Each internal
vertex v receives from its parent a message that indicates whether one of the edges it sent
was added to the augmentation by one of its ancestors or not. In the former case, v learns
that this edge was added to the augmentation and forwards the message to the relevant child
who sent it, if such exists. Otherwise, the tree edge {v, p(v)} is still not covered, and v adds
to the augmentation the edge having weight minv. It informs the relevant child who sent it,
if exists, and informs its other children that their edges were not added to the augmentation.

A full description of the algorithm is given in Appendix A.1.

Time analysis. In our algorithm, each vertex sends to its parent information about at most
h edges. If each vertex waits to receive all the messages from its children, before sending
messages to its parent, it would result in a time complexity of O(h2) rounds. However, using
pipelining we get a time complexity of O(h) rounds. The main intuition is that although
each vertex v may receive h different messages from each of its children during the algorithm,
in order for v to send to its parent p(v) the message concerning an ancestor u, the vertex
v only needs to receive one message from each of its children concerning the ancestor u.
Hence, if all the vertices send the messages according to increasing order of heights of their
ancestors, we can pipeline the messages and get a time complexity of O(h) rounds. The full
proof appears in [3].

Correctness proof. In Appendix A.3, we give a correctness proof for the algorithm. The
challenge in establishing the correctness of our algorithm lies in the fact that the vertices use
altered weights rather than the original ones. Nevertheless, we show that our intuition behind
choosing these altered weights faithfully captures the essence of finding an augmentation in
the weighted case. The key ingredient we use in our proof is giving a cost to each edge of T .
For a tree edge t = {v, p(v)}, we assign the cost c(t) = minv. We are then able to prove the
following.
(I) The sum of the costs of the edges of T is equal to the cost of the augmentation obtained

by the algorithm.
(II) The cost of any augmentation of G′ is at least the sum of costs of the edges of T .

To show (1), for each edge e added to the augmentation, we assign a tree path Pe, as
follows. For an edge e = {u, x} added to the augmentation by a vertex v, where u is an
ancestor of x in the tree, we assign the tree path Pe between x to p(v). Then, we show that
w(e) =

∑
t∈Pe

c(t). The proof is based on the fact that the cost of the tree edge {v, p(v)}



K. Censor-Hillel and M. Dory 21:11

is minv by definition, however, its cost is also w(e) −
∑

v′∈V ′ minv′ where V ′ are all the
vertices on the path between x and v, excluding v. This is since each vertex v′ in this path
reduces minv′ from the weight of e before sending it to its parent, and since e is the edge v
chooses to add to the augmentation. This gives w(e) = minv +

∑
v′∈V ′ minv′ =

∑
t∈Pe

c(t).
In addition, we show that the paths Pe are disjoint and their union is the entire tree T , which
proves (1). The proof is based on the fact that the edges of the augmentation cover all tree
edges, and that a vertex v adds an edge to the augmentation only if the tree edge {v, p(v)} is
not already covered by an edge added by one of its ancestors. We prove (2) in a similar way.

In conclusion, our algorithm gives an optimal augmentation in G′, which gives a 2-
approximation augmentation in G.

I Theorem 1.1. There is a distributed 2-approximation algorithm for weighted TAP in the
CONGEST model that runs in O(h) rounds, where h is the height of the tree T .

4 Applications

In this section, we discuss applications of our algorithms, and show they provide efficient
algorithms for additional related problems.

Minimum Weight 2-Edge-Connected Spanning Subgraph. In the minimum weight 2-
edge-connected spanning subgraph problem (2-ECSS), the input is a 2-edge-connected graph
G, and the goal is to find the minimum weight 2-edge-connected spanning subgraph of G.
Using AT AP we have the following.

I Theorem 1.3. There is a distributed 2-approximation algorithm for unweighted 2-ECSS
in the CONGEST model that completes in O(D) rounds.

Proof. We apply AT AP on G and a BFS tree T of G. Finding a BFS tree takes O(D)
rounds [29], and AT AP takes O(D) rounds since T is a BFS tree. The size of the augmentation
Aug is at most n − 1 because in the worst case we add a different edge in order to cover
each tree edge. Hence, T ∪Aug is a 2-edge-connected subgraph with at most 2(n− 1) edges.
Note that any 2-edge-connected graph has at least n edges, which implies a 2-approximation,
as claimed. J

The above algorithm has a better time complexity compared to the algorithm of [22],
which finds a 3

2 -approximation to 2-ECSS in O(n) rounds. In the algorithm of [22], the
augmented tree T is a DFS tree rather then a BFS tree. The same proof of [19, 22] gives
that if we apply AT AP on G and a DFS tree we also obtain a 3

2 -approximation to 2-ECSS in
O(n) rounds. For weighted 2-ECSS, using AwT AP gives the following.

I Theorem 4.1. There is a distributed 3-approximation algorithm for weighted 2-ECSS in
the CONGEST model that completes in O(hMST +

√
n log∗ n) rounds, where hMST is the

height of the MST.

Proof. We follow the same approach of [22]. We start by constructing an MST, which takes
O(D +

√
n log∗ n) rounds [23], and then we augment it using AwT AP in O(hMST ) rounds.3

Let w(A) be the weight of an optimal solution A to weighted 2-ECSS. Since both the MST
and an optimal augmentation have weights at most w(A), and since our algorithm for

3 We assume that the MST is unique. Otherwise, hMST is the height of the MST we construct.
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weighted TAP gives a 2-approximation, this approach gives a 3-approximation for weighted
2-ECSS. J

This algorithm has a better time complexity compared to the algorithm of [22], which
takes O(n logn) rounds, with the same approximation ratio.

Increasing the Edge-Connectivity from 1 to 2. AwT AP is a 2-approximation algorithm
for TAP, but can also be used to increase the connectivity of any spanning subgraph H of
G from 1 to 2. In order to do so, we start by finding a spanning tree T of H. Note that it
is not enough to apply AT AP on T and take the augmentation obtained, since edges from
H can be added to the augmentation with no cost. Hence, we apply AwT AP on G and T ,
where we set the weights of all the edges of H to be 0. The augmentation Aug we obtain is
a set of edges such that T ∪ Aug is 2-edge-connected, which also implies that H ∪ Aug is
2-edge-connected. In addition, its cost is at most twice the cost of an optimal augmentation
of H, because any augmentation of H corresponds to an augmentation of T with the same
cost, and Aug is a 2-approximation to the optimal augmentation of T . The time complexity
is O(DH) rounds where DH is the diameter of H, since finding a spanning tree T of H takes
O(DH) rounds and applying AwT AP takes O(DH) rounds because it is the height of T .

Verifying 2-Edge-Connectivity. The algorithm AT AP can be used in order to verify if a
connected graph G is 2-edge-connected in O(D) rounds, where at the end of the algorithm
all the vertices know if G is 2-edge-connected.4 We start by building a BFS tree T of G
and then apply AT AP to G and T . Note that when we find an optimal augmentation in
G′ by AAug, each vertex v is responsible to cover the tree edge {v, p(v)}. If the graph G is
2-edge-connected, all the edges can be covered. If the graph G is not 2-edge-connected, then
there is a tree edge {v, p(v)} that is a bridge in the graph, and hence cannot be covered by
any edge in G. In such a case, v identifies that it cannot cover the edge and hence the graph
is not 2-edge-connected. Therefore, after scanning the tree from the leaves to the root in
AAug, we can distinguish between these two cases, which takes O(D) rounds. The root r
can distribute the information to all the vertices in O(D) rounds as well.

5 A 4-approximation for Unweighted TAP in Õ(D +
√

n) rounds

The time complexity of AT AP and AwT AP is linear in the height of T . When h is large, we
suggest a much faster O(D +

√
n log∗ n)-round algorithm for unweighted TAP. Here we give

a high-level description of the algorithm, full details and proofs appear in [3].
The structure of the algorithm is the same as the structure of AT AP . It starts by building

the same virtual graph G′, and then it finds an augmentation in G′. However, since we want
to reduce the time complexity, our algorithm cannot scan the whole tree anymore. Therefore,
we can no longer use directly the LCA labeling scheme and the algorithm AAug for finding an
optimal augmentation. To overcome this, we break the tree T into fragments, and we divide
the algorithm into local parts, in which we communicate in each fragment separately, and
to global parts, in which we coordinate between different fragments over a BFS tree. This
approach is useful also in other distributed algorithms for global problems, such as finding an
MST [23] or a minimum cut [27]. The challenge is showing that this approach guarantees a

4 A verification algorithm with the same complexity can also be deduced from the edge-biconnectivity
algorithm of Pritchard [30].
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good approximation. Since our algorithm does not scan the whole tree T it may add different
edges in order to cover the same tree edges, which makes the analysis much more involved.

Building G′ from G. In order to build G′ from G we use the labeling scheme for LCAs
that we used in AT AP . However, applying this scheme directly takes O(h) rounds. We show
how to compute all the relevant LCAs more efficiently in O(D +

√
n) rounds. The idea is to

apply the labeling scheme on each fragment separately to obtain local labels, and to apply
the labeling scheme on the tree of fragments to obtain global labels. We show that using the
local and global labels, and additional information on the structure of the tree of fragments,
each vertex can compute all the edges incoming to it in G′. For full details see [3].

Finding an optimal augmentation in G′. In order to find an augmentation in G′, we need
to cover tree edges between fragments (global edges) and tree edges in the same fragment
(local edges). For doing so, we start by computing all the maximal edges that cover the
global edges. To cover all the global edges, one approach could be to add all these maximal
edges to the augmentation. However, this cannot guarantee a good approximation. Instead,
we apply AAug on the tree of fragments in order to cover all the global edges. Then, we
apply it on each fragment separately in order to cover the local edges in the fragment that
are still not covered. This algorithm requires coordination between different fragments,
since each vertex v needs to learn if the tree edge {v, p(v)} is already covered after the first
part of the algorithm. In addition, although the second part is applied on each fragment
separately, a vertex v may need to add an edge incoming to another fragment to cover the
tree edge {v, p(v)}. For achieving an efficient time complexity, we show how to use only
O(
√
n) different messages for the whole coordination of the algorithm. For full details see [3].

Approximation Ratio. We show that this approach gives a 2-approximation to the optimal
augmentation in G′. Denote by A the solution obtained by the algorithm and by A∗ an
optimal augmentation in G′. In the correctness proof of AT AP we show a one-to-one mapping
from A to A∗, but this mapping is no longer one to one here. However, if we could show that
each edge in A∗ is mapped to by at most two edges from A, we can obtain a 2-approximation.
Unfortunately, this does not hold either.

Our approach is to divide the edges in A to two types A1, A2 as follows. We map each
edge e ∈ A to a corresponding path Pe in T . If Pe contains an internal vertex with more than
one child in the tree we say that e ∈ A1, otherwise e ∈ A2. Then, we show that |A1| ≤ 2|A∗|,
and |A2| ≤ 2|A∗|. The main idea is that the number of edges in A1 is related to the degrees
of internal vertices in T , which affects the number of leaves in the tree. We use this in order
to show that |A1| ≤ 2` where ` is the number of leaves in T . Note that ` is a lower bound on
the size of any augmentation in G′, since we need to add to the augmentation a different
edge in order to cover each one of the leaves. This gives |A1| ≤ 2|A∗|.

In order to show that |A2| ≤ 2|A∗|, we use the fact that the edges of A2 correspond to
tree paths with a simple structure. This allows us to show a mapping between A2 to A∗ in
which each edge in A∗ is mapped to by at most two edges from A2, giving |A2| ≤ 2|A∗|.

In conclusion, |A| = |A1 ∪ A2| ≤ 4|A∗|. A more delicate analysis extending these
ideas gives |A| ≤ 2|A∗|. This gives a 2-approximation to the optimal augmentation of G′,
which results in a 4-approximation to the optimal augmentation in G. A full proof of the
approximation ratio is given in [3], and gives the following.

I Theorem 1.2. There is a distributed 4-approximation algorithm for unweighted TAP in
the CONGEST model that runs in O(D +

√
n log∗ n) rounds.
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6 Lower Bounds

An Ω(D) Lower Bound for TAP in the LOCAL model. We show that TAP is a global
problem, which admits a lower bound of Ω(D) rounds, even in the LOCAL model where the
size of messages is unbounded.

I Theorem 1.4. Any distributed α-approximation algorithm for weighted TAP takes Ω(D)
rounds in the LOCAL model, where α ≥ 1 can be any polynomial function of n. This holds
also for unweighted TAP, if 1 ≤ α < n−1

2c for a constant c > 1.

The proof is based on considering two similar graphs G1, G2, defined as follows. The graph
G1 consists of a path T of n = 2k+ 1 vertices {v0, v1, ..., v2k}, and the edges {v2i, v2(i+1)} for
0 ≤ i < k, where G2 = G1 ∪{v0, v2k}. In G2, adding the edge {v0, v2k} already covers all the
edges of the tree T , where in G1 we must add many edges to the augmentation. However, a
vertex in the middle of the path T cannot distinguish between the graphs G1, G2 in less than
Ω(D) rounds. Based on these ideas, we show that approximating TAP takes Ω(D) rounds.
The full proof appears in [3].

A Lower Bound for weighted TAP in the CONGEST model. By Theorem 1.4, when
h = O(D) our algorithms AT AP , AwT AP are optimal up to a constant factor. But what
about the case of h = ω(D) for the CONGEST model? In [3], we show a family of graphs
where h = ω(D), in which Ω(h) rounds are needed in order to approximate weighted TAP,
where h = O(

√
n). The lower bound is proven using a reduction from the 2-party set-

disjointness problem, in which there are two players, Alice and Bob, that have to decide
whether their input strings are disjoint. Our construction is based on a construction presented
in [6, 32]. In order to use this construction for showing lower bounds for TAP, we add to it
additional parallel edges5 and give weights to the edges in such a way that all the edges of
the input tree T can be covered by parallel edges of weight 0, except for k edges, {ei}k

i=1.
The edge ei may be covered either by a corresponding parallel edge eA

i , or by a distant edge
eB

i that closes a cycle that contains ei (see Figure 2 for an illustration). However, the weights
of the edges eA

i and eB
i depend on the i’th bit in the input strings of Alice and Bob, such

that there is a light edge that covers ei if and only if this bit equals 0 at least in one of the
input strings. It follows that all the k edges can be covered by light edges if and only if the
input strings of Alice and Bob are disjoint.

Using a known lower bound on the communication complexity of set-disjointness, we
prove Theorem 1.5. Full details and proofs appear in [3].

I Theorem 1.5. For any polynomial function α(n), there is a Θ(n)−vertex graph of diameter
Θ(logn) for which any (perhaps randomized) distributed α(n)-approximation algorithm for
weighted TAP with an instance tree T ⊆ G of height h = Θ(

√
n

log n ) requires Ω(h) rounds in
the CONGEST model.

7 Discussion

In this paper, we present the first distributed approximation algorithms for TAP. Many
intriguing problems remain open. First, can we get efficient distributed algorithms for
TAP with an approximation ratio better than 2? In the sequential setting, achieving an
approximation better than 2 for weighted TAP is a central open question. However, there

5 We also show a construction with no parallel edges.
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Figure 2 The structure of the graph G. The edges of the input tree T are marked with solid lines,
other edges are marked with dashed lines. The edge ei = {r, vi

0} can be covered either by a parallel
edge eA

i , or by the corresponding edge eB
i = {udp−1, vi

dp−1} (additional options are expensive).

are several recent algorithms achieving better approximations for unweighted TAP [5,21] or
for weighted TAP with bounded weights [1, 8].

Second, can we show algorithms for weighted TAP and weighted 2-ECSS that are
more efficient? For unweighted TAP, we showed an algorithm with a time complexity of
O(D +

√
n log∗ n) rounds. In addition, for unweighted k-ECSS, the O(k(D +

√
n log∗ n))-

round algorithm of Thurimella [33] gives a 2-approximation. However, currently there are no
algorithms for the weighted problems with a similar time complexity.

There are many additional connectivity augmentation problems, such as increasing the
edge connectivity from k to k + 1 or to some function f(k), as well as augmentation for
increasing the vertex connectivity. Such problems have been widely studied in the sequential
setting, and a natural question is to design distributed algorithms for them.

Finally, it is interesting to study TAP and additional connectivity problems also in other
distributed models, such as the dynamic model where edges or vertices may be added or
removed from the network during the algorithm. An interesting question is how to maintain
highly-connected backbones when the network can change dynamically.
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A A 2-approximation for weighted TAP in O(h) rounds: full details

In this section, we give full details and main proofs for the algorithm AwT AP . We show the
following.

I Theorem 1.1. There is a distributed 2-approximation algorithm for weighted TAP in the
CONGEST model that runs in O(h) rounds, where h is the height of the tree T .

As explained in Section 3, the algorithm AwT AP has the same structure of AT AP , but it
differs from it in the algorithm for finding an optimal augmentation in G′. In Section A.1,
we describe our algorithm for finding an optimal augmentation in G′. In Section A.2, we
analyze the time complexity of the algorithm, and in Section A.3 we prove its correctness.

A.1 The algorithm
A description of the algorithm is given in Algorithm 1. For simplicity of presentation, we
start by describing an algorithm which takes O(h2) rounds. Later, in Section A.2, we explain
how using pipelining we improve the time complexity to O(h) rounds.

Technical Details:

We assume in the algorithm that each vertex knows all the ids of its ancestors in T . We
justify it in the next claim. Note that when we construct G′, if {u, v} is an edge between
an ancestor u and its descendant v in T , v learns the label of u according to the LCA
labeling scheme and not the id of u. However, once v learns about the ids and labels of all
its ancestors, it knows the id of u as well, and can use it in the algorithm.

I Claim 1.1. All the vertices can learn the ids and labels of all their ancestors in O(h)
rounds.
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Algorithm 1 Finding an Optimal Augmentation in G′.

The code is for every vertex v 6= r

1: Initialization:
2: ev,u ← the minimum weight edge incoming to v that covers the path between v and its

ancestor u or ⊥ if there is no such edge.
3: wv(u)← w(ev,u) for each ancestor u of v such that ev,u 6= ⊥, and wv(u)←∞ otherwise.
4: Av ← the union of v and its children in T .
5: Augv ← ∅

6: First Traversal:
7: if v is a leaf then
8: for each ancestor u of v: senderv(u)← v

9: else
10: wait for receiving wv′(u) for all ancestors u of v, from each child v′ of v
11: for each ancestor u of v: wv(u)← minv′∈Avwv′(u), senderv(u)← argminv′∈Avwv′(u)
12: end if
13: minv ← wv(p(v))
14: for each ancestor u of v: wv(u)← wv(u)−minv

15: for each ancestor u 6= p(v) of v send (u,wv(u)) to p(v)

16: Second Traversal:
17: u← p(v)
18: if v is not a child of r then
19: wait for a message m from p(v)
20: if m 6= ⊥ then u← m

21: end if
22: end if
23: s← senderv(u)
24: if s = v then
25: Augv ← Augv ∪ {ev,u}
26: else
27: send u to s
28: end if
29: for each child v′ 6= s of v send ⊥ to v′

Proof. In order to do this, at the first round each vertex sends to its children its id and label.
In the next round, each vertex sends to its children the id and label it received in the previous
round, and we continue in the same way until each vertex learns about all its ancestors.
Clearly, after h rounds each vertex learns all the ids and labels of all its ancestors. J

I Claim 1.2. If a vertex v adds ev,u to Augv in line 25 of its algorithm, then ev,u 6= ⊥.

Proof. Since G′ is 2-edge-connected, we can cover all tree edges by edges from G′. Hence,
the minimum weight of an edge that covers some tree edge is never infinite. It follows that if
a vertex v adds ev,u to Augv, then ev,u 6= ⊥. J
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A.2 Time analysis

We next analyze the time complexity of the algorithm. In the second traversal of the tree,
each parent sends to each of its children one message, which takes O(h) rounds. In the first
traversal of the tree, each vertex sends to its parent at most h edges. If each vertex waited
until it got all the messages from its children before sending messages to its parent, it would
result in a time complexity of O(h2) rounds. We show how to get a time complexity of O(h)
rounds for this part using pipelining. To show this, we carefully design each vertex v to send
the messages (u,wv(u)) in increasing order of heights of its ancestors.

The main intuition is that although each vertex v may receive h different messages from
each of its children during the algorithm, in order for v to send to its parent p(v) the message
concerning an ancestor u, the vertex v only needs to receive one message from each of its
children concerning the ancestor u. Hence, if all the vertices send the messages according to
increasing order of heights of their ancestors, we can pipeline the messages and get a time
complexity of O(h) rounds. We formalize this intuition in the next lemma, which we prove
in the full version.

I Lemma A.3. A vertex v at height i sends to its parent until round i + j the message
(u,wv(u)) such that u is an ancestor of v at height j.

From the lemma we get that by round 2h all the children of r learn about the minimum
weight edge that covers the tree edge between them and r, so the first traversal is completed
after O(h) rounds. It follows that the overall time complexity of the algorithm is O(h) rounds
as needed, giving the following.

I Lemma A.4. Algorithm 1 completes in O(h) rounds.

A.3 Correctness Proof

I Lemma A.5. Algorithm 1 finds an optimal augmentation in G′.

Proof. Note that the solution obtained by the algorithm is an augmentation of G′ because
each vertex v adds an edge in order to cover the tree edge {v, p(v)} if it is not already covered
by an edge which one of its ancestors decides to add to the augmentation. In order to show
that the augmentation is optimal we give costs to the edges of T such that the sum of the
costs is equal to both the cost of the solution obtained by the algorithm and the cost of an
optimal augmentation of G′. Hence, we conclude that the cost of the solution obtained by
the algorithm is optimal.

Giving costs to the edges of T :

Fix a vertex v 6= r and let t = {v, p(v)}. We define c(t) = minv (the value of wv(p(v)) in
line 13 of the algorithm).

For an edge e = {u, x} that covers t, such that u is an ancestor of x in T , let P be the
path of tree edges between x and p(v) in T . For a vertex v′ such that {v′, p(v′)} ∈ P , let Pv′

be the path of tree edges between x and v′. Note that minv is the weight of the minimum
weight edge covering the tree edge t = {v, p(v)} according to the weights v receives in the
algorithm. Denote this edge by ev.

I Claim 1.6. w(ev) =
∑

t′∈P c(t′).

OPODIS 2017



21:20 Distributed TAP and 2-Edge-Connectivity

Proof. Let ev = {u, x}, where u is an ancestor of x in T . For each vertex v′ on the path
between x and v, ev is the minimum weight edge covering the path between v′ and its
ancestor p(v), according to the weights v′ receives in the algorithm, as otherwise we get a
contradiction to the definition of ev. Each vertex on this path reduces minv′ from the weight
of ev it receives before sending it to its parent. Denote by V ′ all the vertices on the path
between x and v, excluding v. It follows that

c(t) = minv = w(ev)−
∑

v′∈V ′

minv′ = w(ev)−
∑

t′∈Pv

c(t′),

which gives w(ev) =
∑

t′∈P c(t′). J

I Claim 1.7. The sum of the costs of the edges of T is equal to the cost of the solution
obtained by the algorithm.

Proof. We map each edge e added to the augmentation to a path Pe of tree edges, such
that:
(I) The paths that correspond to different augmentation edges are disjoint, and their union

is the entire tree T . That is, Pe ∩ Pe′ = ∅ for e 6= e′, and ∪Pe = T .
(II) The weight of e is equal to the sum of costs of tree edges in the corresponding path, i.e.,

w(e) =
∑

t′∈Pe
c(t′).

Let e = {u, x} be an edge added to the augmentation, such that u is an ancestor of x in
T . Let v be the vertex that decides to add e to the augmentation. Note that v decides to
add e to the augmentation because it covers the tree edge {v, p(v)}, which is not covered
yet by an edge that one of v’s ancestors decides to add to the augmentation. We map e to
the tree path Pe that consists of all the tree edges on the path between x and p(v). Note
that e covers all the edges on this path (and it may also cover other tree edges, on the path
between p(v) and u in T ). This divides the tree edges to disjoint paths because the vertices
on the path between x and p(v) do not decide to add other edges to the augmentation, since
all the relevant tree edges are already covered by e. In addition, these paths include all tree
edges because the edges added to the augmentation cover all tree edges. This proves (I).

Note that v adds e to the augmentation because the tree edge {v, p(v)} is not covered yet.
So v chooses e because it is the minimum weight edge ev that covers {v, p(v)}. By Claim
1.6, it holds that w(ev) =

∑
t′∈P c(t′) where P = Pe is the path of tree edges between x and

p(v). This proves (II). (I) and (II) complete the proof that the cost of all the edges added to
the augmentation is equal to the sum of costs of the edges in T . J

A similar proof shows that the cost of any augmentation of G′ is at least the sum of costs
of the edges of T . The idea is to map a subset of edges in the augmentation to disjoint paths
in T , such that the union of the paths is the entire tree. We show that the weight of each
edge is at least the sum of costs of the tree edges on the corresponding path, which proves
the claim. The proof is in the full version. From the above and from Claim 1.7 we have that
the cost of the augmentation obtained by the algorithm is smaller or equal to the cost of any
augmentation of G′, hence the solution obtained by the algorithm is optimal. This completes
the proof of Lemma A.5. J

By Lemmas A.5 and A.4, Algorithm 1 finds an optimal augmentation A′ in G′ in O(h)
rounds. In the full version, we show that A′ corresponds to a 2-approximation augmentation
in G, and that building G′ takes O(h) rounds. This gives the following.

I Theorem 1.1. There is a distributed 2-approximation algorithm for weighted TAP in the
CONGEST model that runs in O(h) rounds, where h is the height of the tree T .
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Abstract
In the topological study of distributed systems, the immediate snapshot is the fundamental
computation block for the topological characterization of wait-free solvable tasks. However, in
reality, the immediate snapshot is not available as a native built-in operation on shared memory
distributed systems. Borowsky and Gafni have proposed a wait-free multi-round protocol that
implements the immediate snapshot using more primitive operations, namely the atomic reads
and writes.

In this paper, up to an appropriate reformulation on the original protocol by Borowsky and
Gafni, we establish a tight link between each round of the protocol and a topological operation of
subdivision using Schlegel diagram. Due to the fact shown by Kozlov that the standard chromatic
subdivision is obtained by iterated subdivision using Schlegel diagram, the reformulated version
is proven to compute the immediate snapshot in a topologically smoother way. We also show that
the reformulated protocol is amenable to optimization: Since each round restricts the possible
candidates of output to an iteratively smaller region of finer subdivision, each process executing
the protocol can decide at an earlier round, beyond which the same final output is reached no
matter how the remaining rounds are executed. This reduces the number of read and write
operations involved in the overall execution of the protocol, relieving the bottleneck of access to
shared memory.
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1 Introduction

The snapshot models [1, 4, 6, 11] for the shared memory distributed system have been
intensively studied for the analysis of solvability of distributed tasks in the wait-free (or
more generalized failure) models. In particular, the immediate snapshot model [1, 4] and the
iterated immediate snapshot mode [6] are central to the study. The (iterated) immediate
snapshot protocol is modeled by a topological operation on simplicial complexes, namely,
the (iterated) standard chromatic subdivision. This topological interpretation has boosted
theoretical investigations on distributed systems using simplicial complexes. Most notably,
Herlihy and Shavit have established the asynchronous computability theorem [13], which
states that a distributed task is wait-free solvable in the asynchronous read-write shared
memory model if and only if the task is expressed by a suitable pair of an iterated standard
chromatic subdivision and a simplicial map.
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Although immediate snapshots are not natively supported in real distributed systems,
the protocol proposed by Borowsky and Gafni [5] provides a wait-free implementation of it
on asynchronous shared memory systems with atomic reads and writes. Their protocol is a
multi-round protocol, where each individual process in a distributed system consisting of
n+ 1 processes decides its snapshot only if it witnesses, for k-th round, n+ 2− k different
processes (including the process itself) that have written to shared memory.

In the present paper, we give yet another multi-round protocol for the immediate snapshot,
reformulating the one by Borowsky and Gafni. Though both protocols work equally, the
reformulated version has notable advantages over the original one.

1. The reformulated multi-round protocol induces a neat correspondence of each individual
round with a topological construction, namely a subdivision using Schlegel diagram.
Benavides and Rajsbaum [2] showed that each round of the protocol by Borowsky and
Gafni does not simply subdivides the input complex but it produces an intermediate
protocol complex that is not a (pseudo)manifold. They make use of ‘collapsing’ to describe
how the protocol complex is transformed topologically at each protocol round, concluding
that the standard chromatic subdivision is obtained as the final result. In contrast, the
present paper shows that, up to reformulation, each protocol round exactly corresponds
to a subdivision using Schlegel diagram. This series of corresponding subdivisions gives
rise to the standard chromatic subdivision, due to a straightforward topological argument
by Kozlov [17].

2. Due to the simpler topological structure, the reformulated version is amenable to me-
chanical optimization.
In shared memory systems, shared memory access is a major bottleneck. Processes share
a single shared memory module, which serializes simultaneous requests to handle them
one at a time. The above mentioned multi-round protocols for the immediate snapshot
involve read and write requests multiplied by the number of rounds to be performed (and
also by the number of processes). The multiplied requests to the shared memory thus
can cause performance degradation due to memory contention.
For each concrete implementation of a protocol that makes use of the immediate snapshot,
the reformulated version of the immediate snapshot protocol can be optimized to issue a
lesser number of memory requests so that each process decides its output value at an
earlier round, beyond which any execution path converges to a single unique output.
This refinement is possible because the reformulated protocol iteratively subdivides the
protocol complex at each round, narrowing down the candidates of output to those in
a smaller region of finer subdivision. Thus the output can be decided as soon as the
possible outputs have been narrowed down to a singleton set. This optimizes the protocol
to perform a lesser number of shared memory access, where the optimized code can be
mechanically derived for each concrete instance.
With this optimization technique, the author believes that the immediate snapshot model,
which has been studied mostly of theoretical concern, can also serve as a fundamental
construct for wait-free distributed programming in a more practical context.

Related Work

In [17], Kozlov has proven that the standard chromatic subdivision is indeed a subdivision
by showing the standard chromatic subdivision is obtained by the iterated subdivision
using Schlegel diagram. He also argued that the transient complexes that appear in the
intermediate steps of iterated subdivision can be given computational interpretation, but
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his interpretation combines atomic writes with immediate scan operations. In contrast, the
present paper gives the computational interpretation solely with atomic reads and writes,
establishing the exact correspondence of each round of the reformulated immediate snapshot
protocol with subdivision using Schlegel diagram.

Benavides and Rajsbaum [2] studied the topological structure induced by the multi-round
immediate snapshot protocol of Borowsky and Gafni. They observed that the series of
shared memory reads and writes involved in each single round of the protocol generates a
protocol complex that augments the standard chromatic subdivision with extra simplexes.
Due to those extras, the protocol complexes are neither a subdivision of the input complex
nor a (pseudo)manifold in general. They analyzed the topological structure of the protocol
complexes in detail and presented a topological model, in which subsequent rounds of the
protocol collapse those extra simplexes to end up with the standard chromatic subdivision.
This collapsing series of complexes, though topologically insightful, does not explain well
the correspondence to the underlying operational (execution) model. Assuming the colored
simplicial topological model, where every simplex is a collection of vertexes of distinct colors
(process ids), there can be no operational counterpart to collapsing of a simplex: Since a
simplex is always collapsed to a degenerate simplex of strictly smaller dimension (i.e., of
fewer colors), it absurdly indicates that such an operation would shrink a process group into
a strictly smaller one (even if no process in the group crashed). In the present paper, we
reformulate the multi-round protocol by Borowsky and Gafni so that each round is precisely
a subdivision using Schlegel diagram, providing a simpler topological model. The neat
correspondence between the topological model and the operational model also allows us to
optimize the protocol for reduced shared memory access. (See Section 4.)

Hoest and Shavit [14] proposed the nonuniform iterated immediate snapshot model, a
refinement of the immediate snapshot model, for the purpose of a precise analysis of protocol
complexity. The nonuniform iterated immediate snapshot topologically corresponds to the
iterated nonuniform chromatic subdivision, which generalizes the iterated standard chromatic
subdivision so that individual simplexes are allowed to be subdivided different numbers of
times. Their nonuniform model may also be applied to protocol optimization. That is, a
task solvable by a protocol in the uniform model would be substituted by a protocol in the
nonuniform model that solves the same task with a coarser iterated nonuniform subdivision.
However, it seems nontrivial in general to find an optimal nonuniform protocol. The
reformulated multi-round protocol in the present paper, due to the smooth correspondence
between the topological and operational models, allows mechanical optimization on any
protocol given in the uniform model.

Outline

The rest of the paper is organized as follows. Section 2 describes the shared memory
distributed computing model and the wait-free multi-round protocol by Borowsky and Gafni
and reviews the topological theory concerning wait-free solvability of distributed tasks.
Section 3 proposes a reformulation of the multi-round protocol by Borowsky and Gafni. We
prove the reformulated protocol also computes the immediate snapshot, showing that each
round of the reformulated protocol precisely corresponds to a subdivision using Schlegel
diagram. In Section 4, we further argue that the reformulated protocol is amenable to
optimization. We show that, for each concrete protocol that solves a task using the iterated
immediate snapshot, the protocol can be optimized to decide the final output at an earlier
round, as soon as the collection of possible outputs to be reached is narrowed down to a
singleton set. Finally, Section 5 concludes the paper.

OPODIS 2017
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2 Distributed Computing and Topological Model

Throughout the paper we consider a distributed system of n + 1 faulty processes, which
have process ids numbered 0 through n. We assume the asynchronous read-write shared
memory model, where the distributed system has a shared memory consisting of single-writer,
multi-reader atomic registers and processes can communicate solely by atomic reads and
writes on these registers. We further assume that each process i receives its initial private
input value through the variable vi, which is local to the process.

The rest of this section is devoted to give an overview of the immediate snapshot model and
the basics of combinatorial topology related to the topological theory of wait-free solvability
of distributed tasks. For a more complete exposition on the subject, see [11, 16].

2.1 Immediate snapshot in the read-write model
Borowsky and Gafni proposed the wait-free implementation of the immediate snapshot in
the read-write shared memory model [5]. Algorithm 1 gives the Borowsky-Gafni protocol in
a recursive style implementation by Gafni and Rajsbaum [10]. The protocol is a multi-round
protocol, where the series of recursive calls IS(n), IS(n− 1), . . . , IS(0) correspond to n+ 1
multiple rounds and the processes communicate through a series of n+ 1 shared memory
arrays memd (n ≥ d ≥ 0), each of which consists of n+ 1 registers indexed 0 through n. Each
process i, per each recursive call IS(d) for the (n+ 1− d)-th round, invokes the write&scan
operation WScan on the shared memory array memd. When WScan is invoked by process i,
it first writes the private value vi of the process i to the register memd[i], then scans the
view, i.e., the set of values that have been written in the array memd, and returns the view
paired with the process id. The view is gathered by collect, which reads the registers of the
array in an unspecified order. If process i witnesses d+ 1 values in the view, it returns the
pair of process id and the view as the result of immediate snapshot, terminating recursion;
Otherwise, it continues recursive call IS(d− 1) for another round.

We notice that the view returned by WScan per each round is simply discarded, when
not sufficiently many values are witnessed.

2.2 Simplicial complexes and subdivisions
Let V be a set of vertexes. A simplex σ is a finite subset of V . The dimension of σ, denoted
by dim(σ), is given by |σ|−1. A simplex σ of dimension d is called a d-simplex. In particular,
the empty simplex ∅ is a (−1)-simplex. A simplex σ is called a face of τ if σ ⊆ τ and is
particularly called a proper face if the inclusion is strict.

A simplicial complex (or a complex for short) C is a set of simplexes such that σ ∈ C and
τ ⊆ σ implies τ ∈ C. The dimension of C, written dim(C), is the maximum dimension of
simplexes contained in C. A complex of dimension d is also called a d-complex. We write
V (C) for the set of vertexes contained in C. A complex D is called a subcomplex of C, if
D ⊆ C. The k-skeleton of a complex C, written skel(k) C, is the maximum subcomplex of C of
dimension k or less, namely, skel(k) C = {σ ∈ C | dim(σ) ≤ k}.

A facet σ of C is a maximal simplex, i.e., σ is not a proper face of any τ ∈ C. We write σ
for a complex whose sole facet is the simplex σ, i.e., σ = {τ | τ ⊆ σ}. A complex is called
pure, if all its facets have the same dimension.

Whenever σ∩τ = ∅, we write σ∗τ for the join of the simplexes σ and τ , namely the union
σ∪ τ . Likewise, whenever V (C)∩V (D) = ∅, we define the join of C and D by C ∗D = {σ ∗ τ |
σ ∈ C, τ ∈ D}. The star of a vertex v ∈ C is defined by St(v, C) = {τ ∈ C | {v} ∪ τ ∈ C},
which is the maximum subcomplex of C whose every facet contains v.
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Algorithm 1 Multi-round write&scan code for the process i.
procedure WScan(d)

memd[i]← vi
view ← collect(memd)
return (i, view)

procedure IS(d)
(i, view)←WScan(d)
if |view| = d+ 1 then return (i, view)
else IS(d− 1)

Figure 1 The standard chromatic subdivisions on 1-simplex and 2-simplex.

Throughout the paper, complexes are assumed to be pure. Also, we solely consider
the so-called chromatic simplexes and complexes. Suppose we have a coloring function
color : V → {0, . . . , n}. A simplex σ is chromatic if color(v) = color(v′) implies v = v′ for
every v, v′ ∈ σ; A complex C is chromatic if every simplex σ ∈ C is chromatic.

A simplicial map is a total vertex map µ : V (C)→ V (D) such that µ(σ) ∈ D for every
σ ∈ C. Every simplicial map must be color-preserving, i.e., color(v) = color(µ(v)) for every
v ∈ V (C).

A subdivision of a complex C, written Div C, is a finer complex obtained by dividing each
simplex of the complex into smaller pieces of (chromatic) simplexes. (In this paper, though
we occasionally refer to geometric presentation of subdivisions, we are solely concerned with
combinatorial definition of subdivision in formality. For example, σ should be understood
as the trivial subdivision, which does not geometrically refine σ at all.) For a simplex
τ ∈ Div C, we write Carr(τ, C) for the carrier of τ , namely, the smallest simplex σ ∈ C such
that τ ∈ Div σ.

A subdivision induces a parent map π, which carries each vertex of the subdivision to
the unique vertex π(v) of matching color in its carrier. That is, for v ∈ V (Div C), π(v) is
the unique vertex of C such that π(v) ∈ Carr({v}, C) and color(π(v)) = color(v). The parent
map π : V (Div C)→ V (C) is a color-preserving simplicial map.

2.3 Distributed task and asynchronous computability
A (colored) task for a distributed system with n+ 1 faulty processes is defined by a triple
(I,O,Φ), where I is an input complex (of dimension n), O is an output complex (of dimension
n), and Φ : I → 2O is a carrier map, a monotonic function that maps every input simplex
σ ∈ I to an output subcomplex Φ(σ) ⊆ O such that color(σ) =

⋃
{color(τ) | τ ∈ Φ(σ)}.
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Figure 2 Schlegel diagrams for 1-simplex and 2-simplex.

The asynchronous computability theorem [13] gives a topological characterization for
the class of tasks that are wait-free solvable in the shared memory read-write model. The
primary topological tool employed in the theorem is subdivision on simplicial complexes,
especially the standard chromatic subdivision. See Figure 1 for geometric presentation of
the standard chromatic subdivision on 1-simplex {v0, v1} and 2-simplex {v0, v1, v2}: The
standard chromatic subdivision refines each d-simplex σ (d > 0) by introducing new d+ 1
vertexes (of different colors) at antiprismatic positions displaced from the barycenter of the
simplex. Combinatorially, as indicated in Figure 1, each vertex of color i contained in the
subdivision is designated by a pair (i, σ), where σ is a nonempty subset of the original simplex
and i ∈ color(σ). (Herein and after we will depict the vertexes for different processes with
colors white, dark blue, and light red to indicate processes of id 0, 1, and 2, respectively.)
Furthermore, a set {(i0, τ0), . . . , (id, τd)} of vertexes of distinct colors forms a d-simplex of
the subdivision if and only if the subsets of the original simplex are linearly ordered (as
τ0 ⊆ · · · ⊆ τd, up to appropriate permutation).

In what follows, let us write Ch C for the standard chromatic subdivision applied to every
simplex in C and also write ChmC (m ≥ 0) for the m-iterated application of Ch on C.

The multi-round protocol for the immediate snapshot (Algorithm 1) in effect implements
the standard chromatic subdivision [2]: Every non-faulty process i executing the protocol
returns a vertex (i, τ) of the subdivision.

I Theorem 1 (Theorem 5.29 and Corollary 5.31 of [13]). A colored task (I,O,Φ) has a
wait-free protocol in the asynchronous shared memory read-write model if and only if there
exists a subdivision Div I and a decision map δ, which is a color-preserving simplicial map
δ : V (Div I)→ V (O) such that δ(σ) ∈ Φ(Carr(σ, I)) for every σ ∈ Div I.

In particular, the subdivision Div can be taken ChK for some K ≥ 0.

3 Immediate Snapshot as Iterated Subdivision Using Schlegel
Diagram

This section presents a multi-round protocol for the immediate snapshot, by reformulating the
protocol by Borowsky and Gafni [5]. We show that each round of the protocol corresponds
exactly to a subdivision using Schlegel diagram.

3.1 Schlegel diagram and subdivision
A Schlegel diagram is a projection of a polytope onto one of its facets [19]. In the present
paper, we are solely concerned with Schlegel diagrams on cross-polytopes. The Schlegel
diagram on (d + 1)-dimensional cross-polytope, which consists of 2(d + 1) vertexes, gives
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Figure 3 Standard chromatic subdivision on σ = {0, 1, 2} using Schlegel diagrams.

a subdivision of d-simplex. Figure 2 shows subdivisions of 1-simplex and 2-simplex by
Schlegel diagrams, where the former is derived from the quadrilateral and the latter from
the octahedron. (Note that the standard chromatic subdivision is a refinement of Schlegel
diagram in general, but they coincide for 1-simplexes.)

The complex of Schlegel diagram that subdivides a d-simplex σ = {v0, . . . , vd}, denoted
by Schd σ, is formally defined as follows:

Schd σ =
⋃{
{vi | i ∈ σ \ I} ∗ {(i, σ) | i ∈ I} | ∅ ( I ⊆ {0, . . . , d}

}
,

where each (i, σ) is a new vertex introduced for subdivision, with coloring color((i, σ)) = i.
Geometrically, the Schlegel diagram subdivides a d-simplex σ into smaller facets, namely,
the central facet {(0, σ), . . . , (d, σ)}, which is solely comprised of the new vertexes, and other
facets, each of which shares a lower dimensional simplex with the central facet. (See Figure 3
for the subdivision of 2-simplex.) Notice that σ is no more a face of Schlegel subdivision
Schd σ, as it does not share any simplex with the central facet. When dim(σ) 6= d, we define
Schd σ by a trivial subdivision, i.e., Schd σ = σ.

Kozlov [17] has shown that the standard chromatic subdivision can be obtained by a
series of Schlegel diagram that subdivides simplexes in the order of decreasing dimension. To
put it formal, let D be any subdivision of a d-complex C such that C ∩D = skel(k) C, meaning
that D subdivides simplexes of C up to dimension k+ 1 and higher but no simplexes of lower
dimension. Let us write SchCkD for the subdivision of D applied to every k-simplex of C ∩ D
by Schlegel diagram, namely,

SchCkD = {τ ∗ σ′ | τ ∗ σ ∈ D and σ′ ∈ Schk σ for some σ ∈ C ∩ D}.

Let us also write SchCh,j for the composition SchCh ◦ SchCh+1 ◦ · · · ◦ SchCj (0 ≤ h, j ≤ d) of
subdivisions on simplexes in the order of decreasing dimension. (When h > j, SchCh,j denotes
the trivial subdivision.)
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Algorithm 2 Multi-round write&oblivious scan code for the process i.
procedure WOScan(d)

memd[i]← vi
view ← collect(memd)
if |view| = d+ 1 then return (i, view)
else return vi

procedure IS’(d)
u←WOScan(d)
if u 6= vi then return u

else IS’(d− 1)

I Theorem 2 ([17]). For any pure complex C of dimension d, Ch C = SchC0,d C.

Figure 3 shows how the standard chromatic subdivision on a 2-simplex σ = {0, 1, 2} with
color(i) = i for every i ∈ {0, 1, 2} is obtained by the series of subdivisions using Schlegel
diagram. For example, the 2-simplex {0, 1} ∗ {(2, {0, 1, 2})} in Schσ2,2 is further refined in the
next step of subdivision, say, the 1-simplex {0, 1} is subdivided into three parts {0, (1, {0, 1})},
{(0, {0, 1}), (1, {0, 1})}, {(0, {0, 1}), 1}, which are each joined with {(2, {0, 1, 2})}.

3.2 The immediate snapshot protocol with oblivious scan
Algorithm 2 gives a multi-round immediate snapshot protocol, which reformulates Algorithm 1
in Section 2.1. It is easy to see that they are indeed equivalent protocols in different
presentations. Remember that in Algorithm 1 the view information collected at each particular
round is discarded unless the view witnesses the expected number of writes. Algorithm 2
just makes this explicit by employing the write&oblivious scan operation WOScan on shared
memory array, in place of write&scan operation. When process i calls WOScan(d) and the
view does not witness d writes, WOScan(d) returns vi, discarding the view collected at the
scan phase.

With this reformulation, we can prove that the protocol computes the standard chromatic
subdivision, with an exact correspondence of a write&oblivious scan operation at a particular
round with Schlegel diagram.

I Lemma 3. Suppose WOScan(d) has ever been called by d + 1 distinct processes. If
σ = {v0, . . . , vd} is the collection of private values that have been assigned to the d + 1
processes and τ is the set of results returned by non-faulty processes, then τ ∈ Schd σ.

Proof. When d+ 1 processes invoked WOScan(d) and none of them were faulty, at least one
process witnesses the writes by all the d+ 1 processes in its view. This means τ \ σ 6= ∅ and
thus τ ∈ Schd σ. When some of the processes were faulty, dim(τ) < d and τ ∈ Schd σ. J

I Lemma 4. Consider an execution of the protocol IS’(n) by n+ 1 processes, in which each
process i has started with its own initial private value vi and has either successfully returned
a result or crashed. Let σd (n ≥ d ≥ 0) denote the set of results that have been successfully
returned by a call WOScan(d) by some process in the execution. Also, let τd (n ≥ d ≥ 0)
denote the set of values that have been returned by a call IS’(k) for some k greater than d− 1.
We define σn+1 = {v0, . . . , vn} and τn+1 = ∅.

Then the following properties hold for every d (n+ 1 ≥ d ≥ 0).
(i) dim(σd ∩ σn+1) < d;
(ii) τd = τd+1 ∗ (σd \ σn+1) and τd ∩ σn+1 = ∅;
(iii) τd+1 ∗ σd ∈ Schσn+1

d,n σn+1.
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Algorithm 3 The generic code for the process i, using iterated immediate snapshot.
procedure WOScan(k, d)

memk,d[i]← vi
view ← collect(memk,d)
if |view| = d+ 1 then return (i, view)
else return vi

procedure IIS(k, d)
u←WOScan(k, d)
if u 6= vi then

if k = K then return δ(u)
else vi ← u; IIS(k + 1, n)

else IIS(k, d− 1)

Proof. The property (i) follows from lemma 3 by induction on d. The property (ii) immedi-
ately follows from the definition by an inductive argument.

Let us show (iii) by induction on d. For the base case d = n, since σn ∈ Schnσn+1 by
lemma 3, we have τn+1∗σn = σn ∈ Schσn+1

n,n σn+1. For the inductive step, assume τd+2∗σd+1 ∈
Schσn+1

d+1,nσn+1. By lemma 3 we have σd ∈ Schd(σd+1 ∩ σn+1). Since σd+1 ∩ σn+1 ∈ σn+1, we
have τd+1∗(σd+1∩σn+1) = τd+2∗(σd+1\σn+1)∗(σd+1∩σn+1) = τd+2∗σd+1 ∈ Schσn+1

d+1,n σn+1

by property (ii) and the induction hypothesis. Hence τd+1 ∗ σd ∈ Schσn+1
d (Schσn+1

d+1,n σn+1) =
Schσn+1

d,n σn+1. J

I Theorem 5. Suppose n + 1 processes executed the protocol IS’(n) with the set σ =
{v0, . . . , vn} of initial private inputs. If τ is the set of results returned by non-faulty processes,
τ ∈ Ch σ.

Proof. Let σd’s and τd’s denote the sets as defined in lemma 4. Then, σ = σn+1 and
τ = τ1 ∗ σ0. By lemma 4(iii) and theorem 2, we have τ = τ1 ∗ σ0 ∈ Schσ0,nσ = Ch σ. J

4 The Generic Protocol for Solving Tasks and Its Optimization

This section gives a generic protocol for solving a task on read-write shared memory distributed
system, using the immediate snapshot protocol presented in the previous section, and discusses
how, for each concrete instance, the generic protocol can be optimized to reduce shared
memory access.

4.1 A generic protocol via iterated immediate snapshot
By the asynchronous computability theorem, for any wait-free solvable task, we have a
protocol (I,O, δ ◦ ChK) that implements the task, where the carrier map is given by a pair
of the full-information protocol of the K-iterated standard chromatic subdivision ChK (by
means of the iterated use of the multi-round immediate snapshot protocol) and a decision
map δ : V (ChK)→ V (O). Without loss of generality, we may assume K ≥ 1.

Algorithm 3 gives the code that implements the protocol (I,O, δ◦ChK) in the generic form.
Each process i initiates the protocol execution by invoking IIS(1, n), where its initial private
input is passed through the variable vi. Throughout the entire protocol execution, each process
goes through a series of shared memory arrays memk,d (1 ≤ k ≤ K, n ≥ d ≥ 0). For each
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recursive call IIS(k, d), process i computes the (n−d+ 1)-th round of the k-th iteration of the
multi-round immediate snapshot protocol, by invoking the write&oblivious scan WOScan(k, d)
on the array memk,d. Each round corresponds to a single step of subdivision on d-simplexes
using Schlegel diagram, for the k-th iteration of standard chromatic subdivision. When
the multi-round execution by process i finishes the last iteration of chromatic subdivision
(i.e., k = K), the protocol returns δ(u) as the output, where u is a vertex of the K-iterated
standard chromatic subdivision.

The following is a corollary to Theorem 5.

I Theorem 6. Let (I,O, δ◦ChK) be a protocol for n+1 processes that solves a task. Suppose
each process i starts with a private input value vi such that σ = {v0, . . . , vn} ∈ I and executes
the protocol by invoking IIS(1, n). If τ is the set of results returned by non-faulty processes,
τ ∈ δ(ChKσ).

4.2 Protocol optimization for reduced memory access
Algorithm 3 gives a generic protocol, but a concrete instance of it often contains redundant
memory access. Below we argue that each instance of the generic protocol can be mechanically
optimized to skip the redundant access, by applying the technique of program specialization.
(Program specialization is a source-level program optimization technique, also known as
partial evaluation [15]. See Appendix A for a brief overview.)

To see how the protocol is optimized, let us consider a particular instance of the generic
protocol that solves a renaming task [5] for 3 processes,1 where the 3 processes, starting with
initial assignment v0 = 0, v1 = 1, v2 = 2, respectively, decide on different names taken from
{0, 1, 2, 3, 4}. The protocol is given by (I,O, δ◦Ch2), where I = {0, 1, 2} is the input complex,
O = {τ | τ ⊆ {0, 1, 2, 3, 4},dim(τ) ≤ 2} is the output complex of differently renamed vertexes,
and δ : V (Ch2 I)→ V (O) is the decision map defined with the corresponding parent map
π2,1 : V (Ch2 I)→ V (Ch I) as given below:

δ(w) =



4 if π2,1(w) = (0, {0, 1, 2}),
3 if Carr(w,Ch I) 6⊇ {(1, {0, 1, 2}), (2, {0, 1, 2})}

and π2,1(w) = (i, {0, 1, 2}) for some i ∈ {1, 2},
2 if either color(w) = 1 and Carr(w,Ch I) ⊇ {(1, {0, 1, 2}), (2, {0, 1, 2})}

or π2,1(w) = (i, {i, j}) for some i, j ∈ {0, 1, 2} such that i < j,
1 if either color(w) = 2 and Carr(w,Ch I) ⊇ {(1, {0, 1, 2}), (2, {0, 1, 2})}

or π2,1(w) = (i, {i, j}) for some i, j ∈ {0, 1, 2} such that i > j,
0 if π2,1(w) = (i, {i}) for some i ∈ {0, 1, 2}.

In the definition above, it is assumed that each vertex is appropriately colored according to
the context. In particular, as every simplex τ ∈ O of renamed processes is colored, V (O)
comprises 15 vertexes, namely, 3 differently colored vertexes per each name taken from
{0, 1, 2, 3, 4}. Accordingly, as δ is a color-preserving simplicial map, the renamed output δ(w)
for each w ∈ V (O) is tacitly given the matching color, i.e., color(w).

Figure 4 shows how the decision map δ assigns an output to each vertex of Ch2 I. For
those vertexes whose outputs are left unspecified in the figure, it should be understood that
such a vertex w receives the output δ(π2,1(w)), namely the same output as the parent vertex
π2,1(w) ∈ Ch I does. For instance, the white vertex (of process 0) of the very central simplex

1 This particular instance of renaming task is taken from [11, Chapter 12].
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Figure 4 Decision map δ for renaming.
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Figure 5 Descendant vertexes in the iterated subdivisions (up to the second iteration, where
process 2 is ready for decision).

of the subdivision is assigned the output 4 by δ, as its parent is (0, {0, 1, 2}), the white vertex
introduced by the first subdivision using Schlegel diagram.

Let us consider an execution of the generic protocol (Algorithm 3) for the renaming
task. In the execution, each process i executes a chain of recursive calls of IIS, where each
recursive call updates vi to a vertex of a finer subdivision. For instance, consider the following
particular recursive call chain for process 2:

2 ∈ I IIS(1,2)−−−−−−→2 ∈ SchI2,2I
IIS(1,1)−−−−−−→ (2, {1, 2}) ∈ SchI1,2I

IIS(2,2)−−−−−−→(2, {1, 2}) ∈ SchCh I
2,2 (Ch I)

IIS(2,1)−−−−−−→(2, {(0, {0, 1, 2}), (2, {1, 2})}) ∈ SchCh I
1,2 (Ch I),

where each transition u ∈ Div I IIS(k,d)−−−−−−→ u′ ∈ Div′I indicates that a recursive call
IIS(k, d) updates v2 from u to u′, which are the vertexes of subdivisions Div I and Div′I,
respectively. Process 2 terminates the execution of the protocol with a final output
δ((2, {(0, {0, 1, 2}), (2, {1, 2})})) = 1.

This recursive call chain, however, could have decided the final output at an earlier stage
of recursion, because the vertex v2 ∈ Div I at each recursive call can only be updated to a
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Algorithm 4 An optimized generic code for process i.
procedure IIS(k, d)

if δ(π−1(vi)) = {u} for some u ∈ V (O) then return u

u←WOScan(k, d)
if u 6= vi then vi ← u; IIS(k + 1, n)
else IIS(k, d− 1)

vertex (of matching color) covered by St(v2,Div I) by the successive recursive calls. Figure 5
illustrates the first few steps, where the shaded part indicates the simplexes of Ch2I covered
by the star at each recursive step. Initially, when the input complex I is not yet subdivided,
St(v2, I) covers all the vertexes of Ch2I; After the first recursive call IIS(1, 2), St(v2,SchI2,2I)
covers fewer vertexes in a smaller region but they do not agree with the outputs carried by δ
(they can be either 0 or 1); After the second recursive call IIS(1, 1), St(v2,SchI1,2I) covers
even fewer vertexes and they are all carried to the same output vertex 1 by δ. Hence, as
soon as v2 is updated to the vertex (2, {1, 2}) by the recursive call IIS(1, 1), we can decide
the output of process 2 by δ((2, {1, 2})) = 1, skipping the remaining recursive calls.

By the observation so far, we can see that the generic protocol (Algorithm 3) can be further
optimized to perform fewer shared memory operations by skipping redundant recursive calls:
Once a process has reached to a point where a sole final output is determined by the decision
map δ, the remaining recursive calls can be skipped. To make it precise, for every v ∈ Div I
where Div I is an intermediate subdivision toward the finest subdivision ChK I, let us define
the descendants of v by π−1(v) = {u ∈ ChK I | π(u) = v}, where π : V (ChK I)→ V (Div I)
is the corresponding parent map. We present the optimized version of the generic protocol
in Algorithm 4. (The omitted procedure WOScan is the same as in Algorithm 3.)

We notice that, for a particular decision map δ and each process i, the value δ(π−1(vi))
can be precomputed for every possible vertex assigned to vi in advance of actual execution
of the protocol. This means that, specializing the code of Algorithm 4 w.r.t. the particular
decision map δ, we can generate a further optimized implementation code.

Algorithm 5 gives such a code customized for the above renaming task for 3 processes.
Observe that, precomputing descendant vertexes, program specialization has eliminated
those redundant recursive calls which are not on reachable execution paths.

Here we notice that the optimization method discussed above is applicable to any protocol
of the form δ◦ChK I. Furthermore, the optimized code is mechanically derived by specializing
the generic protocol w.r.t. the concrete instance of decision map δ.

Although the program specialization gives a general optimization method, it heavily
depends on each protocol instance how much memory access can be reduced. At one extreme,
a protocol (C, C, π ◦ Ch C), where C = {v0, . . . , vd} and π : V (Ch C) → V (C) is the parent
map, is optimized to a protocol (C, C,Φ) with a trivial carrier map such that Φ(σ) = σ that
performs no shared memory access. At the other extreme, a protocol (C,Ch C, ι ◦ Ch C) for
chromatic agreement task, where ι : V (Ch C)→ V (Ch C) is an identity vertex map, is not
optimized at all by specialization,2 since each vertex of Ch C is assigned a different output.
Thus, there is no general theorem on the reduction in the number or complexity of memory
access. Furthermore, the code derived by the optimization method is, as is often the case

2 To be precise, any protocol is specialized to a code that at least skips the subdivisions on 0-dimensional
simplexes. The original implementation of immediate snapshot by Borowsky and Gafni can also be
optimized likewise.
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Algorithm 5 A customized code for the renaming task.
procedure IIS(k, d) . Code for process 0

if v0 = (0, {0, 1, 2}) then return 4
else if d = 1 ∧ v0 = 0 then return 0
else if d = 1 then return 2
else

u←WOScan(k, d)
if u 6= v0 then v0 ← u; IIS(k + 1, n)
else IIS(k, d− 1)

procedure IIS(k, d) . Code for process 1
if k = 1 ∧ d = 1 ∧ v1 = 1 then return 0
else if k = 1 ∧ v1 = (1, {0, 1}) then return 1
else if k = 1 ∧ v1 = (1, {1, 2}) then return 2

else if
[
k = 2 ∧ v1 = (1, τ) for some τ
s.t. {(1, {0, 1, 2}), (2, {0, 1, 2})} ⊆ τ

]
then return 2

else if k = 2 ∧ d = 1 then return 3
else

u←WOScan(k, d)
if u 6= v1 then v1 ← u; IIS(k + 1, n)
else IIS(k, d− 1)

procedure IIS(k, d) . Code for process 2
if k = 1 ∧ d = 1 ∧ v2 = 2 then return 0
else if k = 1 ∧ (v2 = (2, {0, 2}) ∨ v2 = (2, {1, 2})) then return 1

else if
[
k = 2 ∧ v2 = (2, τ) for some τ
s.t. {(1, {0, 1, 2}), (2, {0, 1, 2})} ⊆ τ

]
then return 1

else if k = 2 ∧ d = 1 then return 3
else

u←WOScan(k, d)
if u 6= v2 then v2 ← u; IIS(k + 1, n)
else IIS(k, d− 1)

with those obtained by automatic program generation, inevitably less structured than those
protocols which are manually devised with human insights (e.g., the protocols [5, 10] for
renaming task).

5 Conclusion and Future Work

We have shown that the multi-round protocol for the immediate snapshot by Borowsky
and Gafni can be reformulated to conform to, in terms of combinatorial topology, Kozlov’s
construction of the standard chromatic subdivision via Schlegel diagrams. This gives a
topologically smoother account for the protocol, where each round is simply a subdivision
using Schlegel diagram. This topological simplicity has led to a straightforward method
for optimizing distributed protocols defined by means of the iterated immediate snapshot:
Each process executing the protocol narrows down the set of possible outputs per each round
and can decide the final output at an earlier round, beyond which the same final output is
reached no matter how the remaining rounds are executed.
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The present paper exemplified that a topologically simpler modeling can better incorporate
the theoretical results in topological studies on distributed computing into the more practical
side of distributed systems. In this respect, it would be of interest of future investigation to
generalize the result to encompass shared memory systems of different failure models such as
[18, 9, 8]. Developing an appropriate multi-round protocol that operates on a topological
model of a particular failure model, we would be able to optimize the corresponding class
of protocols. Such an enhanced multi-round protocol would necessarily need to employ an
augmented set of memory operations in a way that the topological structure induced from
the extra operations (e.g., the one induced from the test-and-set operation [12]) is compatible
with the failure model.
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A A Quick Look at Partial Evaluation

This appendix gives a brief overview of partial evaluation, a program optimization technique
by program specialization. Partial evaluation is a matured field that has a long history of
research. For details that cannot be covered in the following short overview, readers are
advised to consult a textbook, say [15].

The fundamental idea of partial evaluation is quite simple. Suppose we are given a
program and some of the expected inputs to it are known in advance. Then certain portions
of the program may be precomputed w.r.t. the known inputs, by which the source program
is transformed to an optimized one: The transformed program contains fewer computation
steps to be performed at run-time. A subpart of the program is called static, if it does not
depend on the inputs to be given at run-time; Otherwise, it is called dynamic. In particular,
the known inputs are called static and the remaining inputs are called dynamic. It is the
task of binding-time analysis to identify static parts as larger as possible for the chance of
better optimization.

Let us see how a simple program that computes exponentiation nm for non-negative
integers n and m can be optimized by partial evaluation.3 Such a program would be simply
defined in a recursive style, as follows:

expt(n,m) ≡ if m = 0 then return 1 else return n× expt(n,m− 1).

Suppose the second input m is known 9. Instantiating m with 9, we get:

expt(n, 9) ≡ if 9 = 0 then return 1 else return n× expt(n, 9− 1),

where the underlined parts are the static ones, which are identified by binding-time analysis.
Evaluating the static subexpressions, we obtain

expt(n, 9) ≡ if false then return 1 else return n× expt(n, 8).

Pruning the unreachable branch and unfolding the recursive call expt(n, 8), we get

expt(n, 9) ≡ n×
(
if 8 = 0 then return 1 else return n× expt(n, 8− 1)

)
,

3 This is the typical example that first appears in introductory texts of partial evaluation.
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which reveals new static parts subject to further partial evaluation. Repeating this process,
we will obtain the final transformation result:

expt(n, 9) ≡ n× n× n× n× n× n× n× n× n.

Though the above simple example of partial evaluation improves the source program
only marginally, just removing the overhead involved in conditional branching and recursive
calls, the effect of optimization is amplified by applying it where execution bottleneck
exists. In this paper, we are specifically concerned with application to the shared memory
bottleneck. Another strength of partial evaluation is that the whole transformation process is
mechanizable: Once we write a simple program, whose correctness is easier to reason about,
we may automatically obtain one that is still correct yet optimized.

Optimization by partial evaluation, or program transformation by specialization in general,
rarely improves computational complexity. In most cases, it improves efficiency only by a
constant factor. As for the example of exponentiation, for instance, it is well known that an
algorithm of logarithmic complexity is obtained by the technique of repeated squaring [7].
However, this kind of algorithmic leap usually needs human insights on the mathematical
structure behind the problem to be solved. It is a central topic of program transformation how
to optimize programs semi-automatically – mostly by mechanical ‘calculation’ on programs
but with a little exploitation of the mathematical structure behind each particular problem.
There has been lots of work done in this direction and several illuminating examples can be
found in [3].
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Abstract
Modern geo-replicated software serving millions of users across the globe faces the consequences
of the CAP dilemma, i.e., the inevitable conflicts that arise when multiple nodes accept writes on
shared state. The underlying problem is commonly known as fault-tolerant multi-leader replica-
tion; actively researched in the distributed systems and database communities. As a more recent
theoretical framework, Conflict-free Replicated Data Types (CRDTs) propose a solution to this
problem by offering a set of always converging primitives. However, modeling non-trivial system
state with CRDT primitives is a challenging and error-prone task. In this work, we propose a
solution for a geo-replicated online service with fault-tolerant multi-leader replication based on
CRDTs. We chose IMAP as use case due to its prevalence and simplicity. Therefore, we modeled
an IMAP-CRDT and verified its correctness with the interactive theorem prover Isabelle/HOL.
In order to bridge the gap between theory and practice, we implemented an open-source proto-
type pluto and an IMAP benchmark for write-intensive workloads. We evaluated our prototype
against the standard IMAP server Dovecot on a multi-continent public cloud. The results ex-
pose the limitations of Dovecot with respect to response time performance and replication lag.
Our prototype was able to leverage its conceptual advantages and outperformed Dovecot. We
find that our approach is promising when facing the multitude of potential concurrency bugs in
development of systems at planetary scale.
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1 Introduction

When designing and developing a modern online service, researchers and developers are
faced with a large and diverse spectrum of challenges. Due to its ever expanding reach, the
Internet offers the unique while demanding prospect of connecting potentially billions of users
scattered across the planet. The underlying distributed infrastructure requires enormous
consideration on its own, but matters get even more involved when applications on top of it
have state. While potentially possible, the penalties of declaring one cluster to be the single
leader and routing all requests through it, render such a design unfeasible when reliability
and responsiveness are of importance. A geographically-distributed system architecture,
however, eliminates single points of failure and enables low response times on client requests.

Unfortunately, though, network and node failures are a given in large-scale infrastructures
[2] and thus, our applications have to deal with partitions. To safeguard consistent state
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during these, a trade-off between availability and consistency has to be made, commonly
known as the CAP dilemma [11]. Choosing consistency requires minority partitions to reject
client requests – becoming unavailable – while only a majority partition is allowed to make
progress. This has been and still is a viable option, though with the rise of the NoSQL
movement, available architectures have gained traction. They choose to always accept client
requests even though all other nodes of the system might be temporarily unreachable and
try to achieve consistency when connections are re-established. Naturally, in these eventually
consistent [26] systems, conflicting requests arise. Much research has gone into efficient
conflict resolution or even conflict avoidance.

More recently, Conflict-free Replicated Data Types (CRDTs) have been proposed as a
method for avoiding conflicts [24]. If system state is built either on one of the state-based
or operation-based data types, the inherent properties of these ensure that replicated state
will always converge. Certain requirements have to be met in order to be able to use them,
e.g., do we assume an underlying reliable causal-order network and commuting concurrent
updates for the operation-based CRDTs. If we can provide these requirements, CRDTs are
an elegant and efficient way to model available and partition-tolerant systems.

In this work, we set out to model, verify, implement, and evaluate a distributed application
with non-trivial state based on CRDTs. As the provided service we chose to design an IMAP
server. The Internet Message Access Protocol (IMAP) is the standard way to manage mailbox
state and retrieve messages in an email service. IMAP is a simple and rather old standard –
its beginnings date back to the mid-1980s – and as part of the email ecosystem is regularly
proclaimed dead in favor of some supposedly more efficient communication service. Yet,
email remains to be ubiquitous in all our lives and will stay so for the foreseeable future. As
an example, Gmail recently crossed the mark of one billion monthly active users [19].

Even though the provided CRDT primitives [23] are concise and simple, one can fail
in numerous ways when constructing non-trivial system state based on these. We wanted
to be sure of the correctness of our model and thus put effort into proving it correct. To
this end, we extended the CRDT and network model framework by Gomes et. al. [13, 12]
written in the Isabelle/HOL interactive theorem prover to include our IMAP-CRDT. After
being assured that state will always be consistent in our model, we adapted our prototype to
adhere to the theoretical proof. This way, we achieve provable consistency in practice.

In order to evaluate the benefits of our proposed IMAP-CRDT, we developed a prototype
pluto and built a federated Kubernetes1-based test environment on Google’s public container
cloud, Google Container Engine2. We were primarily interested in two characteristics:
response time performance and replication lag [17]. The first one captures the perceived
responsiveness by users while the second describes how long it takes one system to synchronize
and apply updates with the other nodes. With our self-developed IMAP benchmark for
write-intensive workloads, we were able to gather both insights for pluto and Dovecot.

We find, that our approach of designing distributed applications at planetary scale
yields a straightforward flow of modeling, verifying, implementing, and evaluating software
where a proven system model consolidates experimental measurements. The results attest
the advantages of our CRDT-based architecture and draw near reproducibility due to our
automated and open-sourced deployment infrastructure.

1 https://kubernetes.io
2 https://cloud.google.com/container-engine

https://kubernetes.io
https://cloud.google.com/container-engine
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Related Work. Large-scale distributed systems replicating application state in an available
and partition-tolerant way have received academic attention since the advent of the Internet.
Bayou [25] was one of the first distributed storage systems that enabled users to always
submit updates and ensured eventual consistency when network connection was available
again. Inspired by the fundamental concepts captured in Amazon’s Dynamo paper [8], a
new class of distributed data stores was proposed and developed, such as Cassandra [18] and
Riak3. Many of these new developments are also based in parts on the ideas of Google’s
Bigtable concept [5], which Google itself turned into Spanner [6], its planet-scale strongly
consistent and partition-tolerant distributed database. Their solution towards the CAP
dilemma is to run Spanner on an expensive and highly sophisticated private network which
ensures almost no downtimes [4].

Regarding automatic resolution of conflicting writes in any distributed system, the choice
is between discarding all but one update or merging all updates into one. The most common
technique for the first approach is known as last write wins, where the update with the
biggest timestamp is picked as winner and all others are lost. One well-known merge-based
resolution strategy is operational transformation [9], though mostly used for collaborative
text editing and of decreasing performance with increasing number of operations [1].

Conflict-free Replicated Data Types take a different approach as they avoid conflicts
altogether due to their construction properties. Apart from the set of basic data types defined
in the original report [23], constructing further CRDTs has been an active research interest,
for example, sequence CRDTs such as Treedoc [20] and LSEQ [22], and a composable JSON
CRDT [16]. However, integration into production software is only progressing slowly, e.g., as
part of Riak or AntidoteDB4, and we don’t see many approaches for standard IT services
such as our IMAP-CRDT.

As part of this work, we verify the data type we propose within Isabelle/HOL. Formal
verification of CRDTs has been done before, e.g., by Zeller et al. for state-based CRDTs [27].
The framework underlying our formal verification efforts was proposed and implemented
by Gomes et al. [12], including a realistic network model and verification of the Observed-
Removed Set (OR-Set). We base our IMAP-CRDT on the OR-Set and make the extensions
to the framework by Gomes et al. with our data type accessible.

Considering state replication for the most widely used IMAP server, Dovecot, the dsync5
approach is currently the only application-level support for planet-scale deployments. Un-
fortunately, dsync is limited to pair-wise replication, forfeiting the advantages of a cloud
deployment with nodes all over the world. To our knowledge, we propose the first approach
to a truly planetary-scale IMAP service that at the same time achieves low response times.

Finally, this work is based on previous efforts by us into the direction of an IMAP service
based on CRDTs, presented in an earlier workshop paper [14].

Contributions. Our contributions in this work are as follows:
We propose an IMAP-CRDT by modeling IMAP commands as operations on a CRDT.
(Section 4)
We verify the convergence of the IMAP-CRDT with Isabelle/HOL. (Section 4.1)
We propose an open-source prototype pluto that offers IMAP at planetary scale with
multi-leader replication based on CRDTs. (Section 5.1)

3 http://basho.com/products/riak-kv
4 https://syncfree.github.io/antidote/
5 https://wiki.dovecot.org/Replication
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We introduce a benchmark for IMAP services. (Section 5.2)
We propose a Kubernetes-based deployment for planet-scale Dovecot. (Section 6)
We explore response time performance and replication lag of planetary-scale IMAP services
on public clouds by evaluating the developed prototype pluto against state-of-the-art
Dovecot setups. (Section 7)

2 System Model

In a traditional 3-tier system architecture of an IMAP service, a proxy (sometimes called
director) forwards a client’s request to a responsible backend node, where the request is
processed. The service state in form of all users’ mailboxes is typically stored on one or
more storage nodes, traditionally hosting a strongly-consistent shared file system like NFS
or GlusterFS. However, this architecture is no longer feasible in a planetary-scale IMAP
system. To illustrate the pitfalls of this approach in a geo-replicated setting, we installed a
GlusterFS on two virtual machines in different regions (North America and Europe) of the
Google Cloud Platform (GCP). Subsequently, a Dovecot in the recommended setting with
one proxy and three backend nodes was deployed on our Kubernetes cluster in Europe. Our
benchmark revealed, that the response times of write requests exceed the round-trip time
between North America and Europe by almost two orders of magnitude. Hence, applying
a naive replication over two continents can be much more costly than routing all request
through a single location.

The only solution to efficiently apply geo-replication is to relax the consistency require-
ments and allow backends to progress state without prior synchronization with other regions.
This approach introduces the need of conflict management, because concurrent writes from
multiple regions may be conflicting. The architecture underlying our proposed system enables
a more fault-tolerant and responsive geo-replicated online service. In it, a backend node is
authoritatively responsible for a particular range of users and asynchronously connected to
backends in all other regions that are responsible for the same range of users. Furthermore,
a global storage node can be added to the service that might run on single-tenant, high
quality hardware for long-term storage. It can further be used as a failover destination if any
backend node fails. From this distributed system of backends, we derive our system model
which we use in Section 4.1 to reason about the convergence of state.

We obtain an asynchronous network of backend nodes which can be seen as independent
processes. The network can suffer from partitions and can recover after a certain time. The
backends continue to operate, even if the backend is temporarily disconnected from parts of
the network. If a backend crashes, the state of the backend can be recovered. We assume
non-byzantine behavior.

3 Technical Preliminaries

In this section we provide a brief introduction to CRDTs and IMAP. Both will be combined
in Section 4 when we introduce our IMAP-CRDT.

3.1 Conflict-free Replicated Data Types
The theoretical concept of a Conflict-free Replicated Data Type has been formalized by
Shapiro et al. in [24]. In essence, CRDTs enable convergence of replicas without requiring a
central coordination server or even a distributed coordination system based on consensus or



T. Jungnickel, L. Oldenburg, and M. Loibl 23:5

locking. To achieve this goal, updates on application state based on CRDTs are designed to
be conflict-free in the first place.

CRDTs come in two variants: Convergent Replicated Data Types (CvRDT) and Commu-
tative Replicated Data Types (CmRDT). CvRDTs, often described as state-based CRDTs,
ensure convergence by defining a merge function that is applied on two diverged states in
order to obtain a consistent state again. The merge function calculates the least upper bound
on a join semi-lattice, and therefore must be commutative, idempotent, and associative. A
replica can update its local state and send the updated version to all other replicas which
individually apply the merge function to regain a consistent state. The order in which the
merge function is applied, is irrelevant.

In this work we focus on the operation-based variant, the CmRDT. In contrast to state-
based ones, replicas in this case exchange operations directly, with minimal state information.
A reliable causal-order broadcast ensures that operations ordered by happened-before relation
on the source replica are received and applied accordingly at all other replicas. Updates that
cannot be ordered by happened-before are considered concurrent and required to commute.
The design of a CmRDT is a challenging task, fortunately the technical report offers a variety
of specifications for counters, sets, graphs, and even lists [23].

As mentioned, CmRDTs require a reliable causal-order broadcast to ensure causal consis-
tency. Note, that an implementation of such a broadcast does not require consensus and can
be achieved by use of vector clocks.

With commutativity of concurrent updates and reliable causal-order broadcast, Shapiro
et al. showed that any two replicas that have seen the same set of operations have equivalent
abstract states and therefore eventually converge.

3.2 IMAP
An IMAP service manages mailboxes of registered users. Users are able to interact with
their mailboxes by sending IMAP commands to the server. These commands are defined in
the IMAP4rev1 standard in RFC 3501 [7]. To reduce the complexity of this paper, we focus
on the consistency-critical commands, i.e., commands that change the server’s state. The
commands create and delete respectively add or remove a mailbox (also called mailbox folder,
or simply folder) to or from a user’s account. An append command is used to add a message
to a mailbox folder. With store, the message flags, e.g., Seen, Answered, or Deleted, can be
altered. The expunge command is used to remove all messages with such a Deleted flag from
a particular mailbox folder. Note, that the commands store and expunge are only allowed
once a particular mailbox folder has been selected with the select command.

IMAP servers, like Dovecot, support various formats to represent the mailboxes of the
users on hard disk. Typical formats are mbox and Maildir. The latter is generally preferred
due to its use of individual files per mail message and thus, no locking is required when
messages are appended. The messages are given unique file system names that include any
potential standard flag.

4 IMAP-CRDT

In our scenario, the main challenge is to model the IMAP commands as operations on
a CmRDT. We begin with the decision on the used payload, i.e., the underlying state
representation. We identified a map that projects folder names to the content of a folder to
be best suited. Therefore, the content of a folder is a combination of metadata (tags) and
messages. We model the map as a function u : N → P(ID)× P(M) where N is the set of
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Specification 1 IMAP-CRDT (payload, create, and delete).
1: payload map u : N → P(ID)× P(M) . {foldername f 7→ ({tag t}, {msg m}), . . . }
2: initial (λx.(∅,∅))
3: update create (foldername f)
4: atSource
5: let α = unique()
6: downstream (f, α)
7: u(f) 7→ (u(f)1 ∪ {α}, u(f)2)
8: update delete (foldername f)
9: atSource (f)

10: let R1 = u(f)1
11: let R2 = u(f)2
12: downstream (f,R1, R2)
13: u(f) 7→ (u(f)1 \R1, u(f)2 \R2)

foldernames, ID is the set of tags, andM is a set of messages. We denote P(X) to be the
power set of X.

Because a folder f contains arbitrary items, the result of u(f) is a tuple of two sets. The
first set, denoted as u(f)1, is the set of tags that represent metadata that should not be
visible to a user. The second set, denoted as u(f)2, represents the messages in the folder.

If both sets u(f)1 and u(f)2 are empty, the folder is interpreted as non-existent. Note,
that we distinguish between a non-existent folder and an empty folder. A folder is empty, if
u(f)2 is empty but u(f)1 is not empty, i.e., certain metadata is present. Initially, all folders
are non-existent. Hence, the initial state can be described as a lambda abstraction that
projects the tuple (∅,∅) to every folder name in N .

We present the complete IMAP-CRDT in Spec. 1 and Spec. 2. We adhere to the
presentation style that has been introduced by Shapiro et al. in [24]. Next, we define the
operations that represent the IMAP commands and begin with create and delete in Spec. 1.

The desired result of create is to create an empty folder f . Therefore, a fresh and unique
tag t is generated on the replica that initiates the operation. This initiation phase of the
replica is usually called atSource. Thereafter, the tag t is inserted into u(f)1 and u(f)2
remains untouched. This part of the operation is usually called downstream and is executed
at every replica. We denote an update of the map entry as u(f) 7→ (X,Y ) where X and Y
are the new sets that override the existing sets. Note, that the map entries for the other
folder names remain unchanged.

In contrast to create, the desired result of the delete operation is to make the folder
non-existent. Hence, the content of u(f) is removed at every replica. If we defined the
downstream operation to be u(f) 7→ (∅,∅), then create and delete would no longer be
commutative. Furthermore, the IMAP specification requires any delete(f) to be preceded by
a create(f), aborting on IMAP protocol level if a client tries to remove a non-existing folder.
This eliminates consistency issues when delete(f) and create(f) are issued concurrently. Note,
that the definitions of create and delete are very similar to the add and remove operations
on the op-based Observed-Remove-Set (OR-set), which has been introduced in [24].

The remaining operations append, expunge and store are defined in Spec. 2. The append
operation is very similar to the create operation, except that a messagem is inserted into u(f)2
and u(f)1 remains unchanged. Another important difference is the atSource precondition.
The IMAP specification states, that each message is assigned a unique identifier called
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Specification 2 IMAP-CRDT (append, expunge, and store).
14: update append (foldername f,message m)
15: atSource (m)
16: pre m is globally unique
17: downstream (f,m)
18: u(f) 7→ (u(f)1, u(f)2 ∪ {m})
19: update expunge (foldername f,message m)
20: atSource (f,m)
21: pre m ∈ u(f)2
22: let α = unique()
23: downstream (f,m, α)
24: u(f) 7→ (u(f)1 ∪ {α}, u(f)2 \ {m})
25: update store (foldername f,message mold,message mnew)
26: atSource (f,mold,mnew)
27: pre mold ∈ u(f)2
28: pre mnew is globally unique
29: downstream (f,mold,mnew)
30: u(f) 7→ (u(f)1, (u(f)2 \ {mold}) ∪ {mnew})

UID. We use this requirement to assure that no two identical messages are ever appended
by different replicas, or even the same replica. Note, that identical is not referring to the
message content. In practice, it is still possible to append two messages with identical content,
although the UIDs of the messages are in fact different.

The operation store is implemented in a similar fashion. The main purpose of store is
to change the flags of a message mold. We do not explicitly model the flags of a message.
Instead, we insert the message mold with updated flags as a new message mnew in u(f)2 after
deleting mold from u(f)2.

In contrast to the previous definitions, the expunge operation is rather counter-intuitive.
The deletion of a message, which has been marked with a Deleted flag, is simply done by
removing the message from u(f)2. However, we decided that an additional tag must be
inserted into u(f)1 to avoid unexpected behavior in combination with a concurrent delete
operation. We illustrate this puzzle with the following example.

Two replicas r1 and r2 initially share the following state of a folder: u(f) = (∅, {m1}).
The replica r1 initiates a delete operation, resulting in an update of the local state at r1 to
be u(f) = (∅,∅) and f is interpreted as non-existent, i.e., the complete folder is deleted.
In the meantime, r2 independently initiates an expunge operation that aims to delete m1,
resulting in the local state to be u(f) = ({t42},∅), i.e., an empty folder. At this point, it is
unclear what result is actually desired, after the downstream operations are executed at both
replicas. We decided, that the folder should be present as an empty folder at both replicas.
Hence, according to the presented definitions the resulting state is u(f) = ({t42},∅). In fact,
our definition of the operations gives create, append, store, and expunge a precedence over
delete, i.e., when manipulations of the folder f and a delete(f) are concurrently executed, the
folder is never entirely deleted, only state visible at the initiation time of the delete operation
is removed. Hence, we decided to pursue an add-wins semantic.

Design Decisions and Discussion. The proposed add-wins strategy comes at the price of
increased metadata that needs to be managed. In the presented definition, we create a new
tag for each deleted message of an expunge operation. These tags are currently only removed
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by a delete operation, which is typically not executed as long as the user holds interest in
the folder. To overcome this issue, some metadata could be deleted after a certain stable
state has been reached. For example, Baquero et al. introduced the notion of log compaction
through causal stability information in [3]. An alternative decision would be to give delete
precedence over the other operations. In this case, less metadata would be required to process
state information. However, the application behavior in the presence of concurrent updates
seems undesired. For example, in case of a concurrent append and delete operation on the
same folder, the message that was added by the append operation would be deleted with the
folder and be lost forever. Note, that our IMAP-CRDT requires causal-order delivery and
we omit this precondition in every update operation for the sake of simplicity.

The commands left to achieve full compliance with RFC 3501 are mostly read commands
like search, fetch, or status, and thus not in the scope of this work. Missing write commands
like copy and rename bear many parts from the already implemented write commands but
require further careful thought. However, modeling those commands as operations on the
IMAP-CRDT is an effortful but realizable task.

4.1 Verification
To ensure that all required properties are satisfied and that convergence among replicas is
achieved, we verified our IMAP-CRDT with the interactive theorem prover Isabelle/HOL.
We base our Isabelle/HOL implementation on the recently published CRDT verification
framework by Gomes et al. [12]. Our formalization follows the definitions we presented
in Spec. 1 and Spec. 2 and is available in the Archive of Formal Proofs for Isabelle/HOL
[15]. The only notable difference in the Isabelle/HOL formalization is, that we no longer
distinguish between sets ID andM and that the generated tags of create and expunge are
handled explicitly. This makes the formalization slightly easier, because less type variables are
introduced. Ultimately, we show that our IMAP-CRDT achieves strong eventual consistency
in our proposed system model, i.e., all replicas converge to an identical abstract state when
they share the same history of operations.

5 Prototype

5.1 Pluto
Our prototypical implementation of the presented IMAP server system model, pluto, and
all other software we wrote for this paper, is developed in the Go programming language
and available6 as open-source software under GPLv3 license. The prototype is designed
as a distributed IMAP server, internally comprised of multiple distributor nodes, multiple
worker (backend) nodes, and one storage node, as set out in Section 2. We put emphasis on
application speed, security, reliability, and configurability.

In any pluto deployment, an IMAP request enters the service at a stateless distributor
node. Any request initiated via an unencrypted connection will get dropped, ensuring that
authentication credentials transmitted as part of an ordinary IMAP session are only ever sent
over a TLS connection. The distributor node handles a session as far as the authentication
procedure was successful. For any further request, the worker node responsible for the
partition of users the current user is part of, is determined, and all traffic is proxied to this

6 https://github.com/go-pluto/pluto

https://github.com/go-pluto/pluto
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node via a gRPC7 connection. Should the determined worker node be unavailable due to
any number of reasons, a failover to the global storage node is performed, which accepts the
proxied IMAP traffic in place of the worker node.

As soon as requests of a regular IMAP session reach a worker or storage node, they
potentially change the mailbox state of the respective user. To achieve availability even in
case of failures, worker and storage nodes accept these state-changing requests and guarantee
that eventual consistency with the other replicas is reached – an inherent feature of CRDTs.
We say that worker and storage nodes are stateful because they first alter their local states
and afterwards send messages downstream that apply the same operation on all remote
states. This makes pluto a multi-leader replication system.

We verified the correctness of our state replication as part of Section 4 and implemented
the two required components, the IMAP-CRDT and reliable causal-order broadcast of update
messages, as parts of pluto. For the IMAP-CRDT, we assign each user an OR-Set, called
structure, that represents the user’s abstract mailbox state. The main difference to our
theoretical model in Spec. 1 is, that the map u(f) for mailbox folder f is modeled as a
set of value-tag pairs for which the value element is always set to f . As an example, we
consider a mailbox folder uni, on which an append operation was executed. Assume, that
the state according to Spec. 1 looks like u(uni) 7→ ({α}, {m}). We can infer that the create
operation for uni created tag α in u(uni)1 and the append operation put m into u(uni)2. In
our structure OR-Set this is represented as {(uni, α), (uni,m)}. Thus, in pluto we do not
distinguish between metadata and message tags. Any update to structure is followed by a file
system sync operation on an associated log file on stable storage. This ensures that nodes
can precisely reconstruct the internal representation of user mailboxes in case they crash.

An update on a source replica triggers a message to all downstream replicas in order to
reproduce it on their state. In pluto, worker and storage nodes are grouped into subnets
that exchange updates for a particular partition of users. Considering a planetary-scale
deployment with workers in Europe, the US, and Asia, and the storage in Australia, the
subnet for a worker eu1 in Europe might contain us1, asia1, and storage. Each downstream
message from eu1 is sent to all other nodes from its subnet. As the IMAP-CRDT is based on
the operation-based OR-Set, we require these messages to be part of a reliable causal-order
broadcast, ensuring that they are delivered to the application exactly once and with no
causally-preceding ones missing. To this end, we maintain vector clocks [21, 10] for each
subnet. Send queue, receive queue, and vector clock are again sync’ed into associated files
on any update. To reduce replication lag, we do not send messages individually but transfer
the current send log as a whole in a defined interval.

IMAP clients will not notice the replication efforts, as they happen asynchronously. This
is one of the major advantages of a geographically distributed pluto deployment: requests can
be responded to quickly due to authoritative local state on close-by worker and storage nodes
while updates will get applied everywhere eventually due to CRDTs and reliable causal-order
broadcast, thus achieving consistent state. We guide these claims with structured logging,
metrics exposure to Prometheus, and tests for important packages. Further work might go
into file checksum checking for ascertaining data integrity, deeper performance profiling, and
increased RFC 3501 [7] compliance. We welcome contributions from the community.

7 https://grpc.io
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5.2 Benchmark

In order to evaluate pluto and Dovecot in Section 7, we needed a way to apply a large
amount of state-changing IMAP commands to our deployments. We are interested in the
state-changing (“write”) commands of RFC 3501 because only these manipulate mailbox
state and trigger downstream messages that need to be applied at other replicas. “Read”
commands in turn are answered authoritatively on the replica they are received on, without
replica communication. Only state-changing commands potentially unearth consistency
issues by generating edge cases. Thus, we required an IMAP benchmark that is able to
generate large write-intensive workloads involving the write commands that are implemented
in both services: create, delete, append, expunge, and store.

We could not find such tool or data set available, and thus implemented an IMAP
benchmark ourselves8 that generates arbitrary amounts of random data, write-intensive
workloads. Each workload is composed of small and randomly generated sequences of IMAP
commands, called sessions. One session always contains well-matched IMAP commands,
e.g., a mailbox folder is created before a message is appended to it. Session generation is
deterministic and can be reproduced by configuring a benchmark with the same seed.

Before a session is executed, a user is chosen randomly from a provided users file and
logged in. Next, the session commands are applied one after another, a successive one
as soon as the current one has finished and the time between sending it and receiving a
complete answer – the command’s response time – has been stored. The workload’s degree
of parallelism, that is, the number of concurrent active users, can be configured as well. The
results are written to disk and optionally uploaded to a Google Cloud Storage (GCS) bucket.

5.3 Maildir Tools

With the benchmark ready we had almost everything in place required for putting our system
model to a test. One more component was needed, though, for gaining insight into the
replication performance. While the IMAP benchmark provides response time measurements,
replication lag data is at least as important because it tells us how well a service is able to
disseminate and apply updates among its replicas. It complements the user-centric response
time metrics by making visible the asynchronous replication part. Due to different replication
mechanisms in pluto and Dovecot, though, we had to fall back to observing the Maildir file
system in order to see when updates were applied.

We implemented a small utility9 that periodically performs a disk usage calculation of a
configured subset of the Maildirs present on a node (by running ’du -s’). The results are
logged to disk and uploaded to a GCS bucket at the end of the tool’s run. For continuous
monitoring, a duration histogram is exposed to Prometheus. The idea is to integrate one
Maildir dumper into each stateful node deployed in a service to be evaluated. After having
run an IMAP benchmark, timestamped disk usage reports can be collected and the time
difference between the points in time when two observed Maildirs report the same size in
bytes can be calculated. We consider this measure the replication lag. Please note, that the
calculated time differences have to be taken as estimations rather than precise durations as
we rely on synchronized clocks for timestamp elicitation. In Section 7, we will see that the
clock synchronization in Google’s data centers has negligible influence on our results.

8 https://github.com/go-pluto/benchmark
9 https://github.com/go-pluto/maildir_tools
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6 Infrastructure

We now introduce the infrastructure setup used in our experiments later on. As guiding
principle, we have chosen a Cloud Native approach, featuring the most advanced cloud
technologies available at the time of developing our prototype. Our infrastructure is mainly
based on two products: Kubernetes, an orchestration platform for containerized applications,
and Prometheus, a powerful monitoring tool.

We provisioned two identical Kubernetes clusters in the us-east1-b and europe-west1-b
regions of the Google Cloud Platform. Each cluster consisted of six n1-standard nodes (1
vCPU, 3.75GB memory). We combined both clusters into a Kubernetes cloud federation,
enabling cross-cluster service discovery and resource synchronization. For persisting data,
we always allocated 100GB SSD volumes. In the following, we will write us or europe in
reference to the respective regions.

We decided to publish our configurations in our infrastructure repository10, so that our
setup can easily be re-created and re-used for further experiments. Hence, all resources,
including the container images of all evaluated systems, are publicly available.

7 Evaluation

To evaluate our approach, we conducted a set of experiments. We started by defining our
baseline, i.e., a reference experiment where we used a standard configuration of Dovecot
without any replication. Thereafter, we conducted two experiments where we compared pluto
against Dovecot with enabled replication. The results of these experiments we will discuss in
the end of this section.

7.1 Baseline Experiment

As introduced in Section 2, we used a Dovecot in a traditional 3-tier architecture as refer-
ence setup. For the storage layer, we deployed a GlusterFS with a replicated volume on
two n1-standard nodes with 100GB SSDs in the europe region. The remaining Dovecot
components, i.e., a proxy and three backends, were installed on our Kubernetes cluster in
the same region as GlusterFS. We used three backend nodes to illustrate the possibility of
partitioning (also known as sharding). In this and all later experiments we maintained a
total number of 120 active users in three static user partitions and the proxy was configured
to redirect users to the backend that was responsible for their partition. In this setup, no
replication was introduced besides the synchronized volume in the GlusterFS cluster.

We configured our IMAP benchmark (see Section 5.2) to execute 5000 IMAP sessions
with a session length between 15 and 40 commands. The degree of parallelism, i.e., the
number of users that are concurrently executing sessions, was set to 20. These 20 concurrent
users were identified to be best suited for our experiments, because the reference setup
reached the best resource utilization at reasonable response times.

We executed our benchmark on our Kubernetes cluster in the us region to simulate a
write-intensive load from a distant location. In other words, we used a workload that required
geo-replication on a system that was not replicated. Thus, high response times were expected
but no replication lag.

10 https://github.com/go-pluto/infrastructure
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Figure 1 Replication lag diagram for Dovecot dsync (left) and our prototype pluto (right) for
requests from us to europe.

We call this experiment our baseline, because all geo-replicated setups must be able to
outperform it. Otherwise, the effort of geo-replication and the introduction of a replication
lag is pointless.

Results. We show the measured response times in the baseline column of Table 1. The
average and median response times in milliseconds are grouped by IMAP command. We
judge the measured values as realistic for this setup. In fact, our findings in [14] confirm the
authenticity of the presented values.

7.2 Experiment 1: Single-Cluster Benchmark
In the remaining experiments, we focused on the systems that offer multi-leader replication,
namely dsync and pluto. We deployed a setup of one proxy (or director) and three backends
(or workers) in the europe and us Kubernetes clusters. Both setups were connected over
a Kubernetes federation and communicated over public IP addresses and TLS-encrypted
channels. In the first experiments, we replayed the settings from our baseline experiment,
except that the traffic from the us region was now directed to the respective proxy in the
same region. In this scenario, the expected behavior is that both systems replicate the
updated application state from us to europe asynchronously. During the run, we collected
the response times and additionally tracked the size of the mailboxes for six selected sample
users in both regions with our Maildir tools (see Section 5.3). The tracking interval was set
to one second, which we found to be the best trade-off between additional overhead by the
du commands and unavoidable loss of precision. With the chosen interval, a possible micro
clock drift between europe and us has no significant influence to our results. Based on the
collected values, we identified the replication lag for both systems. We compare the results
for dsync and pluto in the following two paragraphs.

Results: Dovecot dsync. The measured response times are given in the dsync column
of Table 1. We judge the response times and the resulting throughput, i.e., the processed
IMAP commands per second, as optimal for this setup. Dovecot is – not for nothing – the
state-of-the-art IMAP server software.

For analysis of the replication lag, we compare the growth of the mailboxes in both
regions for the selected sample users. In the left side of Figure 1, we illustrate the average
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Figure 2 Replication lag for dsync (left) and pluto (right). The red areas represent the replication
from europe to us while the blue areas represent the opposite direction.

growth for the selected sample users in what we call a replication lag diagram. On the x-axis
we see the relative time of the experiment in seconds. The y-axis represents the size of the
users’ mailboxes in kilobytes. The red line represents the growth of the mailboxes in us,
i.e., the region where the traffic was injected. The green line represents the growth of the
replicated mailboxes in europe. In this replication lag diagram, a distance between both
curves parallel to the x-axis represents the replication lag in seconds, i.e., the time until the
europe replica catches up. A distance between both curves parallel to the y-axis represents
the replication lag in kilobytes11. In order to quantify the replication lag, we think that it
is feasible to compute the size of the red area between both curves. The computed area
in megabyte*second, alongside with the average and median replication lag in kilobytes, is
presented in the last 3 rows of Table 1.

Results: pluto. For the pluto setup, we additionally deployed the storage node (see Sec-
tion 5.1) in a third region (europe-west2-b). Because we cannot directly compare the
storage node to any Dovecot component, we used a more powerful node (n1-standard-4,
4vCPU, 15GB Memory) and set the resolution of our Maildir tool for this node to 3 seconds
to avoid any negative impact. The remaining parts of the pluto setup is almost identical to
dsync, i.e., we have one director and three worker nodes with 100GB SSDs in each region.

The measured response times are stated in the pluto column of Table 1. We note that
the response times are significantly higher than Dovecot’s, which we discuss in the end of
this section.

The replication lag diagram is shown in the right part of Figure 1. We see that the
difference between the curves is almost invisible, which indicates a very small replication lag.
The quantified replication lag is shown in Table 1.

7.3 Experiment 2: Double-Cluster Benchmark
For our final experiment, we split the workload from the previous experiments and used
our benchmark from both regions us and europe, i.e., we executed 2500 sessions from each
region to simulate a workload that, in fact, requires geo-replication. The measured response
times are stated in the dsync2 and pluto2 columns of Table 1.

11 We note, that these diagrams require a monotone growth of the mailboxes to be meaningful. Our
benchmark generates mostly monotone growth, because create and append commands are more likely
than delete. With the chosen resolution of our Maildir tools, a declining mailbox size is almost invisible.
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Table 1 The combined results of Experiment 1 and 2, showing the response time performance
in milliseconds and the throughput in IMAP commands per second. The average and median
replication lag is stated in kilobytes and the replication lag area is stated in megabyte*second.

baseline dsync pluto dsync2 pluto2

us eu us eu

R
es

po
ns

e
T

im
e

Pe
rf

or
m

an
ce CREATE Average 251.36 16.24 47.77 18.47 23.24 47.56 75.20

Median 224.50 12.52 28.25 14.17 20.33 28.94 29.83

DELETE Average 602.05 30.81 48.85 32.46 37.03 47.12 74.61
Median 539.38 27.84 28.30 29.46 34.31 29.16 29.89

APPEND Average 437.26 43.02 91.96 46.39 55.36 87.23 131.79
Median 400.87 38.37 57.15 42.08 50.34 55.72 58.66

EXPUNGE Average 112.91 13.87 42.74 15.59 21.16 40.94 62.72
Median 97.05 6.18 25.61 9.44 18.91 22.56 23.19

STORE Average 184.16 15.72 52.04 17.48 21.79 46.09 72.84
Median 166.66 11.93 31.80 13.83 19.64 29.73 31.53

Throughput 47.17 480.67 256.03 447.87 367.94 256.26 171.49

Replication
Lag

Average 734.61 39.10 592.87 657.76 18.61 44.98
Median 729.10 34.44 217.83 322.10 6.1 34.33
Area 279.89 17.13 97.92 209.83 5.83 14.32

In order to measure the replication lag, we also split the sample users and configured
our benchmark in a way that the mailboxes of the first half of the users are only accessed
by the us benchmark, and the second half by the europe benchmark. The mailboxes of
the remaining 114 users receive commands from both regions. We present the replication
lag diagram for both systems in Figure 2. The red areas represent the replication lag for
synchronizing state from europe to us, and the blue areas represent the replication lag in
the opposite direction.

7.4 Discussion
The baseline experiment revealed that the absence of geo-replication can be costly with
respect to response time and throughput, when the application is faced with traffic from
distant regions. As we have seen with both compared systems, using multi-leader replication
for traffic from different continents is convincing and necessary. The price for the introduced
replication is relaxation of consistency guarantees and presence of a replication lag.

By comparing the response times of both systems, and in extension to that, the achieved
throughput, we clearly see that our prototype cannot keep up with Dovecot and that further
optimizations are necessary. We acknowledge, that throughput often is a performance metric
that is placed emphasis on in large-scale services and pluto needs to improve in that direction.
However, because pluto is a research prototype with much less development time compared
to the standard IMAP server Dovecot, we nevertheless are satisfied with its response time
performance. We think, that optimizations of the used index structures and file management
can lead to improved response times and throughput.

With respect to the replication lag, our prototype clearly outperforms dsync and we judge
our approach as successful. Replication based on the used op-based CRDT is cheap compared
to the costly replication of dsync. An operation from one replica can almost instantly be
delivered and applied on the other replicas without complex tracking of state information.
The fact that our approach can be applied with an arbitrary number of replicas makes it
even more interesting than dsync, where only a pair-wise replication is possible.
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We note, that our experiments only focus on write-intensive workloads and we purposely
omitted the evaluation of read commands. Building an IMAP server that is able to compete
with Dovecot in all facets is a challenging task, and is, at least for now, not our primary focus.
In our opinion, the improvement of our IMAP-CRDT and exploration of further standard IT
services that can be modeled with CRDTs, is a promising direction for future work.

We would like to point out, that we chose IMAP as the protocol to model with a custom
CRDT not because it is better suited for this purpose than other protocols. We chose
IMAP because of its widespread use and fundamental importance in everyday life – and,
because its relative simplicity allowed for completing work on time. We judge the fact that
application state of an IMAP server is based on relatively simple structures, namely its
tree-like mailbox structure, as particularly advantageous for modeling the commands with
operations on a CRDT. Hence, as long as the structural complexity of application state
to model is manageable, our approach is promising. We expect, that with the recently
introduced JSON CRDT [16], the modeling of more IT services with CRDTs will become
even easier. However, a machine-checked verification of the JSON CRDT is still to be done.

8 Conclusion

The initial exploration of the feasibility of using CRDTs in the multi-leader replication of an
IMAP service can be considered successful. We have made two important contributions: a
verified IMAP-CRDT design and the evaluation of our prototype, where we showed that the
replication lag can be significantly reduced compared to dsync, the replication tool of the
de-facto standard IMAP server Dovecot.

In our work, we consider IMAP as the example to show the benefits of modeling standard
IT services with CRDTs. Offering multi-leader replication without the need of manual conflict
resolution enables not only the possibility of planet-scale distributed applications, but also
more reliability in the presence of failures. To emphasize this further, this work convinced
us that really any stateful IT service should be examined for applicability of multi-leader
replication. Relying on strongly-consistent operations and fault-free infrastructure can get
risky as state becomes ever more shared and clients distributed. CRDTs combined with formal
verification offer the means to achieve confidence in relaxed consistency. Thus, considering
this approach when designing and even upgrading large-scale IT services can be a matter of
securing viability of a particular service – even in a single data center deployment.

Our approach, where we began with the system design and verification followed by the
implementation and evaluation, turned out to be successful in this regard. The resulting
prototype combines theory and practice by leveraging CRDTs in a standard IT service and is
able to play off its conceptual advantages. We encourage fellow system designers to follow in
this path and consider CRDTs for modeling application state.

Future work includes the exploration of CRDTs for other everyday IT services and further
improvement of our prototype.
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Abstract
Replication is a key technique in the design of efficient and reliable distributed systems. As
information grows, it becomes difficult or even impossible to store all information at every replica.
A common approach to deal with this problem is to rely on partial replication, where each replica
maintains only a part of the total system information. As a consequence, a remote replica might
need to be contacted for computing the reply to some given query, which leads to high latency
costs particularly in geo-replicated settings. In this work, we introduce the concept of non-
uniform replication, where each replica stores only part of the information, but where all replicas
store enough information to answer every query. We apply this concept to eventual consistency
and conflict-free replicated data types. We show that this model can address useful problems
and present two data types that solve such problems. Our evaluation shows that non-uniform
replication is more efficient than traditional replication, using less storage space and network
bandwidth.
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With the increase of the number of data centers available to applications and the amount
of information maintained by applications, another trade-off is between the simplicity of
maintaining all data in all data centers and the cost of doing so. Besides sharding data
among multiple machines in each data center, it is often interesting to keep only part of
the data in each data center to reduce the costs associated with data storage and running
protocols that involve a large number of replicas. In systems that adopt a partial replication
model [22, 25, 6], as each replica only maintains part of the data, it can only locally process
a subset of the database queries. Thus, when executing a query in a data center, it might be
necessary to contact one or more remote data centers for computing the result of the query.

In this paper we explore an alternative partial replication model, the non-uniform
replication model, where each replica maintains only part of the data but can process all
queries. The key insight is that for some data objects, not all data is necessary for providing
the result of read operations. For example, an object that keeps the top-K elements only
needs to maintain those top-K elements in every replica. However, the remaining elements
are necessary if a remove operation is available, as one of the elements not in the top needs
to be promoted when a top element is removed.

A top-K object could be used for maintaining the leaderboard in an online game. In
such system, while the information for each user only needs to be kept in the data center
closest to the user (and in one or two more for fault tolerance), it is important to keep a
replica of the leaderboard in every data center for low latency and availability. Currently,
for supporting such a feature, several designs could be adopted. First, the system could
maintain an object with the results of all players in all replicas. While simple, this approach
turns out to be needlessly expensive in both storage space and network bandwidth when
compared to our proposed model. Second, the system could move all data to a single data
center and execute the computation in that data center or use a data processing system that
can execute computations over geo-partitioned data [10]. The result would then have to be
sent to all data centers. This approach is much more complex than our proposal, and while
it might be interesting when complex machine learning computations are executed, it seems
to be an overkill in a number of situations.

We apply the non-uniform replication model to eventual consistency and Conflict-free
Replicated Data Types [23], formalizing the model for an operation-based replication approach.
We present two useful data type designs that implement such model. Our evaluation shows
that the non-uniform replication model leads to high gains in both storage space and network
bandwidth used for synchronization when compared with state-of-the-art replication based
alternatives.

In summary, this paper makes the following contributions:
The proposal of the non-uniform replication model, where each replica only keeps part of
the data but enough data to reply to every query;
The definition of non-uniform eventual consistency (NuEC), the identification of sufficient
conditions for providing NuEC and a protocol that enforces such conditions relying on
operation-based synchronization;
Two useful replicated data type designs that adopt the non-uniform replication model
(and can be generalized to use different filter functions);
An evaluation of the proposed model, showing its gains in term of storage space and
network bandwidth.

The remainder of this paper is organized as follows. Section 2 discusses the related work.
Section 3 describes the non-uniform replication model. Section 4 applies the model to an
eventual consistent system. Section 5 introduces two useful data type designs that follow the
model. Section 6 compares our proposed data types against state-of-the-art CRDTs.
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2 Related Work

Replication. A large number of replication protocols have been proposed in the last
decades [8, 27, 15, 16, 2, 21, 17]. Regarding the contents of the replicas, these proto-
cols can be divided in those providing full replication, where each replica maintains the full
database state, and partial replication, where each replica maintains only a subset of the
database state.

Full replication strategies allow operations to concurrently modify all replicas of a system
and, assuming that replicas are mutually consistent, improves availability since clients may
query any replica in the system and obtain an immediate response. While this improves the
performance of read operations, update operations now negatively affect the performance
of the system since they must modify every replica which severely affects middle-scale to
large-scale systems in geo-distributed settings. This model also has the disadvantage of
limiting the system’s total capacity to the capacity of the node with fewest resources.

Partial replication [3, 22, 25, 6] addresses the shortcomings of full replication by having
each replica store only part of the data (which continues being replicated in more than one
node). This improves the scalability of the system but since each replica maintains only a
part of the data, it can only locally process a subset of queries. This adds complexity to the
query processing, with some queries requiring contacting multiple replicas to compute their
result. In our work we address these limitations by proposing a model where each replica
maintains only part of the data but can reply to any query.

Despite of adopting full or partial replication, replication protocols enforce strong consis-
tency [17, 5, 18], weak consistency [27, 7, 15, 16, 2] or a mix of these consistency models [24, 14].
In this paper we show how to combine non-uniform replication with eventual consistency.
An important aspect in systems that adopt eventual consistency is how the system handles
concurrent operations. CRDTs have been proposed as a technique for addressing such
challenge.

CRDTs. Conflict-free Replicated Data Types [23] are data types designed to be replicated
at multiple replicas without requiring coordination for executing operations. CRDTs encode
merge policies used to guarantee that all replicas converge to the same value after all updates
are propagated to every replica. This allows an operation to execute immediately on any
replica, with replicas synchronizing asynchronously. Thus, a system that uses CRDTs can
provide low latency and high availability, despite faults and network latency. With these
guarantees, CRDTs are a key building block for providing eventual consistency with well
defined semantics, making it easier for programmers to reason about the system evolution.

When considering the synchronization process, two main types of CRDTs have been
proposed: state-based CRDT, where replicas synchronize pairwise, by periodically exchanging
the state of the replicas; and operation-based CRDTs, where all operations need to be
propagated to all replicas.

Delta-based CRDTs [1] improve upon state-based CRDTs by reducing the dissemination
cost of updates, sending only a delta of the modified state. This is achieved by using delta-
mutators, which are functions that encode a delta of the state. Linde et. al [26] propose an
improvement to delta-based CRDTs that further reduce the data that need to be propagated
when a replica first synchronizes with some other replica. This is particularly interesting in
peer-to-peer settings, where the synchronization partners of each replica change frequently.
Although delta-based CRDTs reduce the network bandwidth used for synchronization, they
continue to maintain a full replication strategy where the state of quiescent replicas is
equivalent.
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Computational CRDTs [19] are an extension of state-based CRDTs where the state of the
object is the result of a computation (e.g. the average, the top-K elements) over the executed
updates. As with the model we propose in this paper, replicas do not need to have equivalent
states. The work we present in this paper extends the initial ideas proposed in computational
CRDTs in several aspects, including the definition of the non-uniform replication model, its
application to operation-based eventual consistency and the new data type designs.

3 Non-uniform replication

We consider an asynchronous distributed system composed by n nodes. Without loss of
generality, we assume that the system replicates a single object. The object has an interface
composed by a set of read-only operations, Q, and a set of update operations, U . Let S be
the set of all possible object states, the state that results from executing operation o in state
s ∈ S is denoted as s • o. For a read-only operation, q ∈ Q, s • q = s. The result of operation
o ∈ Q ∪ U in state s ∈ S is denoted as o(s) (we assume that an update operation, besides
modifying the state, can also return some result).

We denote the state of the replicated system as a tuple (s1, s2, . . . , sn), with si the state
of the replica i. The state of the replicas is synchronized by a replication protocol that
exchanges messages among the nodes of the system and updates the state of the replicas.
For now, we do not consider any specific replication protocol or strategy, as our proposal can
be applied to different replication strategies.

We say a system is in a quiescent state for a given set of executed operations if the
replication protocol has propagated all messages necessary to synchronize all replicas, i.e.,
additional messages sent by the replication protocol will not modify the state of the replicas.
In general, replication protocols try to achieve a convergence property, in which the state of
any two replicas is equivalent in a quiescent state.

I Definition 1 (Equivalent state). Two states, si and sj , are equivalent, si ≡ sj , iff the results
of the execution of any sequence of operations in both states are equal, i.e., ∀o1, . . . , on ∈
Q ∪ U , on(si • o1 • . . . • on−1) = on(sj • o1 • . . . • on−1).

This property is enforced by most replication protocols, independently of whether they
provide strong or weak consistency [13, 15, 27]. We note that this property does not require
that the internal state of the replicas is the same, but only that the replicas always return
the same results for any executed sequence of operations.

In this work, we propose to relax this property by requiring only that the execution of
read-only operations return the same value. We name this property as observable equivalence
and define it formally as follows.

I Definition 2 (Observable equivalent state). Two states, si and sj , are observable equivalent,
si

o≡ sj , iff the result of executing every read-only operation in both states is equal, i.e.,
∀o ∈ Q, o(si) = o(sj).

As read-only operations do not affect the state of a replica, the results of the execution
of any sequence of read-only operations in two observable equivalent states will also be the
same. We now define a non-uniform replication system as one that guarantees only that
replicas converge to an observable equivalent state.

I Definition 3 (Non-uniform replicated system). We say that a replicated system is non-
uniform if the replication protocol guarantees that in a quiescent state, the state of any
two replicas is observable equivalent, i.e., in the quiescent state (s1, . . . , sn), we have si

o≡
sj ,∀si, sj ∈ {s1, . . . , sn}.
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3.1 Example
We now give an example that shows the benefit of non-uniform replication. Consider an
object top-1 with three operations: (i) add(name, value), an update operation that adds
the pair to the top; (ii) rmv(name), an update operation that removes all previously added
pairs for name; (iii) get(), a query that returns the pair with the largest value (when more
than one pair has the same largest value, the one with the smallest lexicographic name is
returned).

Consider that add(a, 100) is executed in a replica and replicated to all replicas. Later
add(b, 110) is executed and replicated. At this moment, all replicas know both pairs.

If later add(c, 105) executes in some replica, the replication protocol does not need to
propagate the update to the other replicas in a non-uniform replicated system. In this case,
all replicas are observable equivalent, as a query executed at any replica returns the same
correct value. This can have an important impact not only in the size of object replicas, as
each replica will store only part of the data, but also in the bandwidth used by the replication
protocol, as not all updates need to be propagated to all replicas.

We note that the states that result from the previous execution are not equivalent because
after executing rmv(b), the get operation will return (c, 105) in the replica that has received
the add(c, 105) we operation and (b, 100) in the other replicas.

Our definition only forces the states to be observable equivalent after the replication
protocol becomes quiescent. Different protocols can be devised giving different guarantees.
For example, for providing linearizability, the protocol should guarantee that all replicas
return (c, 105) after the remove. This can be achieved, for example, by replicating the now
relevant (c, 105) update in the process of executing the remove.

In the remainder of this paper, we study how to apply the concept of non-uniform
replication in the context of eventually consistent systems. The study of its application to
systems that provide strong consistency is left for future work.

4 Non-uniform eventual consistency

We now apply the concept of non-uniform replication to replicated systems providing eventual
consistency.

4.1 System model
We consider an asynchronous distributed system composed by n nodes, where nodes may
exhibit fail-stop faults but not byzantine faults. We assume a communication system with a
single communication primitive, mcast(m), that can be used by a process to send a message
to every other process in the system with reliable broadcast semantics. A message sent by a
correct process is eventually received by all correct processes. A message sent by a faulty
process is either received by all correct processes or none. Several communication systems
provide such properties – e.g. systems that propagate messages reliably using anti-entropy
protocols [8, 9].

An object is defined as a tuple (S, s0,Q,Up,Ue), where S is the set of valid states of
the object, s0 ∈ S is the initial state of the object, Q is the set of read-only operations
(or queries), Up is the set of prepare-update operations and Ue is the set of effect-update
operations.

A query executes only at the replica where the operation is invoked, its source, and it has
no side-effects, i.e., the state of an object remains unchanged after executing the operation.
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When an application wants to update the state of the object, it issues a prepare-update
operation, up ∈ Up. A up operation executes only at the source, has no side-effects and
generates an effect-update operation, ue ∈ Ue. At source, ue executes immediately after up.

As only effect-update operations may change the state of the object, for reasoning about
the evolution of replicas we can restrict our analysis to these operations. To be precise, the
execution of a prepare-update operation generates an instance of an effect-update operation.
For simplicity, we refer the instances of operations simply as operations. With Oi the set of
operations generated at node i, the set of operations generated in an execution, or simply
the set of operations in an execution, is O = O1 ∪ . . . ∪On.

4.2 Non-uniform eventual consistency
For any given execution, with O the operations of the execution, we say a replicated system
provides eventual consistency iff in a quiescent state: (i) every replica executed all operations
of O; and (ii) the state of any pair of replicas is equivalent.

A sufficient condition for achieving the first property is to propagate all generated
operations using reliable broadcast (and execute any received operation). A sufficient
condition for achieving the second property is to have only commutative operations. Thus, if
all operations commute with each other, the execution of any serialization of O in the initial
state of the object leads to an equivalent state.

From now on, unless stated otherwise, we assume that all operations commute. In this
case, as all serializations of O are equivalent, we denote the execution of a serialization of O

in state s simply as s •O.
For any given execution, with O the operations of the execution, we say a replicated

system provides non-uniform eventual consistency iff in a quiescent state the state of any
replica is observable equivalent to the state obtained by executing some serialization of O.
As a consequence, the state of any pair of replicas is also observable equivalent.

For a given set of operations in an execution O, we say that Ocore ⊆ O is a set of core
operations of O iff s0 •O

o≡ s0 •Ocore. We define the set of operations that are irrelevant to
the final state of the replicas as follows: Omasked ⊆ O is a set of masked operations of O iff
s0 •O

o≡ s0 • (O \Omasked).
I Theorem 4 (Sufficient conditions for NuEC). A replication system provides non-uniform
eventual consistency (NuEC) if, for a given set of operations O, the following conditions
hold: (i) every replica executes a set of core operations of O; and (ii) all operations commute.
Proof. From the definition of core operations of O, and by the fact that all operations
commute, it follows immediately that if a replica executes a set of core operations, then
the final state of the replica is observable equivalent to the state obtained by executing a
serialization of O. Additionally, any replica reaches an observable equivalent state. J

4.3 Protocol for non-uniform eventual consistency
We now build on the sufficient conditions for providing non-uniform eventual consistency
to devise a correct replication protocol that tries to minimize the operations propagated to
other replicas. The key idea is to avoid propagating operations that are part of a masked set.
The challenge is to achieve this by using only local information, which includes only a subset
of the executed operations.

Algorithm 1 presents the pseudo-code of an algorithm for achieving non-uniform eventual
consistency – the algorithm does not address the durability of operations, which will be
discussed later.
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Algorithm 1 Replication algorithm for non-uniform eventual consistency.
1: S : state: initial s0 . Object state
2: logrecv : set of operations: initial {}
3: loglocal : set of operations: initial {} . Local operations not propagated
4:
5: execOp(op): void . New operation generated locally
6: loglocal = loglocal ∪ {op}
7: S = S • op
8:
9: opsToPropagate(): set of operations . Computes the local operations that need to be propagated

10: ops = maskedF orever(loglocal, S, logrecv)
11: loglocal = loglocal \ ops
12: opsImpact = hasObservableImpact(loglocal, S, logrecv)
13: opsP otImpact = mayHaveObservableImpact(loglocal, S, logrecv)
14: return opsImpact ∪ opsP otImpact
15:
16: sync(): void . Propagates local operations to remote replicas
17: ops = opsT oP ropagate()
18: compactedOps = compact(ops) . Compacts the set of operations
19: mcast(compactedOps)
20: logcoreLocal = {}
21: loglocal = loglocal \ ops
22: logrecv = logrecv ∪ ops
23:
24: on receive(ops): void . Process remote operations
25: logrecv = logrecv ∪ ops
26: S = S • ops

The algorithm maintains the state of the object and two sets of operations: loglocal, the
set of effect-update operations generated in the local replica and not yet propagated to other
replicas; logrecv, the set of effect-update operations propagated to all replicas (including
operations generated locally and remotely).

When an effect-update operation is generated, the execOp function is called. This function
adds the new operation to the log of local operations and updates the local object state.

The function sync is called to propagate local operations to remote replicas. It starts
by computing which new operations need to be propagated, compacts the resulting set of
operations for efficiency purposes, multicasts the compacted set of operations, and finally
updates the local sets of operations. When a replica receives a set of operations (line 24), the
set of operations propagated to all nodes and the local object state are updated accordingly.

Function opsToPropagate addresses the key challenge of deciding which operations need
to be propagated to other replicas. To this end, we divide the operations in four groups.

First, the forever masked operations, which are operations that will remain in the set
of masked operations independently of the operations that might be executed in the future.
In the top example, an operation that adds a pair masks forever all known operations that
added a pair for the same element with a lower value. These operations are removed from
the set of local operations.

Second, the core operations (opsImpact, line 12), as computed locally. These operations
need to be propagated, as they will (typically) impact the observable state at every replica.

Third, the operations that might impact the observable state when considered in com-
bination with other non-core operations that might have been executed in other replicas
(opsPotImpact, line 13). As there is no way to know which non-core operations have been
executed in other replicas, it is necessary to propagate these operations also. For example,
consider a modified top object where the value associated with each element is the sum of
the values of the pairs added to the object. In this case, an add operation that would not
move an element to the top in a replica would be in this category because it could influence
the top when combined with other concurrent adds for the same element.
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Fourth, the remaining operations that might impact the observable state in the future,
depending on the evolution of the observable state. These operations remain in loglocal.
In the original top example, an operation that adds a pair that will not be in the top, as
computed locally, is in this category as it might become the top element after removing the
elements with larger values.

For proving that the algorithm can be used to provide non-uniform eventual consistency,
we need to prove the following property.

I Theorem 5. Algorithm 1 guarantees that in a quiescent state, considering all operations
O in an execution, all replicas have received all operations in a core set Ocore.

Proof. To prove this property, we need to prove that there exists no operation that has not
been propagated by some replica and that is required for any Ocore set. Operations in the first
category have been identified as masked operations independently of any other operations
that might have been or will be executed. Thus, by definition of masked operations, a Ocore

set will not (need to) include these operations. The fourth category includes operations that
do not influence the observable state when considering all executed operations – if they might
have impact, they would be in the third category. Thus, these operations do not need to be
in a Ocore set. All other operations are propagated to all replicas. Thus, in a quiescent state,
every replica has received all operations that impact the observable state. J

4.4 Fault-tolerance
Non-uniform replication aims at reducing the cost of communication and the size of replicas,
by avoiding propagating operations that do not influence the observable state of the object.
This raises the question of the durability of operations that are not immediately propagated
to all replicas.

One way to solve this problem is to have the source replica propagating every local
operation to f more replicas to tolerate f faults. This ensures that an operation survives
even in the case of f faults. We note that it would be necessary to adapt the proposed
algorithm, so that in the case a replica receives an operation for durability reasons, it would
propagate the operation to other replicas if the source replica fails. This can be achieved
by considering it as any local operation (and introducing a mechanism to filter duplicate
reception of operations).

4.5 Causal consistency
Causal consistency is a popular consistency model for replicated systems [15, 2, 16], in which
a replica only executes an operation after executing all operations that causally precede it [12].
In the non-uniform replication model, it is impossible to strictly adhere to this definition
because some operations are not propagated (immediately), which would prevent all later
operations from executing.

An alternative would be to restrict the dependencies to the execution of core operations.
The problem with this is that the status of an operation may change by the execution of
another operation. When a non-core operation becomes core, a number of dependencies that
should have been enforced might have been missed in some replicas.

We argue that the main interest of causal consistency, when compared with eventual
consistency, lies in the semantics provided by the object. Thus, in the designs that we present
in the next section, we aim to guarantee that in a quiescent state, the state of the replicated
objects provide equivalent semantics to that of a system that enforces causal consistency.
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5 Non-uniform operation-based CRDTs

CRDTs [23] are data-types that can be replicated, modified concurrently without coordination
and guarantee the eventual consistency of replicas given that all updates propagate to all
replicas. We now present the design of two useful operation-based CRDTs [23] that adopt
the non-uniform replication model. Unlike most operation-based CRDT designs, we do not
assume that the system propagates operations in a causal order. These designs were inspired
by the state-based computational CRDTs proposed by Navalho et al. [19], which also allow
replicas to diverge in their quiescent state.

5.1 Top-K with removals NuCRDT
In this section we present the design of a non-uniform top-K CRDT, as the one introduced
in section 3.1. The data type allows access to the top-K elements added and can be used,
for example, for maintaining the leaderboard in online games. The proposed design could
be adapted to define any CRDT that filters elements based on a deterministic function by
replacing the topK function used in the algorithm by another filter function.

For defining the semantics of our data type, we start by defining the happens-before
relation among operations. To this end, we start by considering the happens-before relation
established among the events in the execution of the replicated system [12]. The events
that are considered relevant are: the generation of an operation at the source replica, and
the dispatch and reception of a message with a new operation or information that no new
message exists. We say that operation opi happens before operation opj iff the generation of
opi happened before the generation of opj in the partial order of events.

The semantics of the operations defined in the top-K CRDT is the following. The
add(el,val) operation adds a new pair to the object. The rmv(el) operation removes any pair
of el that was added by an operation that happened-before the rmv (note that this includes
non-core add operations that have not been propagated to the source replica of the remove).
This leads to an add-wins policy [23], where a remove has no impact on concurrent adds.
The get() operation returns the top-K pairs in the object, as defined by the function topK
used in the algorithm.

Algorithm 2 presents a design that implements this semantics. The prepare-update add
operation generates an effect-update add that has an additional parameter consisting in
a timestamp (replicaid, val), with val a monotonically increasing integer. The prepare-
update rmv operation generates an effect-update rmv that includes an additional parameter
consisting in a vector clock that summarizes add operations that happened before the remove
operation. To this end, the object maintains a vector clock that is updated when a new add
is generated or executed locally. Additionally, this vector clock should be updated whenever
a replica receives a message from a remote replica (to summarize also the adds known in the
sender that have not been propagated to this replica).

Besides this vector clock, vc, each object replica maintains: (i) a set, elems, with the
elements added by all add operations known locally (and that have not been removed yet);
and (ii) a map, removes, that maps each element id to a vector clock with a summary of
the add operations that happened before all removes of id (for simplifying the presentation
of the algorithm, we assume that a key absent from the map has associated a default vector
clock consisting of zeros for every replica).

The execution of an add consists in adding the element to the set of elems if the add has
not happened before a previously received remove for the same element – this can happen as
operations are not necessarily propagated in causal order. The execution of a rmv consists
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Algorithm 2 Top-K NuCRDT with removals.
1: elems : set of 〈id, score, ts〉 : initial {}
2: removes : map id 7→ vectorClock: initial []
3: vc : vectorClock: initial []
4:
5: get() : set
6: return {〈id, score〉 : 〈id, score, ts〉 ∈ topK(elems)}
7:
8: prepare add(id, score)
9: generate add(id, score, 〈getReplicaId(), + + vc[getReplicaId()]〉)

10:
11: effect add(id, score, ts)
12: if removes[id][ts.siteId] < ts.val then
13: elems = elems ∪ {〈id, score, ts〉}
14: vc[ts.siteId] = max(vc[ts.siteId], ts.val)
15:
16: prepare rmv(id)
17: generate rmv(id,vc)
18:
19: effect rmv(id, vcrmv)
20: removes[id] = pointwiseMax(removes[id], vcrmv)
21: elems = elems \ {〈id0, score, ts〉 ∈ elem : id = id0 ∧ ts.val ≤ vcrmv[ts.siteId]}
22:
23: maskedForever(loglocal, S, logrecv): set of operations
24: adds = {add(id1, score1, ts1) ∈ loglocal :
25: (∃add(id2, score2, ts2) ∈ loglocal : id1 = id2 ∧ score1 < score2 ∧ ts1.val < ts2.val)∨
26: (∃rmv(id3, vcrmv) ∈ (logrecv ∪ loglocal) : id1 = id3 ∧ ts1.val ≤ vcrmv[ts1.siteId]}
27: rmvs = {rmv(id1, vc1) ∈ loglocal : ∃rmv(id2, vc2) ∈ (loglocal ∪ logrecv) : id1 = id2 ∧ vc1 < vc2}
28: return adds ∪ rmvs
29:
30: mayHaveObservableImpact(loglocal, S, logrecv): set of operations
31: return {} . This case never happens for this data type
32:
33: hasObservableImpact(loglocal, S, logrecv): set of operations
34: adds = {add(id1, score1, ts1) ∈ loglocal : 〈id1, score1, ts1〉 ∈ topK(S.elems)}
35: rmvs = {rmv(id1, vc1) ∈ loglocal : (∃add(id2, score2, ts2) ∈ (loglocal ∪ logrecv) :
36: 〈id2, score2, ts2〉 ∈ topK(S.elems ∪ {〈id2, score2, ts2〉}) ∧ id1 = id2 ∧ ts2.val ≤ vc1[ts2.siteId])}
37: return adds ∪ rmvs
38:
39: compact(ops): set of operations
40: return ops . This data type does not require compaction

in updating removes and deleting from elems the information for adds of the element that
happened before the remove. To verify if an add has happened before a remove, we check if
the timestamp associated with the add is reflected in the remove vector clock of the element
(lines 12 and 21). This ensures the intended semantics for the CRDT, assuming that the
functions used by the protocol are correct.

We now analyze the code of these functions.
Function maskedForever computes: the local adds that become masked by other

local adds (those for the same element with a lower value) and removes (those for the same
element that happened before the remove); the local removes that become masked by other
removes (those for the same element that have a smaller vector clock). In the latter case, it
is immediate that a remove with a smaller vector clock becomes irrelevant after executing
the one with a larger vector clock. In the former case, a local add for an element is masked
by a more recent local add for the same element but with a larger value as it is not possible
to remove only the effects of the later add without removing the effect of the older one. A
local add also becomes permanently masked by a local or remote remove that happened after
the add.

Function mayHaveObservableImpact returns the empty set, as for having impact on
any observable state, an operation also has to have impact on the local observable state by
itself.
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Function hasObservableImpact computes the local operations that are relevant for
computing the top-K. An add is relevant if the added value is in the top; a remove is relevant
if it removes an add that would be otherwise in the top.

5.2 Top Sum NuCRDT

We now present the design of a non-uniform CRDT, Top Sum, that maintains the top-K
elements added to the object, where the value of each element is the sum of the values added
for the element. This data type can be used for maintaining a leaderboard in an online game
where every time a player completes some challenge it is awarded some number of points,
with the current score of the player being the sum of all points awarded. It could also be used
for maintaining a top of the best selling products in an (online) store (or the top customers,
etc).

The semantics of the operations defined in the Top Sum object is the following. The
add(id, n) update operation increments the value associated with id by n. The get() read-only
operation returns the top-K mappings, id→ value, as defined by the topK function (similar
to the Top-K NuCRDT).

This design is challenging, as it is hard to know which operations may have impact in the
observable state. For example, consider a scenario with two replicas, where the value of the
last element in the top is 100. If the known score of an element is 90, an add of 5 received in
one replica may have impact in the observable state if the other replica has also received an
add of 5 or more. One approach would be to propagate these operations, but this would lead
to propagating all operations.

To try to minimize the number of operations propagated we use the following heuristic
inspired by the demarcation protocol and escrow transactions [4, 20]. For each id that does
not belong to the top, we compute the difference between the smallest value in the top and
the value of the id computed by operations known in every replica – this is how much must
be added to the id to make it to the top: let d be this value. If the sum of local adds for the
id does not exceed d

num.replicas in any replica, the value of id when considering adds executed
in all replicas is smaller than the smallest element in the top. Thus, it is not necessary to
propagate add operations in this case, as they will not affect the top.

Algorithm 3 presents a design that implements this approach. The state of the object is a
single variable, state, that maps identifiers to their current values. The only prepare-update
operation, add, generates an effect-update add with the same parameters. The execution of
an effect-update add(id, n) simply increments the value of id by n.

Function maskedForever returns the empty set, as operations in this design can never
be forever masked.

Function mayHaveObservableImpact computes the set of add operations that can
potentially have an impact on the observable state, using the approach previously explained.

Function hasObservableImpact computes the set of add operations that have their
corresponding id present in the top-K. This guarantees that the values of the elements in the
top are kept up-to-date, reflecting all executed operations.

Function compact takes a set of add operations and compacts the add operations that
affect the same identifier into a single operation. This reduces the size of the messages sent
through the network and is similar to the optimization obtained in delta-based CRDTs [1].
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Algorithm 3 Top Sum NuCRDT.
1: state : map id 7→ sum: initial []
2:
3: get() : map
4: return topK(state)
5:
6: prepare add(id, n)
7: generate add(id, n)
8:
9: effect add(id, n)

10: state[id] = state[id] + n
11:
12: maskedForever(loglocal, S, logrecv): set of operations
13: return {} . This case never happens for this data type
14:
15: mayHaveObservableImpact(loglocal, S, logrecv): set of operations
16: top = topK(S.state)
17: adds = {add(id, _) ∈ loglocal : s = sumval({add(i, n) ∈ loglocal : i = id})
18: ∧ s ≥ ((min(sum(top))− (S.state[id]− s)) / getNumReplicas())}
19: return adds
20:
21: hasObservableImpact(loglocal, S, logrecv): set of operations
22: top = topK(S.state)
23: adds = {add(id, _) ∈ loglocal : id ∈ ids(top)}
24: return adds
25:
26: compact(ops): set of operations
27: adds = {add(id, n) : id ∈ {i : add(i, _) ∈ ops}∧ n = sum({k : add(id1, k) ∈ ops : id1 = id})}
28: return adds

5.3 Discussion
The goal of non-uniform replication is to allow replicas to store less data and use less
bandwidth for replica synchronization. Although it is clear that non-uniform replication
cannot be useful for all data, we believe that the number of use cases is large enough for
making non-uniform replication interesting in practice. We now discuss two classes of data
types that can benefit from the adoption of non-uniform replication.

The first class is that of data types for which the result of queries include only a subset
of the data in the object. In this case two different situations may occur: (i) it is possible to
compute locally, without additional information, if some operation is relevant (and needs
to be propagated to all replicas); (ii) it is necessary to have additional information to be
able to decide if some operation is relevant. The Top-K CRDT presented in section 5.1 is an
example of the former. Another example includes a data type that returns a subset of the
elements added based on a (modifiable) user-defined filter – e.g. in a set of books, the filter
could select the books of a given genre, language, etc. The Top-Sum CRDT presented in
section 5.2 is an example of the latter. Another example includes a data type that returns
the 50th percentile (or others) for the elements added – in this case, it is only necessary to
replicate the elements in a range close to the 50th percentile and replicate statistics of the
elements smaller and larger than the range of replicated elements.

In all these examples, the effects of an operation that in a given moment do not influence
the result of the available queries may become relevant after other operations are executed –
in the Top-K with removes due to a remove of an element in the top; in the filtered set due
to a change in the filter; in the Top-Sum due to a new add that makes an element relevant;
and in the percentile due to the insertion of elements that make the 50th percentile change.
We note that if the relevance of an operation cannot change over time, the non-uniform
CRDT would be similar to an optimized CRDT that discard operations that are not relevant
before propagating them to other replicas.
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A second class is that of data types with queries that return the result of an aggregation
over the data added to the object. An example of this second class is the Histogram CRDT
presented in the appendix. This data type only needs to keep a count for each element. A
possible use of this data type would be for maintaining the summary of classifications given
by users in an online shop. Similar approaches could be implemented for data types that
return the result of other aggregation functions that can be incrementally computed [19].

A data type that supports, besides adding some information, an operation for removing
that information would be more complex to implement. For example, in an Histogram CRDT
that supports removing a previously added element, it would be necessary that concurrently
removing the same element would not result in an incorrect aggregation result. Implementing
such CRDT would require detecting and fixing these cases.

6 Evaluation

In this section we evaluate our data types that follow the non-uniform replication model. To
this end, we compare our designs against state-of-the-art CRDT alternatives: delta-based
CRDTs [1] that maintain full object replicas efficiently by propagating updates as deltas
of the state; and computational CRDTs [19] that maintain non-uniform replicas using a
state-based approach.

Our evaluation is performed by simulation, using a discrete event simulator. To show
the benefit in terms of bandwidth and storage, we measure the total size of messages sent
between replicas for synchronization (total payload) and the average size of replicas.

We simulate a system with 5 replicas for each object. Both our designs and the compu-
tational CRDTs support up to 2 replica faults by propagating all operations to, at least, 2
other replicas besides the source replica. We note that this limits the improvement that our
approach could achieve, as it is only possible to avoid sending an operation to two of the five
replicas. By either increasing the number of replicas or reducing the fault tolerance level, we
could expect that our approach would perform comparatively better than the delta-based
CRDTs.

6.1 Top-K with removals

We begin by comparing our Top-K design (NuCRDT) with a delta-based CRDT set [1]
(Delta CRDT ) and the top-K state-based computational CRDT design [19] (CCRDT ).

The top-K was configured with K equal to 100. In each run, 500000 update operations
were generated for 10000 Ids and with scores up to 250000. The values used in each operation
were randomly selected using a uniform distribution. A replica synchronizes after executing
100 events.

Given the expected usage of top-K for supporting a leaderboard, we expect the remove
to be an infrequent operation (to be used only when a user is removed from the game).
Figures 1 and 2 show the results for workloads with 5% and 0.05% of removes respectively
(the other operations are adds).

In both workloads our design achieves a significantly lower bandwidth cost when compared
to the alternatives. The reason for this is that our design only propagates operations that
will be part of the top-K. In the delta-based CRDT, each replica propagates all new updates
and not only those that are part of the top. In the computational CRDT design, every
time the top is modified, the new top is propagated. Additionally, the proposed design of
computational CRDTs always propagates removes.

OPODIS 2017



24:14 Non-Uniform Replication

 0

 50

 100

 150

 200

 250

 300

 350

 400

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e 

Pa
yl

oa
d
 (

M
B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k

A
ve

ra
g
e 

R
ep

lic
a 

S
iz

e 
(M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 1 Top-K with removals: payload size and replica size, workload of 95/5
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Figure 2 Top-K with removals: payload size and replica size, workload of 99.95/0.05

The results for the replica size show that our design is also more space efficient than
previous designs. This is a consequence of the fact that each replica, besides maintaining
information about local operations, only keeps information from remote operations received
for guaranteeing fault-tolerance and those that have influenced the top-K at some moment
in the execution. The computational CRDT design additionally keeps information about
all removes. The delta-based CRDT keeps information about all elements that have not
been removed or overwritten by a larger value. We note that as the percentage of removes
approaches zero, the replica sizes of our design and that of computational CRDT starts to
converge to the same value. The reason for this is that the information maintained in both
designs is similar and our more efficient handling of removes starts becoming irrelevant. The
opposite is also true: as the number of removes increases, our design becomes even more
space efficient when compared to the computational CRDT.

6.2 Top Sum
To evaluate our Top Sum design (NuCRDT ), we compare it against a delta-based CRDT map
(Delta CRDT) and a state-based computational CRDT implementing the same semantics
(CCRDT ).

The top is configured to display a maximum of 100 entries. In each run, 500000 update
operations were generated for 10000 Ids and with challenges awarding scores up to 1000. The
values used in each operation were randomly selected using a uniform distribution. A replica
synchronizes after executing 100 events.

Figure 3 shows the results of our evaluation. Our design achieves a significantly lower
bandwidth cost when compared with the computational CRDT, because in the computational
CRDT design, every time the top is modified, the new top is propagated. When compared
with the delta-based CRDTs, the bandwidth of NuCRDT is approximately 55% of the
bandwidth used by delta-based CRDTs. As delta-based CRDTs also include a mechanism for
compacting propagated updates, the improvement comes from the mechanisms for avoiding
propagating operations that will not affect the top elements, resulting in less messages being
sent.
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Figure 3 Top Sum: payload size and replica size

The results for the replica size show that our design also manages to be more space
efficient than previous designs. This is a consequence of the fact that each replica, besides
maintaining information about local operations, only keeps information of remote operations
received for guaranteeing fault-tolerance and those that have influenced the top elements at
some moment in the execution.

7 Conclusions

In this paper we proposed the non-uniform replication model, an alternative model for
replication that combines the advantages of both full replication, by allowing any replica to
reply to a query, and partial replication, by requiring that each replica keeps only part of
the data. We have shown how to apply this model to eventual consistency, and proposed
a generic operation-based synchronization protocol for providing non-uniform replication.
We further presented the designs of two useful replicated data types, the Top-K and Top
Sum, that adopt this model (in appendix, we present two additional designs: Top-K without
removals and Histogram). Our evaluation shows that the application of this new replication
model helps to reduce the message dissemination costs and the size of replicas.

In the future we plan to study which other data types can be designed that adopt this
model and to study how to integrate these data types in cloud-based databases. We also
want to study how the model can be applied to strongly consistent systems.
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A Appendix

In this appendix we present two additional NuCRDT designs. These designs exemplify the
use of different techniques for the creation of NuCRDTs.

A.1 Top-K without removals
A simpler example of a data type that fits our proposed replication model is a plain top-K,
without support for the remove operation. This data type allows access to the top-K elements
added to the object and can be used, for example, for maintaining a leaderboard in an online
game. The top-K defines only one update operation, add(id,score), which adds element id
with score score. The get() operation simply returns the K elements with largest scores.
Since the data type does not support removals, and elements added to the top-K which do
not fit will simply be discarded this means the only case where operations have an impact in
the observable state are if they are core operations – i.e. they are part of the top-K. This
greatly simplifies the non-uniform replication model for the data type.
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Algorithm 4 Top-K NuCRDT.
1: elems : {〈id, score〉} : initial {}
2:
3: get() : set
4: return elems
5:
6: prepare add(id, score)
7: generate add(id, score)
8:
9: effect add(id, score)

10: elems = topK(elems ∪ {〈id, score〉})
11:
12: maskedForever(loglocal, S, logrecv) : set of operations
13: adds = {add(id1, score1) ∈ loglocal : (∃add(id2, score2) ∈ logrecv : id1 = id2 ∧ score2 > score1)
14: return adds
15:
16: mayHaveObservableImpact(loglocal, S, logrecv) : set of operations
17: return {} . Not required for this data type
18:
19: hasObservableImpact(loglocal, S, logrecv) : set of operations
20: return {add(id, score) ∈ loglocal : 〈id, score〉 ∈ S.elems}
21:
22: compact(ops): set of operations
23: return ops . This data type does not use compaction

Algorithm 4 presents the design of the top-K NuCRDT. The prepare-update add(id,score)
generates an effect-update add(id,score).

Each object replica maintains only a set of K tuples, elems, with each tuple being
composed of an id and a score. The execution of add(id,score) inserts the element into the
set, elems, and computes the top-K of elems using the function topK. The order used for the
topK computation is as follows: 〈id1, score1〉 > 〈id2, score2〉 iff score1 > score2 ∨ (score1 =
score2 ∧ id1 > id2). We note that the topK function returns only one tuple for each element
id.

Function maskedForever computes the adds that become masked by other add opera-
tions for the same id that are larger according to the defined ordering. Due to the way the
top is computed, the lower values for some given id will never be part of the top. Function
mayHaveObservableImpact always returns the empty set since operations in this data
type are always core or forever masked. Function hasObservableImpact returns the set of
unpropagated add operations which add elements that are part of the top – essentially, the
add operations that are core at the time of propagation. Function compact simply returns
the given ops since the design does not require compaction.

A.2 Histogram
We now introduce the Histogram NuCRDT that maintains a histogram of values added to
the object. To this end, the data type maintains a mapping of bins to integers and can be
used to maintain a voting system on a website. The semantics of the operations defined in
the histogram is the following: add(n) increments the bin n by 1; merge(histogramdelta) adds
the information of a histogram into the local histogram; get() returns the current histogram.

This data type is implemented in the design presented in Algorithm 5. The prepare-
update add(n) generates an effect-update merge( [n 7→ 1]). The prepare-update operation
merge(histogram) generates an effect-update merge(histogram).

Each object replica maintains only a map, histogram, which maps bins to integers. The
execution of a merge(histogramdelta) consists of doing a pointwise sum of the local histogram
with histogramdelta.
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Algorithm 5 Histogram NuCRDT.
1: histogram : map bin 7→ n : initial []
2:
3: get() : map
4: return histogram
5:
6: prepare add(bin)
7: generate merge([bin 7→ 1])
8:
9: prepare merge(histogram)

10: generate merge(histogram)
11:
12: effect merge(histogramdelta)
13: histogram = pointwiseSum(histogram, histogramdelta)
14:
15: maskedForever(loglocal, S, logrecv) : set of operations
16: return {} . Not required for this data type
17:
18: mayHaveObservableImpact(loglocal, S, logrecv) : set of operations
19: return {} . Not required for this data type
20:
21: hasObservableImpact(loglocal, S, logrecv) : set of operations
22: return loglocal

23:
24: compact(ops): set of operations
25: deltas = {hist : merge(histdelta) ∈ ops}
26: return {merge(pointwiseSum(deltas))}

Functions maskedForever and mayHaveObservableImpact always return the empty
set since operations in this data type are always core. Function hasObservableImpact
simply returns loglocal, as all operations are core in this data type. Function compact takes
a set of instances of merge operations and joins the histograms together returning a set
containing only one merge operation.
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Abstract
The decentralized cryptocurrency Bitcoin has experienced great success but also encountered
many challenges. One of the challenges has been the long confirmation time. Another chal-
lenge is the lack of incentives at certain steps of the protocol, raising concerns for transaction
withholding, selfish mining, etc. To address these challenges, we propose Solida, a decentralized
blockchain protocol based on reconfigurable Byzantine consensus augmented by proof-of-work.
Solida improves on Bitcoin in confirmation time, and provides safety and liveness assuming the
adversary control less than (roughly) one-third of the total mining power.
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1 Introduction

Bitcoin is the most successful decentralized cryptocurrency to date. Conceptually, what a
decentralized cryptocurrency needs is consensus in a permissionless setting: Participants
should agree on the history of transactions, and anyone on the network can join or leave at
any time. Bitcoin achieves permissionless consensus using what’s now known as Nakamoto
consensus. In Nakamoto consensus, participants accept the longest proof-of-work (PoW)
chain as the history of transactions, and also contribute to the longest chain by trying to
extend it. Thus, cryptocurrencies are also known as public ledgers or blockchains in the
literature. While enjoying great success, Bitcoin does have several drawbacks. The most
severe one is perhaps its limited throughput and long confirmation time of transactions. For
instance, presently a block can be added every ten minutes on average and it is suggested
that one waits for the transaction to be six blocks deep. This implies a confirmation time of
about an hour. Furthermore, each block can contain about 1500 transactions [7] with the
current 1MB block size limit. This yields a throughput of ∼2.5 transactions per second.
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A number of attempts were made to improve the throughput and confirmation time of
Bitcoin. These fall into two broad categories. One category [32, 19, 9] tries to improve
Nakamoto consensus. The other category [8, 15, 21, 26] hopes to replace Nakamoto consensus
with classical Byzantine fault tolerant (BFT) consensus protocols. These proposals envision
a rolling committee that approves transactions efficiently using a Byzantine Fault Tolerant
(BFT) protocol such as PBFT [5].

This second category presents a new approach to blockchain designs and has potential for
significant improvements in performance and scalability over Nakamoto consensus. This is
especially true for transaction confirmation time, since decisions in Byzantine consensus are
final once committed. Pass and Shi [26] formalized the above intuition with responsiveness
notion for permissionless consensus protocols. A protocol is responsive if it commits trans-
actions (possibly probabilistically) at the speed of the actual network delay, without being
bottlenecked by hard-coded system parameters (e.g., 10 minutes for Bitcoin). In the same
paper, Pass and Shi proposed the hybrid consensus protocol, which uses a (slow) Nakamoto
PoW chain to determine the identities of committee members, and let the committee to
approve transactions responsively.

In this work, we present Solida1, a decentralized blockchain protocol based on recon-
figurable Byzantine consensus. We were indeed inspired by the work of Pass and Shi [26].
Yet, Solida is conceptually very different from Bitcoin or hybrid consensus as we do not rely
on Nakamoto consensus for any part of our protocol. Committee election and transaction
processing are both done by a Byzantine consensus protocol in Solida. PoW still plays a
central role in Solida, but we remark that use of PoW does not equate Nakamoto consensus.
The heart of Nakamoto consensus is the idea that “the longest PoW chain wins”. This
creates possibility of temporary “chain forks”. A decision in Nakamoto consensus becomes
committed only if it is “buried” sufficiently deep in the PoW chain, which leads to Bitcoin’s
long confirmation time.

Looking from a different angle, we can think of PoW as a leader election oracle that is
Sybil-proof in the permissionless setting. But this oracle is imperfect as leader contention
can still occur when multiple miners find PoWs around the same time. Nakamoto consensus
can be thought of as a probabilistic method to resolve leader contention in which miners
“vote on” contending leaders using their mining power. A leader (or its block) “wins” the
contention gradually and probabilistically, until an overwhelming majority of miners “adopt”
it by mining on top of it. In Solida, we also use PoW as an imperfect Sybil-proof leader
election oracle. But instead of using Nakamoto consensus, we use a traditional Byzantine
consensus protocol to resolve leader contention with certainty, rather than probabilistically.

Once we have a committee, electing new members using Byzantine consensus (as opposed
to Nakamoto) just seems to be the natural design once we have a closer look at the details
of the protocol. A central challenge of this framework is to reconcile the permissioned
nature of Byzantine consensus protocols and the permissionless requirement of decentralized
blockchains. Byzantine consensus protocols like PBFT assume a static group of committee
members, but to be permissionless and decentralized, committee members must change over
time – a step commonly referred to as reconfiguration. Note that the Nakamoto chain in
hybrid consensus only provides agreement on the identities of the new members and when
reconfiguration should happen. It does not dictate when and how reconfiguration actually
happens. The standard reconfiguration technique requires a consensus decision from the old
committee on the closing state [17, 13, 30, 3, 24, 1]. It is then just natural to include in that
consensus decision the new configuration (i.e., the identity of the new member), at no extra
cost, thereby eliminating the need for Nakamoto chains altogether.

1 Solidus was a gold coin used in the Byzantine Empire. Solida is our way of (mis-)spelling Solidus.
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Not relying on Nakamoto consensus gives Solida a few advantages over hybrid consensus.
First, the identities of committee members are exposed for a shorter duration in Solida
compared to hybrid consensus, because their identities no longer need to be buried in a
Nakamoto chain. (Admittedly, members’ identities are still exposed during their service on the
committee for both Solida and hybrid consensus.) Second, defending selfish mining [10, 23] is
much easier with the help of a committee (cf. Section 4.4). In comparison, hybrid consensus
requires quite a complex variant of Nakamoto consensus in FruitChain [27] to defend against
selfish mining. Third, analysis of our protocol is much simpler. In contrast, although the
Bitcoin protocol is simple and elegant, its formal modeling and analysis turn out to be highly
complex [12, 25]. FruitChain [27] and the interaction between Nakamoto and Byzantine
consensus [26] further complicate the analysis.

Contribution. The high-level idea of designing blockchains protocols using reconfigurable
Byzantine consensus is by no means new. PeerCensus [8] and ByzCoin [15] are two other
works in this framework and they predate hybrid consensus and Solida. Comparing to those
two works is tricky since their protocols were described only at a high level. But no matter
how one interprets their protocols, our paper makes the following new contributions:

Detailed protocol. We present full details of our protocol, and in particular, the
reconfiguration step. Reconfiguration is perhaps the step that deserves the most detailed
treatment, since the protocol between two reconfiguration events is just conventional
Byzantine consensus.
Rigorous proof. We rigorously prove that Solida achieves safety and liveness if the
adversary’s ratio of mining power does not exceed (roughly) 1/3.
Implementation and evaluation. We implement Solida and measure its performance.
Our implementation is fully Byzantine fault tolerant. With a 0.1s network latency and
75 Mbps network bandwidth, Solida with committees of 1000 members can commit a
consensus decision in 23.6 seconds.

1.1 Overview of the Solida Protocol
At a high level, Solida runs a Byzantine consensus protocol among a set of participants, called
a committee, that dynamically change over time. The acting committee commits transactions
into a linearizable log using a modified version of PBFT [5]. The log is comparable to
the Bitcoin blockchain, also called a public ledger. We say each consensus decision fills a
slot in the ledger. A consensus decision can be either (1) a batch of transactions, (2) a
reconfiguration event. The first type of decision is analogous to a block in Bitcoin. The
second type records the membership change in the committee.

We denote the i-th member in chronological order as Mi, and the committee size is
n = 3f + 1. Then, the i-th committee Ci = (Mi,Mi+1,Mi+2, · · · ,Mi+n−1). The first
committee C1 is known as the Genesis committee, and its n members are hard coded. After
that, each new member is elected onto the committee one at a time, by the acting committee
using reconfiguration consensus decisions.

At any time, one committee member serves as the leader. It proposes a batch of
transactions into the next empty slot s in the ledger. Other members validate proposed
transactions (no double spend, etc.) and commit them in two phases. A Byzantine leader
cannot violate safety but may prevent progress. If members detect lack of progress, they elect
the next leader in the round robin order using standard techniques from PBFT view change.
The next leader needs to stop previous leaders, learn the status from 2f + 1 members and
possibly redo consensus for previous slots, before continuing on to future empty slots.
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The more interesting part of protocol is reconfiguration. To be elected onto the committee,
a miner needs to present a PoW, i.e., a solution to a moderately hard computational puzzle.
Upon seeing this PoW, the current committee tries to reach a special reconfiguration consensus
decision that commits (1) the identity of the new member, i.e., a public key associated with
the PoW, and (2) the closing state before the reconfiguration. Once this reconfiguration
consensus decision is committed, the system transitions into the new configuration Ci+1.
Starting from the next slot, PoW finder becomes the newest committee member Mi+n, and
the oldest committee member Mi loses its committee membership.

Here, a crucial design choice is: who should be the leader that drives reconfiguration?
The first idea that comes to mind is to keep relying on the round robin leaders. But this
approach presents a challenge on the analysis. The current leader may be Byzantine and
refuse to reconfigure when it should. By doing so, it tries to buy time for other adversarial
miners to find competing PoWs, so that it can nominate a Byzantine new member instead.
Although we can conceive mechanisms to replace this leader, subsequent leaders may also
be Byzantine. The probability of taking in an honest new member now depends on the
pattern of consecutive Byzantine leaders on the current committee. This means we will not
be able to apply the Chernoff inequality to bound the number of Byzantine members on
a committee. It is unclear whether this is merely a mathematical hurdle or the adversary
really has some way to increase its representation on the committee gradually and to go
above n/3 eventually.

Therefore, we will switch to external leaders for reconfiguration. In particular, the
successful miner would act as the leader L for reconfiguration and try to elect itself onto the
committee. When L’s reconfiguration proposal is committed (becomes a consensus decision),
reconfiguration is finished, and the system starts processing transactions under the new
committee with L being the leader. Note that at this point L becomes a committee member,
so the system has seamlessly transitioned back to internal leaders.

By giving all external miners opportunities to become leaders, we introduce a new leader
contention problem. It is possible that before L can finish reconfiguration, another miner L′
also finds a PoW. Moreover, there may be concurrent internal leaders who are still trying to
propose transactions. Solida resolves this type of contention through a Paxos-style leader
election [16] with ranks. Only a higher ranked leader can interrupt lower ranked ones. To
ensure safety, the higher ranked leader may have to honor the proposals from lower ranked
leaders by re-proposing them, if there exists one.

Now the key challenge is to figure out how leaders (internal or external) should be
ranked in our protocol. One idea is to rank external leaders by the output hash of their
PoW, and stipulate that external leaders are higher ranked than all internal leaders in that
configuration. This approach, however, allows the adversary to prevent progress once in a
while. If a Byzantine miner submits a “high ranked” PoW but does not drive reconfiguration,
the system temporarily stalls until some honest miner finds an even higher ranked PoW.
Note that no transactions can be approved in the meantime because internal leaders are all
lower ranked than the Byzantine PoW finder. Our solution to this problem is to “expire”
stalling external leaders, and give the leader role back to current committee members, so
that the committee can resume processing transactions under internal leaders until the next
external leader emerges. Crucially, during this process, we must enforce a total order among
all leaders, internal or external, to ensure safety. The details are presented in Section 4.
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1.2 Overview of the Model and Proof
We adopt the network model of Pass et al. [25]: a bounded message delay of ∆ that is known
apriori to all participants. Note that this is the standard synchronous network model in
distributed computing, though Pass et al. [25] call it “asynchronous networks”. What they
really meant was that Bitcoin does not behave like a conventional synchronous protocol. In
a conventional synchronous protocol, participants move forward in synchronized rounds of
duration ∆, but Bitcoin does nothing of this sort and has no clear notion of rounds. Our
adoption of a synchronous network model may raise a few immediate questions, which we
discuss below.

Is the bounded message delay assumption realistic for the Internet? How realistic this
assumption is depends a lot on the parameter ∆. With a conservative estimate, say ∆ = 5
seconds, and Byzantine fault tolerance, the assumption may be believable. Fault tolerance
also helps here. Participants experiencing slow networks and unable to deliver messages
within ∆ are considered Byzantine. So the assumption we require in Solida is that adversarial
participants and “slow” participants collectively control no more than (roughly) 1/3 of the
mining power.

More importantly, the bounded network delay assumption seems necessary for all PoW-
based protocols. Otherwise, imagine that whenever an honest member finds a PoW, its
messages are arbitrarily delayed due to asynchrony. Then, it is as if that the adversary
controls 100% of the mining power. In this case, the adversary can create forks of arbitrary
lengths in Bitcoin or completely take over the committee in BFT-based blockchains [8, 15, 26].
Pass et al. formalized the above intuition and showed that Bitcoin’s security fundamentally
relies on the bounded message delay [25]. The larger ∆ is, the smaller percentage of Byzantine
participants Bitcoin can tolerate; if ∆ is unbounded (an asynchronous network), then even
an adversary with minuscule mining power can break Bitcoin.

Why do we use PBFT if the network is synchronous? It is well known that there exist
protocols that can tolerate f < n/2 Byzantine faults in a synchronous network [14, 20, 29].
By requiring f < n/3, PBFT preserves safety under asynchrony. But this seems unnecessary
given that we assume synchrony. We adopt PBFT (with modifications) because it is an
established protocol that provides responsiveness. Most protocols that tolerate f < n/2 are
synchronous and not responsive, because they advance in rounds of duration ∆. If the actual
latency of the network is better than ∆ – either because the ∆ estimate is too pessimistic,
the network is faster in the common case, or the network speed has improved as technology
advances – a responsive protocol would offer better performance than a synchronous one. In
other words, we opt to use an asynchronous protocol in a synchronous setting, essentially
abandoning the strength of the bounded message delay guarantee, in order to run as fast as
the network permits. But like all PoW-based blockchains, we rely on synchrony for safety in
the worse case. We remark that a recent protocol called XFT [20] seems to be responsive in
its steady state while tolerating f < n/2 Byzantine faults. An interesting future direction is
to explore whether we can combine our reconfiguration techniques and XFT to get the best
of both worlds.

Proof outline. If each committee in Solida has no more than f < n/3 Byzantine members,
then safety mostly follows from traditional Byzantine consensus. To guarantee f < n/3, we
require that reconfiguration is mostly “fair”, i.e., the probability that a newly elected member
is honest (Byzantine) is roughly proportional to the mining power of honest (Byzantine)
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Table 1 Comparison of consensus protocols in Solida and related designs. Bitcoin and
Solida combine committee election and transactions into a single step. Other protocols decouple the
two, which we reflect with two separate columns in the table.

Design Consensus for Responsive Defend
committee election transactions selfish mining

Bitcoin [22] Nakamoto No No
Bitcoin-NG [9] Nakamoto Nakamoto No No
PeerCensus [8] Byzantine∗ Byzantine Yes No
ByzCoin [15] Nakamoto/Byzantine Byzantine Yes Yes

Hybrid consensus [26] Nakamoto Byzantine Yes Yes
Solida Byzantine Byzantine Yes Yes

miners. Additionally, with external leaders driving reconfiguration, we can show independence
between reconfiguration events, and can then apply the Chernoff inequality to bound the
probability of having n/3 Byzantine members on a committee. Thus, the key step of the
proof is to show that the Byzantine participants cannot distort their chance of joining the
committee by too much. Here, the adversary’s main advantage is the network delay for
honest participants, which essentially buys extra time for Byzantine miners to find PoWs.
But since the network delay is bounded, the Byzantine miners’ advantage in finding PoWs
can be also bounded.

2 Related Work

A comparison between Solida and related designs. Table 1 compares Solida and related
designs. To start, we have Bitcoin that pioneered the direction of permissionless consensus
(though not using the term). Bitcoin uses Nakamoto consensus, i.e., PoW and the longest-
chain-win rule, and does not separate leader election and transaction processing. There
have been numerous follow-up works in the Nakamoto framework. Some “altcoins” simply
increases the block creation rate without other major changes to the Bitcoin protocol. A few
proposals relax the “chain” design and instead utilize other graph structures to allow for
faster block creation rate [32, 19, 31]. Some proposals [28] aim to improve throughput with
off-chain transactions.

The key idea of Bitcoin-NG is to decouple transactions and leader election [9]. A miner
is elected as a leader if it mines a (key) block in a PoW chain. This miner/leader is then
responsible for signing transactions in small batches (microblocks) until a new leader emerges.
Since (key) blocks in the PoW chain are small, Bitcoin-NG reduces the likelihood of forks.
One can think of each leader in Bitcoin-NG to be a single-member committee. Since a single
leader cannot be trusted, any transactions it approves still have to be buried in a Nakamoto
PoW chain. Thus, Bitcoin-NG does not improve transaction confirmation time.

To our knowledge, PeerCensus [8] is the first work to envision a committee that approves
transactions using PBFT. It makes the observation that Byzantine consensus enables fast
transaction confirmation. The description and pseudocode are very high level. Under our
best interpretation, it seems that the committee is responsible for reconfiguring itself using
Byzantine consensus, but no detail is given on reconfiguration. ByzCoin [15] employs multi-
signatures to improve the scalability of PBFT. The reconfiguration algorithm in ByzCoin
seems to be left open with multiple options. The description in the paper [15] is quite terse,
and can be interpreted in multiple ways. A later blog post [11] suggests adopting hybrid
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consensus [26]. If ByzCoin goes this path, then our comparison to hybrid consensus applies
to ByzCoin as well. Through private communication, we learned that ByzCoin designers
also had in mind a PBFT-style reconfiguration protocol, which seems to involve extra steps
not described in the paper. We will have to wait to see a detailed published reconfiguration
protocol to compare with ByzCoin properly. Pass and Shi proposed hybrid consensus [26],
which we have compared to in detail in Section 1.

Blockchain analysis. While the Bitcoin protocol is quite simple and elegant, proving its
security rigorously turns out to be highly nontrivial. The original Bitcoin paper [22] and
a few early works [10, 32] considered specific attacks. Garay et al. [12] provided the first
comprehensive security analysis for Bitcoin, by modeling Bitcoin as a synchronous protocol
running in a synchronous network. Pass et al. [25] refined the analysis after observing that
Bitcoin, while relying on a synchronous assumption, does not behave like a conventional
synchronous protocol (cf. Section 1.1).

Byzantine Consensus. Consensus is a classic problem in distributed computing. There are
a few variants of the consensus problem under Byzantine faults. A theoretical variant is
Byzantine agreement [18] in which a fixed set of participants, each with an input value, try to
agree on the same value. A more practical variant, which is also more suitable for blockchains,
is BFT state machine replication (SMR). In this variant, a fixed set of participants try to
agree on a sequence of values that may come from any participant or even external sources.
Most BFT SMR protocols follow the PBFT [5] framework.

3 Model

Network. We consider a permissionless setting in which participants use their public keys
as pseudonyms and can join or leave the system at any time. Participants are connected
to each other in a peer-to-peer network with a small diameter. As mentioned, we adopt a
synchronous network model: whenever a participant sends a message to another participant,
the message is guaranteed to reach the recipient within ∆ time. For convenience, we define
∆ to be the end-to-end message delay bound. If there are multiple hops from the sender
to the recipient, ∆ is the time upper bound for traveling all those hops. Our protocol uses
computational puzzles, i.e., PoW. Similar to Bitcoin, the difficulty of the puzzle is periodically
adjusted so that the expected time to find a PoW stays at D. D should be set significantly
larger than ∆ according to our analysis in Section 4.5.

Types of participants. Participants in the system are either honest or Byzantine. Honest
participants always follow the prescribed protocol, and are capable of delivering a message
to other honest participants within ∆ time. Byzantine participants are controlled by a
single adversary and can thus coordinate their actions. At any time, Byzantine participants
collectively control no more than ρ fraction of the total computation power. We assume the
n members in the Genesis committee C1 are known to all participants, and that the number
of Byzantine participants on C1 is less than n/3.

Delayed adaptive adversary. We assume it takes time for the adversary to corrupt a honest
participant. It captures the idea that it takes time to bribe a miner or infect a clean host.
Most committee-based designs [8, 15, 26] require this assumption. Otherwise, an adversary
can easily violate safety by corrupting the entire committee, which may be small compared
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to the whole miner population. This is formalized as a delayed adaptive adversary by Pass
and Shi [26]. Specifically, we assume that even if the adversary starts corrupting a member
as soon as it emerges with a PoW, by the time of corruption, the member would have already
left the committee. Whether this assumption holds in practice remains to be examined.
Algorand [6] introduced techniques to hide the identities of the committee members, and can
thus tolerate instant corruption. Its core technique, however, seems to be tied to proof of
stake, which has its own challenges such as the nothing-at-stake problem.

4 The Protocol

4.1 Overview

Solida has a rolling committee running a Byzantine consensus protocol to commit (batches
of) transactions and reconfiguration events into a ledger. We say each committed decision
fills a slot in a linearizable ledger. The protocol should guarantee all honest members commit
the same value for each slot (safety) and keeps moving to future slots (liveness). To provide
safety and liveness, the number of Byzantine members on each committee must be less than
f (n = 3f + 1), which will be proved in Section 4.5.

We first describe the protocol outside reconfiguration, i.e., when no miner has found a
PoW for the current puzzle. This part further consists of two sub-protocols: steady state
under a stable leader (Section 4.2), and view change to replace the leader (Section 4.3).
Members monitor the current leader, and if the leader does not make progress after some
time, members support the next leader. The new leader has to learn what values have been
proposed, and possibly re-propose those values. This part of the protocol is very similar to
PBFT [5] except that the views in our protocol have more structures to support external
leaders for reconfiguration (Section 4.4).

Each configuration can have multiple lifespans, and each lifespan can have many views.
We use consecutive integers to number configurations, lifespans within a configuration, and
views within a lifespan. The lifespan number is the number of PoWs (honest) committee
members have seen so far in the current configuration. Intuitively, when a new PoW is found,
the lifespan of the previous PoW ends. As explained in Section 1.1, our protocol can switch
back and forth between internal and external leaders and we must enforce a total order among
all leaders. To this end, we will associate each leader with a configuration-lifespan-view tuple
(c, e, v), and rank leaders by c first, and then e, and then v. Each (c, e, v) tuple also defines
a steady state, in which the leader of that view, denoted as L(c, e, v), proposes values for
members to commit. The view tuple and the leader role are managed as follows.

Upon learning that a reconfiguration event is committed into the ledger, a member M
increases its configuration number c by 1, and resets e and v to 0. L(c, 0, 0) is the newly
added member by the previous reconfiguration consensus decision.
Upon receiving a new PoW for the current configuration, a member M increases its
lifespan number e by 1, and resets v to 0. M now supports the finder of the new PoW as
L(c, e, 0) (e ≥ 1).
Upon detecting that the current leader is not making progress (timed out), a member M
increases its view number v by 1. L(c, e, v) (v ≥ 1) is the l-th member on the current
committee, by the order they join the committee, where l = H(c, e) + v mod n, and H
is a random oracle (hash function).

To summarize, the 0-th leader of a lifespan is the newly added member (for e = 0) or the
new PoW finder (e ≥ 1). After that, leaders in that lifespan are selected in a round robin
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manner, with a pre-defined starting point. We chose a pseudorandom starting point using H
but other choices also work.

Now let us consider whether honest members agree on the identities of the leaders. For a
view (c, e, v) with e = 0 or v ≥ 1, the leader identity is derived from a deterministic function
on the tuple and the current committee member identities (i.e., previous reconfiguration
decisions). As long as the protocol ensures safety so far, members agree on the identities
of these leaders. For views of the form (c, e, 0) with e ≥ 1, members may not agree on the
leader’s identity if they receive multiple PoWs out of order. This is not a problem for safety
because it is similar to having an equivocating leader and a BFT protocol can tolerate leader
equivocation. However, contending leaders in a view may prevent progress. Luckily, members
will time out and move on to views (c, e, v) with v ≥ 1. Unique leaders in those views will
ensure liveness.

Crucially, our protocol forbids pipelining to simplify reconfiguration: a member M sends
messages for slot s only if it has committed all slots up to s− 1. LetM(c, e, v, s) be the set
of members currently in view (c, e, v) working on slot s. Each honest member M can only
belong to one such set at any point in time.

We use digital signatures even under a stable leader, i.e., we do not use PBFT’s MAC
optimization [5]. The MAC optimization is not effective for a cryptocurrency since there are
already hundreds of digital signatures to verify in each block/slot. We use 〈x〉M to denote a
message x that carries a signature from member M . A message can be signed in layers, e.g.,
〈〈x〉M 〉M ′ . When the context is clear, we omit the signer and simply write 〈x〉 or 〈〈x〉〉.

When we say a member “broadcasts” a message, we mean the member sends the message
to all current committee members including itself.

4.2 Steady State
(Propose) The leader L picks a batch of valid transactions {tx} and then broadcasts
{tx} and 〈propose, c, e, v, s, h〉L where h is the hash digest of {tx}.
After receiving {tx} and 〈propose, c, e, v, s, h〉L, a member M ∈M(c, e, v, s) checks
L = L(c, e, v) and L has not sent a different proposal,
s is a fresh slot, i.e., no value could have been committed in slot s (details in Section 4.4),
{tx} is a set of valid transactions whose digest is h.

(Prepare) If all the above checks pass, M broadcasts 〈prepare, c, e, v, s, h〉.
After receiving 2f + 1 matching prepare messages, a member M ∈ M(c, e, v, s) accepts
the proposal (represented by its digest h), and concatenates the 2f + 1 matching prepare
messages into an accept certificate A.
(Commit) Upon accepting h, M broadcasts 〈commit, c, e, v, s, h〉.
After receiving 2f + 1 matching commit messages, a member M ∈M(c, e, v, s) commits
{tx} into slot s, and concatenates the 2f + 1 matching commit messages into a commit
certificate C.

The above is standard PBFT. We now add an extra propagation step to the steady state.

(Notify) Upon committing h, M sends 〈〈notify, c, e, v, s, h〉 , C〉M to all other members to
notify them about the decision. M also starts propagating this decision on the peer-to-peer
network to miners, users and merchants, etc. M then moves to slot s+ 1.
Upon receiving a notify message like the above, a member commits h, sends and propagates
its own notify message if it has not already done so, and then moves to slot s+ 1.
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4.3 View Change
A Byzantine leader cannot violate safety, but it can prevent progress by simply not proposing.
Thus, in PBFT, every honest member M monitors the current leader, and if no new slot is
committed after some time, M abandons the current leader and supports the next leader.
Since we have assumed a worst-case message delay of ∆, it is natural to set the timeout based
on ∆. The concrete timeout values (4∆ and 8∆) will be justified in the proof of Theorem 2.

(View-change) Whenever a member M moves to a new slot s in a steady state, it starts
a timer T . If T reaches 4∆ and M still has not committed slot s, then M abandons the
current leader and broadcasts 〈view-change, c, e, v〉.
Upon receiving 2f + 1 matching view-change messages for (c, e, v), if a member M is not
in a view higher than (c, e, v), it forwards the 2f + 1 view-change messages to the new
leader L′ = L(c, e, v + 1). After that, if M does not receive a new-view message from L′

within 2∆, then M abandons L′ and broadcasts 〈view-change, c, e, v + 1〉.
(New-view) Upon receiving 2f + 1 matching view-change messages for (c, e, v), the new
leader L′ = L(c, e, v + 1) concatenates them into a view-change certificate V, broadcasts
〈new-view, c, e, v + 1,V〉L′ , and enters view (c, e, v + 1).
Upon receiving a 〈new-view, c, e, v,V〉L′ message, if a member M is not in a view higher
than (c, e, v), it enters view (c, e, v) and starts a timer T . If T reaches 8∆ and still no
new slot is committed, then M abandons L′ and broadcasts 〈view-change, c, e, v〉.
(Status) Upon entering a new view (c, e, v), M sends 〈〈status, c, e, v, s− 1, h, s, h′〉 , C,A〉
to the new leader L′ = L(c, e, v). In the above message, h is the value committed in slot
s− 1 and C is the corresponding commit certificate; h′ is the value accepted by M in slot
s and A is the corresponding accept certificate (h′ = A = ⊥ if M has not accepted any
value for slot s). We call the inner part of the message (i.e., excluding C,A) its header.
Upon receiving 2f + 1 status, L′ concatenates the 2f + 1 status headers to form a status
certificate S. L′ then picks a status message that reports the highest last-committed slot
s∗; if there is a tie, L′ picks the one that reports the highest ranked accepted value in
slot s∗ + 1 . Let the two certificates in this message be C∗ and A∗ (A∗ might be ⊥).
(Re-propose) The new leader L′ broadcasts 〈repropose, c, e, v, s∗ + 1, h′,S, C∗,A∗〉L′ . In
the above message, s∗ should be the highest last-committed slot reported in S. h′ should
match the value in A∗ if A∗ 6= ⊥; If A∗ = ⊥, then L′ can choose h′ freely. 2

The repropose message serves two purposes. First, C∗ allows everyone to commit slot s∗.
Second, it re-proposes h′ for slot s∗ + 1, and carries a proof (S,A∗) that h′ is safe for
slot s∗ + 1. The repropose message is invalid if any of the aforementioned conditions is
violated: s∗ is not the highest committed slot, C is not for slot s∗, A is not for the highest
ranked accepted value for s∗ + 1, or h′ is not the value certified by A.
Upon receiving a valid repropose message, a member M commits slot s∗ if it has not
already; M then executes the prepare/commit/notify steps as in the steady state for slot
s∗ + 1, and marks all slots > s∗ + 1 fresh for view (c, e, v). At this point, the system
transitions into a new steady state.

A practical implementation of our protocol can piggyback status messages on view-change
messages and repropose messages on new-view messages to save two steps. We choose to
separate them in the above description because the reconfiguration sub-protocol can reuse
the status step.

2 Strictly speaking, in this case, L′ is proposing a new value rather than re-proposing. But we keep the
message name as repropose for convenience. A similar situation exists in reconfiguration.
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4.4 Reconfiguration
PoW to prevent Sybil attacks. In order to join the committee, a new member must show
a PoW, i.e., a solution to a computational puzzle based on a random oracle H. The details
of the puzzle will be discussed later. For now, it is only important to know that each
configuration defines a new puzzle. Let the puzzle for configuration c be puzzle(c). Solutions
to this puzzle are in the form of (pk, nonce). pk is a miner’s public key. A miner keeps trying
different values of nonce until it finds a valid solution such that H(puzzle(c), pk, nonce) is
smaller than some threshold. The threshold is also called the difficulty and is periodically
adjusted to keep the expected reconfiguration interval at D.

Upon finding a PoW, the miner tries to join the committee by driving a reconfiguration
consensus as an external leader. To do so, it first broadcasts the PoW to committee members.

(New-lifespan) Upon finding a PoW, the miner broadcasts it to the committee members.
Upon receiving a new valid PoW for the current configuration (that M has not seen
before), M forwards the PoW to other members, enters view (c, e+ 1, 0), sets the PoW
finder as its 0-th leader L′ = L(c, e+ 1, 0) of the new lifespan, and starts a timer T . If
T reaches 8∆ and still no new slot is committed, then M abandons L′ and broadcasts
〈view-change, c, e+ 1, 0〉.
(Status) Upon entering a new lifespan, M sends L′ 〈〈status, c, e, 0, s− 1, h, s, h′〉 , C,A〉,
where s, h, C,A are defined the same way as in the view-change sub-protocol.
Upon receiving 2f + 1 status, L′ constructs s∗, S, C∗ and A∗ as in view-change.
(Re-propose and Reconfigure) Let h∗ be the committed value in the highest commit-
ted slot s∗ among S. Let h′ be the highest ranked accepted value (could be ⊥) into slot
s∗ + 1 among S. Note that h∗ and h′ are certified by S, C∗ and A∗. Now depending on
whether h∗ and h′ are transactions or reconfiguration events, the new external leader L′
takes different actions.

If h∗ is a reconfiguration event to configuration c + 1, then L′ simply broadcasts C
and terminates. Terminating means L′ gives up its endeavor to join the committee
(it is too late and some other leader has already finished reconfiguration) and starts
working on puzzle(c+ 1).
If h∗ is a batch of transactions, and h′ is a reconfiguration event to configuration c+ 1,
then L′ broadcasts 〈repropose, c, e, 0, s∗ + 1, h′,S, C∗,A∗〉L′ and then terminates.
If h∗ is a batch of transactions, and h′ = ⊥, then L′ tries to drive the reconfigura-
tion consensus into slot s∗ + 1 by broadcasting 〈repropose, c, e, 0, s∗ + 1, h,S, C∗,A∗〉L′
where h is a reconfiguration event that lets L′ join the committee. If this proposal
becomes committed, then starting from slot s∗+ 2, the system reconfigures to the next
configuration and L′ joins the committee replacing the oldest member.
If h∗ and h′ are both batches of transactions, then L’ first re-proposes h′ for slot s∗+ 1
by broadcasting 〈repropose, c, e, 0, s∗ + 1, h′,S, C∗,A∗〉L′ . After that, L′ tries to drive
a reconfiguration consensus into slot s∗+2 by broadcasting 〈propose, c, e, 0, s∗ + 2, h〉L′
where h is a reconfiguration event that lets L′ join the committee. If this proposal
becomes committed, then starting from slot s∗+ 3, the system reconfigures to the next
configuration and L′ joins the committee replacing the oldest member.

In the latter three cases, members react to the repropose message in the same way
as in view-change: check its validity and execute prepare/commit/notify. Note that the
reconfiguration proposal in the last case is a steady state propose message instead of a
repropose message, and it does not need to carry certificates as proofs. This is because
after members commit the re-proposed value into slot s∗ + 1, the system enters a special
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steady state under leader L′. Slot s∗ + 2 will be marked as a fresh slot in this steady state.
This steady state is special in the sense that, if L′ is not faulty and is not interrupted
by another PoW finder, members will experience a configuration change, but the leader
remains unchanged as we have defined L(c+ 1, 0, 0) to be the newly added member. After
reconfiguration, it becomes a normal steady state in view (c+ 1, 0, 0).

The puzzle and defense to selfish mining. We now discuss what exactly the puzzle is. A
natural idea is to make the puzzle be the previous reconfiguration decision. However, this
allows withholding attacks similar to selfish mining [10]. To favor the adversary, we assume
that if the adversary and an honest miner both find PoWs, the adversary wins the contention
and joins the committee. Then, when the adversary finds a PoW first, its best strategy is to
temporarily withhold it. At this point, the adversary already knows the next puzzle, which is
its own reconfiguration proposal. Meanwhile, honest miners are wasting their mining power
on the current puzzle, not knowing that they are doomed to lose to the adversary when they
eventually find a PoW. This gives the adversary a head start on the next puzzle. Its chance of
taking the next seat on the committee will hence be much higher than its fair share of mining
power. The authors of ByzCoin suggested an idea to thwart the above attack: let the puzzle
include 2f + 1 committee member signatures. This way, a PoW finder cannot determine
the puzzle on its own and thus gains nothing from withholding its PoW. For concreteness,
we let puzzle(c+ 1) be any set of f + 1 notify headers for the last reconfiguration decision
〈notify, c, e, v, s, h〉. This ensures the following:

I Lemma 1. The adversary learns a puzzle at most 2∆ time earlier than honest miners.

Proof. For the adversary to learn the puzzle, at least one honest committee member must
broadcast its notify message, which will cause all other honest members to broadcast their
notify messages within ∆ time. After another ∆ time, all honest miners receive enough notify
messages to learn the puzzle. J

4.5 Safety and Liveness
We first prove safety and liveness assuming each committee has no more than f < n/3
Byzantine members. The proof of the following theorem (given in the appendix) mostly
follows PBFT. Essentially, the biggest change we made to PBFT at an algorithmic level is
from a round robin leader schedule to a potential interleaving between internal and external
leaders. But crucially, we still have a total order among leaders to ensure safety and liveness.

I Theorem 2. The protocol achieves safety and liveness if each committee has no more than
f < n/3 Byzantine members.

Next, we show f < n/3 indeed holds. Let ρ be the adversary’s ratio of mining power.
Honest miners thus collective control 1 − ρ of the total network mining power. Ideally,
we would hope that reconfiguration is a “fair game”, i.e., the adversary taking the next
committee seat is with probability ρ, and an honest miner takes the next seat with probability
1 − ρ. This is indeed simply assumed to be the case in PeerCensus [8] and ByzCoin [15].
However, we show that due to network latency, it is as if that the adversary has an effective
mining power ρ′ = 1− (1− ρ)e−(2ρ+8)∆/D > ρ. (Recall that D is the expected time for the
entire network to find a PoW.) We need D � ∆ so that ρ′ is not too much larger than ρ.

I Theorem 3. Assuming f < n/3 holds for C1, then f < n/3 holds for each subsequent
committee except for a probability exponentially small in n if ρ′ = 1−(1−ρ)e−(2ρ+8)∆/D < 1/3.
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Proof. The increase in the adversary’s effective mining power comes from three sources.
First, as Lemma 1 shows, the adversary may learn a puzzle up to 2∆ earlier than honest
miners. Second, if the adversary finds a PoW while an honest external leader is reconfiguring,
which can take up to 8∆ time, the adversary can interrupt the honest leader and win the
reconfiguration race. Lastly, two honest leaders may interrupt each other if they find PoWs
within 8∆ time apart, while the adversary-controlled miners can coordinate their actions.
Therefore, an honest miner wins a reconfiguration if all three events below happen:

(event X) the adversary finds no PoW in its 2∆ head start,
(event Y ) some honest miner finds a PoW earlier than the adversary given X, and
(event Z) no miner, honest or adversarial, finds a PoW in the next 8∆ time given Y .

PoW mining is a memory-less process modeled by a Poisson distribution: the probability
for a miner to find k PoWs in a period is p(k, λ) = λke−λ

k! , where λ is the expected number
of PoWs to be found in this period. Recall that the expected time for all miners combined to
find a PoW is D. In the 2∆ head start, the adversary expects to find λX = 2∆ρ/D PoWs.
Thus, Pr(X) = p(0, λX) = e−2∆ρ/D. Similarly, Pr(Z) = e−8∆/D. Event Y is a “fair race”
between the adversary and honest miners, so Pr(Y ) = 1 − ρ. The memory-less nature of
PoW also means that the above events X,Y and Z are independent. Thus, the probability
that an honest miner wins a reconfiguration is

Pr(X ∩ Y ∩ Z) = Pr(X) Pr(Y ) Pr(Z) = (1− ρ)e−(2ρ+8)∆/D := 1− ρ′.

We define the above probability to be 1− ρ′, which can be thought of as the honest miners’
effective mining power once we take message delays into account. ρ′ is then the adversary’s
effective mining power. This matches our intuition: as D →∞, the adversary’s advantage
from message delay decreases, and (1− ρ′)→ (1− ρ).

Conditioned on all committees up to Ci having no more than n/3 Byzantine members,
the adversary wins each reconfiguration race with probability at most ρ′, independent of the
results of other reconfiguration races. We can then use the Chernoff inequality to bound
the probability of Byzantine members exceeding n/3 on any committee up to Ci+1. Let
Q denote the number of Byzantine members on a committee. We have E(Q) := µ = ρ′n.
Pr(Q ≥ (1 + δ)µ) ≤ e

−δµ log(1+δ)
2 due to the Chernoff bound. Select δ = 1

3ρ′ − 1, we have

Pr(Q ≥ n/3) ≤ e
n(1−3ρ′) log(3ρ′)

6 . If ρ′ < 1/3, then (1 − 3ρ′) log(3ρ′) < 0, and the above
probability is exponentially small in n as required. J

Concrete committee size. We calculate the required committee size under typical values.
We can calculate ρ′ from ρ given the value of ∆/D. If ∆ is 5 seconds and D is 10 minutes,
then ∆/D = 1/120. Then, for a desired security level, a simple calculation of binomial
distribution yields the required committee size n. The results are listed in Table 2. A security
parameter k means there is a 2−k probability that, after a reconfiguration, the adversary
controls more than n/3 seats on the committee. k = 25 or k = 30 should be sufficient in
practice. Assuming we reconfigure every 10 minutes, 225 reconfigurations take more than 600
years and 230 reconfigurations take more than 20,000 years. With ρ′ = 25%, the required
committee size is around 1000.

It is worth noting that as ρ′ approaches 33%, the required committee size increases
rapidly and the committee-based approach becomes impractical. This gap between theory
and practice is expected. Similarly, Bitcoin, in theory, can tolerate an adversarial with up to
50% mining power. But the recommended “six confirmation” is calculated assuming a 10%
adversary and a rather low security level k ≈ 10. If the adversary really controls close to
50% mining power, then thousands of confirmations would be required for each block.
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Table 2 The required committee size under different adversarial miner ratios ρ and desired
security levels k, assuming ∆/D = 1/120.

k 20 25 30 35 40

ρ = 14% ρ′ = 20% 232 298 367 439 508
ρ = 20% ρ′ = 25% 649 841 1036 1231 1423
ρ = 23% ρ′ = 28% 1657 2149 2644 3142 3580
ρ = 25% ρ′ = 30% 4366 5650 6949 8248 9256

4.6 Towards Pipelining
One limitation of the above Solida protocol is that it forbids pipelining, i.e., members are
not allowed to work on multiple slots in parallel. The interaction between pipelining and
reconfiguration is non-trivial, and to the best of our knowledge, has not been worked out in
BFT protocols. In particular, when a slot is being worked on, the exact configuration (i.e.,
identities of committee members) for that slot would not be known if previous slots have not
been committed. In this subsection, we briefly describe how we plan to support pipelining.
We hope to present and implement a detailed pipelined protocol in a future version.

The key idea is to let each proposal carry a digest of its “predecessor proposal”. Since the
predecessor proposal also carries the digest of its own predecessor proposal, each proposal is
tied to its entire chain of “ancestor proposals”. A non-leader member M sends messages for
a proposal for slot s only if M has accepted its predecessor proposal in slot s − 1. When
a member accepts a proposal, it also accepts all its ancestors proposals; likewise, when a
member commits a proposal, it also commits all its ancestors proposals.

During a view-change or a reconfiguration, a member reports in its status message the
highest ranked proposal chain that it has accepted (with an accept certificate). The new
leader L′ then re-proposes the highest ranked proposal chain it hears from members. Note
that in either step, we prioritize the highest ranked proposal chain, not the longest proposal
chain. If the highest ranked proposal chain contains a reconfiguration event in its tail (highest
numbered slot), then L′ re-proposes this proposal chain and terminates. Otherwise, L′
re-proposes the proposal chain and then start making its own proposals. If L′ is a PoW
finder, then its proposal will be a reconfiguration proposal. If its proposal goes through, L′
joins the committee and the system enters a new configuration. The first leader in the new
configuration is the newly added member L′, and the system transitions back to a steady
state with L′ now serving as an internal leader.

5 Implementation and Evaluation

Implementation details. We implement the non-pipelined version of the Solida consensus
protocol in Python and measure its performance. We implement our 6-phase PBFT-style
protocol in which committee members agree on a proposal digest from a successful miner.
For digital signatures, we use ECDSA with the prime192v2 curve and the Charm crypto
library [2]. We test Solida on 16 m4.16xlarge machines on Amazon EC2. The CPUs are
Intel Xeon E5-2686 v4 @ 2.3 GHz. Each machine has 64 cores, giving a total of 1024 cores.
We use 1 CPU core for each committee member, testing committee size up to 1000. To
emulate Internet latency and bandwidth, we add a delay of 0.1 second (unless otherwise
stated) to each message and throttle the bandwidth of each committee member to the values
in Figure 1.
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Figure 1 Time to achieve reconfiguration consensus with different committee sizes and network
bandwidth.

Experimental results. The main result we report is the time it takes for committee members
to commit a reconfiguration consensus decision (committing a decision in the steady state
takes strictly less time). We report the consensus time from the leader’s perspective, i.e., the
time between when the leader sends its PoW and when the leader receives the first Notify
message, which is the earliest point at which the leader knows its proposal is committed.
Figure 1 presents the time to reach a reconfiguration consensus decision (averaged over 10
experiments) under different committee sizes n and bandwidth limits. As shown in the
zoomed-in part, with a small committee of 100 members, a decision takes 1 to 3 seconds
depending on the throughput. The bottleneck here is network latency. Recall that there
are 8 sequential messages from the leader’s perspective, each adding 0.1s latency. With
larger committees of 400 and 1000 members, network bandwidth becomes the bottleneck. As
expected, consensus time is roughly quadratic in committee size and inversely proportional
to network bandwidth. With moderate network bandwidth, consensus time is manageable
even with 1000 committee members: 48.3s for 35 Mbps and 23.6s for 75 Mbps. To study the
effect of network latency, we rerun some experiments with a 0.5s latency (results not shown).
In each experiment, the consensus time increases by about 3s, which is as expected given the
8 sequential messages and a 0.4s latency increase for each.

6 Conclusion and Future Work

This work presents Solida, a blockchain protocol based on PoW-augmented reconfigurable
Byzantine consensus. We have presented a detailed protocol, rigorously proved safety and
liveness under the (seemingly necessary) bounded message delay model, and provided a
prototype implementation and evaluation results. Besides the pipelined protocol, interesting
future directions include designing and rigorously analyzing incentives for Solida, and
extending Solida to tolerate an adversary with up to 50% mining power.
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A Proofs

Proof of Theorem 2. We first consider safety. Let M be the member to commit slot s in
the lowest ranked view. Say M commits value h and it does so in view (c, e, v). We need to
show that no other value h′ 6= h can be committed into slot s in that view and all future
views. In fact, we will show by induction that there cannot exist an accept certificate A′ for
h′ in that view and all future views, which means no honest member would have accepted h′,
let alone committing it. Since M committed in view (c, e, v), there must be 2f + 1 members
that have accepted h in that view, and 2f + 1 members that have sent 〈prepare, c, e, v, h〉.
For the base case, suppose for contradiction that A′ exists for h′ in view (c, e, v). Then,
2f + 1 members must send 〈prepare, c, e, v, h′〉. This means at least one honest member has
sent prepare messages for two different proposals in view (c, e, v), which is a contradiction.
For the inductive step, suppose that no accept certificate exists for h′ from view (c, e, v) up
to (excluding) view (c′, e′, v′). Since M has committed slot s, then at least 2f + 1 members
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must have committed slot s − 1 (they send prepare for slot s only after committing slot
s− 1). So in the status certificate S of a repropose message for view (c′, e′, v′), the largest
last-committed slot s∗ ≥ s− 1. Therefore, slot s is either already committed to h, or has
to be re-proposed. If slot s needs to be re-proposed, which means s∗ = s− 1, then S must
contain at least one status header reporting that h has been accepted into slot s with a rank
no lower than (c, e, v). Due to the inductive hypothesis, no accept certificate can exist for
h′ with a rank equal to or higher than (c, e, v). h is, therefore, the unique highest ranked
accepted value for slot s, and it is the only value that can be legally re-proposed in view
(c′, e′, v′). Hence, no accept certificate for h′ can exist in view (c′, e′, v′), completing the
proof.

Next, we consider liveness. According to the protocol, if a Byzantine leader does not
commit any slot for too long, it will be replaced shortly. But here is an another liveness
attack that a Byzantine leader can perform in the cryptocurrency setting. The Byzantine
leader can simply construct transactions that transfer funds between its own accounts and
keep proposing/committing these transactions. It is impossible for honest members to detect
such an attack. Fortunately, we have shown that honest miners win at least 2/3 of the
reconfiguration races, and after a reconfiguration, the newly added member becomes the
leader. So 2/3 of the time, an honest leader is in control to provide liveness. It remains to
check that an honest leader will not be replaced until the next lifespan. It is sufficient to show
that an honest leader will never be accused by an honest member. This is guaranteed by our
timeout values. First, observe that the notify step ensures two honest members commit a
slot at most ∆ time apart. In the steady state, each member gives the leader 4∆ time to
commit each slot: one ∆ to account for the possibility that other members come to this slot
(i.e., finish the previous slot) ∆ time later, and three ∆ for the three phases in the steady
state. At the beginning of a new view or a new lifespan, each member gives the leader 8∆
time, because the status and repropose steps take extra 4∆ time. The last case to consider is
when a member abandons a future leader because it does not send new-view when it should.
Before accusing a future leader, a member allows 2∆ time after forwarding it a view-change
certificate, which is sufficient for an honest leader to broadcast new-view. J

Remark. Garay et al. [12] laid out three desired properties for blockchains: common prefix,
chain quality, and chain growth. We note that these three properties are more applicable
to Bitcoin-style blockchains that do not satisfy traditional safety and liveness. Common
prefix is strictly weaker than safety. Chain growth is the Nakamoto consensus counterpart
of liveness. If chain quality is interpreted as “the ratio of honest committee members” in
the BFT-based approach, then we have proved it in Theorem 3. If it is instead interpreted
as “the ratio of slots committed under honest leaders”, then it is not very meaningful. We
cannot prevent Byzantine leaders from making progress really fast, thereby decreasing the
ratio of slots committed under honest leaders, but that does not hurt honest leaders’ ability
to commit slots at their own pace in their own views.

B Comparison to ByzCoin Evaluation Results

We would like to explain an apparent contradiction between our experimental results and
those of ByzCoin [15]. Under the same parameter settings (0.1s latency, 35 Mbps bandwidth
and 100 committee members), our implementation of PBFT takes only 1.3 seconds per
consensus decision, while ByzCoin concludes that PBFT has unacceptable performance. As
a result, ByzCoin suggests sending (and aggregating) consensus messages in a tree rooted at
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the leader. On a closer look, our results and theirs actually corroborate each other. ByzCoin
finds PBFT performance to be unacceptable only when the block is large. With a small block
size, their results confirm that PBFT is very fast and indeed takes about 1s per consensus
decision. Therefore, the unacceptable performance they see in PBFT solely results from the
leader broadcasting the entire batch of transactions {tx}. It is indeed important to reduce
the burden on the leader by gossiping {tx} among committee members. But using a tree as
the communication graph is not Byzantine fault tolerant. A Byzantine node in the tree can
make its entire subtree unreachable. Instead, {tx} should be sent through the peer-to-peer
network much like in Bitcoin. The other major technique ByzCoin proposed, the Schnorr
multi-signature, is also not Byzantine fault tolerant. Schnorr signature has a “commitment”
step before the actual signing step. A Byzantine signer may participate in the commitment
step but refuse to sign in the signing step. The leader then has to initiate a new instance
of Schnorr multi-signature up to f times, which may be even slower than using normal
signatures. Therefore, the results reported in ByzCoin are only for the best case where there
is no adversary. These results are still relevant if we believe most of the time during the
protocol, there is no adversary. Alternatively, we may use multi-signature schemes that do
not have the commitment step and are thus Byzantine fault tolerant [4]. But these schemes
are much less efficient, and it remains interesting future work to study whether they improve
efficiency in practice.
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Abstract
Quorum systems are useful tools for implementing consistent and available storage in the presence
of failures. These systems usually comprise of a static set of servers that provide a fault-tolerant
read/write register accessed by a set of clients. We consider a dynamic variant of these systems
and propose FreeStore, a set of fault-tolerant protocols that emulates a register in dynamic
asynchronous systems in which processes are able to join/leave the set of servers during the
execution. These protocols use a new abstraction called view generators, that captures the
agreement requirements of reconfiguration and can be implemented in different system models
with different properties. Particularly interesting, we present a reconfiguration protocol that is
modular, efficient, consensus-free and loosely coupled with read/write protocols. An analysis
and an experimental evaluation show that the proposed protocols improve the overall system
performance when compared with previous solutions.
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1 Introduction

Quorum systems [13] are a fundamental abstraction to ensure consistency and availability of
data stored in replicated servers. Apart from their use as building blocks of synchronization
protocols (e.g., consensus [7, 19]), quorum-based protocols for read/write (r/w) register
implementation are appealing due to their scalability and fault tolerance: the r/w operations
do not need to be executed in all servers, but only in a quorum of them. The consistency of
the stored data is ensured by the intersection between any two quorums.

Quorum systems were initially studied in static environments, where servers are not
allowed to join or leave the system during execution [4,13]. This approach is not adequate for
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long lived systems since given a sufficient amount of time, there might be more faulty servers
than the threshold tolerated, affecting the system correctness. Beyond that, this approach
does not allow a system administrator to deploy new machines (to deal with increasing
workloads) or replace old ones at runtime. Moreover, these protocols can not be used in
many systems where, by their very nature, the set of processes that compose the system may
change during its execution (e.g., MANETs and P2P overlays).

Reconfiguration is the process of changing the set of nodes that comprise the system.
Previous solutions proposed for reconfigurable storage, by implementing dynamic quorum
systems, rely on consensus for reconfigurations in a way that processes agree on the set
of servers (view) supporting the storage [14,20]. Although adequate, since the problem of
changing views resembles an agreement problem, this approach is not the most efficient or
appropriate. Besides the costs of running the protocol, consensus is known to not be solvable
in asynchronous environments [11]. Moreover, atomic shared memory emulation can be
implemented in static asynchronous systems without requiring consensus [4].

DynaStore [2] was the first protocol that implement dynamic atomic storage without
relying on consensus for reconfigurations. These reconfigurations may occur at any time and
generate a graph of views from which it is possible to identify a sequence of views in which
clients need to execute their r/w operations (Figure 1, left). Unfortunately, DynaStore has
two serious drawbacks: (1) its reconfiguration and r/w protocols are strongly tied and (2) its
performance is significantly worse than consensus-based solutions in synchronous executions,
which are the norm. The first issue is particularly important since it means that DynaStore
r/w protocols (as well as other consensus-based works like RAMBO [14]) explicitly deal with
reconfigurations and are quite different from static r/w protocols (e.g., ABD protocol [4]).

More recently, the SmartMerge [17] and SpSn [12] protocols improved DynaStore by
separating the reconfiguration and r/w protocols. A common framework was proposed for
their implementations [21]. Although these approaches make it easy to adapt other static
register implementations to dynamic environments, they do not fully decouple the execution
of r/w and reconfiguration protocols, since before they execute each r/w operation, it is
necessary to access some reconfiguration abstraction to check for updates in the system.
These abstractions are implemented by a set of static single-writer multi-reader (SWMR)
registers. We show by experiments (Section 7) that this design decision significantly reduces
the system performance, even in periods without reconfigurations.

In this paper we present FreeStore, a set of algorithms for implementing fault-tolerant
atomic [18] and wait-free [15] storage that allows the reconfiguration of the set of servers
at runtime. FreeStore is composed by two types of protocols: (1) r/w protocols and
(2) the reconfiguration protocol. Read/write protocols can be adapted from static register
implementations (e.g., the classical ABD [4], as used in this paper). The reconfiguration
protocol – our main contribution – is used to change the set of replicas supporting the storage.
The key innovation of the FreeStore reconfiguration protocol is the use of view generators,
a new abstraction that captures the agreement requirements of reconfiguration protocols.
We provide two implementations of view generators – based on consensus and consensus-free
– and compare how efficiently they can be used to solve reconfiguration.

FreeStore improves the state of the art in at least three aspects: modularity, efficiency
and simplicity. The modularity of the proposed protocols is twofold: it separates the
reconfiguration from the r/w protocols, allowing other static storage protocols (e.g., [8,10]) to
be adapted to our dynamic model, and introduces the notion of view generators, capturing the
agreement requirements of a reconfiguration protocol. Moreover, this modularity is designed
in a way that it does not impact r/w operations in periods without reconfigurations. In
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Figure 1 View convergence strategies of DynaStore [2] (left) and FreeStore (right). Dotted
circles represent the auxiliary/non-established views that the system may experience during a
reconfiguration. Solid circles represent the installed/established views process must converge to.

terms of performance, both the r/w and reconfiguration protocols of FreeStore require less
communication steps than their counterparts from previous works, either consensus-based [14]
or consensus-free [2,12,17]. In particular, FreeStore’ consensus-free reconfiguration requires
less communication steps than other consensus-based reconfiguration protocols in the best
case, matching the intuition that a consensus-free approach should be faster than another
that rely on consensus. Finally, the consensus-free variant of FreeStore introduces a novel
reconfiguration strategy that reduces the number of intermediary installed views that a
process must traverse to reach the current installed view with all requested updates (see
Figure 1, right). This strategy is arguably easier to understand than the one used in previous
works, shedding more light on the study of consensus-free reconfiguration protocols.

In summary, this paper makes the following contributions:
1. It introduces the notion of view generators, an abstraction that captures the agreement

requirements of a storage reconfiguration protocol and provides two implementations: the
consensus-based perfect view generator and the consensus-free live view generator.

2. It shows that safe and live dynamic fault-tolerant atomic storage can be implemented
using the proposed view generators and discusses the tradeoffs between them.

3. It presents FreeStore, the first dynamic atomic storage system in which the reconfigur-
ation protocol (a) can be configured to be consensus-free or consensus-based and (b) is
fully decoupled from the r/w protocols, increasing the system performance and making it
easy to adapt other static register implementation to dynamic environments.

4. It presents some experiments and a detailed comparison of FreeStore with previous
protocols [2,12,14,17], showing that FreeStore is faster (i.e., requires less communication
steps) than these protocols.

2 Preliminary Definitions

2.1 System Model
We consider a fully-connected distributed system composed by a universe of processes U ,
that can be divided in two non-overlapping subsets: an infinite set of servers Π = {1, 2, ...};
and an infinite set of clients C = {c1, c2, ...}. Clients access the storage system provided by a
subset of the servers (a view) by executing read and write operations (r/w for short). Each
process (client or server) of the system has a unique identifier. Servers and clients are prone
to crash failures. Crashed processes are said to be faulty. A process that is not faulty is said
to be correct. Moreover, there are reliable channels connecting all pairs of processes [6].

We assume an asynchronous distributed system in which there are no bounds on message
transmission delays and processing times. However, each server has access to a local clock
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used to trigger reconfigurations. These clocks are not synchronized and do not have any
bounds on their drifts, being nothing more than counters that keep increasing. Besides that,
there is a real-time clock not accessed by processes, used in definitions and proofs.

2.2 Dynamic Storage Properties

During a dynamic system execution, a sequence of views is installed to account for replicas
joining and leaving. In the following we describe some preliminary definitions and the
properties satisfied by FreeStore.

Updates. We define update = {+,−} × Π, where the tuple 〈+, i〉 (resp. 〈−, i〉) indicates
that server i asked to join (resp. leave) the system. A reconfiguration procedure takes into
account updates to define a new system’s configuration, which is represented by a view.

Views. A view v is composed by a set of updates (represented by v.entries) and its associated
membership (represented by v.members). Consequently, v.members = {i ∈ Π: 〈+, i〉 ∈
v.entries ∧ 〈−, i〉 6∈ v.entries}. To simplify the notation, we sometimes use i ∈ v and |v|
meaning i ∈ v.members and |v.members|, respectively. Notice that a server i can join and
leave the system only once, but this condition can be relaxed in practice if we add an epoch
number on each reconfiguration request.

We say a view v is installed in the system if some correct server i ∈ v considers v as its
current view and answers client r/w operations on this view. When v is installed, we say
that the previous installed view (before v) was uninstalled from the system. At any time t,
we define V (t) to be the most up-to-date view (see definition below) installed in the system.
We consider that V (t) remains active from the time it is installed in the system until all
correct servers of another most up-to-date view V (t′), t′ > t, installs V (t′).

Comparing views. We compare two views v1 and v2 by comparing their entries. We
use the notation v1 ⊂ v2 and v1 = v2 as an abbreviation for v1.entries ⊂ v2.entries and
v1.entries = v2.entries, respectively. If v1 ⊂ v2, then v2 is more up-to-date than v1.

Bootstrapping. We assume a non-empty initial view V (0) known to all processes. At
system startup, each server i ∈ V (0) receives an initial view v0 = {〈+, j〉 : j ∈ V (0)}.

Views vs. r/w operations. At any time t, r/w operations are executed only in V (t). When
a server i asks to join the system, these operations are disabled on it until an enable operations
event occurs. After that, i remains able to process r/w operations until it asks to leave the
system, which will happen after the occurence of a disable operations event.

I Definition 1 (FreeStore properties). FreeStore satisfies the following properties:
Storage Safety: The r/w protocols satisfy the safety properties of an atomic r/w
register [18].
Storage Liveness: Every r/w operation executed by a correct client eventually com-
pletes.
Reconfiguration – Join Safety: If a server j installs a view v such that i ∈ v, then
server i has invoked the join operation or i is member of the initial view.
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Reconfiguration – Leave Safety: If a server j installs a view v such that i 6∈ v ∧ (∃v′ :
i ∈ v′ ∧ v′ ⊂ v), then server i has invoked the leave operation.1
Reconfiguration – Join Liveness: Eventually, the enable operations event occurs at
every correct server that has invoked a join operation.
Reconfiguration – Leave Liveness: Eventually, the disable operations event occurs
at every correct server that has invoked a leave operation.

2.3 Additional Assumptions for Dynamic Storage
Dynamic fault-tolerant storage protocols [2, 12, 14, 17, 20] require the following additional
assumptions to deal with the dynamism.

I Assumption 2 (Fault threshold). For each view v, we denote v.f as the number of faults
tolerated in v and assume that v.f ≤ b |v.members|−1

2 c.

I Assumption 3 (Quorum size). For each view v, we assume quorums of size v.q =
d |v.members|+1

2 e.

These two assumptions are a direct adaptation of the optimal resilience for fault-tolerant
quorum systems [4] to account for multiple views and only need to hold for views present in
the generated view sequences (see Section 3).

I Assumption 4 (Gentle leaves). A correct server i ∈ V (t) that asks to leave the system at
time t remains in the system until it knows that a more up-to-date view V (t′), t′ > t, i 6∈ V (t′)
is installed in the system.

This assumption ensures that a correct leaving server will participate in the reconfiguration
protocol that installs the new view without itself, i.e., it cannot leave the system before a
new view accounting for its removal is installed. Other dynamic systems require similar
assumption: departing replicas need to stay available to transfer their state to arriving
replicas. Notice the fault threshold accounts for faults while the view is being reconfigured.

I Assumption 5 (Finite reconfigurations). The number of updates requested in an execution
is finite.

As in other dynamic storage systems, this assumption is fundamental to ensure r/w
operations termination. It ensures that a client will restart phases of a r/w operation a finite
number of times, and thus, eventually complete its operation. In practice, updates could be
infinite as long as each r/w is concurrent with a finite number of reconfigurations.

3 View Generators

View generators are distributed oracles used by servers to generate sequences of new views
for system reconfiguration. This module aims to capture the agreement requirements of
reconfiguration algorithms. In order to be general enough to be used for implementing
consensus-free algorithms, such requirements are reflected in the sequence of generated
views, and not directly on the views. This happens because, as described in previous
works [1, 2, 12, 14, 17], the key issue with reconfiguration protocols is to ensure that the
sequence of (possibly conflicting) views generated during a reconfiguration procedure will
converge to a single view with all requested view updates.

1 We can relax this property and adapt our protocol (Section 4) to allow that other process issues the
leave operation on behalf of a crashed process.
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For each view v, each server i ∈ v associates a view generator Gv
i with v in order to

generate a succeeding sequence of views. Server i interacts with a view generator through two
primitives: (1) Gv

i .gen_view(seq), called by i to propose a new view sequence seq to update v;
and (2) Gv

i .new_view(seq′), a callback invoked by the view generator to inform i that a new
view sequence seq′ was generated for succeeding v. An important remark about this interface
is that there is no one-to-one relationship between gen_view and new_view: a server i may
not call the first but receive several upcalls on the latter for updating the same view (e.g.,
due to reconfigurations started by other servers). However, if i calls Gv

i .gen_view(seq), it
will eventually receive at least one upcall to Gv

i .new_view(seq′).
Similarly to other distributed oracles (e.g., failure detectors [7]), view generators can

implement these operations in different ways, according to the different environments they
are designed to operate (e.g., synchronous or asynchronous systems). However, in this paper
we consider view generators satisfying the following properties.

I Definition 6 (View Generators). A generator Gv
i (associated with v in server i) satisfy

the following properties:
Accuracy: we consider two variants of this property:

Strong Accuracy: for any i, j ∈ v, if i receives an upcall Gv
i .new_view(seqi) and j

receives an upcall Gv
j .new_view(seqj), then seqi = seqj .

Weak Accuracy: for any i, j ∈ v, if i receives an upcall Gv
i .new_view(seqi) and j

receives an upcall Gv
j .new_view(seqj), then either seqi ⊆ seqj or seqj ⊂ seqi.

Non-triviality: for any upcall Gv
i .new_view(seqi), ∀w ∈ seqi , v ⊂ w.

Termination: if a correct server i ∈ v calls Gv
i .gen_view(seq), then eventually it will

receive an upcall Gv
i .new_view(seqi).

Accuracy and Non-triviality are safety properties while Termination is related to the
liveness of view generation. Furthermore, the Non-triviality property ensures that generated
sequences contain only updated views.

Using the two variants of accuracy we can define two types of view generators: P, the
perfect view generator, that satisfies Strong Accuracy and L, the live view generator, that
only satisfies Weak Accuracy. Our implementation of P requires consensus, while L can be
implemented without such strong synchronization primitive.

3.1 Perfect View Generators – P
Perfect view generators ensure that a single sequence of views is generated at all servers using
the generators. Our implementation for P (Algorithm 1) uses a deterministic Paxos-like
consensus protocol [19] that assumes a partially synchronous system model [9]. Under the
Paxos framework, any server of v can be a proposer (calling Paxosv.propose(seq)), but all
servers of v are acceptors and learners (they receive an upcall Paxosv.learn(seq′), even if
they did not propose anything). We also assume that once a value is learned for a Paxos
instance associated with v, this value is locked and no other value will be learned. Notice that
a server only proposes a sequence if the new views are strict extensions of v, ensuring Non-
triviality. Termination and Strong Accuracy properties comes directly from the Agreement
and Termination properties of the underlying consensus algorithm [7,19].

3.2 Live View Generators – L
Algorithm 2 presents an implementation for Live view generators (L). Our algorithm does
not require a consensus building block, being thus implementable in asynchronous systems.
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Algorithm 1 P associated with v - server i ∈ v.

upon Gv
i .gen_view(seq)

1) if ∀w ∈ seq : v ⊂ w then Paxosv.propose(seq) //starts a consensus in v

upon Paxosv.learn(seq′) // when decides by seq′ ...
2) Gv

i .new_view(seq′) // ... inform this to process.

Algorithm 2 L associated with v - server i ∈ v.
functions: Auxiliary functions

most_updated(seq) ≡ w : (w ∈ seq) ∧ (@w′ ∈ seq : w ⊂ w′)
variables: Sets used in the protocol

SEQv ← ∅ // proposed view sequence
LCSEQv ← ∅ // last converged view sequence known

procedure Gv
i .gen_view(seq)

1) if SEQv = ∅ ∧ ∀w ∈ seq : v ⊂ w then
2) SEQv ← seq
3) ∀j ∈ v, send〈SEQ-VIEW, SEQv〉 to j

upon receipt of 〈SEQ-VIEW, seq〉 from j
4) if ∃w ∈ seq : w 6∈ SEQv then
5) if ∃w, w′ : w ∈ seq ∧ w′ ∈ SEQv ∧ w 6⊂ w′ ∧ w′ 6⊂ w then
6) w ← most_updated(SEQv)
7) w′ ← most_updated(seq)
8) SEQv ← LCSEQv ∪ {w.entries ∪ w′.entries}
9) else
10) SEQv ← SEQv ∪ seq
11) ∀k ∈ v, send〈SEQ-VIEW, SEQv〉 to k

upon receipt of 〈SEQ-VIEW, SEQv〉 from v.q servers in v
12) LCSEQv ← SEQv

13) ∀k ∈ v, send〈SEQ-CONV, SEQv〉 to k

upon receipt of 〈SEQ-CONV, seq′〉 from v.q servers in v
14) Gv

i .new_view(seq′)

On the other hand, it can generate different sequences in different servers for updating the
same view. We bound such divergence by exploiting Assumptions 2 and 3, which ensure that
any quorum of the system will intersect in at least one correct server, making any generated
sequence for updating v be contained in any other posterior sequence generated for v (Weak
Accuracy). Furthermore, the servers keep updating their proposals until a quorum of them
converges to a sequence containing all proposed views (or combinations of them), possibly
generating some intermediate sequences before this convergence.

To generate a new sequence of views, a server i ∈ v uses an auxiliary function most_updated
to get the most up-to-date view in a sequence of views (i.e., the view that is not contained
in any other view of the sequence). Moreover, each server keeps two local variables: SEQv –
the last view sequence proposed by the server – and LCSEQv – the last sequence this server
converged. When server i ∈ v starts its view generator, it first verifies (1) if it already made a
proposal for updating v and (2) if the sequence being proposed contains only updated views
(line 1). If these two conditions are met, it sends its proposal to the servers in v (lines 2-3).

Different servers of v may propose sequences containing different views and therefore
these views need to be organized in a sequence. When a server i ∈ v receives a proposal for
a view sequence from j ∈ v, it verifies (line 4) if this proposal contains some view it did not
know yet (notice a server could receive this message even if its view generator was not yet
initialized, i.e., SEQv = ∅). If this is the case, i updates its proposal (SEQv) according to two
mutually exclusive cases:
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Case 1 [There are conflicting views in the sequence proposed by i and the sequence
received from j (lines 5-8)]: In this case i creates a new sequence containing the last
converged sequence (LCSEQv) and a new view with the union of the two most up-to-date
conflicting views. This maintains the containment relationship between any two generated
view sequences.
Case 2 [The sequence proposed by i and the received sequence can be composed in a
new sequence (lines 9-10)]: The new sequence is the union of the two known sequences.

In both cases, a new proposal containing the new sequence is disseminated (line 11).
When i receives the same proposal from a quorum of servers in v, it converges to SEQv and
stores it in LCSEQv, informing other servers of v about it (lines 12-13). When i knows that a
quorum of servers of v converged to some sequence seq′, it generates seq′ (line 14).

Correctness (full proof in [3]). The algorithm ensures that if a quorum of servers converged
to a sequence seq′ (lines 12-13), then (1) such sequence will be generated (line 14) and (2)
any posterior sequence generated will contain seq′ (lines 8 and 10), ensuring Weak Accuracy.
This holds due to the quorum intersection: at least one correct server needs to participate in
the generation of both sequences and this server applies the rules in Cases 1 and 2 to ensure
that sequences satisfy the containment relationship. The Termination property is ensured by
the fact that (1) each server makes at most one initial proposal (lines 1-3); (2) servers keep
updating their proposals until a quorum agree on some proposal; and (3) there is always a
quorum of correct servers in v.

4 FreeStore Reconfiguration

A server running FreeStore reconfiguration algorithm uses a view generator associated
with its current view cv to process one or more reconfiguration requests (joins and leaves)
that will lead the system from cv to a new view w. Algorithm 3 describes how a server i

executes reconfigurations. In the following sections we first describe how view generators are
started and then we proceed to discuss the behavior of this algorithm when started with
either L (Section 4.2) or P (Section 4.3).

4.1 View Generator Initialization

Algorithm 3 describes how a server i processes reconfiguration requests and starts a view
generator associated with its current view cv (lines 1-7). A server j that wants to join
the system needs first to find the current view cv and then to execute the join operation
(lines 1-2), sending a tuple 〈+, j〉 to the members of cv. Servers leaving the system do
something similar, through the leave operation (lines 3-4). When i receives a reconfiguration
request from j, it verifies if the requesting server is using the same view as itself; if this is not
the case, i replies its current view to j (omitted from the algorithm for brevity). If they are
using the same view and i did not execute the requested reconfiguration before, it stores this
request in its set of pending updates RECV and sends an acknowledgment to j (lines 5-6).

For the sake of performance, a local timer has been defined in order to periodically process
the updates requested in a view, that is, the next system reconfiguration. A server i ∈ cv

starts a reconfiguration for cv when its timer expires and i has some pending reconfiguration
requests (otherwise, the timer is renewed). The view generator is started with a sequence
containing a single view representing the current view plus the pending updates (line 7).
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Algorithm 3 FreeStore reconfiguration - server i.
functions: Auxiliary functions

least_updated(seq) ≡ w : (w ∈ seq) ∧ (@w′ ∈ seq : w′ ⊂ w)
variables: Sets used in the protocol

cv ← v0 // the system current view known by i
RECV← ∅ // set of received updates

procedure join()
1) ∀j ∈ cv, send〈RECONFIG, 〈+, i〉, cv〉 to j
2) wait for 〈REC-CONFIRM〉 replies from cv.q servers in cv

procedure leave()
3) ∀j ∈ cv, send〈RECONFIG, 〈−, i〉, cv〉 to j
4) wait for 〈REC-CONFIRM〉 replies from cv.q servers in cv

upon receipt of 〈RECONFIG, 〈∗, j〉, cv〉 from j and 〈∗, j〉 6∈ cv
5) RECV← RECV ∪ {〈∗, j〉}
6) send〈REC-CONFIRM〉 to j

upon (timeout for cv) ∧(RECV 6= ∅)
7) Gcv

i .gen_view({cv ∪ RECV})
upon Gov

i .new_view(seq) //G generates a new sequence of views to update ov (usually ov = cv)
8) w ← least_updated(seq) //the next view in the sequence seq
9) R-multicast({j : j ∈ ov ∨ j ∈ w},〈INSTALL-SEQ, w, seq, ov〉)

upon R-delivery({j : j ∈ ov ∨ j ∈ w},〈INSTALL-SEQ, w, seq, ov〉)
10) if i ∈ ov then //i is member of the previous view in the sequence
11) if cv ⊂ w then stop the execution of r/w operations //if w is more up-to-date than cv stop r/w
12) ∀j ∈ w, send〈STATE-UPDATE, 〈val, ts〉, RECV〉 to j //i sends its state to servers in the next view
13) if cv ⊂ w then //w is more up-to-date than cv and the system will be reconfigured from cv to w
14) if i ∈ w then //if i is in the new view...
15) wait for 〈STATE-UPDATE, ∗, ∗〉 messages from ov.q servers in ov //... it updates...
16) 〈val, ts〉 ← 〈valh , tsh〉, pair with highest timestamp among the ones received //... its state...
17) RECV← RECV ∪ {update requests from STATE-UPDATE messages} \ w.entries
18) cv ← w //... and its current view to w
19) if i 6∈ ov then enable operations //i is joining the system
20) ∀j ∈ ov \ cv, send〈VIEW-UPDATED, cv〉 to j //inform servers in ov \ cv that they can leave
21) if (∃w′ ∈ seq : cv ⊂ w′) then //there are views more up-to-date than cv in seq...
22) seq′ ← {w′ ∈ seq : cv ⊂ w′} //... gather these views...
23) Gcv

i .gen_view(seq′) //... and propose them (going back to Algorithm 2)
24) else
25) resume the execution of r/w operations in cv = w and start a timer for cv //w is installed
26) else //i is leaving the system
27) disable operations
28) wait for 〈VIEW-UPDATED, w〉 messages from w.q servers in w and then halt

4.2 Reconfiguration using L

Overview. Given a sequence seq : v1 → . . . → vk → w generated by live view generators
(L) for updating a view v, Algorithm 3 ensures that only the last view w will be installed in
the system. The other k auxiliary views are used only as intermediate steps for installing w.

The use of auxiliary views is fundamental to ensure that no write operation executed in any
of the views of seq (in case they are installed in some server) “is lost” by the reconfiguration
processing. This is done through the execution of a “chain of reads” in which servers of v

transfer their state to servers of v1, which transfer their state to servers of v2 and so on until
servers of w have the most up-to-date state. To avoid consistency problems, r/w operations
are disabled during each of these state transfers.

It is important to remark that since we do not use consensus, a subsequence seq′ : v1 →
. . .→ vj , j ≤ k, of seq may lead to the installation of vj in some servers that did not know
seq and that these servers may execute r/w operations in this view. However, the algorithm
ensures these servers eventually will reconfigure from vj to the most up-to-date view w.
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Protocol. Algorithm 3 (lines 8-28) presents the core of the FreeStore reconfiguration
protocol. This algorithm uses an auxiliary function least_updated to obtain the least updated
view in a sequence of views (i.e., the one that is contained in all other views of the sequence)
and two local variables: the aforementioned RECV – used to store pending reconfiguration
requests – and cv – the current view of the server (initially v0).

When the view generator associated with some view ov (we use ov instead of cv because
view generators associated with old views, ov ⊆ cv, still active can generate new sequences)
reports the generation of a sequence of views seq, the server obtains the least updated view
w of seq and proposes this sequence for updating ov through an INSTALL-SEQ message sent
to the servers of both, ov and w. Once view generators could generate different sequences
at different processes, we employ a reliable multicast primitive [7] to ensure all correct
servers in ov and w process seq (lines 8-9). This primitive can be efficiently implemented in
asynchronous systems with a message retransmission at the receivers before its delivery [7].

The current view is updated through the execution of lines 10-28. First, if the server is a
member of the view being updated ov, it must send its state (usually, the register’s value
and timestamp) to the servers in the new view to be installed (lines 10-12). However, if the
server will be updating its current view (i.e., if w is more up-to-date than cv) it first needs to
stop executing client r/w operations (line 11) and enqueue these operations to be executed
when the most up-to-date view in the sequence is installed (line 25, as discussed below). A
server will update its current view only if the least updated view w of the proposed sequence
is more up-to-date than its current view cv (line 13). If this is the case, either (1) server i

will be in the next view (lines 14-25) or (2) not (line 26-28).

Case 1 [i will be in the next view (it may be joining the system)]: If the server will
be in the next view w, it first waits for the state from a quorum of servers from the
previous view ov and then defines the current value and timestamp of the register (lines
15-16), similarly to what is done in the 1st phase of a read operation (see Section 5).
After ensuring that its state is updated, the server updates cv to w and, if it is joining
the system, it enables the processing of r/w operations (which will be queued until line
25 is executed). Furthermore, the server informs leaving servers that its current view
was updated (line 20). The final step of the reconfiguration procedure is the verification
if the new view will be installed or not (in case it is an auxiliary view). If cv = w is
not the most up-to-date view of the generated sequence seq, a new sequence with more
up-to-date views than cv will be proposed for updating it (lines 21-23). Otherwise, cv is
installed and server i resumes processing r/w operations (lines 24-25).
Case 2 [i is leaving the system]: A server leaving the system only halts after ensuring
that the view w to which it sent its state was started in a quorum of servers (lines 27-28).

Although the algorithm restarts itself in line 23, it eventually terminates since the
number of reconfiguration requests is finite (Assumption 5). Furthermore, since all sequences
generated by L can be composed in an unique sequence, when the reconfiguration terminates
in all correct servers, they will have installed the same view with all requested updates.

Correctness (full proof in [3]). Algorithm 3 ensures that an unique sequence of views is
installed in the system due to the following: (1) if a view w is installed, any previously
installed view w′ ⊂ w is uninstalled and will not be installed anymore (lines 11, 18 and 25);
consequently, (2) no view more up-to-date than w is installed and the installed views form
an unique sequence. By Assumption 5, the reconfiguration procedure always terminate by
installing a final view vfinal . The Storage Safety and Storage Liveness properties are discussed
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in Section 5. The remaining properties of Definition 1 are ensured as follows. Reconfiguration
Join/Leave Safety are trivially ensured by the fact that only a server i sends the update
request 〈+, i〉/〈−, i〉 (lines 1-4). Reconfiguration Join/Leave Liveness are ensured by the fact
that if an update request from a server i is stored in RECV of a quorum, then it is processed
in the next reconfiguration since a quorum with the same proposal is required to generate a
view sequence (Algorithm 2). Moreover, update requests received during a reconfiguration
are sent to the next view (lines 12-17).

4.3 Reconfiguration using P
If P is used with the FreeStore reconfiguration protocol (Algorithm 3), all generators will
generate the same sequence of views (Strong Accuracy) with a single view w. This will lead
the system directly from its current view cv to w (lines 22-23 will never be executed).

5 Read and Write Protocols

This section discusses how a static storage protocol can be adapted to dynamic systems by
using FreeStore reconfigurations. Since reconfigurations are decoupled from r/w protocols,
they are very similar to their static versions. In a nutshell, there are two main requirements
for using our reconfiguration protocol. First, each process (client or server) needs to handle
a current view variable cv that stores the most up-to-date view it knows. All r/w protocol
messages carry cv and clients update it as soon as they discover that there is a more recent
view installed in the system. The servers reject any operation issued to an old view, and
reply their current view to the issuing client, which updates its cv. The client restarts the
phase of the operation it is executing if it receives an updated view. The second requirement
is that, before accessing the system, a client must obtain the system’s current view. This can
be done by making servers put the current view in a directory service [1] or making the client
flood the network asking for it. Notice this is an intrinsic problem for any dynamic system
and similar assumptions are required in previous reconfiguration protocols [2, 12,14,17,20].

In this paper we extend the classical ABD algorithm [4] for supporting multiple writers
and to work with the FreeStore reconfiguration. In the following we highlight the main
aspects of these protocols (complete algorithms are found in [3]). The protocols to read and
write from the dynamic distributed storage work in phases. Each phase corresponds to an
access to a quorum of servers in cv. The read protocol works as follows:

1st Phase: a reader client requests a set of tuples 〈val, ts〉 from a quorum of servers
in cv (val is the value the server stores and ts is its associated timestamp) and selects
the one with highest timestamp 〈valh, tsh〉; the operation ends and returns valh if all
returned pairs are equal, which happens in executions without write contention or failures;
2nd Phase: otherwise, the reader client performs an additional write-back phase in the
system and waits for confirmations from a quorum of servers in cv before returning valh.

The write protocol works in a similar way:
1st Phase: a writer client obtains a set of timestamps from a quorum of servers in cv

and chooses the highest, tsh; the timestamp to be written ts is defined by incrementing
tsh and concatenating the writer id in its lowest bits;
2nd Phase: the writer sends a tuple 〈val, ts〉 to the servers of cv, writing val with
timestamp ts, and waits for confirmations from a quorum.

The proposed decoupling of r/w protocols from reconfigurations (1) makes it easy to
adapt other static fault-tolerant register implementations to dynamic environments (as long
as they work in phases), (2) makes it possible to run r/w in parallel with reconfigurations,
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and (3) does not impact the performance of a r/w in periods without reconfigurations. This
happens because, differently from previous approaches [2, 12, 14, 17] where a r/w may access
multiple views, in FreeStore a client executes these operations only in the most up-to-date
installed view, which is received directly from the servers. To enable this, it is required that
r/w operations to be blocked during the state transfer between views.

Correctness (full proof in [3]). The above algorithms implement atomic storage in the
absence of reconfigurations [4]. When integrated with FreeStore, they also have to satisfy
the Storage Safety and Storage Liveness properties of Definition 1. We start by discussing
Storage Liveness, which follows directly from the termination of reconfigurations. As discussed
before, clients’ r/w operations are concluded only if they access a quorum of servers using
the same view as the client, otherwise they are restarted. By Assumption 5, the system
reconfiguration always terminate by installing some final view. Consequently, a client will
restart phases of its operations a finite number of times until this final view is installed in a
quorum. Storage Safety comes directly from three facts: (1) a r/w operation can only be
executed in a single installed view (i.e., all servers in the quorum of the operation have the
same installed current view), (2) all installed views form a unique sequence , and (3) any
operation executed in a view v will still be “in effect” when a more up-to-date view w is
installed. More precisely, assume 〈val, ts〉 is the last value read or written in v, and thus it
was stored in v.q servers from v. During a reconfiguration from v to w, r/w operations are
disabled until all servers of v send 〈val, ts〉 to the servers of w (line 12), which terminate the
reconfiguration only after receiving the state from a quorum of servers of v. Consequently,
all servers who reconfigure to w will have 〈val, ts〉 as its register’s state (lines 15-16). This
ensures that any operation executed in w will not miss the operations executed in v.

6 Discussion

6.1 DynaStore vs. FreeStore
This section discusses some differences between DynaStore [2] and FreeStore. Although
our focus is on comparing our approach with DynaStore, we also comment the relationship
between these protocols and SpSn [12] and SmartMerge [17].

Convergence Strategy. In DynaStore, the reconfiguration process generate a graph of views
through which it is possible to identify a sequence of established views (see Figure 1, left). A
view that is not established works as an auxiliary view, that must be accessed during r/w
operations. For any established view v, the maximum number of views that can immediately
succeed it is |v|, and new views representing the combinations of these views could also be
generated. In contrast, reconfigurations in FreeStore install only a single sequence of
views (see Figure 1, right). In this case, different generated sequences of views are organized
in an unique sequence of installed views. For each installed view v, our implementation of L
bounds the number of generated view sequences to |v| − v.q + 1. SpSn and SmartMerge also
install a sequence of ordered configurations (views).

Liveness. In DynaStore, a process executes a leave and halts the system. However, for
any time t, there is a bound on the number of processes that can leave the system without
compromising liveness. Let F (t) be the set of processes that crashed until time t and J(t)
(resp. L(t)) the set of pending joins (resp. leaves) at t. The liveness condition of DynaStore
states that fewer than |V (t)|/2 processes out of V (t) ∪ J(t) should be in F (t) ∪ L(t) [2]. In
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Table 1 Communication steps of r/w operations.

Operation Updated View Outdated View
DS SM SpSn FS DS SM SpSn FS

Read 12 8 14 2/4 19 16 22 4/6
Write 12 8 18 4 19 16 26 6

contrast, in FreeStore a process that executes a leave should wait for the installation of
the updated view (without itself). If this restriction is not respected, the leaving server is
considered faulty. This approach specifies a bound on the number of leaves for FreeStore:
fewer than |V (t)|/2 processes out of V (t) should be in F (t) ∪ L(t). SpSn does not specify a
liveness condition and SmartMerge uses policies to prevent the generation of unsafe views,
which in practice restricts the number of allowed leaves.

Normal Case Execution. In DynaStore, reconfigurations generate a graph of views through
which it is possible to identify a sequence of established views. A view that is not established
works as an auxiliary view, but must be accessed during r/w operations. For each view
(established or not), DynaStore associates a weak snapshot object that is used to store updates.
For any view v, its weak snapshot object wsov is supported by a set Sv of |v| static SWMR
registers, i.e., one register for each member of v. During a r/w on v, wsov must be accessed
twice to verify if some update was executed on v. Each access to wsov comprises two reads in
each register of Sv. Thus, to execute a r/w on v, it is necessary a total of 4|v| (4 sequential,
|v| parallel) quorum accesses, with two communication steps each. SpSn and SmartMerge
use a similar approach: before executing each r/w, a set of |v| SWMR registers must be
accessed to check for updates. In contrast, the overhead introduced by FreeStore on a
r/w is the local verification if the client view is equal to the current view of the servers.

R/W and Reconfiguration Concurrency. A r/w operation needs to traverse the graph of
views generated by DynaStore to find a view where it is safe to be executed (the most up-to-
date established view). During the transversal, each edge of the graph must be accessed in
order to verify if there is a more up-to-date view. For each view v, it is necessary to access its
weak snapshot object, which requires 2|v| (2 sequential, |v| parallel) quorum accesses. While
the system is converging to some established view, the r/w operation does not terminate.
Similarly, in SpSn and SmartMerge, a r/w concurrent with a reconfiguration also needs to
access intermediary views to find the most up-to-date installed view. FreeStore follows a
different approach that ensures r/w operations are directed to the most up-to-date installed
view v, without accessing any auxiliary view. However, after some sequence of views for
updating v is obtained, the r/w operations are stopped and can only terminate after the
installation of the most up-to-date view of this sequence. Therefore, in this sense our approach
resembles view-synchronous group communication [5, 6].

6.2 Performance of Read/Write Operations
Table 1 shows the number of communication steps demanded to execute a r/w operation
with DynaStore (DS) [2], SmartMerge (SM) [17], SpSn [12] and FreeStore (FS), for a
process that handles an updated or outdated view. A r/w operation in FreeStore requires
at most a third of the number of communication steps required to execute it in DynaStore
or SpSn and at most half of the steps required in SmartMerge. More important, it matches
the performance of static protocols in the absence of reconfigurations.
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Table 2 Communication steps for reconfiguration.

Consensus-free Best Case Worst Case Consensus-based Best Case Worst Case
DynaStore [2] 23 18|v|+ 5 RAMBO [14] 7 7

SmartMerge [17] 11 6|v|+ 5 FreeStore (P) 5 5
SpSn [12] 14 8|v|+ 6

FreeStore (L) 4 7|v| − 2v.q − 1

6.3 Consensus-free vs. Consensus-based Reconfiguration
Table 2 shows the number of communication steps required to process a reconfiguration using
consensus-free (DynaStore, SmartMerge, SpSn and FreeStore with L) and consensus-based
(RAMBO and FreeStore with P) algorithms. We present the number of communication
steps for the best case scenario – when all processes propose the same updates in a reconfig-
uration – and for the worst case – when each process proposes different updates. In order to
simplify our analysis, we consider that no reconfiguration is started concurrently with the one
we are analyzing. Similarly, we assume a synchronous execution of the Paxos protocol [19],
which requires only three communication steps, for consensus-based algorithms.

FreeStore reconfiguration is significantly more efficient than previous consensus-based
and consensus-free protocols. FreeStore with P requires two less communication steps than
RAMBO and FreeStore with L outperforms other consensus-free approaches by almost
an order of magnitude. In particular, FreeStore with L presents the best performance
among all considered reconfiguration protocols in the best case, which is expected to be the
norm in practice. An open question is if this number constitutes a lower bound.

7 Experimental Evaluation

In this section we present an experimental evaluation of FreeStore (1) to quantify its
overhead when compared with the (static) ABD protocol in periods without reconfigurations,
and (2) to assess the negative impact of a reconfiguration in the system performance.

We implemented prototypes of the ABD [4], FreeStore and DynaStore [2] protocols
in the Go programming language and conducted two sets of experiments in Emulab [22]: a
micro-benchmark designed to evaluate the read and write throughput and latency in absence
of reconfiguration; and an execution showing the performance of dynamic algorithms during
faults and reconfigurations. We chose DynaStore to represent existing consensus-free dynamic
protocols [2, 12, 17] to show that design decisions such as checking a set of SWMR static
registers to verify if some reconfiguration occurred before executing each r/w and coupling the
execution of r/w and reconfigurations have a significant impact in the system performance.
Although comparing with DynaStore suffice for these goals, the interested reader can find a
more extensive experimental evaluation of reconfiguration protocols in [16].

Experimental Setup. We used 18 pc3000 (3.0 GHz 64-bit Pentium Xeon, 2GB of RAM
and gigabit network cards) connected by a 100Mb switched network. We run each server
in a separated machine, while the clients were uniformly distributed among the remaining
machines. The software installed was Fedora 15 64-bit with kernel 2.6.20 and Go 1.2.

Micro-benchmarks. We start by reporting the latency and throughput results for the
system configured with 3 servers (Figure 2). We used up to 18 clients to read or write a
value of 512 bytes. Both latency and throughput was measured at the clients: the latency is
the mean time demanded to perform a r/w operation discarding the 5% values with greater
variance; the throughput is the sum of all client operations completed in a interval.
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Figure 2 Latency vs. throughput for read (left) and write (right) operations; n = 3 and f = 1.
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Figure 3 Throughput evolution across faults and reconfigurations for FreeStore and DynaStore.

These experiments show that FreeStore imposes a negligible overhead to the static
ABD protocols. This happens because these protocols are very similar: the difference is that
FreeStore messages must carry the current view to check if a client is using an updated
view (we used hashes of the views; the complete views were used only when necessary an
update in the client view). In contrast, DynaStore performs poorly because it must access a
set of static SWMR registers to check for view updates before executing each r/w operation.

Reconfigurations and faults. This experiment considers the behavior of FreeStore with
L (the result is similar with P) and DynaStore protocols under reconfigurations, failures and
recoveries. We observed how the throughput of these systems evolve over several events when
a demanding workload is applied. We used an initial view with 3 servers (v0 = {1, 2, 3}) and
18 clients that keep reading a value of 512 bytes over the course of 420 seconds. The results
in Figure 3 show that FreeStore significantly outperforms DynaStore.

In the experiment, servers 4-9 asked to join at times 30, 40, 160, and 320 (servers 7-
9), respectively, while servers 1-6 asked to leave at times 80, 100, 220, 340 (servers 4-6),
respectively. DynaStore reconfigurations occurred each time an update was requested [2],
while FreeStore reconfigurations were configured to occur periodically at each 60 seconds
(notice that at time 360, a FreeStore reconfiguration replaces all servers in the system).
Moreover, server 4 crashed and recovered at times 140 and 200, respectively.

This experiment shed light in how reconfigurations impact the performance of concurrent
r/w operations. The mean time required for a FreeStore reconfiguration was 19 ms, with
r/w operations blocked for only 4 ms (see Algorithm 3). Increasing the size of the value
stored in the system may lead this time to increase. However, in all previous works on
asynchronous reconfigurations [2, 12,17], the state transfer happens during a r/w operation
and, consequently, the time to finish these operations will also increase.
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8 Conclusions

This paper presented a new approach to reconfigure fault-tolerant storage systems, which
clarifies the differences between relying or not on consensus for agreement in the next
view to be installed. The main result is a protocol that is simpler and cheaper (in terms
of communication steps for either r/w operations or reconfigurations) than the previously
proposed solutions. Furthermore, our approach fully decouples the execution of r/w operations
and reconfigurations, imposing a negligible overhead to the static ABD protocol. Another
interesting result is that, in the best case, FreeStore consensus-free reconfiguration is
faster than protocols based on consensus.

A final contribution of this work is the introduction of a new abstraction called view
generator. We believe that exploring different instantiations of this abstraction and their
properties is an important avenue for future work.
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Abstract
Cassandra is one of the most widely used distributed data stores. In this work, we analyze
Cassandra’s vulnerabilities when facing Byzantine failures and propose protocols for hardening
Cassandra against them. We examine several alternative design choices and compare between
them both qualitatively and empirically by using the Yahoo! Cloud Serving Benchmark (YCSB)
performance benchmark.

Some of our proposals include novel combinations of quorum access protocols with MAC
signatures arrays and elliptic curve public key cryptography so that in the normal data path,
there are no public key verifications and only a single relatively cheap elliptic curve signature
made by the client. Yet, these enable data recovery and authentication despite Byzantine failures
and across membership configuration changes. In the experiments, we demonstrate that our best
design alternative obtains roughly half the performance of plain (non-Byzantine) Cassandra.

1998 ACM Subject Classification C.2.4 Distributed Systems, K.6.5 Security and Protection,
B.8.1 Reliability, Testing, and Fault-Tolerance

Keywords and phrases Cassandra, Byzantine Fault Tolerance, Distributed Storage
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1 Introduction

Distributed data stores are commonly used in data centers and cloud hosted applications, as
they provide fast, reliable, and scalable access to persistently stored data. Persistent storage
is fundamental in most applications, yet developing an effective one is notoriously difficult.

Due to inherent tradeoffs between semantics and performance [8] as well as the desire to
offer various flexible data management models, a plethora of products has been developed.
These differ in the data access model, which can range from traditional relational databases,
to wide-columns [12, 28], key-value stores [1, 17], as well as graph databases and more.
Another axis by which such systems differ is the consistency guarantees, which can range
from strong consistency [29] to eventual consistency [36] and a myriad of intermediate options.

In our work, we focus on Cassandra [28]. Cassandra follows the wide-column model, and
offers very flexible consistency guarantees. Among open source data stores, it is probably
the most widely used; according to the Cassandra Apache project page [5], more than 1,500
companies are currently using Cassandra, including, e.g., Apple, CERN, Comcast, eBay,
GitHub, GoDaddy, Hulu, Instagram, Intuit, Microsoft, Netflix, Reddit, and more.

Cassandra can effectively withstand benign failures, but it was not designed to overcome
Byzantine attacks, in which some nodes in the system may act arbitrarily, including in
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a malicious manner. Handling Byzantine failures requires sophisticated protocols and
more resources. However, ever since the seminal PBFT work of Castro and Liskov [11],
the practicality of building Byzantine fault tolerant replicated state machines has been
demonstrated by multiple academic projects, e.g., [13, 24] to name a few. Interestingly,
storage systems offer weaker semantics than general replicated state machines, and therefore
it may be possible to make them resilient to Byzantine failures using weaker timing and
failure detection assumptions, as proposed in [10, 31, 33]. Yet, to the best of our knowledge,
we are the first to systematically harden Cassandra against Byzantine failures.

Contributions

We analyze Cassandra’s structure and protocols to uncover their vulnerability to Byzantine
behavior. We then propose alterations to Cassandra’s existing protocols that overcome these
failures. We examine several alternative solutions and compare between them qualitatively
and quantitatively. Let us emphasize that one of our main design principles is to preserve
Cassandra’s basic interaction model as much as possible, to increase the likelihood of adoption
and to minimize the number of lines of code we need to change. After all, our goal is to
harden the existing system, not creating a new one.

We have benchmarked the original Cassandra and our hardened versions of Cassandra
using the standard YCSB benchmark [14]. As expected, a key factor to obtain reasonable
performance is in the type of cryptography used. E.g., using traditional RSA signatures
dramatically lowers the performance. Conversely, using only (symmetric key) MAC signatures
is challenging when data must survive configuration changes and be shared by multiple
clients. To that end, here we propose a novel combination of vectors of MACs with the
Elliptic Curve Digital Signature Algorithm (ECDSA) [27]. The normal data path of this
proposal incurs no public key verifications and only a single relatively cheap ECDSA signature
made by the client. Yet, these enable data recovery and authentication despite Byzantine
failures and across membership configuration changes. The measured performance of the best
configuration of our hardened Cassandra, utilizing our new approach, is only twice worse
than the original Cassandra; an order of magnitude better than the naive approach.

Note that while using an array of MAC signatures instead of PKI has been done in the
past, e.g., in [11], prior use of this idea was restricted to ordering decisions that are contained
within a single configuration. In contrast, in our work we ensure data survivability across
configuration changes, which requires the extra protection of the elliptic curve signature.

2 Related Work

The seminal work of Castro & Liskov [11] inspired multiple extensions. Clement et al. [13]
introduced UpRight, a modular library for BFT replicated state machine. BFT-SMaRt [7]
and Prime [3] have improved the performance when facing Byzantine behaviour, whereas
Abstract [24] is the state of the art in BFT replicated state machine. It adds the ability
to abort a client request when faults occur and then dynamically switch to another BFT
protocol that produces better results under the new system conditions. The work of [35]
explored adding BFT resilience to transactional systems that follow the scalable differed
update replication model.

Malkhi & Reiter [33] were the first to discuss Byzantine quorum systems, i.e., using
read and write quorums such that any two quorums intersect in at least one correct node.
Furthermore, the system remains available in spite of having up to f Byzantine nodes.
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Aguilera & Swaminathan [2] explored BFT storage for slow client-server links while relying
on synchronized clocks. They designed a linearizable abortable register in which partial writes
due to benign client failures do not have any effect by using unique timestamps and timestamp
promotion when conflicts appear. Yet, they did not show an actual implementation nor
performance analysis. As our work preserves Cassandra’s semantics, we are able to design
faster operations requiring lighter cryptography measures even when conflicts occur.

Byzantine clients might try to perform split-brain-writes, i.e., writing multiple values
to different servers using the same timestamp. Preventing this can be done by obtaining a
commitment from a quorum to bind a timestamp and a value on every write. In Malkhi &
Reiter’s approach [33], on every write, the servers exchange inter-servers messages agreeing on
the binding. In Liskov & Rodrigues’s approach [31], the servers transmit signed agreements
to the client that are later presented to the servers as a proof for the quorum agreement. In
contrast, we do not prevent split-brain-writes, but rather repair the object’s state on a read
request (or in the background).

Some BFT cloud storage systems provide eventual consistency [36]. Zeno [39] ensures
causal order consistency [29] with at least f + 1 correct nodes. Depot [32] tolerates any
number of Byzantine clients and servers and guarantees Fork-Join-Causal order consistency.

Aniello et al. [4] explored Byzantine DoS attacks on gossip based membership protocols.
They have demonstrated their attack on Cassandra [28] and presented a way to prevent
it by using signatures on the gossiped data. Other more general solutions for BFT gossip
membership algorithms were shown in Fireflies [26] and Brahms [9]. The first uses digital
signatures, full membership view and a pseudorandom mesh structure and the latter avoids
digital signatures by sophisticated sampling methods.

Sit & Morris [40] mapped classic attacks on Distributed Hash Tables (DHT). Some of the
attacks can be disrupted by using SSL. Other attacks described in [40], such as storage and
retrieval attacks, are addressed in our work.

Non malicious value and state error failures in Cassandra and other distributed storage
systems have been explored in [15, 23]. Solutions to such problems can be more efficient
than Byzantine resilient implementations, but inherently only protect against a more restrict
failure scenario.

3 Model and Assumptions

We assume a Cassandra system consisting of nodes and clients, where each may be correct
or faulty according to the Byzantine failure model [30]. A correct entity acts according to its
specification while a faulty entity can act arbitrarily, including colluding with others.

In our proposed solutions, we assume that the maximal number of faulty nodes is bounded
by f. We initially assume that all clients are correct, but later relax this assumption. When
handling Byzantine clients, we do not limit the number of faulty clients nor change the
assumption on the maximal number of f faulty nodes. Yet, we assume that clients can be
authenticated so correct nodes only respond to clients that are allowed to access the system
according to some verifiable access control list (ACL). We use the terms nodes and processes
interchangeably and only to refer to Cassandra nodes.

We assume a fully connected partially synchronous distributed system. Every node
can directly deliver messages to every other node and every client can directly contact any
system node. We also assume that each message sent from one correct entity to another will
eventually arrive exactly once and without errors. That can be implemented, e.g., on top of
fair lossy networks, using retransmission and error detection codes. We do not assume any
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bound on message delay or computation time in order to support our safety and liveness
properties. However, efficiency depends on the fact that most of the time messages and
computation steps do terminate within bounded time [19].

Every system entity has a verifiable PKI certificate. We assume a trusted system
administrator that can send signed membership configuration messages.

The system shares a loosely synchronized clock which enables detection of expired PKI
certificates in a reasonable time but is not accurate enough to ensure coordinated actions.
We discuss this clock in Appendix B.3.

4 Brief Overview of Cassandra

Cassandra stores data in tables with varying number of columns. Each node is responsible
for storing a range of rows for each table. Values are replicated on multiple nodes according
to the configurable replication factor.

Mapping data to nodes follows the consistent hashing principle, where nodes are logically
placed on a virtual ring by hashing their ids. In fact, each node is represented as multiple
virtual nodes [17]. Each virtual node generates a randomized key on the ring, called a token,
representing its place. A virtual node is responsible for hashed keys that fall in the range
from its place up to the next node on the ring, known as its successor. Each node also stores
keys in the ranges of the N − 1 preceding nodes, where N is the replication factor parameter.
The N nodes that should store a given value are called its replication set.

Cassandra uses a full membership view, where every node knows every other node. A
node that responds to communication is considered responsive and otherwise it is suspected.
Nodes exchange their views via gossip [41]. The gossip is disseminated periodically and
randomly; every second, each node tries to exchange views with up to three other nodes: one
responsive, one suspected, and a seed [28]. A new node starts by contacting seed nodes.

Cassandra provides tunable consistency per operation. On every operation, the client can
specify the consistency level that determines the number of replicas that have to acknowledge
the operation. Some of the supported consistency levels are: one replica, a quorum [25] of
replicas and all of the replicas. According to the consistency level requested in the writes
and in the respective reads, eventual consistency [36] or strong consistency can be achieved.

On each operation, a client connects to any node in the system. This selected node acts
as a proxy on behalf of the client and contacts the relevant nodes using its view of the system.
In the common configuration, the client selects a proxy among all system nodes in a Round
Robin manner. The proxy node may contact up to N nodes that are responsible for storing
the value according to the requested consistency level. If the required threshold of responses
is satisfied, the proxy will acknowledge the write or forward the latest value, according to
the stored timestamp, to the client. If the proxy fails to contact a node on a write, it stores
the value locally and tries to update the suspected node at a later time. The stored value is
called hinted handoff [16]. If a proxy receives multiple versions on a read query, it performs
a read repair to update nodes that hold a stale version with the most updated one. As of
Cassandra 1.0, this replaces the earlier sloppy quorums [17] approach.

If a node is unresponsive for a long time, hinted handoffs that were saved for this node
may be deleted. Similarly, a hinted handoff may not reach its targeted node if the node that
stores it fails. This is overcome with Cassandra’s manual anti-entropy tool, where nodes
compute and exchange Merkle trees for their values and sync the outdated ones.

The primary language for communicating with Cassandra is the Cassandra Query Lan-
guage (CQL) [16]. Here, we focus on put and get commands as available in standard NoSQL
key-value databases and ignore other options.
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5 Hardened Cassandra

We identify Byzantine vulnerabilities in Cassandra and suggest ways to overcome them.

5.1 Impersonating
Cassandra supports SSL. Yet, sometimes messages need to be authenticated by a third party,
e.g., a read response sent from a node to a client through a proxy node, which we support
through digital signatures. In both SSL and digital signatures, we depend on PKI.

Digital signatures are divided into two main categories: public/private keys vs MAC
tags. Public key signatures are more powerful as they enable anyone to verify messages.
The downside of public key signatures is their compute time, which is about 2-3 orders of
magnitude slower than MAC tags and these signatures are significantly larger, e.g., RSA
2048b versus AES-CBC MAC 128b.

5.2 Consistency Level
Recall that Cassandra offers a configurable replication factor N as well as the number of
nodes that must acknowledge each read (R) and each write (W ). This threshold can be
one node or a quorum (majority in Cassandra) or all N nodes. When up to f nodes are
Byzantine, querying fewer than f + 1 nodes may retrieve old data (signed data cannot be
forged), violating the consistency property. On the other hand, querying more than N − f

nodes may result in loss of availability. We present two approaches: (1) using Byzantine
quorums for obtaining Strong Consistency and (2) using Cassandra quorums with a scheduled
run of the anti-entropy tool for obtaining Byzantine Eventual Consistency.

Byzantine Quorums

By requesting that each read and each write will intersect in at least f + 1 nodes, we
ensure that every read will intersect with every write in at least one correct node. That is,
R + W ≥ N + f + 1. As for liveness, we must require that R ≤ N − f, W ≤ N − f . By
combining these requirements, we obtain: N ≥ 3f + 1.

The last bound was formally proved by Malkhi & Reiter [33]. Cachin et al. [10] have
lowered this bound to 2f + 1 by separating between the actual data and its metadata; storing
the medadata still requires 3f + 1 nodes. The above separation was presented under the
assumptions of benign writers and Byzantine readers.

Cachin’s solution is beneficial for storing large data items. Yet, when storing small values,
the method of [10] only increases the overhead. A system may offer either solution according
to its usage, or employ both in a hybrid way, according to each value’s size.

Byzantine Eventual Consistency

For eventual consistency, all replication set nodes must eventually receive every update.
Further, writes order conflicts should be resolved deterministically. Here, there is no bound
on the propagation time of a write, but it should be finite. In particular, if no additional
writes are made to a row, eventually all reads to that row will return the same value.

Byzantine eventual consistency can be obtained through majority quorums. In this
approach, the replication set is of size 2f + 1 nodes while write and read quorums are of size
of f + 1. Hence, each write acknowledged by f + 1 nodes is necessarily executed by at least
one correct node. This node is trusted to update the rest of the nodes in the background.
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(a) The write algorithm in original Cassandra.
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(b) The read algorithm in original Cassandra.

Figure 1 Original Cassandra. Configuration: N=3 and R=2.

As this node is correct, it will eventually use the anti-entropy tool to update the rest of
the replication set. Recall that the client request is signed so the servers will be able to
authenticate this write when requested.

Every read is sent to f + 1 nodes and thus reaches at least one correct node. This correct
node follows the protocol and accepts writes from proxy nodes and from the anti-entropy
tool. So, eventually, it retrieves the latest update. Due to the cryptographic assumptions, a
Byzantine node can only send old data and cannot forge messages. Hence, on receiving a
value from the anti-entropy tool that does not pass the signature validation, we can use it as
a Byzantine failure detector and notify the system administrator.

5.3 Proxy Node
Figures 1a and 1b present the current write and read flows in Cassandra, including the role
of proxies. A Byzantine proxy node can act in multiple ways, such as (1) respond that it
has successfully stored the value without doing so, (2) perform a split-brain-write, and (3)
respond that the nodes are not available while they are. We augment the existing flows of
writing and reading in Cassandra to overcome these vulnerabilities below.

Naive Hardened Write Operation

Our modified write algorithm appears in Figures 2 and 8. Here, when writing a new value,
the client signs the value and a node will store it only if it is signed by a known client
according to the ACL with a timestamp that is considered fresh (configurable). On each
store, the storing node signs an acknowledgment that the client can verify. The signed
acknowledgment also covers the timestamp provided by the client, preventing replay attacks
by the proxy. A client completes a write only after obtaining the required threshold of signed
responses, which now the proxy cannot forge. If one proxy fails to respond with enough
signed acknowledgments in a configurable reasonable time, the client contacts another node
to serve as an alternative proxy for the operation. After contacting at most f + 1 proxy
nodes (when needed), the client knows that at least one correct proxy node was contacted.

Naive Hardened Read Operation in Details

The read algorithm has three parts: (1) Reading data from one node and only a digest from
the rest. As an optimization, the read may target only a known live quorum instead of all
relevant nodes. (2) On digests mismatch, a full read is sent to all contacted nodes from the



R. Friedman and R. Licher 27:7

Client Node1 
(Proxy1)

Node3 Node4
Node2

(Proxy2)
Write K

Write K

3 Signatures

Signature

Write K

3 Signatures

Write K

Write K
SignatureSignature

On failure, 
retrying with new proxy

Write K
Write KSignature

Signature
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Figure 2 Illustrating our write algorithm from Figure 8 where the proxy verifies each store
acknowledgment. Configuration: N=4 and W=3.
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Figure 3 Illustrating our read algorithm from Figure 9 where the proxy verifies. N=4 and R=3.

first phase, retrieving the data. (3) The proxy resolves the conflict by creating a row with the
most updated columns according to their timestamps, using lexicographical order of values
as tie breakers when needed. The resolved row is sent back to out-dated nodes.

Figures 3 and 9 present our modified read algorithm, including the following changes: (1)
In case the first phase is optimized by addressing only a known live quorum of nodes, if a
failure occurs, we do not fail the operation but move to a full read from all nodes. Thus, if a
Byzantine node does not respond correctly, it does not fail the operation. (2) If there is a
digest mismatch in the first phase, we do not limit the full read only to the contacted nodes
from the first phase but rather address all replication set nodes. Hence, Byzantine nodes
cannot answer in the first phase and fail the operation by being silent in the second phase.
(3) During resolving, the nodes issue a special signature, notifying the client about the write
back. The proxy then supplies the original answers from the first phase to the client, all
signed by the nodes. This way, the client can authenticate the resolving’s correctness.

The motivation for forwarding the original answers from the proxy to the client relates
to the fast write optimization of Cassandra, where all writes are appended to a commit log
and reconciled in the background or during a following read request. Hence, while stale
values are saved, if there is already a newer value, a stale value would not be served by any
read. Unfortunately, this optimization exposes an attack by which a Byzantine proxy would
request a quorum of nodes to store an old value. By providing the client with the original
answers, it can verify that the write-back was necessary and correct.
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5.3.1 Targeting Irrelevant Nodes
Byzantine proxies may direct read requests to irrelevant nodes, who will return a verifiable
empty answer. We consider three remedies for this: (1) Using clients that have full membership
view, already supported by Cassandra, so a client knows which nodes have to respond. (2)
Using an authentication service that is familiar with the membership view and can validate
each response. A client can use this service to authenticate answers. (3) Configure the nodes
to return a signed ‘irrelevant’ message when requested a value that they are not responsible
for. Here, clients avoid counting such ‘irrelevant’ answers as valid responses.

A Byzantine proxy can forward updates only to members of a single write quorum to
decrease long term availability. The anti-entropy tool is periodically invoked to overcome this.
It requires each value to be accompanied by a correct client signature for authentication.

5.3.2 Proxy Acknowledgments Verification
In our proposed solution as presented so far, we have requested the proxy to verify the nodes
acknowledgments and accept a response only if it is signed correctly. Yet, both hardened
read and write protocols forward to the client digitally signed acknowledgments so the latter
can authenticate the completion of the operation by the nodes. This motivates shifting the
entire verification from the proxy to the client, to reduce the proxy load. Below, we identify
the challenges in enabling this optimization and offer solutions:
1. Consider a correct proxy and f Byzantine nodes. The Byzantine nodes may reply faster

with bad signatures (they need not verify signatures nor sign). The proxy then returns to
the client f + 1 good signatures and f bad signatures. Contacting an alternative proxy
now might produce the same behavior.

2. Consider a colluding Byzantine proxy that is also responsible to store data itself. On a
write, the proxy asks the Byzantine nodes to produce a correct signature without storing
the value. The proxy also asks one correct node to store the data and produces false
f signatures for some nodes. The client will get f + 1 correct signatures and f bad
signatures, while only one node really stored the value.

To overcome the above, we let the client contact the proxy again in case it is not satisfied
with the 2f + 1 responses it obtained. On a read, the client requests the proxy to read again
without contacting the nodes that supplied false signatures. On a write, the client requests
the proxy to fetch acknowledgments from additional nodes.

As mentioned above, the motivation for this alternative is that signatures verification is
a heavy operation. In the proxy verification option, on every write, the proxy is required
to perform at least 2f + 1 signature verifications. In the alternative client only verification
option, the latency penalty will be noticed only when Byzantine failures are present and
could be roughly bounded by the time of additional RTT (round-trip-time) to the system
and f parallel RTT’s inside the system (counted as one), multiplying it all by f (the number
of retries with alternative proxies). Assuming that in most systems Byzantine failures are
rare, expediting the common correct case is a reasonable choice.

The client only verification option also enables using MAC tags instead of public signatures,
since only the client verifies signatures. To that end, a symmetric key for each pair of system
node and client should be generated. Every client has to store a number of symmetric keys
that is equal to the number of system nodes. Every node has to store a number of symmetric
keys that is equal to the number of (recently active) clients. These keys can be pre-configured
by the system administrator or be obtained on the first interaction through a secure SSL
line. This yields significant speedups both for the node signing and for the client verification.
The exact details appear in [22].
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5.3.3 Proxy Resolving vs. Client Resolving
Recall that when Cassandra’s read operation detects an inconsistent state, a resolving process
is initiated to update outdated replicas. This way, the chance for inconsistency in future
reads decreases. In plain Cassandra as well as in our solution as presented so far, the proxy
is in charge of resolving such inconsistent states. An alternative option is to let the client
resolve the answers and write back the resolved value using a write request that specifies to
the proxy which replicas are already updated.

To prevent Byzantine nodes from manipulating the resolver with false values, the resolver
must verify the client signature on each version. When combining the client resolving option
with using a proxy that is not verifying nodes acknowledgments (as discussed in Section 5.3.2),
the proxy no longer needs to verify any client signatures, improving its scalability. The exact
details appear in [22].

5.3.4 From Public Key Signatures to MAC Tags
The use of public key signatures has a major performance impact while switching to MAC
tag is not trivial. In Section 5.3.2, we described how to switch from public key signatures to
MAC tags on messages sent from nodes to clients.

Supporting MAC tags on messages sent from clients to nodes poses the following challenges:
(1) Joining new nodes to Cassandra. These nodes have to fetch stored values for load-balancing.
As a client does not know who these future nodes are, it cannot prepare MAC tags for them.
One solution is that a new node will only store values that were found in at least f + 1 nodes.
Alternatively, the client may re-write all values that the new node has to store. (2) Using
the anti-entropy tool and resolving consistency conflicts need to ensure the correctness of the
values by contacting at least f + 1 nodes that agree on the values. Alternatively, every node
will have to store a vector of MAC tags for each responsible node. Storing a signature vector
poses another challenge: a Byzantine proxy can manipulate the signatures vector sent to each
node, leaving only the node’s signature correct and corrupting all other nodes’ signatures
(making the stored vector useless). This can be overcome by adding another MAC tag on the
signatures vector, proving to the node that the tags vector was not modified by the proxy.

Due to these issues and in order to speed up the write path, we suggest a hybrid solution
as presented in Figure 4. A write is signed with a public key signature, which is covered
by MAC tags, one for each node. A node then verifies only the MAC tag and stores only
the public key signature. Hence, in the common case, we use a single public key signature
with no public key verifications at all. When things go bad, we fall back to the public key
signature. Furthermore, use of ECDSA [27] offers much faster signing than RSA [37].

Finally, when using MAC tags on the client to node path, the client should know what
are the relevant nodes for that key. One solution is to ensure clients are updated about
the nodes tokens. This way, on every write, the client knows what keys to use. Since our
solution has a fall back option, even if there is a topology change that the client is late to
observe, the new node (targeted by the proxy) can still use the public signature and not
fail the write. On the write acknowledgment, the new node can update the client about the
(signed) topological change.

5.3.5 Comparing The Variants
Tables 1, 2 and 3 summarize the alternatives proposed in this section. We focus on the
number of signing and verification operations of digital signatures as these are the most
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Client Node1 Node3 Node4Node2

SignP Client

SignS Node1

SignS Node2

SignS Node3

SignS Node4

Verify SignS Client Verify SignS Client Verify SignS Client Verify SignS Client

Store SignP Client Store SignP Client Store SignP Client Store SignP Client

SignS Client SignS Client SignS Client SignS Client

Verify SignS Node1

Verify SignS Node2

Verify SignS Node3

Verify SignS Node4

Figure 4 Illustration of our hybrid signing solution. The SignP stands for public key signature,
using the private key of the signing entity. The SignS stands for MAC tag.

Table 1 Comparing the variants of our solution with the most optimist assumptions. C is the
number of columns, (p) indicated public key signatures and (s) MAC tags. When the proxy does
not verify, we refer both to the proxy resolves and client resolves modes. We assume that on a read,
the proxy uses the optimization in the first phase and contacts only a Byzantine quorum and not
all replicas. For example, the forth row presents a proxy that does not verify acknowledgments
and MAC tags are used from client to nodes and from nodes to client. In this variant, the client
signs the C columns using public key signatures and adds 3f + 1 MAC tag, one for each node. All
nodes (3f + 1) have to store it and they verify only their MAC tags. All nodes issue verifiable
acknowledgments (3f + 1) and the client verifies only a Byzantine quorum (2f + 1).

Proxy Verifies? Op MAC Tags Signatures Verifications
Yes Write None Client: C(p) Nodes: 3f + 1(p) Nodes: (3f + 1) · C(p) Proxy: 2f + 1(p) Client: 2f + 1(p)
No Write None Client: C(p) Nodes: 3f + 1(p) Nodes: (3f + 1) · C(p) Client: 2f + 1(p)
No Write Nodes to client Client: C(p) Nodes: 3f + 1(s) Nodes: (3f + 1) · C(p) Client: 2f + 1(s)
No Write Both ways Client: C(p) & 3f + 1(s) Nodes: 3f + 1(s) Nodes: 3f + 1(s) Client: 2f + 1(s)
Yes Read None Nodes: 2f + 1(p) Proxy: 2f + 1(p) Client: 2f + 1(p)
No Read None Nodes: 2f + 1(p) Client: 2f + 1(p)
No Read Nodes to client Nodes: 2f + 1(s) Client: 2f + 1(s)

time consuming. We divide our analysis in three: (1) best case and no failures, (2) a benign
mismatch on a read that requires resolving, and (3) worst case with f Byzantine nodes.

5.4 Handling Byzantine Clients
Notice that some Byzantine clients actions are indistinguishable from correct clients behaviors.
For example, erasing data or repeatedly overwriting the same value. Yet, this requires the
client to have ACL permissions.

Here, we focus on preserving data consistency for correct clients. I.e., a correct client
should not observe inconsistent values resulting from a split-brain-write nor should it read
older values than values returned by previous reads.

Specifically, we guarantee the following semantics, as in plain Cassandra: (1) The order
between two values with the same timestamp is their lexicographical order (breaking ties
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Table 2 Comparing the variants in the read flow in case of a benign mismatch that requires
resolving. C is the number of columns, M is the number of outdated replicas in the used quorum, (p)
indicated public key signatures and (s) MAC tags. We assume that the proxy uses the optimization
in the first phase and contacts only a Byzantine quorum. For example, the first row presents a proxy
that verifies the acknowledgments and resolves conflicts when mismatch values are observed. MAC
tags are not in use. On a read request, a Byzantine quorum of nodes (2f + 1) have to retrieve the
row and sign it. The proxy verifies their signatures (2f + 1) and detects a conflict. Then, the proxy
requests all relevant nodes (except for the one that returned data in the first phase) for the full
data (3f nodes sign and the proxy verifies only 2f). The proxy resolves the mismatch (verifies C

columns) and sends the resolved row to the M outdated nodes (write-back). These nodes verify the
row (C) and sign the acknowledgments that are later verified by the proxy. The proxy supply the
client with the original 2f + 1 answers and the resolved row signed also by M nodes that approved
the write-back.

Proxy Verifies? Mismatch Resolving MAC tags Signatures Verifications
Yes Proxy No Nodes: 5f + 1 + M(p) Nodes: M · C(p) Proxy: 4f + 1 + C + M(p) Client: 2f + 1 + M(p)
No Proxy No Nodes: 5f + 1 + M(p) Nodes: M · C(p) Proxy: C(p) Client: 2f + 1 + M(p)
No Proxy Yes Nodes: 5f + 1 + M(s) Nodes: M · C(p) Proxy: C(p) Client: 2f + 1 + M(s)
No Client No Nodes: 5f + 1 + M(p) Nodes: M · C(p) Client: 2f + 1 + C + M(p)
No Client Yes Nodes: 5f + 1 + M(s) Nodes: M · C(p) Client: 2f + 1 + M(s) & C(p)

Table 3 Comparing the variants of the read and write flows in the worst case f Byzantine nodes.
Due to the wide options of Byzantine attacks and the fact that every Byzantine node can waste
other node’s cycles, we compare the variants only from the point of view of a correct client. C is the
number of columns, M is the number of outdated replicas in the used quorum, (p) indicated public
key signatures and (s) MAC tags. For example, the second row presents a proxy that does not verify
the acknowledgments in a write operation. MAC tags are not in use. On a write request, the client
signs the C columns and sends it to the proxy. The client receives from the proxy responses from a
Byzantine quorum of nodes (2f + 1) and detects that one is incorrect. The client requests the proxy
f more times for the missing signature and every time gets a false signature. Then, the client uses
alternative proxies repeatedly f additional times. At last, the client successfully retrieves all 2f + 1
correct signatures due to our assumption on f .

Proxy
Verifies? Op

Mismatch
Resolving MAC Tags Signatures Verifications Client-Proxy Requests

Yes Write - None C(p) (2f + 1)(f + 1)(p) f + 1
No Write - None C(p) (3f + 1)(f + 1)(p) (f + 1)(f + 1)
No Write - Nodes to client C(p) (3f + 1)(f + 1)(s) (f + 1)(f + 1)
No Write - Both ways C(p) (3f + 1)(f + 1)(s) (f + 1)(f + 1)
Yes Read Proxy None None (2f + 1 + M)(f + 1)(p) (f + 1)
No Read Proxy None None (2f + 1 + M)(f + 1)(f + 1)(p) (f + 1)(f + 1)
No Read Client None None (2f + 1)(f + 1)(f + 1) +C + (M + f)(f + 1)(p) (f + 1)(f + 1) + (M + f)(f + 1)
No Read Proxy Nodes to client None (2f + 1 + M)(f + 1)(f + 1)(s) (f + 1)(f + 1)
No Read Client Nodes to client None (2f + 1)(f + 1)(f + 1) + (M + f)(f + 1)(s) & C(p) (f + 1)(f + 1) + (M + f)(f + 1)

according to their value). (2) A write of multiple values with the same timestamps is logically
treated as multiple separate writes with the same timestamp. (3) Deleting values is equivalent
to overwriting these values with a tombstone. (4) A read performed by a correct client must
return any value that is not older (in timestamp order) than values returned by prior reads.
(5) A read performed after a correct write must return a value that is not older (in timestamp
order) than that value.

As mentioned, if the proxy handling a read observes multiple versions from different
nodes, it resolves the mismatch and writes the resolved value back to the nodes. The resolved
version will be a row with the most updated columns according to their timestamps. If the
proxy observes two values with the same timestamp, it will use the lexicographical order of
the values as a tie breaker.

For split-brain-writes, Byzantine clients colluding with Byzantine proxies may sign
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multiple values with the same timestamp. Proxies can send these different values with the
same timestamps to different nodes for a split-brain-write. Notice that a split-brain-write
could occur spontaneously in plain Cassandra by two correct clients that write in parallel
since in Cassandra clients provide the write’s timestamp, typically by reading their local
clock.

Consider a Byzantine client colluding with a proxy to perform a split-brain-write. Due
to the resolve mechanism, a read that sees both values returns only the latest value in
lexicographical order. Further, on a client read, the proxy resolves the conflict and updates a
quorum of servers with that version, restoring this value’s consistency.

If a Byzantine client and a colluding proxy try to update only part of the nodes with a
certain v, a read may return two kinds of values: (1) If the read quorum will witness v, it
will be resolved and propagated to at least a quorum of nodes meaning that v will be written
correctly. As a result of this resolve, every following read will return v (or a newer value).
(2) If a read will not witness v, the most recent version of a correct write will be returned.
Thus, the hardened system protects against such attempts.

Finally, if a Byzantine client is detected by the system administrator and removed, its
ACL and certificate can be revoked immediately. This way any potentially future signed
writes saved by a colluder will be voided.

5.5 Deleting Values

In Cassandra, deleting a value is done by replacing it with a tombstone. The tombstone is
replied to any request for this value to indicate its deletion. Occasionally, a garbage collector
removes all tombstones that are older than a configurable time (10 days by default).

Even in a benign environment, a deleted value might reappear, e.g., when a failed node
recovers after missing a delete operation and passing all garbage collection intervals in other
nodes. Mimicking this, a Byzantine node can ignore delete operations and propagate the
deleted values to correct nodes after the garbage collection interval.

We define the following counter-measures: (1) Every delete is signed by a client as in the
write operation. This signature is stored in the tombstone. A client completes a delete only
after obtaining a Byzantine quorum of signed acknowledgments. (2) During each garbage
collection interval, a node must run at least once the anti-entropy tool among a Byzantine
quorum of nodes, fetching all missed tombstones. (3) A node will accept writes of values that
are not older than the configured time for garbage collection interval. Since the node runs
the anti-entropy tool periodically, even if a deleted value is being fetched, the tombstone will
overwrite it. (4) A node that receives a store value older than the configured garbage collector
time will issue a read for the value and accept it only if a Byzantine quorum approves that
the value is live.

We explore a few additional attack vectors, including membership, clocks and network
attacks in Appendix B.
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(a) Workload A
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(b) Workload B
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(c) Workload C

Figure 5 Comparing the best variants against plain Cassandra and the algorithm with No-Sign
using workloads A, B and C. In the write latency of (a), we left the RSA variants out as they rapidly
grew to ≈65ms latency.

6 Performance

We implemented our algorithms1 as patches to Cassandra 2.2.42. We evaluated the perform-
ance of the variants of our solution and compared them to the original Cassandra using
the standard YCSB 0.73 benchmark [14], adjusted to use our BFT client library4. We used
Datastax’s Java driver 2.1.85 on the client side. There are nearly 390K LOC (lines of code)
in Cassandra. Our patch added about 3.5K LOC to the servers code and about 4K LOC to
the client code (including YCSB integration), which uses the client driver as is. Our entire
code adds less than 2% LOC.

All experiments were run on 4 to 5 machines (Ubuntu14, dual 64-bit 6 core 2.2GHz Intel
Xeon E5 CPUs, 32GB of RAM, 7200 RPM hard drive and 10Gb ethernet), one for the client
and three to four for the Cassandra nodes.

1 https://github.com/ronili/HardenedCassandra
2 https://github.com/apache/cassandra/tree/cassandra-2.2.4
3 https://github.com/brianfrankcooper/YCSB/tree/0.7.0
4 https://github.com/ronili/HardenedCassandraYCSB
5 https://github.com/datastax/java-driver/tree/2.1.8
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Figure 6 Comparing our best solution (ECDSA Proxy-No-Verify Full-Sym) against plain Cas-
sandra in a benign failure of one node in a 4 nodes setup.
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Figure 7 Comparing the best solution in benign behavior and having one node only replying
with bad signatures.

We pre-loaded the database with 100,000 rows and benchmarked it with five YCSB work-
loads as follows: (1) Workload A - 50/50 reads/writes. (2) Workload B - 95/5 reads/writes.
(3) Workload C - only reads. (4) Workload D - 95/5 reads/writes, where the reads are for the
latest inserts (and not random). (5) Workload F - 50/50 writes/Read-Modify-Writes. In all
workloads other than D, the write is for one column while in workload D it is for the entire
row. Every workload ran with 100 client threads, performing a total of 100,000 operations
with varying throughput targets. The tables consisted of 10 columns (default in YCSB)
as well as tables consisting of one value, modeling a key-value datastore. Each value is of
size 100 bytes while the key size is randomly chosen in the range of 5-23Bytes. Thus, each
record/line with 10 columns has an average length of 1014Bytes. As YCSB throttles the
requests rate to the achieved maximum throughput, we run each experiment until obtaining
a stable throughput.

We implemented the algorithms of Figures 8 and 9 where the proxy authenticates the
acknowledgments; denote these as Proxy-Verifies. We also implemented the variant where the
proxy does not verify the acknowledgments and lets the client fetch more acknowledgments in
case it is not satisfied; denote it Proxy-No-Verify. We ran that last algorithm in two modes,
one where the proxy is in charge of resolving inconsistent reads, and one where the client is.
We present only the former as both behaved similarly.

We analyzed MAC tags in two steps: (1) using MAC tags on messages from nodes to
client, denoted Half-Sym and (2) using it for both ways, denoted Full-Sym.

We used two types of private key signatures: (1) RSA with keys of length of 2048b and
(2) ECDSA with keys of length 256b and the secp256r1 curve. For symmetric keys, we used
keys of length of 128b with the HMAC MAC algorithm and SHA256 [20] for hashing.
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To evaluate the cost of our algorithm without cryptographic overhead, we ran them also
without any signatures. That is, we swapped the signing methods with a base64 encoded on
a single char, referred to as No-Sign.

6.1 Performance with No Failures

Figures 5 presents the performance results for the multi-column model for workloads A-C.
Workloads D and E are qualitatively similar and can be found in [22]. Our best solution is
the variant where the proxy does not verify the acknowledgments, and we use ECDSA and
MAC tags for both ways (ECDSA Proxy-No-Verify Full-Sym 4Nodes). The slowdown here is
roughly a factor of 2-2.5 in terms of the maximum throughput, 2.5-3 in the write latency
and 2-4 in the read latency. The No-Sign experiment represents the BFT algorithmic price
including larger quorums, extra verifications and storing signatures. The ECDSA experiment
adds the cryptography cost. Notice that RSA has a significant negative performance impact.

We have also studied the performance in the key-value model, i.e., a table with one
non-key column. For lack of space, the results are in the full version [22].

6.2 Performance Under Failures

Figure 6 presents the performance of our best solution in a single stopped node scenario. We
run workload A on a four nodes setup, with maximum throughput. After 50 seconds, we
stopped one node for 30 seconds and then restarted it. It took the node between 20 to 30
seconds to start, after which the other nodes started retransmitting the missed writes to the
failed node. In our best solution, the distributed retransmitting took about 250 seconds and
in the plain Cassandra, about 170 seconds. We repeated this test with workloads B and C
with one change, failing the node in t = 40 instead of t = 50. In this experiment too our
solution performs similarly to plain Cassandra.

In Figure 7, we present the performance of our best solution when one node always returns
a bad signature. This impacts the entire system as on every failed signature verification, the
client has to contact the proxy again. Further, on every read that addresses the Byzantine
node, a resolving and a write-back process is initiated.

We have also explored a stalling proxy attack, where the proxy waits most of the timeout
duration before supplying the client with the response. See Appendix C.1.

7 Conclusion

Cassandra’s wide adoption makes it a prime vehicle for exploring various aspects of distributed
data stores. In our work, we have studied Cassandra’s vulnerabilities to Byzantine failures
and explored various design alternatives for hardening it against such failures.

We have also evaluated the attainable performance of our design alternatives using the
standard YCSB benchmark. The throughput obtained by our best Byzantine tolerant design
was only 2-2.5 times lower than plain Cassandra while write and read latencies are only a
2-3X and 2-4X higher, respectively, than in the benign system.

Performance wise, the two most significant design decisions are the specific cryptographic
signatures and resolving all conflicts during reads only. Our novel design of sending a vector
of MAC tags, signed by itself with the symmetric key of the client and target node, plus the
ECDSA public key signature, means that the usual path involves no public key verifications
and only one elliptic curve signature, but no costly RSA signatures.
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A Pseudocode

The pseudocode of the basic hardened write protocol appears in Figure 8 while the basic
hardened read protocol is in Figure 9.
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1: function NodeWrite(k, v, ts, clientSign, clientID)
2: if clientSign is valid then
3: nodeSign← ComputeSignature(clientSign)
4: . The client signature covers a fresh ts
5: Store locally < k, v, ts, clientSign, clientID >
6: return nodeSign . A verifiable acknowledgment
7: end if
8: end function
9:

10: function ProxyWrite(k, v, ts, clientSign, clientID)
11: for each node n that is responsible for k do . N nodes
12: Send the write request to n
13: end for
14: Wait for 2f + 1 verified acknowledgements OR timeout
15: . Verified in the manner of correct node signature
16: return responses
17: end function
18:
19: function ClientWrite(k, v)
20: ts← Current timestamp . From a secure synchronized clock
21: clientSign← ComputeSignature(k || v || ts)
22: p← Some random system node
23: Send write with <k, v, ts, clientSign, clientID> to p
24: Wait for acknowledgments OR timeout
25: if |validResponses| ≥ 2f + 1 then
26: return Success
27: end if
28: if p = ⊥ OR contactedNodes > f then
29: return Failure
30: end if
31: goto line 22 . Use another node as proxy
32: end function

Figure 8 Our hardened write algorithm. ClientWrite is invoked on the client for each write.
ProxyWrite is invoked on the proxy node by the client. NodeWrite is invoked on a node that has
the responsibility to store the value. Store locally appends the write to an append log without any
read. When k is queried, the latest store (by timestamp) is retrieved.

B Additional Attack Vectors

B.1 Column Families vs. Key-Value semantics
The algorithms described so far reflect only key-value semantics. Yet, we also supports
Cassandra’s column family semantics. In the latter, a client signs each column separately,
producing a number of signatures that is equivalent to the number of non-key columns. This
is needed for reconciling partial columns writes correctly according to Cassandra’s semantics.
For example, consider a scheme with two non-key columns A and B. One node can hold an
updated version of A and a stale version of B while another node might hold the opposite
state. A correct read should return one row containing the latest columns for both.

Nodes acknowledgments can still include only a single signature covering all columns.
This is because the purpose of signatures here is to acknowledge the operation.

B.2 Membership View
The membership implementation of Cassandra is not Byzantine proof as faulty nodes can
temper other’s views by sending false data [4]. In addition, Byzantine seed nodes can partition
the system into multiple subsystems that do not know about each other. This is by exposing
different sets of nodes to different nodes.

To overcome this, each node’s installation should be signed by the trusted system
administrator with a logical timestamp. The logical timestamp enables nodes to verify they
are using an updated configuration. Each node must contact at least f + 1 seed nodes in
order to get at least one correct view. This requires the system administrator to pre-configure
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1: function NodeRead(k, clientT s)
2: if k is stored in the node then
3: < v, ts, clientSign, clientID >← Newest (timestamp manner) stored timestamp, value and client

signature with k
4: else
5: clientSign← EMP T Y
6: end if
7: nodeSign← ComputeSignature(k||h(v)||clientSign||clientT s)
8: if isDigestQuery then
9: return < h(v), ts, clientSign, clientID, nodeSign >

10: . The hash is matched in the proxy
11: else
12: return < v, ts, clientSign, clientID, nodeSign >
13: end if
14: end function
15:
16: function ProxyRead(k, clientT s)
17: targetEndpoints← allRelevantNodes for k OR a subset of 2f + 1 fastest relevant nodes . Optimization
18: dataEndpoind← One node from targetEndpoints
19: Send read data to dataEndpoind
20: Send read digest to targetEndpoints \ {dataEndpoind}
21: Wait for 2f + 1 verified responses OR timeout
22: if timeout AND all nodes were targeted in line 17 then
23: return ⊥
24: end if
25: if got data response AND all digests match then
26: return < v, nodesSign >
27: end if
28: Send read data to all nodes in allRelevantNodes . N nodes
29: Wait for 2f + 1 verified responses OR timeout
30: if timeout then
31: return ⊥
32: end if
33: resolved← Latest v in responses that is clientSign verified.
34: Write-back resolved to allRelevantNodes
35: . except those that are known to be updated
36: Wait to have knowledge about 2f + 1 verified updated nodes OR timeout . Returned updated data or a

write back ACK
37: if timeout then
38: return ⊥
39: end if
40: return < resolved, nodesSigns, allNodesV alues >
41: end function
42:
43: function ClientRead(k)
44: clientT s← Current timestamp . Fresh timestamp
45: p← Some random system node
46: Send read request with < k, clientT s > to p
47: Wait for responses OR timeout
48: if |validNodesSign| ≥ 2f + 1 then
49: . If write-back is observed, the resolved row is verified with the original read answers to ensure it was

required
50: return data
51: end if
52: p← Random node that was not used in this read as a proxy
53: if p = ⊥ OR contactedNodes > f then
54: return Failure
55: end if
56: goto line 46
57: end function

Figure 9 Our hardened read algorithm. ClientRead is invoked by the client for each read.
ProxyRead is invoked on the proxy by the client. NodeRead is invoked on a node that is responsible
to store the value.

manually the first f + 1 nodes view as they cannot trust the rest. Let us emphasize that
Byzantine seeds cannot forge false configurations. Rather, they can only hide configurations
by not publishing them.

Here, we adopt the work on BFT push-pull gossip by Aniello et al. [4]. Their solution
solves the dissemination issues by using signatures on the gossiped data.
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B.3 Synchronized Clock
In plain Cassandra, as well as in our case, each write includes a wall-clock timestamp used
to order the writes. With this, strong consistency cannot be promised unless local clocks are
perfectly synchronized. For example, consider two clients that suffer from a clock skew of ∆.
If both clients write to the same object in a period that is shorter than ∆, the later write
might be attached with a smaller timestamp, i.e., the older write wins.

In a benign environment, when ensuring a very low clock skew, for most applications,
these writes can be considered as parallel writes so any ordering of them is correct. For time
synchronization, Cassandra requires the administrator to provide an external solution such as
NTP. In our work, we follow this guideline using the latest version of NTP that can tolerate
Byzantine faults when ensuring the usage of SSL and authentication measures [6, 34]. We
configure this service so that all servers could use it as is and clients would be able only to
query it, without affecting the time.

Alternatively, one could use external clocks such as GPS clocks, atomic clocks or equival-
ents [21], assuming Byzantine nodes can neither control them nor the interaction with them.
Finally, Cassandra nodes can ignore writes with timestamps that are too far into the future
to be the result of a normal clock’s skew.

B.4 Other Network Attacks
Cassandra might suffer known overlay networks attacks, such as Sybil attacks [18] and Eclipse
attacks [38]. In a Sybil attack, attackers create multiple false entities. In Cassandra, multiple
node ids may lead to the same node, thereby fooling a client into storing its data only on a
single Byzantine replica. As suggested in [18], here we rely on a trusted system administrator
to be the sole entity for approving new entities that can be verified using PKI.

In an Eclipse attack, attackers divert requests towards malicious entities. E.g., a proxy
might try to target only Byzantine replicas. To overcome this, clients request verifiable
acknowledgments and count the number of correct repliers. If a proxy fails to provide
these, alternative proxies are contacted until enough correct nodes have been contacted.
Additionally, Section 5.3.1 explains how we handle a proxy that diverts requests to irrelevant
nodes.

C Additional Performance Issues

C.1 Stalling Proxy
In the stalling proxy performance attack, following a correct execution of an operation, the
proxy waits most of the timeout duration before supplying the client with the response.
Consequently, the system’s performance might decrease dramatically. Since the attack effects
vary depending on the timeout configuration, the attack can be mitigated by lowering the
timeout as low as possible. On the contrary, a tight timeout might fail correct requests
during congestion times. The right optimization of timeouts relies on several deployment
factors, e.g., the application requirements, the connection path of the client to system, the
network topology of the nodes and more. Therefore, we have no definitive insights when
facing this case. Finally, we would like to point out that the client can be configured to
contact the fastest responding nodes first and thus reduce the effect of this attack.
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Abstract
SSL/TLS communication channels play a very important role in Internet security, including
cloud computing and server infrastructures. There are often concerns about the strength of the
encryption mechanisms used in TLS channels. Vulnerabilities can lead to some of the cipher
suites once thought to be secure to become insecure and no longer recommended for use or in
urgent need of a software update. However, the deprecation/update process is very slow and
weeks or months can go by before most web servers and clients are protected, and some servers
and clients may never be updated. In the meantime, the communications are at risk of being
intercepted and tampered by attackers.

In this paper we propose an alternative to TLS to mitigate the problem of secure commu-
nication channels being susceptible to attacks due to unexpected vulnerabilities in its mechan-
isms. Our solution, called Vulnerability-Tolerant Transport Layer Security (vtTLS), is based
on diversity and redundancy of cryptographic mechanisms and certificates to ensure a secure
communication even when one or more mechanisms are vulnerable. Our solution relies on a
combination of k cipher suites which ensure that even if k − 1 cipher suites are insecure or vul-
nerable, the remaining cipher suite keeps the communication channel secure. The performance
and cost of vtTLS were evaluated and compared with OpenSSL, one of the most widely used
implementations of TLS.

1998 ACM Subject Classification C.2.2 Network Protocols, D.4.6 Security and Protection

Keywords and phrases Secure communication channels, Transport layer security, SSL/TLS,
Diversity, Redundancy, Vulnerability tolerance

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.28

1 Introduction

Secure communication protocols are extremely important in the Internet. Transport Layer
Security (TLS) alone is responsible for protecting most economic transactions done using
the Internet, with a value too high to estimate. These protocols allow entities to exchange
messages or data over a secure channel in the Internet. A secure communication channel has
three main properties: authenticity – no one can impersonate the sender; confidentiality –
only the intended receiver of the message is able to read it; and integrity – tampered messages
can be detected.
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Several secure communication channel protocols exist nowadays, with different purposes
but with the same goal of securing communication. TLS is a widely used secure channel
protocol. Originally called Secure Sockets Layer (SSL), its first version was SSL 2.0, released
in 1995. SSL 3.0 was released in 1996, bringing improvements to its predecessor such as
allowing forward secrecy and supporting SHA-1. Defined in 1999, TLS did not introduce
major changes in relation to SSL 3.0. TLS 1.1 and TLS 1.2 are upgrades to TLS 1.0
which brought improvements such as mitigation of cipher block chaining (CBC) attacks and
supporting more block cipher modes to use with AES.

Other widely used secure channel protocols are IPsec and SSH. Internet Protocol Security
(IPsec) is a network layer protocol that protects the communication at a lower level than
SSL/TLS, which operates at the transport layer [18]. IPsec is an extension of the Internet
Protocol (IP) that contains two sub-protocols: AH (Authentication Header) that can assure
full packet authenticity and ESP (Encapsulating Security Payload) that can protect confiden-
tiality and integrity of the payload of the packets. Secure Shell (SSH) is an application-layer
protocol used for secure remote login and other secure network services over an insecure
network [38].

A secure channel protocol becomes insecure when a vulnerability is discovered. Vulner-
abilities may concern the specification of the protocol, the cryptographic mechanisms used,
or specific implementations of the protocol. Many vulnerabilities have been discovered in
TLS originating new versions of the protocol, deprecating cryptographic mechanisms or
enforcing additional security measures. Concrete implementations of TLS have been also
found vulnerable due to implementation bugs. The processes of deprecation or software
update are very slow and can take a long time to become effective [2]. Also, they may not
even reach all the affected servers and clients. This means that the communications between
devices are at risk of interception or tampering by attackers for a long period.

This paper proposes a vulnerability-tolerant communication channel protocol, based on
TLS, named Vulnerability-Tolerant Transport Layer Security (vtTLS). A vulnerability-
tolerant channel is characterized by not relying on individual cryptographic mechanisms, so
that if any one of them is found vulnerable, the channel still remains secure. The idea is to
leverage diversity and redundancy of cryptographic mechanisms and keys by using more than
one set of mechanisms/keys. This use of diversity and redundancy is inspired in previous
works on intrusion tolerance [34], diversity in security [21, 13] and moving-target defenses [7].

Consider for example SHA-1 and SHA-3, two hash functions that may be used to generate
message digests. If used in combination and SHA-1 eventually becomes insecure, vtTLS
would rely upon SHA-3 to keep the communication secure.

vtTLS is configured with a parameter k (k > 1), the diversity factor, that indicates the
number of different cipher suites and different mechanisms for key exchange, authentication,
encryption, and signing. This parameter means also that vtTLS remains secure as long
as less than k vulnerabilities exist. As vulnerabilities and, more importantly, zero-day
vulnerabilities cannot be removed as they are unknown [4], do not appear in large numbers
in the same components, we expect k to be usually small, e.g., k = 2 or k = 3.

Although TLS supports strong encryption mechanisms such as AES and RSA, there are
factors beyond mathematical complexity that can contribute to vulnerabilities. Diversifying
encryption mechanisms includes diversifying certificates and consequently keys (public,
private, shared). Diversity of certificates is a direct consequence of diversifying encryption
mechanisms due to the fact that each certificate is related to an authentication and key
exchange mechanism.
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The main contribution of this paper is vtTLS, a new protocol for secure communication
channels that uses diversity and redundancy to tolerate vulnerabilities in cryptographic
mechanisms. The experimental evaluation shows that vtTLS has an acceptable overhead in
relation to the TLS implementation in OpenSSL v1.0.2g [35].

The rest of the document is organized as follows. Section 2 presents background and
related work. Section 3 presents the protocol and Section 4 its implementation. Section 5
presents the experimental evaluation and Section 6 concludes the paper.

2 Background and Related Work

This section presents related work on diversity (and redundancy) in security, provides
background information on TLS, and discusses vulnerabilities in cryptographic mechanisms
and protocols.

2.1 Diversity

The term diversity is used to describe multiple version software in which redundant versions
are deliberately created and made different between themselves [21]. Without diversity, all
instances are the same, with the same implementation vulnerabilities. Using diversity it is
possible to present the attacker with different versions, hopefully with different vulnerabilities.
Software diversity targets mostly software implementation and the ability of the attacker to
replicate the user’s environment. Diversity does not change the program’s logic, so it is not
helpful if a program is badly designed. According to Littlewood and Strigini, multi-version
systems on average are more reliable than those with a single version [21]. They also state
that the key to achieve effective diversity is to make the dependence between the different
programs as low as possible. Therefore, attention is needed when choosing the diverse
versions. The trade-off between individual quality and dependence needs to be assessed and
evaluated, as it impacts the correlation between version failures.

Recently there has been some discussion on the need for moving-target defenses. Such
defenses dynamically alter properties of programs and systems in order to overcome vulner-
abilities that eventually appear in static defense mechanisms [11]. There are two types of
moving-target defenses: proactive and reactive [7]. Proactive defenses are generally slower
than reactive defenses as they prevent attacks by increasing the system complexity periodic-
ally. Reactive defenses are faster as they are activated when they receive a trigger from the
system when an attack is detected. This may cause a problem where an attack is performed
but not detected. In this case, reactive defenses are worthless, but proactive defenses may
prevent that attack from being successful. The best approach would be to implement both
[30]. Nevertheless, these defences are as good as their ability to make an unpredictable
change to the system.

Earlier, Avižienis and Chen introduced N-version programming (NVP) [3]. NVP is defined
as the independent generation of N ≥ 2 functionally equivalent programs from the same
initial specification. The authors state that in order to use redundant programs to achieve
fault tolerance the redundant program must contain independently developed alternatives
routines for the same functions. The N in NVP comes from N diverse versions of a program
developed by N different programmers, that do not interact with each other regarding the
programming process. One of the limitations of NVP is that every version is originated
from the same initial specification. There is the need to assure the initial specification’s
correctness, completeness and unambiguity prior to the versions development.
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There is some work on obtaining diversity without explicitly developing N versions [20].
Garcia et al. show that there is enough diversity among operating systems for several practical
purposes [13]. Homescu et al. use profile-guided optimization for automated software diversity
generation [15]. Transparent Runtime Randomization (TRR) dynamically and randomly
relocates parts of the program to provide different versions [37]. Proactive obfuscation aims
to generate replicas with different vulnerabilities [26]. We introduced the idea of using
diversity for vulnerability-tolerant channels in a short (4-page) paper [16]. The present paper
greatly expands that previous work.

2.2 TLS Protocol
TLS has two main sub-protocols: the Handshake Protocol and the Record Protocol.

The Handshake Protocol is used to establish (or resume) a secure session between two
communicating parties – a client and a server. A session is established in several steps, each
one corresponding to a different message.

The Record protocol is the sub-protocol which processes the messages to send and
receive after the handshake, i.e., in normal operation. Regarding an outgoing message, the
first operation performed by the Record protocol is fragmentation. After fragmenting the
message, each block may be optionally compressed, using the compression method defined
in the Handshake. Each potentially compressed block is now transformed into a ciphertext
block by encryption and message authentication code (MAC) functions. Each ciphertext
block contains the protocol version, content type and the encrypted form of the compressed
fragment of application data, with the MAC, and the fragment’s length. When using block
ciphers, padding and its length is added to the block. The padding is added in order to
force the length of the fragment to be a multiple of the block cipher’s block length. When
using AEAD ciphers (MAC-then-Encrypt mode using a SHA-2 variant), no MAC key is used.
The message is then sent to its destination. Regarding an incoming message, the process is
the inverse. The message is decrypted, verified, optionally decompressed, reassembled and
delivered to the application.

2.3 TLS Vulnerabilities
We now discuss some of the vulnerabilities discovered in TLS in the past to show the relevance
of our work to bring added security to communications. TLS vulnerabilities can be classified
in two types: specification and implementation. Specification vulnerabilities concern the
protocol itself. A specification vulnerability can only be fixed by a new protocol version or
an extension. Implementation vulnerabilities exist in the code of an implementation of TLS,
such as OpenSSL. This section presents some of the most recent [28].

An example attack that exploits a specification vulnerability is Logjam [1]. The attack
consists in exploiting several weak parameters in the Diffie-Hellman key exchange. Logjam is
a man-in-the-middle attack that downgrades the connection to a weakened Diffie-Hellman
mode. This man-in-the-middle attack changes the cipher suites used in the DHE_EXPORT

cipher suite, forcing the use of weaker Diffie-Hellman key exchange parameters. As the
server supports this valid Diffie-Hellman mode, the handshake proceeds without the server
noticing the attack. The server proceeds to compute its premaster secret using weakened
Diffie-Hellman parameters. The client sees that the server has chosen a seemingly normal
DHE option and proceeds to compute its secret also with weak parameters. At this point,
the man-in-the-middle can use the precomputation results to break one of the secrets and
establish the connection to the client pretending to be the server.
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Heartbleed is an example of an implementation vulnerability. It was a bug in C code that
existed in OpenSSL 1.0.1 through 1.0.1f, when the heartbeat extension was introduced and
enabled by default [27]. The Heartbleed vulnerability allowed an attacker to perform a buffer
over-read, reading up to 64 KB from the memory of the victim [6].

2.4 Vulnerabilities in Cryptographic Schemes
This section presents example vulnerabilities in cryptographic mechanisms used by TLS.

2.4.1 Public-key Cryptography
RSA is a widely-used public-key cryptography scheme. Its security is based on the difficulty
of factorization of large integers and the RSA problem [23]. RSA can be considered to be
broken if these problems can be solved in a practical amount of time.

Kleinjung et al. performed the factorization of RSA-768, a RSA number with 232 digits
[19]. The researchers state they spent almost two years in the whole process, which is clearly
a non-practical time. Factorizing a large integer is different from breaking RSA, which is
still secure. As of 2010, these researchers concluded that RSA-1024 would be factored within
five years. As for now, no factorization of RSA-1024 has been publicly announced, but key
sizes of 2048 and 3072 bits are now recommended [10].

Shor designed a quantum computing algorithm to factorize integers in polynomial time
[29]. However, it requires a quantum computer able to run it, which is still not publicly
available.

2.4.2 Symmetric Encryption
The Advanced Encryption Standard (AES), originally called Rijndael, is the current American
standard for symmetric encryption [25]. AES can be employed with different key sizes – 128,
192 or 256 bits. The number of rounds corresponding to each key size is, respectively, 10, 12
and 14. AES is used by many protocols, including TLS.

The most successful cryptanalysis of AES was published by Bogdanov et al. in 2011,
using a biclique attack, a variant of the MITM attack [5]. This attack achieved a complexity
of 2126.1 for the full AES with 128-bit (AES-128). The key is therefore reduced to 126-bit
from the original 128-bit, but it would still take many years to successfully attack AES-128.
Ferguson et al. presented the first known attacks on the first seven and eight rounds of
Rijndael [12]. Although it shows some advance in breaking AES, AES with a key of 128 bits
has 10 rounds.

2.4.3 Hash Functions
The main uses for hash functions are data integrity and message authentication. A hash, also
called message digest or digital fingerprint, is a compact representation of the input and can
be used to uniquely identify that same input [22]. If a hash function is not collision-resistant,
it is vulnerable to collision attacks. Some generic attacks to hash function include brute
force attacks, birthday attacks and side-channel attacks.

The Secure Hash Algorithm 1 (SHA-1) is a cryptographic hash function that produces a
160-bit message digest. Its use is not recommended for some years [10], although the first
collision was discovered only recently [32]. There have been some previous attacks against
SHA-1. Stevens et al. presented a freestart collision attack for SHA-1’s internal compression
function [33]. Taking into consideration the Damgard-Merkle [24] construction for hash
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functions and the input of the compression function, a freestart collision attack is a collision
attack where the attacker can choose the initial chaining value, also known as initialisation
vector (IV). Freestart collision attacks being successful does not imply that SHA-1 is insecure,
but it is a step forward in that direction.

In 2005, Wang et al. presented a collision attack on SHA-1 that reduced the number of
calculations needed to find collisions from 280 to 269 [36]. The researchers claim that this
was the first collision attack on the full 80-step SHA-1 with complexity inferior to the 280

theoretical bound. By the year 2011, Stevens improved the number of calculations needed to
produce a collision from 269 to a number between 260.3 and 265.3 [31].

3 Vulnerability-Tolerant TLS

vtTLS is a new protocol that provides vulnerability-tolerant secure communication channels.
It aims at increasing security using diverse and redundant cryptographic mechanisms and
certificates. It is based on the TLS protocol. The protocol aims to solve the main problem
originated by having only one cipher suite negotiated between client and server: when
one of the cipher suite’s mechanisms becomes insecure, the communication channels using
that cipher suite may become vulnerable. Although most cipher suites’ cryptographic
mechanisms supported by TLS 1.2 are believed to be secure, Section 2 shows clearly that
new vulnerabilities may be discovered.

Unlike TLS, a vtTLS communication channel does not rely on only one cipher suite.
vtTLS negotiates more than one cipher suite between client and server and, consequently,
more than one cryptographic mechanism will be used for each phase: key exchange, au-
thentication, encryption and MAC. Diversity and redundancy appear firstly in vtTLS in
the Handshake protocol, in which client and server negotiate k cipher suites to secure the
communication, with k > 1.

The strength of vtTLS resides in the fact that even when (k − 1) cipher suites become
insecure, e.g., because (k − 1) of the cryptographic mechanisms are vulnerable, the protocol
remains secure. The server chooses the best combination of k cipher suites according to the
cipher suites server and client have available. However, the choice of the cipher suites might
be conditioned by the certificates of both server and client. vtTLS uses a subset of the k

cipher suites agreed-upon in the Handshake Protocol to encrypt the messages.

3.1 Protocol Specification
The vtTLS Handshake Protocol is similar to the TLS Handshake Protocol. We use the
same names for the messages in order to help the reader familiarized with TLS.

The messages that require diversity are ClientHello, ServerHello, k-ServerKey-
Exchange, Server and Client Certificate, and k-ClientKeyExchange.

The first message to be sent is ClientHello to inform the server that the client wants
to establish a secure channel for communication.

The server responds with a ServerHello message. This is where the server sends to
the client the k cipher suites to be used in the communication. The server also sends its
protocol version, a Random structure identical to the one received from the client, the session
identifier, and the k cipher suites chosen by the server from the list the client sent.

The server proceeds to send a Server Certificate message containing its k certificates
to the client. The k chosen cipher suites are dependent from the server’s certificates. Each
certificate is associated with one key exchange mechanism (KEM). Therefore, the k cipher
suites must use the key exchange mechanisms supported by the server’s certificates.



A. Joaquim, M. L. Pardal, and M. Correia 28:7

Figure 1 vtTLS Handshake messages with diversity factor k. The places where diversity and
redundancy are introduced are marked in bold and underlined.

vtTLS behaves correctly if the server has c certificates, with 0 < c ≤ k . The cipher
suites to be used are chosen considering the available certificates. If c < k, the diversity is
not fully achieved due to the fact that a number of cipher suites will share the same key
exchange and authentication mechanisms.

The ServerKeyExchange message is the next message to be sent to the client by
the server. This message is only sent if one of the k cipher suites includes a key exchange
mechanism like ECDHE or DHE that uses ephemeral keys, i.e., that generate new keys for
every key exchange. The contents of this message are the server’s DH ephemeral parameters.
For every other k − 1 cipher suites using ECDHE or DHE, the server sends additional
ServerKeyExchange messages with additional diverse DH ephemeral parameters. Instead
of computing all the ephemeral parameters and sending them all on a single larger message,
the server, after computing one parameter, sends it immediately, sending each parameter in
a separate message.

The remaining messages sent by the server to the client at this point of the negotiation,
CertificateRequest and ServerHelloDone, are identical to those in TLS 1.2 [9].

The client proceeds to send a (Client) Certificate message containing its i certificates
to the server, analogous to the (Server) Certificate message the client received previously
from the server.

After sending its certificates, the client sends k ClientKeyExchange messages to the
server. The content of these messages is based on the k cipher suites chosen. If m of the
cipher suites use RSA as KEM, the client sends m messages, each one with a RSA-encrypted
pre-master secret to the server (0 ≤ m ≤ k). If j of the cipher suites use ECDHE or DHE, the
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client sends j messages to the server containing its j Diffie-Hellman public values (0 ≤ j ≤ k).
Even if a subset of the k cipher suites share the same KEM, this methodology still applies as
we introduce diversity by using different parameters for each cipher suite being used.

The server needs to verify the client’s i certificates. The client digitally signs all the
previous handshake messages and sends them to the server for verification.

Client and server now exchange ChangeCipherSpec messages, like in the Cipher Spec
Protocol of TLS 1.2, in order to state that they are now using the previously negotiated
cipher suites for exchanging messages in a secure fashion.

In order to finish the Handshake, the client and server send each other a Finished
message. This is the first message sent encrypted using the k cipher suites negotiated earlier.
Its purpose is for each party to receive and validate the data received in this message. If the
data is valid, client and server can now exchange messages over the communication channel.

3.2 Combining Diverse Cipher Suites
Diversity between cryptographic mechanisms can be taken in a soft sense as the use of
different mechanisms, or in a hard sense as the use of mechanisms that do not share common
vulnerabilities (e.g., because they are based on different mathematical problems). In vtTLS
we are interested in using strong diversity in order to claim that no common vulnerabilities will
appear in different mechanisms. Measuring the level of diversity is not simple, so we leverage
previous research by Carvalho on heuristics for comparing diversity among cryptographic
mechanisms [8]. Moreover, not all cryptographic mechanisms can be used together in the
context of TLS 1.2 and other security protocols. Here we consider only the combinations of
two algorithms, i.e., k = 2, for simplicity.

After comparing several hash functions, Carvalho concluded that the best three combina-
tions are the following:

SHA-1 + SHA-3: not possible in vtTLS as SHA-1 is not recommended and TLS 1.2
does not support SHA-3;
SHA-1 + Whirlpool: not possible in vtTLS as SHA-1 is not recommended and TLS 1.2
does not support Whirlpool;
SHA-2 + SHA-3: also not possible in vtTLS as TLS 1.2 does not support SHA-3.

All the remaining combinations suggested in that work cannot also be used because
TLS 1.2 does not support SHA-3. All vtTLS cipher suites use either AEAD or SHA-2
(SHA-256 or SHA-384). Having a small range of available hash functions limits the maximum
diversity factor achievable concerning hash functions. In a near future, it is expected that
a new TLS protocol version supports SHA-3 and makes possible the use of diverse hash
functions. Nevertheless, it still possible to achieve diversity by using different variants of
SHA-2: SHA-256 and SHA-384.

After comparing several public-key encryption mechanisms, Carvalho concluded that the
best four combinations are:

DSA + RSA: possible as TLS 1.2 supports both functions for authentication. However,
TLS 1.2 specific cipher suites only support DSA with elliptic curves (ECDSA);
DSA + Rabin-Williams: not possible as TLS 1.2 does not support Rabin-Williams;
RSA + ECDH: possible as TLS 1.2 supports both functions for key exchange;
RSA + ECDSA: possible as TLS 1.2 supports both functions for authentication.

Regarding authentication, although DSA + RSA is stated as the most diverse combination,
TLS 1.2 preferred cipher suites use ECDSA instead of DSA. Using elliptic curves results in a
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faster computation and lower power consumption [14]. With that being said, the preferred
combination for authentication is RSA + ECDSA.

Regarding key exchange, the most diverse combination is RSA + ECDH. However, in
order to grant perfect forward secrecy, the ECDH with ephemeral keys (ECDHE) has to be
employed. Concluding, the preferred combination for key exchange is RSA + ECDHE.

The study in [8] did not present any conclusions regarding symmetric-key encryption.
However, both AES and Camellia are supported by TLS 1.2 and are considered secure. The
most diverse combination is AES256-GCM + CAMELLIA128-CBC: the origin of the two
algorithms is different, they were first published in different years, they both have semantic
security (as they both use initialization vectors) and the mode of operation is also different.
One constraint of using this combination is that there is no cipher suite that uses RSA for
key exchange, Camellia for encryption and a SHA-2 variant for MAC. Although RFC 6367
[17] describes the support for Camellia HMAC-based cipher suites, extending TLS 1.2, these
cipher suites are not supported by OpenSSL 1.0.2g. Using a cipher suite that uses Camellia,
in order to maximize diversity, implies using also SHA-1 for MAC and not using ECDHE
for key exchange nor ECDSA for authentication in that cipher suite. Concluding, using
Camellia increases diversity in encryption but reduces security in MAC, forcing the use of an
insecure algorithm. Nevertheless, diversity in encryption is still an objective to accomplish.
We decided that the best option is:

AES256-GCM + AES128: possible as TLS 1.2 supports both functions.

These functions are, in theory, the same, but employed with a different strength size and
mode of operation, they can be considered diverse, although they have an inferior degree of
diversity comparing to any of the combinations above.

Concluding, the best combination of cipher suites is arguably:
TLS_ECDHE_ECDSA_WITH_AES_ 256_GCM_SHA384 and
TLS_RSA_WITH_AES_128_CBC_SHA256

For key exchange, vtTLS will use Ephemeral ECDH (ECDHE) and RSA; for authentica-
tion, it will use Elliptic Curve DSA (ECDSA) and RSA; for encryption, it will use AES-256
with Galois/Counter mode (GCM) and AES-128 with cipher block chaining (CBC) mode;
finally, for MAC, it will use SHA-2 variants (SHA-384 and SHA-256). Using this combination
of cipher suites, the lowest diversity is with the MAC, due to the fact that TLS 1.2 does not
support SHA-3 for now.

4 Implementation

Our implementation of vtTLS was obtained by modifying OpenSSL version 1.0.2g.1. Imple-
menting a vtTLS from scratch would be a bad option as it might lead to the creation of
vulnerabilities; existing software such as OpenSSL has the advantage of being extensively
debugged, although serious vulnerabilities like Heartbleed still appear from time to time.
Furthermore, creating a new secure communication protocol, and consequently a new API,
would create adoption barriers to programmers otherwise willing to use our protocol. There-
fore, we chose to implement vtTLS based on OpenSSL, keeping the same API as far as
possible. Although being based on OpenSSL, vtTLS is not fully compatible with it due
to its diversity and redundancy features. It is noteworthy that OpenSSL is a huge code
base (438,841 lines of code in version 1.0.2g) so modifying it to support diversity has been a
considerable engineering challenge.

1 https://www.openssl.org
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Figure 2 First four steps in the creation of a data message in vtTLS with k = 2: first encryption
and MAC.

In order to establish a vtTLS communication channel, additional functions are required
to fulfill the requirements of vtTLS, such as loading two certificates and corresponding
private keys. These functions have a similar name of the ones belonging to the OpenSSL
API, to reduce the learning curve. The most relevant functions regarding the setup of the
channel are the functions that allow to load the second certificate and private key and allow
to check if the second private key corresponds to the second certificate.

Regarding the Handshake Protocol, we opted for sending k ServerKeyExchange and
ClientKeyExchange messages instead of sending one single ServerKeyExchange and
one single ClientKeyExchange, each one with several parameters. This is due to the fact
that it makes the code easier to understand and to maintain. If k needs to be increased, it is
just needed to send an additional message instead of changing the code related to sending
and retrieving ServerKeyExchange and ClientKeyExchange messages.

The encryption and signing ordering is also important in vtTLS. Figure 2 shows the
initial steps of the creation of a data message. The figure considers k = 2, but shows only
the steps regarding the first encryption and the first signature.

Figure 3 shows the final steps of the preparation of a vtTLS message. We opted for
maintaining the creation of the MAC prior to the encryption. Using this approach, both
message and MACs are encrypted with both ciphers. In this case there is no chance that
both MACs are identical, if the hash function used is secure (SHA-2 is considered secure).

The whole sequence is the following:
Apply the first MAC to the plaintext message;
Encrypt the original message and its MAC with the first encryption function;
Apply the second MAC to the first ciphertext;
Encrypt the first ciphertext and its MAC with the second encryption function.
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Figure 3 Remaining three steps in the creation of a data message in vtTLS with k = 2: second
encryption and MAC.

In relation to the Record Protocol, signing and encrypting k times has a cost in terms of
message size. Figures 2 and 3 show also the expected increase of the message size due to the
use of a second MAC and a second encryption function (for k = 2). For TLS 1.2 (OpenSSL),
the expected size of a message is first_len = eivlen + msg_length + padding + mac_size,
where eivlen is the size of the initialization vector (IV), msg_length the original message size,
padding the size of the padding in case a block cipher is used, and mac_size the size of the
MAC (Figure 2). For vtTLS, the additional size of the message is eivlen_sec + first_len +
padding_sec + mac_size_sec, where eivlen_sec is the size of the IV associated with the
second cipher and mac_size_sec the size of the second MAC.

In the best case, the number of packets is the same for OpenSSL and vtTLS. In the
worst case, one additional packet may be sent if the encryption function requires fixed block
size and the maximum size of the packet, after the second MAC and the second encryption,
is exceeded by, at least, one byte. In this case, an additional full packet is needed due to the
constraint of having fixed block size.

5 Evaluation

We evaluated vtTLS in terms of two aspects: performance and cost. We considered OpenSSL
1.0.2g as the baseline, due to the fact that vtTLS is based on that software and version.

Diversity has performance costs and creates overhead in the communication. Every mes-
sage sent needs to be ciphered and signed k − 1 times more than using a TLS implementation
and every message received needs to be deciphered and verified also k − 1 times more. In the
worst case, users should experience a connection k times slower than using OpenSSL. We
considered k = 2 in all experiments, as this is the value we expect to be used in practice
(we expect vulnerabilities to appear rarely, so the ability to tolerate one vulnerability per
mechanism sufficient). With this experimental evaluation, we want to be able to state if
vtTLS is a viable mechanism for daily usage, i.e., if the penalty for replacing TLS channels
by vtTLS channels is not prohibitive.

In order to perform these tests, we used two virtual machines in the same Intel Core i7
computer with 8 GB RAM. The virtual machines run Debian 8 and openSUSE 12 playing
the roles of server and client, respectively. All the tests were done in the same controlled
environment and same geographic location.
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Table 1 Handshake time comparison.

Average (ms) Standard deviation Confidence interval (95%)
vtTLS 3.909 0.963 ±0.180
OpenSSL 2.345 0.933 ±0.174

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 MB 10 MB 50 MB 100 MB 500 MB 1 GB

Ti
m

e 
(m

ill
is

ec
o

n
d

s)

Message Size

vtTLS Send vtTLS Receive OpenSSL Send OpenSSL Receive

Figure 4 Time to send and receive a message with vtTLS and OpenSSL.

5.1 Performance
In order to evaluate the performance of vtTLS, we executed several tests. The main
goal was to understand if the overhead of vtTLS is lower, equal, or bigger than k

times in relation to OpenSSL. We configured vtTLS to use the following cipher suites:
TLS_RSA_WITH_AES_256_GCM_SHA384 and TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384. The suite used
with OpenSSL was the latter.

To evaluate the performance of the handshake, we executed 100 times the Handshake
Protocol of both vtTLS and OpenSSL. In average, the vtTLS handshake took 3.909
milliseconds to conclude and the OpenSSL handshake 2.345 milliseconds. Therefore, the
vtTLS handshake is only 1.67 slower than the OpenSSL handshake, which is better than
the worst case. Table 1 provides more details.

After evaluating the Handshake, we performed data communication tests to assess the
overhead generated by the diversity and redundancy of mechanisms. As the Handshake, the
communication is expected to be at most k = 2 times slower than a TLS communication.
For this test, we considered a sample of 100 messages sent and received with vtTLS and
100 messages sent and received with OpenSSL.

Figure 4 shows the comparison between the time it takes to send and receive a message
with vtTLS and OpenSSL/TLS. Tables 2 and 3 show more details.

The measurements concern the time each channel needs to perform the local operations
in order to send the message (including encryption, signing, second encryption and second
signing). These values do not include the time taken by the message to reach its destination
through the network. The timer is started before the call to SSL_write and stopped after the
function returns. As for the results regarding the reception of messages, the measured time is
the time taken to perform the operations necessary to retrieve the message (including second
decrypting and second verifying), i.e. the time of execution of SSL_read. This methodology
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Table 2 Time to send a message with vtTLS and OpenSSL.

vtTLS Send OpenSSL Send
Average St. dev. Conf. I. (95%) Average St. dev. Conf. I. (95%)

1 MB 12.80 3.324 ±0.652 11.28 3.985 ±0.781
10 MB 105.89 17.573 ±3.444 76.61 10.413 ±2.041
50 MB 534.55 149.697 ±29.340 435.01 212.065 ±41.564
100 MB 1004.30 194.701 ±38.161 757.02 206.709 ±40.514
500 MB 4579.40 727.519 ±142.591 2834.18 217.378 ±42.605
1 GB 8289.78 757.167 ±148.402 5851.08 480.423 ±94.161

Table 3 Time to receive a message with vtTLS and OpenSSL.

vtTLS Receive OpenSSL Receive
Average St. dev. Conf. I. (95%) Average St. dev. Conf. I.(95%)

1 MB 14.70 3.324 ±0.652 13.48 3.985 ±0.781
10 MB 113.41 17.573 ±3.444 80.42 10.413 ±2.041
50 MB 549.61 149.697 ±29.340 443.10 212.065 ±41.564
100 MB 1004.54 194.701 ±38.161 757.13 206.709 ±40.514
500 MB 4580.13 727.519 ±142.591 2834.37 217.378 ±42.605
1 GB 8227 757.167 ±148.402 5850.96 480.423 ±94.161

is only possible due to the fact that SSL_write is a synchronous call. It only returns after
writing the message to the buffer. And also due to the fact that SSL_read is also synchronous
as it only returns when the message is read.

In average, a message sent through a vtTLS channel takes 22.88% longer than a message
sent with OpenSSL. For example, a 50 MB message takes an average of 534.55 ms to be sent
with vtTLS. With OpenSSL, the same message takes 435.01 ms to be sent. The overhead
generated by using diverse encryption and MAC mechanisms exists, as expected, but it is
much smaller than the expected worst case.

In order to validate the premise that the message increase is the same considering the same
message size, we measured the increase in the message size comparing once again vtTLS
and OpenSSL channels. A 100 KB plaintext message converts into a ciphertext of 102,771
bytes with vtTLS. With OpenSSL, the same message corresponds to a ciphertext of 102,603
bytes. Concluding, sending a 100 KB message through vtTLS costs an additional 168 bytes.
Therefore, as stated before, the number of extra bytes sent is not directly proportional to
the message size.

We also evaluated the message size of the ciphertext of a 1 MB plaintext message. A 1
MB plaintext message corresponds to a ciphertext of 1,029,054 bytes using vtTLS, while
using OpenSSL the same message has 1,025,856 bytes. Concluding, sending 1 MB through
a vtTLS channel costs an additional 3,198 bytes than using a OpenSSL channel. Table 4
shows all the results obtained and the comparison between the message sizes.

5.2 Cost
Similarly to TLS, vtTLS uses certificates that require some management effort and costs.
A server using OpenSSL/ TLS to protect the communication with clients needs only one
certificate. If the administrator decides to use vtTLS instead of TLS, at least 2 certificates
are needed for maximum diversity, and at most k certificates. Although certificates are not

OPODIS 2017



28:14 Vulnerability-Tolerant Transport Layer Security

Table 4 Message sizes in vtTLS and OpenSSL.

Message
size

vtTLS OpenSSL Overhead (diff.)
Encrypted
message size

Average
#packs

Encrypted
message size

Average
#packs Packets Message

size
100,000 102,771 6.3 102,603 5.3 1 168

1,000,000 1,029,054 38.3 1,025,856 37.6 0.7 3,198
100,000,000 105,362,077.10 2,830.2 104,956,194.50 2,553.5 276.7 405,883

expensive, they represent a cost. vtTLS can be used with just one certificate, but this
reduces the diversity and, consequently, the potential security benefit.

Regarding management, there is the need to manage two certificates instead of one. We
believe this does not represent a substantial increase in management effort. If it is decided to
use vtTLS with a diversity factor k > 2, the management costs of maintaining k certificates
might represent an significant increase of management costs.

6 Conclusions

vtTLS is a diverse and redundant vulnerability-tolerant secure communication protocol
designed for communication on the Internet. It aims at increasing security using diverse
cipher suites to tolerate vulnerabilities in the encryption mechanisms used in the commu-
nication channel. In order to evaluate our solution, we compared it to an OpenSSL 1.0.2g
communication channel. While expected to be k = 2 times slower than an OpenSSL channel,
the evaluation showed that using diversity and redundancy of cryptographic mechanisms in
vtTLS does not generate such a high overhead. vtTLS takes, in average, 22.88% longer to
send a message than TLS/OpenSSL, but considering the increase in security, this overhead
is acceptable. Overall, considering the additional costs of having an extra certificate, the
time increase, and potential management costs, vtTLS provides an interesting trade-off for
a set of critical applications.
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Abstract
In the asynchronous setting, distributed behavior is traditionally studied through computations,
the Happened-Before posets of events generated by the system. An equivalent perspective consid-
ers the linear extensions of the generated computations: each linear extension defines a sequence
of events, called an execution. Both perspective were leveraged in the study of asynchronous
point-to-point message orderings over computations; yet neither allows us to interpret message
orderings defined over executions. Can we nevertheless make sense of such an ordering, maybe
even use it to understand asynchronicity better?

We provide a general answer by defining a topology on the set of executions which captures
the fundamental assumptions of asynchronicity. This topology links each message ordering over
executions with two sets of computations: its closure, the computations for which at least one
linear extension satisfies the predicate; and its interior, the computations for which all linear ex-
tensions satisfy it. These sets of computations represent respectively the uncertainty brought by
asynchronicity – the computations where the predicate is satisfiable – and the certainty available
despite asynchronicity – the computations where the predicate must hold. The paper demon-
strates the use of this topological approach by examining closures and interiors of interesting
orderings over executions.
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1 Introduction

1.1 Motivation
What can we know about the ordering of events in an asynchronous world? Only the
causal order, answered Lamport’s seminal work [20]. This insight grounds the description
of asynchronous behavior through computations, the posets generated by events with their
causal order – or equivalently through the linear extensions of these computations, sequences
of events called executions.

It follows that message orderings defined over computations have been well studied,
because they capture the type of constraints allowed by causality. One prominent example is
the causal message ordering: it enforces that two messages whose send events are causally
ordered and which share the same destination peer, must be received in the order they were
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sent. Charron-Bost et al. [8] offer multiple equivalent characterizations of this ordering, as
well as its place in a hierarchy with other orderings. Murty and Garg [22] prove that causal
ordering is the most constrained ordering implementable using only messages tags – that is,
without altering the causal order through control messages. Numerous works, among others
Fidge [14], Mattern [21], Schwarz and Mattern [25], Raynal et al.[23] and Kshemkalyani and
Singhal [19], explore the means of implementation of causal ordering.

But predicates over computations have drawbacks: they are defined on posets, objects
less intuitive than sequences; and they do not capture every interesting constraint. For
example, Fifon−n ordering formalized in Chevrou et al. [11] requires that all receptions follow
the same order as their respective sends, even if neither pair of events is causally ordered.
Fifon−n’s definition is simple, and it reduces asynchronous communication to a single FIFO
queue. But since it demands a stronger order than the causal one, it conflicts with the very
foundations of asynchronous distributed systems. As we will see, there is a general way to
consider any predicate over executions in an asynchronous setting, which gives us both a
powerful tool and a deeper understanding of asynchronicity.

1.2 Computations and Executions
I Definition 1 (Events). Let MES the set of messages and PEERS the set of communicat-
ing peers. Then EVENTS , {send, receive} ×MES × PEERS, where the components
correspond respectively to the type of events, the message and the peer where the event
happens.

We write peer(e) for the projection of an event into its peer component. Since in the
following we will only consider sets of events where multiple sends and/or receptions of the
same message are forbidden, events are considered uniquely characterized by their type and
their message. We thus abuse notation by writing s(m) and r(m) instead of 〈send,m, peer〉
and 〈receive,m, peer〉 respectively. Note that we do not take into account internal events,
since we are only interested in the order of communication ones.

I Definition 2 (Computation). Let X be a set of events containing at most one reception by
message and one send event by message. Then the partially ordered set (or poset) x = (X,≺xc )
is a computation iff
≺xc is a causal order on X, that is the smallest partial order such that peer(e1) = peer(e2) =⇒ e1 ≺xc e2 ∨ e2 ≺xc e1 (Peer order)

∃m : e1 = s(m) ∧ e2 = r(m) =⇒ e1 ≺xc e2 (Message transfer)
∃e ∈ X : e1 ≺xc e ∧ e ≺xc e2 =⇒ e1 ≺xc e2 (Transitivity)

 .

Any received message has been sent: ∀m ∈MES : r(m) ∈ x =⇒ s(m) ∈ x.
No message is sent to oneself: ∀m ∈MES : peer(r(m)) 6= peer(s(m)).

The peer order ≺xp is defined as the projection of ≺xc on pairs of events happening on the
same peer. When two events e1 and e2 are not causally ordered, we write e1 ‖xc e2. We note
Comp the set of all computations over subsets of EV ENTS. Finally, for b a predicate over
computations, Comp(b) is the set of computations satisfying b.

I Definition 3 (Execution). Let Σ be a set of events containing at most one reception by
message and one send event by message. Then the totally ordered set σ = (Σ,≺σ) is an
execution iff ∃x = (X,≺xc ) ∈ Comp such that Σ = X and ≺σ is a linear extension of ≺xc .
By the minimality of the causal order, such x is unique.
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We write comp(σ) for x, ≺σc for ≺xc and ≺σp for ≺xp . We note Exec the set of all executions
over subset of EV ENTS. Finally, for b a predicate over executions, Exec(b) is the set of
executions satisfying b.

Both are represented with so-called space-time diagrams, where each peer is represented
by a vertical line, events at a peer are ordered from left to right and messages are drawn by
connecting a send event with the corresponding reception. For example, Figure 3 defines the
execution s(m1)r(m1)s(m2)r(m2) as well as the computation over the same events and with
partial order {(s(m1), r(m1)), (s(m2), r(m2)), (s(m1), s(m2)), ((s(m1), r(m2)))}.

1.3 Message Orderings
We conclude these preliminary definitions by introducing predicates over computations and
executions. Since we consider only communication events, we will call these predicates
message orderings. Table 1 states the message orderings we will study in the following. They
are given as in Chevrou et al. [11] (except for RSC, where our definition is equivalent and
easier to manipulate).

Fifo1−1 ordering is the classical Fifo ordering between every pair of peers.
Causal ordering is the ordering where messages to the same peer and with causally
ordered send events are received according to their send order.
Fifon−1 ordering is the "mailbox" ordering that is used notably by [2], where messages to
a peer are put into its mailbox, and the peer retrieves them according to their send order.
Fifo1−n ordering is the dual of Fifon−1. It can be thought of as a "sending box" by peer, in
which each peer put messages it sends, and from which receivers fetch messages according
to their send order.
Fifon−n ordering is the ordering where all messages are received according to their send
order, even if when neither their send events nor their receptions are causally ordered.
RSC ordering (Realizable with Synchronous Communication) requires that every reception
is immediately preceded by its corresponding send event.

The sets of executions defined by these models form a hierarchy, as stated and proved
in [11].

I Lemma 4 (Ordering hierarchy over executions).
1. Exec(RSC) ( Exec(Fifon−n) ( Exec(Fifo1−n) ( Exec(Causal) ( Exec(Fifo1−1)
2. Exec(RSC) ( Exec(Fifon−n) ( Exec(Fifon−1) ( Exec(Causal) ( Exec(Fifo1−1)
3. Exec(Fifon−1) 6⊂ Exec(Fifo1−n) and Exec(Fifo1−n) 6⊂ Exec(Fifon−1)

Turning to computations, only Fifo1−1 and Causal are well-defined over them, since they
are defined only in terms of causal and peer order. Those two orderings obey the same
hierarchy as their execution-based counterparts, as shown in Charron-Bost et al. [8].

I Lemma 5. Comp(Causal) ( Comp(Fifo1−1)

1.4 Overview of the Results
Our results are threefold.

First, we leverage elementary topology to link any message ordering over executions with
two sets of computations: its closure, corresponding to existential quantification over
linear extensions of the ordering; and its interior, corresponding to universal quantification.
Both sets provide a mean to study the message ordering in an asynchronous context,
where computations are the least distinguishable unit.

OPODIS 2017
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Table 1 Ordering predicates over executions.

Name Expression

Fifo1−1 ∀m1,m2 ∈MES :

 r(m1), r(m2) ∈ σ
∧ peer(r(m1)) = peer(r(m2))
∧ s(m1) ≺σp s(m2)

 =⇒ r(m1) ≺σp r(m2)

Causal ∀m1,m2 ∈MES :

 r(m1), r(m2) ∈ σ
∧ peer(r(m1)) = peer(r(m2))
∧ s(m1) ≺σc s(m2)

 =⇒ r(m1) ≺σp r(m2)

Fifon−1 ∀m1,m2 ∈MES :

 r(m1), r(m2) ∈ σ
∧ peer(r(m1)) = peer(r(m2))
∧ s(m1) ≺σ s(m2)

 =⇒ r(m1) ≺σp r(m2)

Fifo1−n ∀m1,m2 ∈MES :
(

r(m1), r(m2) ∈ σ
∧ s(m1) ≺σp s(m2)

)
=⇒ r(m1) ≺σ r(m2)

Fifon−n ∀m1,m2 ∈MES :
(

r(m1), r(m2) ∈ σ
∧ s(m1) ≺σ s(m2)

)
=⇒ r(m1) ≺σ r(m2)

RSC ∀m1,m2 ∈MES :
(

r(m1) ∈ σ
∧ s(m1) ≺σ s(m2)

)
=⇒ r(m1) ≺σ s(m2)

Second, we characterize the closures of our message orderings (see Figure 1) by forbidden
patterns in the causal order. This in turn yields a precise understanding of whether they
can be distinguished at the computation level, as well as their comparative discriminating
power.
Third, we turn to interiors of the aforementioned orderings, and characterize them through
the concept of chain (see Figure 2). Such characterizations expand our understanding
of the orderings implementation: they provide system-level guidelines that allows us to
circumvent the result of [22] for ensuring a message ordering.

The rest of the paper is organized as follows. Section 2 develops the topological approach
to message orderings over executions. Then the closures and interiors of the message orderings
mentioned above are studied respectively in Sections 3 and 4. Finally, Section 5 surveys
related works while conclusions and perspectives are drawn in Section 6.

2 A Topological Bridge

Recall that a message ordering over executions characterizes a set of executions. On the other
hand, we know from [20] that the only meaningful sets of executions in an asynchronous
world correspond to the sets of all the linear extensions of a given computation, or the union
of such sets. The subtlety here stems from the "all": a truncated set of linear extensions asks
for an order with more discriminating power than the causal one. Making sense of any set of
executions in terms of computations – and by extension in terms of causal order – will allow
us to interpret any message ordering in the asynchronous setting.

First, we need a formal definition of what we call meaningful sets of executions, that is the
sets defined by all the linear extensions of a given computation. They can be characterized
as the equivalence classes from the causal equivalence relation.

I Definition 6 (Causal Equivalence). Let σ, σ′ ∈ Exec. Then σ ≡c σ′ , comp(σ) = comp(σ′).
We say σ and σ′ are causally equivalent and write [σ]≡c

for the equivalence class of σ.
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Clos(RSC)

Clos(Fifon−n)

Clos(Fifon−1)

= Clos(Fifo1−n)With

causal knots

(size ≥ 2)

Clos(Causal) = Exec(Causal)

Clos(Fifo1−1) = Exec(Fifo1−1)

Figure 1 The closures of our message order-
ings.

Int(RSC)

Int(Fifon−n)Int

(Fifon−1)

Int

(Fifo1−n)

Int(Causal) = Exec(Causal)

Int(Fifo1−1) = Exec(Fifo1−1)

Figure 2 The interiors of our message order-
ings.

The quotient set of Exec by causal equivalence is thus isomorphic with Comp. The causal
equivalence classes are only the building block: any union of such blocks is also a meaningful
set for our endeavors. These properties correspond to the topological concept of an open set,
and motivate our introduction of the following simple topology over Exec.

I Definition 7 (Open Set). Let S ⊆ Exec. Then S is an open set in the Computation
Topology iff ∃X ∈ P(Exec) such that S =

⋃
x∈X [x]≡c

, where P(Exec) is the powerset of
Exec.

A property of our topology that will prove useful is that any open set is also a closed
one. Indeed, by definition of an equivalence relation, any union of equivalence classes is the
complement of a union of equivalence classes; thus every open set is also closed. This might
strike the reader used to more classical topologies as odd. Yet it allows us to state in terms
of open sets both the closure and interior of a set, the two basic operations in elementary
topology.

These extensions can be interpreted respectively as existential and universal quantification
over equivalence classes: the set of equivalence classes (or equivalently, of computations)
containing at least one execution from the original set; and the set of equivalence classes
containing only executions from the original set. Intuitively, this translates respectively into
the set of computations where a message ordering might hold, and the set of computations
where it necessarily holds.

I Definition 8 (Interior and Closure). Let S ⊆ Exec.
Clos(S), the closure of S, is the smallest closed set such that S ⊆ Clos(S).
Int(S), the interior of S, is the greatest open set such that Int(S) ⊆ S.
We write Clos(b) and Int(b) for the closure and interior of the set of executions defined

by the predicate b.

I Lemma 9 (Collapse Lemma). Let S ⊆ Exec. Then S = Clos(S) ⇐⇒ S = Int(S).

Proof. (⇒) Since S = Clos(S), S is a closed set. Given our topology, it is thus also an open
set. It is therefore the greatest open set contained by itself.

(⇐) Since S = Int(S), S is an open set. Given our topology, it is thus also a closed set.
It is therefore the smallest closed set containing itself. J

OPODIS 2017
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p1

p2

p3

s(m1) s(m2)

r(m1)

r(m2)

Figure 3 Fifo1−n does not
collapse.

p1

p2

p3

s(m1)

s(m2)

r(m2)r(m1)

Figure 4 Fifon−1 does not
collapse.

p1

p2

p3

p4

s(m1)

s(m2)r(m1)

r(m2)

Figure 5 Fifon−n and RSC
do not collapse.

We now show that the collapse described by Lemma 9 happens for Fifo1−1 and Causal
but not the other orderings. Our topology thus captures the distinction between message
orderings on executions which translate straightforwardly over computations, and message
orderings on executions "asking" for more than causal order.

I Theorem 10 (Collapse of Fifo1−1 and Causal).
1. Exec(Fifo1−1) = Int(Fifo1−1) = Clos(Fifo1−1)
2. Exec(Causal) = Int(Causal) = Clos(Causal)

Proof.
1. Fifo1−1 is defined only in terms of peer order, which is a projection of the causal

order. It is therefore invariant by causal equivalence. We conclude that Exec(Fifo1−1) =
Clos(Fifo1−1), which by Lemma 9 entails Exec(Fifo1−1) = Int(Fifo1−1) = Clos(Fifo1−1).

2. Causal is invariant by causal equivalence for the same reason as Fifo1−1. We conclude that
Exec(Causal) = Clos(Causal), which by Lemma 9 gives us Exec(Causal) = Int(Causal)
= Clos(Causal). J

I Theorem 11 (No collapse for Fifon−1, Fifo1−n, Fifon−n and RSC).
1. Int(Fifo1−n) ( Exec(Fifo1−n) ( Clos(Fifo1−n)
2. Int(Fifon−1) ( Exec(Fifon−1) ( Clos(Fifon−1)
3. Int(Fifon−n) ( Exec(Fifon−n) ( Clos(Fifon−n)
4. Int(RSC) ( Exec(RSC) ( Clos(RSC)

Proof. We only consider the cases where EV ENTS is non trivial, which here means that it
contains at least two send events and two receptions.

The inclusions then follow directly from the definition of Int and Clos. As for strictness,
counter-examples separating either the interior or the closure with the initial sets are enough:
Lemma 9 then yields the strictness of inclusion for both.
1. Figure 3 is in Exec(Fifo1−n) but not in its interior: the execution s(m1)s(m2)r(m2)r(m1)

is causally equivalent to it while breaking the Fifo1−n predicate. Thus Exec(Fifo1−n) 6=
Int(Fifo1−n).

2. Figure 4 is in Exec(Fifon−1) but not in its interior: the execution s(m2)s(m1)r(m1)r(m2)
is causally equivalent to it while breaking the Fifon−1 predicate. Thus Exec(Fifon−1) 6=
Int(Fifon−1).

3. Figure 5 is in Exec(Fifo1−n) but not in its interior: the execution s(m1)s(m2)r(m2)r(m1)
is causally equivalent to it, while breaking the Fifon−n predicate. Thus Exec(Fifon−n) 6=
Int(Fifon−n).

4. Figure 5 is also in Exec(RSC) and not in its interior: the execution exhibited in the
previous case breaks RSC too. Thus Exec(RSC) 6= Int((RSC)). J
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3 Closures

3.1 Characterization of the Closure of RSC
When we apply the closure operation on our RSC over executions, we obtain the set of
computations with at least one RSC linear extension. This in turn corresponds to the
RSC over computations from Charron-Bost et al. [8]. We thus reuse the characterization of
Clos(RSC) by Charron-Bost et al., through forbidden patterns in the causal order named
crowns.

I Definition 12 (Crown). Let σ an execution. Then a set of messages m1, ..,mn forms a
crown of size n ⇐⇒ ∀i ∈ [1, n] : s(mi) ≺σc r(mi+1), where mn+1 = m1.

For instance, Figure 6 is a crown of size 2.

I Theorem 13 (Crown Characterization). Let σ ∈ Exec. Then σ ∈ Clos(RSC) ⇐⇒
σ contains no crown.

Proof. See [8]. J

3.2 Characterization of Clos(Fifon−1) and Clos(Fifo1−n)
A similar negative characterization of Clos(Fifon−1) and Clos(Fifo1−n) is given by special
crowns we call causal knots.

I Definition 14 (Causal knot). Let σ an execution. Then a set of messages m1, ..,m2s forms

a causal knot of size s ⇐⇒ ∀i ∈ [1, 2s] :
(
i ≡ 1 mod 2 : s(mi) ≺σc s(mi+1)
i ≡ 0 mod 2 : r(mi) ≺σc r(mi+1)

)
,

where m2s+1 = m1.

Figure 7 is an example of a causal knot of size 2. We show in the rest of this section that
causal knots characterize Clos(Fifon−1) and Clos(Fifo1−n). Let us start with Clos(Fifon−1):
we first define a relation for each causal equivalence class characterizing the additional
constraints on executions of this class to satisfy Fifon−1.

I Definition 15 (N-1 order). Let σ ∈ Exec and Σ the underlying set of events. Then
/σn−1 , {(s(m1), s(m2)) ∈ Σ× Σ | r(m1) ≺σp r(m2)}. And ≺σn−1,≺σc ∪/σn−1.

Then the next Lemma reduces the membership of an execution σ in Clos(Fifon−1) to
whether or not ≺σn−1 contains a cycle.

I Lemma 16. Let σ ∈ Exec. Then σ ∈ Clos(Fifon−1) ⇐⇒ ≺σn−1 is antisymmetric.

Proof. (⇒) We show the contrapositive: If ≺σn−1 contains a cycle, then σ /∈ Clos(Fifon−1).
Let σ ∈ Exec such that ≺σn−1 contains a cycle. Then its transitive closure is not a partial

order: it has no linear extensions. From that fact, we now prove that no execution in [σ]≡c

satisfies Fifon−1, and thus that σ /∈ Clos(Fifon−1).
Let σ′ ≡c σ. By our hypothesis that ≺σn−1 contains a cycle, we have ≺σn−1 6⊂≺σ

′ . But
since σ′ ≡c σ, we have ≺σc⊂≺σ

′ . We thus conclude that /σn−1 6⊂≺σ
′ . Thus ∃m1,m2 such that

r(m1) ≺σp r(m2)∧s(m1) 6≺σ′ s(m2). By totality of ≺σ′ , we have r(m1) ≺σp r(m2)∧s(m2) ≺σ′

s(m1), and thus σ′ violates Fifon−1.
(⇐) Let σ ∈ Exec such that ≺σn−1 is antisymmetric. Then the transitive closure of ≺σn−1

is reflexive (because ≺σc is reflexive), transitive and antisymmetric. It is therefore a partial
order, who has a linear extension agreeing both with ≺σc and /σn−1. This linear extension
defines an execution σ′ ≡c σ (because ≺σc⊂≺σ

′) such that σ′ satisfies Fifon−1 (because
/σn−1 ⊂≺σ

′). We conclude that σ ∈ Clos(Fifon−1). J
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I Theorem 17 (Causal Knot Criterion for Fifon−1). Let σ ∈ Exec. Then σ ∈ Clos(Fifon−1)
⇐⇒ σ contains no causal knot.

Proof. By Lemma 16 and the transitivity of equivalence, we only need to prove that ≺σn−1
is antisymmetric ⇐⇒ σ contains no causal knot.

(⇒) We prove the contrapositive: if σ contains a causal knot, then ≺σn−1 is not antisym-
metric. Let σ ∈ Exec with a causal knot of size k. By definition of causal knots, there are

2k messages m1, ..,m2k such that ⇐⇒ ∀i ∈ [1, 2k] :
(
i ≡ 1 mod 2 : s(mi) ≺σc s(mi+1)
i ≡ 0 mod 2 : r(mi) ≺σc r(mi+1)

)
,

where m2k+1 = m1. We define another sequence of messages m′1, ..,m′2k from the messages
of the causal knot: ∀i ∈ [1, 2k] :

i ≡ 1 mod 2 : m′i = mi

i ≡ 0 mod 2 : if r(mi) ≺σp r(mi+1)
then m′i = mi

else m′i = m,where m ∈MES : r(mi) ≺σc s(m) ≺σc r(m) ≺σp r(mi+1)

,

where m′2k+1 = m′1. The case i ≡ 0 mod 2 is well-defined since the causal order cor-
responds to either the peer order or a chain of messages. We then have ∀i ∈ [1, 2k] :(
i ≡ 1 mod 2 : s(m′i) ≺σc s(m′i+1)
i ≡ 0 mod 2 : s(m′i) /σn−1 s(m′i+1)

)
, where m′2k+1 = m′1. Thus ≺σn−1 contains a cycle

and is not antisymmetric.
(⇐) We prove the contrapositive: if ≺σn−1 contains a cycle, then σ contains a causal knot.
Let σ ∈ Exec such that ≺σn−1 contains a cycle. Since both ≺σc and /σn−1 are partial orders,

they are both antisymmetric: a minimal cycle thus consists of an alternation of those two.
Considering such a minimal cycle of size s, we can deduce by transitivity of ≺σc and /σn−1

that it is composed of s events e1, .., es such that ∀i ∈ [1, s] :
(
i ≡ 1 mod 2 : ei ≺σc ei+1
i ≡ 0 mod 2 : ei /σn−1 ei+1

)
,

where es+1 = e1. By minimality of the cycle and e1 ≺σc e2, we have es /σn−1 e1 and thus
s = 0 mod 2. Let k = s/2.

Recall that /σn−1 only orders send events: e1, .., es are thus send events. Their messages are
distinct, by minimality of the cycle. Then the previous characterization can be rewritten as

∃m1, ..,m2k ∈ MES such that ∀i ∈ [1, 2k] :
(
i ≡ 1 mod 2 : s(mi) ≺σc s(mi+1)
i ≡ 0 mod 2 : s(mi) /σn−1 s(mi+1)

)
, where

ms+1 = m1. By definition of /σn−1, this is a causal knot of size k. J

Clos(Fifo1−n) is also negatively characterized by causal knots. Thus Clos(Fifon−1) =
Clos(Fifo1−n).

I Theorem 18 (Causal Knot Criterion for Fifo1−n). Let σ ∈ Exec. Then σ ∈ Clos(Fifo1−n)
⇐⇒ σ contains no causal knot.

Proof. The proof follows the exact same lines as the Causal knot criterion for Fifon−1, except
that we substitute /σ1−n = {(r(m1), r(m2)) ∈ Σ × Σ | s(m1) ≺σp s(m2)} for /σn−1. It was
moved to Appendix A due to space constraints. J

This surprising result shows that at the level of computations, those two message orderings
cannot be separated.

3.3 Inclusion of closures
We lack a characterization of Clos(Fifon−n) in terms of forbidden patterns akin to crowns or
causal knots. We can nonetheless separate it from Clos(Fifon−1) = Clos(Fifo1−n), and from
Clos(RSC).



A. Shimi, A. Hurault, and P. Quéinnec 29:9

p1

p2

s(m1)

s(m2) r(m1)

r(m2)

Figure 6 A crown of size 2.

p1

p2

p3

p4

s(m1)s(m2)

s(m3)s(m4)

r(m1)
r(m2)r(m3)

r(m4)

Figure 7 A causal knot of
size 2.

p1

p2

p3

p4

s(m1)
s(m2) s(m3)

s(m4)

r(m1)

r(m2)
r(m3)
r(m4)

Figure 8 Not in
Clos(Fifon−n); in Clos(Fifon−1)
= Clos(Fifo1−n).

I Theorem 19 (Inclusion of closures). Clos(RSC) ( Clos(Fifon−n) ( Clos(Fifo1−n) =
Clos(Fifon−1)

Proof. The inclusions follow straight from the hierarchy over executions and the definition of
an open set: for A,B ∈ Exec, A ( B implies that Clos(A) ⊆ Clos(B). The first strictness
follows from the fact that Figure 6 defines an execution in Clos(Fifon−n) with a crown,
thus not in Clos(RSC). The second strictness follows from the fact that Figure 8 defines
an execution σ in Exec(Fifo1−n) (and thus in Clos(Fifo1−n)), yet this execution is not in
Clos(Fifon−n).

Assume the contrary: ∃σ′ ≡c σ such that Fifon−n(σ′). Then s(m4) ≺σ′ s(m1) ∧
r(m2) ≺σ′ r(m3), since r(m4) ≺σp s(m1) ∧ s(m2) ≺σp s(m3). By s(m1) ≺σp r(m2) ∧ r(m3) ≺σp
s(m4), this yields r(m2) ≺σ′ r(m3) ≺σp s(m4) ≺σ′ s(m1) ≺p r(m2). Contradiction. J

3.4 Interpretation of closures
Closures capture a fundamental part of asynchronicity: the loss of knowledge it entails.
Expanding the exact set of executions characterized by a message ordering to its closure
introduces the additional uncertainty that comes with the non-determinism of asynchronicity.

First, closures yield a general method to check the distinguishability of a distributed
system with message ordering A from one with message ordering B. For example, we
deduce from the causal knot criterion that Fifon−1 and Fifo1−n are indistinguishable in the
asynchronous world. There is no computation one can exhibit to separate them, showing
with certainty which one is implemented.

Second, let us consider the complement of a closure. It represents certainty amidst
asynchronicity: assurance of the non-satisfiability of the predicate. This yields a technique
for ensuring that forbidden executions do not arise in a distributed system. Take the set of
computations with a causal knot of size ≥ 2 as an example. These are "just causal": despite
the inherent uncertainty stemming from asynchronicity, we know for sure that a system
generating any of these computations cannot have a Fifon−1 or Fifo1−n (let alone Fifon−n or
RSC) execution. Since algorithms and implementations alike usually work better with more
constrained message orderings, the less constrained a computation, the more susceptible it is
to cause an error or a failure. Just causal computations are thus good candidates for testing
and debugging.

4 Interiors

Interiors were defined above as universal quantification over linear extensions: they thus
characterize computations where, despite the inherent uncertainty of asynchronous communi-
cation, the ordering in question necessarily holds. Through chains, a simple concept from
order theory, we characterize and interpret our orderings’ interiors.
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I Definition 20 (Chain). Let (A,≺A) a poset. Then S ⊆ A is a chain if its elements are
totally ordered for ≺A: ∀a, b ∈ S, a ≺A b ∨ b ≺A a.

We write that an execution is a chain when its set of events is a chain for its causal order.

4.1 The Interior of RSC
The interior of RSC is characterized by executions which are necessarily a chain with regard
to causality. This means that all events of an execution in Int(RSC) are fully ordered by
causality. Before stating the theorem, we introduce a result from dimension theory, and its
corollary for inverting events in an execution while staying in the causal equivalence class.

I Lemma 21 (Interpolation). Let (A,≺A) a poset, S ⊂ A and ≺l a linear extension of ≺A|S
(where ≺A|S is the projection of ≺A on S ×S). Then ∃ ≺l′ a linear extension of ≺A such that
≺l′|S=≺l.

Proof. It is a classical result from dimension theory. See Trotter [28] Chapter 1. J

I Corollary 22 (Interpolation of executions). Let σ an execution, Σ the underlying set of
events, S ⊂ Σ and ≺l a linear extension of ≺σc|S. Then ∃σ′ ≡c σ such that ≺σ′|S=≺l.

Proof. It follows immediately from Lemma 21 and the fact that a linear extension of a causal
order defines an execution. J

I Theorem 23 (Characterization of Int(RSC)). Let σ an execution with at least one reception.
Then σ ∈ Int(RSC) ⇐⇒ σ ∈ Exec(Causal) ∧ σ is a chain.

Proof. (⇒) Let σ ∈ Int(RSC) with at least one reception. By the hierarchy of message
orderings and the definition of interiors, σ ∈ Exec(Causal); we show that σ is a chain.

Let s(m1), s(m2) ∈ σ such that s(m1) ≺σ s(m2). By considering all the possible cases
concerning their receptions, we show that all events in σ form a chain.
1. r(m1) ∈ σ. We prove by contradiction that r(m1) ≺σc s(m2) and thus that s(m1) ≺σc

r(m1) ≺σc s(m2).
Assume the contrary: r(m1) 6≺σc s(m2). Then ≺l defined by s(m1) ≺l s(m2) ≺l r(m1)
is a linear extension of ≺σc|{s(m1),s(m2),r(m1)}. Thus Corollary 22 ensures the existence of
σ′ ≡c σ such that s(m1) ≺σ′ s(m2) ≺σ′ r(m1). Since σ′ violates RSC, we conclude that
σ /∈ Int(RSC). Contradiction.
We conclude that s(m1) ≺σc r(m1) ≺σc s(m2).

2. r(m2) ∈ σ. Then the same reasoning by contradiction than above, here assuming
s(m1) 6≺σc s(m2), yields s(m1) ≺σc s(m2) and thus s(m1) ≺σc s(m2) ≺σc r(m2).

3. r(m1) /∈ σ ∧ r(m2) /∈ σ. Yet by hypothesis, σ contains at least one reception. We split by
cases depending on where this reception is placed according to s(m1) and s(m2).
∃m ∈MES : s(m1) ≺σ r(m) ≺σ s(m2). Since σ ∈ RSC, we have s(m1) ≺σ s(m) ≺σ
r(m) ≺σ s(m2). By case 1 above we have s(m1) ≺σc r(m), and by case 2 above we
have r(m) ≺σc s(m2). Transitivity then yields s(m1) ≺σc s(m2).
{m ∈MES | s(m1) ≺σ r(m) ≺σ s(m2)} = ∅∧∃m ∈MES : r(m) ≺σ s(m1) ≺σ s(m2).
We take m such that it is the last received message before both send events. Then by
the case 1 above, r(m) ≺σc s(m1) ∧ r(m) ≺σc s(m2). By definition of m, this gives us
r(m) ≺σp s(m1) ∧ r(m) ≺σp s(m2).
We conclude s(m1) ≺σp s(m2) and thus s(m1) ≺σc s(m2).
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{m ∈MES | s(m1) ≺σ r(m) ≺σ s(m2)} = ∅∧∃m ∈MES : s(m1) ≺σ s(m2) ≺σ r(m).
We take m such that it is the first received message after both send events. The same
reasoning as in the previous case, using case 2 instead of case 1, yields s(m1) ≺σp s(m2)
and thus s(m1) ≺σc s(m2).

(⇐) We prove the contrapositive: σ /∈ Int(RSC) =⇒ σ /∈ Exec(Causal) ∨ σ not a chain.
Let σ an execution with at least one reception such that σ /∈ Int(RSC). Thus ∃σ′ ≡c σ

such that ∃m1,m2 ∈MES : s(m1) ≺σ′ s(m2) ≺σ′ r(m1). We then have two possible cases.
s(m1) ≺σc s(m2) ≺σc r(m1). Then ∃m ∈ MES such that either s(m1) ≺σc s(m2) ≺σc
s(m) ≺σc r(m) ≺σp r(m1) or s(m1) ≺σc s(m) ≺σc r(m) ≺σp s(m2) ≺σp r(m1), since the
causal order corresponds to either the peer order or a chain of messages and since
peer(s(m1)) 6= peer(r(m1)) by definition of a computation. From s(m1) ≺σc s(m) ≺σc
r(m) ≺σp r(m1), we conclude σ /∈ Exec(Causal).
s(m1) 6≺σc s(m2)∨s(m2) 6≺σc r(m1). Since s(m1) ≺σ′ s(m2) ≺σ′ r(m1), we have s(m2) 6≺σc
s(m1) ∧ r(m1) 6≺σc s(m2). Thus σ is not a chain. J

All executions in Int(RSC) are therefore totally determined by their causal order (except
the degenerate ones without receptions). This is an extraordinarily strong condition, since it
means the causal equivalence class of the execution is the singleton of the execution itself!

4.2 The Interior of Fifon−n

By relaxing the previous characterization, we derive a characterization for Int(Fifon−n) based
on two chains: one for the send events of received messages, and one for receptions. This
results in two differences with Int(RSC). First, send events of never received messages are
not constrained. Second, consecutive send events are possible even when the corresponding
messages are eventually received. In this case, the send events must happen on the same
peer; the corresponding receptions must also happen on the same peer.

I Theorem 24 (Characterization of Int(Fifon−n)). Let σ ∈ Exec, rσ = {r(m) ∈ σ}, and
sσ = {s(m) ∈ σ | r(m) ∈ σ}. Then σ ∈ Int(Fifon−n) ⇐⇒ σ ∈ Exec(Causal) ∧ rσ is a
chain ∧ sσ is a chain.

Proof. This proof and the next two follow the same scheme as the proof of theorem 23 (see
Appendix B). J

4.3 The Interiors of Fifon−1 and Fifo1−n

The characterization of Int(Fifon−n) is itself weakened in two distinct ways to yield those of
Int(Fifon−1) and Int(Fifo1−n): in Int(Fifon−1), only send events to a same peer are required
to form chains, while in Int(Fifo1−n) it is the receptions from the same peer that need to
form chains.

I Theorem 25 (Characterization of Int(Fifon−1)). Let σ ∈ Exec, and sσ(p) = {s(m) ∈ σ |
r(m) ∈ σ ∧ peer(r(m)) = p}. Then σ ∈ Int(Fifon−1) ⇐⇒ σ ∈ Exec(Causal) ∧ ∀p ∈
PEERS, sσ(p) is a chain.

I Theorem 26 (Characterization of Int(Fifo1−n)). Let σ ∈ Exec, and rσ(p) = {r(m) ∈ σ |
peer(s(m)) = p}. Then σ ∈ Int(Fifo1−n) ⇐⇒ σ ∈ Exec(Causal) ∧ ∀p ∈ PEERS, rσ(p) is
a chain.
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Figure 9 In Int(RSC); not in Int(Fifon−n)
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Figure 10 In Int(Fifon−n); not in
Int(Fifo1−n) or Int(Fifon−1)
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Figure 11 In Int(Fifon−1); not in
Int(Fifo1−n)
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p2
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s(m1)
s(m2)
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Figure 12 In Int(Fifo1−n); not in
Int(Fifon−1)

4.4 Inclusion of FIFO Interiors
We close this study of interiors by showing the various inclusions between them. These turn
out to form the same hierarchy as the initial orderings.

I Theorem 27.
1. Int(RSC) ( Int(Fifon−n) ( Int(Fifo1−n)
2. Int(RSC) ( Int(Fifon−n) ( Int(Fifon−1)
3. Int(Fifon−1) 6⊂ Int(Fifo1−n) and Int(Fifo1−n) 6⊂ Int(Fifon−1)

Proof. The inclusions follow straight from the hierarchy over executions and the definition
of an open set: for A,B ∈ Exec, A ( B implies that Int(A) ⊆ Int(B). For the strictness, it
is enough to give examples separating the characterizations.
1. Figure 9 separates Int(RSC) with Int(Fifon−n) by giving an execution σ where sσ and

rσ are both chains, but σ itself is not one. Similarly, Figure 10 separates Int(Fifon−n)
with Int(Fifo1−n) giving an execution σ where rσ(p1) and rσ(p2) are chains but not σ.

2. Here we only need to prove the separation of Int(Fifon−n) with Int(Fifon−1): Figure 10
represents an adequate execution σ where sσ(p1) and sσ(p2) are chains but not σ.

3. Incomparability is shown by the executions from Figure 11 (where rσ(p1) is not a chain
but sσ(p1), sσ(p2) and sσ(p3) are) and Figure 12 (where sσ(p3) is not a chain, but
rσ(p1), rσ(p2) and rσ(p3) are). J

4.5 Interpretation of interiors
Whereas closures expand the initial set of executions to account for additional uncertainty,
interiors trim it down to introduce certainty. In interiors, the message ordering is enforced
by the causal order itself, ensuring it despite the non-determinism of asynchronicity. Such
certainty can be leveraged as a mean of implementation, by ensuring that a given system
only generates computations in the interior of a message ordering.

Let us take Int(Fifon−n) as an example: due to its characterization (Theorem 24), its
computations must ensure both causal ordering and that all messages simultaneously in
transit are between the same pair of peers. This description fits the definition of a token
network, where the peer holding the token is the only one allowed to send (to a single
destination peer). It then sends the token along in its last message, and on again. Similar
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characterizations can be worked out for the other interiors: Int(RSC) defines a token model
where the token is sent with each message, and Int(Fifon−1) and Int(Fifo1−n) respectively
defines token models with a send token for each peer in one case and a receive token for each
peer in the other. Thus a distributed system using any of these token models implements
the corresponding interior.

One apparent contradiction with the literature is that our interiors cannot be implemented
in the sense of Murty and Garg [22]. Indeed, the latter paper shows that any message ordering
(over computations) implementable by an inhibitory protocol must contain a specific subset of
computations, which is equivalent to our Clos(RSC): our interiors don’t satisfy this condition.
By inhibitory protocol, [22] means a protocol only able to delay both send events requested
by the user and deliveries of received messages. Even if our token-based conditions do not
help building an inhibitory protocol, they do implement the interiors in a different way: such
systems only generate computations in the corresponding interiors, and thus executions in
the corresponding orderings over executions.

5 Related Work

Message orderings over computations. The Fifo1−1 ordering (traditionally called FIFO)
dates back to the first distributed algorithms, such as Chandy-Lamport Snapshot [5]. The
latter paper exemplifies the treatment of this ordering: it is brushed aside in one sentence,
not even given a proper name.

Causal ordering has a deeper history. Following the connection drawn by Lamport
between Happened-Before and potential causality [20], the former was used as a basis for
causal broadcast ordering by Birman et al. [4]. But the broadcast part blurred the exact
definition and eased the implementation: a point-to-point formalization by Schiper and
al. [24] followed. It made use notably of multiple vector clocks (independently invented by
Fidge [14] and Mattern [21]) to track potential causality beyond the logical clocks introduced
by Lamport [20]. Following this line of research, Schwarz and Mattern [25] motivated the
general problem of detecting the needed causality, while Kshemkalyani and Singhal [19]
proved necessary and sufficient conditions for implementing Causal ordering, as well as an
optimal implementation based on these.

Clos(RSC) (usually simply called RSC) is a late invention compared to the two previous
orderings: it was introduced independently by Soneoka and Ibaraki [26] and Charron-Bost et
al. [8] after almost all the papers mentioned above. By being non-blocking yet allowing each
message to be alone in transit, Clos(RSC) represents the best approximation of synchronous
(or rendez-vous) communication in an asynchronous setting.

Causal ordering and Clos(RSC) were used for characterizing implementability of message
orderings by inhibitory protocols: Murty and Garg [22] showed that an ordering must contain
Causal to be implementable without control messages, and the equivalent of Clos(RSC) to
be implementable at all. Charron-Bost et al. [8] also used these three orderings as a basis for
their hierarchy.

Beyond Happened-Before. Following Birman et al. [4] definition and implementation
of causal broadcast ordering, Cheriton and Skeen [10] shed light into the limitations of
Happened-Before as causality. Namely, that local events are always totally ordered by the
Happened-Before relation while they might be causally independent. This in turn causes
additional latency: if two send events are causally independent but ordered by Happened-
Before, one reception might unnecessarily wait for the other.

As a follow-up, Tarafdar and Garg [27] developed the idea of potential causality for
approximating true causality in the same way Happened-Before order approximates real time.
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The difference stems from the local ordering of events: whereas the Happened-Before relation
totally orders them, potential causality orders local events using an applicative and thus
domain-dependent criterion. It can therefore dodge false causality. Tarafdar and Garg [27]
also provided an example of potential causality applied to predicate detection, a problem
where false causality causes both false positives and false negatives.

Finally, Ben-Zvi and Moses [3] extended the Happened-Before relation to the synchronous
case. Their Syncausality captures the ability, when communication is bounded, to detect
that no message was sent at a given time by a given peer. And their Bound Guarantees
captures that if one knows a message was sent and the bound of the channel, then one knows
after which point the message was necessarily received.

Knowledge About Uncertainty. Both closures and interiors provide additional knowledge
about the computation: whether it might follow the ordering and whether it must, respectively.

Cooper and Marzullo [12] also treat knowledge through existential and universal quan-
tification, but this time on path of consistent cuts. They define the Possibly and Definitely
operators for predicates over observations (consistent cuts): Possibly φ means that there is a
path in the lattice of observations passing through an observation satisfying φ; Definitely
φ means that all paths pass through an observation satisfying φ. In a subsequent paper,
Charron-Bost et al. [7] showed that these two operators were temporal analogous to the local
knowledge operator Knows. They leveraged this analogy to prove a temporal counterpart to
Chandy and Misra’s Knowledge Change Theorem [6].

The latter paper by Chandy and Misra [6] was part of the effort to formalize knowledge
in distributed systems. As almost all concurrent and subsequent efforts, it was based on
the notion of indistinguishability: a process knows a predicate valuation if and only if this
valuation is constant over all possible "worlds" the process cannot distinguish. Halpern
and Moses [15] anchored this possible worlds semantics with axiomatisations of different
knowledge characterizations, using Kripke structures as models. The interested reader is
directed to Fagin et al. [13] for a thorough treatment of the subject.

Topology in distributed systems. Lastly, our approach is based on topology. The charac-
terization of Liveness and Safety by Alpern and Schneider [1] can be considered the first
application of topology to distributed computing: although their topology on the execution
space is not specific to distributed systems, their characterizations play a significant role in
proving correctness and efficiency of distributed algorithms. A version taking into account
failures was subsequently proposed by Charron-Bost et al. [9].

Another application of topology concerns wait-freeness. A wait-free algorithm, following
Herlihy’s definition [16], is one where each process must terminate within a finite number of
steps. Waiting for another process is thus not possible, which makes wait-free algorithms a
powerful tool for fault-tolerance. Herlihy and Shavit [18] applied algebraic topology to the
problem of solving tasks in a wait-free way. They showed that both the possible input and
output of a task could be represented as simplicial complexes, mathematical structures from
algebraic topology. Then the possibility or impossibility of wait-freely solving a task can be
rephrased as the existence or nonexistence of a specific map from the input complex to the
output one. We direct the interested reader to Herlihy et al. [17] for an ample treatment of
this applications of algebraic topology to distributed computability.
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6 Conclusion and Perspectives

Through our topology, we offered an analysis of asynchronous message orderings over
executions. Their closures precisely characterize the additional uncertainty brought by
asynchronicity, allowing us to show that orderings are indistinguishable at the level of
computations. Interiors, on the other hand, characterize the necessary reduction to ensure
the message ordering despite the non-determinism of asynchronicity. This in turn can be
used as an operational constraint for implementing the ordering.

Far from putting an end to this line of research, we feel this work opens up interesting
directions for further inquiry.

First, finding a characterization for Clos(Fifon−n) will precise the distinguishability
condition between message orderings, as well as give another tool for distributed systems
programmers to decide the ordering they need.
Multicast and broadcast message orderings are also predicates over computations and
executions. Thus the topological approach introduced in this paper can be applied to
them too.
The interpretation of interiors brought up the question of implementation. Is there a
more general definition than the existence of an inhibitory protocol? If so, then it will
need to account for our implementations through system-level constraints such as tokens.
Message orderings over executions which do not collapse ask for a stronger order than the
causal one, thus more knowledge about the ordering of events. Studying this additional
knowledge will precise the respective power of message orderings.

References
1 Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,

1985. doi:10.1016/0020-0190(85)90056-0.
2 Samik Basu, Tevfik Bultan, and Meriem Ouederni. Synchronizability for verification of

asynchronously communicating systems. In Viktor Kuncak and Andrey Rybalchenko, ed-
itors, Verification, Model Checking, and Abstract Interpretation - 13th International Con-
ference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012. Proceedings, vol-
ume 7148 of Lecture Notes in Computer Science, pages 56–71. Springer, 2012. doi:
10.1007/978-3-642-27940-9_5.

3 Ido Ben-Zvi and Yoram Moses. Beyond lamport’s Happened-before: On time bounds and
the ordering of events in distributed systems. J. ACM, 61(2):13:1–13:26, 2014. doi:10.
1145/2542181.

4 Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence of
failures. ACM Trans. Comput. Syst., 5(1):47–76, 1987. doi:10.1145/7351.7478.

5 K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985. doi:10.1145/214451.
214456.

6 K. Mani Chandy and Jayadev Misra. How processes learn. Distributed Computing, 1(1):40–
52, 1986. doi:10.1007/BF01843569.

7 Bernadette Charron-Bost, Carole Delporte-Gallet, and Hugues Fauconnier. Local and tem-
poral predicates in distributed systems. ACM Trans. Program. Lang. Syst., 17(1):157–179,
1995. doi:10.1145/200994.201005.

8 Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. Synchronous, asyn-
chronous, and causally ordered communication. Distributed Computing, 9(4):173–191, 1996.
doi:10.1007/s004460050018.

9 Bernadette Charron-Bost, Sam Toueg, and Anindya Basu. Revisiting safety and liveness
in the context of failures. In Catuscia Palamidessi, editor, CONCUR 2000 - Concurrency

OPODIS 2017

http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1007/978-3-642-27940-9_5
http://dx.doi.org/10.1007/978-3-642-27940-9_5
http://dx.doi.org/10.1145/2542181
http://dx.doi.org/10.1145/2542181
http://dx.doi.org/10.1145/7351.7478
http://dx.doi.org/10.1145/214451.214456
http://dx.doi.org/10.1145/214451.214456
http://dx.doi.org/10.1007/BF01843569
http://dx.doi.org/10.1145/200994.201005
http://dx.doi.org/10.1007/s004460050018


29:16 Asynchronous Message Orderings Beyond Causality

Theory, 11th International Conference, University Park, PA, USA, August 22-25, 2000,
Proceedings, volume 1877 of Lecture Notes in Computer Science, pages 552–565. Springer,
2000. doi:10.1007/3-540-44618-4_39.

10 David R. Cheriton and Dale Skeen. Understanding the limitations of causally and totally
ordered communication. SIGOPS Oper. Syst. Rev., 27(5):44–57, 1993. doi:10.1145/
173668.168623.

11 Florent Chevrou, Aurélie Hurault, and Philippe Quéinnec. On the diversity of asyn-
chronous communication. Formal Asp. Comput., 28(5):847–879, 2016. doi:10.1007/
s00165-016-0379-x.

12 Robert Cooper and Keith Marzullo. Consistent detection of global predicates. SIGPLAN
Not., 26(12):167–174, dec 1991. doi:10.1145/127695.122774.

13 Ronald Fagin, Joseph Y. Halpern, Moshe Y. Vardi, and Yoram Moses. Reasoning About
Knowledge. MIT Press, Cambridge, MA, USA, 1995.

14 Colin J. Fidge. Timestamps in message-passing systems that preserve the partial ordering.
Proceedings of the 11th Australian Computer Science Conference, 10(1):56–66, 1988.

15 Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a distributed
environment. J. ACM, 37(3):549–587, 1990. doi:10.1145/79147.79161.

16 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, 1991. doi:10.1145/114005.102808.

17 Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann Publishers Inc., 1st edition, 2013.

18 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
J. ACM, 46(6):858–923, 1999. doi:10.1145/331524.331529.

19 Ajay D. Kshemkalyani and Mukesh Singhal. Necessary and sufficient conditions on informa-
tion for causal message ordering and their optimal implementation. Distributed Computing,
11(2):91–111, 1998. doi:10.1007/s004460050044.

20 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

21 Friedemann Mattern. Virtual time and global states of distributed systems. In Parallel
and Distributed Algorithms, pages 215–226. North-Holland, 1989.

22 Venkatesh V. Murty and Vijay K. Garg. Characterization of message ordering specifications
and protocols. In Proceedings of the 17th International Conference on Distributed Com-
puting Systems, Baltimore, MD, USA, May 27-30, 1997, pages 492–499. IEEE Computer
Society, 1997. doi:10.1109/ICDCS.1997.603392.

23 Michel Raynal, André Schiper, and Sam Toueg. The causal ordering abstraction and
a simple way to implement it. Inf. Process. Lett., 39(6):343–350, 1991. doi:10.1016/
0020-0190(91)90008-6.

24 André Schiper, Jorge Eggli, and Alain Sandoz. A new algorithm to implement causal
ordering. In Jean-Claude Bermond and Michel Raynal, editors, Distributed Algorithms,
3rd International Workshop, Nice, France, September 26-28, 1989, Proceedings, volume
392 of Lecture Notes in Computer Science, pages 219–232. Springer, 1989. doi:10.1007/
3-540-51687-5_45.

25 Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed
computations: In search of the holy grail. Distributed Computing, 7(3):149–174, 1994.
doi:10.1007/BF02277859.

26 Terunao Soneoka and Toshihide Ibaraki. Logically instantaneous message passing in
asynchronous distributed systems. IEEE Trans. Computers, 43(5):513–527, 1994. doi:
10.1109/12.280800.

27 Ashis Tarafdar and Vijay K. Garg. Addressing false causality while detecting predicates in
distributed programs. In Proceedings of the 18th International Conference on Distributed

http://dx.doi.org/10.1007/3-540-44618-4_39
http://dx.doi.org/10.1145/173668.168623
http://dx.doi.org/10.1145/173668.168623
http://dx.doi.org/10.1007/s00165-016-0379-x
http://dx.doi.org/10.1007/s00165-016-0379-x
http://dx.doi.org/10.1145/127695.122774
http://dx.doi.org/10.1145/79147.79161
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/331524.331529
http://dx.doi.org/10.1007/s004460050044
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1109/ICDCS.1997.603392
http://dx.doi.org/10.1016/0020-0190(91)90008-6
http://dx.doi.org/10.1016/0020-0190(91)90008-6
http://dx.doi.org/10.1007/3-540-51687-5_45
http://dx.doi.org/10.1007/3-540-51687-5_45
http://dx.doi.org/10.1007/BF02277859
http://dx.doi.org/10.1109/12.280800
http://dx.doi.org/10.1109/12.280800


A. Shimi, A. Hurault, and P. Quéinnec 29:17

Computing Systems, Amsterdam, The Netherlands, May 26-29, 1998, pages 94–101. IEEE
Computer Society, 1998. doi:10.1109/ICDCS.1998.679491.

28 William T. Trotter. Combinatorics and Partially Ordered Sets. The Johns Hopkins Uni-
versity Press, 1992.

A Proof of the causal knot criterion for Fifo1−n

We first introduce ≺σ1−n, which corresponds to ≺σc augmented with the constraints of Fifo1−n.

I Definition 28 (1-N order). Let σ ∈ Exec and Σ the underlying set of events. Then
/σ1−n , {(r(m1), r(m2)) ∈ Σ× Σ | s(m1) ≺σp s(m2)}. And ≺σ1−n,≺σc ∪/σ1−n.

Then the next Lemma reduces the membership of an execution σ in Clos(Fifo1−n) to
whether or not ≺σ1−n contains a cycle.

I Lemma 29. Let σ ∈ Exec. Then σ ∈ Clos(Fifo1−n) ⇐⇒ ≺σ1−n is antisymmetric.

Proof. (⇒) We show the contrapositive: If ≺σ1−n contains a cycle, then σ /∈ Clos(Fifo1−n).
Let σ ∈ Exec such that ≺σ1−n contains a cycle. Then its transitive closure is not a partial

order: it has no linear extensions. From that fact, we now prove that no execution in [σ]≡c

satisfies Fifo1−n, and thus that σ /∈ Clos(Fifo1−n).
Let σ′ ≡c σ. By our hypothesis that ≺σ1−n contains a cycle, we have ≺σ1−n 6⊂≺σ

′ . But
since σ′ ≡c σ, we have ≺σc⊂≺σ

′ . We thus conclude that /σ1−n 6⊂≺σ
′ . Thus ∃m1,m2 such that

s(m1) ≺σp s(m2)∧r(m1) 6≺σ′ r(m2). By totality of ≺σ′ , we have s(m1) ≺σp s(m2)∧r(m2) ≺σ′

r(m1), and thus σ′ violates Fifo1−n.
(⇐) Let σ ∈ Exec such that ≺σ1−n is antisymmetric. Then the transitive closure of ≺σ1−n

is reflexive (because ≺σc is reflexive), transitive and antisymmetric. It is therefore a partial
order, who has a linear extension agreeing both with ≺σc and /σ1−n. This linear extension
defines an execution σ′ ≡c σ (because ≺σc⊂≺σ

′) such that σ′ satisfies Fifo1−n (because
/σ1−n ⊂≺σ

′).
We conclude that σ ∈ Clos(Fifo1−n). J

We can now prove the causal knot criterion for Fifo1−n, which characterizes Clos(Fifo1−n)
by the absence of causal knots.

I Theorem 30 (Causal Knot Criterion for Fifo1−n). Let σ ∈ Exec. Then σ ∈ Clos(Fifo1−n)
⇐⇒ σ contains no causal knot.

Proof. By Lemma 29 and the transitivity of equivalence, we only need to prove that ≺σ1−n
is antisymmetric ⇐⇒ σ contains no causal knot.

(⇒) We prove the contrapositive: if σ contains a causal knot, then ≺σ1−n is not antisym-
metric.

Let σ ∈ Exec with a causal knot of size k. By definition of causal knots, there are

2k messages m1, ..,m2k such that ⇐⇒ ∀i ∈ [1, 2k] :
(
i ≡ 1 mod 2 : s(mi) ≺σc s(mi+1)
i ≡ 0 mod 2 : r(mi) ≺σc r(mi+1)

)
,

where m2k+1 = m1. We now define another sequence of messages m′1, ..,m′2k from the
messages of the causal knot: ∀i ∈ [1, 2k] :

i ≡ 1 mod 2 : if s(mi) ≺σp s(mi+1)
then m′i = mi

else m′i = m,where m ∈MES : s(mi) ≺σp s(m) ≺σc r(m) ≺σc s(mi+1)
i ≡ 0 mod 2 : m′i = mi

,
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where m′2k+1 = m′1. The case i ≡ 0 mod 2 is well-defined since the causal order cor-
responds to either the peer order or a chain of messages. We then have ∀i ∈ [1, 2k] :(
i ≡ 1 mod 2 : r(m′i) /σ1−n r(m′i+1)
i ≡ 0 mod 2 : r(m′i) ≺σc r(m′i+1)

)
, where m′2k+1 = m′1. Thus ≺σ1−n contains a cycle

and is not antisymmetric.
(⇐) We prove the contrapositive: if ≺σ1−n contains a cycle, then σ contains a causal knot.
Let σ ∈ Exec such that ≺σ1−n contains a cycle. Since both ≺σc and /σ1−n are partial orders,

they are both antisymmetric: any minimal cycle consists of an alternation of those two.
Considering such a minimal cycle of size s, we can deduce by transitivity of ≺σc and /σ1−n

that it is composed of s events e1, .., es such that ∀i ∈ [1, s] :
(
i ≡ 1 mod 2 : ei /σ1−n ei+1
i ≡ 0 mod 2 : ei ≺σc ei+1

)
,

where es+1 = e1. By minimality of the cycle and e1 /
σ
1−n e2, we have es ≺σc e1 and thus

s ≡ 0 mod 2. Let k = s/2.
Recall that /σ1−n only orders receptions: e1, .., es are thus receptions. Their messages are

distinct, by minimality of the cycle. Then the previous characterization of the cycle can be

stated as ∃m1, ..,m2k ∈MES such that ∀i ∈ [1, 2k] :
(
i ≡ 1 mod 2 : r(mi) /σ1−n r(mi+1)
i ≡ 0 mod 2 : r(mi) ≺σc r(mi+1)

)
,

where m′2k+1 = m′1. By definition of /σ1−n, this is a causal knot of size k. J

B Proof of the characterizations of Int(Fifon−n), Int(Fifo1−n) and
Int(Fifon−1)

B.1 Proof of preliminary lemma
The reduction from Corollary 22 allows us to prove that when two send events (respectively
two receptions) are not causally ordered in an execution, there is a causally equivalent
execution where these two events are inverted, whereas the corresponding communication
events (the receptions for the send events and conversely) keep the same order. These
inversions correspond to potential breaking points by causal equivalence for message orderings,
a formalization of the intuition behind the counter-examples used in the proof of Theorem 11.
They will therefore constitute our main tool for showing non-membership in a given interior.

I Lemma 31 (Inversion of communication events). Let σ ∈ Exec, and m1,m2 ∈MES such
that r(m1), r(m2) ∈ σ. Then:
1. s(m1) ≺σ s(m2) ∧ s(m1) 6≺σc s(m2)

=⇒ ∃σ′ ≡c σ : s(m2) ≺σ′ s(m1)∧ ≺σ′|{r(m1),r(m2)}=≺σ|{r(m1),r(m2)}
2. r(m1) ≺σ r(m2) ∧ r(m1) 6≺σc r(m2)

=⇒ ∃σ′ ≡c σ : r(m2) ≺σ′ r(m1)∧ ≺σ′|{s(m1),s(m2)}=≺σ|{s(m1),s(m2)}

Proof. Let σ ∈ Exec, and let m1,m2 ∈ MES such that r(m1), r(m2) ∈ σ. Both cases
boil down to exhibiting a σ′ ≡c σ satisfying the condition. If we had a linear extension of
≺σc|{s(m1),s(m2),r(m1),r(m2)} satisfying the condition, Lemma 22 would give us such valid σ′.
We therefore prove the existence of a suitable linear extension of ≺σc|{s(m1),s(m2),r(m1),r(m2)}
in each case.
1. Let s(m1) ≺σ s(m2) and s(m1) 6≺σc s(m2). Let ≺l a total order on
{s(m1), s(m2), r(m1), r(m2)} defined by s(m2) ≺l s(m1) ≺l r(m1), s(m2) ≺l s(m1) ≺l
r(m2) and ≺l|{r(m1),r(m2)}=≺σ|{r(m1),r(m2)}.
Since s(m1) 6≺σc s(m2) by hypothesis and ≺σc is transitive, we get r(m1) 6≺σc s(m2). This
in turn implies r(m1) 6≺σc s(m1) ∧ r(m1) 6≺σc s(m2).
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On the other hand, transitivity of ≺σ yields s(m1) ≺σ r(m2). Thus r(m2) 6≺σc s(m1), and
we deduce r(m2) 6≺σc s(m1) ∧ r(m2) 6≺σc s(m2).
≺l is therefore a linear extension of ≺σc|{s(m1),s(m2),r(m1),r(m2)}.

2. The proof is similar to the previous case, with ≺l′ a total order on
{s(m1), s(m2), r(m1), r(m2)} such that s(m1) ≺l′ r(m2) ≺l′ r(m1), s(m1) ≺l′ r(m2) ≺l′
r(m1) and ≺l′|{s(m1),s(m2)}=≺σ|{s(m1),s(m2)}. J

B.2 Proof of the characterization of Int(Fifon−n)
We now prove the characterization of Int(Fifon−n) from Theorem 24

Proof. (⇒) Assume the opposite: let σ ∈ Int(Fifon−n) and rσ or sσ is not a chain
(σ ∈ Exec(Causal) necessarily).

If rσ is not a chain, ∃m1,m2 ∈ MES such that r(m1) ≺σ r(m2) and r(m1) 6≺σc r(m2).
Since σ ∈ Int(Fifon−n), we get s(m1) ≺σ s(m2). The hypothesis r(m1) 6≺σc r(m2) and
Lemma 31 then entail the existence of σ′ ≡c σ with s(m1) ≺σ′ s(m2) and r(m2) ≺σ′ r(m1).
But σ′ 6∈ Exec(Fifon−n). Hence σ /∈ Int(Fifon−n). Contradiction.
If sσ is not a chain, the same application of Lemma 31 to the case s(m1) ≺σ s(m2),
s(m1) 6≺σc s(m2) and r(m1) ≺σ r(m2) gives us a σ′′ ≡c σ with σ′′ /∈ Exec(Fifon−n).
Hence σ /∈ Int(Fifon−n). Contradiction.

(⇐) We prove the contrapositive, namely: σ /∈ Int(Fifon−n) =⇒ σ /∈ Exec(Causal) ∨sσ
not a chain ∨rσ not a chain.

Let σ ∈ Exec such that σ /∈ Int(Fifon−n). Thus ∃σ′ ≡c σ such that ∃m1,m2 ∈ MES :
s(m1) ≺σ′ s(m2) ∧ r(m2) ≺σ′ r(m1). We then have 2 cases.

s(m1) ≺σc s(m2) ∧ r(m2) ≺σc r(m1). Then by definition of the causal order, either
r(m2) ≺σp r(m1) or ∃m ∈ MES such that s(m1) ≺σc s(m2) ≺σc r(m2) ≺σc s(m) ≺σc
r(m) ≺σp r(m1). Either way, we conclude σ /∈ Exec(Causal).
s(m1) 6≺σc s(m2) ∨ r(m2) 6≺σc r(m1). Then sσ or rσ is not a chain. J

B.3 Proof of the characterization of Int(Fifon−1) and Int(Fifo1−n)
We now prove both characterizations of Int(Fifon−1) and Int(Fifo1−n) from Theorem 25
and Theorem 26 respectively.

Proof. (⇒) Assume the opposite: let σ ∈ Int(Fifon−1) and p ∈ PEERS such that sσ(p)
is not a chain (σ ∈ Exec(Causal) necessarily).

Thus ∃m1,m2 ∈ MES such that s(m1), s(m2) ∈ sσ(p), s(m1) ≺σ s(m2) and s(m1) 6≺σc
s(m2). Since σ ∈ Exec(Fifon−1) and peer(r(m1)) = peer(r(m2)), we have r(m1) ≺σp
r(m2). Then Lemma 31 implies ∃σ′ ≡c σ such that s(m2) ≺σ′ s(m1), r(m1) ≺σ′ r(m2)
and peer(r(m1)) = peer(r(m2)). But σ′ 6∈ Exec(Fifon−1), and thus σ /∈ Int(Fifon−1).
Contradiction.

(⇐) We prove the contrapositive, namely: σ /∈ Int(Fifon−1) =⇒ σ /∈ Exec(Causal)
∨∃p ∈ PEERS : sσ(p) not a chain.

Let σ ∈ Exec such that σ /∈ Int(Fifon−1). Thus ∃σ′ ≡c σ such that ∃m1,m2 ∈ MES :
s(m1) ≺σ′ s(m2) ∧ r(m2) ≺σp r(m1). We then have 2 cases.

s(m1) ≺σc s(m2). From s(m1) ≺σc s(m2) ≺σc r(m2) ≺σp r(m1), we conclude σ /∈
Exec(Causal).
s(m1) 6≺σc s(m2). Then sσ(peer(r(m1))) is not a chain. J
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Proof. (⇒) Assume the opposite: let σ ∈ Int(Fifo1−n) and p ∈ PEERS such that rσ(p)
is not a chain (σ ∈ Exec(Causal) necessarily).

Thus ∃m1,m2 ∈ MES such that r(m1), r(m2) ∈ rσ(p), r(m1) ≺σ r(m2) and r(m1) 6≺σc
r(m2). Since σ ∈ Exec(Fifo1−n) and peer(s(m1)) = peer(s(m2)), we have s(m1) ≺σp
s(m2). Then Lemma 31 implies ∃σ′ ≡c σ such that r(m2) ≺σ′ r(m1), s(m1) ≺σ′ s(m2)
and peer(s(m1)) = peer(s(m2)). But σ′ 6∈ Exec(Fifo1−n), and thus σ /∈ Int(Fifo1−n).
Contradiction.

(⇐) We prove the contrapositive, namely: σ /∈ Int(Fifo1−n) =⇒ σ /∈ Exec(Causal)
∨∃p ∈ PEERS : rσ(p) not a chain.

Let σ ∈ Exec such that σ /∈ Int(Fifo1−n). Thus ∃σ′ ≡c σ such that ∃m1,m2 ∈ MES :
s(m1) ≺σp s(m2) ∧ r(m2) ≺σ′ r(m1). We then have 2 cases.

r(m2) ≺σc r(m1). Then either r(m2) ≺σp r(m1) or ∃m ∈ MES : r(m2) ≺σc s(m) ≺σc
r(m) ≺σp r(m1), by definition of the causal order. Both cases yield σ /∈ Exec(Causal).
r(m2) 6≺σc r(m1). Since r(m2) ≺σ′ r(m1) gives us r(m1) 6≺σc r(m2), we conclude that
rσ(peer(s(m1))) is not a chain. J
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Abstract
While the relationship of time and space is an established topic in traditional centralised com-
plexity theory, this is not the case in distributed computing. We aim to remedy this by studying
the time and space complexity of algorithms in a weak message-passing model of distributed com-
puting. While a constant number of communication rounds implies a constant number of states
visited during the execution, the other direction is not clear at all. We show that indeed, there
exist non-trivial graph problems that are solvable by constant-space algorithms but that require
a non-constant running time. Somewhat surprisingly, this holds even when restricted to the class
of only cycle and path graphs. Our work provides us with a new complexity class for distributed
computing and raises interesting questions about the existence of further combinations of time
and space complexity.
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1 Introduction

In the classical centralised theory of computing, the study of space-limited computation has
helped us with understanding computability and computational complexity in general:
1. Constant-space models (finite-state machines) provide a very well-understood solid found-

ation.
2. Space-limited complexity classes (e.g., PSPACE) can be successfully related with time-

limited complexity classes (e.g., NP ⊆ PSPACE ⊆ EXP).

In this work, we use similar ideas in the study of distributed computing, in particular, in
the context of distributed graph algorithms.

Networks of finite-state machines. The natural distributed analogue of a deterministic
finite-state machine is a network of deterministic finite-state machines. For brevity, we call
distributed algorithms that use only finitely many states per node constant-space algorithms.
See Section 2 for a proper definition of the model of computation.

Variants of this setting have been studied in many papers, but perhaps the most elementary
question related to distributed graph algorithms has not been answered yet:
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Can we say anything about the time complexity of graph problems that are solvable
with a network of finite-state machines?

Naturally, many constant-time algorithms are also constant-space algorithms, but does the
converse hold in general?

Key challenges. At first, the question may seem trivial: a path of n finite-state machines
can simulate the computation of any Turing machine with n units of space. We can easily
construct algorithms that take time that is exponential in n to terminate; a simple example
is a binary counter that counts from all-0 to all-1.

However, this does not imply that there are graph problems that are solvable in constant
space but not in constant time! There are two main obstacles:
1. The fact that there exists a slow algorithm does not imply that the problem cannot be

solved with a fast algorithm. In the binary counter example, we produce an all-1 output
if we have an all-0 input; this is of course a trivial problem to solve in constant time.

2. We exploit a promise: we assume that the input is a path.

The second obstacle may at first seem like a mere technicality, but it turns out to be
the key difference that separates the centralised computational complexity theory from its
distributed counterpart when we consider constant-space machines.

In centralised computing, the input is by definition a string with a well-defined starting
point and endpoint. A natural analogue of this in distributed computing is a (directed) path.
If we have a promise that the input is a path, we can easily construct examples of problems
that are solvable with constant-space but not with constant-time algorithms, by following
ideas that work in the case of centralised computing:

Classical centralised language: “Recognise the language of strings that have an even
number of characters.”
Distributed graph problem: “If the input is a path with an even number of nodes, all
nodes have to output 1, otherwise all nodes have to output 0.”

However, in distributed graph algorithms, the input is a graph that comes from an
adversary (see Section 2.4), and the graph may be highly symmetric. A prime example is a
cycle graph; indeed, breaking symmetry in cycles is one of the most classical problems in the
area of distributed graph algorithms.

Informally, centralised finite-state machines never get stuck in infinite loops, as eventually
the input string that they are scanning will end, but a distributed algorithm might easily
fail to terminate if the input is a cycle. The usual escape is to assume that we have globally
unique node identifiers (or access to randomness), but non-constant-size identifiers are not a
natural assumption with constant-space algorithms.

Indeed, if we insist that the algorithm is a well-defined algorithm in the sense that it
always terminates, it is difficult to see if we can solve anything non-trivial with constant-space
algorithms without resorting to some assumption on the input: all nodes have to terminate
in some finite time T even if the input is a cycle, and a cycle is indistinguishable from a
sufficiently long path, and hence all nodes have to terminate in fixed time T in arbitrarily long
paths. It would be tempting to conjecture that constant space (and well-defined algorithms
without any promise) would necessarily imply constant time. In this work, we show that this
is not the case.
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Contributions. We give a counterexample that separates constant-space and constant-time
algorithms (see Section 4). More precisely, we construct a well-defined graph problem Π such
that:

Π is solvable with constant-space algorithms (even if we consider a very restricted subset
of constant-space machines),
Π cannot be solved in o(n) time with any distributed algorithm (even if we use a much
stronger model of computation, e.g., randomised algorithms in the LOCAL model).

Here Π is a well-defined input–output problem in the classical sense: for every labelled
input graph G we have a set Π(G) of feasible output labellings. We only need constant-size
input and output labels, and our result holds even if we restrict to input graphs of maximum
degree at most 2.

The key technical challenge here is to engineer a problem Π and a constant-space
algorithm A for Π such that for any input graph G, with any input labelling, algorithm A is
guaranteed to stop in finite time; yet Π has to be sufficiently non-trivial so that it cannot
be solved in constant time – not even in graphs of maximum degree 2. Here we resort to
so-called Thue–Morse sequence as a source of inspiration (see Section 2.5).

Open questions. We emphasise that our problem Π is a purely artificial problem that only
serves the purpose of separating constant-space and constant-time algorithms. Furthermore,
many problems that have been extensively studied in the area of distributed graph algorithms
are LCL (locally checkable labelling) problems [20], and our problem Π is not a member of
this problem family. Hence there are immediate follow-up questions that we leave for future
work:
1. Does there exist a natural graph problem that separates constant space and constant

time?
2. Does there exist an LCL problem that separates constant space and constant time?

Related work. While the relationship between space and time complexity in distributed
computing is a rather novel topic, various time complexity classes and the relationships
between them have been studied a lot in many of the established works of the field [14, 16,
19, 20] and also very recently [3, 4, 5, 6, 7, 13].

The line of research on anonymous models of distributed computing was initiated by
Angluin [2], who introduced the well-known port numbering model. Our model of computation
can be seen as a further restriction of the port-numbering model, with port numbers stripped
out. While port numbers are a natural assumption in wired networks, the weaker variant
makes more sense when applying distributed computing to a wireless setting. While our
model has not been studied that much in prior work, a so-called beeping model [1, 9] is
essentially similar. In the hierarchy of seven models defined by Hella et al. [15], our model is
the weakest one; they call it the SB model. On the other hand, the case where nodes receive
messages in a multiset instead of a set is discussed more often in the literature [15].

From the constant-space point of view, our setting bears similarities to the field of cellular
automata [12, 23, 24]. In a cellular automaton, each cell can be in one of a constant number
of states, and each cell updates its state synchronously using the same rule. However, in
the case of cellular automata, one is usually interested in the kind of patterns an automata
converges in, while we require each node to eventually stop and produce an output.

On the side of distributed computing, Emek and Wattenhofer [11] have considered a model
where the network consists of finite-state machines – hence making the space complexity
constant. However, their model is asynchronous and randomised, while we study a fully
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synchronous and deterministic setting. Recently, also Kuusisto and Reiter [18, 21, 22] have
considered networks of finite-state machines, but their machines either halt in constant
time [21] or continue running indefinitely [18, 22]. Furthermore, constant memory has been
studied in the setting where a set of mobile agents explores a graph [8, 10].

One of the main ingredients of our work, the Thue–Morse sequence, was used previously
by Kuusisto [17], who proved that there exists a distributed algorithm that always halts
in the class of graphs of maximum degree two but features a non-constant running time.
However, his algorithm has also a non-constant space complexity – this is where our work
provides a significant improvement.

2 Preliminaries

In this section, we define our model of computation and introduce notions needed later in
the proofs.

2.1 Model of computation

We consider a model of computation where each node of a graph is a computational unit.
The same graph is a communication network and an input to the algorithm. Adjacent nodes
communicate with each other in synchronous rounds, and eventually each node outputs
its own part of the output. All the nodes run the same deterministic algorithm. In our
model, the nodes are anonymous, that is, they do not have access to unique identifiers, and
furthermore, they cannot distinguish between their neighbours – they broadcast the same
message to everyone and they receive the incoming messages in a set. Our model can be
seen as a very weak variant of the standard LOCAL model of distributed computing.

Running time is defined as the number of communication rounds until all the nodes have
halted, while space usage is defined as the number of bits per node needed to represent all
the states of the algorithm. The complexity measures are considered as a function of n,
the number of nodes in the graph. The amount of local computation in each round is not
limited, nor is the size of messages (but constant space complexity implies that they are also
constant).

In the following, we define distributed algorithms as state machines. Given an input
graph, each node of the graph is equipped with an identical state machine. The graph is
always assumed to be simple, finite, connected and undirected, unless stated otherwise.

At the beginning, each state machine is only aware of its own local input (taken from
some fixed finite set) and the degree of the node on which it sits. Then, computation is
executed in synchronous rounds. In each round, each machine
1. broadcasts a message to its neighbours,
2. receives a set of messages from its neighbours,
3. moves to a new state based on the received messages and its previous state.

Each machine is required to eventually reach one of special halting states and stop
execution. The local output is then the state of the node at the time of halting.

Note that while our model of computation is rather weak, it only makes our results
stronger by limiting the capabilities of algorithms. Unique identifiers or unrestricted local
inputs would not make much sense in the constant-space setting. Crucially, we require nodes
to always halt in any input graph. Engineering constant-space non-constant-time problems
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would be quite straightforward – even in the case of degree 2 – if nodes were allowed to run
indefinitely or had the ability to continue passing messages after announcing an output.1

Similarly, randomisation would weaken the results: with an unlimited supply of random
bits, one can acquire unique identifiers with a high probability, and even a single random
bit per node would allow us to construct a simple constant-space algorithm that halts with
a high probability in all paths and cycles, but exhibits a non-constant running time in the
worst case.

Next, we give a more formal definition of the model of computation used in this work by
defining algorithms and graph problems.

2.2 Notation and terminology
For k ∈ N, we denote by [k] the set {1, 2, . . . , k}. Given a graph G = (V,E), the set of
neighbours of a node v ∈ V is denoted by N(v) = {u ∈ V : {v, u} ∈ E}. For r ∈ N, the
radius-r neighbourhood of a node v ∈ V is {u ∈ V : dist(u, v) ≤ r}, that is, the set of nodes u
such that there is a path of length at most r between v and u. We call any induced subgraph
of G that contains node v simply a neighbourhood of v.

We will also work with strings of letters. Given a finite alphabet Σ, we denote elements
of the alphabet by lowercase symbols such as x ∈ Σ or y ∈ Σ. On the other hand, words
(finite sequences of letters) are denoted by uppercase symbols, e.g., X = x1x2 . . . xi ∈ Σ∗.
Given words X = x1x2 . . . xi and Y = y1y2 . . . yj , we write their concatenation simply
XY = x1x2 . . . xiy1y2 . . . yj . A word X is a subword of Y if Y = Y1XY2 for some (possibly
empty) words Y1 and Y2. We identify words of length 1 with the letter they consist of. For
any letter x and i ∈ N, xi denotes the word consisting of i consecutive letters x. We say that
a word X is of the form x+ if X = xi for some i ∈ N+.

2.3 Algorithms as state machines
Let G = (V,E) be a graph. An input for G is a function f : V → I, where I is a finite set.
For each node v ∈ V , we call f(v) ∈ I the local input of v.

A distributed state machine is a tuple A = (S,H, σ0,M, µ, σ), where
S is a set of states,
H ⊆ S is a finite set of halting states,
σ0 : N× I → S is an initialisation function,
M is a set of possible messages,
µ : S →M is a function that constructs the outgoing messages,
σ : S × P(M)→ S is a function that defines the state transitions, so that σ(h,M) = h

for each h ∈ H andM∈ P(M).

Given a graph G, and input f for G and a distributed state machine A, the execution
of A on (G, f) is defined as follows. The state of the system in round r ∈ N is a function
xr : V → S, where xr(v) is the state of node v in round r. To begin the execution, set
x0(v) = σo(deg(v), f(v)) for each node v ∈ V . Then, let Ar+1(v) = {µ(xr(u)) : u ∈ N(v)}

1 Consider the following problem: nodes with local input 0 always output 0, while nodes with local input 1
output the shortest distance modulo 2 to either a degree-1 node or to a node (possibly the node itself
in the case of a cycle) with local input 1. Now, nodes with local input 0 can announce their output
immediately (regardless of the existence of nodes with input 1), while nodes with local input 1 have to
potentially wait for a linear number of rounds.
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denote the set of messages received by node v in round r + 1. Now the new state of each
node v ∈ V is defined by setting xr+1(v) = σ(xr(v), Ar+1(v)).

The running time of A on (G, f) is the smallest t ∈ N for which xt(v) ∈ H holds for all
v ∈ V . The output of A on (G, f) is then xt : V → H, where t is the running time, and for
each v ∈ V , the local output of v is xt(v). The space usage of A on (G, f) is defined as

dlog |{s ∈ S : s = xr(v) for some r ∈ N, v ∈ V }|e,

that is, the number of bits needed to encode all the states that the state machine visits in at
least one node of G during the execution. In case the execution does not halt, the running
time can be defined to be ∞, and if the number of visited states grows arbitrarily large, we
take the space usage to also be ∞.

From now on, we will use the terms algorithm A and distributed state machine A
interchangeably, implying that each algorithm can be defined formally as a state machine.

2.4 Graph problems
The computational problems that we consider are graph problems with local input – that
is, the problem instance is identical to the communication network, but possibly with an
additional input value given to each node.

More formally, let I and O be finite sets. A graph problem is a mapping ΠI,O that maps
each graph G = (V,E) and input f : V → I to a set ΠI,O(G, f) of valid solutions. Each
solution S is a function S : V → O. In case of decision graph problems, we set O = {yes, no}.

If ΠI,O is a graph problem, T,U : N→ N are functions, A is a distributed state machine
and G is a class of graphs, we say that A solves ΠI,O in class G in time T and in space U if
for each graph G = (V,E) ∈ G and each input f : V → I we have that the running time of A
on (G, f) is at most T (|V |), the space usage of A on (G, f) is at most U(|V |) and the output
of A on (G, f) is in the set ΠI,O(G, f). In that case, we also say that the time complexity of
algorithm A in G is T and the space complexity of A in G is U . If G is omitted, it is assumed
to be the class of all (simple, finite, connected and undirected) graphs.

We define the time complexity of a problem ΠI,O in a graph class G to be the slowest-
growing function T : N→ N such that there exists an algorithm A that solves ΠI,O in G in
time T . The space complexity of a problem is defined analogously. Again, we omit G when it
is the class of all graphs. Notice that when considering a lower bound for the complexity
of a problem, the smaller the class G, the stronger the result, while for upper bounds, the
situation is reverse.

Some typical examples of graph problems considered in the distributed setting are the
minimum vertex cover problem and the maximal independent set problem, where for each
valid solution S, S(v) = 1 indicates that node v is part of the vertex cover or independent
set, respectively, while S(v) = 0 indicates that it is not part of it. In the setting used in
this work, where nodes are allowed to receive local inputs, some natural examples are the
problem of outputting the largest input value among each node’s neighbours, or the problem
of verifying that a colouring given as an input is proper.

2.5 Thue–Morse sequence
In this section, we present a concept that will be central in the proof of our main result in
Section 4. The Thue–Morse sequence is the infinite binary sequence defined recursively as
follows:
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I Definition 1. The Thue–Morse sequence is the sequence (ti) satisfying t0 = 0, and for
each i ∈ N, t2i = ti and t2i+1 = 1− ti.

Thus, the beginning of the Thue–Morse sequence is

01101001100101101001 . . .

For our purposes, the following two recursive definitions will be very useful.

I Definition 2. Let T0 = 0. For each i ∈ N+, let Ti = Ti−1C(Ti−1), where C denotes the
Boolean complement.

Note that for each i ∈ N, the word Ti is the prefix of length 2i of the Thue–Morse sequence.

I Definition 3. Let T ′0 = 0. For each i ∈ N+, let T ′i be obtained from T ′i−1 by substituting
each occurrence of 0 with 01 and each occurrence of 1 with 10.

Again, we have T ′0 = 0, T ′1 = 01, T ′2 = 0110, T ′3 = 01101001 and so on. A straightforward
induction shows that the above two definitions are equivalent: Ti = T ′i for each i ∈ N. We
call Ti the Thue–Morse word of length 2i.

The Thue–Morse sequence contains lots of squares, that is, subwords of the form XX,
where X ∈ {0, 1}∗. Interestingly, it does not contain any cubes – subwords of the form XXX.
Note also that for each i ∈ N+, T2i is a palindrome.

3 Warm-up: graphs of maximum degree 3

In this section, we present a graph problem that exhibits the combination of constant space
complexity and non-constant time complexity, in case we do not restrict ourselves to paths
and cycles. The proof is quite straightforward, which emphasises the fact that the degree-2
case considered in Section 4 is the most interesting one. We emphasise that in the following
theorem, we do not need to make any additional assumptions about the graph; the described
algorithm halts in all finite input graphs.

I Theorem 4. There exist a graph problem Π with constant space complexity and Θ(logn)
time complexity. Furthermore, the time complexity of Π is Θ(logn) also in the class of graphs
of maximum degree at most 3.

Proof. Consider the following transformation: given a directed graph G′ = (V ′, E′) with
edges labelled “L” or “R”, replace each edge e = (u, v) by a gadget as represented in Figure 1.
The end result is an undirected graph G = (V,E), where the gadgets encode the edge
directions and labels of the original graph. We say that an undirected graph G is good if it is
obtained by the above transformation from some directed binary pseudotree G′ (that is, a
connected directed graph where each node has outdegree at most one and indegree either 0
or 2) such that each node with incoming edges has one incoming edge labelled with “L” and
one with “R”.

We call a leaf node of a good graph original, if it does not belong to any gadget. Now,
consider the following graph problem: if the input graph is good, each node has to output
the parity of its distance to the nearest original leaf node; if not, each node is allowed to
output anything. In any case, all the nodes have to halt.

Define an algorithm A as follows. First, A checks locally in two phases if the input
graph G is good. In the first phase, each node detects in five communication rounds whether
it is contained in a valid gadget or neighboured by valid gadgets. If so, then in the second
phase each node v corresponding to a node v′ from the original directed graph checks that in
the orientation obtained from the neighbouring gadgets, the node v′ either has
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L ⇒ R ⇒

Figure 1 The red edge is replaced by the dark grey gadget consisting of four or five nodes,
depending on the label. Similar encoding is performed to each edge of the original directed graph.

two incoming edges (labelled “L” and “R”) and one outgoing edge,
only one outgoing edge (it is a leaf node), or
only two incoming edges (it is the root node in case of a tree).

If either of the checks fails, the node broadcasts an instruction to halt to its neighbours
and halts. Otherwise, it follows that the original graph G′ is indeed a directed binary
pseudotree with each edge directed away from the leaf nodes.

After verifying the goodness of the instance, algorithm A starts to count the distances to
original leaf nodes. In the first round, each original leaf node broadcasts message 0 to its
neighbours, halts and outputs 0. When a node that has not yet halted receives message i,
where i ∈ {0, 1}, it broadcasts i+ 1 mod 2 to its neighbours, halts and outputs i+ 1 mod 2.
Because the input graph is assumed to be finite and connected, each node eventually halts.

Since verifying the goodness takes only a constant number of rounds, and in the counting
phase we count only up to 2, algorithmA needs only a constant number of states. Furthermore,
as in any binary pseudotree the distance from any node to the closest leaf node is at most
O(logn), each node halts after at most O(logn) rounds. On the other hand, in a balanced
binary tree, the distance from the root to leaf nodes is Ω(logn), and thus Ω(logn) rounds
are needed until all the nodes can output the parity of their distance to the closest original
leaf. This completes the proof. J

4 Graphs of maximum degree 2

We are now ready to state the main theorem of this work.

I Theorem 5. There exist a decision graph problem Π with constant space complexity and
Θ(n) time complexity. Furthermore, the time complexity of Π is Θ(n) also in the class of
graphs of maximum degree at most 2.

To define our graph problem, we will make use of the Thue–Morse sequence via the
following definition – compare this to Definition 3 earlier.

I Definition 6 (Valid words). Define a set of words over {0, 1, } recursively as follows:
1. 0 is valid,
2. if X is valid and Y is obtained from X by applying the substitutions 0 7→ 0 1 1 0 and

1 7→ 1 0 0 1 to each occurrence of 0 and 1, then Y is valid.
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That is, valid words are obtained from the sequences T2i, i ∈ N, by inserting an underscore
at the beginning, in between each symbol and at the end.

Now, we will define a decision graph problem that we call ThueMorse as follows.

I Definition 7 (ThueMorse). The local inputs of the problem are taken from the set I =
{α, β, γ} × {0, 1, } and each local output is either yes or no. Given an input function
f : V → I, we write f = (f1, f2). Now, an instance (G, f) is a yes-instance of ThueMorse if
and only if

the graph G = (V,E) is a path graph,
for each v ∈ V , we have

{f1(u) : u = v or u ∈ N(v)} = {α, β, γ},

that is, by setting α < β < γ, the first parts f1(·) of the local inputs define a consistent
orientation for the path,
if we denote V = {v1, v2, . . . , vn} where {vi, vi+1} ∈ E for each i ∈ {1, 2, . . . , n− 1}, the
word

f2(v1)f2(v2) . . . f2(vn)

defined by the second parts of the local inputs is valid.

4.1 Definition of the algorithm
Next, we will give an algorithm that is able to solve the decision problem ThueMorse by
using only constant space. The high-level idea is as follows: First, we check that the local
neighbourhood of each node looks correct. Then, we repeatedly apply substitutions that roll
the configuration of the path graph back to a shorter prefix of the Thue–Morse sequence,
until we reach a trivial configuration and accept the input – or fail to apply the substitutions
unambiguously and consequently reject the input.

I Lemma 8. There exists an algorithm A that solves problem ThueMorse in space O(1) and
time O(n).

First, let us introduce some terminology and notation. In an instance (G, f) of ThueMorse
where G is either a path or a cycle graph, the sequence of symbols defined by f2 in a given
node neighbourhood is called the input word – note that contrary to usual words, the input
word is unoriented. Sometimes we identify the node neighbourhood with the corresponding
input word; the meaning should be clear from the context. During the execution of the
algorithm, each node v has a current symbol c(v) as part of its state. The vertical bar | shall
denote the end of the path graph. We will make use of it by assuming that each degree-1
node v sees a “virtual” neighbour u with the symbol |, that is, f1(u) = f2(u) = | and c(u) is
always equal to |. The underscore symbols will be called separators. Denote the alphabet
which contains the possible current symbols by Σ = {0, 1, , |}.

We define the algorithm A in three parts, which we denote by I, II and III. In each part,
any node can abort, which means that it sends a special abort message to its neighbours and
then moves to state no and thus halts. If a node receives the abort message at any time, it
aborts – that is, it passes the message on to all its neighbours, and then moves to state no
and halts. At initialisation, each node v sets its symbol c(v) to be equal to f2(v), the second
part of the local input.

In part I, each node v verifies its degree and the orientation: if deg(v) ∈ {1, 2} and
three different symbols from {α, β, γ, |} can be found in the local inputs within the radius-1

OPODIS 2017



30:10 Constant Space and Non-Constant Time in Distributed Computing

neighbourhood of v (that is, we have |{f1(u) : u ∈ N(v) ∪ {v}}| = 3), continue; otherwise,
abort. Recall that the graph is assumed to be finite and connected. If none of the nodes
aborts, it follows that the graph is either a path or a cycle and that the local inputs given by
f1 define a word of the form . . . αβγαβγαβγα . . ..

In part II, each node v verifies the input word in its radius-1 neighbourhood: if the
neighbourhood is in {| 0, 0 |, 0 0, 1 1, 0 1, 1 0, 0 , 1 }, continue; otherwise, abort.
Note that here we do not care about the orientation of the word, and hence the set of symbols
received from the neighbours is enough for this step. If none of the nodes aborts, the input
word is locally valid: every other symbol is the separator and every other symbol is either
0 or 1.

Then, we proceed to part III, which contains the most interesting steps of the algorithm.
Now we will make use of the orientation given as part of the input. Define α < β, β < γ

and γ < α. For each node v, we say that neighbour u of v is the left neighbour of v if
f1(u) < f1(v) and the right neighbour of v if f1(u) > f1(v). Thus, each node can essentially
send a different message to each of its two neighbours: the orientation symbol of the recipient
indicates which part of the message is intended for which recipient. From now on, we will
also assume that each node attaches its own orientation symbol as part of every message
sent, so that nodes can distinguish between incoming messages.

Part III will consist of several phases. In each phase, we first gather information from the
neighbourhood in two buffers and then try to apply a substitution to the word obtained in
the buffers. More precisely, each node v has two buffers, the left buffer L(v) and the right
buffer R(v) as part of its state. The buffers are used to store a compressed version of the
input word in the neighbourhood: a sequence of consecutive symbols 0 or 1 is represented by
a single 0 or 1, respectively.

Let us define some notation. Let l, r : Σ∗ × Σ→ Σ∗ be as follows. If X = Ay for some
word A, set r(X, y) = X. Otherwise, set r(X, y) = Xy. Function l is defined analogously:
if X = yA for some word A, set l(X, y) = X; otherwise, set l(X, y) = yX. In other words,
functions l and r append a new symbol either to the beginning or to the end of a word,
respectively – but only if the new symbol is different from the current first or last symbol of
the word, respectively.

Now, in each phase, each node v first fills its buffers as follows. To initialise, node v
broadcasts message c(v) (its own current symbol) to its neighbours. Then, node v repeats the
following. It sets the left buffer L(v) equal to the message it receives from its left neighbour
and the right buffer R(v) equal to the message it receives from the right neighbour. After that,
node v sends r(L(v), c(v)) to the right and l(R(v), c(v)) to the left. These steps are repeated
until both buffers of v contain either 8 instances of the separator or an end-of-the-path
marker |. When that happens, node v is finished with filling its buffers.

Next, node v combines its buffers to construct a compressed view of the input word in its
neighbourhood. To that end, define C : Σ∗×Σ×Σ∗ → Σ∗ and p : Σ∗×Σ×Σ∗ → N as follows.
If X = Ay and Z = yB for some A,B ∈ Σ∗, set C(X, y, Z) = AyB and p(X, y, Z) = |A|.
Otherwise, if X = Ay for some A ∈ Σ∗, set C(X, y, Z) = AyZ and p(X, y, Z) = |A|,
and if Z = yB for some B ∈ Σ∗, set C(X, y, Z) = XyB and p(X, y, Z) = |X|. Else,
set C(X, y, Z) = XyZ and p(X, y, Z) = |X|. Now, the compressed view of node v is
V (v) = C(L(v), c(v), R(v)), and c(v) is at position q(v) = p(L(v), c(v), R(v)) + 1 in V (v). In
other words, the left buffer, the current symbol and the right buffer are concatenated in a
way that removes successive repetitions of the same symbol.

Finally, node v does subword matching on the view V (v). If V (v) is equal to | 0 |
or | 0 1 1 0 |, node v instructs other nodes to accept, moves to the yes state and halts.
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Otherwise, node v searches V (v) for the subword 0 1 1 0 1 0 0 1 in all possible positions.
Given a match, let the ith symbol of the subword be aligned with the q(v)th symbol of V (v).
If i ∈ {1, 9, 17}, set c′ = . Otherwise, if i ≤ 8, set c′ = 0, and if i ≥ 10, set c′ = 1. After
that, node v performs the same procedure with the reversed subword 1 0 0 1 0 1 1 0
– but now, if i ≤ 8, set c′ = 1, and if i ≥ 10, set c′ = 0. If no matches could be found in
V (v), node v aborts. If several matches were found and they resulted in different values for
c′, node v aborts. Otherwise, node v updates its current symbol c(v) to be the unambiguous
value c′. This concludes the phase; if not aborted, on the next round, a new phase starts
from the beginning. See Example 9 for illustrations of the matching and substitution steps
in a few cases.

I Example 9. Consider the execution of part III of algorithm A in the following instances.
1. Path graph, yes-instance:

| 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 |
⇓ (unambiguous substitutions)

| 0000000 1111111 1111111 0000000 |
⇓ (V (v) = | 0 1 1 0 |)

accept

2. Path graph, no-instance:

| 0 1 1 0 1 0 0 1 1 0 1 0 0 1 |
⇓

| 0000000 1111111 . . .

. . . 0000000 1111111 |
⇓ (ambiguous substitutions)

abort

3. Cycle graph (the ends marked with . . . are connected circularly):

. . . 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 . . .

⇓ (unambiguous substitutions)
. . . 0000000 1111111 1111111 0000000 . . .

⇓ (no matches)
abort

4.2 Proof of correctness
In this section, we show that algorithm A executes correctly and always halts with the desired
output. Since parts I and II are quite trivial, we will start with part III of the algorithm.

We say that a word X = x1x2 . . . xi is the compressed version of a word Y = y1y2 . . . yj

if xi 6= xi+1 for all i ∈ {1, 2, . . . , i − 1} and there exist a surjective compression mapping
f : [j]→ [i] such that f(1) = 1, f(k) ∈ {f(k − 1), f(k − 1) + 1} for all k ∈ {2, 3, . . . , j} and
yk = xf(k) for all k ∈ [j].

I Lemma 10. After any node v has finished collecting the buffers, V (v) is the compressed
version of the actual input word in the neighbourhood of v.
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Proof. We use induction on the number of rounds t after starting the phase. After the first
round of the phase, each node v has received L(v) = c(u) from its left neighbour u and
R(v) = c(w) from its right neighbour w. Hence L(v) and R(v) are compressed versions of
the left and right 1-neighbourhoods of v, respectively.

Assume then that L(u) and R(w) are compressed versions of the left and right (t− 1)-
neighbourhoods of u and w, respectively, and let fl and fr be the corresponding mappings.
Consider now the definition of the algorithm. The definition of the mapping r implies that
what v receives from the left in round t of the phase is L(u) – extended by c(u) if and
only if c(u) differs from the last symbol of L(u). If it does differ, we extend fl by defining
fl(t) = |L(u)| + 1, otherwise fl(t) = |L(u)|. Hence the new value of the buffer L(v) is a
compressed version of the left t-neighbourhood of v. The case of R(v) is handled analogously.

Suppose that v has finished collecting the buffers. Now L(v) and R(v) are the compressed
versions of the left and right k-neighbourhoods of v for some k. Then, it follows from the
definition of the function C that an appropriate compression mapping can be formed and
V (v) = C(L(v), c(v), R(v)) is the compressed version of the k-neighbourhood of v. J

We call the sequence of current symbols c(u) in the graph a configuration (in the case of
a cycle graph, the sequence is infinite in both directions). A maximal sequence of adjacent
nodes such that each node v has the same current symbol c(v) is called a block. We sometimes
identify a block with the subword consisting of the current symbols of the block nodes.

In the next two lemmas, we show how updating the current symbol locally in nodes
results in global substitutions in the configuration.

I Lemma 11. Assume that in the current configuration, each maximal subword of the form
0+ or 1+ is of length ` and each maximal subword of the form + is of length 1. If the
algorithm is executed for one phase and no node aborts, in the resulting configuration the
lengths are 4` + 3 and 1, respectively. More precisely, the execution of one phase always
results in substitutions of the following kinds:

0` 1` 1` 0` 1` 0` 0` 1` 7→ 04`+3 14`+3 , (1)
1` 0` 0` 1` 0` 1` 1` 0` 7→ 14`+3 04`+3 . (2)

Proof. Since no node aborts, each node v is able to find an unambiguous new value for c(v).
Consider an arbitrary node u. Suppose that the pattern P1 = 0 1 1 0 1 0 0 1 matches
V (u) so that the ith symbol of the pattern is aligned with the q(v)th symbol of V (u). Now
it follows from Lemma 10 that P1 is the compressed version of an actual neighbourhood N
of u. Due to the assumption, for each j such that the jth symbol of P1 is 0 or 1, in the
neighbourhood there are exactly ` consecutive symbols 0 or 1, respectively, that are mapped
to the jth symbol of P1 by the compression mapping f .

Let us consider the case i = 6 as an example. Now c(u) = 1. As the buffers are gathered
until each of them contain eight separators , the next 5 blocks to the left from the block of
u, as well as the next 11 blocks to the right, gather views that are compressed versions of a
neighbourhood containing N . Hence P1 matches also their views. For example, for all nodes
w in the block two steps left from the block of u, P1 matches V (w) at position i− 2 = 4. It
follows from the definition of the algorithm that the new value for c(u), as well as for c(w),
where w is in the next 4 blocks to the left from u or 2 blocks to the right from u, is 0. The new
value for the node in the 5th block left from u as well as 3rd block right from u is . Thus,
after the phase, node u will be part of a 0-block of length `+ 1 + `+ 1 + `+ 1 + ` = 4`+ 3.

The cases for all other values of i, as for as the matching the reverse pattern P2, are
analogous. J
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We call a word xi
1 xi

2 . . . xi
p a padded Thue–Morse word of length p if x1x2 . . . xp is a

prefix of the Thue–Morse sequence.

I Lemma 12. Let W be a subword of a configuration C at the beginning of a phase. Let
k ≥ 3. If W is a (complement of a) padded Thue–Morse word of length 2k and the algorithm is
executed for one phase on C without aborting, the subword W is transformed to a (complement
of a) padded Thue–Morse word of length 2k−2.

Proof. We use induction on k. If k = 3, we have W = 0i 1i 1i 0i 1i 0i 0i 1i or
W = 1i 0i 0i 1i 0i 1i 1i 0i for some i. Then Lemma 11 implies that W is transformed
to 0j 1j or 1j 0j , respectively, where j = 4i+ 3. Hence the claim holds for k = 3.

Suppose then that k > 3 and the claim holds for each subword that is a (complement of a)
padded Thue–Morse word of length 2k−1. Let W be a padded Thue–Morse word of length 2k.
Now the definition of the Thue–Morse sequence implies that we can write W = W1 W2,
where W1 is a padded Thue–Morse word of length 2k−1 and W2 is a complement of a
padded Thue–Morse word of length 2k−1. By the inductive hypothesis, W1 is transformed
to a padded Thue–Morse word of length 2k−3 and W2 is transformed to a complement of a
padded Thue–Morse word of length 2k−3. Now the definition of the Thue–Morse sequence
again implies that W = W1 W2 is transformed to a padded Thue–Morse word of length
2k−2. The case where W is a complement of a padded Thue–Morse word is completely
analogous. J

Now we are ready to aggregate our previous lemmas to establish that algorithm A actually
works correctly.

I Lemma 13. In a yes-instance, each node eventually halts and outputs yes.

Proof. Let (G, f) be a yes-instance of ThueMorse. By definition, algorithm A executes parts
I and II successfully. Notice then that since the input word is valid, the configuration at the
beginning of part III is actually a padded Thue–Morse word. If the input word is either 0
or 0 1 1 0, the nodes move immediately to the yes state and halt. Otherwise, the input
word is a padded Thue–Morse word of length at least 16, and by iterating Lemma 12 we
obtain a shorter padded Thue–Morse word after every phase. Note that the new current
symbol will be unambiguous for each node on each phase. Eventually the configuration will
match with 0 1 1 0 , and the instance will get accepted. J

I Lemma 14. In a no-instance, each node eventually halts and outputs no.

Proof. Let (G, f) be a no-instance of ThueMorse. By assumption, G is finite and connected.
If G contains a node of degree higher than 2, algorithm A aborts in part I. Hence we can
assume that G has maximum degree at most two. It follows immediately from Lemma 11
that algorithm A halts on (G, f): since the size of blocks of 0’s or 1’s grows in each phase,
we will eventually run out of nodes.

Graph G is either a path or a cycle graph. If A rejects in part I or part II, we are
done. Hence, we can assume that the input f defines a consistent orientation and each
1-neighbourhood is of the correct form – that is, every second symbol on the input word is a
separator . Now it follows from Lemma 11 that the computation proceeds synchronously:
in part III, each node starts a new phase in the same round.

Consider the case that G is a cycle graph. Due to Lemma 11, the number of blocks
decreases after each phase. Eventually, if no node rejects, the execution reaches a configuration
with b ≤ 4 blocks of 0’s and 1’s. Then, each node sees the same sequence of b blocks repeating
in its view. It follows that neither pattern P1 or P2 matches and the node rejects.
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Assume then that G is a path graph. If there exists a yes-instance (G′, f ′) with the same
number of nodes as G has, we proceed as follows. Suppose for a contradiction that (G, f)
gets accepted. Then there is a smallest i such that before the ith phase, the configurations
C on (G, f) and C ′ on (G′, f ′), respectively, are different, but after the ith phase, they are
identical, C ′′. It follows that C ′′ contains a subword of the form 0i 1i for some i, such
that C and C ′ differ on a position overlapping with the subword. But this is a contradiction,
as it follows from Lemma 11 that C and C ′ cannot differ on such a position.

Finally, consider the case where (G, f) is a no-instance such that there does not exist
a yes-instance with the same number of nodes. Suppose again for a contradiction that
(G, f) gets accepted. Let (G′, f ′) be the largest yes-instance no larger than (G, f) and let
(G′′, f ′′) be the yes-instance that is one step larger from (G′, f ′). Lemma 12 implies that
the algorithm A needs exactly one phase more on (G′′, f ′′) than on (G′, f ′). The number of
phases on (G, f) equals either the number of phases on (G′, f ′) or on (G′′, f ′′). But either
case is a contradiction, since the instances have a different amount of blocks in the beginning,
and Lemma 11 implies that the size of blocks grows at a fixed rate. J

The last thing left to do is analysing the complexity of the algorithm. This is taken care
of by the following lemmas.

I Lemma 15. The space usage of algorithm A is in O(1).

Proof. Parts I and II of algorithm A clearly use only a constant number of states. Consider
then part III. When gathering the buffers, consecutive blocks of symbols in the neighbourhood
are represented by only one symbol, and only a constant amount of blocks are gathered
(eight separator symbols in each buffer). Hence a constant number of states is enough to
represent the contents of the buffers. Furthermore, the buffers get erased after each phase
has completed. Thus, algorithm A can be implemented using a constant number of states,
independent of the size of the input. J

I Lemma 16. The running time of algorithm A is in O(n).

Proof. Executing each phase of part III of the algorithm can be done in 8i+ 8 = 8(i+ 1)
rounds, where i is the size of the blocks at the start of the phase. Recall that after each
phase, the size of the blocks grows from ` to 4`+ 3. Note also that 1

2 logn phases are enough
to grow the block size so large that the algorithm has to either accept or reject. It follows
that

8(1 + 1) + 8(7 + 1) + 8(31 + 1) + · · ·+ 8(22( 1
2 log n)−1)) ≤ 8n

is an upper bound for the running time. J

On the other hand, Ω(n) rounds are clearly necessary to solve ThueMorse: the node at
the end of the path has to receive information from the other end of the path to be able to
verify that the instance is actually a yes-instance. This concludes the proof of Theorem 5.

5 Conclusions

We introduced space complexity as a new dimension in the classification of distributed graph
problems. In particular, we identified a model of computation and a class of graphs, where
the question on the existence of constant-space, non-constant-time algorithms is interesting
and non-trivial. The answer turned out to be positive.
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The result opens up the way to study constant space further – we can ask, for example,
what other time complexities besides Θ(logn) and Θ(n) can possibly be found and in which
graph classes. Another open question of interest is the existence of natural graph problems
that exhibit the constant-space non-constant-time characteristic.
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Abstract
Shape formation (or pattern formation) is a basic distributed problem for systems of compu-
tational mobile entities. Intensively studied for systems of autonomous mobile robots, it has
recently been investigated in the realm of programmable matter, where entities are assumed to
be small and with severely limited capabilities. Namely, it has been studied in the geometric
Amoebot model, where the anonymous entities, called particles, operate on a hexagonal tessella-
tion of the plane and have limited computational power (they have constant memory), strictly
local interaction and communication capabilities (only with particles in neighboring nodes of the
grid), and limited motorial capabilities (from a grid node to an empty neighboring node); their
activation is controlled by an adversarial scheduler. Recent investigations have shown how, start-
ing from a well-structured configuration in which the particles form a (not necessarily complete)
triangle, the particles can form a large class of shapes. This result has been established under
several assumptions: agreement on the clockwise direction (i.e., chirality), a sequential activation
schedule, and randomization (i.e., particles can flip coins to elect a leader).

In this paper we provide a characterization of which shapes can be formed deterministically
starting from any simply connected initial configuration of n particles. The characterization is
constructive: we provide a universal shape formation algorithm that, for each feasible pair of
shapes (S0, SF ), allows the particles to form the final shape SF (given in input) starting from
the initial shape S0, unknown to the particles. The final configuration will be an appropriate
scaled-up copy of SF depending on n.

If randomization is allowed, then any input shape can be formed from any initial (simply
connected) shape by our algorithm, provided that there are enough particles.

Our algorithm works without chirality, proving that chirality is computationally irrelevant
for shape formation. Furthermore, it works under a strong adversarial scheduler, not necessarily
sequential.

We also consider the complexity of shape formation both in terms of the number of rounds
and the total number of moves performed by the particles executing a universal shape formation
algorithm. We prove that our solution has a complexity of O(n2) rounds and moves: this number
of moves is also asymptotically worst-case optimal.
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1 Introduction

1.1 Background
The term programmable matter, introduced by Toffoli and Margolus over a quarter century
ago [23], is used to denote matter that has the ability to change its physical properties
(e.g., shape, color, etc.) in a programmable fashion, based upon user input or autonomous
sensing. Often programmable matter is envisioned as a very large number of very small
locally interacting computational particles, programmed to collectively perform a complex
task. Such particles could have applications in a variety of important situations: smart
materials, autonomous monitoring and repair, minimal invasive surgery, etc.

Several theoretical models for programmable matter have been proposed, ranging from
DNA self-assembly systems (e.g., [18, 19, 21]) to metamorphic robots (e.g., [3, 16, 24]) to
nature-inspired synthetic insects and micro-organisms (e.g., [10, 11]).

Of particular interest, from the distributed computing viewpoint, is the geometric Amoebot
model [2, 5, 6, 7, 8, 9, 10, 14]. In this model, introduced in [10] and so called because inspired
by the behavior of amoeba, programmable matter is viewed as a swarm of decentralized
autonomous self-organizing entities, operating on a hexagonal tessellation of the plane. These
entities, called particles, are constrained by having simple computational capabilities (they
are finite-state machines), strictly local interaction and communication capabilities (only
with particles located in neighboring nodes of the hexagonal grid), and limited motorial
capabilities (from a grid node to an empty neighboring node); furthermore, their activation
is controlled by an adversarial (but fair) synchronous scheduler. A feature of the Amoebot
model is that particles can be in two modes: contracted and expanded. When contracted, a
particle occupies only one node, while when expanded the particle occupies two neighboring
nodes; it is indeed this ability of a particle to expand and contract that allows it to move on
the grid.

In the Amoebot model, the research focus has been on applications such as coating [5, 9],
gathering [2], and shape formation [7, 8, 10]. The latter is also the topic of our investigation.

The shape formation problem is prototypical for systems of self-organizing entities. This
problem, called pattern formation in swarm robotics, requires the entities to move in the
spatial universe they inhabit in such a way that, within finite time, their positions form the
geometric shape given in input (modulo translation, rotation, scaling, and reflection), and no
further changes occur. Indeed, this problem has been intensively studied in active systems
such as autonomous mobile robots (e.g., [1, 4, 12, 13, 22]) and modular robotic systems
(e.g., [17, 20]).

Shape formation for Amoebots has been investigated in [7, 8, 10], taking into account
that, due to the ability of particles to expand, it might be possible to form shapes whose size
is larger than the number of particles.

The pioneering study of [7] on shape formation in the geometric Amoebot model showed
how particles can build simple shapes, such as a hexagon or a triangle. Subsequent investiga-
tions [8] have recently shown how, starting from a well-structured configuration where the
particles form a (not necessarily complete) triangle, they can form a larger class of shapes
under several assumptions, including randomization (which is used to elect a leader), chirality
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(i.e., a globally consistent circular orientation of the plane shared by all particles), and a
sequential activation schedule (i.e., at each time unit the scheduler selects only one particle
which will interact with its neighbors and possibly move).

These results and assumptions immediately and naturally open fundamental research
questions, including: Are other shapes formable? What can be done deterministically? Is
chirality necessary? What happens if the scheduler is not sequential? What if the initial
configuration is not well structured? Notice that, without the availability of a unique leader
(provided by randomization), dropping the chirality assumption becomes a problem with a
non-sequential schedule.

In this paper, motivated and stimulated by these questions, we continue the investigation
on shape formation in the geometric Amoebot model and provide some definitive answers.

1.2 Main Contributions

We continue the investigation, significantly extending the existing results. Among other things,
we provide a constructive characterization of which shapes SF can be formed deterministically
starting from an unknown simply connected initial configuration S0 of n particles (i.e., a
connected configuration without “holes”).

As in [8], we assume that the size of the description of SF is constant with respect to the
size of the system, so that it can be encoded by each particle as part of its internal memory.
Such a description is available to all the particles at the beginning of the execution, and
we call it their “input”. The particles will form a final configuration that is an appropriate
scaling, translation, rotation, and perhaps reflection of the input shape SF . Since all particles
of S0 must be used to construct SF , the scale λ of the final configuration depends on n: we
stress that λ is unknown to particles, and they must determine it autonomously.

Given two shapes S0 and SF , we say that the pair (S0, SF ) is feasible if there exists a
deterministic algorithm that, in every execution and regardless of the activation schedule,
allows the particles to form SF starting from S0 and no longer move.

On the contrary, a pair (S0, SF ) of shapes is unfeasible when the symmetry of the initial
configuration S0 prevents the formation of the final shape SF . In Section 2, we formalize the
notion of unbreakable symmetry of shapes embedded in triangular grids, and in Theorem 1
we show that starting from an unbreakable k-symmetric configuration only unbreakable
k-symmetric shapes can be formed.

For all the feasible pairs, we provide a universal shape formation algorithm in Section 3.
This algorithm does not need any information on S0, except that it is simply connected.

These results concern the deterministic formation of shapes. As a matter of fact, our
algorithm uses a deterministic leader election algorithm as a subroutine (Sections 3.1–3.4).
If the initial shape S0 is unbreakably k-symmetric, such an algorithm may elect as many as
k neighboring leader particles, where k ∈ {1, 2, 3}. It is trivial to see that, with a constant
number of coin tosses, we can elect a unique leader among these k with arbitrarily high
probability. Thus, our results immediately imply the existence of a randomized universal
shape formation algorithm for any pair of shapes (S0, SF ) where S0 is simply connected. This
extends the result of [8], which assumes the initial configuration to be a (possibly incomplete)
triangle.

Additionally, our notion of shape generalizes the one used in [8], where a shape is only
a collection of triangles, while we include also 1-dimensional segments as its constituting
elements. In Section 4 we will show how the concept of shape can be further generalized to
include essentially anything that is Turing-computable.

OPODIS 2017
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Our algorithm works under a stronger adversarial scheduler that activates an arbitrary
number of particles at each stage (i.e., not necessarily just one, like the sequential scheduler),
and with a slightly less demanding communication system.

Moreover, in our algorithm no chirality is assumed: indeed, unlike in [8], different particles
may have different handedness. On the contrary, in the examples of unfeasibility given in
Theorem 1, all particles have the same handedness. Together, these two facts allows us to
conclude that chirality is computationally irrelevant for shape formation.

Finally, we analyze the complexity of shape formation in terms of the total number of
moves (i.e., contractions and expansions) performed by n particles executing a universal
shape formation algorithm, as well as in terms of the total number of rounds (i.e., spans
of time in which each particle is activated at least once, also called epochs) taken by the
particles. We first prove that any universal shape formation algorithm requires Ω(n2) moves
in some cases (Theorem 2). We then show that the total number of moves of our algorithm
is O(n2) in all cases (Theorem 3): that is, our solution is asymptotically worst-case optimal.
The time complexity of our algorithm is also O(n2) rounds, and optimizing it is left as an
open problem (we can reduce it to O(n logn), and we have a lower bound of Ω(n)).

Obviously, we must assume the size of S0 (i.e., the number of particles that constitute
it) to be sufficiently large with respect to the input description of the final shape SF . More
precisely, denoting the size of SF as m, we assume n to be lower-bounded by a cubic function
of m. A similar restriction is also found in [8].

To the best of our knowledge, all the techniques employed by our universal shape formation
algorithm are new.

Further technical details and most proofs can be found in the full version of the paper [15].

2 Model and Preliminaries

Particles. A particle is a conceptual model for a computational entity that lives in an
infinite regular triangular grid G, which we imagine as embedded in the Euclidean plane R2.
A particle may occupy either one vertex of G or two adjacent vertices: in the first case, the
particle is said to be contracted; otherwise, it is expanded. When it is expanded, one of the
vertices it occupies is called its head, and the other vertex is its tail. A particle may move
through G by repeatedly expanding toward a neighboring vertex of G and contracting into
its head.1

No vertex of G can ever be occupied by more than one particle at the same time.
Accordingly, a contracted particle cannot expand toward a vertex that is already occupied by
another particle. If two or more particles attempt to expand toward the same (unoccupied)
vertex at the same time, only one of them succeeds, chosen arbitrarily by an adversarial
scheduler (see below).

In our model, time is “discrete”, i.e., it is an infinite ordered sequence of instants, called
stages. Say that in the graph G there is a set P of particles, which we call a system. At
each stage, some particles of P are active, and the others are inactive. We may think of
the activation of a particle as an act of an adversarial scheduler, which arbitrarily and
unpredictably decides which particles are active at each stage. The only restriction on the
scheduler is a bland fairness constraint, requiring that each particle be active for infinitely
many stages in total. That is, the scheduler can never keep a particle inactive forever.

1 The model in [8] allows a special type of coordinated move called “handover”. Since we will not need
our particles to perform this type of move, we omit it from our model.
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When a particle is activated for a certain stage, it “looks” at the vertices of G adjacent
to its head, discovering if they are currently unoccupied, or if they are head or tail vertices
of some particle. All particles are indistinguishable (i.e., they are anonymous). Each active
particle may then decide to either expand, contract, or stay still for that stage. All these
operations are performed by all active particles simultaneously, and take exactly one stage.
So, when the next stage starts, a new set of active particles is selected, which observe their
surroundings and move, and so on.

Each particle has an internal state that it can modify every time it is activated. The
internal state of any particle must be picked from a finite set: particles have an amount of
“memory” that is constant with respect to the size of the system, n.

Two particles can also communicate by sending each other messages taken from a finite
set, provided that their heads are adjacent vertices of G. A particle reads the incoming
messages from all its neighbors as soon as it is activated. If a second message is sent through
an edge of G before the first one is read, the first message is overwritten and becomes
inaccessible.

Each particle labels the six edges incident to each vertex of G with port numbers, going
from 0 to 5. Each particle uses a consistent numbering that is invariant under translation on
G. However, different particles may disagree on which of the edges incident to a vertex has
port number 0 and whether the numbering should follow the clockwise or counterclockwise
order: this is called the particles’ handedness. So, the handedness of a particle does not
change as the particle moves, but different particles may have different handedness.

At each stage, each active particle looks at its surroundings to see which neighboring
vertices are occupied, and it reads the incoming messages. Based on these and on its internal
state, the particle executes a deterministic algorithm that computes a new internal state,
the messages to be sent to the neighbors, and whether the particle should expand to some
adjacent vertex, contract, or stay still.

We assume that, when stage 0 starts, all particles are contracted, they all have the same
predefined internal state, and there are no messages pending between particles.

Shape formation. A shape is a non-empty connected set consisting of the union of finitely
many edges and faces of G. We stress that a shape is not a subgraph of an abstract graph,
but it is a subset of R2, i.e., a geometric set. A shape S is simply connected if the set R2 \ S
is connected (intuitively, S has no “holes”). The size of a shape is the number of vertices of
G that lie in it.

We say that two shapes S and S′ are equivalent if S′ is obtained from S by a similarity
transformation, i.e., a composition of a translation, a rotation, an isotropic scaling by a
positive factor, and an optional reflection. A shape S is minimal if no shape that is equivalent
to it has a smaller size. Let σ be a similarity transformation such that S′ = σ(S), where S is
minimal: we say that the (positive) scale factor of σ is the scale of S′.

A system of particles in G forms a shape S if the vertices of G that are occupied by
particles are exactly the ones that lie in S. An (S0, SF )-shape formation algorithm is an
algorithm that makes a system of particles form a shape equivalent to SF (not necessarily
SF itself), provided that they form shape S0 at stage 0. That is, however the port labels of
each particle are arranged, and whatever the choices of the scheduler are. After forming the
shape, the particles should no longer move. If such an algorithm exists, (S0, SF ) is called a
feasible pair of shapes.

In the rest of this paper, we will characterize the feasible pairs of shapes (S0, SF ), provided
that S0 is simply connected and its size is not too small. That is, for every such pair of
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Figure 1 Two systems of particles forming equivalent shapes. Contracted particles are represented
as black dots; expanded particles are black segments (a dot represents a particle’s head). Shapes are
indicated by gray blobs. The shape on the left is minimal; the one on the right has scale 3.

shapes, we will either prove that no shape formation algorithm exists (Theorem 1), or we will
give an explicit shape formation algorithm. We will actually give a universal shape formation
algorithm (Theorem 3), which only takes the “final shape” SF (or a representation thereof)
as a parameter, and has no information on the “initial shape” S0, except that it is simply
connected. As in [8], we assume that the size of the parameter SF is constant with respect
to the size of the system, so that SF can be encoded by each particle as part of its internal
memory.

Unformable shapes. A shape is said to be unbreakably k-symmetric, for some integer k > 1,
if it has a center of k-fold rotational symmetry that does not coincide with any vertex of G.
Observe that there exist unbreakably k-symmetric shapes only for k = 2 and k = 3.

If the system initially forms an unbreakably k-symmetric shape, the port labels of
symmetric particles happen to be symmetric, and the scheduler always activates symmetric
particles simultaneously, then the system never ceases to form an unbreakably k-symmetric
shape. Therefore, we have the following:

I Theorem 1. If (S0, SF ) is a feasible pair and S0 is unbreakably k-symmetric, then any
minimal shape that is equivalent to SF is also unbreakably k-symmetric.

In Section 3, we are going to prove that the condition of Theorem 1 characterizes the
feasible pairs of shapes, provided that S0 is simply connected, and the size of S0 is large
enough with respect to the size of SF .

Measuring movements and rounds. We are also concerned to measure the total number of
moves performed by a system of size n executing a shape formation algorithm. For instance,
if the particles initially form a (full) regular hexagon, they must make at least Ω(n2) moves
in total to form a line segment (because Ω(n) particles must move over a distance of Ω(n)).
Hence we have the following lower bound:

I Theorem 2. A system of n particles executing any universal shape formation algorithm
performs Ω(n2) moves in total.

In Section 3, we will prove that our universal shape formation algorithm requires O(n2)
moves in total, and is therefore worst-case optimal with respect to this parameter.

Similarly, we want to measure how many rounds it takes the system to form the final
shape (a round is a span of time in which each particle is activated at least once). We will
show that our universal shape formation algorithm takes O(n2) rounds.
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3 Universal Shape Formation Algorithm

Algorithm structure. The universal shape formation algorithm takes a “final shape” SF as
a parameter: this is encoded in the initial states of all particles. Without loss of generality,
we will assume SF to be minimal. The algorithm consists of seven phases:
1. A lattice consumption phase, in which the initial shape S0 is “eroded” until 1, 2, or 3

pairwise adjacent particles are identified as “candidate leaders”. No particle moves in this
phase: only messages are exchanged. This phase ends in O(n) rounds.

2. A spanning forest construction phase, in which a spanning forest of S0 is constructed,
where each candidate leader is the root of a tree. No particle moves, and the phase ends
in O(n) rounds.

3. A handedness agreement phase, in which all particles assume the same handedness as
the candidate leaders (some candidate leaders may be eliminated in the process). In this
phase, at most O(n) moves are made. However, at the end, the system forms S0 again.
This phase ends in O(n) rounds.

4. A leader election phase, in which the candidate leaders attempt to break symmetries and
elect a unique leader. If they fail to do so, and k > 1 leaders are left at the end of this
phase, it means that S0 is unbreakably k-symmetric, and therefore the “final shape” SF

must also be unbreakably k-symmetric (cf. Theorem 1). No particle moves, and the phase
ends in O(n2) rounds.

5. A straightening phase, in which each leader coordinates a group of particles in the
formation of a straight line. The k resulting lines have the same length. At most O(n2)
moves are made, and the phase ends in O(n2) rounds.

6. A role assignment phase, in which the particles determine the scale of the shape S′
F

(equivalent to SF ) that they are actually going to form. Each particle is assigned an
identifier that will determine its behavior during the formation process. No particle
moves, and the phase ends in O(n2) rounds.

7. A shape composition phase, in which each straight line of particles, guided by a leader, is
reconfigured to form an equal portion of S′

F . At most O(n2) moves are made, and the
phase ends in O(n2) rounds.

No a-priori knowledge of S0 is needed to execute this algorithm (S0 just has to be simply
connected), while SF must of course be known to the particles and have constant size, so
that its description can reside in their memory. Note that the knowledge of SF is needed
only in the last two phases of the algorithm.

Synchronization. As long as there is a unique (candidate) leader in the system, there are
no synchronization problems: this one particle coordinates all others, and autonomously
decides when each phase ends and the next phase starts.

However, if there are k > 1 (candidate) leaders, there are possible issues arising from
the intrinsic asynchronicity of our particle model. Typically, a (candidate) leader will be in
charge of coordinating only a portion of the system, and we want to avoid the undesirable
situation in which different leaders are executing different phases of the algorithm.

So, a basic synchronization protocol is executed “in parallel” with the shape formation
algorithm. This protocol simply makes sure that, whenever the (candidate) leaders are
neighbors (which is true most of the time), they exchange messages containing the identifiers
of the phases that they are currently executing, and those who are ahead wait until the
others have caught up (see [15] for more details).
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Figure 2 The particles in white or gray are corner particles; the two in gray are locked particles.
Dashed lines indicate adjacencies between particles.

3.1 Lattice Consumption Phase

The goal of this phase is to identify 1, 2, or 3 candidate leaders. This is done without making
any movements, but only exchanging messages. Each particle’s internal state has a flag (i.e.,
a bit) called Eligible. All particles start the execution in the same state, with the Eligible
flag set. As the execution proceeds, eligible particles will gradually “eliminate themselves”
by clearing their Eligible flag. This is achieved through a process similar to erosion, which
starts from the boundary of the initial shape and proceeds toward its interior.

The “consumption” of the initial shape S0 starts from its corner particles: roughly
speaking, these are the particles located at convex vertices of S0 or at the end of dangling
edges, as Figure 2 shows.

By looking at its surroundings, a particle knows if it is a corner particle or not; then, it
can communicate this information to its neighbors. In most cases, if S0 is a simply connected
shape, removing any subset of its corner particles leaves the shape simply connected (i.e., it
does not disconnect it or create holes in it). There is just one exception, represented by the
two gray particles in Figure 2: removing both particles disconnects the shape. Fortunately,
such a configuration is unique and can be locally recognized by the gray particles (provided
that they send each other a description of their neighborhoods), which identify themselves as
locked particles. A locked particle waits and remains eligible until some of its neighbors have
eliminated themselves.

We can also prove that any simply connected shape contains non-locked corner particles,
and therefore the erosion process eventually succeeds: when only 1, 2, or 3 pairwise adjacent
eligible particles remain, they are the candidate leaders (technically, they become candidate
leaders by setting an internal Candidate flag). Note that taking another erosion step from
there may eliminate all particles (since they may behave symmetrically), and therefore we
must stop at this point and use other methods to elect a leader.

3.2 Spanning Forest Construction Phase

The spanning forest construction phase starts when 1, 2, or 3 pairwise adjacent candidate
leaders have been identified, and no other particle is eligible. In this phase, each candidate
leader becomes the root of a tree embedded in G. Eventually, the set of these trees will be a
spanning forest of the subgraph of G induced by the system of particles.

The algorithm is straightforward: the trees are constructed starting from the candidate
leaders, and the process involves more and more adjacent particles until all of them are
included. Each particle remembers which port label corresponds to its parent and which
ones correspond to its children. The details of this algorithm can be found in [15].



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Yamauchi 31:9

p

′pu

v

i

+ 1i

1
−i

+ 1i

(a) A neighbor u is unoccupied.

p
′′p

up

vp

ij
+i

′i

′′i
′p)j(

)j(

(b) Both neighbors u and v are occupied.

Figure 3 The subroutine by which p communicates its handedness to p′. The labels on edges
indicate port numbers. The labels in parentheses are messages.

3.3 Handedness Agreement Phase

When a candidate leader is notified by all its children that its tree can no longer be expanded,
it transitions to the handedness agreement phase. Recall that each particle may label ports
in clockwise or counterclockwise order: this is called the particle’s handedness. By the end of
this phase, all particles will agree on a common handedness. The agreement process starts at
the candidate leaders and proceeds through the spanning forest constructed in the previous
phase, from parents to children.

The core subroutine of this algorithm involves a generic particle p that intends to
communicate its handedness to one of its children p′ (in the tree constructed in the previous
phase). Of course, this cannot be done simply by message passing, because a particle has no
direct way to tell a neighbor which direction it “thinks” is clockwise: a special technique is
required, which is summarized in Figure 3.

Let u and v be the two vertices of G that are neighbors to both p and p′. Suppose first
that one of them is unoccupied, say u. Without loss of generality, p sees u to the left of p′,
as in Figure 3a. Then, p expands toward u and sends a message to p′ saying “I-Moved-Left”.
If p′ gets this message from its right neighbor, it has the same handedness as p; otherwise, it
inverts its own handedness to match p’s. Then, p goes back to its original location.

Suppose now that both u and v are occupied by particles pu and pv, as in Figure 3b.
Then, p sends a message to pu saying “You-are-my-Left-Neighbor” and one to pv saying
“You-are-my-Right-Neighbor”. Then, pu is supposed to message p′, but it does not know
where it is, except that it neighbors both pu and p. As there are two such locations, pu

sends an “I-am-the-Left-Neighbor” message to both. Again, if p′ receives this message from
its right neighbor (with respect to its parent p), it knows it has the same handedness as
p; otherwise, it inverts its handedness. In the meantime, pv does a similar thing, sending
“I-am-the-Right-Neighbor” messages. p′ waits until it has received messages from both pu

and pv, and then it notifies its parent p that the procedure is over.
This subroutine is executed between any non-leaf particle and all its children, starting

from the candidate leaders. Before that, the candidate leaders execute a variation of this
subroutine among themselves, to make sure they all have the same handedness (if they do
not, then all but one are eliminated). At the end of this process, all particles have agreed on
the same handedness.

The above algorithm has some obvious flaws, because several particles may be executing
the subroutine at the same time, possibly interfering with each other if they try to expand
toward the same vertex or if they send messages to the same particle. To solve the first
problem, the particle p that initiates the subroutine does not try to expand to u if it
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remembers that it was originally occupied by some other particle; instead, it waits for pu to
come back or expands to v. Also, if two particles try to expand toward the same location,
only one succeeds: the other particle waits and tries again later.

To solve the second problem, when both u and v are occupied, p first locks both pu and
pv, then notifies p′, and then proceeds with the subroutine. When a particle is locked, it
finishes the current subroutine before starting a new one with another neighbor. So, when pu

sends its “I-am-the-Left-Neighbor” or “I-am-the-Right-Neighbor” to the wrong particle p′′,
this particle is able to realize that it is not the intended addressee, and ignores the message.
This is because the parent of p′′ cannot have locked pu and then notified p′′, since pu has
already been locked by p for an operation with p′.

A consequence of this protocol is that, if p can lock only pu, say, because pv has already
been locked by some other particle, then p keeps pu locked while it waits for pv to become
unlocked: note that this potentially gives rise to deadlocks. To prevent them, each particle
executes the subroutine with only one child at a time; when all its children have the same
handedness, then it “authorizes” its first child to proceed with its own children, etc. This
way, at any time there can be at most one pair of particles involved in the subroutine in each
tree of the spanning forest. Since there are at most three trees, it is then straightforward to
prove that deadlocks are impossible (see [15] for the details).

3.4 Leader Election Phase

In this phase, one candidate leader is finally elected to be the unique leader, provided that
the shape S0 is not unbreakably k-symmetric. If it is, then the k candidate leaders may be
unable to decide who should be elected, and hence all of them become leaders.

In order to elect a leader, the candidates “scan” their respective trees of the spanning
forest, searching for asymmetric features of S0 that would allow them to decide which
candidate should become the leader. This task is made possible by the fact that all particles
agree on the same handedness.

The algorithm is divided in steps: at each step, a particle q in each tree sends a constant-
length code to its parent, describing its neighborhood; the message is then forwarded all
the way to the candidate leader at the root of the tree. Such a code contains information
on all the neighbors of q, starting from the parent and proceeding in clockwise order: the
information that is encoded essentially tells whether each neighbor is a child of q, or some
other particle, or an unoccupied vertex of G.

Once all candidate leaders have obtained a code from a particle in their respective tree,
they send each other these codes and compare them. If the codes are not all equal, the
candidates are able to elect a unique leader. Otherwise, the “election attempt” fails, and
each candidate leader asks one of its children for another neighborhood code.

In the first step, the candidate leaders compare their own neighborhood codes. If the
election attempt fails, each of them asks its first child in clockwise order for its neighborhood
code. As the attempts keep failing, the particles in each tree are queried as in a preorder
traversal, where the children of every particle are always queried in clockwise order. Since all
particles agree on the same handedness, the candidate leaders keep comparing the codes of
symmetric particles in their respective trees, until asymmetric particles are found. In turn,
these particles have the same handedness, and so they produce the same neighborhood codes
only if their surroundings are indeed symmetric.

It follows that a unique leader is not elected only if S0 is unbreakably k-symmetric. If all
the election attempts fail, the k candidate leaders have no choice but to become all leaders.
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Figure 4 Three stages of the straightening phase. The particles in gray are the leaders; the ones
in white are the pioneers. The edges of the spanning forest are drawn in dark gray, and the arrows
indicate where the particles are directed in the pulling procedure.

3.5 Straightening Phase
At the beginning of this phase, there are k = 1, k = 2, or k = 3 leaders, each of which is the
root of a tree of particles. These k trees are rotated copies of each other, and the leaders are
pairwise adjacent. The goal of this phase is to arrange the particles in a way that will make
the final phase of the algorithm simpler to design: that is, k straight lines radiating from the
center of the figure.

So, in this phase, each leader pi coordinates the “straightening” of its tree. pi chooses a
ray in the plane (i.e., a half-line) as its directrix γi. By the end of the straightening phase,
all particles will be located on these k directrices.

We use an important basic subroutine, called pulling procedure. We assume to have a
chain Q of contracted particles, the first of which, q, is called the pioneer. Suppose q intends
to move to an unoccupied neighboring vertex v, “pulling” the whole chain with it. So, q sends
a message saying “Follow-Me” to the next particle q′ in the chain Q, and then it expands to
v and contracts again. When q′ receives the message, it forwards it to the next particle in
Q, and moves to the position previously occupied by q, and so on. When the last particle
of Q has moved, it sends a message to its predecessor saying “Pulling-Complete”, which is
forwarded all the way to the pioneer, and the procedure ends.

The idea of the straightening phase is that a pioneer qi will walk along each directrix γi,
pulling particles onto it from the tree Ti of the leader pi (executing the pulling procedure
described above). While the pioneer is doing that, the leader remains in place, except perhaps
for a few stages, when it is part of a chain of particles that is being pulled by the pioneer.
Eventually, all the particles of Ti will form a line segment on the directrix.

If qi encounters another particle r on γi, belonging to some tree Tj , it “transfers” its role
to r, and “claims” the subtree T ′

j of Tj hanging from r, detaching r from its parent. The
next time the new pioneer r has to pull a chain of particles, it will pull it from T ′

j . For this
reason, r is called an entry point of the directrix. This algorithm is summarized in Figure 4.

If there is only k = 1 leader, there are no problems with the correctness of this algorithm.
Suppose that k > 1: then, every time a pioneer advances along its directrix, it notifies its
leader, who will synchronize with the other leaders (the details are in [15]). This is to ensure
that the straightening of every tree proceeds at the same pace. As a consequence, the k trees
of the spanning forest, which initially are symmetric under a k-fold rotation of the plane,
remain symmetric while the straightening proceeds.
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Figure 5 Subdivision into elements (gray blobs) of unbreakably k-symmetric shapes. The
directrices, the backbone, and the co-backbone are also represented.

Because of this symmetry, no conflicts between different pioneers can ever arise. For
instance, it is impossible for a leaf f of a tree to be pulled along the chain led by a pioneer
while another pioneer is trying to “transfer” to f . Also, the k pulling procedures that are
executed in the same step involve disjoint chains: indeed, the k directrices are disjoint, and
the subtrees hanging from different entry points are disjoint.

Let us prove that a system of n particles executing this phase of the algorithm performs
O(n2) moves in total. Observe that each pulling procedure causes a new particle to join
a directrix, and so at most n pulling procedures are performed. On the other hand, each
pulling procedure involves at most n particles, and causes each of them to perform a single
expansion and a single contraction. The O(n2) bound follows, and the same bound on the
number of rounds can be obtained similarly.

3.6 Role Assignment Phase

At the end of the straightening phase, the system forms k equally long line segments, each
of which contains a leader particle. If k > 1, it means that the shape S0 that the particles
originally formed was unbreakably k-symmetric. Due to Theorem 1, if this is the case, we
have to assume that the “final shape” SF that the system has to form is also unbreakably
k-symmetric.

In the role assignment phase, the particles determine the scale of the shape S′
F , equivalent

to SF , that they are actually going to form. Then, each particles is assigned an identifier
describing which element of SF it is going to form in the shape composition phase.

Let S′
F be a shape equivalent to SF . The vertices of G that lie in S′

F are partitioned into
elements as shown in Figure 5. Each vertex of G that is in SF corresponds to a super-vertex
of S′

F ; the interior of each edge of G contained in SF corresponds to a super-edge of S′
F ;

the interior of each face of G contained in SF corresponds to a super-triangle of S′
F . The

only exceptions are the central super-edge of an unbreakably 2-symmetric shape, which is
further divided into two partial super-edges, and the central super-triangle of an unbreakably
3-symmetric shape, which is further divided into three (trapezoidal) partial super-triangles.

If there are k > 1 leaders, they have to partition the elements of S′
F into k equal parts,

so that the ith leader will form one part, (S′
F )i. Assume that the similarity transformation

mapping SF to S′
F is actually a homothety centered at the center of S0. First the ith leader

defines a backbone ray βi parallel to its directrix γi, as shown in Figure 5. If k = 3, it also
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Figure 6 The elements of an unbreakably 3-symmetric shape with a possible subdivision among
leaders. Blobs of the same color represent elements selected by the same leader.

defines a co-backbone β′
i, as in Figure 5b. Each leader first selects for itself all the elements

of S′
F that intersect βi or β′

i (the purpose of this selection will become clear in the next
phase). Then, each leader repeatedly and deterministically selects an element of S′

F that
is adjacent to an element that it has already selected and that has not been selected by
any leader, yet (see [15] for further details). As a result, S′

F is partitioned into k symmetric
sub-shapes (S′

F )i: one possible outcome is illustrated in Figure 6. Note that, since the above
algorithm is deterministic, no explicit agreement between leaders is needed.

Let us focus on a single directrix and its leader. In the role assignment phase, the leader
particle repeatedly changes its internal state and transfers the leadership to a neighbor (by
sending it a message). So, the particles on the directrix can collectively compute any function
that is computable by a Turing machine on a tape of length n/k: the leader is the head of
the machine, and the particles are the cells of its tape. Hence, with standard techniques, the
leader can do computations with binary numbers using the particles as bits. In particular, it
can compute a scale λ for S′

F that is large enough for it to contain all n particles, and small
enough for it to be completely covered by them. Moreover, it can do so in O(n2) rounds (the
details are in [15]). The number of vertices of G covered by S′

F may not be exactly n, but
recall that each particle can occupy two vertices in its extended state: if n is large enough
compared to the size of SF (which is a constant m), a suitable λ can indeed be found. Some
particles will have to be extended in the final configuration, and these are marked with a
special Double flag: these will be called double particles.

Then, the leader assigns a constant-size identifier to each element of (S′
F )i (there is a

constant number of them), and assigns each particle the role identifier corresponding to
the element it will contribute to forming in the next phase. To this end, the particles are
subdivided into contiguous chunks, each of which is associated with an element of (S′

F )i

and has the appropriate size (which can be computed “indirectly” by the leader, due to the
Turing-machine analogy above). If n is large enough, the leader can even place all the double
particles in chunks corresponding to (partial) super-triangles (the special case in which SF

consists only of edges is discussed in [15]).
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3.7 Shape Composition Phase
In this phase, each of the k leaders will guide its team of particles in the formation of all
the elements of its sub-shape (S′

F )i ⊆ S′
F . If k > 1, the leader preliminarily relocates its

entire team from the directrix γi to the backbone ray βi. This can be done with the pulling
procedure used in Section 3.5 and the Turing-machine technique of Section 3.6. Indeed, the
leader knows the distance between γi and βi in terms of λ, but it does not have enough
internal memory to count to λ. So, it can use its team as a tape and count its steps in binary.

When the team is on βi, it starts forming the elements of (S′
F )i one by one, coordinated

by the leader. First the super-edges adjacent to the backbone ray βi are formed; then
the super-vertices not on βi adjacent to those super-edges, then the super-edges not on βi

adjacent to those super-vertices, etc. When all super-vertices and super-edges of (S′
F )i not

on βi have been formed, the (partial) super-triangles are formed. Finally, the elements on βi

are formed, from the closest to the center of S′
F to the farthest.

The elements on βi are formed last because this ray is used by the leader to pull the
entire “repository” of chunks wherever it has to go to form the next element e. Even though
(S′

F )i may not be connected (as in Figure 6), the leader has enough particles in one chunk to
count its steps while it pulls, and therefore to stop in the right position (the only exception
is when only super-vertex chunks are left in the repository: this case is discussed in [15]).

Once the repository is in position to reach e, the leader moves the corresponding chunk
Ce from the repository along a path W of already formed super-edges and super-vertices of
(S′

F )i (by simply swapping states of particles). This is easy to do, since there are no double
particles in W : they are all in the (partial) super-triangles. When Ce becomes adjacent to e,
the leader pulls it into position, also pulling W (which, as a result, goes back in its place)
and the rest of the repository. Then the leader leaves e and goes back to βi through W .

Note that, when e is a (partial) super-triangle, the leader may have to use the Turing-
machine technique to count its steps while forming it, so to know when it has reached a
corner of e. If e contains double particles, the leader first pulls all of Ce into e, and then it
leaves e. When the leader is gone, the first particle of Ce keeps pulling part of the chunk to
let the double particles expand and finally cover all of e.

To prove the correctness of this algorithm, it is crucial to observe that it is impossible for
two different teams to come into contact and interfere with each other’s movements: this is
because they are confined to move within different regions of G throughout the phase. Note
that selecting all the elements that intersect its backbone ray and its co-backbone ray (see
Section 3.6) gives a leader and its team free range to move between their directrix and their
backbone ray during the preliminary relocation step. This is true also if one team has already
started forming its elements while another is still moving from the directrix to the backbone.

Let us count the total number of moves performed in this phase. When a leader relocates
its team onto the backbone, it pulls all the particles at most O(n) times, and the total
number of moves is at most O(n2). Then, in order to form one element of S′

F , a leader may
have to pull at most O(n) particles (i.e., the repository) for at most O(n) times along the
backbone to get the chunk into position: this yields at most O(n2) moves. Then it has to pull
at most O(n) particles for a number of times that is equal to the size of the element of S′

F ,
which is O(n). Since the number of elements of S′

F is bounded by a constant, this amounts
to at most O(n2) moves, again. All other operations involve only message exchanges and no
movements. The O(n2) upper bound follows, and the same bound on the number of rounds
is obtained similarly. (The proof of the Θ(m3) bound on n in the theorem below is in [15].)

I Theorem 3. Let P be a system of n particles forming a simply connected shape S0 at stage
0. Let SF be a shape of constant size m that is unbreakably k-symmetric if S0 is unbreakably
k-symmetric. If all particles of P execute the universal shape formation algorithm with input
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a representation of the final shape SF , and if n is at least Θ(m3), then there is a stage,
reached after O(n2) rounds, where P forms a shape equivalent to SF . The total number of
moves performed by P up to this stage is O(n2), which is asymptotically worst-case optimal;
particles no longer move afterwards.

4 Generalization to All Computable Infinite-Resolution Shapes

In the previous section we have shown that, given a shape SF of constant size m, a system of
n particles can form a shape geometrically similar to SF (i.e., essentially a scaled-up copy of
SF ) starting from any simply connected configuration S0, provided that SF is unbreakably
k-symmetric if S0 is, and provided that n is large enough compared tom. We only determined
a bound of Θ(m3) for the minimum n that guarantees the formability of SF . We could
improve it to Θ(m) by letting the Double particles be in any chunk and adopting a slightly
more sophisticated pulling procedure in the last phase. We may wonder if this modification
would make our bound optimal.

When discussing the role assignment phase, when the particles are arranged along straight
lines, we have argued that the system can compute any predicate that is computable by a
Turing machine on a tape of limited length. If we allow the particles to move back and forth
along these lines to simulate registers, we only need a (small) constant number of particles
to implement a full-fledged Turing machine with an infinite tape. So, in the role assignment
phase, we are actually able to compute any Turing-computable predicate (although we would
have to give up our upper bounds of O(n2) moves and rounds).

With this technique, we are not only able to replace our Θ(m3) with the best possible
asymptotic bound in terms of m, but we have a universal shape formation algorithm that,
for every n and every SF , lets the system determine if n particles are enough to form a
shape geometrically similar to SF . This is done by examining all the possible connected
configurations of n particles and searching for one that matches SF , which is of course a
Turing-computable task.

Taking this idea even further, we can extend our notion of shape to its most general form.
Recall that the shapes considered in [8] were sets of “full” triangles: when a shape is scaled
up, all its triangles are scaled up and become larger full triangles. In this paper, we extended
the notion of shape to sets of full triangles and edges: when an edge is scaled up, it remains
a row of points. Of course, we can think of shapes that are not modeled by full triangles
or edges, but behave like fractals when scaled up. For instance, we may want to include
discretized copies of the Sierpinski triangle as “building blocks” of our shapes, alongside full
triangles and edges. Scaling up these shapes causes their “resolution” to increase and makes
finer details appear inside them. Clearly, the set of all the scaled-up and discretized copies of
a shape made up of full triangles, edges, and Sierpinski triangles is Turing-computable.

Generalizing, we can replace our usual notion of geometric similarity between shapes
with any Turing-computable equivalence relation ∼. Then, the shape formation problem
with input a shape SF asks to form any shape S′

F such that SF ∼ S′
F . This definition of

shape formation problem includes and greatly generalizes the one studied in this paper, and
even applies to scenarios that are not of a geometric nature. Nonetheless, this generalized
problem is still solvable by particles, thanks to the technique outlined above.
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Abstract
Fault-tolerant distributed algorithms are notoriously hard to get right. In this paper we introduce
an automated method that helps in that process: the designer provides specifications (the problem
to be solved) and a sketch of a distributed algorithm that keeps arithmetic details unspecified.
Our tool then automatically fills the missing parts.

Fault-tolerant distributed algorithms are typically parameterized, that is, they are designed
to work for any number n of processes and any number t of faults, provided some resilience
condition holds; e.g., n > 3t. In this paper we automatically synthesize distributed algorithms
that work for all parameter values that satisfy the resilience condition. We focus on threshold-
guarded distributed algorithms, where actions are taken only if a sufficiently large number of
messages is received, e.g., more than t or n/2. Both expressions can be derived by choosing the
right values for the coefficients a, b, and c, in the sketch of a threshold a ·n+b · t+c. Our method
takes as input a sketch of an asynchronous threshold-based fault-tolerant distributed algorithm—
where the guards are missing exact coefficients—and then iteratively picks the values for the
coefficients.

Our approach combines recent progress in parameterized model checking of distributed algo-
rithms with counterexample-guided synthesis. Besides theoretical results on termination of the
synthesis procedure, we experimentally evaluate our method and show that it can synthesize sev-
eral distributed algorithms from the literature, e.g., Byzantine reliable broadcast and Byzantine
one-step consensus. In addition, for several new variations of safety and liveness specifications,
our tool generates new distributed algorithms.
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1 Introduction

Design and implementation of parameterized fault-tolerant distributed systems are error-prone
tasks. There is a mature theory regarding mathematical proof methods, which found their way
into formal frameworks like I/O Automata [24] and TLA+ [22]. Recent approaches [17, 23, 31]
provide tool support to establish correctness of implementations, by manually constructing
proofs with an interactive theorem prover. Although, if successful, this approach provides
a machine-checkable proof [9, 4], it requires huge manual efforts from the user. A logic for
distributed consensus algorithms in the HO Model [8] was introduced in [13], which allows
one to automatically check the invariants (for safety) and ranking functions (for liveness),
that is, the manual effort is reduced to finding right invariants and ranking functions. Model
checking of distributed algorithms promises a higher degree of automation. For consensus
algorithms in the HO Model, the results of [25] reduce the verification to checking small
systems of five or seven processes. For the asynchronous model, an efficient model checking
technique for threshold-guarded distributed algorithms was introduced in [20, 19]. Notably,
this technique verifies both safety and liveness properties. In all these methods, the user has
to produce an implementation (or design), and the goal is to check (using techniques that
vary in the degree of automation) whether this implementation satisfies a given specification.

In this paper we explore synthesis as it promises even more automation. The user
just provides required properties and a sketch of an asynchronous algorithm, and our tool
automatically finds a correct distributed algorithm. In this way we generate new fault-tolerant
algorithms that are correct by construction. In our experiments we first focus on existing
specifications [29, 7, 30, 28] from the literature, in order to be able to compare the output
of our tool with known algorithms. We then give new variations of safety and liveness
specifications, and our tool generates new distributed algorithms for them.

Parametrized synthesis. Similar to the verification approaches above, we are interested in
the parameterized version of the problem: Rather than synthesizing a distributed algorithm
that consists of, say, four processes and tolerates one fault, our goal is to synthesize an
algorithm that works for n processes, out of which t may fail, for all values of n and t that
satisfy a resilience condition, e.g., n > 3t. This is in contrast to recent work on synthesis
of fault-tolerant distributed algorithms [16, 15, 14] that requires the user to fix the number
of processes; typically to some n < 10. In some special cases, manual arguments or cut-off
theorems generalize synthesis results for small systems to parameterized ones [5, 12, 26].
However, similar to parameterized verification [2, 6], the parameterized synthesis problem is
in general undecidable [18]. As in the parameterized verification approach of [19], we will
therefore limit ourselves to a specific class of distributed algorithms, namely, threshold-guarded
distributed algorithms. These thresholds are arithmetic expressions over parameters, e.g., n/2,
and determine for how many messages processes should wait (a majority in the example).

More specifically, the user provides as input a distributed algorithm with holes as in
Figure 1: The user defines the control flow, and keeps the threshold expressions—noted as
τ0toSE and τAC in the figure—unspecified. As pseudo code has no formal semantics, it cannot
be used as a tool input. Rather, our tool takes as input a sketch threshold automaton.

I Example 1. Figure 1 is a pseudo code representation of the input, and Figure 2 shows
the corresponding sketch threshold automaton; they are related as follows. The initial
locations `0 and `1 of the sketch threshold automaton in Figure 2 correspond to initial states
in Figure 1 where myval is equal to 0 and 1, respectively. Edges are labeled by g 7→ act,
where expression g is a threshold guard, and the action act may increment a shared variable.
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� �
Code of a correct process i:
var myvali ∈ {0, 1}
var accepti ∈ {false, true} ← false

whi le true do (in one step)
i f myvali = 1
and not s en t ECHO be f o r e

then send ECHO to a l l

i f received ECHO from ≥ τ0toSE
d i s t i n c t p r o c e s s e s
and not s en t ECHO be f o r e

then send ECHO to a l l

i f received ECHO from ≥ τAC
d i s t i n c t p r o c e s s e s

then accepti ← true
od� �

Figure 1 A single-round version of
the reliable broadcast algorithm [29]
with holes.

`0

`1
`SE `ACr′

1 : true 7→ echos++

r′
2 : echos + f ≥ τAC 7→ echos++

r′
3 : echos + f ≥ τ0toSE

7→ echos++

r′
4 : echos + f ≥ τAC 7→ echos++

r′
5 : echos + f ≥ τAC

Figure 2 A sketch threshold automaton.

`0

`1
`SE `ACr1 : true 7→ echos++

r2 : echos + f ≥ n− t 7→ echos++

r3 : echos + f ≥ t+ 1
7→ echos++

r4 : echos + f ≥ n− t 7→ echos++

r5 : echos + f ≥ n− t

Figure 3 A synthesized threshold automaton.

The action echos++ corresponds to the pseudo-code statement: send <echo> to all. (The
message buffers are replaced by a shared variable that is increased whenever a message is sent.
This typically can be done for algorithms that only count messages, and do not distinguish
the senders. For instance, a bisimulation between models with message buffers and shared
variables was proven in [21].) By going to local state `SE, a process records that it has sent
echo. Finally, by going to the local state `AC, a process records that it has set accept to true.
The “+f” terms in threshold guards model that messages from up to f Byzantine processes
may be received (f ≤ t), while we model only the n− f correct processes explicitly.

We use self loops to capture the behavior that processes may take arbitrarily many steps
before receiving a message sent to them, that is, asynchronous communication. For instance,
the self loop in `0 allows processes to stay in `0 even if the guards of the other outgoing
edges evaluate to true. That every message from a correct process is eventually received is a
fairness constraint and is therefore not part of the threshold automaton, but is captured in
the specifications. For instance, such a fairness constraint would be that if echos ≥ n − t,
then every process must eventually leave location `0. (In the fairness constraint, the “+f”
does not appear, because messages from faulty processes are not guaranteed to arrive.)

The “holes” τ0toSE and τAC in Figure 2 are the missing thresholds, which should be linear
combination of the parameters n and t. Therefore τ0toSE has the form ?1 · n + ?2 · t + ?3,
and τAC has the form ?4 · n+ ?5 · t+ ?6. The unknown coefficients ?i, for 1 ≤ i ≤ 6, have to
be found by the synthesis tool. One solution is ?1 = 0, ?2 = 1, ?3 = 1, ?4 = 1, ?5 = −1, and
?6 = 0, that is, τ0toSE = t+ 1 and τAC = n− t. This solution is depicted in Figure 3. /

In addition to a sketch threshold automaton, the user has to provide a specification,
that is, safety and liveness properties the distributed algorithm should satisfy. Based on
these inputs, our tool generates the required coefficients, that is, a threshold automaton as
in Figure 3. The synthesis approach of this paper is enabled by a recent advance [19] in
parameterized model checking of safety and liveness properties of distributed algorithms.
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generator
a

verifier
XXVy

CEGIS Loop

coefficients

counterexample

sketch + specification + RC

correct distributed algorithm
or “none exists”

Figure 4 The synthesis loop implemented in this paper.

Existing model checking engine. The central idea of the verification approach in [19] is to
formalize a distributed algorithm as counter system defined by a threshold automaton. A state
of a counter system records how many processes are in which local state (e.g., `0, `1, `SE, `AC).
A transition checks the guard and decreases or increases the related process counters. A
transition can be written as a set of constraints in linear integer arithmetic LIA. (Threshold
guards with rational coefficients, e.g., echos > n

2 , can be converted to integer constraints, e.g.,
2 · echos > n.) Thus, one can check for existence of specific executions by using SMT solvers,
which extend SAT solvers (for Boolean satisfiability) with first-order theories, in our case,
LIA. As shown in [20, 19], resilience conditions, executions of threshold-guarded distributed
algorithms, and specifications can be encoded as logical formulas, whose satisfiability can be
checked by solvers such as Z3 [11] and CVC4 [3]. In particular, the queries used in [20, 19]
correspond to counterexamples to a specification: If the SMT solver finds all queries to be
unsatisfiable, the distributed algorithm is correct. Otherwise, if a query is satisfiable, the
SMT solver outputs a satisfying assignment, that is an error trace, called counterexample.

The synthesis approach of this paper. Figure 4 gives an overview of our method that takes
as input (i) a sketch of a distributed algorithm, (ii) a set of safety and liveness specifications,
and (iii) a resilience condition like n > 3t, and produces as output a correct distributed
algorithm, or informs the user that none exist.

We follow the CEGIS approach to synthesis [1], which proceeds in a refinement loop.
Roughly speaking, the verifier starts by picking default values for the missing coefficients—
e.g., a vector of zeroes—and checks whether the algorithm is correct with these coefficients.
Typically this is not the case and the verifier produces a counterexample. By automatically
analyzing this counterexample, the generator learns constraints on the coefficients that are
known to produce counterexamples. The generator gives these constraints to an SMT solver
that generates new values for the coefficients, which are used in a new verifier run. If the
verifier eventually reports that the current coefficients induce a correct distributed algorithm,
we output this algorithm. The theory from [19] then implies correctness of the algorithm.

Termination of synthesis. The remaining theoretical problem that we address in this paper
is termination of the refinement loop: In principle, the generator can produce infinitely many
vectors of coefficients. In case there is no solution (which is typically the case in Byzantine
fault tolerance if n ≤ 3t), the naïve approach from the previous paragraph does not terminate,
unless we restrict the guards to “reasonable” values. In this paper, we require the guards
to lie in the interval [0, n]. We call such guards sane. For instance, although syntactically
the expressions echos ≤ −42n and echos > 2n are threshold guards, they are not sane, while
echos ≥ t+ 1 is sane. We mathematically prove that all sane guards of a specific structure
have coefficients within a hyperrectangle. We call this hypperrectangle a sanity box, and
prove that its boundaries depend only on the resilience condition. Within the sanity box,
there is only a finite number of coefficients, if we restrict them to integers or rationals with a
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fixed denominator. We thus obtain a finite search space and a completeness result for the
synthesis loop.

Safety, liveness, and the fraction of faults. We consider the conjunction of safety and
liveness specifications, as these specifications in isolation typically have trivial solutions; e.g.,
“do nothing” is always safe. If just given a safety specification, our tool generates thresholds
like n for all guards, which leads to all guards evaluating to false initially. Hence, no action
can ever be taken, which is a valid solution if liveness is not required.

Besides, our tool treats resilience conditions precisely. On the one hand, given the sketch
from Figure 2, and the resilience condition n > 3t, in a few seconds our tool generates the
threshold automaton in Figure 3. On the other hand, in the case of n ≥ 3t, our tool reports
(also within seconds) that no such algorithm exists, which in fact constitutes an automatically
generated impossibility result for sane thresholds and a fixed sketch.

Experimental evaluation. We extended the tool ByMC [20] with our technique and con-
ducted experiments based on the freely available benchmarks from [20]: folklore reliable
broadcast [7], consistent broadcast [29, 30], and one-step Byzantine asynchronous consensus
BOSCO [28]. For these benchmarks, we replaced the threshold guards by threshold guards
with holes. By experimental evaluation, we show that our method can be used to generate
coefficients even for quite intricate fault-tolerant distributed algorithms that tolerate Byzan-
tine faults. In particular BOSCO proved to be a hard instance. It has to satisfy constraints
derived from different safety an liveness specifications under different resilience conditions
n > 3t, n > 5t, and n > 7t. Our tool is able to derive the three different threshold guards the
algorithm requires. Finally, we give variations of specifications, and synthesize distributed
algorithms from them that have not been produced before.

2 Modelling Threshold-Guarded Distributed Algorithms

Threshold-guarded algorithms are formalized by threshold automata. We recall the notions
of threshold automata [19] and introduce the new concept of sketches. As usual, N0 is the
set of natural numbers including 0, and Q is the set of rational numbers. The set Π is a
finite set of parameter variables that range over N0. Typically, Π consists of three variables:
n for the total number of processes, f for the number of actual faults in a run, and t for
an upper bound on f . The parameter variables from Π are usually restricted to admissible
combinations by a formula that is called a resilience condition, e.g., n > 3t ∧ t ≥ f ≥ 0. The
set Γ is a finite set that contains shared variables that store the number of distinct messages
sent by distinct (correct) processes, the variables in Γ also range over N0. In the example in
Figure 3, Γ = {echos}. For the variables from Γ, we will use names echos, x, y, etc.

For a set of variables V , a function ν : V → Q is called an assignment; its domain V is
denoted with dom(ν). In this paper, we use Φ, Ψ, and Θ for first-order logic (FOL) formulas;
e.g., when encoding linear integer constraints in SMT. For a FOL formula Φ, we write free(Φ)
for the set of Φ’s free variables, that is, the variables not bound with a quantifier. (For
convenience, we assume that quantified variables have unique names and they are different
from the names of the free variables.) Given an assignment ν : V → Q and a FOL formula Φ,
we define a substitution Φ[ν] as a FOL formula that is obtained from Φ by replacing all the
variables from V ∩ free(Φ) with their values in ν.

To introduce sketches of threshold automata—such as in Figure 2—we define unknowns
such as ?1. The set U is a finite set of unknowns that range over Q. For the variables from U ,
we use the names ?1, ?2, etc. We denote the rational values of unknowns with a, b, c, etc.
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Generalized threshold guards, or just guards, are defined according to the grammar:

Guard ::= Shared ≥ LinForm | Shared < LinForm Shared ::= 〈variable from Γ〉
LinForm ::= FreeCoeff | Prod | Prod + LinForm Param ::= 〈a variable from Π〉
FreeCoeff ::= Rat | Unknown Unknown ::= 〈a variable from U〉
Prod ::= Rat × Param | Unknown × Param Rat ::= 〈a rational from Q〉

For convenience, we assume that every parameter appears in LinForm at most once. Let π̄
denote the vector (π1, . . . , π|Π|, 1) that contains all the parameter variables from Π in a fixed
order as well as number 1 as the last element. Then, every generalized guard can be written
in one of the two following forms x ≥ ū · π̄ᵀ or x < ū · π̄ᵀ, where x is a shared variable
from Γ, and ū is a vector of elements from U ∪Q. When a parameter does not appear in a
generalized guard, its corresponding component in ū equals zero. We say that a guard is a
sketch guard if its vector ū contains a variable from U . A guard that is not a sketch guard is
called a fixed guard. Previous work [19] was only concerned with fixed guards.

Since threshold guards are a special case of FOL formulas, we can apply substitutions
to them. For instance, given an assignment ν : U → Q and a threshold guard g, the
substitution g[ν] replaces every occurence of an unknown ?i ∈ U in g with the rational ν(?i).

Threshold automata, denoted by TA, are edge-labeled graphs, where vertices are called
locations, and edges are called rules. Rules are labeled by g 7→ act, where expression g is
a fixed threshold guard, and the action act may increment a shared variable. We define
generalized threshold automata GTA, in the same way as threshold automata, with the only
difference that expressions g in the edge labeling are generalized threshold guards. If all
generalized guards in a GTA are fixed, then that GTA is a TA. If at least one of the edges of
a GTA is labeled by a sketch guard, then we call this automaton a sketch threshold automaton,
and we denote it by STA. Given an STA and an assignment ν : U → Q, we obtain a threshold
automaton STA[ν] by applying substitution g[ν] to every sketch guard g in STA.

Counter systems. Executions of threshold automata are formalized as counter systems.
Since processes just wait for messages until a threshold is reached and do not distinguish the
senders, the systems we consider are symmetric. This allows us to represent a global state—
a configuration—by (process) counters: Instead of recording which process is in which local
state (which is done typically in distributed algorithms theory), we capture for each local
state, how many processes are in it, and then use the rules of the threshold automaton
to define the transitions between configurations. In the following, we quickly sketch the
semantics to the extent necessary for this paper. Complete definitions can be found in [19].

For every TA we define a counter system as a transition system. First, for every location `
we introduce a counter κ[`] that keeps track of the number of processes in that particular
location. A configuration σ is defined as an assignment of all counters of locations, all shared
variables from Γ, and all parameters from Π, that respects the resilience condition. If a
rule r is an edge (`, `′) of a TA, then a transition (r,m) represents m processes moving
from the location ` to `′. We call m the acceleration factor. If m = 1 for all transitions in
an execution, we get asynchronous executions where one process moves at a time, that is,
interleaving semantics. If the rule r has a label g 7→ act, then (r,m) can be applied only in
a configuration in which the counter κ[`] has a value at least m, and g evaluates to true, and
remains true during m− 1 applications of act. In other words, only if the threshold from g

is reached, and there are enough processes in location `; see [19] for details. After executing
the transition (r,m), counters are updated such that κ[`] is decreased by m and κ[`′] is
increased by m, and shared variables are updated according to the action act, m times.



M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:7

I Example 2. Consider the TA from Figure 3. One configuration is the following: parameters
are n = 7, f = t = 2, satisfying resilience condition n > 3t ≥ 0 ∧ f ≤ t, counters have values
κ[`0] = 2, κ[`SE] = 3, κ[`1] = κ[`AC] = 0 and shared variable echos = 3. (As we only model
correct process explicitly, the counters add up to n− f = 5.) As in this configuration we have
that echos+f = 5 ≥ 5 = n− t, and κ[`0] = 2, we can execute transition (r2, 2). The obtained
configuration has the same parameter values, but counters are changed: κ[`0] = κ[`1] = 0
and κ[`SE] = 3, and κ[`AC] = 2. Also, as the action of the rule r2 is echos++, and two processes
are moving along this edge, then the new value of echos is 5. /

With a TA we associate a set of predicates PTA that track properties of the system states.
The set PTA consists of the TA’s threshold guards and a test κ[`] = 0 for every location ` in TA.
For every configuration σ, one can compute the set ρ(σ) ⊆ PTA of the predicates that hold
true in σ. As was demonstrated in [19], the predicates from PTA and linear temporal logic
are sufficient to express the safety and liveness properties of threshold-guarded distributed
algorithms found in the literature. Essentially, the test κ[`] = 0 evaluates to true if no process
is in location `, and κ[`] 6= 0 evaluates to true if there is at least one process at `. That
all processes are in specific locations can be expressed by a condition that states that “no
processes are in the other locations”, that is, as a Boolean combination of tests for zero. We
include the threshold guards in PTA to be able to express the fairness properties such as: if
echos ≥ t+ 1, then every process should eventually make one of the transitions labelled with
echos + f ≥ t+ 1. Examples of such properties for our benchmarks are given in Section 5.

A system execution is expressed as a path in the counter system. Formally, a path is an
infinite alternating sequence of configurations and transitions, that is, σ0, t1, σ1, . . . , ti, σi, . . . ,
where σ0 is an initial configuration, and σi+1 is the result of applying ti+1 to σi for i ≥ 0. The
infinite sequence ρ(σ0), ρ(σ1), . . . is called the path trace. With TracesTA we denote the set of
all path traces in the TA’s counter system. Correctness of a distributed algorithm then means
that all traces in TracesTA satisfy a specification expressed in linear temporal logic [10]. The
verification approach from [19] discussed in Section 3 specifically looks for traces that violate
the specification. Such traces are characterized by the temporal logic ELTLFT that allows
one to express negations of specifications relevant for fault-tolerant distributed algorithms.

3 Verification machinery

In [19] we introduced a technique for parameterized verification of threshold-based distributed
algorithms. Given a fixed threshold automaton TA, a resilience condition RC, and a set
{¬ϕ1, . . . ,¬ϕk} of ELTLFT formulas representing negation of specifications, we check whether
there is an execution violating the specification (ϕ1 ∧ . . . ∧ ϕk). Thus, as an output, the
algorithm from [19] either confirms correctness, or gives a counterexample. In this paper, we
use this technique as a black box, that is, we assume that there is a function

verifyByMC(TA, RC, {¬ϕ1, . . . ,¬ϕk})

that either reports a counterexample, or that TA is correct. As our synthesis approach learns
from counterexamples, we recall the form of the counterexamples reported by the verifier.

Representative executions and schemas. The idea of [19] lies in automatically computing
length and structure of representative executions in advance, whose shape we call schemas.
A schema is an alternating sequence of contexts (sets of guards) and sequences of rules.
Precise definition of a schema and its encoding can be found in [20, 19]. Intuitively, a
schema is a concatenation of multiple simple schemas. A simple schema has the form
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Algorithm 1 Pseudo-code of the synthesis loop.
1 procedure syntByMC(STA, RC, {¬ϕ1, . . . ,¬ϕk})
2 Θ0 := boundU (RC) and i := 0
3 while (true)
4 call checkSMT(Θi)
5 case unsat ⇒ print ’no more solutions’ and exit()
6 case sat(µ) ⇒ /∗ µ assigns rationals to the variables in U ∗/
7 call verifyByMC(STA[µ], RC, {¬ϕ1, . . . ,¬ϕk})
8 case correct ⇒
9 print ’solution µ’ /∗ exclude this solution and continue ∗/

10 Θi+1 := Θi ∧
∨

?j ∈U
?j 6= µ[?j ] and i := i+1

11 case counterexample(S, ν) ⇒ /∗ dom(ν) ∩ U = ∅ ∗/
12 SU := generalize(S, STA)
13 Ψ := formulaSMT(SU )
14 Θi+1 := Θi ∧ ¬Ψ[ν] and i := i+1

{g1, . . . , gk} r1 . . . rs {g′1, . . . , g′k′}, where k, k′, s ∈ N, g1, . . . , gk, g
′
1, . . . , g

′
k′ are guards, and

r1, . . . , rs are rules. Given acceleration factors mi, 1 ≤ i ≤ s, such that 0 ≤ mi ≤ n, the
simple schema generates an execution where all the guards g1, . . . , gk hold in its initial
configuration, and after executing (r1,m1), . . . , (rs,ms), we arrive in a configuration where
all the guards g′1, . . . , g′k′ hold. As proven in [19], specific schemas of fixed length represent
infinite executions (that end in an infinite loop) as required for counterexamples to liveness.

Our verification tool considers each schema in isolation, and basically searches for an
evaluation ν of the parameters (n, t, f), an initial configuration (values of counters of
initial local states), and all the acceleration factors, such that the resulting execution is
admissible (only enabled rules are executed, etc.). Such an execution— if found—constitutes
a counterexample, and the tool reports the corresponding pair (schema, ν).

Solver. Our tool encodes a schema as an SMT formula over parameters, counters of local
states, global variables, and acceleration factors. This formula is a conjunction of equalities
and inequalities in linear integer arithmetic. Inequalities come from guards, and have
shared variables and parameters as free variables. Equalities come from transitions, as every
transition is encoded as updating counters of local states and shared variables. The tool
ByMC [19] calls an SMT solver to check satisfiability of the formula.

4 Synthesis

Synthesis problem. A temporal logic formula ϕ in ELTLFT describes an (infinite) set of
bad traces that the synthesized algorithm must avoid. Therefore, we consider the following
formulation of the synthesis problem. Given a sketch threshold automaton STA and an
(infinite) set of bad traces TracesBad, either:

find an assignment µ : U → Q, in order to obtain the fixed threshold automaton STA[µ]
whose traces TracesSTA[µ] do not intersect with TracesBad, or
report that no such assignment exists.

Our approach is to find values for the unknowns in a synthesis refinement loop and test them
with the verification technique from Section 3.
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Synthesis loop. Algorithm 1 shows the pseudo-code of the synthesis procedure syntByMC.
At its input the procedure receives a sketch threshold automaton STA, a resilience condition,
and a set of ELTLFT formulas {¬ϕ1, . . . ,¬ϕk}, which capture the bad traces TracesBad. In
line 2, formula Θ0, which captures constraints on the unknowns from U , is initialized using a
function boundU . In principle, boundU can be initialized to true (no constraints). However,
to ensure termination, we will discuss later in this section, how we obtain constraints that
bound the coefficients of sane guards. After initialization we enter the synthesis loop.

The SMT solver checks whether Θi has a satisfying assignment to the unknowns in U
(line 4). If Θi is unsatisfiable, the loop terminates with a negative outcome in line 5. Otherwise,
the SMT solver gives us an assignment µ : U → Q that is a solution candidate. To check
feasibility of µ, the verifier is called for the fixed threshold automaton STA[µ] in line 7. The
verifier generates multiple schemas, each being one SMT query, which are checked either
sequentially or in parallel. If the verifier reports that a schema that produces a counterexample
does not exist, then the candidate assignment µ and threshold automaton STA[µ] give us
a solution to the synthesis problem. If we were interested in just one solution, the loop
would terminate here with a positive outcome. However, because we want to enumerate all
solutions, our function does a complete search, such that we exclude the solution µ for the
future search in line 10, and continue.

If the verifier finds a counterexample, the loop proceeds with the branch in line 11. A
counterexample is a schema S of STA[µ] and a satisfying assignment ν : V → Q to the
free variables V of the SMT formula formulaSMT, which include the parameters Π, shared
variables xj for x ∈ Γ, and counters κj [`] for each local state ` ∈ L and every configuration j.
In principle, we could exclude µ from consideration similar to line 10. For efficiency, we want
to exclude a larger set of evaluations, namely all that lead to the same counterexample: We
produce a generalized schema SU , by replacing the rules and guards in S, which belong to the
threshold automaton STA[µ] with the rules and guards of the sketch threshold automaton STA
(line 12). In line 13, we generate a generalized counterexample Ψ. As Ψ is derived from a
counterexample with valuations µ and ν, we know that Ψ[ν][µ] is true. Further, for every
evaluation of the unknowns µ′, if Ψ[ν][µ′] is true, then Ψ[ν][µ′] is a counterexample. To
exclude all these evaluations µ′ at once, we conjoin ¬Ψ[ν] with Θi in line 14, which gives us
new constraints on the unknowns, before entering the next loop iteration.

The synthesis loop terminates only in line 5, that is, if Θi is unsatisfiable. As, in this case,
Θi is equivalent to false, the following observation guarantees that all satisfying assignments
of Θ0 have been explored and all solutions (if any exists) have been reported.

I Observation 3. At the beginning of every iteration i ≥ 0 of the synthesis loop in lines 3–14,
the following invariant holds: if µ : U → Q is a satisfying assignment of formula Θ0 ∧ ¬Θi,
then either: (1) µ was previously reported as a solution in line 9, or (2) µ was previously
excluded in line 14 and thus is not a solution. /

Completeness and termination for sane guards. Without restricting Θ0, the search space
for coefficients is infinite. In the following, we show that restricting the synthesis problem to
sane guards bounds the search space.

The role of threshold guards is typically to check whether the number of distinct senders,
from which messages are received, reaches a threshold. We also use threshold guards in our
models to bound the number of processes that go into a special crash state. In both cases,
one counts distinct processes and it is therefore natural to consider only those thresholds
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whose value is in [0, n]. More precisely, if the guard has a form x ≥ ū · π̄ᵀ or x < ū · π̄ᵀ, then
for all parameter values that satisfy resilience condition it holds that 0 ≤ ū · π̄ᵀ ≤ n. We call
such guards sane for a given resilience condition.

Theorem 4 considers a general case of hybrid failure models [30] where different failure
bounds exist for different failure models (e.g., t1 Byzantine faults and t2 crash faults), and
these failure bounds are related to the number of processes n by a resilience condition1 of
the form n >

∑k
i=1 δiti ∧ ∀i. ti ≥ 0. We bound the values of the coefficients of sane guards.

I Theorem 4. Let n >
∑k
i=1 δiti ∧ ∀i.ti ≥ 0 be a resilience condition, where k ∈ N, δi ∈ Q

and δi > 0, for 1 ≤ i ≤ k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard

x ≥ an+ (b1t1 + . . .+ bktk) + c or x < an+ (b1t1 + . . .+ bktk) + c,

where x ∈ Γ, and a, b1, . . . , bk, c ∈ Q. If the guard is sane for the resilience condition, then

0 ≤ a ≤ 1, (1)
−δi − 1 < bi < δi + 1, for all i = 1, . . . , k (2)

−2(δ1 + . . .+ δk)− k − 1 ≤ c ≤ 2(δ1 + . . .+ δk) + k + 1. (3)

The case when k = 1 gives us the classical resilience condition where the system model
assumes one type of faults (e.g., crash), and the assumed number of faults t is related to
the total number of processes n, by a condition n > δt ≥ 0 for some δ > 0. If the guard
that compares a shared variable and an+ bt+ c is sane for the resilience condition, then we
obtain that 0 ≤ a ≤ 1, −δ − 1 < b < δ + 1, and −2δ − 2 ≤ c ≤ 2δ + 2. Any restriction of
the intervals from Theorem 4 to finite sets gives us completeness: If we reduce the domain
of variables from U to integers, or to rationals with fixed denominator (e.g., z

10 for z ∈ Z),
one reduces the search space to a finite set of valuations. All threshold-based distributed
algorithms we are aware of, use guards with coefficients that are either integers or rationals
with a denominator not greater than 3. Thus, we restrict our intervals by intersecting them
with the set of rational numbers whose denominator is at most D, for a given D ∈ N.

The following corollary is a direct consequence of Theorem 4, and it tells us how to modify
intervals if the coefficients are rational numbers with a fixed denominator.

I Corollary 5. Let n >
∑k
i=1 δiti ∧ ∀i. ti ≥ 0 be a resilience condition, where k ∈ N, δi ∈ Q

and δi > 0, 1 ≤ i ≤ k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard

x ≥ ã

D
n+

(
b̃1
D
t1 + . . .+ b̃k

D
tk

)
+ c̃

D
or x <

ã

D
n+

(
b̃1
D
t1 + . . .+ b̃k

D
tk

)
+ c̃

D
,

where x ∈ Γ, ã, b̃1, . . . , b̃k, c̃ ∈ Z, D ∈ N. If the guard is sane for the resilience condition then

0 ≤ ã ≤ D, (4)
D(−δi − 1) < b̃i < D(δi + 1), for all i = 1, . . . , k, (5)

D(−2(δ1 + . . .+ δk)− k − 1) ≤ c̃ ≤ D(2(δ1 + . . .+ δk) + k + 1). (6)

1 Because a guard that is sane for a weaker resilience condition, is also sane for a stronger one,
Theorem 4 and Corollary 5 also hold for any resilience condition that follows from this one, e.g.,
n > max{δ1t1, . . . , δktk} ∧ ∀i. ti ≥ 0. We can use the same intervals, confirmed by the same proofs as
in Appendix A. However, our benchmarks use the form of resilience conditions of Theorem 4.
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`0

`1

`AC `CR

φAC 7→ send

φCR 7→ nc++

φCR 7→
nc++

φCR 7→
nc++, sendF

true 7→
send

φCR 7→ nc++

Figure 5 A sketch threshold automa-
ton for folklore reliable broadcast.

`0

`1

`SE

`AC `CRφ0toSE 7→ send

φAC 7→ send

φCR 7→ nc++

true 7→ send

φCR 7→ nc++

φCR 7→
nc++, sendF

φAC 7→ send

φAC

φCR 7→ nc++

φCR 7→ nc++

Figure 6 A sketch threshold automaton for reliable
broadcast with Byzantine and crash faults.

Constraints (4)–(6) constitute the sanity box that function boundU computes in Algo-
rithm 1. By fixing D, we restrict Θ0 to have finitely many satisfying assignments (integers).
Hence, the loop terminates. Statements similar to Theorem 4 and Corollary 5 can be derived
for other forms of threshold guards, e.g., for thresholds with floor or ceiling functions.2

5 Case Studies and Experiments

We have extended ByMC [20, 19] with the synthesis technique presented in this paper. A
virtual machine with the tool and the benchmarks is available from: http://forsyte.at/
software/bymc.3 ByMC is written in OCaml and uses Z3 [11] as a backend SMT solver.
We ran the experiments on two systems: a laptop and the Vienna Scientific Cluster (VSC-3).
The laptop is equipped with 16 GB of RAM and Intel® Core™ i5-6300U processor with
4 cores, 2.4 GHz. The cluster VSC-3 consists of 2020 nodes, each equipped with 64 GB
of RAM and 2 processors (Intel® Xeon™ E5-2650v2, 2.6 GHz, 8 cores) and is internally
connected with an Intel QDR-80 dual-link high-speed InfiniBand fabric: http://vsc.ac.at.

We synthesize thresholds for asynchronous fault-tolerant distributed algorithms. We
consider reliable broadcast and fast decision for a consensus algorithm. In the case of reliable
broadcast we consider different fault models, namely, crashes [7] and Byzantine faults [29], as
well as a hybrid fault model [30] with both, Byzantine and crash failures. For fast decision,
we consider the one-step consensus algorithm BOSCO for Byzantine faults [28].

Reliable broadcast for crash and/or Byzantine failures. Figure 6 shows a sketch threshold
automaton of a reliable broadcast that should tolerate fc ≤ tc crash and fb ≤ tb Byzantine
faults under the resilience condition n > 3tb + 2tc. For our experiments under simpler failure
models—only Byzantine and crash faults—we use the sketch threshold automata from
Figures 2 and 5. However, the same thresholds can be obtained by setting tc = fc = 0 and
tb = fb = 0 in the automaton from Figure 6, respectively. In Figure 2, we do not need a
dedicated crash state, as we only model correct processes explicitly, while Byzantine faults
are modeled via the guards (cf. Example 1). The automaton from Figure 5 can be obtained
from Figure 6 by removing the location `SE.

2 Theorem 7 and Corollary 8 in Appendix B consider floor and ceiling functions. Our benchmarks do not
make use of such thresholds.

3 See http://forsyte.at/opodis17-artifact/ for detailed instructions on using the tool.
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Table 1 Synthesized solutions for reliable broadcast that tolerates: crashes (Figure 5), Byzantine
faults (Figure 2), and Byzantine & crash faults (Figure 6). We used the laptop in the experiments.

Resilience condition Specs #Solutions Threshold τ0toSE Threshold τAC
Calls to
verifier

Time,
seconds

n > tc, tb = 0 U, C, R 1 true 1 12 6

n > 3tb, tc = 0 U, C, R 3
n− 2tb
tb + 1
tb + 1

n− tb
2tb + 1
n− tb

31 16

n ≥ 3tb, tc = 0 U, C, R None — — 25 7

n > 3tb + 2tc U, C, R 3
n− 2tb − 2tc

tb + 1
tb + 1

n− tb − tc
2tb + tc

n− tb − tc
34 50

n ≥ 3tb + 2tc U, C, R None — — 21 12
n > 3tb + tc U, C, R None — — 29 24

The algorithms we consider are the core of broadcasting algorithms, and establish
agreement on whether to accept the message by the broadcaster. Similar to Example 1,
processes start in locations `1 and `0, which capture that the process has received and has
not received a message by the broadcaster, respectively. A correctly designed algorithm
should satisfy the following properties [29]:
(U) Unforgeability: If no correct process starts in `1, then no correct process ever enters `AC.
(C) Correctness: If all correct processes start in `1, then there exists a correct process that

eventually enters `AC.
(R) Relay: Whenever a correct process enters `AC, all correct processes eventually enter `AC.

In the following discussion we use Figure 6 as example. We have to sketch the guards φCR,
φ0toSE, and φAC. At most fc processes can move to the crashed state `CR. The algorithm
designer does not have control over the crashes, and thus we fix the guard φCR to be nc < fc:
The shared variable nc maintains the actual number of crashes (initially zero), which is
used only to model crashes and thus cannot be used in guards other than φCR. To properly
model that a processes can crash during a “send to all” operation (non-clean crash), we
introduce two shared variables: the variable echos stores the number of echo messages that
are sent by the correct processes (some of them may crash later), and the variable echosCF
stores the number of echo messages that are sent by the correct processes and the faulty
processes when crashing. Hence, the action send increases both echos and echosCF, whereas
the action sendF increases only echosCF.

We define the thresholds τ0toSE and τAC as (?SE
a · n + ?SE

b · tb + ?SE
c · tc + ?SE

d ) and
(?AC
a · n + ?AC

b · tb + ?AC
c · tc + ?AC

d ) respectively. Hence, φ0toSE and φAC are defined as
echosCF + fb ≥ τ0toSE and echosCF + fb ≥ τAC. As discussed in the introduction, we add fb
to echosCF to reflect that the correct processes may—although do not have to—receive
messages from Byzantine processes. For reliable communication, we have to enforce:

Every correct process eventually receives at least echos messages. (RelComm)

As threshold automata do not explicitly store the number of received messages, we
transform (RelComm) into a fairness constraint, which forces processes to eventually leave a
location if the messages by correct processes alone enable a guard of an edge that is outgoing
from this location. That is, there is a time after which the following holds forever:

κ[`1] = 0 ∧ (echos < τ0toSE ∨ κ[`0] = 0) ∧ (echos < τAC ∨ (κ[`0] = 0 ∧ κ[`SE] = 0)). (Fair)
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Table 2 Synthesized solutions for variations of reliable broadcast and specifications (X)–(Z).

Resilience condition Specs #Solutions Threshold τ0toSE Threshold τAC
Calls to
verifier

Time,
seconds

n > 3tb, tc = 0 X, C, R None — — 15 2

n > 3tb + 2, tc = 0 X, C, R 3
n− 2tb
tb + 3
tb + 3

n− tb
2tb + 3
n− tb

35 12

n > 3tb, tc = 0 Y, C, R None — — 28 6

n > 4tb, tc = 0 Y, C, R 3
n− 2tb
2tb + 1
2tb + 1

n− tb
3tb + 1
n− tb

33 12

n > 3tb + 2tc U, Z, R 2 tb + 1
tb + 1

n− tb − tc
2tb + tc + 1 41 31

Table 1 summarizes the experimental results for reliable broadcast, when looking for
integer solutions only. The cases tb = 0 and tc = 0 correspond to the algorithms that tolerate
only crashes (Figure 5) and only Byzantine faults (Figure 2) respectively. For these cases,
we obtained the solutions known from the literature [29, 7] and some variations. Moreover,
when the resilience condition is changed from n > 3tb to n ≥ 3tb, our tool reports no solution,
which also complies with the literature [29]. In the case of fc crashes and fb Byzantine faults,
the tool reports three solutions. Moreover, when we tried to relax the resilience condition to
n ≥ 3tb + 2tc and n > 3tb + tc, the tool reported that there is no solution, as expected.

Variations of the specification. Our logic allows us to easily change the specifications. For
instance, we can replace the precondition of unforgeability “if no correct process starts in `1”
by giving an upper bound (number or parameter) on correct processes starting in `1 that
still prevents entering `AC, in specifications (X) and (Y). We also changed the precondition
of correctnesss “if all correct processes start in `1” in specification (Z):
(X) If at most two correct processes start in `1, then no correct process ever enters `AC.
(Y) If at most tb correct processes start in `1, then no correct process ever enters `AC.
(Z) If at least tb + tc + 1 non-Byzantine processes (correct or crash faulty) start in `1, then

there exists a correct process that eventually enters `AC.

Interestingly, we obtain new distributed computing problems that put quantitative
conditions on the initial state. These specifications are related to the specifications of
condition-based consensus [27]. Our tool automatically generates solutions, or shows their
absence in the case resilience conditions are too strong. Table 2 summarizes these results.

Byzantine one-step consensus. Figure 7 shows a sketch threshold automaton of a one-
step Byzantine consensus algorithm that should tolerate f ≤ t Byzantine faults under the
assumption n > 3t. It is a formalization of the BOSCO algorithm [28]. The purpose of
the algorithm is to quickly reach consensus if (a) n > 5t and f = 0, or (b) n > 7t. In this
encoding, correct processes make a “fast” decision on 0 or 1 by going in the locations `D0
and `D1, respectively. When neither (a) nor (b) holds, the processes precompute their votes
in the first step and then go to the locations `U0 and `U1, from which an underlying consensus
algorithm is taking over. In this sense, BOSCO can be seen as an asynchronous preprocessing
step for general consensus algorithms, and the properties given below contain preconditions
for calling consensus in a safe way (see Fast Agreement below). Every run of a synthesized
threshold automaton must satisfy the following properties (for i ∈ {0, 1} and j = 1− i):
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`0

`1

`SE0

`SE1

`D0

`D1

`U0

`U1

true 7→ s0++, s01++

true 7→ s1++, s01++

φA ∧ s0 + f ≥ τD0

φA ∧ s1 + f ≥ τD1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 + f ≥ τU1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 < τU1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 < τU0 ∧ s1 < τU1

φA ∧ s1 <
τD0 ∧ s1 <

τD1 ∧ s0 + f ≥ τU0 ∧ s1 <
τU1

Figure 7 A sketch threshold automaton for one-step Byzantine consensus. Labels of dashed
edges are omitted; they can be obtained from the respective solid edges by swapping 0 and 1.

(A) Fast agreement [28, Lemmas 3–4]: Condition κ[`Di] 6= 0 implies κ[`Dj] = κ[`Uj] = 0.
(O) One step: If n > 5t ∧ f = 0 or n > 7t, and initially κ[`j] = 0, then it always holds that

κ[`Dj] = 0 and κ[`U0] = κ[`U1] = 0. That is, the underlying consensus is never called.
(F) Fast termination: If n > 5t ∧ f = 0 or n > 7t, and initially κ[`j] = 0, then it eventually

holds that κ[`] = 0 for all local states different from `Di.
(T) Termination: It eventually holds that κ[`0] = κ[`1] = 0 and κ[`SE0] = κ[`SE1] = 0.

We define thresholds τA, τD0, τD1, τU0, τU1 as ?xa ·n+?xb · t+?xc for x ∈ {A,D0,D1,U0,U1}.
Then, the guard φA is defined as: s01 + f ≥ τA. Interestingly, the thresholds appear in
different roles in the guards, e.g., s0 + f ≥ τD0 and s0 < τD0. These cases correspond to
BOSCO’s decisions on how many messages have been received and how many messages have
not been received “modulo Byzantine faults.”

As with reliable broadcast, we model reliable communication with the following fairness
constraint: For i ∈ {0, 1}, from some point on, the following holds: κ[`0] = 0 ∧ κ[`1] =
0 ∧ (s01 < τA ∨ si < τDi ∨ κ[`SEi] = 0).

We bound denominators of rationals with two and use the sanity box provided by
Corollary 5. To reduce the search space, we assume that the guards for 0 and 1 are
symmetric, that is ?D0

a = ?D1
a and ?U0

a = ?U1
a . Still, BOSCO is a challenging benchmark for

verification [19] and synthesis. Since the verification procedure from Section 3 independently
checks schemas with SMT, we parallelized schema checking with OpenMPI, and ran the
experiments at Vienna Scientific Cluster (VSC-3) using 8–128 cores; Table 3 summarizes the
results. The tool has found four solutions for the guards: τA = n−t [− 1

2 ], τD0 = τD1 = n+3t+1
2 ,

and τU0 = τU1 = n−t
2 [+ 1

2 ]. In addition to the guards from [28], the tool also reported that
one can add or subtract ½ from several guards. Figure 8 demonstrates that increasing the
number of cores above 64 slows down synthesis times for this benchmark.

Variations of the BOSCO specifications. We relaxed the precondition for fast termination:
(U) If n ≥ 5t ∧ f = 0 and initially κ[`j] = 0, then it eventually holds that κ[`] = 0 for all

local states different from `Di.
(V) If n ≥ 7t and initially κ[`j] = 0, then it eventually holds that κ[`] = 0 for all local states

different from `Di.
As can be seen from Table 3, specifications (U) and (V ) have no solutions.



M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:15

Table 3 Experiments for one-step Byzantine consen-
sus for n > 3t running the parallel verifier at VSC-3.

Specs
Nr. of

solutions
Calls to
verifier

Nr. of
cores

Time
min.

AOFT 4 516 128 39
AOFT 4 432 96 25
AOFT 4 425 64 24
AOFT 4 502 16 44
AOFT 4 440 8 51
AOUT 0 376 8 40
AOVT 0 337 8 33

39 min

25 min24 min

31 min

44 min

51 min

Ti
m

e,
 s

ec
.

1500

3000

Number of cores (16 cores per node)
816 32 64 128

Figure 8 Synthesis times for BOSCO
at Vienna Scientific Cluster (VSC-3).

6 Discussions

The classic approach to establish correctness of a distributed algorithm is to start with a system
model, a specification, and pseudo code, all given in natural language and mathematical
definitions, and then write a manual proof that confirms that “all fits together.” Manual
correctness proofs mix code inspection, system assumptions, and reasoning about events in
the past and the future. Slight modifications to the system assumptions or the code require
us to redo the proof. Thus, the proofs often just establish correctness of the algorithm,
rather than deriving details of the algorithm— like the threshold guards— from the system
assumption or the specification.

We introduced an automated method that synthesizes a correct distributed algorithm
from the specifications and the basic assumptions. Our tool computes threshold expressions
from the resilience condition and the specification, by learning the constraints that are
derived from counterexamples. Learning dramatically reduces the number of verifier calls. In
case of BOSCO, the sanity box contains 236 vectors of unknowns, which makes exhaustive
search impractical, while our technique only needs to check approximately 500 vectors.

In addition to synthesizing known algorithms from the literature, we considered several
modified specifications. For some of them, our tool synthesizes thresholds, while for others it
reports that no algorithm of a specific form exists. The latter results are indeed impossibility
results (lower bounds on the fraction of correct processes) for fixed sketch threshold automata.

To ensure termination of the synthesis loop, we restrict the search space, and thus the
class of algorithms for which the impossibility result formally applies. First, while we restrict
the search to sane guards, the same synthesis loop can also be used to synthesize other
guards. However, in order to ensure termination, a suitable characterization of sought-after
guards should be provided by the user. Second, for reliable broadcast we consider only
threshold guards with integer coefficients that can express thresholds like n− t or 2t+ 1. For
BOSCO, we only allow division by 2, and can express thresholds like n

2 or n−t
2 . While from

a theoretical viewpoint these restrictions limit the scope of our results, we are not aware of
a distributed algorithm where processes wait for messages from, say, n7 or n

1000 processes.
To strengthen our completeness claim, we would need to formally explain why only small
denominators are used in fault-tolerant distributed algorithms.
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APPENDIX

A Detailed Proofs

In order to prove Theorem 4, we first prove mathematical background of it, i.e., Lemma 6.

I Lemma 6. Fix a k ∈ N, and for every i ∈ {1, . . . , k} fix δi > 0. Let a, b1, . . . , bk, c be
rationals for which the following holds: for every n, t1, . . . , tk ∈ N such that n >

∑k
i=1 δiti ≥ 0,

it holds that 0 ≤ an+
∑k
i=1 biti + c ≤ n. Then it is the case that

0 ≤ a ≤ 1, (7)
−δi − 1 < bi < δi + 1, for all i = 1, . . . , k (8)

−2(δ1 + . . .+ δk)− k − 1 ≤ c ≤ 2(δ1 + . . .+ δk) + k + 1. (9)

Proof. Let PRC be the set of all tuples (n, t1, . . . , tk) ∈ Nk+1 that satisfy n >
∑k
i=1 δiti ≥ 0.

Thus, we assume that for a, b1, . . . , bk, c ∈ Q the following holds:

0 ≤ an+
k∑
i=1

biti + c ≤ n, for all (n, t1, . . . , tk) ∈ PRC . (10)

We show that if any of the conditions (7)–(9) is violated, we obtain a contradiction by finding
(n0, t01, . . . , t

0
k) ∈ PRC such that 0 ≤ an0 +

∑k
i=1 bit

0
i + c ≤ n0 does not hold.

Proof of (7). Let us first show that 0 ≤ a ≤ 1.
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Assume by contradiction that a > 1. From (10) we know that for every (n, t1, . . . , tk) ∈
PRC holds n ≥ an +

∑k
i=1 biti + c, that is, (1 − a)n ≥

∑k
i=1 biti + c. Since 1 − a < 0, we

obtain

n ≤
∑k
i=1 biti + c

1− a , for all (n, t1, . . . , tk) ∈ PRC . (11)

Consider any tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 where n0 > max

{∑k
i=1 δit

0
i ,

∑k

i=1
bit

0
i +c

1−a

}
. By

construction, we obtain: (i) the tuple is in PRC because n0 >
∑k
i=1 δit

0
i , and (ii) we have

n0 >

∑k

i=1
bit

0
i +c

1−a , such that we arrive at the required contradiction to (11).
Assume now that a < 0. Again from (10) we have that for all (n, t1, . . . , tk) ∈ PRC holds

an+
∑k
i=1 biti + c ≥ 0, or in other words an ≥ −

∑k
i=1 biti − c. As a < 0, this means that

n ≤
−
∑k
i=1 biti − c
a

, for every (n, t1, . . . , tk) ∈ PRC . (12)

Consider a tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 with n0 > max

{∑k
i=1 δit

0
i ,
−
∑k

i=1
bit

0
i−c

a

}
. By

construction it holds that n0 >
∑k
i=1 δit

0
i , and thus the tuple is in PRC . Also by construction

it holds that n0 >
−
∑k

i=1
bit

0
i−c

a which is a contradiction with (12).
Proof of (8). Let us now prove that −δi−1 < bi < δi+1, for an arbitrary i ∈ {1, . . . , k}.
Assume by contradiction that bi ≥ δi+1. Recall from (10) that for all (n, t1, . . . , tk) ∈ PRC

holds an+
∑k
j=1 bjtj + c ≤ n, or in other words (1− a)n ≥

∑k
j=1 bjtj + c. Since a ∈ [0, 1],

then (1−a)n ≤ n, for every n ≥ 0. Since bi ≥ δi+1, and ti ≥ 0, it holds that biti ≥ (δi+1)ti.
Thus, we have that for every (n, t1, . . . , tk) ∈ PRC holds that

n ≥ (1− a)n ≥
k∑
j=1

bjtj + c ≥ (δi + 1)ti +
∑
j 6=i

bjtj + c.

In other words, we have that

(n− δiti)−
∑
j 6=i

bjtj − c ≥ ti, for all (n, t1, . . . , tk) ∈ PRC . (13)

Consider the tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 such that t0i = max{1,

∑
j 6=i(δj − bj) − c + 2},

t0j = 1 for j 6= i, and n0 =
∑k
j=1 δjt

0
j + 1 =

∑
j 6=i δj + δit

0
i + 1. This tuple is in PRC

since n0 >
∑k
j=1 δjt

0
j . Let us check the inequality from (13). By construction we have

(n0−δit0i )−
∑
j 6=i bjt

0
j−c =

∑
j 6=i δj+δit0i +1−δit0i −

∑
j 6=i bj−c, that is,

∑
j 6=i(δj−bj)−c+1,

which is strictly smaller than t0i by construction. Thus, we obtained a contradiction with (13).
Let us now assume bi ≤ −δi − 1. Recall from (10) that for all (n, t1, . . . , tk) ∈ PRC holds

0 ≤ an+
∑k
j=1 bjtj + c. Since a ∈ [0, 1], for every n ∈ N holds an ≤ n, and since bi ≤ −δi−1,

we have biti ≤ −δiti − ti, for every ti ≥ 0. Thus, for every (n, t1, . . . , tk) ∈ PRC we have

0 ≤ an+
k∑
j=1

bjtj + c ≤ n+ (−δiti − ti) +
∑
j 6=i

bjtj + c.

In other words, we have that

ti ≤ (n− δiti) +
∑
j 6=i

bjtj + c, for all (n, t1, . . . , tk) ∈ PRC . (14)
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Consider the tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 where t0i = max{

∑
j 6=i(δj + bj) + c + 2, 1},

t0j = 1, for every j 6= i, and n0 =
∑k
j=1 δjt

0
j + 1 =

∑
j 6=i δj + δit

0
i + 1. This tuple is

in PRC , since n0 >
∑k
i=1 δit

0
i . Let us check the inequality from (14). By construction

we have (n0 − δit
0
i ) +

∑
j 6=i bjt

0
j + c =

∑
j 6=i δj + δit

0
i + 1 − δit

0
i +

∑
j 6=i bj + c, that is,∑

j 6=i(δj + bj) + c + 1, which is strictly smaller than t0i by construction. This gives us a
contradiction with (14).

Proof of (9). And finally, let us prove that −2
∑k
i=1 δi − k − 1 ≤ c ≤ 2

∑k
i=1 δi + k + 1.

Assume by contradiction that c > 2
∑k
i=1 δi +k+ 1. Recall that for every (n, t1, . . . , tk) ∈

PRC holds n ≥ an+
∑k
i=1 biti + c, by (10). Since a ≥ 0, bi > −δi − 1, for every i = 1, . . . , k,

and c > 2
∑k
i=1 δi + k + 1, then we have that

n ≥ an+
k∑
i=1

biti + c >

k∑
i=1

(−δi− 1)ti + 2
k∑
i=1

δi + k+ 1, for all (n, t1, . . . , tk) ∈ PRC . (15)

Consider the tuple (n0, t01, . . . , t
0
k) where t01 = . . . = t0k = 1, and n0 =

∑k
i=1 δit

0
i + 1 =∑k

i=1 δi + 1. The tuple is in PRC since n0 >
∑k
i=1 δit

0
i , but by construction it holds that∑k

i=1(−δi − 1)t0i + 2
∑k
i=1 δi + k + 1 =

∑k
i=1 δi + 1 = n0, which is a contradiction with (15).

Assume by contradiction that c < −2
∑k
i=1 δi − k − 1. Recall that for all (n, t1, . . . , tk) ∈

PRC holds 0 ≤ an+
∑k
i=1 biti + c, by (10). Since a ≤ 1, bi < δi + 1, for every i = 1, . . . , k,

and c < −2
∑k
i=1 δi − k − 1, then we have that

0 ≤ an+
k∑
i=1

biti+c < n+
k∑
i=1

(δi+1)ti−2
k∑
i=1

δi−k−1, for all (n, t1, . . . , tk) ∈ PRC . (16)

Consider the tuple (n0, t01, . . . , t
0
k) where t01 = . . . = t0k = 1, and n0 =

∑k
i=1 δit

0
i + 1 =∑k

i=1 δi + 1. This tuple is in PRC since n0 >
∑k
i=1 δit

0
i , but by construction it holds that

n0 +
∑k
i=1(δi + 1)t0i − 2

∑k
i=1 δi − k − 1 = 0, which is a contradiction with (16). J

Proof of Theorem 4. As the given guard is sane for the resilience condition, the number
compared against a shared variable should have a value from 0 to n. For every tuple
(n, t1, . . . , tk) of parameter values satisfying the resilience condition, it should hold that
0 ≤ an+

∑k
i=1 biti + c ≤ n. We may thus apply Lemma 6 and the theorem follows. J

Proof of Corollary 5. Using the fact that x ≤ d̃
D ≤ y implies that Dx ≤ d̃ ≤ Dy, for a

D ∈ N, this corollary follows directly from Theorem 4. J

B Thresholds with floor and ceiling functions

The following theorem considers threshold guards that use the ceiling or the floor function.
It uses the same reasoning as in Theorem 4, combined with the properties of these functions.
Namely, for every x ∈ R it holds that x ≤ dxe < x+ 1 and x− 1 < bxc ≤ x.

I Theorem 7. Fix a k ∈ N. Let n >
∑k
i=1 δiti ∧ ∀i.ti ≥ 0 be a resilience condition, where

δi > 0, i = 1, . . . , k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard of the form

x ≥ f (an+ (b1t1 + . . .+ bktk) + c) or x < f (an+ (b1t1 + . . .+ bktk) + c) ,
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where x ∈ Γ is a shared variable, a, b1, . . . , bk, c ∈ Q are rationals, and f is either the ceiling
or the floor function. If the guard is sane for the resilience condition, then it holds that

0 ≤a ≤ 1, (17)
−δi − 1 <bi < δi + 1, for all i = 1, . . . , k, (18)

−2(δ1 + . . .+ δk)− k − 2 ≤c ≤ 2(δ1 + . . .+ δk) + k, if f is floor, or (19)
−2(δ1 + . . .+ δk)− k ≤c ≤ 2(δ1 + . . .+ δk) + k + 2, if f is ceiling. (20)

Proof sketch. The proof largely follows the arguments of the proof of Lemma 6 with fixed
denominators as in Corollary 5. The only remaining issue is that instead of constraints of
the form 0 ≤ an+

∑k
i=1 biti + c ≤ n, that are considered in Lemma 6, here we have to argue

about constraints of the form 0 ≤ f
(
an+

∑k
i=1 biti + c

)
≤ n, where f is the ceiling or the

floor function.
Let us first discuss the case when f is the ceiling function. As for every x ∈ R holds that

x ≤ dxe < x+ 1, we have that

an+ (b1t1 + . . .+ bktk) + c ≤ dan+ (b1t1 + . . .+ bktk) + ce < an+ (b1t1 + . . .+ bktk) + c+ 1.

Still, as the guard is sane, we have that 0 ≤ dan+ (b1t1 + . . .+ bktk) + ce ≤ n. Combining
these two constraints, we obtain that

0 < an+ (b1t1 + . . .+ bktk) + (c+ 1) and an+ (b1t1 + . . .+ bktk) + c ≤ n.

With these constraints, we can derive a contradiction following the proof of Lemma 6.
Similarly, if f is the floor function, we use the fact that for every x ∈ R holds that

x− 1 < bxc ≤ x. Therefore, we have that

an+ (b1t1 + . . .+ bktk) + c− 1 < ban+ (b1t1 + . . .+ bktk) + cc ≤ an+ (b1t1 + . . .+ bktk) + c.

As 0 ≤ ban+ (b1t1 + . . .+ bktk) + cc ≤ n, we obtain that

0 ≤ an+ (b1t1 + . . .+ bktk) + c and an+ (b1t1 + . . .+ bktk) + (c− 1) < n.

And again, the rest of the proof follows the line of the proof of Lemma 6. J

If coefficients in guards have a fixed denominator, we can obtain intervals for numerators
as a direct consequence of Theorem 7.

I Corollary 8. Fix a k ∈ N. Let n >
∑k
i=1 δiti ∧ ∀i.ti ≥ 0 be a resilience condition, where

δi > 0, i = 1, . . . , k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard of the form

x ≥ f

(
ã

D
n+

k∑
i=1

b̃i
D
ti + c̃

D

)
or x < f

(
ã

D
n+

k∑
i=1

b̃i
D
ti + c̃

D

)
,

where x ∈ Γ is a shared variable, ã, b̃1, . . . , b̃k, c̃ ∈ Z are integers, D ∈ N, and f is either the
ceiling or the floor function. If the guard is sane for the resilience condition, then it holds

0 ≤a ≤ D, (21)
D(−δi − 1) <bi < D(δi + 1), for all i = 1, . . . , k, (22)

D(−2(δ1 + . . .+ δk)− k − 2) ≤c ≤ D(2(δ1 + . . .+ δk) + k), if f is floor, or (23)
D(−2(δ1 + . . .+ δk)− k) ≤c ≤ D(2(δ1 + . . .+ δk) + k + 2), if f is ceiling. (24)
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